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DIFFUSION OF A SINGLE-PHASE FLUID THROUGH A
GENERAL DETERMINISTIC PARTIALLY-FISSURED MEDIUM

GABRIEL NGUETSENG, RALPH E. SHOWALTER, JEAN LOUIS WOUKENG

Abstract. The sigma convergence method was introduced by G. Nguetseng

for studying deterministic homogenization problems beyond the periodic set-

ting and extended by him to the case of deterministic homogenization in gen-
eral deterministic perforated domains. Here we show that this concept can

also model such problems in more general domains. We illustrate this by con-
sidering the quasi-linear version of the distributed-microstructure model for

single phase fluid flow in a partially fissured medium. We use the well-known

concept of algebras with mean value. An important result of de Rham type is
first proven in this setting and then used to get a general compactness result

associated to algebras with mean value in the framework of sigma convergence.

Finally we use these results to obtain homogenized limits of our micro-model
in various deterministic settings, including periodic and almost periodic cases.

1. Introduction

A fissured medium is a structure consisting of a matrix of porous and permeable
material through which is intertwined a highly developed system of fissures with
substantially higher flow rates and lower relative volume. The problem of homog-
enization or scaling is to determine from data or local characteristics the effective
parameters for a description of this medium on a larger scale. Problems of flow and
transport through porous media have been investigated over the last century and
have continued to receive increasing attention over the years. To describe the flow
of fluid in heterogeneous media, several heuristic models have been developed. The
classical and most studied double diffusion model for fissured porous rock domain
was introduced in 1960 by Barenblatt, Zheltov and Kochina [2] and further devel-
oped in that decade [10, 17, 19, 28, 35]. It has been recently rigorously derived by
homogenization from an exact micro-model [20, 21, 34]. The special pseudoparabolic
case of this double diffusion model is particularly important for the applications,
and it has been recently upscaled by homogenization [30]. In 1990 Arbogast, Dou-
glas and Hornung [1] developed the more realistic double porosity model which has
been studied by many researchers and extended to include secondary flux [29, 42].
We also refer to [6, 40] for the homogenization of some of the previous models in a
random environment.
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In [11] a model for diffusion of a single phase fluid through a periodic partially-
fissured medium was introduced; it was studied by two-scale convergence in [9], and
in [40] the random counterpart of the same model is derived by stochastic homog-
enization. Our objective here is to fill the gap between these periodic and random
cases by considering a general deterministic version of that problem. More precisely,
we aim to develop a deterministic approach of homogenization for solving homog-
enization problems (beyond the classical periodic setting) related to some models
consisting of fluid-matrix system interaction in flow, especially of fissured porous
media. The problem addressed here is the model from [11] of a partially-fissured
medium for which both the fissure system and the porous matrix are connected and
contribute to the global flow. Our aim is to study this problem in more general
settings beyond periodicity.

To illustrate the process, we describe a general deterministic partially-fissured
medium that will be used in the following. The reference cell is Y = (0, 1)N with
non-empty open disjoint connected subsets Y1 and Y2 denoting the local fissure
system and porous matrix, respectively, such that Y = Y 1 ∪ Y 2. Let S ⊂ ZN be
an infinite subset of ZN to be determined below, and set Gj = ∪k∈S(k + Yj) for
j = 1, 2. Assume that G1 is connected. In the partially-fissured case, G2 can be
connected also. (This requires that N ≥ 3.) Examples can be constructed from
the periodic case S = ZN by deleting (almost periodic) arrays of cells. The deleted
cells represent impermeable regions or obstacles, G0 = ∪k/∈S(k + Y ).

Given the open bounded Lipschitz domain Ω ⊂ RN and ε > 0, we define

Ωεj = Ω ∩ εGj , j = 0, 1, 2.

Denote by Γεi,j = ∂Ωεi ∩ ∂Ωεj ∩Ω the interface of Ωεi with Ωεj lying in Ω. The set Ωε1
(resp. Ωε2) is the portion of Ω occupied by the fissures (resp. porous matrix), and
the flow region is given by the disjoint union Ωε = Ωε1 ∪ Γε1,2 ∪ Ωε2.

Let νj denote the unit outward normal on ∂Ωεj . Note that ν1 = −ν2 on Γε1,2. It is
worthwhile to note that, when S = ZN , we get a structure consisting of fissures and
matrix equidistributed (or, as in the classical literature, periodically distributed)
over the entire domain Ω with period εY . But our domain is not necessarily a
periodic array of εY as is usually the case in all deterministic situations encountered
so far. We shall see that the fissured cells may also be almost periodically distributed
in Ω.

The partially-fissured micro-model. We set up the micro-model for Darcy flow in the
partially-fissured medium. The coefficients of the operator involved in the problem
are given as follows. For 2 ≤ p < ∞ and for j = 1, 2, 3, let aj : RN × RN → RN
satisfy the following conditions:

For each fixed λ ∈ RN , the function aj(·, λ) is measurable; (1.1a)

aj(y, 0) = 0 almost every y ∈ RN ; (1.1b)

There are two constants positive α0, α1 such that a.e. y ∈ RN ,
(i) (aj(y, λ)− aj(y, µ)) · (λ− µ) ≥ α0|λ− µ|p
(ii) |aj(y, λ)− aj(y, µ)| ≤ α1(1 + |λ|+ |µ|)p−2|λ− µ|
for all λ, µ ∈ RN , where the dot denotes the usual Euclidean inner
product in RN and | · | the associated norm;

(1.1c)
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The density function cj : RN → R is bounded continuous and
satisfies Λ−1 ≤ cj(y) ≤ Λ for all y ∈ RN where Λ is positive and
independent of y.

(1.1d)

Let T be a positive real number. With the above assumptions, the existence
of the trace functions (x, t) 7→ aj(x/ε,Duε(x, t)) and x 7→ cj(x/ε) here denoted
respectively by aεj(·, Duε) and cεj , has been discussed previously (see e.g., [26, 37]).
These functions are well-defined as elements of Lp

′
(Q)N (where Q = Ω × (0, T ))

and C(Ω) respectively, and satisfy properties similar to those in (1.1).
We describe the micro-model for diffusion through the partially-fissured porous

medium [11, 9]. The Darcy flow potential in the system of fissures Ωε1 is denoted by
uε1(x, t) while that in the porous matrix is a convex combination of two components
uε2(x, t) and uε3(x, t) which account respectively for the global diffusion through the
matrix and the high-frequency variations which lead to local storage in the matrix.
The flow potential in Ωε2 is given by the combination αuε2 + δuε3, where α+ δ = 1
with α ≥ 0 and δ > 0. The flux of the flow component uε1(x, t) in Ωε1 is given
by −a1(x/ε,∇uε1(x, t)) while the flow components uε2(x, t) and uε3(x, t) in Ωε2 are
given by −a2(x/ε,∇uε2(x, t)) and −εa3(x/ε, ε∇uε3(x, t)). The flow of fluid at the
micro-scale is described by the classical conservation of fluid equations and interface
conditions in Ωε:

∂

∂t
(cε1u

ε
1)− divaε1(·,∇uε1) = 0 in Ωε1 × (0, T ) (1.2a)

∂

∂t
(cε2u

ε
2)− divaε2(·,∇uε2) = 0 in Ωε2 × (0, T ) (1.2b)

∂

∂t
(cε3u

ε
3)− εdivaε3(·, ε∇uε3) = 0 in Ωε2 × (0, T ) (1.2c)

uε1 = αuε2 + δuε3 on Γε1,2 × (0, T ) (1.2d)

αaε1(·,∇uε1) · ν1 = aε2(·,∇uε2) · ν1 on Γε1,2 × (0, T ) (1.2e)

δaε1(·,∇uε1) · ν1 = εaε3(·, ε∇uε3) · ν1 on Γε1,2 × (0, T ). (1.2f)

We assume the Neumann no-flow conditions on the remaining interfaces

aε1(·,∇uε1) · ν1 = 0 on Γε1,0 × (0, T ) (1.2g)

aε2(·,∇uε2) · ν2 = 0 on Γε2,0 × (0, T ) (1.2h)

aε3(·, ε∇uε3) · ν2 = 0 on Γε2,0 × (0, T ), (1.2i)

and on the global boundary

aε1(·,∇uε1) · ν1 = 0 on (∂Ωε1 ∩ ∂Ω)× (0, T ) (1.2j)

aε2(·,∇uε2) · ν2 = 0 on (∂Ωε2 ∩ ∂Ω)× (0, T ) (1.2k)

aε3(·, ε∇uε3) · ν2 = 0 on (∂Ωε2 ∩ ∂Ω)× (0, T ). (1.2l)

Finally the initial-boundary-value problem is completed by the initial conditions

uε1(·, 0) = u0
1, uε2(·, 0) = u0

2, uε3(·, 0) = u0
3 (1.2m)

where u0
j ∈ L2(Ω) are given for j = 1, 2, 3.

To solve problem (1.2) we define appropriate spaces. For any fixed ε > 0 let

Hε = L2(Ωε1)× L2(Ωε2)× L2(Ωε2)
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be equipped with inner product

((u1, u2, u3), (v1, v2, v3))Hε
=
∫

Ωε
1

cε1u1v1dx+
3∑
i=2

∫
Ωε

2

cεiuividx,

which makes it a Hilbert space. Next, let γεj : W 1,p(Ωεj) → Lp(∂Ωεj) (j = 1, 2)
denote the usual trace maps. Set Vε = Hε ∩Wε where

Wε =
{

(u1, u2, u3) ∈W 1,p(Ωε1)×W 1,p(Ωε2)×W 1,p(Ωε2) :

γε1u1 = αγε2u2 + δγε2u3 on Γε1,2
}
.

