HMSC

GC

856

Oceanic and Atmospheric Sciences

Oregon State University

MARHW POTTS BUI LIBRARY
hatifle LO MARIME CCIEME CI
SEASOAR and CTD Observations During a COARE Surveys Cruise, W9211A, 8 November to 8 December 1992
by
A. Huyer, P. Hacker, P.M. Kosro, J. Fleischbein, E. Antonissen, R. O'Malley

COAS, Oregon State University Corvallis, Oregon 97331-5503 and SOEST, University of Hawaii Honolulu, Hawaii 96822

Data Report 155
Reference 94-1
April 1994

SEASOAR and CTD Observations During a COARE Surveys Cruise, W9211A, 8 November to 8 December 1992

A. Huyer ${ }^{1}$, P. Hacker ${ }^{2}$, P.M. Kosro ${ }^{1}$,
J. Fleischbein ${ }^{1}$, E. Antonissen ${ }^{1}$, R. O'Malley ${ }^{1}$
${ }^{1}$ College of Oceanic and Atmospheric Sciences
Oregon State University
Corvallis, Oregon 97331-5503
2School of Ocean and Earth Science and Technology University of Hawaii Honolulu, HI 96822

Data Report 155
Reference 94-1
April 1994

College of Oceanic and Atmospheric Sciences
Oregon State University

Table of Contents

Introduction 1
Cruise Narrative 3
Seasoar Data Acquisition and Preliminary Processing 11
CTD Data Acquisition, Calibration and Data Processing 12
Seasoar Conductivity Calibration 13
Post-Processing of Seasoar Data 17
Data Presentation 19
CTD/Seasoar Comparison 21
Acknowledgments 21
References 23
CTD Data 25
Seasoar Trajectories 43
Ensemble Profiles of Seasoar Temperature and Salinity 101
Large Butterfly 102
Standard Butterfly 108
N2S 108
S2W 121
W2E 131
E2N 143
SBN to $5^{\circ} \mathrm{N}$ 152
Vertical Sections of Temperature, Salinity and Sigma-t 159
Large Butterfly 160
Standard Butterfly 179
N2S Temperature 179
Salinity 192
Sigma-t 205
S2W Temperature 218
Salinity 228
Sigma-t 238
Vertical Sections of Temperature, Salinity and Sigma-t (Cont'd) W2E Temperature 248
Salinity 260
Sigma-t 272
E2N Temperature 284
Salinity 293
Sigma-t 302
SBN to $5^{\circ} \mathrm{N}$
Temperature 311
Salinity 317
Sigma-t 323
Appendix A: Time Series of Maximum T/C Correlations and Lags for Seasoar Tows 1, 3-6 329
Appendix B: T-S Diagrams from CTD and Seasoar at Start and End of Tows 1, 3-6 345
Appendix C: Fluorescence Voltage for Seasoar Tows 1, 3, 4 355

SEASOAR and CTD Observations During a COARE Surveys Cruise, W9211A, 8 November to 8 December 1992

Introduction

An international Coupled Ocean-Atmosphere Response Experiment (COARE) was conducted in the warm-pool region of the western equatorial Pacific Ocean over a four-month period from November 1992 through February 1993 (Webster and Lukas, 1992). Most of the oceanographic and meteorological observations were concentrated in the Intensive Flux Array (IFA) centered at $1^{\circ} 45^{\prime} \mathrm{S}, 156^{\circ} 00^{\prime} \mathrm{E}$. As part of this experiment, three survey cruises were conducted on the R/V Wecoma; each cruise included measurements of the temperature, salinity and velocity distribution in the upper 300 m of the ocean, and continuous meteorological measurements of wind, air temperature, humidity, etc. Most of these measurements were along a butterfly pattern that was sampled repeatedly during the three COARE Surveys cruises, W9211A and W9211B, and W9211C.

Our primary objective was to measure zonal and meridional gradients across the center of the IFA. We originally intended to sample along a larger pattern (with diagonals of 200 km) at the beginning and end of each cruise, and to sample a smaller pattern (diagonals of 100 km) as continuously as possible through the main portion of each cruise. Early in W9211A, we found that the smaller pattern was not large enough to span the actual positions of the profiling current meter array, and that frequent deviations from our initial choice of longitude would be necessary to avoid moorings and quasistationary ships. We therefore abandoned our plan of two separate sampling patterns, and instead chose one Standard Butterfly Pattern with a meridional section along $156^{\circ} 06^{\prime} \mathrm{W}$ and a zonal section along $1^{\circ} 50^{\prime} \mathrm{S}$, connected in the southwestern and northeastern quadrants. Along this track, we measured the upper-ocean temperature and salinity by means of a towed undulating Seasoar vehicle (Figure 1) equipped with a SeaBird CTD system, while underway at 7-8 knots. CTD casts were made at the beginning and end of each tow, primarily to check calibration of the Seasoar sensors; additional CTD casts were occasionally made along portions of the standard sections while Seasoar was disabled. Water velocity along the ship's track was measured by means of the ship-borne acoustic Doppler current profiler.

This report summarizes the Seasoar and CTD observations from Wecoma's first COARE Surveys cruise, W9211A. It also provides a cruise narrative, and a brief description of the data processing procedures.

Figure 1. Sketch of the Seasoar vehicle used during W9211A. Irlet and outlet ports for the dual T-C SeaBird sensor ducts are on both sides of the lower nose. A SeaTech fluorometer was mounted just inside the larger hole in the nose. A $25-\mathrm{cm}$ transmissometer was mounted on top during the first tow, but was later removed because of an irrepairable malfunction.

Figure 2. Schematic of the plumbing of the ducted T/C sensors inside the Seasoar vehicle. Primary sensor inlet and outlet ports were on the starboard side of the nose; secondary sensor ports were on the port side. The fluorometer was mounted internally as far forward as possible and below the CTD; its sampling volume was just inside the nose, immediately behind a $5-\mathrm{cm}$-diameter opening.

Cruise Narrative, W9211A

Wecoma departed from Guam about 0200 UTC, 8 November 1992, and began transit toward an Atlas Buoy at $0^{\circ} \mathrm{N}, 154^{\circ} \mathrm{E}$; our intention was to repair an anemometer and install an optical rain gage after morning arrival on 12 November. En route, we made 20-minute ADCP calibration runs once per hour for 12 hours on 11 November. On arrival at the Atlas buoy, we found westerly winds too strong and seas too rough to service the buoy. We made a CTD cast alongside the buoy (Table 1), and then began transit to $1^{\circ} \mathrm{N}, 156^{\circ} \mathrm{E}$. Cross-equatorial hydrographic sampling along 156° E consisted of CTD Stations $2-7$, all to 500 dbar and at intervals of 20 nm (Table 1). CTD casts were made with an SBE 9/11plus CTD equipped with dual ducted temperature and conductivity sensors (Table 2). Temperature and salinity data from the first three stations were noisy because the air-venting plugs had been inadvertently omitted in both T/C ducts; the plugs were properly inserted before Station 4.

The Seasoar vehicle (Figure 1, 2) was equipped with an SBE 9/11plus CTD with dual ducted temperature and conductivity sensors (Table 2), a SeaTech Fluorometer (SN 48) with sensitivity set to "medium" and time constant set to 3 sec , and a SeaTech $25-\mathrm{cm}$ Transmissometer. The Seasoar wings were set to have equal maximum travel $\left(18^{\circ}\right)$ for both ascent and descent.

Seasoar was deployed for Tow 1 at $00^{\circ} 39^{\prime}$ S, $155^{\circ} 57^{\prime} E$ at about 0200 UTC, 13 November, immediately after CTD Station 7. Our intention was to begin towing south, continue with one occupation of a Large Butterfly Pattern (with $200-\mathrm{km}$ diagonals), and then continue with repeated occupations of a small butterfly pattern (with $100-\mathrm{km}$ diagonals). The intended Large Butterfly Pattern had a meridional section along $155^{\circ} 56^{\prime} \mathrm{E}$ (from $0^{\circ} 56^{\prime} \mathrm{S}$ to $2^{\circ} 42^{\prime} \mathrm{S}$), and a zonal section along $1^{\circ} 50^{\prime} \mathrm{S}$ (from $155^{\circ} 05^{\prime} \mathrm{E}$ to $156^{\circ} 49^{\prime} \mathrm{E}$). At the request of scientists on Moana Wave, and to avoid repeated maneuvering around moorings, the longitude of the meridional section was changed to $156^{\circ} 06^{\prime} \mathrm{E}$ at about 1200 UTC, 13 November (Figure 3). While conducting this first Large Butterfly survey, we found that the intended $100-\mathrm{km}$ diagonals of the smaller pattern would not span the actual positions of the profiling current meter array, and therefore changed our two-pattern plan to adopt a single intermediate-sized Standard Butterfly Pattern with diagonal length of 140 km (Figure 4). Cardinal waypoints of the Standard Butterfly Pattern are given in Table 3.

Seasoar sampling was generally from a few meters below the surface to a maximum of 280 or 300 m , except along a portion of the E2N quadrant where Seasoar was kept below 25 m while the ship's holding tanks were pumped. About ten hours after the beginning of Tow 1, temperature and salinity data from the primary (starboard) sensors developed a severe

Table 1. Summary of CTD Stations during W9211A.

