Evaluation of Shear Resistance of Reinforced Cob

Introduction

What is Cob?

Purpose of Study:

To determine if the use of chicken wire as reinforcement in a cob wall has an effect on the shear strength of the wall.

Hypothesis:

Reinforcement will affect the deformation resisting properties of a wall made of cob.

History of Cob

Timeline

- 8000 BC: Earliest Known Use of Cob-like Dwellings
- 1200s: Cob Used in English Homes
- 1400s: Cob Construction in England Becomes Widespread
- # 1800s: Industrialization Phases Out Cob
- 1989: Oregon Cob Revival

Construction Methods

- Monolithic
- Built by Feel and Sight
- Oregon Cob: Increased Straw Content

Relevant Research

Strength and Composition of Willamette Valley Cob: An Earthen Building Material

- 🖶 Quinn Pullen, 2009
- Tested cob mixtures from Willamette Valley suppliers
- Length of straw fibers had impact on strength of material

Strengthening the Structural Behavior of Adobe Walls Through the Use of Plaster Reinforcement Mesh

- 📕 Saritas and Turanli, 2011
- **Tested adobe with 1% straw content**
- Reinforced adobe wall had increased deformation capacity

Materials

Soil: Silt

- Medium to High Plasticity
- 20% Gravel Content

Soil: Kaolinite

- Powdered
- Moisture Content of 35% Once Hydrated
- PL=30; LL=47

Sand

- Purchased from Aggregate **Production Plant**
- 📕 Natural, River Run, Washed Sand

- Grass Seed Straw
- Purchased at Local Feed Store

H Mixing

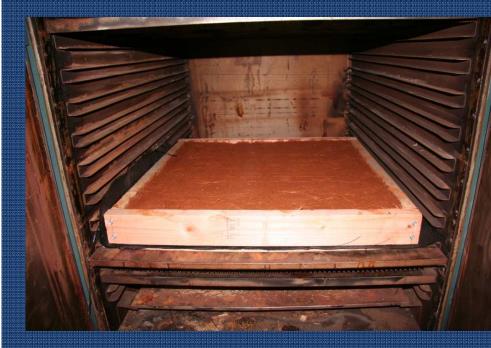
Silt Cob

Kaolinite Cob

H Mixing

Used Tarp Method to obtain homogenous mixture

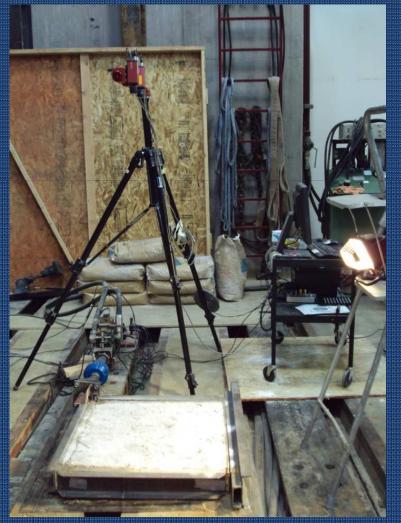
Mixing Used Feet to Mix in Straw



Compaction

- Cob Placed by the HandfulWooden Mold
- Three Layers on Geotextiles on top of Steel Plate