Vε is a Banach space under the norm

‖(u1, u2, u3)‖Vε
= ‖χε1u1‖L2(Ω) + ‖χε2u2‖L2(Ω) + ‖χε2u3‖L2(Ω)

+ ‖χε1∇u1‖Lp(Ω) + ‖χε2∇u2‖Lp(Ω) + ‖χε2∇u3‖Lp(Ω),

where χεj (for j = 1, 2) denotes the characteristic function of the open set Ωεj .
Letting uε = (uε1, u

ε
2, u

ε
3), the variational formulation of (1.2) amounts to finding

uε ∈ Lp(0, T ;Vε) such that(∂uε
∂t

, ϕ
)
Hε

+ 〈Aεuε, ϕ〉 = 0 for all ϕ = (ϕ1, ϕ2, ϕ3) ∈ Vε (1.3)

where the operator Aε : Vε → V ′ε is defined by

〈Aεu, ϕ〉 =
∫

Ωε
1

aε1(·,∇u1) · ∇ϕ1dx+
∫

Ωε
2

(aε2(·,∇u2) · ∇ϕ2 + aε3(·, ε∇u3) · ε∇ϕ3)dx

for u = (u1, u2, u3), ϕ = (ϕ1, ϕ2, ϕ3) ∈ Vε. This gives rise to the following ab-
stract Cauchy problem: for each ε > 0 and u0 = (u0

1, u
0
2, u

0
3) ∈ L2(Ω)3, find

uε = (uε1, u
ε
2, u

ε
3) ∈ Lp(0, T ;Vε) such that

d

dt
uε +Aεuε = 0 in Lp′(0, T ;V ′ε ), (1.4a)

uε(0) = u0 in Hε. (1.4b)

Conversely, a sufficiently smooth solution to (1.4) is also a solution to (1.2). The
following result holds.

Theorem 1.1. For any fixed ε > 0, the initial-value problem (1.4) possesses a
unique solution uε = (uε1, u

ε
2, u

ε
3) ∈ Lp(0, T ;Vε). Moreover uε ∈ C([0, T ];Hε) and

the following a priori estimate holds:

1
2
‖uε(t)‖2Hε

+ α0

∫ t

0

(‖χε1∇uε1‖
p
Lp(Ω) + ‖χε2∇uε2‖

p
Lp(Ω) + ‖εχε2∇uε3‖

p
Lp(Ω))ds

≤ 1
2
‖(χε1u0

1, χ
ε
2u

0
2, χ

ε
2u

0
3)‖2Hε

, 0 ≤ t ≤ T.
(1.5)

Proof. The existence and uniqueness of uε follow from the application of [33, Propo-
sition III.4.1] (see also [9]). Estimate (1.5) is an easy consequence of the variational
formulation (1.3) in which we take ϕ = uε(t). �

Theorem 1.1 entails that (uε)ε>0 is bounded in L∞(0, T ;Hε) and that the se-
quences (χε1∇uε1)ε>0, (χε2∇uε2)ε>0 and (εχε2∇uε3)ε>0 are bounded in Lp(Q)N . Fi-
nally, from the properties of the functions aj , the sequences (χεja

ε
j(·,∇uεj))ε>0 (for
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j = 1, 2) and (χε2a
ε
3(·, ε∇uε3))ε>0 are bounded in Lp

′
(Q)N . These boundedness prop-

erties shall play an essential role in the sequel where we obtain the homogenized
limit of the system (1.2).

2. Algebras with mean value and sigma-convergence

In this section we recall some basic facts about algebras with mean value [43]
and the concept of sigma-convergence [22] (see also [25, 31]). Using the semigroup
theory we present some essential results for these concepts. We refer the reader to
[36] for the details regarding most of the results of this section. In the following,
all vector spaces are real vector spaces, and scalar functions take real values.

2.1. Algebras with Mean Value. A closed subalgebra A of the C*-algebra of
bounded uniformly continuous functions BUC(RN ) is an algebra with mean value
on RN [18, 8, 31, 43] if it contains the constants, is translation invariant (u(·+a) ∈ A
for any u ∈ A and each a ∈ RN ) and each of its elements possesses a mean value
in the following sense:

• For any u ∈ A, the sequence (uε)ε>0 (defined by uε(x) = u(x/ε), x ∈ RN )
weak∗-converges in L∞(RN ) to some constant real function M(u) as ε→ 0.

It is known that A (endowed with the sup norm topology) is a commutative
C*-algebra with identity. We denote by ∆(A) the spectrum of A and by G the
Gelfand transformation on A. We recall that ∆(A) (a subset of the topological
dual A′ of A) is the set of all nonzero multiplicative linear functionals on A, and G
is the mapping of A into C(∆(A)) such that G(u)(s) = 〈s, u〉 (s ∈ ∆(A)), where 〈, 〉
denotes the duality pairing between A′ and A. When equipped with the relative
weak∗ topology on A′ (the topological dual A′ of A), ∆(A) is a compact topological
space, and the Gelfand transformation G is an isometric ∗-isomorphism identifying
A with C(∆(A)) as C*-algebras. Moreover the mean value M defined on A is a
nonnegative continuous linear functional that can be expressed in terms of a Radon
measure β (of total mass 1) in ∆(A) (called the M -measure for A [22]) satisfying
the property that M(u) =

∫
∆(A)

G(u)dβ for u ∈ A.
To any algebra with mean value A we define the subspaces: Am ≡ {ψ ∈ Cm(RN ) :

Dα
yψ ∈ A ∀α = (α1, . . . , αN ) ∈ NN with |α| ≤ m} (where Dα

yψ = ∂|α|ψ/∂yα1
1 · · ·

∂yαN

N ). Under the norm ‖|u|‖m = sup|α|≤m ‖Dα
yψ‖∞, Am is a Banach space. We

also define the space A∞ = {ψ ∈ C∞(RN ) : Dα
yψ ∈ A ∀α = (α1, . . . , αN ) ∈ NN}, a

Fréchet space when endowed with the locally convex topology defined by the family
of norms ‖| · |‖m.

Next, let BpA (1 ≤ p <∞) denote the Besicovitch space associated to A, that is
the closure of A with respect to the Besicovitch seminorm

‖u‖p =
(

lim sup
r→+∞

1
|Br|

∫
Br

|u(y)|pdy
)1/p

.

It is known that BpA is a complete seminormed vector space verifying BqA ⊂ B
p
A for

1 ≤ p ≤ q <∞. From this last property one may naturally define the space B∞A as
follows:

B∞A = {f ∈ ∩1≤p<∞B
p
A : sup

1≤p<∞
‖f‖p <∞}.

We endow B∞A with the seminorm [f ]∞ = sup1≤p<∞ ‖f‖p, which makes it a com-
plete seminormed space. We recall that the spaces BpA (1 ≤ p ≤ ∞) are not
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in general Fréchet spaces since they are not separated in general. The following
properties are worth noticing [25, 31]:

(1) The Gelfand transformation G : A → C(∆(A)) extends by continuity to a
unique continuous linear mapping (still denoted by G) of BpA into Lp(∆(A)),
which in turn induces an isometric isomorphism G1 of BpA/N ≡ B

p
A onto

Lp(∆(A)) (where N = {u ∈ BpA : G(u) = 0}). Moreover if u ∈ BpA ∩
L∞(RN ) then G(u) ∈ L∞(∆(A)) and ‖G(u)‖L∞(∆(A)) ≤ ‖u‖L∞(RN ).

(2) The mean value M defined on A, extends by continuity to a positive
continuous linear form (still denoted by M) on BpA satisfying M(u) =∫

∆(A)
G(u)dβ (u ∈ BpA). Furthermore, M(τau) = M(u) for each u ∈ BpA

and all a ∈ RN , where τau(y) = u(y + a) for almost all y ∈ RN . Moreover
for u ∈ BpA we have ‖u‖p = [M(|u|p)]1/p, and for u+N ∈ BpA we may still
define its mean value once again denoted by M , as M(u+N ) = M(u).

Remark 2.1. Based on property (1) above, we set the following notation that will
be used throughout the work: For u either in A or in BpA, û stands for the function
G(u), while for u in BpA, û denotes the function G1(u). This last notation is fully
justified since any u ∈ BpA has the form u = v + N with v ∈ BpA, and using the
definition of G1, G1(v +N ) = G(v) = v̂ as G(w) = 0 for any w ∈ N .

Let 1 ≤ p ≤ ∞. To define the Sobolev spaces associated to the algebra A, we
consider the N -parameter group of isometries {T (y) : y ∈ RN} defined by

T (y) : BpA → B
p
A, T (y)(u+N ) = τyu+N for u ∈ BpA.

Since the elements of A are uniformly continuous, {T (y) : y ∈ RN} is a strongly
continuous group in L(BpA,B

p
A) (the Banach space of continuous linear functionals

of BpA into BpA): T (y)(u + N ) → u + N in BpA as |y| → 0. We also associate to
{T (y) : y ∈ RN} the following N -parameter group {T (y) : y ∈ RN} defined by

T (y) : Lp(∆(A))→ Lp(∆(A)); T (y)G1(u+N ) = G1(T (y)(u+N )) for u ∈ BpA.

The group {T (y) : y ∈ RN} is also strongly continuous. The infinitesimal generator
of T (y) (resp. T (y)) along the ith coordinate direction, denoted by Di,p (resp. ∂i,p),
is defined as

Di,pu = lim
t→0

(T (tei)u− u
t

)
in BpA

(resp. ∂i,pv = lim
t→0

(T (tei)v − v
t

)
in Lp(∆(A)))

where we have used the same letter u to denote the equivalence class of an element
u ∈ BpA in BpA and ei = (δij)1≤j≤N (δij being the Kronecker δ). The domain of
Di,p (resp. ∂i,p) in BpA (resp. Lp(∆(A))) is denoted by Di,p (resp. Wi,p). In the
sequel we denote by % the canonical mapping of BpA onto BpA, that is, %(u) = u+N
for u ∈ BpA. The following results were obtained in [36].

Proposition 2.2. Di,p (resp. Wi,p) is a vector subspace of BpA (resp. Lp(∆(A))),
Di,p : Di,p → BpA (resp. ∂i,p : Wi,p → Lp(∆(A))) is a linear operator, Di,p (resp.
Wi,p) is dense in BpA (resp. Lp(∆(A))), and the graph of Di,p (resp. ∂i,p) is closed
in BpA × B

p
A (resp. Lp(∆(A))× Lp(∆(A))).

