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Previous studies have demonstrated that light detection and ranging (LiDAR)-derived variables can be used to model forest yield variables, such as biomass,
volume, and number of stems. However, the next step is underrepresented in the literature: estimation of forest yield with appropriate confidence intervals.
It is of great importance that the procedures required for conducting forest inventory with LiDAR and the estimation precision of such procedures are sufficiently
documented to enable their evaluation and implementation by land managers. In this study, we demonstrated the regression estimator, a model-assisted
estimator (approximately design-unbiased), using LiDAR-derived variables for estimation of total forest yield. The LiDAR-derived variables are statistics associated
with vegetation height and cover. The estimation procedure requires complete coverage of the forest with LiDAR and a random sample of precisely georeferenced
field measurement plots. Regression estimation relies on sample-based ordinary least squares (OLS) regression models relating forest yield and LiDAR-derived
variables. Estimation was performed using the OLS models and LiDAR-derived variables for the entire population. Regression estimates of basal area, volume,
stand density, and biomass were much more precise than simple random sampling estimates (design effects were 0.25, 0.24, 0.44, and 0.27, respectively).
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The feasibility of modeling forest yield variables, such as basal
area, volume, and biomass, with light detection and ranging
(LiDAR)-derived variables (or LiDAR metrics) has been

demonstrated in a variety of studies (Næsset 1997, Means et al.
2000b, Andersen et al. 2005). These and other studies have found
that LiDAR-derived height metrics are highly correlated with forest
variables; the coefficient of determination (R2) in studies modeling
structural forest variables with LiDAR often exceeds 0.9 (Lefsky et
al. 1999, Riaño et al. 2004, Næsset et al. 2005). Although models
developed to relate forest inventory and LiDAR-derived variables
can play an important role in forest inventory with LiDAR, it is also
important to make inference about the population. The precision of
population estimates of forest yield variables depend on the (1) size
of the population, (2) the size of the sample, and (3) the precision of
the model used.

Estimates of total forest yield and reliable confidence intervals for
total estimates are required inferences in forest inventory. In most
traditional forest inventories (e.g., a stratified sample with plots
arranged on systematic grids within strata), inference is made in the
design-based paradigm. Design-based inference, in contrast to mod-
el-based inference, is an approach that allows inference to be made
about the population from a random sample of data without need to
make assumptions about the distribution of the population (Gre-
goire 1998). There are few examples of design-based estimation in
studies on estimating forest yield variables with LiDAR-derived aux-

iliary variables. Auxiliary variables are variables that are used to aid in
estimation but are not necessarily of interest by themselves. Studies
that discuss design-based estimation include the studies by Parker
and Evans (2004, 2007), Corona and Fattorini (2008), and Gre-
goire et al. (2011). In these studies, model development was ex-
tended with model-assisted (design-based paradigm) estimators to
enable inference about the population.

The studies by Parker and Evans (2004, 2007) and Gregoire et al.
(2011) are examples of two-phase or double-sampling estimation.
In this context, ordinary least squares (OLS) regression is used to
relate predictors, such as remote sensing variables, to response vari-
ables, such as forest variables. The modeled relationship is then used
to adjust the sample mean. The adjustment is based on the differ-
ence between the means of the explanatory variables for the sample
relative to the mean for the entirety of the auxiliary data. The ratio
estimators used in Corona and Fattorini (2008) also uses a model
and auxiliary data to adjust the sample mean. This example of the
ratio estimator is appropriate when there is complete coverage of the
population with the auxiliary data. The linear relationship between
the response and predictor should be positive and approximately
intersect zero. The ratio estimator of the total uses a ratio model to
adjust the sample estimate of the total. The ratio estimator has the
advantage of being a simple estimator and has been shown to work
well in a variety of scenarios (Gregoire and Valentine 2004, Särndal
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et al. 2010). However, this estimator is generally design-biased and
can incorporate only a single auxiliary variable.