Date	Time (UT)	Station No.	Latitude	Longitude	Wind Dir (T)	Wind Spd (kts)	Atmos. P. (mbar)
11 Nov	2058	1	$00^{\circ} 01.1{ }^{\prime} \mathrm{N}$	$153^{\circ} 59.6^{\prime} \mathrm{E}$	255	28	1007.2
12 Nov	0819	2	$01^{\circ} 01.1{ }^{\prime}$	$156^{\circ} 00.0^{\prime}$	240	23	1006.5
	1055	3	$00^{\circ} 40.0{ }^{\prime}$	$156^{\circ} 00.0^{\prime}$	240	18	1007.8
	1335	4	$00^{\circ} 19.9{ }^{\prime}$	$156^{\circ} 00.0^{\prime}$	240	16	1006.9
	1614	5	$00^{\circ} 02.0{ }^{\prime}$	$156^{\circ} 00.1^{\prime}$	200	21	1005.8
	1909	6	$00^{\circ} 20.0$ S	$156^{\circ} 00.0^{\prime}$	193	15	1006.9
	2248	7	$00^{\circ} 38.7{ }^{\prime}$	$155^{\circ} 57.0^{\prime}$	200	16	1008.5
15 Nov	1817	8	$02^{\circ} 19.8{ }^{\prime}$	$155^{\circ} 59.5^{\prime}$	245	3	1007.2
	2239	9	$02^{\circ} 16.3{ }^{\prime}$	$156^{\circ} 00.4{ }^{\prime}$	230	8	1009.7
16 Nov	0620	10	$02^{\circ} 26.2^{\prime}$	$156^{\circ} 06.2^{\prime}$	175	4	1006.7
	1126	11	$02^{\circ} 14.1{ }^{\prime}$	$155^{\circ} 54.1^{\prime}$	095	7	1009.1
	1230	12	$02^{\circ} 09.9$	$155^{\circ} 50.0{ }^{\prime}$	110	7	1009.1
	1333	13	$02^{\circ} 06.5{ }^{\prime}$	$155^{\circ} 46.0^{\prime}$	110	6	1008.4
	1437	14	$02^{\circ} 02.5{ }^{\prime}$	$155^{\circ} 41.7{ }^{\prime}$	calm	0	1007.5
	1713	15	$01^{\circ} 58.0{ }^{\prime}$	$155^{\circ} 37.7^{\prime}$	calm	0	1007.2
	1814	16	$01^{\circ} 54.0{ }^{\prime}$	$155^{\circ} 34.0^{\prime}$	140	4	1008.5
	1940	17	$01^{\circ} 54.0{ }^{\prime}$	$155^{\circ} 34.0^{\prime}$	100	3	1009.2
	2037	18	$01^{\circ} 50.0{ }^{\prime}$	$155^{\circ} 30.0{ }^{\prime}$	110	4	1009.7
	2137	19	$01^{\circ} 50.0$	$155^{\circ} 36.0^{\prime}$	135	6	1009.4
	2245	20	$01^{\circ} 50.1{ }^{\prime}$	$155^{\circ} 42.2^{\prime}$	135	6	1007.5
17 Nov	0212	21	$01^{\circ} 50.0{ }^{\prime}$	$155^{\circ} 47.9^{\prime}$	160	7	1007.5
20 Nov	2240	22	$02^{\circ} 02.0{ }^{\prime}$	$155^{\circ} 42.1{ }^{\prime}$	180	9	1010.2
20 Nov	2356	23	$01^{\circ} 58.1{ }^{\prime}$	$155^{\circ} 37.9^{\prime}$	165	9	1010.0
21 Nov	0105	24	$01^{\circ} 54.1{ }^{\prime}$	$155^{\circ} 34.1{ }^{\prime}$	150	6	1009.3
22 Nov	1012	25	$01^{\circ} 14.0{ }^{\prime}$	$156^{\circ} 06.1^{\prime}$	060	7	1011.0
25 Nov	0005	26	$01^{\circ} 24.7{ }^{\prime}$	$156^{\circ} 16.6^{\prime}$	285	21	1009.1
	0119	27	$01^{\circ} 22.5{ }^{\prime}$	$156^{\circ} 14.0{ }^{\prime}$	260	16	1007.5
	0223	28	$01^{\circ} 18.6{ }^{\prime}$	$156^{\circ} 10.1{ }^{\prime}$	260	13	1007.0
	0348	29	$01^{\circ} 13.9{ }^{\prime}$	$156^{\circ} 06.1^{\prime}$	260	14	1006.5
28 Nov	1931	30	$01^{\circ} 48.7{ }^{\prime}$	$156^{\circ} 07.8^{\prime}$	250	6	1011.6
29 Nov	0545	31	$01^{\circ} 49.8$ S	$155^{\circ} 52.0^{\prime}$	290	5	1008.9
4 Dec	0008	32	$04^{\circ} 51.4{ }^{\text {N }}$	$156^{\circ} 06.9^{\prime} \mathrm{E}$	080	18	1010.4

Figure 3. Ship's track during the Large Butterfly Pattern, 13-15 November 1992, with moorings of the COARE Intensive Flux Array. The longitude of the meridional section (originally 155.9 W) was changed to 156.1 W at the request of scientists on Moana Wave.

Figure 4. The Standard Butterfly Pattern in relation to the moorings of the COARE Intensive Flux Array.

Table 2. Instruments and sensors used for CTD, and Seasoar sampling, W9211A, with date of most recent manufacturer's pre-cruise calibration.

System (Instrument) Sensor Pre-Cruise Calibration
Date

CTD (SBE 9/11 plus SN 0256)	P	5 Mar 92	
	T1	1367	6 Oct 92 (modified 2 Dec 92)
	T2	1369	6 Oct 92 (modified 2 Dec 92)
	C1	1030	16 Sept 92
	C2	1041	16 Sept 92

Seasoar (SBE 9/11 plus SN 2843)

P		Mar 92
C 1	1018	17 Apr 92
C 2	1021	24 Apr 92
T1	1364	27 Mar 92 (modified 2 Dec 92)
T2	1366	27 Mar 92 (modified 2 Dec 92)

Table 3. Waypoints for the Standard Butterfly Pattern used for Seasoar sections in the COARE Intensive Flux Array throughout most of the three COARE Surveys cruises. Sampling was normally southward from SBN to SBS along $156^{\circ} 06^{\prime} \mathrm{E}$ (section N2S), northwestward from SBS to SBW (section S2W), eastward along $1^{\circ} 50^{\prime}$ S from SBW to SBE (section W2E), and northwestward from SBW to SBN (section E2N).

Waypoint	Latitude	Longitude
SBN	$1^{\circ} 14^{\prime} \mathrm{S}$	$156^{\circ} 06^{\prime} \mathrm{E}$
SBS	$2^{\circ} 26^{\prime} \mathrm{S}$	$156^{\circ} 06^{\prime} \mathrm{E}$
SBW	$1^{\circ} 50^{\prime} \mathrm{S}$	$155^{\circ} 30^{\prime} \mathrm{E}$
SBE	$1^{\circ} 50^{\prime} \mathrm{S}$	$156^{\circ} 42^{\prime} \mathrm{E}$

hysteresis, indicating a plumbing or pump failure. Pressure spikes occurred occasionally but otherwise data acquisition was satisfactory. After completing the Large Butterfly Pattern (Table 4), we continued with the Standard Butterfly Pattern. The data signal became intermittent at 1602 UTC on 15 Nov, and ceased at 1625 UTC, 15 Nov, soon after the turn at SBS. Seasoar was immediately recovered, and we made a CTD cast (Station 8) for comparison with the Seasoar CTD data. After recovery of the Seasoar vehicle at the end of Tow 1 we found that conductors in the sea cable had shorted out; since spare conductors seemed to be intact, the CTD was connected to these instead. We also replaced the SBE pump for the primary temperature and conductivity sensors with a spare (the original pump had failed). The transmissometer was removed from the Seasoar vehicle since it was not providing useful data, apparently because of insufficient temperature compensation.

While Seasoar was being prepared for Tow 2, we made a CTD cast (Station 9) alongside the PCM-S mooring at $2^{\circ} 15^{\prime} \mathrm{S}, 156^{\circ} 00^{\circ} \mathrm{E}$. We then returned to SBS to make another CTD cast (Station 10) for comparison with the beginning of Tow 2. Very soon after the Seasoar deployment at 0715 UTC, 16 Nov, the data signal was again interrupted, and Tow 2 was aborted, with Seasoar recovered on deck about 0900 UTC. Since it was clear that diagnosing and repairing the problem would take more than a few hours, we continued sampling along the Standard Butterfly track by making closely-spaced CTD stations, and made plans to rendezvous with Moana Wave (to transfer cables needed to test instruments on the COARE IMET buoy). A series of CTD casts to 300 m at 10 km intervals along the S2W section (Stations 11-18, Table 1) was interrupted by the need to reterminate the CTD/rosette cable after flooding of the conducting swivel at Station 16 (aborted at 135 m). CTD sampling along the W2E section (Stations 18-20) continued until the rendezvous with Moana Wave at 0130 UTC, 17 Nov.

After the rendezvous we returned to the W2E line to make a pre-tow CTD comparison cast (Station 21). Seasoar was deployed at $1^{\circ} 50^{\prime} \mathrm{S}, 155^{\circ} 48^{\prime} \mathrm{E}$ at about 0330 UTC, 17 Nov, and sampling resumed along the W2E section (Table 5). Sampling along the Standard Butterfly pattern continued through 18 and 19 November (Table 5). The data acquisition system stopped unexpectedly at about 1122 UTC, 11 November, and it took several minutes to restart; the resulting 4 -minute data gap was filled with values of 1.0 e 35 . Seasoar continued to work well until 1856 UTC, 20 Nov, when we again lost data signal. The vehicle was brought aboard for repairs, and we continued sampling along S2W with closely spaced CTD casts to 300 m (Stations 22-24). Since the weather was fair, and forecast to remain the same, we decided to transit to the Atlas mooring at $0^{\circ} \mathrm{N}, 154^{\circ} \mathrm{E}$ to repair its anemometer and install a rain gage, but first we continued ADCP sampling to the center of the butterfly pattern. We arrived at the mooring about 1930 UTC, 21 Nov, and had finished servicing it by 2100 UTC.

Table 4. Times (UTC) of standard waypoints during Seasoar Tow 1 of W9211A. Waypoints for the Large Butterfly Pattern (Figure 3) were: LBN $\left(1^{\circ} 01^{\prime} \mathrm{S}, 155^{\circ} 56^{\prime} \mathrm{E}\right.$ on 13 Nov , and $1^{\circ} 01^{\prime} \mathrm{S}, 156^{\circ} 06^{\prime} \mathrm{E}$ on 15 Nov$)$, LBS $\left(2^{\circ} 42^{\prime} \mathrm{S}\right.$, $156^{\circ} 06^{\prime} \mathrm{E}$), LBW ($1^{\circ} 50^{\prime} \mathrm{S}, 155^{\circ} 14^{\prime} \mathrm{E}$), and LBE ($1^{\circ} 50^{\prime} \mathrm{S}, 156^{\circ} 55^{\prime} \mathrm{E}$). Positions of waypoints of the Standard Butterfly Pattern (Figure 4) are listed in Table 3.

Date Start/ LBN SBN SBS LBS LBW LBE End

Nov 1302070550 0755* 19382145

Nov 14		0635	1950

Nov $15004240627 \quad 1534$
Nov 151601

* The 13 November position ($1^{\circ} 14^{\prime} \mathrm{S}, 155^{\circ} 56^{\prime} \mathrm{E}$) was 10 nm west of the standard SBN position adopted later.

Table 5. Times (UTC) of standard waypoints during Seasoar Tow 3 of W9211A. Positions of waypoints are given in Table 3.

Date	start/end	SBN	SBS	SBW	SBE
Nov 17	0329				1038
Nov 17		1652			
Nov 18			0118	0723	1647
Nov 18		2325			
Nov 19			0754	1422	2310
Nov 20		0605	1508		
Nov 20	1856				

Table 6. Times (UTC) of standard waypoints during Seasoar Tow 4 of W9211A. Positions of waypoints are given in Table 3.

Date	start/end	SBN	SBS	SBW	SBE
Nov 22	1107	1107	2032		
Nov 23				0242	1206
Nov 23		1854			
Nov 24			0258	0925	1755
Nov 24	2335				

When we arrived back at SBN, we first did a pre-tow CTD cast (Station 25, Table 1) and then deployed Seasoar at 1107 UTC, 22 Nov to begin Tow 4 Table 6). Seasoar functioned normally for about 54 hours, though the data signal from the fluormometer began to fade and grow increasingly noisy at about 2100 UTC, 23 Nov. At about 1630 UTC, 24 Nov, the Seasoar flight characteristics changed abruptly with a decrease in both maximum depth and maximum cable tension. Check of the resistance of the hydraulic unit indicated it did not have a seawater leak. For more than five hours, we continued to undulate Seasoar between 220 m and the surface (or 20 m while the ship was pumping tanks, 2130 to 2210 UTC), occasionally slowing the ship to obtain measurements at greater depths. Our aim was to complete the survey pattern and reach the northern waypoint (SBN) before recovering Seasoar. However, winds were strengthening at about 2250 UTC, so we stopped towing and recovered the vehicle while seas were moderate. When Seasoar was recovered on deck at 2335 UTC, 24 Nov, it was obvious that the upper horizontal tail fin had overflexed and was severely cracked on both sides of the tail. CTD Station 26 was made immediately after recovery, and three additional CTD casts (Stations 27-29, Table 1) were made before arriving at SBN at 0345 UTC, 25 November.