The next result allows us to see Di,p as a generalization of the usual partial
derivative.
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Lemma 2.3 ([36, Lemma 1]). Let 1 ≤ i ≤ N . If u ∈ A1 then %(u) ∈ Di,p and

Di,p%(u) = %(
∂u

∂yi
). (2.1)

From (2.1) we infer that Di,p ◦ % = % ◦ ∂/∂yi, that is, Di,p generalizes the usual
partial derivative ∂/∂yi. One may also define higher order derivatives by setting
Dα
p = Dα1

1,p ◦ · · · ◦ D
αN

N,p (resp. ∂αp = ∂α1
1,p ◦ · · · ◦ ∂

αN

N,p) for α = (α1, . . . , αN ) ∈ NN
with Dαi

i,p = Di,p ◦ · · · ◦Di,p, αi-times. Now, define the Besicovitch-Sobolev spaces

B1,p
A = ∩Ni=1Di,p = {u ∈ BpA : Di,pu ∈ BpA ∀1 ≤ i ≤ N},
DA(RN ) = {u ∈ B∞A : Dα

∞u ∈ B∞A ∀α ∈ NN}.

It can be shown that DA(RN ) is dense in BpA, 1 ≤ p <∞. We also have that B1,p
A

is a Banach space under the norm

‖u‖B1,p
A

=
(
‖u‖pp +

N∑
i=1

‖Di,pu‖pp
)1/p

(u ∈ B1,p
A ).

The counter-part of the above properties also holds with

W 1,p(∆(A)) = ∩Ni=1Wi,p in place of B1,p
A

and

D(∆(A)) = {u ∈ L∞(∆(A)) : ∂α∞u ∈ L∞(∆(A)) ∀α ∈ NN} in that of DA(RN ).

The following relation between Di,p and ∂i,p holds.

Lemma 2.4 ([36, Lemma 2]). For any u ∈ Di,p we have that G1(u) ∈ Wi,p with
G1(Di,pu) = ∂i,pG1(u).

Now, let u ∈ Di,p (p ≥ 1, 1 ≤ i ≤ N). Then the inequality

‖t−1(T (tei)u− u)−Di,pu‖1 ≤ c‖t−1(T (tei)u− u)−Di,pu‖p
for a positive constant c independent of u and t, yields Di,1u = Di,pu, so that Di,p

is the restriction to BpA of Di,1. Therefore, for all u ∈ Di,∞ we have u ∈ Di,p (p ≥ 1)
and Di,∞u = Di,pu for all 1 ≤ i ≤ N . It holds that

DA(RN ) = %(A∞)

and we have the following result.

Proposition 2.5 ([36, Proposition 4]). The following assertions hold.
(i)
∫

∆(A)
∂α∞ûdβ = 0 for all u ∈ DA(RN ) and α ∈ NN ;

(ii)
∫

∆(A)
∂i,pûdβ = 0 for all u ∈ Di,p and 1 ≤ i ≤ N ;

(iii) Di,p(uφ) = uDi,∞φ+φDi,pu for all (φ, u) ∈ DA(RN )×Di,p and 1 ≤ i ≤ N .

The formula (iii) in this proposition leads to the equality∫
∆(A)

φ̂∂i,pûdβ = −
∫

∆(A)

û∂i,∞φ̂dβ ∀(u, φ) ∈ Di,p ×DA(RN ).

This suggests that we define the concepts of distributions on A and of a weak
derivative. Before we can do that, let us endow DA(RN ) = %(A∞) with its natural
topology defined by the family of norms Nn(u) = sup|α|≤n supy∈RN |Dα

∞u(y)|, n ∈
N. In this topology, DA(RN ) is a Fréchet space. We denote by D′A(RN ) the
topological dual of DA(RN ). We endow it with the strong dual topology. The
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elements of D′A(RN ) are called the distributions on A. One can also define the
weak derivative of f ∈ D′A(RN ) as follows: for any α ∈ NN , Dαf stands for the
distribution defined by the formula

〈Dαf, φ〉 = (−1)|α|〈f,Dα
∞φ〉 for all φ ∈ DA(RN ).

Since DA(RN ) is dense in BpA (1 ≤ p <∞), it is immediate that BpA ⊂ D′A(RN ) with
continuous embedding, so that one may define the weak derivative of any f ∈ BpA,
and it verifies the following functional equation:

〈Dαf, φ〉 = (−1)|α|
∫

∆(A)

f̂∂α∞φ̂dβ ∀φ ∈ DA(RN ).

In particular, for f ∈ Di,p we have

−
∫

∆(A)

f̂∂i,pφ̂dβ =
∫

∆(A)

φ̂∂i,pf̂dβ ∀φ ∈ DA(RN ),

so that we may identify Di,pf with Dαif , αi = (δij)1≤j≤N . Conversely, if f ∈ BpA is
such that there exists fi ∈ BpA with 〈Dαif, φ〉 = −

∫
∆(A)

f̂iφ̂dβ for all φ ∈ DA(RN ),

then f ∈ Di,p and Di,pf = fi. We are therefore justified in saying that B1,p
A is

a Banach space under the norm ‖ · ‖B1,p
A

. The same result holds for W 1,p(∆(A)).

Moreover it is a fact that DA(RN ) (resp. D(∆(A))) is a dense subspace of B1,p
A

(resp. W 1,p(∆(A))).
We need some further notion. A function f ∈ B1

A is said to be invariant if for
any y ∈ RN , T (y)f = f . It is immediate that the above notion of invariance is the
well-known one relative to dynamical systems. An algebra with mean value will
therefore said to be ergodic if every invariant function f is constant in B1

A. As in [7]
one may show that f ∈ B1

A is invariant if and only if Di,1f = 0 for all 1 ≤ i ≤ N .
We denote by IpA the set of f ∈ BpA that are invariant. The set IpA is a closed vector
subspace of BpA satisfying the following important property:

f ∈ IpA if and only if Di,pf = 0 for all 1 ≤ i ≤ N. (2.2)

The gradient mapping Dp = (D1,p, . . . , DN,p) is an isometric embedding of B1,p
A

onto a closed subspace of (BpA)N , so that B1,p
A is a reflexive Banach space. By

duality we define the divergence operator divp′ : (Bp
′

A )N → (B1,p
A )′ (p′ = p/(p− 1))

by
〈divp′ u, v〉 = −〈u,Dpv〉 for v ∈ B1,p

A and u = (ui) ∈ (Bp
′

A )N , (2.3)

where 〈u,Dpv〉 =
∑N
i=1

∫
∆(A)

ûi∂i,pv̂dβ.

Now if in (2.3) we take u = Dp′w with w ∈ Bp
′

A being such that Dp′w ∈ (Bp
′

A )N

then this allows us to define the Laplacian operator on Bp
′

A , denoted here by ∆p′ ,
as follows:

〈∆p′w, v〉 = 〈divp′(Dp′w), v〉 = −〈Dp′w,Dpv〉 for all v ∈ B1,p
A .

If in addition v = φ with φ ∈ DA(RN ) then 〈∆p′w, φ〉 = −〈Dp′w,Dpφ〉, so that,
for p = 2, we get

〈∆2w, φ〉 = 〈w,∆2φ〉 for all w ∈ B2
A and φ ∈ DA(RN ). (2.4)

By the equality DA(RN ) = %(A∞) we infer at once that ∆p%(u) = %(∆yu) for any
u ∈ A∞, where ∆y denotes the usual Laplacian operator on RNy .
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Before we state one of the most important results of this section, we still need to
introduce some preliminaries and some notation. To this end let f ∈ BpA. We know
that Dαif exists (in the sense of distributions) and that Dαif = Di,pf if f ∈ Di,p.
So we can drop the subscript p and therefore denote Di,p (resp. ∂i,p) by ∂/∂yi
(resp. ∂i). Thus, Dy ≡ ∇y will stand for the gradient operator (∂/∂yi)1≤i≤N and
divy for the divergence operator divp, with G1 ◦ divy = d̂iv. We will also denote
∂ ≡ (∂1, . . . , ∂N ). Finally, we shall denote the Laplacian operator on BpA by ∆y.

With all this in mind, let u ∈ A and let ϕ ∈ C∞0 (RN ). Since u and ϕ are uniformly
continuous and A is translation invariant, we have that u ∗ϕ ∈ A (∗ stands for the
usual convolution). More precisely u ∗ ϕ ∈ A∞ since Dα

y (u ∗ ϕ) = u ∗ Dα
yϕ for

any α ∈ NN . For 1 ≤ p < ∞ let u ∈ BpA and let η > 0. Let v ∈ A be such that
‖u− v‖p < η/(‖ϕ‖L1(RN ) + 1). Then by Young’s inequality we have

‖u ∗ ϕ− v ∗ ϕ‖p ≤ ‖ϕ‖L1(RN )‖u− v‖p < η,

hence u ∗ ϕ ∈ BpA as v ∗ ϕ ∈ A. We may therefore define the convolution between
BpA and C∞0 (RN ) as follows: for g = u+N ∈ BpA with u ∈ BpA, and ϕ ∈ C∞0 (RN )

g ~ ϕ := u ∗ ϕ+N ≡ %(u ∗ ϕ).