To facilitate evaluation and adoption of advanced forest inven-
tory techniques with LiDAR by a wide audience, it behooves the
LiDAR community to document and vet all of the steps required for
implementation in peer-reviewed literature. Currently, the process
and performance (precision) of estimation with LiDAR-assisted
techniques are not sufficiently documented and demonstrated to
encourage general use. The objectives for this study are to demon-
strate the steps required for model-assisted estimation of forest yield
variables when LiDAR is obtained over the entire forest and to
provide an indication of the precision that can be achieved.

Methods
Study Site

The forests considered in this study are located on the Joint Base
Lewis-McChord in western Washington State (Figure 1). The Lewis
portion of the reservation (formerly the Fort-Lewis Military Reser-
vation) spans 35,052 ha, of which 23,308 ha are forested (Figure 1).
The predominant forest type on the installation is mixed conifer
dominated by Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco)
forest with western redcedar (Thuja plicata Donn ex D. Don), west-
ern hemlock (Tsuga heterophylla [Raf.] Sarg.), red alder (Alnus ruba
Bong.), bigleaf maple (Acer macrophyllum Pursh), black cottonwood
(Populus balsamifera L.), and other minor deciduous and coniferous
species. There are also scattered Oregon white oak (Quercus garryana
Douglas ex Hook) and ponderosa pine (Pinus ponderosa C. Lawson)
woodland and grassland areas interspersed with the coniferous for-
ests. Our target population is managed forests on the military base.
We were not able to access this entire population because of censor-
ing of the sample data, but we were able to mitigate this censoring by
restricting our target population. We elaborate further on the nature
of the censoring of our sample when we discuss our sample, and we
discuss our approach to mitigation when we describe estimators.

Fort Lewis Forest Inventory Plots
Field measurements were collected at 128 forested continuous

forest inventory (CFI) plots established and periodically remeasured
by Fort Lewis forestry staff. The fixed-area, 0.081-ha (16.05-m ra-
dius) circular plots are located on a regular 1.3 � 1.3-km grid
embedded in the forested portions of the Fort Lewis Military Instal-
lation. Plots were remeasured every 5 years, on average, from the
time that the inventory was initiated in 1973 until the most recent
measurement in 2005. Subsequent remeasurements are scheduled
for 10-year intervals. Plot measurements for all trees with dbh
greater than 20.3 cm include dbh, species, and condition class. Tree
heights were measured on a subset of trees, on average 2.5 per plot.
Plot positions were accurately georeferenced using dual frequency
survey-grade GPS units followed by differential postprocessing of
raw GPS data (Clarkin 2007, Andersen et al. 2009).

Missing tree heights were estimated with allometric height-
diameter equations. A site-specific equation with random effects for
each plot (Temesgen et al. 2008) was used for Douglas-fir. Equation
1 was fitted to trees with measured heights, and then the fitted
parameters (included plot-specific random coefficients) were used to
estimate the remaining heights.

htij � 4.5 � exp��b1 � e1,i� �
�b2 � e2,i�

dbhij � 1� � e0, j (1)

where htij and dbhij are height and diameter of jth tree on ith plot; b1

and b2 are fixed effects; e1,i and e2,i are random effects for plot i; and
e0,j �N(0, �2), e1,i �N(0, �1

2), and e2,i �N(0, �2
2), where �

indicates distributed as.
Tree heights for other species were estimated using regional co-

efficients for Equation 1 provided for the Pacific Northwest in the
Forest Vegetation Simulator documentation (Keyser 2010). Four
forest yield variables (Table 1) were calculated on plots for this
study: basal area (ba) (m2/ha), total volume (vol) (m3/ha), stand
density (stems) (trees/ha), and biomass (bm) (mg/ha). ba and stand
density were calculated directly from tree measurements. Total stem
volume per tree was predicted with the USDA National Volume
Estimator Library add-in for Microsoft Excel for Windows (US
Forest Service 2008) (Table 1) and aggregated to the plot level.
Biomass for individual trees was predicted using national-scale bio-
mass equations (Jenkins et al. 2003).