The Seasoar vehicle was readily repaired by replacing the upper tail fin with a spare. Since the fluorometer lamp was weak and flashing erratically, it was disconnected from the Seasoar CTD, though left in place at the bottom of the Seasoar vehicle. After a pre-tow CTD comparison cast (Station 29), Seasoar was deployed at SBN at about 0430, 25 Nov, and Tow 5 began southward toward SBS (Table 7). We continued sampling along the Standard Butterfly Pattern, for more than three days (Table 7), with only a minor interruption at about 0600 UTC to obtain salinity samples from R/V Franklin via small boat; we continued to tow Seasoar at $3-6 \mathrm{kts}$ during the rendezvous. Tow 5 ended part-way along the E2N section after abrupt loss of control signal to the vehicle at 1725 UTC, 28 Nov. The vehicle was recovered at about 1900 UTC, and a post-tow comparison CTD cast (Station 30, Table 1) was made immediately afterward.

While the Seasoar cable was reterminated, Wecoma ran some short lines southeast of the IMET mooring to make small-scale surface salinity observations in the wake of recent squalls. Since both the lower and upper tail fins on the Seasoar vehicle were severely warped, both were replaced with PVC spares. After repairs were complete, we returned to a point on the W2E section farther west of the end of Tow 5 , and there made a pre-tow CTD comparison cast (Station 31, Table 1), deployed Seasoar at about 0640 UTC, and began Tow 6 westward toward SBE (Table 8). We continued sampling along the Standard Butterfly Pattern in the usual direction until 1330 UTC, 1 Dec, when we arrived at SBS (Table 8). Since there was not sufficient time left in the cruise to complete the butterfly pattern we continued south to $02^{\circ} 40^{\prime} \mathrm{S}$, and then turned northward again to sample along $156^{\circ} 06^{\prime}$ E. Seasoar

Table 7. Times (UTC) of standard waypoints during Seasoar Tow 5 of W9211A. Positions of waypoints are given in Table 2.

Date	start/end	SBN	SBS	SBW	SBE
Nov 25	0435	0435	1431	2120	
Nov 26					0525
Nov 26		1242	2215		
Nov 27				0505	1353
Nov 27		2102			
Nov 28			0645	1330	
Nov 28	1902				

Table 8. Times (UTC) of standard waypoints during Seasoar Tow 6 of W9211A. Positions of waypoints are given in Table 2.

Date	start/end	SBN	SBS	SBW	SBE
Nov 29	0645				1323
Nov 29		2023			
Nov 30			0550	1225	2123
Dec 1		0421	1330		
Dec 1			1734		
Dec 2		0229			
Dec 3	2348				

Table 9. Summary of Seasoar tows, W9211A, showing variables measured (pressure, temperature, conductivity, fluorescence, light transmission), and the parameters used for at-sea data processing and analysis (the T-C offset in scans, and the amplitude α and time constant β for the thermal mass correction.

Tow No.	Start Time	Stop Time	Duration of tow (hrs)	Parameters Measured	T/C Pair used for At-Sea Analysis (offset, $\alpha, \beta)$
1	$11 / 13 / 0206$	$11 / 15 / 1621$	61	P, T2, C2, F, trans*	T2, C2 $(2,0.03,9.0)$
2	$11 / 16 / 0723$	$11 / 16 / 0810$	0	P, T1, C1, T2, C2, F, trans	
3	$11 / 17 / 0330$	$11 / 20 / 1855$	87	P, T1, C1, T2, C2, F	T2, C2 $(3.25,0.04,12.0)$
4	$11 / 22 / 1109$	$11 / 24 / 2335$	59	P, T1, C1, T2, C2, F*	T1, C1 (4.75, 0.04, 12.0)
5	$11 / 25 / 0430$	$11 / 28 / 1902$	84	P, T1, C1, T2, C2	T2, C2 $(3.25,0.045,8.0)$
6	$11 / 29 / 0640$	$12 / 03 / 2348$	112	P, T1, C1, T2, C2	T2, C2 $(3.25,0.045,8.0)$

*Transmissometer provided no usable data; fluorometer began to fail about 2100 UTC, 23 Nov
Total towing time: 403 hours, 16.8 days
Total towing time: 403 hours, 16.8 days
sampling continued northward across the equator to $4^{\circ} 48^{\prime} \mathrm{N}, 156^{\circ} 06^{\prime} \mathrm{E}$ where the vehicle was recovered at 2348 UTC, 3 December. CTD Station 32 (Table 1) was completed immediately after recovery.

Wecoma arrived in Pohnpei at about 2300 UTC, 4 Dec, to disembark some personnel and departed there at about 0600 UTC, 5 Dec for the transit to Guam. Wecoma arrived in Guam at 2300 UTC, 8 Dec.

Underway measurements were made continuously through most of the cruise. These include: Acoustic Doppler Current Profile measurements of water velocity relative to the ship and accompanying GPS position data (E. Firing, P. Hacker and R. Lukas, University of Hawaii); temperature and salinity of water at 2 m and 5 m depth (C. Paulson, Oregon State University); near-surface salinity of water pumped from a buoyant hose (G. Lagerloef, SAIC); and a broad spectrum of meteorological observations (C. Paulson) including sonic inertial dissipation (J. Edson, Woods Hole Oceanographic Institution).

Members of the scientific party included Marc Willis and Mike Hill, (both Wecoma Marine Technicians), Adriana Huyer, Clayton Paulson, Michael Kosro, Fred Bahr, Lynn deWitt, Robert O'Malley, Eric Antonissen (all from Oregon State University), Peter Hacker, Craig Huhta, Sean Kennan, Jeff Snyder and Steve Azevedo (all from University of Hawaii).

Seasoar Data Acquisition and Preliminary Processing

Raw 24 Hz CTD data from the Seasoar vehicle and GPS position and time data were acquired by an IBM compatible PC, which also set flags in the data stream to indicate missing GPS data and to record keystrokes marking the once-per-hour collection of a salinity sample from the throughflow system. The raw data were simultaneously recorded on optical disk by PC and on a Sun Sparc workstation. The PC displayed time series of subsampled temperature (both sensors), conductivity (both sensors) and pressure in real time; it also displayed accumulated temperature data for 6-8 hours as a vertical section (color raster). One-second averages of position, CTD temperature (both sensors), conductivity (both sensors), salinity (both sensor pairs), and pressure were calculated on the Sparc workstation, using the most recent manufacturer's calibration (Table 2). For each tow, the preliminary salinity for each sensor pair was calculated using a fixed offset between temperature and salinity, and a fixed value for the amplitude and time constant of the thermal mass of the conductivity cell, but these parameters were changed from one tow to another (Table 9). Time-series and vertical profile plots of the one-second data were made at the end of each hour. The 1 -second preliminary data were used to average the temperature and salinity data over 3 km in the horizontal and 2 dbar in the vertical, and these gridded
values were used to plot vertical sections for each leg of the Standard Butterfly pattern.

CTD Data Acquisition, Calibration and Data Processing

All CTD/rosette casts were made with an SBE 9/11-plus CTD system equipped with dual ducted temperature and conductivity sensors (Table 2). CTD casts to 500 dbar were made primarily to monitor the calibration of the Seasoar data, and were therefore made before and after each Seasoar tow, with as little delay as possible. Additional CTD casts to 300 dbar were made to complet sections or continue sampling while Seasoar was inoperable. Raw 24 Hz CTD data were acquired on an IBM compatible PC using the SEASAVE module of SEASOFT version 4.015 (Anon., 1992); temperature and conductivity data were recorded from both pumped sensor ducts. At each station a few salinity samples were collected for in situ calibration of the conductivity sensors; CTD values at the sample depth (calculated from the most recent manufacturer's pre-cruise calibration) were recorded both by pressing the F5 key at the time of rosette firing and manually on the station log sheets. Samples were analyzed on a Guildline Autosal salinometer that was standardized with IAPSO Standard Water P-119 at the beginning and end of each batch of about 36 samples. Comparison of 88 pairs of sample and CTD salinity values showed systematic differences, indicating that a correction to the CTD conductivity data was required. To determine this correction, we first calculated the in situ conductivity of the sample from the sample salinity and the CTD temperature, compared this "sample conductivity" to the CTD conductivity, and regressed the differences on the sample conductivity. This comparison indicated the CTD conductivity should be corrected by

$$
\mathrm{C}_{\mathrm{c}}=-0.00221+1.00090981 \mathrm{C}_{\mathrm{o}}
$$

This formula was used to reprocess the CTD data. Remaining differences between corrected CTD and sample salinity data (88 pairs, with a mean of 0.001 psu and a standard deviation of 0.005 psu) were not significantly different from zero.

CTD data were processed on an IBM-compatible PC using applicable SEASOFT modules. Since there was no significant difference between the data from the two sensor pairs, we processed data from the primary sensors only. The configuration files were edited with the SEACON module to incorporate the conductivity slope and offset determined from the in situ calibration samples. The DATCNV module of SEASOFT was used with the pre-cruise calibration constants to calculate 24 Hz values of pressure, temperature and conductivity from the raw frequencies. When necessary, the output data file was edited to remove any spikes and any values inadvertently recorded before the pressure minimum at the beginning of the cast. The CELLTM module was used to correct for the thermal mass of the conductivity cell, assumed to have a thermal anomaly amplitude of 0.03 and a time constant of

9 seconds. Ascending portions of the $24-\mathrm{Hz}$ data file were removed by LOOPEDIT with the minimum velocity set to $0.0 \mathrm{~m} / \mathrm{s}$. The remaining data were averaged to 1 dbar values using BINAVG. The final processed data files consist of 1 dbar values of pressure, temperature and conductivity. These processed data files were transferred to a SUN computer where we used standard algorithms (Fofonoff and Millard, 1983) to calculate salinity, potential temperature, density anomaly (sigma-theta), specific volume anomaly, and geopotential anomaly (dynamic height). Where appropriate, comments are included in the file headers to indicate particular problems with a specific cast.

Seasoar Conductivity Calibration

Salinity samples were collected about once per hour from a throughflow system in Wecoma's wetlab from1100 UTC, 11 November until 2300 UTC, 3 December 1992. This system pumps water from the seachest at a depth of 5 m in the ship's hull, through a tank containing SBE temperature and conductivity sensors; samples are drawn from a point just beyond this tank. The 120 ml glass sample bottles were rinsed three times before filling, and closed with screw-on plastic caps with conical polyethylene liners. Samples were further sealed by wrapping parafilm around the base of the cap. Samples were analyzed at sea on an Autosal salinometer, usually within 2-3 days after collection; the salinometer was standardized with IAPSO Standard Water P-119 at the beginning and end of each batch of about 24 samples.