Thus, for g ∈ BpA and ϕ ∈ C∞0 (RN ) we have g ~ ϕ ∈ BpA with

D
α

y (g ~ ϕ) = %(u ∗Dα
yϕ) for all α ∈ NN . (2.5)

We deduce from (2.5) that g ~ ϕ ∈ DA(RN ) since u ∗ ϕ ∈ A∞. Moreover we have

‖g ~ ϕ‖p ≤ | suppϕ|1/p‖ϕ‖Lp′ (RN )‖g‖p (2.6)

where suppϕ stands for the support of ϕ and | suppϕ| its Lebesgue measure. Indeed
letting ϕ = %(u) with u ∈ BpA,

‖g ~ ϕ‖p = ‖%(u ∗ ϕ)‖p =
(

lim sup
r→+∞

|Br|−1

∫
Br

|(u ∗ ϕ)(y)|pdy
)1/p

,

and ∫
Br

|(u ∗ ϕ)(y)|pdy ≤
(∫

Br

|ϕ|dy
)p(∫

Br

|u(y)|pdy
)

≤ |Br ∩ suppϕ|‖ϕ‖p
Lp′ (Br)

∫
Br

|u(y)|pdy,

hence the claim (2.6).
For u ∈ A and ϕ ∈ C∞0 (RN ) = D(RN ) we can also define the convolution û~ ϕ

(where û = G(u) and τyu = u(·+ y)) as follows

(û~ ϕ)(s) =
∫

RN

τ̂yu(s)ϕ(y)dy (s ∈ ∆(A)), (2.7)

as an element of C(∆(A)) (this is easily seen). We have the crucial equality

û ∗ ϕ = û~ ϕ for all u ∈ A and ϕ ∈ C∞0 (RN ). (2.8)

In fact for x ∈ RN ,

(û~ ϕ)(δx) =
∫

RN

τ̂yu(δx)ϕ(y)dy =
∫

RN

τyu(x)ϕ(y)dy

= (u ∗ ϕ)(x) = û ∗ ϕ(δx).
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By the continuity of both û ~ ϕ and û ∗ ϕ, and the density of {δx : x ∈ RN} in
∆(A) we end up with (2.8). It is important to note that (2.8) allows us to see that
g ~ ϕ is well-defined for g ∈ BpA. In fact we can deduce from (2.8) that g ~ ϕ ∈ N
whenever g ∈ N (i.e., G1(g ~ ϕ) = 0 whenever G1(g) = 0).

We also have the obvious equality

∂i(û~ ϕ) = û~
∂ϕ

∂yi
for all 1 ≤ i ≤ N. (2.9)

2.2. The de Rham Theorem.

Theorem 2.6. Let 1 < p < ∞. Let L be a bounded linear functional on (B1,p′

A )N

which vanishes on the kernel of the divergence. Then there exists a function f ∈ BpA
such that L = ∇yf , i.e.,

L(v) = −
∫

∆(A)

f̂ d̂iv v̂dβ for all v ∈ (B1,p′

A )N .

Moreover f is unique modulo IpA, that is, up to an additive function g ∈ BpA verifying
∇yg = 0.

Proof. Let u ∈ A∞ (hence %(u) ∈ DA(RN )). Define Lu : D(RN )N → R by

Lu(ϕ) = L(%(u ∗ ϕ)) for ϕ = (ϕi) ∈ D(RN )N

where u ∗ ϕ = (u ∗ ϕi)i ∈ (A∞)N . Then Lu defines a distribution on D(RN )N .
Moreover if divy ϕ = 0 then divy(%(u ∗ ϕ)) = %(u ∗ divy ϕ) = 0, hence Lu(ϕ) = 0,
that is, Lu vanishes on the kernel of the divergence in D(RN )N . By the de Rham
theorem, there exists a distribution S(u) ∈ D′(RN ) such that Lu = ∇yS(u). This
defines an operator

S : A∞ → D′(RN ); u 7→ S(u)

satisfying the following properties:
(i) S(τyu) = τyS(u) for all y ∈ RN and all u ∈ A∞;

(ii) S maps linearly and continuously A∞ into Lp
′

loc(RN );
(iii) There is a positive constant Cr (that is locally bounded as a function of r)

such that

‖S(u)‖Lp′ (Br) ≤ Cr‖L‖|Br|
1/p′‖%(u)‖p′ .

Property (i) easily comes from the obvious equality

Lτyu(ϕ) = Lu(τyϕ) ∀y ∈ RN .

Let us check (ii) and (iii). For that, let ϕ ∈ D(RN )N with suppϕi ⊂ Br for all
1 ≤ i ≤ N . Then

|Lu(ϕ)| = |L(%(u ∗ ϕ))|
≤ ‖L‖‖%(u)~ ϕ‖

(B1,p′
A )N

≤ max
1≤i≤N

| suppϕi|
1
p′ ‖L‖‖%(u)‖p′‖ϕ‖W 1,p(Br)N ,

the last inequality being due to (2.6). Hence, as suppϕi ⊂ Br (1 ≤ i ≤ N),

‖Lu‖W−1,p′ (Br)N ≤ ‖L‖|Br|1/p
′
‖%(u)‖p′ . (2.10)
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Now, let g ∈ C∞0 (Br) with
∫
Br
gdy = 0; then by [27, Lemma 3.15] there exists

ϕ ∈ C∞0 (Br)N such that divϕ = g and ‖ϕ‖W 1,p(Br)N ≤ C(p,Br)‖g‖Lp(Br). We
have

|〈S(u), g〉| = | − 〈∇yS(u), ϕ〉| = |〈Lu, ϕ〉|
≤ ‖Lu‖W−1,p′ (Br)N ‖ϕ‖W 1,p(Br)N

≤ C(p,Br)‖L‖|Br|
1
p′ ‖%(u)‖p′‖g‖Lp(Br),

and by a density argument, we get that S(u) ∈ (Lp(Br)/R)′ = Lp
′
(Br)/R for any

r > 0, where Lp
′
(Br)/R = {ψ ∈ Lp′(Br) :

∫
Br
ψdy = 0}. The properties (ii) and

(iii) therefore follow from the above series of inequalities. Taking (ii) as granted it
follows that

Lu(ϕ) = −
∫

RN

S(u) divy ϕdy for all ϕ ∈ D(RN )N . (2.11)

We claim that S(u) ∈ C∞(RN ) for all u ∈ A∞. Indeed let ei = (δij)1≤j≤N (δij the
Kronecker delta). Then owing to (i) and (iii) above, we have

‖t−1(τtei
S(u)− S(u))− S(

∂u

∂yi
)‖Lp′ (Br) = ‖S(t−1(τtei

u− u)− ∂u

∂yi
)‖Lp′ (Br)

≤ c‖t−1(%(τteiu− u))− %(
∂u

∂yi
)‖p′ .

Hence, passing to the limit as t→ 0 above leads us to

∂

∂yi
S(u) = S(

∂u

∂yi
) for all 1 ≤ i ≤ N.

Repeating the same process we end up with

Dα
y S(u) = S(Dα

y u) for all α ∈ NN .

So all the weak derivative of S(u) of any order belong to Lp
′

loc(RN ). Our claim is
therefore a consequence of [32, Theorem XIX, p. 191].

This being so, we derive from the mean value theorem the existence of ξ ∈ Br
such that

S(u)(ξ) = |Br|−1

∫
Br

S(u)dy.

On the other hand, the map u 7→ S(u)(0) is a linear functional on A∞, and by the
above equality we get

|S(u)(0)| ≤ lim sup
r→0

|Br|−1

∫
Br

|S(u)|dy

≤ lim sup
r→0

|Br|−1/p′
(∫

Br

|S(u)|p
′
dy
)1/p′

≤ c‖L‖‖%(u)‖p′ .

Hence, defining S̃ : DA(RN )→ R by S̃(v) = S(u)(0) for v = %(u) with u ∈ A∞, we
get that S̃ is a linear functional on DA(RN ) satisfying

|S̃(v)| ≤ c‖L‖‖v‖p′ ∀v ∈ DA(RN ). (2.12)
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We infer from both the density of DA(RN ) in Bp
′

A and (2.12) the existence of a
function f ∈ BpA with ‖f‖p ≤ c‖L‖ such that

S̃(v) =
∫

∆(A)

f̂ v̂dβ for all v ∈ Bp
′

A .

In particular

S(u)(0) =
∫

∆(A)

f̂ ûdβ ∀u ∈ A∞

where û = G(u) = G1(%(u)). Now, let u ∈ A∞ and let y ∈ RN . By (i) we have

S(u)(y) = S(τyu)(0) =
∫

∆(A)

τ̂yuf̂dβ.

Thus

Lu(ϕ) = L(%(u ∗ ϕ)) = −
∫

RN

S(u)(y) divy ϕdy (by (2.11))

= −
∫

RN

(
∫

∆(A)

τ̂yuf̂dβ) divy ϕdy

= −
∫

∆(A)

(
∫

RN

τ̂yu(s) divy ϕdy)f̂dβ

= −
∫

∆(A)

f̂(û~ divy ϕ)dβ (by (2.7))

= −
∫

∆(A)

f̂ G(u ∗ divy ϕ)dβ (by (2.8))

= −
∫

∆(A)

f̂ G(divy(u ∗ ϕ))dβ

= −
∫

∆(A)

f̂ G1(divy(%(u ∗ ϕ)))dβ

= 〈∇yf, %(u ∗ ϕ)〉.

Finally let v ∈ (B1,p′

A )N and let (ϕn)n ⊂ D(RN ) be a mollifier. Then v~ϕn → v in
(B1,p′

A )N as n→∞, where v ~ ϕn = (vi ~ ϕn)i. We have v ~ ϕn ∈ DA(RN )N and
L(v ~ ϕn)→ L(v) by the continuity of L. On the other hand,∫

∆(A)

f̂G1(divy(v ~ ϕn))dβ →
∫

∆(A)

f̂ d̂ivv̂dβ.

We deduce that L and ∇yf agree on (B1,p′

A )N , i.e., L = ∇yf .
For the uniqueness, let f1 and f2 in BpA be such that L = ∇yf1 = ∇yf2, then

∇y(f1 − f2) = 0, which means that f1 − f2 ∈ IpA. �

The preceding result together with its proof are still valid mutatis mutandis when
the function spaces are complex-valued. In this case, we only require the algebra A
to be closed under complex conjugation (u ∈ A whenever u ∈ A). This result has
some important consequences as seen below.

Corollary 2.7. Let f ∈ (BpA)N be such that∫
∆(A)

f̂ · ĝdβ = 0 ∀g ∈ DA(RN )N with divyg = 0.
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Then there exists a function u ∈ B1,p
A , uniquely determined modulo IpA, such that

f = ∇yu.