LiDAR Acquisition, Variables, and Processing
Airborne discrete-return, near-infrared LiDAR data were col-

lected over our study site between Sept. 19 and Sept. 21, 2005, prior
to loss of leaves on deciduous plants (leaf on). A fixed wing aircraft
was used for the acquisition. The aircraft flew over the study site at
a height of approximately 1,000 m. The LiDAR sensor used was an
Optech ALTM 3100. The sensor can detect up to four returns per
pulse. The scan angle was set to �14° and the beam divergence to
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Figure 1. Empirical densities for cover2 for the entire forest and
for the sample plots alone. Cover2 is the ratio of the number of first
returns above 2 m to the total number of first returns.

Table 1. Summary of forest yield variables measured on field
plots.

Variablea Mean Minimum Maximum SD

ba 35 1 130 21
vol 457 9 2,376 332
stems 220 12 865 155
bm 294.8 7.5 1,508.9 204.0

a Forest yield variables are basal area (ba) (m2/ha), total stem volume, including top and stump
(vol) (m3/ha), number of stems/ha (stems), and total aboveground biomass (bm) (Mg/ha).
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0.3 mrad. The scan pulse rate was 71 kHz. The nominal pulse
density was 4 pulses/m2. A discussion of how to select appropriate
LiDAR acquisition parameters may be found in Reutebuch et al.
(2005).

Summary statistics computed from LiDAR point data (LiDAR
metrics) were calculated in two instances for this study. In the first
instance, LiDAR metrics were calculated for areas corresponding
precisely to the locations and bounds of each circular 0.081 ha CFI
plot (Table 2). The set of metrics calculated for plots was used to
model the relationship between LiDAR-derived variables and forest
inventory variables. In the second instance, LiDAR metrics were
calculated for a grid of 28.45 � 28.45-m (0.081 ha) square pixels
covering the entire forest (Table 3). LiDAR processing was carried
out using FUSION (McGaughey 2009). Two types of LiDAR-
derived variables were used that are referred to subsequently as
height and cover variables. Height variables (e.g., ht10 and ht95) are
percentiles calculated from the height attributes of LiDAR point
data, with the subscript denoting the percentile. For example, ht10

corresponds to the 10th percentile height of LiDAR point data
falling within a given pixel or a plot. Cover variables (e.g., cover1 and
cover2), indicate the proportion of LiDAR point data within a pixel
or plot with height attributes smaller than the height (m) indicated
by the subscript.

Model Development
OLS regression was used to relate forest yield variables to

LiDAR-derived variables with R (R Development Core Team
2008). The LiDAR-derived variables evaluated as predictors fall
into two general groups that describe either vegetation height (e.g.,
ht80) or the rate at which LiDAR is intercepted by vegetation above
some height (e.g., cover1). These LiDAR-derived variables provide
measures of stand height and the spread of vegetation, but they are
not the same as field-based measures. When forest yield is calculated
(estimated) for a plot, it is most often a function of tree diameters
and heights. LiDAR does not provide a surrogate for field-measured
tree diameters. However, there is a sufficiently strong association

between LiDAR metrics and forest yield variables that the models
provide significant explanatory power. Conceptually, we undertook
model development with the idea that forest yield is in large part a
functions of the height of the trees on a plot and the proportion of
the plot that is occupied by vegetation. We also hypothesized that
there should be an interaction between LiDAR-derived measures of
tree height (e.g., ht50, ht70, ht90, which are not the same as field-
measured tree heights) and LiDAR-derived measures of the propor-
tion of the plot that is occupied by vegetation. The expected differ-
ence in forest yield between two sites with different stand heights
depends on how fully the stand is occupied by trees and vice versa.
For example, the increase in biomass associated with going from
10% of the horizontal growing space occupied to 70% occupation is
different for stands that are 13 m tall than for stands that are 30 m
tall—this indicates that there is a need to recognize the interaction
between these variables. As a result, we investigated models with
LiDAR height and LiDAR occupancy variables, as well as interac-
tions between these continuous variables. Accounting for the inter-
action between continuous height and occupancy variables enables
nonlinear change in expected forest yield relative to changes in mul-
tiple predictors.