Additional in situ calibration for these conductivity sensors (\#1018 and \#1021) were available from the succeeding cruise, W9211B (Kosro et al., 1994). During the first half of that cruise, these sensors were used in Seasoar, but during the second half they were installed in the conventional CTD/rosette package. The combined CTD-Seasoar and sample comparison from W9211B indicated it was necessary to apply an offset as well a multiplier correction for both conductivity sensors:

$$
\begin{align*}
& \mathrm{C} 1=-0.00192+1.000255 \mathrm{C} 1 \text { (observed) } \tag{Eq.1a}\\
& \mathrm{C} 2=-0.00225+1.000617 \mathrm{C} 2 \text { (observed) } \tag{Eq.1b}
\end{align*}
$$

These conductivity calibrations were incorporated in the reprocessing of the Seasoar data. Time series of the hourly salinity samples and time series of the reprocessed Seasoar data from the $3-7 \mathrm{~m}$ depth range (Figure 5) show very similar variations. For a quantitative comparison between the salinity samples and the Seasoar data, we selected Seasoar values that were both within 7 minutes of the time of the salinity sample and within a depth range of 3.0 to 5.5 m . For each salinity sample, we calculated a bottle conductivity using the appropriate Seasoar temperature and the sample salinity, and then compared this sample conductivity to the directly measured conductivity; a few pairs with very large differences were eliminated from the comparison. The comparisons for Tows 1,5 and 6 show no significant difference between the sample and Seasoar values for either sensor pair

Figure 5(a) Time series of hourly salinity samples from the ship's intake at 5 m (squares) and of near-surface (3-7.99 m) Seasoar salinity (dots), for Seasoar Tow 1 (secondary sensor duct only, upper left) and for Tows 5 (left) and 6 (right) of W9211A.

Figure 5(b) Time series of salinity samples from the ship's intake at 5 m (squares) and near-surface (3-7.99 m) Seasoar salinity (dots), for Seasoar Tows 3 (left) and 4 (right) of W9211A. These Seasoar values were calculated with the same conductivity correction equations as used for Tows 1,5 and 6. Remaining systematic differences were subsequently removed by applying a further conductivity multiplier.

Figure 6. Time series of salinity differences between the $5-\mathrm{m}$ samples and the matching corrected Seasoar data, for the preferred (secondary) sensor pair, during Tows $1,3,4,5$ and 6 of W9211A.
(Figure 5a, Table 10). However, the comparisons for Tows 3 and 4 indicated that significant differences remained, and that these were similar for the two tows. We therefore pooled the data from Tows 3 and 4 to determine a correction for the processed data from the secondary sensor pair (preferred over primary pair, because data was less noisy):

$$
\begin{equation*}
\mathrm{C} 2 \text { (corrected) }=1.0006320 \mathrm{C} 2 . \tag{Eq.2}
\end{equation*}
$$

This correction was applied only to the data from Tows 3 and 4, and is equivalent to using a value of 1.0007807 for the conductivity multiplier (Table 10). Time series of the remaining difference between the sample salinity and the SeaBird salinity from the preferred sensor pair (Figure 6) show no obvious systematic error.

Table 10. Correction constants (offset a and multiplier k) adopted for reprocessing data from the Seasoar conductivity sensors. Also shown are the average and standard deviations of the salinity differences between the sample values and the corrected Seasoar data.

Average Std. Dev.

					k2		k2	S1	S2
Tow	N	a 1	k 1	--	-0.00225	1.0006174	-	+0.001	--
1	33	-	-	S2					
5	40	-0.00192	1.0005133	-0.00225	1.0006174	-0.001	-0.001	0.008	0.008
6	60	-0.00192	1.0005133	-0.00225	1.0006174	+0.000	+0.000	0.008	0.008
3	57	-0.00192	1.0005133	-0.00225	1.0006174	+0.006	+0.005	0.007	0.006
4	41	-0.00192	1.0005133	-0.00225	1.0006174	+0.008	+0.006	0.004	0.004
$3-4$	111			-0.00225	1.0007807		+0.000		0.006

Post-processing of Seasoar Data

As discussed in our earlier Seasoar data report (Huyer et al., 1993), salinity data derived from SeaBird ducted temperature and conductivity sensors are subject to errors from three separate sources (Larson, 1992): (1) poor alignment of the 24 Hz temperature and conductivity data, (2) poor compensation for the transfer of heat between the mantle of the conductivity cell and the water flowing through it, and (3) mismatch of the effective time constants of the temperature and conductivity measurements. These sources of error are minimized in a normal SeaBird CTD, by pumping the water through the ducted pair at a fixed rate. Even though we used the standard SeaBird sensor duct with high-speed SeaBird pumps, the flow rate through the sensors mounted inside the Seasoar vehicle was apparently not constant, presumably because of dynamic pressure gradients along the skin of the Seasoar vehicle; these gradients seem to vary with vehicle attitude (ascending vs. descending), and with the relative currents enountered by the vehicle (Huyer et al., 1993).

Seasoar data were processed using the same general procedures outlined in the Seasoar data report for W9211C (Huyer et al., 1993), i. e., by first determining the lags between $24-\mathrm{Hz}$ temperature and conductivity by
cross-correlation for consecutive data segments with specified depth ranges, and using the lag calculated for each segment to offset the $24-\mathrm{Hz}$ conductivity data relative to the temperature data within that segment; by applying appropriate calibration equations to the conductivity data; by applying Lueck's (1990) correction for the thermal mass of the conductivity cell, with the value of the amplitude parameter related to the T-C offset for each data segment; and finally block averaging the data to $2-\mathrm{Hz}$ values.

Configuration files for reprocessing the raw $24-\mathrm{Hz}$ Seasoar data contained the manufacturer's pre-cruise calibration constants for the pressure, temperature and conductivity sensors, modified by a conductivity offset and multiplier for both the primary sensor pair (Equation 1a, above) and the secondary sensor pair (Equation 1b, above).

The first step in reprocessing was to compute lagged correlations between first-differenced temperature and conductivity for each sensor pair, separately for ascending and descending profiles, and separately for three depth ranges: 50 to $120 \mathrm{dbar}, 120$ to 180 dbar , and 180 to 240 dbar , provided the segment contains at least 72 scans. Correlations are calculated for ± 12 lags; the maximum correlation was almost always ≥ 0.85. The fractional value of the lag at maximum correlation is determined by fitting a parabola to the cross-correlation values. The resulting time series of the optimum primary and secondary alignment offsets (ξ_{1} and ξ_{2}) for each tow are shown in Appendix A. The edited values of the alignment offset were applied sequentially in reprocessing the $24-\mathrm{Hz}$ T/C data. To reprocess data from depths shallower than 50 m , we used the value determined from the preceding 120 to 50 dbar layer; for data deeper than 240 m , we used the value determined from the preceding 180 to 240 dbar layer; short segments with unreasonably large lags were processed with the lag obtained for the succeeding data segment.

To correct the $24-\mathrm{Hz}$ conductivity data for the thermal mass of the conductivity cell, we used the standard recursive algorithm provided by SeaBird:
$d t=$ temperature - previous temperature
$c t m=-b^{*}$ previous $c t m+a^{*} d c d t * d t$
corrected conductivity $=$ conductivity $+c t m$
where $a=2 \alpha /(0.0417 \beta+2), d c d t=0.1+0.0006$ (temperature -20$), \beta=1 / \tau$ and b $=1-2 a / \alpha$. We used a fixed value for the thermal anomaly time constant ($\tau=10$ sec), and variable values for the thermal anomaly amplitude depending on the alignment offset:

$$
\begin{array}{ll}
\alpha_{1}=0.03 & \text { if } \xi_{1} \leq 0 \\
\alpha_{1}=0.03+0.03\left(\xi_{1} / R_{1}\right) & \text { if } \xi_{1}>0 \\
\alpha_{2}=0.03 & \text { if } \xi_{2} \leq 1.75 \\
\alpha_{2}=0.03+0.03\left(\xi_{2}-1.75\right) / 5.5 & \text { if } \xi_{2}>1.75
\end{array}
$$

where the value of R_{1} was 2.75 for Tow3 and 5.5 for Tows 4-6.
Short gaps in the raw data files (typically 10 seconds long) were filled with values of 1.0 e 35 . During Tow 1, there were numerous pressure spikes,
and the data for these lines were also set to 1.0 e 35 ; spurious values of primary conductivity that occurred after the failure of the SeaBird pump were also set to 1.0 e 35 . On 13 November, there was a three-hour period with almost no GPS data in the Seasoar data stream; the missing data was filled by linearly interpolating the 2 -minute GPS data captured by the ADCP data acquisitions system.

The corrected and realigned 24 Hz temperature and conductivity data were used to calculate $24-\mathrm{Hz}$ salinity, and these were block-averaged to yield 2Hz values stored in hourly files. Profile plots of the reprocessed data from both sensor pairs showed that the data from the secondary sensors were of generally higher quality for all five Seasoar tows. Comparison of the processed data with salinity samples from the ships 5-m intake (Figure 5a,b), showed that the processed Seasoar data from Tows 1,5 and 6 was in good agreement with the sample values, but data from Tows 3 and 4 were not. We therefore applied a further conductivity correction (Equation 2, above) to the $2-\mathrm{Hz}$ data from the secondary sensor pair for Tows 3 an 4, and recalculated salinity for these tows. Differences between the corrected Seaoar salinity data and the sample salinities (Figure 6) show no significant systematic calibration errors.

Comparison between reprocessed data from ascending and descending portions of the Seasoar trajectory showed very little difference (e.g., Figure 7); salinity data from both descending and ascending profiles appears to be of high quality.

Data Presentation

Successive hourly files of the reprocessed $2-\mathrm{Hz}$ data were joined and clipped to yield a single data file for each section of the Standard Butterfly Pattern (Tables 11 and 12). Final processed data files contain unfiltered GPS latitude and longitude; pressure; temperature, salinity and sigma-t from the better sensor pair; date and time; an integer representing flags (to indicate collection of a water sample from $5-\mathrm{m}$ intake (thousands digit set to 1), missing GPS data filled by linear interpolation (tens digit set to 1), and to indicate port or starboard intake for the T / C sensor pair (ones digit set to 1 or 0 , respectively)); and two additional columns for the output voltage from the transmissometer and fluorometer channels (which read uniformally zero after these instruments were disconnected). The $2-\mathrm{Hz}$ data were further block-averaged to yield 1-second averages. As for the two other COARE Surveys cruises, W9211C and W9211B, when salinity data from descending profiles was of poorer quality than data from ascending profiles (Huyer et al., 1993; Kosro et al, 1994), we prepared two sets of data files: one containing ascending data only, and one containing the complete (ascending and descending) data set.
n2s17nov.up.data

n2s17nov.dn.data

Figure 7. T-S diagrams for the N2S section beginning 1652 UTC, 17 November 1992, using data from ascending profiles only, descending profiles only, and both ascending and descending profiles.

We present consecutive figures of the Seasoar trajectory (time series of pressure, latitude and longitude) along each section. We also present summary figures of all of the 1 -second data for each of the four standard sections as follows: ensembles of temperature profiles (both ascending and descending), salinity profiles (ascending profiles only), and T-S diagrams (for ascending profiles only). Vertical distributions of the temperature, salinity and sigma-t along each section were plotted using Don Denbo's PlotPlus program with a vertical grid spacing of 2 dbar and a horizontal spacing of 1 nm , and with a value of $\mathrm{CAY}=5$ for the smoothing parameter (combined spline and laplacian filter). For the temperature sections, we used both ascending and descending data. For the salinity and sigmat sections, we used only ascending data for all tows. In the cases that partial Seasoar sections were continued with closely-spaced CTD stations, the plots of the temperature, salinity and sigma-t distributions include CTD data. Ensemble profiles of the fluorometer voltage for sections before 24 November are shown in Appendix C.