Proof. Define L : (B1,p′

A )N → R by L(v) =
∫

∆(A)
f̂ · v̂dβ. Then L lies in [(B1,p′

A )N ]′,
and it follows from Theorem 2.6 the existence of u ∈ BpA such that f = ∇yu. This
shows at once that u ∈ B1,p

A . The uniqueness is shown as in Theorem 2.6. �

Before we can state the next consequence, however, we need to give some pre-
liminaries. Let G be a measurable subset of RN with the property that χG ∈ BrA
for some r ≥ max(p, p′) . We say that a function f ∈ B1

A vanishes on G if∫
∆(A)

f̂ ψ̂dβ = 0 for any ψ ∈ DA(RN ) with ψ = 0 on RN\G.

We denote by DA(G) the set of all ψ ∈ DA(RN ) satisfying ψ = 0 on RN\G. We set

Vdivy
= {ψ ∈ DA(RN )N : divyψ = 0}.

With this in mind, we have the following corollary.

Corollary 2.8. Let G ⊂ RN be as above where 1 < p < ∞. Let L be a linear
functional on DA(G)N , bounded in the (B1,p′

A )N -norm. Assume that L vanishes
on DA(G)N ∩ Vdivy

. Then there exists a function f ∈ BpA such that L = ∇yf on
DA(G)N .

Proof. By the Hahn-Banach theorem, L can be extended to a bounded linear func-
tional on (B1,p′

A )N which moreover vanishes on Vdivy
. An application of Theorem

2.6 leads at once to the result. �

Remark 2.9. Let u ∈ B1,p
A be such that ∇yu = 0; then u ∈ IpA. This shows that

the mapping
u+ IpA 7→ ‖∇yu‖p (2.13)

is a norm on B1,p
A /IpA. Since IpA is closed, B1,p

A /IpA is a Banach space under the
above norm. For the uniqueness argument, we shall always choose the function u
in Corollary 2.7 to belong to the space B1,p

A /IpA, which we shall henceforth equip
with the norm (2.13).

2.3. Sigma-Convergence. Let A be an algebra with mean value on RN . Let Ω
be an open subset of RN and T > 0 a real number. We set Q = Ω × (0, T ). The
concept of sigma-convergence is defined as follows.

Definition 2.10. A sequence (uε)ε>0 ⊂ Lp(Q) (1 ≤ p < ∞) is said to weakly
Σ-converge in Lp(Q) to some u0 ∈ Lp(Q;BpA) if as ε→ 0, we have∫

Q

uε(x, t)f(x, t,
x

ε
) dx dt→

∫∫
Q×∆(A)

û0(x, t, s)f̂(x, t, s) dx dt dβ

for every f ∈ Lp′(Q;A) (1/p′ = 1 − 1/p). We express this by writing uε → u0 in
Lp(Q)-weak Σ.

We recall here that û0 = G1◦u0 and f̂ = G◦f , G1 being the isometric isomorphism
sending BpA onto Lp(∆(A)) and G, the Gelfand transformation on A.

In the sequel the letter E will throughout denote a fundamental sequence, that
is, any ordinary sequence E = (εn)n (integers n ≥ 0 ) with 0 < εn ≤ 1 and εn → 0
as n→∞. The following result holds.
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Theorem 2.11. Let 1 < p <∞. Any bounded ordinary sequence in Lp(Q) admits
a Σ-convergent subsequence.

The next result is of central interest in the homogenization process.

Theorem 2.12. Let 1 < p < ∞. Let (uε)ε∈E be a bounded sequence of functions
in Lp(0, T ;W 1,p(Ω)). Then there exist a subsequence E′ of E, and a couple (u0, u1)
in Lp(0, T ;W 1,p(Ω; IpA))× Lp(Q;B1,p

A ) such that, as E′ 3 ε→ 0,

uε → u0 in Lp(Q)-weak Σ;

∂uε
∂xi
→ ∂u0

∂xi
+
∂u1

∂yi
in Lp(Q)-weak Σ, 1 ≤ i ≤ N.

Proof. Since the sequences (uε)ε∈E and (∇uε)ε∈E are bounded respectively in
Lp(Q) and in Lp(Q)N , there exist a subsequence E′ of E and u0 ∈ Lp(Q;BpA),
v = (vj)j ∈ Lp(Q;BpA)N such that uε → u0 in Lp(Q)-weak Σ and ∂uε

∂xj
→ vj in

Lp(Q)-weak Σ. For Φ ∈ (C∞0 (Q)⊗A∞)N we have∫
Q

ε∇uε · Φε dx dt = −
∫
Q

(uε(divy Φ)ε + εuε(div Φ)ε) dx dt.

Letting E′ 3 ε→ 0 we get

−
∫∫

Q×∆(A)

û0d̂ivΦ̂ dx dt dβ = 0.

This shows that ∇yu0 = 0, which means that u0(x, t, ·) ∈ IpA (see (2.2)), that is,
u0 ∈ Lp(Q; IpA) = Lp(0, T ;Lp(Ω; IpA)). Next let Φε(x, t) = ϕ(x, t)Ψ(x/ε) ((x, t) ∈
Q) with ϕ ∈ C∞0 (Q) and Ψ = (ψj)1≤j≤N ∈ (A∞)N with divyΨ = 0. Clearly

N∑
j=1

∫
Q

∂uε
∂xj

ϕψεj dx dt = −
N∑
j=1

∫
Q

uεψ
ε
j

∂ϕ

∂xj
dx dt

where ψεj (x) = ψj(x/ε). Passing to the limit in the above equation when E′ 3 ε→ 0
we get

N∑
j=1

∫∫
Q×∆(A)

v̂jϕψ̂j dx dt dβ = −
N∑
j=1

∫∫
Q×∆(A)

û0ψ̂j
∂ϕ

∂xj
dx dt dβ. (2.14)

First, taking Φ = (ϕδij)1≤i≤N with ϕ ∈ C∞0 (Q) (for each fixed 1 ≤ j ≤ N) in (2.14)
we obtain ∫

Q

M(vj)ϕdx dt = −
∫
Q

M(u0)
∂ϕ

∂xj
dx dt dβ (2.15)

and reminding that M(vj) ∈ Lp(Q) we have by (2.15) that ∂u0
∂xj
∈ Lp(Q; IpA) =

Lp(0, T ;Lp(Ω; IpA)), where ∂u0
∂xj

is the distributional derivative of u0 with respect to
xj . We deduce that u0 ∈ Lp(0, T ;W 1,p(Ω; IpA)). Coming back to (2.14) we get∫∫

Q×∆(A)

(v̂ −∇û0) · Ψ̂ϕdx dt dβ = 0,

and so, as ϕ is arbitrarily fixed,∫
∆(A)

(v̂(x, t, s)−∇û0(x, t, s)) · Ψ̂(s)dβ = 0
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for all Ψ as above and for a.e. (x, t). Therefore we infer from Corollary 2.7 the
existence of a function u1(x, t, ·) ∈ B1,p

A such that

v(x, t, ·)−∇u0(x, t, ·) = ∇yu1(x, t, ·)
for a.e. (x, t). From which the existence of a function u1 : (x, t) 7→ u1(x, t, ·) with
values in B1,p

A such that v = ∇u0 +∇yu1. �

Remark 2.13. If we assume the algebra A to be ergodic, then IpA consists of
constant functions, so that the function u0 in Theorem 2.12 does not depend on y,
that is, u0 ∈ Lp(0, T ;W 1,p(Ω)). We thus recover the already known result proved
in [31] in the case of ergodic algebras. However, in the case that the algebra is not
ergodic, the function u0 may depend on the microscopic variable y.

3. Homogenization results

Throughout this section A will denote an algebra with mean value on RN .

3.1. Preliminary results. We describe a set of conditions which suffice for the
homogenization of (1.2). Under these conditions we develop preliminary results
that will be essential for the sequel. First recall that χj (for j = 1, 2) denotes the
characteristic function of the set Gj in RN . This being so, we aim at studying the
asymptotics of the sequence of solutions of (1.2) under the assumptions

χj ∈ BrA with r ≥ max(p, p′) and M(χj) > 0, j = 1, 2; (3.1a)

cj ∈ A for j = 1, 2, 3; (3.1b)

aj(·, λ) ∈ (Bp
′

A )N for all λ ∈ RN (j = 1, 2, 3) (3.1c)

where p′ = p/(p−1) with 2 ≤ p <∞. The first result follows exactly as its analogue
in [24] (see also [38, Lemma 3.3]).

Lemma 3.1. Let j = 1, 2. Under assumption (3.1a) there exist β-measurable
sets Ĝj ⊂ ∆(A) such that χ bGj

= χ̂j where χ̂j = G(χj) and χ bGj
denotes the

characteristic function of Ĝj in ∆(A).

The next result is fundamental.

Lemma 3.2. Let (uε)ε>0 be a sequence in Lp(Q) (1 < p < ∞) which weakly Σ-
converges in Lp(Q) to u0 ∈ Lp(Q;BpA). For j = 1, 2, let Gj be as above. Then, as
ε→ 0,

uεχ
ε
j → u0χj in Lp(Q)-weak Σ.