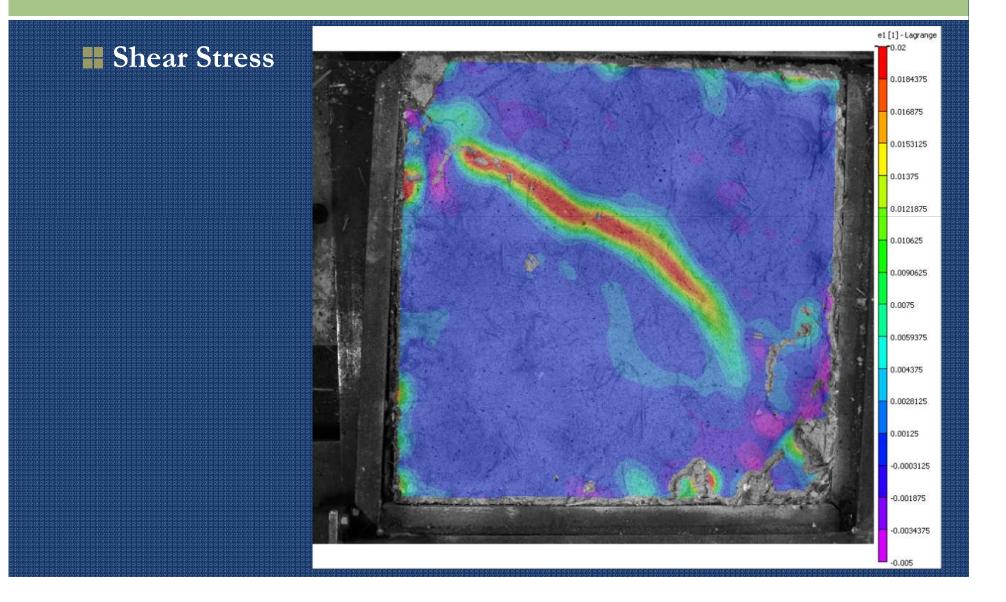
Drying 72 hours @ 75°C


Cob in Oven Prior to Drying

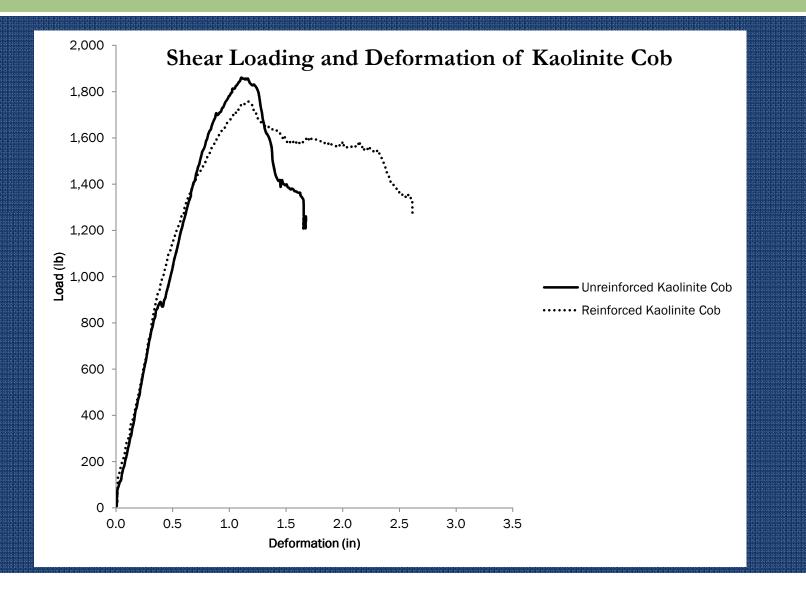
Cob After Drying

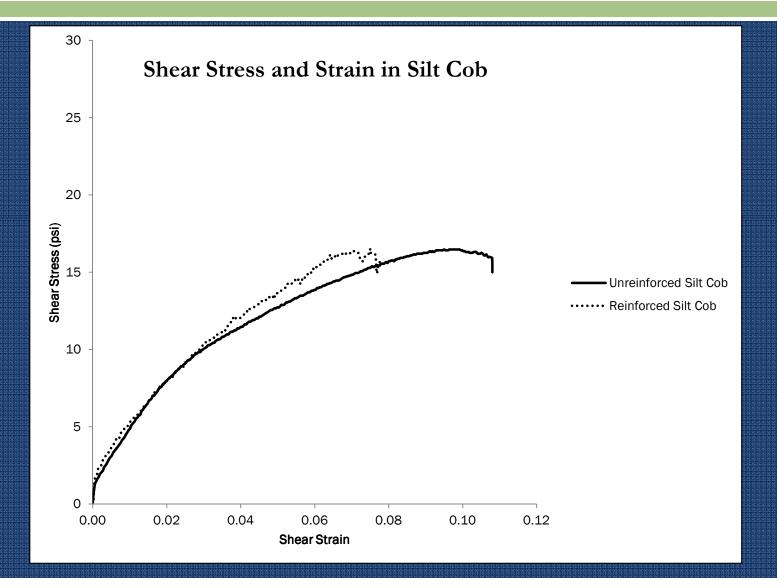
Testing

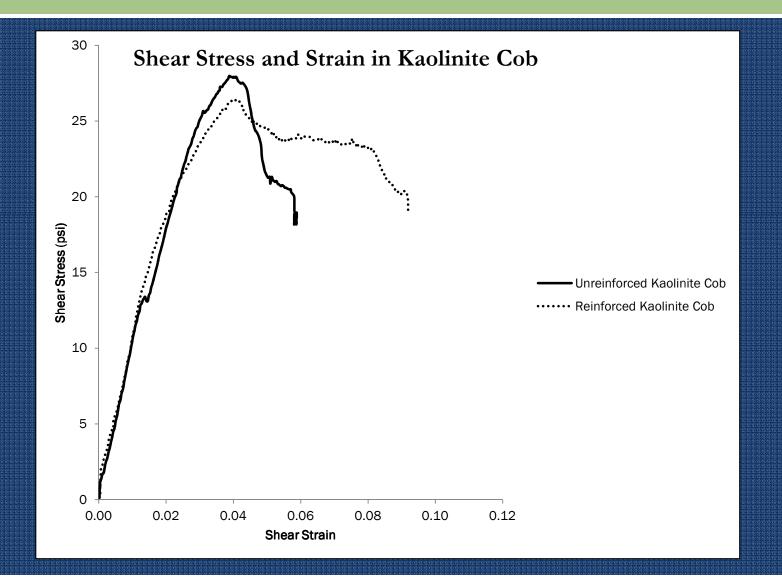
- 32-in x 33-in Simple Shear Box
- Servo-Hydraulic Test System for Shear Loading
- Dual Camera System with Imaging Software for Collecting Data



Testing

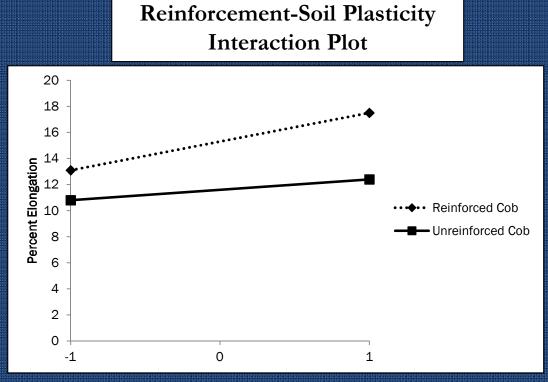

Wooden Shims and Sand Used to Facilitate Full Contact with Load Frame





Ductility

Used Percent Elongation as an Indicator


Cob Sample	Length of Sample Before Loading (in)	Deformation at Failure (in)	Percent Elongation
Unreinforced Silt	28.9	3.11	10.8
Reinforced Silt	28.9	2.21	7.7
Unreinforced Kaolinite	28.5	1.63	5.7
Reinforced Kaolinite	28.5	2.30	8.1

Ductility

Used Response Surface Methodology to determine significance

Soil Type	Reinforcement	Response Variable (Percent Elongation)
-1 (Silt)	-1(No)	10.8
1 (Kaolinite)	-1(No)	12.4
-1 (Silt)	1 (Yes)	13.1
1 (Kaolinite)	1 (Ye s)	17.5

Ductility

Calculated Effects, Interaction, and Estimated Regression Coefficient

RSM Results	
Effect of Soil Type (Plasticity)	3.7
Effect of Reinforcement	3.7
Interaction Between Soil Type and Reinforcement	2.8
Estimated Regression Coefficient for Effect of Reinforcement	1.85

Discussion

Load Capacity

- Kaolinite reinforced panel had lower peak load than unreinforced panel
- Silt cob panels had approximately the same peak load

H Stiffness

- Approximated by slope of estimated elastic region of stressstrain curve
- Kaolinite cob appears to be stiffer than silt cob

Ductility

Positive main effect indicates that increasing reinforcement increases ductility

Sources of Error

Orientation of Chicken WireHinge Strength

Conclusions

Trends

Percent elongation is greater for the reinforced cob, suggesting it could sustain greater deformations before catastrophic failure.