CTD/Seasoar Comparison

T-S diagrams for the beginning and end of each Seasoar Tow are shown in Appendix B. Each diagram shows the T-S curve from both the conventional CTD cast and the preferred Seasoar sensors during Seasoar deployment or recovery. Seasoar deployment profiles are generally noisier than either the CTD profiles or Seasoar recovery profiles, probably because the Seasoar vehicle is tilted noseupward during both deployment and recovery; since the ship is moving very slowly, observations during deployment are sometimes within the turbulent wake of the descending vehicle.

Acknowledgments

COARE Survey cruises on Wecoma were undertaken jointly by scientists from the University of Hawaii (R. Lukas, P. Hacker, and E. Firing) and Oregon State University (A. Huyer, M. Kosro and C. Paulson). Seasoar watchstanders on this cruise included personnel from both institutions (Peter Hacker, Jeff Snyder, Craig Huhta and Steve Azevedo from UH; Jane Huyer, Mike Kosro, Bob O'Malley, Mike Hill, and Marc Willis from OSU). We are deeply indebted to Wecoma's Marine Technicians: Marc Willis, Brian Wendler, Mike Hill and Tim Holt; this work would not have been possible without their skill and dedication. We are grateful to Nordeen Larson of SeaBird Electronics for his advice on installing the SeaBird sensors in the Seasoar vehicle and on data processing principles. Sean Kennan analyzed most of the salinity samples. Our COARE Survey cruises were supported by the National Science Foundation through its Ocean Sciences Division and by NOAA's Office of Global Programs under TOGA.

Table 11. Times (UTC) of meridional and zonal sections of the Standard Butterfly pattern. All N2S sections (except the first, see Figure 3) were southward along $15^{\circ} 06^{\prime} \mathrm{E}$ from SBN ($1^{\circ} 14^{\prime} \mathrm{S}$) to SBS $\left(2^{\circ} 26^{\prime} \mathrm{S}\right)$, and all W2E sections were eastward along $1^{\circ} 50^{\prime}$ S from SBW ($155^{\circ} 30^{\prime} \mathrm{E}$) to SBE $\left(156^{\circ} 42^{\prime} \mathrm{E}\right)$.

N2S (SBN to SBS)
0755 to 1938, 13 Nov 0627 to 1534,15 Nov 1652, 17 Nov to 0118,18 Nov 2325, 18 Nov to 0754, 19 Nov 0605 to 1508, 20 Nov 1107 to 2032, 22 Nov
1854, 23 Nov to 0258, 24 Nov 0435 to 1431, 25 Nov 1242 to 2215, 26 Nov
2102, 27 Nov to 0645, 28 Nov
2023, 29 Nov to 0550, 30 Nov 0421 to 1330, 1 Dec
1734, 1 Dec to 0229, 2 Dec**

* partial section only, completed with CTD stations.
** section was northward from SBS to SBN

W2E (SBW to SBE)
0814 to 180814 Nov
0329 to 1038, $17 \mathrm{Nov}^{*}$
0723 to 1647, 18 Nov
1422 to 2310, 19 Nov
0242 to 1206, 23 Nov 0925 to 1755, 24 Nov
2120, 25 Nov to 0525, 26 Nov
0505 to 1353, 27 Nov
1330 to 1902, $28 \mathrm{Nov}^{*}$ 0645 to 1323, $29 \mathrm{Nov}^{*}$ 1225 to 2123,30 Nov

Table 12. Times (UTC) of diagonal sections of the Standard Butterfly pattern: S2W between SBS ($2^{\circ} 26^{\prime} \mathrm{S}, 156^{\circ} 06^{\prime} \mathrm{E}$) and SBW ($1^{\circ} 50^{\prime} \mathrm{S}, 155^{\circ} 30^{\prime} \mathrm{E}$); and E2N between SBE ($1^{\circ} 50^{\prime} \mathrm{S}, 156^{\circ} 42^{\prime} \mathrm{E}$) and SBN ($1^{\circ} 14^{\prime} \mathrm{S}, 156^{\circ} 06^{\prime} \mathrm{E}$). During most E2N sections Seasoar was kept below 20 for about 12 km .

S2W (SBS to SBW)
1534 to $1601,15 \mathrm{Nov}^{*}$
0118 to 0723,18 Nov
0754 to 1422, 19 Nov 1508 to 1856, $20 \mathrm{Nov}^{*}$ 2032, 22 Nov to 0242,23 Nov

0258 to 0925, 24 Nov
1431 to 2120,25 Nov
2215, 26 Nov to 0505, 27 Nov
0645 to 1330, 28 Nov
0550 to 1225,30 Nov

E2N (SBE to SBN)
1038 to 1652, 17 Nov
1647 to $2325,18 \mathrm{Nov}$
2310, 19 Nov to 0605, 20 Nov
1206 to 1854,23 Nov
1755 to 2335, 24 Nov
0525 to 1242, 26 Nov
1353 to 2102, 27 Nov
1323 to 2023, 29 Nov
2123, 30 Nov to 0421, 1 Dec

* partial section only, completed with CTD stations.

References

Anonymous, 1992. CTD Data Acquisition Software, SEASOFT Version 4.015. Sea-Bird Electronics, Inc., Bellevue, Washington, USA.

Fofonoff, N. P., and R. C. Millard. 1983. Algorithms for computation of fundamental properties of seawater. Unesco Technical Papers in Marine Science, 44, 53 pp .

Huyer, A., P. M. Kosro, R. O'Malley and J. Fleischbein. 1993. SEASOAR and CTD observations during a COARE Surveys cruise, W9211C, 22 January to 22 February 1993. College of Oceanic and Atmospheric Sciences, Oregon State University. Data Report 154, Ref. 93-2. 325 pp.

Larson, N. 1992. Oceanographic CTD Sensors: Principles of Operation, Sources of Error, and Methods for Correcting Data. Sea-Bird Electronics, Inc., Bellevue, Washington, USA.

Lueck, R. 1990. Thermal inertia of conductivity cells: Theory. J. Atmos. Oceanic Tech., 7, 741-755.

Lueck, R., and J. J. Picklo. 1990. Thermal inertia of conductivity cells: Observations with a Sea-Bird cell. J. Atmos. Oceanic Tech., 7, 756-768.

Kosro, P. M., R. O'Malley, R. Lukas and A. Huyer. 1994. SEASOAR observations during a COARE Surveys cruise, W9211B, 12 December 1992 to 16 January 1993. College of Oceanic and Atmospheric Sciences, Oregon State University. In preparation.

Webster, P. J., and R. Lukas, 1992. TOGA COARE: The Coupled OceanAtmosphere Response Experiment. Bull. Amer. Met. Soc., 73, 1378-1416.

CTD DATA

P	T	S	POT T	SIGMA	SVA	DYN HT
(DB)	(C)		(C)	THETA	(CL/T)	(J/KG)
2	28.914	34.001	28.913	21.345	644.0	0.129
10	28.921	34.001	28.919	21. 344	644.5	0.644
20	28.928	34.001	28.923	21.342	645.1	1. 289
30	28.929	34.002	28.922	21. 343	645.5	1.935
40	28.931	34.003	28.922	21. 344	645.9	2.580
50	28.934	34.003	28.921	21. 344	646.4	3.226
60	28.939	34.009	28.924	21.347	646.5	3.873
70	28.941	34.012	28.924	21. 350	646.8	4.519
80	28.937	34.030	28.918	21. 365	645.8	5.166
90	28.899	34.076	28.878	21.413	641.6	5.810
100	27.089	34.971	27.066	22.677	521.1	6.407
110	26.163	35.053	26.139	23.032	487.5	6.915
120	25.793	35.048	25.767	23.144	477.3	7.398
130	24.860	35.118	24.832	23.483	445.2	7.855
140	24.856	35.139	24.825	23.501	443.9	8.301
150	22.685	35.212	22.654	24.195	377.8	8.707
160	19.938	35.240	19.909	24.970	303.9	9.058
170	19.061	35.110	19.031	25.098	291.9	9.353
180	18.648	35.066	18.616	25.170	285.3	9.643
190	18.059	34.996	18.026	25.264	276.6	9.923
200	17.104	34.927	17.071	25.442	259.7	10.193
225	14.332	34.872	14.299	26.026	204.1	10.759
250	13.332	34.934	13.297	26.282	180.2	11.238
275	12.275	34.858	12.238	26.433	166.1	11.675
300	11.881	34.881	11.842	26.527	157.6	12.081
325	11.015	34.761	10.974	26.595	151.3	12.464
350	10.672	34.748	10.629	26.646	146.8	12.837
375	10.361	34.761	10.317	26.712	141.0	13.199
400	9.960	34.726	9.913	26.753	137.3	13.543
425	9.705	34.712	9.656	26.786	134.6	13.882
450	9.193	34.665	9.143	26.833	130.2	14.211
475	8.810	34.654	8.758	26.886	125.3	14.527
500	8.677	34.646	8.623	26.901	124.3	14.840
499	8.678	34.643	8.624	26.898	124.5	14.827

air vent plug missing from t-c duct
t, s data noisy

STA NO	4
12	NOV

$$
\begin{array}{r}
p \\
\text { (DB } \\
2 \\
10 \\
20 \\
30 \\
40 \\
50 \\
60 \\
70 \\
80 \\
90 \\
100 \\
110 \\
120 \\
130 \\
140 \\
150 \\
160 \\
170 \\
180 \\
190 \\
200 \\
225 \\
250 \\
275 \\
300 \\
325 \\
350 \\
375 \\
400 \\
425 \\
450 \\
475 \\
500 \\
499
\end{array}
$$

LAT: 019.9 N
1335 GMT

S	POT T (C)	SIGMA THETA	$\begin{aligned} & \text { SVA } \\ & (\mathrm{CL} / \mathrm{T}) \end{aligned}$
34.052	28.854	21.403	638.4
34.053	28.862	21.401	639.0
34.053	28.862	21.401	639.5
34.053	28.861	21.401	639.9
34.053	28.860	21. 402	640.4
34.053	28.859	21.402	640.8
4.060	28.859	21.408	640.7
34.076	28.842	21.426	639.5
4.108	28.788	21.468	635.9
4.204	28.631	21. 591	624.6
4.493	28.166	21.961	589.6
44.980	26.356	22.909	499.3
5.022	25.786	23.118	479.7
5.087	25.373	23.295	463.2
5.096	24.096	23.687	426.1
5.090	20.131	24.797	320.0
5.080	19.044	25.073	294.0
5.053	18.612	25.161	285.8
5.157	18.720	25.214	281. 2
5.003	17.582	25.378	265.7
4.929	16.284	25.629	241.7
4.951	14.385	26.068	200.2
4.932	13.418	26.256	182.7
4.861	12.262	26.431	166.3
4.823	11.422	26.561	154.1
4.790	10.925	26.626	148.4
4.778	10.713	26.655	146.1
4.735	10.052	26.737	138.4
4.700	9.648	26.778	134.8
. 648	8.880	26.862	126.7
4.651	8.767	26.883	125.1
641	8.617	26.898	124.1
. 627	8.404	26.920	122.2
4.628	8.416	26.919	122.3

Sigma-theta

STA NO 5 12 NOV 1992
LAT: $0 \quad 2.0 \mathrm{~N}$ LONG: $156 \quad 0.2 \mathrm{E}$ 1614 GMT DEPTH 2000