Now let
uε = χε1u

ε
1 + χε2(αuε2 + δuε3). (3.2)

By (1.5) in Theorem 1.1 there is a positive constant C such that

sup
ε>0
‖uε(t)‖L2(Ω) ≤ C for all 0 ≤ t ≤ T. (3.3)

Also, the interface condition (1.2d) together with Green’s formula give

∇uε = χε1∇uε1 + χε2(α∇uε2 + δ∇uε3),

and still from (1.5) we have
ε‖∇uε‖Lp(Q) ≤ C (3.4)

for some constant C > 0 independent of ε. This being so we have the



16 G. NGUETSENG, R. E. SHOWALTER, J. L. WOUKENG EJDE-2014/164

Proposition 3.3. Let (uε)ε∈E be as in (3.2). There exist a subsequence E′ of E, a
pair of functions uj ∈ Lp(0, T ;W 1,p(Ω; IpA)) (j = 1, 2) and two triples of functions
Uj ∈ Lp(Q;B1,p

A ) (j = 1, 2, 3) and u∗1, u∗2, U∗3 ∈ L2(Ω;B2
A) such that, as E′ 3 ε→ 0,

uε → χ1u1 + χ2(αu2 + δU3) in L2(Q)-weak Σ; (3.5)

χεj∇uεj → χj(∇uj +∇yUj) in Lp(Q)N -weak Σ, j = 1, 2; (3.6)

εχε2∇uε3 → χ2∇yU3 in Lp(Q)N -weak Σ; (3.7)

χεju
ε
j(T )→ χju

∗
j in L2(Ω)-weak Σ, j = 1, 2; (3.8)

χε2u
ε
3(T )→ χ2U

∗
3 in L2(Ω)-weak Σ. (3.9)

Proof. Let denote by ·̃ the zero-extension of any of the above sequences on the
whole of Ω. For j = 1, 2 the sequences ũεj and ∇̃uεj verify ũεj = χεju

ε
j and ∇̃uεj =

χεj∇uεj . It follows that ũεj and ∇̃uεj are bounded respectively in L∞(0, T ;L2(Ω)) and
Lp(Q)N . Therefore, given an ordinary sequence E, there exist a subsequence E′

of E and some functions vj and wj = (wkj )1≤k≤N in L2(Q;B2
A) and Lp(Q; (BpA)N )

respectively, such that, as E′ 3 ε→ 0, ũεj → vj in L2(Q)-weak Σ and ∇̃uεj → wj in
Lp(Q)N -weak Σ. Lemma 3.2 entails

χεju
ε
j → χjvj in L2(Q)-weak Σ, (3.10)

χεj∇uεj → χjwj in Lp(Q)N -weak Σ. (3.11)

It follows at once that vj = χjvj and wj = χjwj . Now, let us analyze the case j = 1
(the case j = 2 will be carried out in a same manner). Let Φ ∈ (C∞0 (Q) ⊗ A∞)N

be such that Φ(x, t, y) = 0 for y ∈ G2. Then, Φε = 0 in Ωε2, hence Φε ∈ C∞0 (Ωε1 ×
(0, T ))N and

ε

∫
Q

χε1∇uε1 · Φε dx dt = ε

∫
Ωε

1×(0,T )

∇uε1 · Φε dx dt

= −
∫

Ωε
1×(0,T )

uε1[ε(divxΦ)ε + (divyΦ)ε] dx dt

= −
∫
Q

χε1u
ε
1[ε(divxΦ)ε + (divyΦ)ε] dx dt.

Letting E′ 3 ε→ 0,

−
∫∫

Q×∆(A)

v̂1d̂ivΦ̂ dx dt dβ = 0

for all Φ ∈ (C∞0 (Q) ⊗ A∞)N satisfying Φ(x, t, y) = 0 for y ∈ G2. This means that
∇yv1 = 0 in G1. Also since v1 = χ1v1, the value of v1 on G2 is of no effect and
hence may be chosen arbitrarily, so that, in view of the equality ∇yv1 = 0 in G1,
one may choose u1 ∈ L2(Q; IpA) such that v1 = χ1u1 on Q× RN .

Next we seek the relationship between w1 and u1. For that, let Φ be as above
and further satisfying divyΦ = 0. Then∫

Q

χε1∇uε1 · Φε dx dt = −
∫
Q

χε1u
ε
1(divxΦ)ε dx dt.
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Passing to the limit as E′ 3 ε→ 0, it comes from (3.10) and (3.11) (with v1 = χ1u1)
that ∫∫

Q×∆(A)

χ̂1ŵ1 · Φ̂ dx dt dβ = −
∫∫

Q×∆(A)

χ̂1û1divxΦ̂ dx dt dβ. (3.12)

Starting from the above equation and proceeding as in the proof of Theorem 2.12
we end up with u1 ∈ Lp(0, T ;W 1,p(Ω; IpA)). Coming back to (3.12) we get∫∫

Q× bG1

(ŵ1 −∇û1) · Φ̂ dx dt dβ = 0

for all Φ ∈ (C∞0 (Q) ⊗ A∞)N satisfying Φ(x, t, y) = 0 for y ∈ G2, divyΦ = 0
and Φ(x, t, y) · ν = 0 on ∂Ω, where ν denote the unit outward normal to ∂Ω.
We deduce from Corollary 2.8 the existence of U1 ∈ Lp(Q;B1,p

A ) such that w1 =
χ1(∇u1 +∇yU1).

We have just derived the existence of uj and Uj (j = 1, 2) such that (3.6) holds
true. We need to find U3 such that (3.5) and (3.7) are satisfied. To this end,
since the sequences (ũε3)ε∈E and (ε∇̃uε3)ε∈E are bounded in L2(Q) and in Lp(Q)N

respectively, there exist a subsequence of E′ not relabeled, and U3 ∈ L2(Q;B2
A) and

w3 ∈ Lp(Q;BpA)N such that, as E′ 3 ε→ 0,

ũε3 → U3 in L2(Q)-weak Σ,

ε∇̃uε3 → w3 in Lp(Q)N -weak Σ.

Then in view of Lemma 3.2 we have that

χε2u
ε
3 = χε2ũ

ε
3 → χ2U3 in L2(Q)-weak Σ, (3.13)

εχε2∇uε3 = εχε2∇̃uε3 → χ2w3 in Lp(Q)N -weak Σ. (3.14)

It follows from (3.13) and (3.14) that

χ2U3 = U3 and χ2w3 = w3, (3.15)

i.e., w3 and U3 do not depend on y in G1. So we may take a test function not
depending upon y ∈ G1 in the following sense. Let Φ ∈ (C∞0 (Q) ⊗ A∞)N with
Φ(x, t, y) = 0 for y ∈ G1. Then as seen previously, Φε ∈ (C∞0 (Ωε2 × (0, T )))N and∫

Q

εχε2∇uε3 · Φε dx dt =
∫

Ωε
2×(0,T )

ε∇uε3 · Φε dx dt

= −
∫

Ωε
2×(0,T )

uε3[(divyΦ)ε + ε(divΦ)ε] dx dt

= −
∫
Q

χε2u
ε
3(divyΦ)ε dx dt−

∫
Q

εχε2u
ε
3(divΦ)ε dx dt.

Passing to the limit as E′ 3 ε→ 0 (using (3.13)-(3.14)),∫∫
Q×∆(A)

χ̂2ŵ3 · Φ̂ dx dt dβ = −
∫∫

Q×∆(A)

χ̂2Û3d̂ivΦ̂ dx dt dβ;

that is, ∫∫
Q×∆(A)

χ̂2(ŵ3 − ∇̂yU3) · Φ̂ dx dt dβ = 0

for all Φ ∈ (C∞0 (Q)⊗A∞)N with Φ(x, t, y) = 0 for y ∈ G1. Hence χ2(w3−∇yU3) =
0, or, in view of (3.14), w3 = χ2∇yU3. We therefore deduce (3.5) and (3.7).
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Finally, (3.8)-(3.9) follow from the boundedness property of the those sequences
in L2(Ω). �

It follows from (3.3)-(3.4) that the sequences (uε)ε>0 (defined in (3.2) by uε =
χε1u

ε
1 + χε2(αuε2 + δuε3)) and (ε∇uε)ε>0 are bounded in L2(Q) and Lp(Q)N (hence

also L2(Q)N ), respectively. The results in Proposition 3.3 show that

uε → χ1u1 + χ2(αu2 + δU3) in L2(Q)-weak Σ,

ε∇uε → δχ2∇yU3 in Lp(Q)N (hence in L2(Q)N )-weak Σ

up to a subsequence of any ordinary sequence E. It follows directly that

δχ2∇yU3 = ∇y(χ1u1 + χ2(αu2 + δU3)). (3.16)

3.2. Homogenization results. Let

F1,p = Lp(0, T ;W 1,p(Ω; IpA))2 × Lp(Q;B1,p
A )3,

F∞ = [C∞0 (0, T )⊗ C∞(Ω; IpA)]2 × [C∞0 (Q)⊗DA(RN )]3.

Then it can be easily checked that F∞ is dense in F1,p. Moreover, we see from
Proposition 3.3 that u = (u1, u2, U1, U2, U3) ∈ F1,p and satisfies (3.16). This sug-
gests us to take as smooth test functions any function Φ = (φ1, φ2, ψ1, ψ2, ψ3) ∈ F∞
satisfying

δχ2∇yψ3 = ∇y(χ1φ1 + χ2(αφ2 + δψ3)). (3.17)

For such a Φ set

Φj,ε = φj + εψεj (j = 1, 2) and Φ3,ε = ψε3 +
ε

δ
ψε1 −

εα

δ
ψε2. (3.18)

Then, because of (3.17) and Green’s theorem, it is an easy exercise to see that
Φε = (ψ1,ε, ψ2,ε, ψ3,ε) ∈ C∞0 ((0, T );Vε); that is,

γε1ψ1,ε = αγε2ψ2,ε + δγε2ψ3,ε on Γε1,2.

Moreover the following convergence results hold for any 1 < r <∞:

χεjψj,ε → χjφj in Lr(Q)-weak Σ, j = 1, 2

∇ψj,ε → ∇φj +∇yψj in Lr(Q)N -weak Σ, j = 1, 2

χεj∇ψj,ε → χj(∇φj +∇yψj) in Lr(Q)N -weak Σ, j = 1, 2

χε2ψ3,ε → χ2ψ3 in Lr(Q)-weak Σ

εχε2∇ψ3,ε → χ2∇yψ3 in Lr(Q)N -weak Σ.