Estimation
Estimation of forest yield variables was performed with a regres-

sion estimator approach. The regression estimator is a model-
assisted estimator, approximately design-unbiased, and takes advan-
tage of a model to (potentially) increase estimation precision over
that of the simple random sampling (SRS) estimator. This estimator
is appropriate when the auxiliary variables, in this case LiDAR-
derived auxiliary variables, are measured for the entire population
and a sample of field measurement plots is obtained using an SRS
(Lohr 1999, Gregoire and Valentine 2004, Särndal et al. 2010). The
regression estimator may be used with variable probability sampling,
but because our sample was an equal probability sample, we present
the simplified total (Equation 2) and total variance (Equation 3)
estimators (adapted from Gregoire and Valentine 2004 and Lohr
1999), which do not incorporate variable probabilities.

T̂y,reg � N * ��̂�x� (2)

where T̂y,reg � regression estimate of total forest yield; N � Af /Ap;
N � number of observations in the population; Af and Ap represent
the area of the forest and area of a plot, respectively; �̂ � vector of
OLS regression coefficients, including the intercept estimated from
sample observations; and �x � vector of population means for aux-
iliary variables.

SET̂y,reg � �N2�N � n

N �s reg
2

n
(3)

where SET̂y,reg
� approximate standard error of the regression esti-

mate of the total on the original scale; sreg
2 � variance of regression-

model residuals on original scale of data; n � number of observa-
tions in observed sample; and (N � n)/N � finite population
correction.

We also provide SRS estimators (Lohr 1999) of the population
total (Equation 4) and population total variance (Equation 5). SRS
estimates served as a baseline for comparison with regression esti-
mates. Although our CFI plots are actually arranged on a fixed grid,

Table 2. Summary of several light detection and ranging-derived
variables for our field plots.

Variablea Mean Minimum Maximum SD

ht40 20.06 1.416 41.39 9.21
ht60 24.63 1.552 49.12 9.66
ht80 29.35 1.62 54.12 9.58
Cover2 0.74 0.00 0.94 0.19
Return1 3,392 1,671 6,701 940.45

a ht40 indicates 40th percentile height of light detection and ranging point data falling within
a given pixel or plot. Cover2 is the proportion of LiDAR point data within a pixel or plot with
height attributes smaller than the height (m) indicated by the subscript. Return1 is the number
of first returns that intersected a plot.

Table 3. Summary of several light detection and ranging-derived
variables for the target population.

Variablea Mean Minimum Maximum SD

ht40 16.68 1.00 54.63 10.22
ht60 20.55 1.01 55.44 11.15
ht80 24.48 1.02 58.15 12.00
Cover2 0.51 0.00 1.00 0.29
Return1 3,537 0 12,030 1,239.63

a ht40 indicates 40th percentile height of light detection and ranging point data falling within
a given pixel or plot. Cover2 is the proportion of LiDAR point data within a pixel or plot with
height attributes smaller than the height indicated by the subscript. Return1 is the number of
first returns that intersected a 28.45 � 28.45-m pixel.
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SRS estimators were used as a conservative approximation (Bechtold
and Patterson 2005). Regression estimates were compared with SRS
estimates both by looking at their comparative magnitudes (vari-
ances and totals) and by taking the ratio of the regression estimation
variance to SRS estimation variance (design effect). The design ef-
fect also indicates the number of additional plots that would be
required in an SRS to achieve the same performance as the alternate
design or estimator.

T̂y � N �Y (4)

where T̂y � SRS estimate of total; and �Y � mean of observed
sample.