P	T	S	POT T	SIGMA	SVA	DYN HT
(DB)	(C)		(C)	THETA	(CL/T)	(J/KG)
1	28.795	34.021	28.795	21.399	638.7	0.064
10	28.801	34.021	28.799	21. 398	639.3	0.639
20	28.815	34.022	28.810	21.395	640.0	1.279
30	28.809	34.021	28.802	21.397	640.3	1.919
40	28.809	34.021	28.800	21.398	640.7	2. 560
50	28.817	34.022	28.805	21.397	641.3	3.201
60	28.822	34.024	28.807	21.398	641.7	3.842
70	28.822	34.027	28.805	21.401	641.9	4.484
80	28.802	34.065	28.783	21.437	638.9	5.124
90	28.765	34.106	28.743	21.481	635.2	5.761
100	28.457	34.403	28.433	21.806	604.5	6.385
110	26.126	35.013	26.102	23.013	489.3	6.921
120	25.494	35.095	25.468	23.272	465.0	7.401
130	24.736	35.114	24.708	23.517	441.9	7.857
140	22.618	35.166	22.590	24.179	378.9	8.266
150	19.539	35.100	19.512	24.967	303.7	8.609
160	19.080	35.103	19.052	25.088	292.5	8.905
170	18.844	35.129	18.814	25.169	285.2	9.195
180	18.569	35.262	18.537	25.340	269.2	9.472
190	17.572	35.046	17.540	25.421	261.6	9.737
200	16.582	34.885	16.549	25.533	250.9	9.995
225	15.022	34.955	14.988	25.941	212.5	10.578
250	14.233	34.942	14.196	26.102	197.7	11.094
275	13.116	34.881	13.078	26.286	180.5	11.561
300	12.203	34.867	12.164	26.455	164.6	11.990
325	11.991	34.860	11.948	26.491	161.8	12.399
350	10.877	34.784	10.834	26.638	147.8	12.784
375	10.554	34.764	10.508	26.680	144.1	13.151
400	9.821	34.716	9.775	26.769	135.7	13.501
425	9.333	34.669	9.286	26.813	131.7	13.837
450	8.997	34.654	8.947	26.856	127.8	14.162
475	8.859	34.655	8.807	26.879	126.0	14.480
500	8.462	34.629	8.409	26.921	122.2	14.791
503	8.427	34.626	8.374	26.924	121.9	14.828

Sigma-theta

STA NO	6	LAT:	0	20.0 N	LONG:	156
12 NOV	1992	1909	GMT		DEPTH	1950

P	T	S	POT T	SIGMA	SVA	DYN HT
(DB)	(C)		(C)	THETA	$(\mathrm{CL} / \mathrm{T})$	$(\mathrm{J} / \mathrm{KG})$
2	28.824	34.027	28.823	21.395	639.2	0.128
10	28.812	34.028	28.810	21.400	639.1	0.639
20	28.829	34.028	28.824	21.395	640.1	1.279
30	28.834	34.029	28.826	21.395	640.5	1.919
40	28.836	34.030	28.826	21.396	641.0	2.560
50	28.838	34.033	28.826	21.399	641.2	3.201
60	28.837	34.035	28.823	21.401	641.4	3.842
70	28.824	34.059	28.807	21.424	639.6	4.483
80	28.758	34.129	28.739	21.500	632.9	5.121
90	28.503	34.350	28.482	21.750	609.3	5.742
100	27.305	34.828	27.281	22.500	538.0	6.328
110	25.346	35.075	25.322	23.302	461.7	6.830
120	24.334	35.102	24.309	23.628	430.8	7.275
130	22.169	35.137	22.143	24.284	368.5	7.681
140	19.457	35.099	19.431	24.987	301.4	8.000
150	19.178	35.111	19.151	25.069	294.0	8.297
160	19.161	35.167	19.133	25.116	289.8	8.589
170	19.113	35.219	19.083	25.168	285.2	8.876
180	18.707	35.337	18.675	25.362	267.1	9.156
190	17.620	35.087	17.587	25.441	259.7	9.419
200	16.934	34.919	16.901	25.477	256.4	9.677
225	15.588	34.975	15.553	25.831	223.2	10.279
250	14.061	34.914	14.025	26.116	196.2	10.797
275	12.876	34.879	12.839	26.332	176.0	11.262
300	12.110	34.863	12.071	26.469	163.2	11.681
325	11.328	34.815	11.287	26.580	152.9	12.082
350	10.669	34.766	10.627	26.661	145.4	12.451
375	9.959	34.727	9.915	26.754	136.7	12.807.
400	9.578	34.696	9.532	26.794	133.1	13.144
425	9.107	34.667	9.060	26.848	128.2	13.468
450	8.863	34.656	8.814	26.879	125.5	13.786
475	8.502	34.634	8.452	26.918	122.0	14.097
500	8.318	34.617	8.265	26.934	120.8	14.400
509	8.253	34.615	8.200	26.942	120.1	14.508

Sigma-theta

STA NO ${ }^{7}$ LAT: 038.8 N LONG: 155 57.0 E

P	T	5	POT T	SIGMA	SVA	DYN HT
(DB)	(C)		(C)	THETA	(CL/T)	(J/KG)
2	28.883	34.009	28.882	21.361	642.4	0.128
10	28.879	34.009	28.877	21. 364	642.6	0.642
20	28.867	34.008	28.862	21.367	642.7	1.285
30	28.870	34.009	28.863	21. 368	643.1	1.928
40	28.871	34.013	28.862	21.372	643.3	2.571
50	28.873	34.020	28.861	21.377	643.2	3.215
60	28.872	34.028	28.858	21.384	643.0	3.858
70	28.862	34.051	28.845	21.405	641.5	4. 500
80	28.792	34.114	28.772	21.477	635.1	5.139
90	28.643	34.227	28.621	21.611	622.7	5.768
100	27.886	34.751	27.862	22.254	561.5	6.369
110	26.981	34.846	26.956	22.618	527.1	6.910
120	24.743	35.090	24.717	23.497	443.4	7.385
130	24.028	35.429	24.000	23.968	398.9	7.807
140	22.970	35.271	22.942	24.157	381.1	8.197
150	19.677	35.089	19.650	24.923	307.9	8.548
160	19.361	35.116	19.332	25.026	298.5	8.849
170	19.589	35.238	19.558	25.060	295.7	9.146
180	18.932	35.266	18.900	25.252	277.7	9.436
190	18.146	35.226	18.113	25.419	262.0	9.702
200	17.374	35.059	17.340	25.479	256.4	9.961
225	15.832	34.972	15.797	25.773	228.7	10.573
250	14.066	34.947	14.030	26.140	194.0	11.115
275	12.423	34.873	12.387	26.417	167.7	11.565
300	11.924	34.847	11.885	26.493	160.9	11.973
325	10.817	34.783	10.777	26.647	146.3	12.355
350	10.318	34.744	10.277	26.705	141.0	12.716
375	9.871	34.721	9.827	26.763	135.7	13.061
400	9.503	34.698	9.458	26.808	131.8	13.396
425	9.087	34.671	9.040	26.855	127.5	13.720
450	8.845	34.655	8.796	26.880	125.4	14.036
475	8.571	34.639	8. 521	26.911	122.7	14.347
500	8.309	34.623	8.257	26.939	120.3	14.651
503	8.262	34.620	8.210	26.944	119.8	14.687

Sigma-theta

STA NO 8 LAT: 219.8 S LONG: 15559.5 E 15 NOV 19921817 GMT DEPTH 1750

P
1
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
225
250
275
300
325
350
375
400
425
450
475
500
504

Temperature, Salinity

$\begin{array}{cc} \text { STA NO } & 9 \\ 15 & \text { NOV } \\ 1992 \end{array}$			$\begin{array}{lr} \text { LAT: } & 2 \\ 2239 & \text { GMT } \end{array}$	$16.3 \mathrm{~s}$	LONG: TH	$\begin{array}{ll} 56 \\ 750 \end{array} \quad 0.5 \mathrm{E}$
P	T	S	POT T	SIGMA	SVA	DYN HT
(DB)	(C)		(C)	THETA	(CL/T)	(J/KG)
2	29.179	34.282	29.178	21.468	632.2	0.126
10	29.165	34.282	29.162	21.473	632.1	0.632
20	29.110	34.280	29.105	21.491	630.9	1. 263
30	28.994	34.280	28.987	21. 530	627.6	1. 892
40	28.962	34.296	28.952	21.554	625.8	2.519
50	28.584	34.459	28.572	21.802	602.5	3.138
60	27.880	34.638	27.866	22.169	567.9	3.720
70	27.248	34.790	27.232	22.487	537.8	4.273
80	26.918	34.854	26.900	22.642	523.5	4.806
90	26.240	34.996	26.220	22.963	493.2	5.314
100	25.769	35.055	25.746	23.155	475.3	5.793
110	25.687	35.049	25.662	23.177	473.6	6.267
120	25.545	35.101	25.518	23.261	466.1	6.737
130	25.292	35.146	25.264	23.373	455.8	7.199
140	24.081	35.124	24.052	23.722	422.8	7.635
150	23.473	35.111	23.442	23.892	406.9	8.050
160	23.369	35.472	23.335	24.196	378.4	8.447
170	22.438	35.343	22.404	24.366	362.4	8.818
180	21.415	35.609	21.380	24.855	316.1	9.162
190	19.235	35.538	19.201	25.382	265.8	9.448
200	18.290	35.473	18.255	25.572	247.8	9.704
225	15.047	35.170	15.013	26.101	197.4	10.256
250	12.030	34.903	11.997	26.515	157.5	10.695
275	11.403	34.817	11.368	26.566	153.0	11.084
300	11.122	34.800	11.085	26.605	149.8	11.461
304	11.098	34.796	11.061	26.606	149.7	11.521

Temperature, Salinity

$\begin{array}{lrrrrr}\text { STA NO } 10 & \text { LAT: } & 26.2 \mathrm{~S} \\ 16 \text { NOV } 1992 & 620 & \text { GMT } & & 156 & 6.2 \mathrm{E}\end{array}$

P	T	S	POT T	SIGMA	SVA	DYN HT
(DB)	(C)		(C)	THETA	$(\mathrm{CL} / \mathrm{T})$	$(\mathrm{J} / \mathrm{KG})$
2	29.500	34.264	29.499	21.346	643.9	0.129
10	29.196	34.265	29.193	21.450	634.3	0.640
20	29.101	34.264	29.096	21.482	631.7	1.273
30	28.993	34.247	28.986	21.506	630.0	1.904
40	28.917	34.251	28.907	21.535	627.6	2.532
50	28.912	34.274	28.900	21.555	626.2	3.159
60	28.633	34.422	28.619	21.759	607.1	3.781
70	27.457	34.746	27.441	$22.38 B$	547.4	4.357
80	27.024	34.836	27.005	22.595	528.0	4.893
90	26.551	34.910	26.531	22.801	508.7	5.414
100	25.996	34.989	25.974	23.035	486.8	5.909
110	25.808	35.050	25.783	23.140	477.2	6.393
120	25.461	35.104	25.434	23.289	463.4	6.862
130	24.349	35.116	24.321	23.636	430.6	7.303
140	23.688	35.185	23.658	23.884	407.2	7.718
150	23.554	35.502	23.523	24.164	381.0	8.110
160	23.185	35.551	23.152	24.309	367.6	8.486
170	21.805	35.604	21.771	24.742	326.5	8.842
180	19.634	35.560	19.601	25.295	273.8	9.138
190	16.838	35.360	16.807	25.837	221.9	9.383
200	15.594	35.215	15.563	26.014	205.0	9.593
225	13.108	35.015	13.077	26.390	169.2	10.064
250	11.599	34.881	11.567	26.579	151.2	10.456
275	11.448	34.855	11.413	266.587	151.0	10.833
300	11.091	34.800	11.054	26.611	149.2	11.210
325	10.757	34.778	10.718	26.654	145.6	11.578
350	10.574	34.766	10.532	26.678	143.8	11.940
375	10.434	34.756	10.389	26.695	142.6	12.297
400	10.362	34.766	10.314	26.715	141.2	12.653
425	10.033	34.743	9.983	26.754	137.8	13.001
450	9.476	34.692	9.425	26.808	132.8	13.339
475	9.210	34.679	9.157	26.842	129.9	13.669
500	8.810	34.654	8.755	26.886	125.8	13.989
505	8.695	34.645	8.641	26.898	124.7	14.052