(3.19)

With this in mind, let u = (u1, u2, U1, U2, U3) ∈ F1,p be determined by Proposition
3.3. For j = 1, 2, we set Duj = ∇ûj + ∂Ûj where ∂Ûj = G1(∇yUj). The following
result holds.
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Theorem 3.4. The quintuple u = (u1, u2, U1, U2, U3) ∈ F1,p solves the variational
problem

−
2∑
j=1

[ ∫∫
Q×∆(A)

χ̂j ĉj ûj
∂̂φj
∂t

dx dt dβ −
∫∫

Q×∆(A)

χ̂j âj(·,Duj) · DΦj dx dt dβ
]

−
∫∫

Q×∆(A)

χ̂2ĉ3Û3
∂̂ψ3

∂t
dx dt dβ +

∫∫
Q×∆(A)

χ̂2â3(·, ∂Û3) · ∂ψ̂3 dx dt dβ = 0

for all Φ = (φ1, φ2, ψ1, ψ2, ψ3) ∈ F∞ satisfying (3.17)
(3.20)

where DΦj = ∇φ̂j + ∂ψ̂j for j = 1, 2.

Proof. Let Φ = (φ1, φ2, ψ1, ψ2, ψ3) ∈ F∞ satisfy (3.17) and define Φε as above.
Using Φε as test function in the variational formulation of (1.2) we obtain

−
2∑
j=1

[ ∫
Q

χεjc
ε
ju
ε
j

∂ψj,ε
∂t

dx dt−
∫
Q

aεj(·,∇uεj) · χεj∇ψj,ε dx dt
]

−
∫
Q

χε2c
ε
3u
ε
3

∂ψ3,ε

∂t
dx dt+

∫
Q

aε3(·, ε∇uε3) · εχε2∇ψ3,ε dx dt = 0.

(3.21)

Since the sequences χεja
ε
j(·,∇uεj) (j = 1, 2) and χε2a

ε
3(·, ε∇uε3) are bounded in

Lp
′
(Q)N , given an ordinary sequence E, there exist a subsequence E′ of E and

a triple gj ∈ Lp
′
(Q;Bp

′

A )N (j = 1, 2, 3) such that, as E′ 3 ε→ 0,

χεja
ε
j(·,∇uεj)→ gj , χε2a

ε
3(·, ε∇uε3)→ g3 in Lp

′
(Q)-weak Σ.

Passing to the limit in (3.21) leads to

−
2∑
j=1

[ ∫∫
Q×∆(A)

χ̂j ĉj ûj
∂̂φj
∂t

dx dt dβ −
∫∫

Q×∆(A)

χ̂j ĝj · DΦj dx dt dβ
]

−
∫∫

Q×∆(A)

χ̂2ĉ3Û3
∂̂ψ3

∂t
dx dt dβ +

∫∫
Q×∆(A)

χ̂2ĝ3g · ∂ψ̂3 dx dt dβ = 0

We may proceed exactly as in [40, pp. 821-822] to get gj = aj(·,Duj) (j = 1, 2)
and g3 = a3(·,∇yU3). The result follows. �

Let us decompose (3.20). Before we can do this, let us first set, for j = 1, 2,

ãj(·,v) =
∫

bGj

âj(·, v̂)dβ for v ∈ Lp(Q;BpA)N ,

ã3(·,v) =
∫

bG2

â3(·, v̂)dβ for v ∈ Lp(Q;BpA)N .

This being so, taking in (3.20) Φ = (0, 0, 0, 0, V3) then we obtain

−
∫∫

Q×∆(A)

χ̂2ĉ3Û3
∂̂ψ3

∂t
dx dt dβ +

∫∫
Q×∆(A)

â3(·, ∂Û3) · χ̂2∂V̂3 dx dt dβ = 0

for all V3 ∈ C∞0 (Q)⊗DA(RN ) with ∇y(χ2V3) = χ2∇yV3.
Taking in particular V3 = ϕ⊗ v3 with ϕ ∈ C∞0 (Q) and v3 ∈ DA(RN ) we obtain

−
∫
Q

(∫
∆(A)

χ̂2ĉ3Û3v̂3dβ
)
ϕ′ dx dt+

∫
Q

(∫
∆(A)

â3(·, ∂Û3

)
· χ̂2∂v̂3dβ)ϕdx dt = 0
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for all ϕ ∈ C∞0 (Q) and v3 ∈ DA(RN ) with ∇y(χ2v3) = χ2∇yv3.

〈χ2c3
∂U3

∂t
, v3〉+

∫
bG2

â3(·, ∂Û3) · ∂v̂3 dx dt dβ = 0

for all v3 ∈ B1,p
A with ∇y(χ2v3) = χ2∇yv3.

Choosing v3 = %(ω3) with ω3 ∈ A∞ satisfying ω3(y) = 0 for y ∈ G1, we are led
to the cell problem

χ2c3
∂U3

∂t
− divy(χ2a3(·,∇yU3)) = 0 in G2 × (0, T )

δχ2∇yU3 = ∇y(χ1u1 + χ2(αu2 + δU3)) on RNy .
(3.22)

Coming back to (3.20) and taking there V = (v1, 0, 0, 0, V3) with v1 ∈ C∞0 (Q)⊗ IpA
and V3 ∈ C∞0 (Q)⊗DA(RN ) satisfying δV3(x, t, y) = v1(x, t, y) for (x, t, y) ∈ Q×G2

and V3(x, t, y) = 0 for (x, t, y) ∈ Q×G1. Then χ2∇yV3 = 0 in Q× RN so that

−
∫∫

Q×∆(A)

χ̂1ĉ1û1
∂̂v1

∂t
dx dt dβ +

∫∫
Q×∆(A)

χ̂1â1(·,Du1) · ∇v̂1 dx dt dβ

−
∫∫

Q×∆(A)

χ̂2ĉ3Û3
∂̂v1

∂t
dx dt dβ = 0,

which leads to
∂

∂t
M(χ1c1u1)− divã1(·,Du1) +

1
δ

∂

∂t

(∫
bG2

ĉ3Û3dβ
)

= 0 in Q. (3.23)

Next we take V = (0, v2, 0, 0, V3) with v2 ∈ C∞0 (Q) ⊗ IpA and V3 = ϕ ⊗ w3 ∈
C∞0 (Q)⊗DA(RN ) satisfying δV3 = −αv2 in Q×G2. Then χ2∇yV3 = 0 in Q×RN ,
hence, proceeding as above we obtain

∂

∂t
M(χ2c2u2)− divã2(·,Du2)− α

δ

∂

∂t

(∫
bG2

ĉ3Û3dβ
)

= 0 in Q. (3.24)

Choosing successively V = (0, 0, V1, 0, 0) and V = (0, 0, 0, V2, 0) with Vj = ϕj ⊗
wj3 ∈ C∞0 (Q)⊗DA(RN ) (j = 1, 2) we obtain∫

∆(A)

χ̂j âj(·,Duj) · ∂V̂j dx dt dβ = 0,

hence

divy(χjaj(·,∇uj +∇yUj)) = 0 in RN , j = 1, 2, for a.e. (x, t) ∈ Q. (3.25)

Now, substituting (3.22)-(3.25) into (3.20), we deduce from Green’s formula that

ãj(·,∇uj +∇yUj) · ν = 0 on ∂Ω,

uj(·, 0) = χju
0
j in Ω (j = 1, 2), U3(·, 0, ·) = χ2u

0
3 in Ω.

Let us now analyze (3.25). We know that it is equivalent to∫
∆(A)

χ̂j âj(·,Duj) · ∂V̂ dβ = 0 for all V ∈ DA(RN ),

and by density, to∫
∆(A)

χ̂j âj(·,Duj) · ∂V̂ dβ = 0 for all V ∈ B1,p
A . (3.26)



EJDE-2014/164 DIFFUSION OF A SINGLE-PHASE FLUID 21

Let ξ ∈ RN and consider the following cell problem: find πj(ξ) ∈ B1,p
A such that∫

∆(A)

χ̂j âj(·, ξ + ∂π̂j(ξ)) · ∂V̂ dβ = 0 for all V ∈ B1,p
A . (3.27)

It is an easy task (using the properties of the function aj) to see that Eq. (3.27)
possesses at least one solution. But if π1

j (ξ) and π2
j (ξ) are two solutions of (3.27)

then using them as test functions in (3.27) and subtracting the resulting equalities,
we end up with ∇y(π1

j (ξ) − π2
j (ξ)) = 0 on Gj , which shows that the solution is

unique up to a function gj ∈ B1,p
A satisfying ∇ygj = 0 on Gj . Comparing (3.27) in

which we take the particular ξ = ∇uj(x, t, y) ((x, t) ∈ Q×RNy ) with (3.26), we see
by the above uniqueness argument that there exists gj ∈ B1,p

A with ∇ygj = 0 on
Gj , such that

Uj(x, t, y) = πj(∇uj(x, t, y)) + gj .

Now, for j = 1, 2, set

b̃j(ξ) =
∫

∆(A)

χ̂j âj(·, ξ + ∂π̂j(ξ))dβ, ξ ∈ RN ,

bj(∇uj) = b̃j(∇ûj).

First, as we can see, the function b̃j does not depend on the choice of the gj , so it is
therefore well-defined. Secondly, bj satisfies properties similar to aj . With this in
mind, coming back to the equations (3.23) and (3.24) we rewrite them as follows:

∂

∂t
M(χ1c1u1)− divb1(∇u1) +

1
δ

∂

∂t
(
∫

bG2

ĉ3Û3dβ) = 0 in Q; (3.28a)

∂

∂t
M(χ2c2u2)− divb2(∇u2)− α

δ

∂

∂t
(
∫

bG2

ĉ3Û3dβ) = 0 in Q. (3.28b)

The above equations are complemented with the equation

χ2c3
∂U3

∂t
− divy(χ2a3(·,∇yU3)) = 0 in G2 × (0, T ) (3.28c)

and the boundary and initial conditions

bj(∇uj) · ν = 0 on ∂Ω, j = 1, 2 (3.28d)

and
uj(·, 0) = χju

0
j in Ω (j = 1, 2), U3(·, 0, ·) = χ2u

0
3 in Ω. (3.28e)

Finally u1, u2 and U3 are subjected to the following important condition arising
from Green’s formula

δχ2∇yU3 = ∇y(χ1u1 + χ2(αu2 + δU3)) in RNy . (3.28f)

Arguing exactly as in [40, Theorem 4.4] (see also [9, Theorem 5.1]) we show that
the problem (3.28a)-(3.28f) possesses a unique solution. We can now state the main
homogenization result.