SE [T̂y] � �N 2�N � n

N �sy
2

n
(5)

where SE [T̂y] � standard error of total estimate; and sy
2 � sample

variance.
The variance estimators listed are based on the assumption that

the finite population is tessellated (cut into nonoverlapping regions,
like pixels or strata) into discrete units and that our sample is drawn
from these discrete units. In this scenario, the finite population
correction (FPC) arises as an adjustment because the number of
population elements that one must estimate is reduced by the size of
the sample. The number of elements that must be estimated is N �
n. Our estimation procedure did not precisely match with this the-
ory. In our estimation procedure, we did tessellate our population
(into square 28.45 � 28.45-m pixels), but our sample was not taken
from these tessellations. Instead, our sample was composed of cir-
cular regions that were not aligned with the tessellations. Although
the variance from our sample plots is still a reasonable estimate of
variance, it is probably not appropriate to use the FPC because we do
not actually have measurements of the response for any of the tes-
sellations of our population. The FPC should instead be replaced by
the value 1. In most instances, the sample size will be very small
relative to the size of the population, and the effect of the FPC will
be negligible.

Our population size, N, is derived from a thematic polygon GIS
layer and from LiDAR raster layers (28.45 � 28.45 m). N is the area
of Fort Lewis that we consider to be forested divided by the area of
a plot. Forested areas (pixels) with regard to this study met the
following three criteria: pixels fell within areas designated as forested
within the thematic GIS polygon layer (Fort Lewis issued), pixels
had at least 5% LiDAR cover (cover2), and pixel vegetation heights
(ht95) were greater than 5 m. The thematic layer was used to omit
areas outside of managed forest (e.g., housing developments that
registered as forested according to the LiDAR criteria). The vegeta-
tion height criterion was introduced to exclude areas poorly repre-

sented by our sample data. Our data set did not include plots for
which no tree had a dbh larger than 20.32 cm.

Results
Regression Results

In the development of regression models for estimation of forest
yield variables from LiDAR-derived variables, we relied on both an
exhaustive search algorithm (Lumley 2009) and nonautomated
(hand fitted) backward selection based on model Bayesian informa-
tion criterion (BIC) values. A hybrid approach was used because the
search algorithm often returned models that did not include a cover
or height predictor or contained seemingly redundant terms (e.g.,
ht90 with ht80).

The hybrid procedure resulted in identical sets of predictor vari-
ables selected to model the three forest variables ba, vol, and bm.
The models explained more than 70% of variability in the forest
yield variables (Table 4). The models for these three yield variables
included a single height variable, ht60, a single cover variable, cover2,
and the multiplicative interaction between these two variables. The
model for stems included ht40 and ht80, cover2, and an interaction
between cover2 and ht80. The model for stems explained less vari-
ability in the response variable, 54%, than the models for the other
three forest yield variables. No transformations of response variables
were used, as modeling was performed for model-assisted estima-
tion, which does not depend on linearity and equal variance for
asymptotic unbiasedness of the total and total variance estimates.

Landscape Total Estimates
Total forest yield estimates (Table 5) were obtained using both

regression and SRS estimators. The regression estimate of the pop-
ulation mean for a response is the predicted value from an OLS
regression model for the population means of LiDAR-derived pre-
dictor variables. The regression estimate of the total (Equation 2) of
the response for the population is the regression estimate of the
mean for the population multiplied by the size of the population
(total area). The SRS estimate of the total (Equation 4) is obtained
by multiplying the sample mean by N, the size of the population.
The variance (SE) estimator of the regression estimate of the total
(Equation 3) is a function of the variability around the fitted regres-
sion line, the size of the sample, and the population size. Similarly,
the variance (SE) of the SRS estimate of the total (Equation 5) is a
function of the variability around the sample mean, the size of the
sample, and the population size.

The difference between regression and SRS estimates of the for-
est yield variable stems was very small. The differences between SRS
and regression estimates for the other variables, in contrast, were
quite large. The SRS estimate of basal area, for example is 23% larger
than the regression estimate. Confidence intervals (95%) for the two
estimators cover the opposing estimates, but SRS estimates are very

Table 4. Ordinary least squares models fitted to relate light detection and ranging-derived variables to each of the forest yield response
variables.