Sigma-theta

Temperature, Salinity

Temperature, Salinity

$\begin{array}{lc} \text { STA NO } & 16 \\ 16 \text { NOV } 1992 \end{array}$			$\begin{array}{lr} \text { LAT: } & 1 \\ 1814 & \text { GMT } \end{array}$	54.0 S	ONG : PH	534.0
P	T	S	POT T	SIGMA	SV	DYN HT
(DB)	(C)		(C)	THETA	(CL/T)	(J/KG)
2	29.436	34.372	29.436	21.449	634.0	0.127
10	29.436	34.372	29.434	21.450	634.4	0.634
20	29.327	34.369	29.322	21.485	631.5	1.268
30	29.113	34.351	29.106	21.544	626.3	1.895
40	28.740	34.279	28.730	21.615	620.0	2.520
50	28.210	34.532	28.198	21.980	585.4	3.131
60	27.884	34.615	27.870	22.149	569.7	3.711
70	27.631	34.700	27.615	22.297	556.1	4.270
80	27.412	34.756	27.393	22.410	545.7	4.823
90	25.414	35.051	25.394	23.261	464.6	5.339
100	25.100	35.105	25.078	23.399	452.0	5.795
110	24.598	35.111	24.575	23.555	437.4	6.244
120	23.510	35.127	23.486	23.891	405.7	6.663
130	23.228	35.093	23.202	23.947	400.7	7.066
135	23.079	35.125	23.052	24.015	394.4	7.265

Temperature, Salinity

P	T	S	POT T	SIGMA	SVA	DYN HT
(DB)	(C)		(C)	THETA	$(C L / T)$	$(J / K G)$
1	29.359	34.367	29.359	21.471	631.9	0.063
10	29.365	34.367	29.363	21.470	632.4	0.632
20	29.278	34.366	29.273	21.499	630.1	1.264
30	29.288	34.366	29.281	21.497	630.8	1.895
40	28.785	34.244	28.776	21.573	623.9	2.522
50	28.236	34.522	28.224	21.964	587.0	3.133
60	27.776	34.655	27.762	22.215	563.4	3.710
70	27.597	34.706	27.581	22.312	554.6	4.268
80	26.896	34.863	26.878	22.655	522.2	4.810
90	25.121	35.101	25.102	23.389	452.5	5.277
100	24.796	35.104	24.775	23.490	443.2	5.727
110	23.704	35.129	23.681	23.835	410.6	6.153
120	23.316	35.100	23.291	23.927	402.2	6.558
130	23.050	35.127	23.024	24.025	393.3	6.957
140	22.861	35.195	22.832	24.131	383.5	7.344
150	22.416	35.210	22.386	24.270	370.7	7.722
160	22.299	35.616	22.267	24.612	338.5	8.081
170	19.100	35.511	19.070	25.395	263.8	8.380
180	18.571	35.473	18.539	25.501	253.9	8.639
190	18.385	35.455	18.351	25.534	251.1	8.891
200	17.528	35.408	17.494	25.709	234.6	9.138
225	15.065	35.190	15.031	26.113	196.2	9.684
250	12.237	34.899	12.204	26.472	161.7	10.121
275	11.658	34.830	11.623	26.529	156.7	10.519
300	11.575	34.825	11.537	26.541	156.1	10.910
305	11.527	34.824	11.488	26.549	155.5	10.987

Temperature, Salinity

$\begin{array}{ll} \text { STA NO } 18 \\ 16 \text { NOV } 1992 \end{array}$			$\begin{array}{ll} \text { LAT: } \\ 2037 & \text { GMT } \end{array}$	$50.0 \mathrm{~S} \underset{\text { DEPTH }}{\text { LONG: }}$		$\begin{aligned} & 15530.0 \mathrm{E} \\ & 1950 \end{aligned}$
P	T	S	POT T	SIGMA	SVA	DYN HT
(DB)	(C)		(C)	THETA	(CL/T)	(J/KG)
1	29.182	34. 342	29.182	21. 512	627.9	0.063
10	29.183	34. 342	29.181	21. 512	628.3	0.628
20	29.180	34.342	29.175	21.514	628.7	1. 257
30	29.079	34.309	29.071	21. 524	628.2	1.885
40	28.769	34.228	28.759	21. 567	624.5	2.512
50	28.478	34.427	28.466	21.814	601.4	3.130
60	27.992	34.579	27.978	22.088	575.6	3.713
70	27.775	34.649	27.759	22.211	564.2	4.281
80	26.493	34.903	26.475	22.813	507.1	4.833
90	24.989	35.110	24.970	23.435	448.0	5.296
100	24.589	35.112	24.567	23.558	436.6	5. 740
110	23.673	35.130	23.650	23.845	409.7	6.160
120	23.166	35.101	23.141	23.971	398.0	6.563
130	22.954	35.138	22.928	24.060	389.9	6.958
140	22.646	35.219	22.617	24.211	375.9	7.340
150	22.130	35.198	22.100	24.341	363.8	7.708
160	22.145	35.605	22.113	24.647	335.2	8.055
170	19.181	35.510	19.150	25.374	265.8	8.350
180	18.778	35.483	18.746	25.457	258.2	8.610
190	18.462	35.458	18.429	25.517	252.7	8.865
200	17.601	35.412	17.567	25.695	236.0	9.113
225	14.332	35.102	14.299	26.204	187.3	9.659
250	12.002	34.864	11.969	26.490	159.9	10.075
275	11.656	34.830	11.621	26.530	156.6	10.471
300	11.169	34.810	11.132	26.604	149.9	10.859
306	11.052	34.805	11.014	26.622	148.3	10.948

Sigma-theta

Temperature, Salinity

Sigma-theta

Temperature, Salinity

Temperature, Salinity

Temperature, Salinity

Sigma-theta

$\begin{aligned} & \text { STA NO } 25 \\ & 22 \text { NOV } 1992 \end{aligned}$			$\begin{array}{r} 1 \\ \text { GMT } \end{array} 14.15$		ONG : TH	66.2 E
p	T	5	POT T	SIGMA	SVA	DYN HT
(DB)	(C)		(C)	THETA	(CL/T)	(J/KG)
3	29.433	34.155	29.432	21.288	649.6	0.195
10	29.390	34.164	29.387	21.309	647.8	0.650
20	29.318	34.171	29.313	21.340	645.4	1. 296
30	29.076	34.117	29.069	21.380	641.9	1.940
40	28.990	34.113	28.980	21.407	639.9	2.581
50	28.944	34.175	28.932	21.470	634.3	3.218
60	28.726	34.278	28.712	21.620	620.4	3.847
70	28.470	34.382	28.453	21.784	605.2	4.461
80	28.057	34.561	28.038	22.054	579.8	5.053
90	27.752	34.682	27.731	22.246	561.9	5.626
100	25.865	35.049	25.842	23.121	478.5	6.143
110	24.682	35.097	24.658	23.520	440.8	6.598
120	22.799	35.138	22.775	24.105	385.2	7.014
130	22.594	35.144	22.568	24.168	379.5	7.397
140	20.833	35.142	20.806	24.656	333.2	7.757
150	20.511	35.134	20.482	24.737	325.8	8.087
160	20.207	35.118	20.177	24.806	319.5	8.408
170	19.829	35.559	19.798	25.243	278.4	8.709
180	18.719	35.322	18.687	25.348	268.5	8.983
190	16.947	34.953	16.916	25.499	253.9	9.244
200	16.626	34.965	16.594	25.584	246.1	9.493
225	14.373	35.078	14.340	26.176	190.0	10.051
250	12.828	34.915	12.793	26.369	171.7	10.496
275	12.363	34.899	12.326	26.448	164.7	10.913
300	11.904	34.867	11.865	26.512	159.0	11.320
325	11.253	34.814	11.212	26.592	151.7	11.706
350	10.723	34.780	10.680	26.662	145.4	12.078
375	10.395	34.759	10.350	26.704	141.7	12.436
400	10.214	34.744	10.166	26.724	140.3	12.789
425	9.754	34.713	9.705	26.778	135.4	13.131
450	9.168	34.678	9.118	26.847	128.8	13.462
475	8.836	34.652	8.785	26.881	125.8	13.779
500	8.647	34.643	8.593	26.903	124.0	14.092
501	8.632	34.642	8.578	26.905	123.9	14.104

$\begin{array}{lrrrrrrr}\text { STA NO } & 26 & \text { LAT: } & 1 & 24.8 \mathrm{~S} \text { LONG: } & 15616.6 \mathrm{E} \\ 25 \text { NOV } 1992 & 5 \mathrm{GMT} & & 1800\end{array}$

P	T	S	POT T	SIGMA	SVA	DYN HT
(DB)	(C)		(C)	THETA	$(C L / T)$	$(\mathrm{J} / \mathrm{KG})$
3	29.091	34.115	29.090	21.372	641.5	0.192
10	29.089	34.116	29.087	21.374	641.6	0.641
20	29.097	34.116	29.092	21.372	642.3	1.283
30	29.090	34.118	29.083	21.377	642.3	1.926
40	28.970	34.145	28.960	21.438	636.9	2.566
50	28.960	34.154	28.948	21.449	636.3	3.202
60	28.771	34.257	28.756	21.589	623.4	3.834
70	28.034	34.583	28.017	22.077	577.1	4.439
80	27.104	34.842	27.086	22.573	530.1	4.990
90	26.238	34.991	26.218	22.961	493.4	5.493
100	25.288	35.084	25.266	23.326	458.9	5.969
110	24.673	35.153	24.649	23.565	436.5	6.411
120	22.716	35.154	22.692	24.140	381.8	6.812
130	22.378	35.162	22.352	24.244	372.3	7.186
140	21.195	35.154	21.168	24.566	341.8	7.553
150	20.364	35.131	20.336	24.774	322.3	7.880
160	20.127	35.575	20.097	25.176	284.4	8.198
170	19.373	35.472	19.342	25.295	273.3	8.477
180	18.163	35.293	18.132	25.465	257.2	8.741
190	18.158	35.455	18.125	25.591	245.6	8.992
200	16.005	35.288	15.973	25.976	208.8	9.223
225	13.520	35.044	13.489	26.328	175.2	9.689
250	12.173	34.889	12.140	26.476	161.2	10.106
275	11.938	34.876	11.903	26.512	158.4	10.507
300	11.542	34.839	11.504	26.558	154.5	10.898
325	11.161	34.813	11.120	26.609	150.1	11.278
350	10.849	34.789	10.806	26.646	146.9	11.649
375	10.587	34.773	10.542	26.681	144.0	12.012
400	10.381	34.759	10.333	26.707	142.1	12.370
425	10.109	34.739	10.059	26.738	139.4	12.723
450	9.622	34.707	9.571	26.796	134.1	13.066
475	9.264	34.683	9.211	26.836	130.5	13.397
500	8.996	34.665	8.941	26.865	128.0	13.718
516	8.886	34.656	8.830	26.876	127.1	13.922