Theorem 3.5. For each ε > 0 let (uε1, u
ε
2, u

ε
3) ∈ Lp(0, T ;Vε) be the unique solution

to (1.2). Suppose that (3.1a)-(3.1c) hold. Then, as ε→ 0,

χεju
ε
j → χjuj in L2(Q)-weak Σ (j = 1, 2), (3.29)

χε2u
ε
3 → χ2U3 in L2(Q)-weak Σ, (3.30)

where (u1, u2, U3) is the unique solution of the homogenized system (3.28).
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Proof. Given any ordinary sequence E, the existence of a triple (u1, u2, U3) (up to a
subsequence of E) derives from Proposition 3.3, and the fact that it solves (3.28a)-
(3.28f) comes from the preceding analysis and Theorem 3.4. Since (3.28a)-(3.28f)
possesses a unique solution, the convergence results (3.29) and (3.30) hold true for
the whole sequence. This completes the proof. �

Remark 3.6. If we assume the algebra A to be ergodic then the functions uj (j =
1, 2) do not depend on y, that is, uj ∈ Lp(0, T ;W 1,p(Ω)). In this case M(χjcjuj) =
M(χjcj)uj . Setting θj = M(χjcj) > 0 (see assumption (3.1a)), equations (3.28a)
and (3.28b) become

θ1
∂u1

∂t
− divb1(∇u1) +

1
δ

∂

∂t

(∫
bG2

ĉ3Û3dβ
)

= 0 in Q,

θ2
∂u2

∂t
− divb2(∇u2)− α

δ

∂

∂t

(∫
bG2

ĉ3Û3dβ
)

= 0 in Q.

respectively.

4. Examples

In this section we present some concrete situations which may occur in the phys-
ical framework. We begin with some preliminary results.

4.1. Preliminaries. As the cells (k+Y )k∈S are pairwise disjoint, the characteristic
function χΘ of the set Θ = ∪k∈S(k+ Y1) in RN verifies χΘ =

∑
k∈S χk+Y1 or more

precisely,
χΘ =

∑
k∈ZN

θ(k)χk+Y1 ,

where θ is the characteristic function of S in ZN . We refer to θ as the distribution
function of the fissured cells [24].

Proposition 4.1 ([24, Sec. 3.1] or [38, Prop. 4.1]). Let A be an algebra with mean
value on RN . Suppose that the distribution function of the fissured cells lies in
the space of essential functions on ZN , ES(ZN ) (see [23]). Moreover assume that
for every ϕ in K(Y ) (the space of all continuous complex functions on RNz with
compact support contained in Y = (0, 1)N ), the function

∑
k∈ZN θ(k)τkϕ (where

τkϕ(y) = ϕ(y + k), y ∈ RN ) lies in A. Then χΘ ∈ BpA(RN ) (1 ≤ p <∞) and

M(χΘ) = M(θ)λ(Y1),

λ being the Lebesgue measure on RN while M(θ) is the essential mean of θ [23].

Corollary 4.2 ([24, Corollary 3.2]). With the hypotheses of Proposition 4.1, (3.1a)
is satisfied.

This leads to some specific examples.

4.2. Equidistribution of the fissured cells. We assume here that the distribu-
tion of fissured cells is given by θ(k) = 1 for any k ∈ ZN . Then S = ZN , and
proceeding as in [24, Sect. 3.2] we obtain

χj ∈ BrCper(Y )(R
N ) (1 ≤ r <∞) and M(χj) > 0 for j = 1, 2, (4.1)

that is (3.1a), where Cper(Y ) denotes the space of Y -periodic continuous functions
on RN . This being so, we can consider the homogenization problem for (1.2) under
the following assumptions:
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(H1) (Periodic homogenization) We assume that the functions cj and aj(·, λ)
are Y -periodic for every λ ∈ RN and all j = 1, 2, 3. This leads to the
assumptions (3.1b) -(3.1c) with A = Cper(Y ). We recover in this special
case the results of [9]. Precisely Theorem 3.5 reads as

Theorem 4.3. For each ε > 0 let (uε1, u
ε
2, u

ε
3) ∈ Lp(0, T ;Vε) be the unique solution

to (1.2). Under hypothesis (H1) and (4.1) we have, as ε→ 0,

χεju
ε
j → χjuj in L2(Q)-weak Σ (j = 1, 2),

χε2u
ε
3 → χ2U3 in L2(Q)-weak Σ

where (u1, u2, U3) is the unique solution of the homogenized system

θ1
∂u1

∂t
− divb1(∇u1) +

1
δ

∂

∂t

(∫
Y2

c3U3dy
)

= 0 in Q;

θ2
∂u2

∂t
− divb2(∇u2)− α

δ

∂

∂t

(∫
Y2

c3U3dy
)

= 0 in Q;

χY2c3
∂U3

∂t
− divy(χY2a3(·,∇yU3)) = 0 in Y2 × (0, T );

bj(∇uj) · ν = 0 on ∂Ω, j = 1, 2;
δU3 + αu2 = u1 on Γ1,2 = ∂Y1 ∩ ∂Y2;

uj(·, 0) = χju
0
j in Ω, (j = 1, 2);

U3(·, 0, ·) = χ2u
0
3 in Ω .

(4.2)

where θj =
∫
Yj
cj(y)dy for j = 1, 2.

Proof. Everything has been checked in the preceding section except the interface
condition (4.2) which is a consequence of (3.28f) and the Green’s formula as in
[9]. �

(H2) We also assume that cj and aj(·, λ) are respectively Bohr and Besicov-
itch almost periodic functions on RN [3, 4]. Then as Cper(Y ) ⊂ AP (RN )
(the space of Bohr almost periodic continuous functions on RN ) we have
BrCper(Y )(R

N ) ⊂ BrAP (RN )(R
N ), and (3.1a)-( 3.1c) hold with A = AP (RN ).

(H3) Denoting by B∞(RN ) the space of all continuous functions on RN that have
finite limit at infinity (which is an algebra with mean value on RN ), we may
also assume that

cj ∈ B∞(RN ), aj(·, λ) ∈ Cper(Y ) for all λ ∈ RN , j = 1, 2, 3.

This leads to (3.1a)–(3.1c) with A = B∞(RN ) + Cper(Y ) (this is easily verified).

4.3. Periodic distribution of the fissured cells. Assume the function θ is pe-
riodic; that is, there is a network R in RN with R ⊂ ZN such that

θ(k + r) = θ(k) for all k ∈ ZN and all r ∈ R.
Denoting by PR(RN ) the algebra of periodic functions on RN represented by the
group of periods R, i.e. the algebra of functions u ∈ C(RN ) that verify u(y +
k) = u(y) for all y ∈ RN and all k ∈ R, we argue as in Subsection 5.1 to get
χj ∈ BrPR(RN )(R

N ) (1 ≤ r < ∞) and M(χj) > 0. We can therefore repeat the
arguments of the preceding subsection to solve the homogenization problems for
(1.2) under assumptions (H1)-(H3) without slightest change.
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4.4. Almost periodic distribution of the fissured cells. Assume the function
θ is almost periodic; that is, the translates τhθ (h ∈ ZN ) form a relatively compact
set in `∞(ZN ). Then we have

χj ∈ BrAP (RN )(R
N ) (1 ≤ r <∞) with M(χj) > 0, j = 1, 2;

that is (3.1a) with A = AP (RN ). Bearing this in mind, we may assume the
functions cj and aj(·, λ) satisfy the following hypotheses.

(H4) (Almost periodic homogenization) cj belongs to AP (RN ) and aj(·, λ) be-
longs to BrAP (RN )(R

N ) for any λ ∈ RN and j = 1, 2, 3, so that (3.1b)–(3.1c)
hold with A = AP (RN ).

(H5) cj ∈ AP (RN ) and aj(·, λ) ∈ Lp
′

∞,AP (RN ) for all λ ∈ RN and j = 1, 2, 3,

where Lp
′

∞,AP (RN ) denotes the closure with respect to the Besicovitch semi-
norm ‖ · ‖p′ (defined in Section 2) of the space of finite sums∑

finite

ϕiui with ϕi ∈ B∞(RN ), ui ∈ AP (RN ).

Then we are led to (3.1b)-(3.1c) with A = B∞(RN ) +AP (RN ), an algebra
with mean value on RN [22, 31].

(H6) (Homogenization in non ergodic algebra) Let A1 be the algebra generated
by the function f(z) = cos 3

√
z (z ∈ R) and all its translates f(·+a), a ∈ R.

It is known that A is an algebra with mean value which is not ergodic; see
[18] for details. Now let A be defined as follows: A2 = A1 � . . . � A1, N
times, (the product of N copies of A1; see [22, 31] for the definition of a
product of algebras with mean value) which gives a non ergodic algebra on
RN .

We assume that cj ∈ A2 and aj(·, λ) ∈ Bp
′

A2
(RN ) (λ ∈ RN , j = 1, 2, 3).

Then we are led to (3.1a)-(3.1c) with A being the algebra with mean value
generated by AP (RN ) ∪A2.

(H7) (Weak almost periodic homogenization) We assume that cj ∈ WAP (RN )
and aj(·, λ) ∈ Bp

′

WAP (RN )
(RN ) (λ ∈ RN , j = 1, 2, 3) where WAP (RN )

is the algebra of continuous weakly almost periodic functions on RN [13],
which is an algebra with mean value on RN [25, 31]. Since AP (RN ) ⊂
WAP (RN ), (3.1a)-(3.1c) are satisfied with A = WAP (RN ).

One may also consider some other hypotheses.
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