Model form and parameter estimates Model root mean square error R2

ba � 10.0296 � 1.1924 � ht60 � 14.7749 � cover2 � 3.5418 � cover2 � ht60 9.9 m2/ha 0.78
vol � 196.680 � 13.947 � ht60 � 618.603 � cover2 � 56.367 � cover2 � ht60 173.7 m3/ha 0.74
stems � 4.981 � 10.233 � ht40 � 14.073 � ht80 � 615.178 � cover2 � 56.367 � cover2 � ht80 104.9 stems/ha 0.54
bm � 116.815 �7.247 � ht60 � 341.995 � cover2 � 32.374 � cover2 � ht60 111.9 Mg/ha 0.71

ba, basal area, vol, total stem volume, including top and stump; stems, number of stems/ha; bm, total aboveground biomass. ht60 indicates 60th percentile height of light detection and ranging point
data falling within a given pixel or plot. Cover2 is the proportion of LiDAR point data within a pixel or plot with height (m) attributes smaller than the height indicated by the subscript.
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close to the boundaries of the confidence intervals for the regression
estimates (except stems). As a result of the strong linear association
between predictor and response variables, the regression estimates of
total forest yield were much more precise than SRS estimates. De-
sign effects for ba, vol and bm were all less than 30%, and the design
effect for stems, the variable with the least association with LiDAR-
derived variables, was 47%. Although there is no reason that
model-assisted and SRS estimates of forest yield cannot diverge
because of random chance, as part of due diligence, we examined the
issue further using LiDAR-derived variables as surrogates for field
measured variable. We looked at the marginal distributions of the
predictor variables included in the regression models for the sample
and the population. The distribution of the predictor variable cover2

was centered on a mean value approximately 10% higher than the
distribution of cover2 for the entire study area (Figure 2). Visually,
the sample and population distributions of the other LiDAR-
derived variables closely matched. The difference (cover2) indicates
that CFI plots were placed in patches of forest that were compara-
tively dense relative to the rest of the landscape. The difference in the
distribution of cover2 appears to be larger in magnitude than what
would be expected from random chance. We used a randomization
test to evaluate the probability of witnessing a difference as large as
the one observed between the sample and population for cover2. We
selected 5,000 random samples of size 118 from the LiDAR for the
whole forest, and 0.04% of samples had a difference from the pop-

ulation mean for cover2 as large as the difference observed for our
sample (P � 0.0004). This appears to indicate that all sampling
units were not given equal probability of selection.

Discussion
Sampling Bias

As a result of evidence that plots were placed in locations with
higher density, we cannot assert that either the SRS or model-
assisted estimates were unbiased. We are not sure what the level of
bias is for the model-assisted estimators, but there is clearly an effect
from the biased sample on the SRS estimator. This scenario is an
indication that the model-assisted estimator performs better than
the SRS estimator. The model-assisted estimator may not be unbi-
ased in this case (a defect in the sample not in the estimator), but the
estimator is able to recover in some sense because it is able to adjust
the estimate according to the differences observed between values
for explanatory variables observed on field plots and values observed
for the entire population. This essentially provides a model-based
fallback position for the model-assisted estimator. The theory that
we presented for the model-assisted estimator was for design-based
estimation, but the model-assisted total estimator remains unbiased
for the total in the model-based sense even when the sampling
probabilities are not known and, as in this case, are probably not
equal.

Ideally, the observed difference between the plots and the land-
scape would not occur because randomization is the basis for infer-
ence in the model-assisted paradigm. However, there are many ways
for bias to be introduced in the distribution of plot locations. Ex-
amples of ways that bias could be introduced into a design include
through subtle preference toward a forest type when ground crews
navigate approximate coordinates for CFI plot monumentation,
destruction of CFI plot monumentation on harvested sites, or in-
sertion of additional plots to represent desirable types. Although
there is evidence to suggest that there was some subjectivity with
regard to the establishment of the plots—which would introduce
bias into the field-based sample—for the majority of our discus-
sion, we treat our results as if the field sample represents a real
equal-probability sample to demonstrate the model-assisted ap-
proach and to provide an indication of the precision of the estimator
relative to the SRS estimator.