Temperature, Salinity

STA NO 27 LAT: 122.5 s LONG: 15614.1 E 25 NOV $1992 \quad 119$ GMT DEPTH 1880

P	T	s	pOT T	SIGM	SVA	T
)				theta	(CL/T)	(J/KG)
2	29.100	34.114	29.099	21.368	641.8	0.128
10	29.107	34.112	29.105	21.365	642.	0.642
20	29.100	34.114	29.095	21.370	642	1.285
30	29.078	34.120	29.071	21.383	641.	1.927
40	28.978	34.136	28.968	21.428	637.	2.566
50	28.911	34.171	28.899	21.477	633.6	3. 203
60	28.865	34.221	28.851	21.53	628.	34
70	28.350	34.446	28.333	21.871	596.8	. 453
80	27.400	34.786	27.381	22.43	543.1	14
90	26.316	34.972	26.295	22	49	5.532
00	25.485	35.070	25.463	23.254	46	6.011
110	24.625	35.154	24.601	23.580	435.	6.457
120	23.790	35.310	23.765	23.947	400.4	6.884
130	22.442	35.158	22.416	24.2	374	7.268
40	22.172	35.162	22.144	24.302	367	7.642
150	20.372	35.131	20.343	24.772	322	7.975
60	20.056	35.574	20.026	25.194	282.	8.288
170	18.843	35.403	18.813	25.378	265	8.565
80	17.611	35.186	17.581	25.518	252.0	8.823
190	17.949	35.442	17.917	25.633	241.	9.071
200	15.838	35.260	15.807	25.992	207.	9.293
225	13.511	35.041	13.479	26.328	175	9.767
250	12.171	34.885	12.138	26.474	161.5	10.190
5	11.854	34.871	11.819	26.524	157	10.590
300	11.483	34.835	11.444	26.566	153.7	10.979
		34.822	11.255	26.59	151	11.0

Temperature, Salinity

$\begin{array}{lc} \text { STA NO } & 29 \\ 25 & \text { NOV } \\ 1992 \end{array}$			$\begin{array}{rr} \text { LAT: } & 1 \\ 348 & \text { GMT } \end{array}$	$13.9 \mathrm{~s}$	LONG: PTH	100
P	T	S	POT T	SIGMA	SVA	DYN HT
(DB)	(C)		(C)	THETA	(CL/T)	(J/KG)
3	29.225	34.109	29.224	21.323	646.2	0.194
10	29.228	34.110	29.225	21.323	646.5	0.646
20	29.229	34.110	29.225	21.323	646.9	1.293
30	29.227	34.117	29.220	21.330	646.8	1. 940
40	29.109	34.114	29.100	21.368	643.6	2.585
50	29.042	34.115	29.030	21.392	641.8	3.228
60	28.938	34.178	28.923	21.475	634.3	3.866
70	28.624	34.326	28.607	21.691	614.1	4.489
80	27.990	34.605	27.971	22.109	574.5	5.082
90	27.558	34.755	27.537	22.363	550.7	5.645
100	26.102	35.010	26.080	23.018	488.4	6.155
110	24.926	35.093	24.902	23.443	448.2	6.624
120	22.689	35.140	22.665	24.138	382.0	7.039
130	22.611	35.151	22.585	24.169	379.5	7.419
140	20.668	35.132	20.642	24.693	329.6	7.780
150	20.257	35.126	20.229	24.798	319.9	8.104
160	20.191	35.308	20.162	24.955	305.4	8.421
170	19.112	35,388	19.081	25.299	272.9	8.706
180	17.285	35.044	17.255	25.488	254.7	8.966
190	16.771	34.959	16.740	25.546	249.4	9.219
200	16.455	35.321	16.423	25.898	216.3	9.455
225	13.160	34.955	13.128	26.333	174.6	9.930
250	12.521	34.922	12.488	26.434	165.4	10.358
275	12.081	34.885	12.045	26.492	160.4	10.763
300	11.208	34.813	11.171	26.600	150.4	11.151
306	11.118	34.807	11.080	26.611	149.4	11.241

Sigma-theta

Sigma-theta

SEASOAR TRAJECTORIES

W2E

E2N

W2E

N2S

W2E

N2S

Southward Extension of N2S

ENSEMBLE PROFILES

OF

SEASOAR TEMPERATURE AND SALINITY

W9211A b2ln13nov.data

b2ln13nov.up.data

W9211A Is2lw13nov.data

Is2lw13nov.up.data

W9211A lw2le14nov.data
Iw2le14nov.up.data

Iw2le14nov.up.data

In2n15nov.up.data

In2n15nov.up.data

W9211A n2s13nov.data
n2s13nov.up.data

n2s15nov.up.data

W9211A n2s17nov.data

n2s17nov.up.data
n2s17nov.up.data

W9211A n2s18nov.data

W9211A n2s20nov.data

W9211A n2s25nov.data

E

W9211A s2w18nov．data
s2w18nov．up．data
いいい
s2w18nov．up．data

s2w19nov.up.data

W9211A s2w24nov.data
s2w24nov.up.data

w2e14nov.up.data

W9211A b2e17nov.data

b2e17nov.up.data

W9211A w2e23nov.data
w2e23nov.up.data
w2e23nov.up.data

W9211A w2e24nov.data

w2e24nov.up.data

W9211A b2e29nov.data

b2e29nov.up.data

W9211A w2e289nov.data

w2e289nov.up.data

It I

W9211A e2n19nov.data

W9211A e2n23nov.data

e2n23nov.up.data

W9211A e2end24nov.data

e2end24nov.up.data

e2n27nov.up.data

W9211A eq21n02dec.data
eq21n02dec.up.data

W9211A 2n23n03dec.data
2n23n03dec.up.data

W9211A 3n24n03dec.data

3n24n03dec.up.data

VERTICAL SECTIONS OF

TEMPERATURE, SALINITY AND SIGMA-T

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right), \mathrm{N} 2 \mathrm{~S}, 20$ November 1992

Sigma-t, N2S, 13 November 1992

Sigma-t, N2S, 17 November 1992

Sigma-t, N2S, 18 November 1992

Sigma-t, N2S, 20 November 1992

Sigma-t, N2S, 22 November 1992

Sigma-t, N2S, 23 November 1992

Sigma-t, N2S, 25 November 1992

Sigma-t, N2S, 26 November 1992

Sigma-t, N2S, 27 November 1992

Sigma-t, N2S, 29 November 1992

Sigma-t, N2S, 01 December 1992

Sigma-t, S2N, 1 December 1992

T $\left({ }^{\circ} \mathrm{C}\right)$, S2W, 26 November 1992

Sigma-t, S2W, 15 November 1992

Sigma-t, S2W, 18 November 1992

Sigma-t, S2W, 20 November 1992

Sigma-t, S2W, 24 November 1992

Sigma－t，S2W， 25 November 1992

Sigma-t, S2W, 26 November 1992

T $\left({ }^{\circ} \mathrm{C}\right)$, W2E, 23 November 1992

T $\left({ }^{\circ} \mathrm{C}\right)$, W2E, 28-29 November 1992

Sigma-t, W2E, 16 November 1992

Sigma-t, W2E, 18 November 1992

Sigma-t, W2E, 19 November 1992

Sigma-t, W2E, 23 November 1992

Sigma-t, W2E, 24 November 1992

Sigma-t, W2E, 25 November 1992

Sigma-t, W2E, 27 November 1992

Sigma-t, W2E, 28 November 1992

Sigma-t, W2E, 29 November 1992

Sigma-t, W2E, 28-29 November 1992

Sigma-t, W2E, 30 November 1992

Sigma-t, E2N, 17 November 1992

Sigma-t, E2N, 18 November 1992

Sigma-t, E2N, 19 November 1992

Sigma-t, E2N, 23 November 1992

Sigma-t, E2N, 24 November 1992

Sigma-t, E2N, 27 November 1992

Sigma-t, SBN to Equator, 2 December 1992

Sigma-t, 2 N to 3 N, 3 December 1992

APPENDIX A:

Time Series of Lag of Maximum T/C Correlation for Seasoar Tows 1, 3-6

Location of Turns

Leg 1 Tow 3, 50-120 db (plus), 120-180 db (square), 180-240 db (triangl

Location of Turns

Leg 1 Tow 3, 50-120 db (plus), 120-180 db (square), 180-240 db (triangle
Location of Turns

	SBE	SBN	SBS	SBW	SBE	SBN
. 00						
윽 0.95						
0.90						
음 0.85						

Leg 1 Tow 3, 50-120 db (plus), 120-180 db (square), 180-240 db (triangl

Leg 1 Tow 3, 50-120 db (plus), 120-180 db (square), 180-240 db (trianglє
Location of Turns

Leg 1 Tow 4, 50-120 db (plus), 120-180 db (square), 180-240 db (triangle

Leg 1 Tow 4, $50-120 \mathrm{db}$ (plus), $120-180 \mathrm{db}$ (square), 180-240 db (triangl ϵ
Location of Turns

Leg 1 Tow $5,50-120 \mathrm{db}$ (plus), $120-180 \mathrm{db}$ (square), 180-240 db (triangl

Location of Turns

Leg 1 Tow 5, 50-120 db (plus), 120-180 db (square), 180-240 db (triangle

Leg 1 Tow 5, 50-120 db (plus), 120-180 db (square), 180-240 db (triangle

Leg 1 Tow 5, 50-120 db (plus), 120-180 db (square), 180-240 db (triangle

Leg 1 Tow 6, 50-120 db (plus), 120-180 db (square), 180-240 db (triangl

Leg 1 Tow 6, 50-120 db (plus), $120-180 \mathrm{db}$ (square), $180-240 \mathrm{db}$ (triangle

Location of Turns

Leg 1 Tow 6, 50-120 db (plus), 120-180 db (square), 180-240 db (triang

Leg 1 Tow 6, 50-120 db (plus), 120-180 db (square), 180-240 db (triangle

Leg 1 Tow 1, $50-120 \mathrm{db}$ (plus), $120-180 \mathrm{db}$ (square), 180-240 db (triangle)

Leg 1 Tow 1, $50-120 \mathrm{db}$ (plus), $120-180 \mathrm{db}$ (square), $180-240 \mathrm{db}$ (triangle)

APPENDIX B:

T-S Diagrams from CTD and Seasoar

 at Start and End of Tows 1, 3-6.w9211ac.7, tow1.begin

w9211ac.21, tow3.begin

w9211ac.25, tow4.begin

w9211ac.26, tow4.end

w9211ac.29, tow5.begin

w9211ac.30, tow5.end

w9211ac.31, tow6.begin

w9211ac.32, tow6.end

APPENDIX C:

Profiles of Fluorescence Voltage

For Seasoar Tows 1, 3, 4

(until signal fades, 23 November)

W9211A b2ln13nov.data

W9211A le2ln14nov.data
In2n15nov.data

n2s15nov.data

W9211A n2s17nov.data

s2w18nov.data
w2e18nov.data

W9211A e2n18nov.data

W9211A s2end2Onov.data

Fluorescence (V)
n2s22nov.data

Fluorescence (V)
s2w22nov.data