Fractured Silt Cob

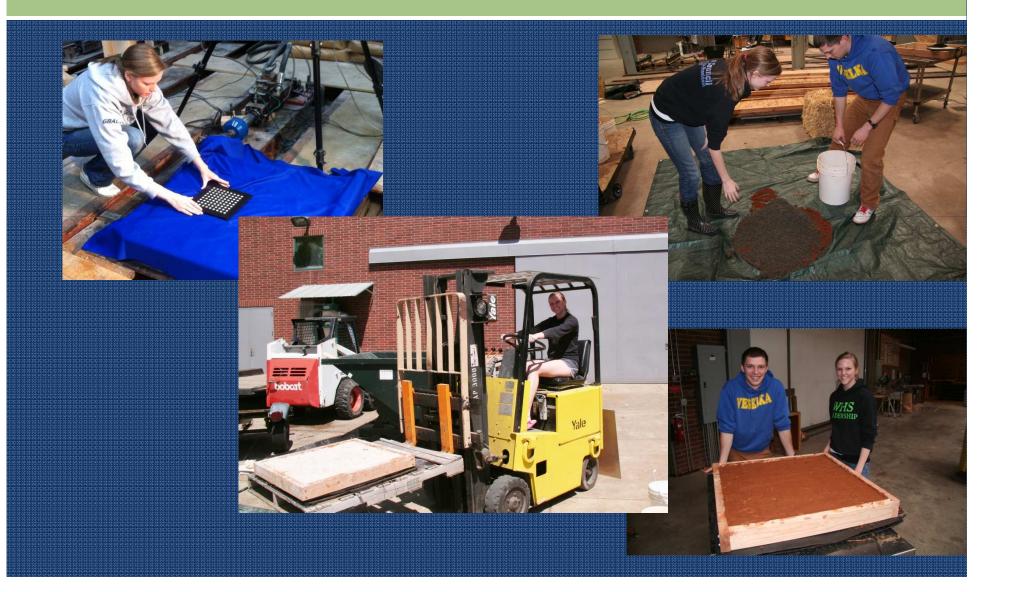
Fractured Kaolinite Cob

Further Research

Other Meshes

Snow Fence

- Plaster Reinforcement Mesh
- Various Configurations of Chicken Wire


Other Fibers Rope Strands Tree Branches

Questions?

References

American Society for Testing and Materials. <u>Annual book of ASTM standards</u>. ASTM. Philadelphia, PA. 2008.

- Bee, Becky. <u>The Cob Builders Handbook: You Can Hand-Sculpt Your Own Home</u>. Groundworks. Murphy, Oregon. 1997.
- Evans, Ianto, Michael G Smith, Linda Smiley. <u>The Hand-Sculpted House: A Practical and Philosophical</u> <u>Guide to Building a Cob Cottage.</u> Chelsea Green Publishing Company. White River Junction, Vermont. 2002.
- Pattison, Justin. Influence of Season on Subgrade Strength Under an Aggregate Surfaced Forest Road: A look into seasonal strength dianges and an evaluation of current road building practices. MS thesis. Oregon State University, 2008. privately published, 2008. Print.
- Pino, Alex. "Cob House." *Tiny House Talk*. 2012. Web. 17 May 2012. http://www.tinyhousetalk.com/cob-house/>.
- Pullen, Quinn. "Strength and Composition of Willamette Valley Cob: An Earthen Building Material." Honors Baccalaureate of Science Thesis. Oregon State University, 2009.
- Saritas, Afsin, and Lutfullah Turanli. "Strengthening the Structural Behavior of Adobe Walls Through the Use of Plaster Reinforcement Mesh." *Construction and Building Materials*. 25.4 (2011): 1747. Print.
- Saxton, R.H. "The Performance of Cob as a Building Material." The Structural Engineer. Vol.73, Iss. 7. April 1995.

White, W. Arthur. "Atterberg Plastic Limits of Clay Minerals." *Mineralogial Society of Ameriai.* n. page. Web. 29 May. 2012. http://www.minsocam.org/ammin/AM34/AM34_508.pdf>.