Other Sources of Error
During the plot measurement and aggregation phase of the anal-

ysis, three sources of error were identified that likely introduced
variance into our response variables and hence our predictions. The

Table 5. Regression (light detection and ranging) and simple random sampling (SRS) estimates of forest yield with respective estimates
of confidence, precision, and relative precision.

Estimator Resp. Estimate 95% L CI 95% U CI SE DE

. . . . . .(%) . . . . . .
Regressiona Basal area (m2) 662,713 491,204 834,222 11 22
SRS Basal area (m2) 818,116 451,165 1,185,067 19 —b

Regression Volume (m3) 8,089,549 5,102,920 11,076,179 15 27
SRS Volume (m3) 10,624,926 4,832,758 16,417,094 23 —b

Regression Stems 5,047,900 3,244,050 6,851,750 17 47
SRS Stems 5,264,714 3,339,908 7,189,520 22 —b

Regression Biomass (Mg) 4,983,460 2,362,792 7,604,127 15 29
SRS Biomass (Mg) 6,843,596 3,281,361 10,405,830 22 —b

DE, design effect; L CI, lower boundary of confidence interval; Resp., response variable; SE, standard error; U CI, upper boundary of confidence interval.
a Regression indicates the regression estimator of the total.
b No DE% values are provided for the SRS estimator because the variances of the SRS estimates are the denominator when estimating design effects.

Figure 2. Location of Joint Base Lewis-McChord, the location of
our study site, in western Washington state.
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first source of error was estimation of biomass and volume using
allometric equations. This source of error is unavoidable in our
situation as it is not practical to improve these estimates with typical
inventory data. The other two sources of error are in the estimation
of tree heights and omission errors resulting from the use of a
20.3-cm threshold for minimum tree diameter. It is not practical to
measure all tree heights in every case, as here, but estimates can likely
be improved by measuring some trees on each plot, measuring trees
that have broken tops so that their heights are not overestimated,
and ensuring that the sample of trees is well distributed among
diameters and species (e.g., Næsset 2002). A lower diameter thresh-
old for measured trees would also likely be of benefit. These changes
would result in more precise measures of forest yield per plot. Im-
proved measurement precision of the response variable would re-
duce the variability of residuals around the regression line and in-
crease estimation precision (Kmenta 1997, pp. 346–348).

Estimation
A large portion of the variability in forest yield was accounted for

by LiDAR-derived variables. This resulted in much smaller variance
around the regression model for forest yield then was observed
around the sample mean. As a result, the precisions of regression
estimates were much improved over SRS estimates. Our design
effects ranged from 22% to 47%, indicating that between 2 and 5
times the number of field plots would be necessary to achieve the
same precision with an SRS estimator as with the model-assisted
estimator. This level of precision, or perhaps even better precision
with more precise field measurements, can be expected by leveraging
the linear relationship between forest yield and LiDAR-derived vari-
ables in a model-assisted forest inventory, although sample size and
forest size are also key components of the variance.

Previous studies have demonstrated strong associations between
forest yield and LiDAR-derived variables. As previously mentioned,
studies that publish R2 (or adjusted R2) values exceeding 0.90 are not
uncommon. The strength of the associations was leveraged in this
study to greatly increase estimation precision over the SRS estima-
tor. However, direct comparison between the precision observed
here and in other studies that model forest yield with LiDAR is not
readily feasible. We are not aware of any other studies that used the
regression estimator for estimation of forest yield. The actual preci-
sion that can be achieved with a model-assisted approach for other
areas is not yet clear, but the very high (	0.90) R2 values found in
studies on transformed scales still indicate a strong association be-
tween forest yield and LiDAR-derived variables. This is evidence
that the model-assisted approach to estimation is broadly applicable
and can be used with good result in a variety of forest types, includ-
ing, for example, boreal mixed forests (Thomas et al. 2006), north-
ern broadleaf forests (Lim et al. 2003), temperate conifer and decid-
uous forests (Lefsky et al. 2002), and even tropical rainforests
(Drake et al. 2003).

If model R2 values or model root mean square error values pub-
lished in studies are used as the basis for evaluation of model-assisted
approaches prior to implementation, it is important to recognize
that the published model precisions may not be observed in practice.
For example, several studies in the US Pacific Northwest achieved
R2 values greater than 0.90 for forest yield variables (Means et al.
1999, 2000a, Lefsky et al. 2005, Goerndt et al. 2010), whereas we
observed much reduced model R2 values. Studies are often per-
formed for very small areas with limited numbers of field plots, and
the plots are often measured specifically for the study. The level of

care taken in measuring field plots for a research study may exceed
that of an operational forest inventory, and the precision observed
for models developed for small forests is likely to differ from that
observed for large forests.

Relative Precision
Forest managers may have an interest in using LiDAR for forest

inventory, but prior to selecting this tool they will probably need
some indication of the performance of estimation. A common mea-
sure used to evaluate the merits of a design is design effect.

This statistic is a basis for comparison of the precision of a se-
lected design or estimator with SRS estimation. Based on the central
limit theorem, design effect indicates how many observations are
necessary to achieve the same precision with an alternative design as
was achieved with the SRS design. In this study, the regression
estimator with LiDAR-derived predictor variables was much more
precise than the SRS estimator. A land manager is unlikely to use an
SRS design for forest inventory in practice, but by comparing the
design effect achieved in this study with the design effect of another
design and estimator, the efficiency (precision relative to number of
sample plots) of the approach described in this study can be com-
pared with another design and estimator. The analytical design ef-
fect estimator is a function of sample size, so it is also possible to look
at relative performance for a variety of sample sizes.

Other Considerations with LiDAR
LiDAR constitutes an additional cost that may deter some users.

However, model-assisted estimation may result in a decrease in the
number of plots that are necessary to achieve a given precision, and
there are additional uses for LiDAR that should be considered.
LiDAR can also be used to develop maps of forest variables, create
bare-earth digital terrain models, perform slope stability analyses
(Schulz 2007), perform probable stream channel delineations (Mur-
phy et al. 2008), and (in conjunction with other LiDAR-derived
products) develop ecological models (Vierling et al. 2008) and fire
fuel models (Morsdorf et al. 2004, Andersen et al. 2005, Mutlu et al.
2008). Alternative uses for LiDAR products should be considered
when evaluating LiDAR for forest inventory and when attempting
to find parties interested in sharing the cost of a LiDAR acquisi-
tion—especially on public or other lands that are likely to have
multiple stakeholders.

Conclusions
In this study, we used the regression estimator, a model-assisted

estimator, with LiDAR-derived auxiliary variables to estimate forest
yield. The precision of the regression estimator (assuming a random
sample) was better than that of the SRS estimator, with design
effects ranging from 0.22 for ba to 0.49 for stems. Depending on the
forest, the precision achieved with LiDAR in this study relative to
the SRS estimator may stimulate interest in implementing a forest
inventory with LiDAR. It should be noted that there are difficulties
in attempting to distinguish species with LiDAR. Also, the particu-
lar model-assisted estimator described in this study is applicable only
to areas with wall-to-wall LiDAR coverage; other arrangements will
require alternative approaches to estimation. Inference for the
model-assisted estimator is based on the design-based paradigm. In
contrast to the model-based paradigm, we did not have to pay ex-
plicit attention to OLS modeling assumptions, such as equal vari-
ance and linearity. This simplifies the modeling process. However, it
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should be noted that to obtain valid inferences with a model-assisted
estimator, there is an additional assumption that the sample used to
calibrate the regression model is taken randomly from the popula-
tion of interest.
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