
AN ABSTRACT OF THE THESIS OF

Bertrand Boichon for the degree of Master of Science in

Electrical & Computer Engineering presented on March 28, 2003. Title:

CytoSensor: An Application for Distributed Bio-sensor Networks.

Abstract approved:

Wojtek J. Kolodziej

The purpose of the thesis is to design and develop a network of automated, dis-

tributed, living cell-based sensors, called CytoSensors. Their main role is to detect a

variety of biological and chemical toxins. The system is designed to help researchers

to carry out multitude of experiments, in order to build a practical knowledge base in

toxin detection. The network is developed in accordance with industry standards, to be

used and deployed for prevention in inhospitable environments such as battlefields, toxic

urban locations or polluted agricultural regions.

The sensor is composed of a processing unit (processor and memory), an archiving

unit (permanent data storage), a communication unit, input devices attached to a data

acquisition unit, and control devices. The CytoSensor is specifically designed to acquire

and analyze visual information about the living cells: hence cameras are used as input

devices and frame grabbers are used as the digitizers. The control devices are additional

external devices developed to help control and automate the process of data acquisition:

they comprise light intensity control TJSB boards to provide the correct amount of light

to view the cells, touch panels for user-instrument interaction, and bar code readers to

identify vials and experiments. The software, on the other hand, is a complex mosaic

of different elements, each of which has a specific task to accomplish. These building

blocks include the real-time acquisition, archiving, networking, processing, modelling,

sensor output presentation and user interfaces. Our goal is to develop, integrate and

Redacted for Privacy

optimize all these components to produce a viable and working device. The prototypes

evolved from an offline, portable sensor equipped with a single high-resolution CCD

camera and high-quality optics, to distributed online sensors with multiplexed CCD

cameras and affordable optics.

The acquisition board digitizes in real time the images from one to twelve multi-

plexed high resolution cameras. Several operational requirements must be met. First,

a fault-tolerant and stable control over the input devices and control devices must be

provided. Secondly, acquisition timing errors should be minimized as a trade-off between

performance and the use of a low-cost, general-purpose, industry-standard operating sys-

tem such as Microsoft Windows NT. Finally, in order to reduce development time and

increase code reusability, a common abstraction layer is designed to provide for flexible

use with various types of digitizers and cameras.

As part of a distributed detection network, each sensor is able to exchange data

with other "trusted" sensors and users, and to allow remote control of certain tasks. The

sensor may be seen as a node capable of transmitting and receiving acquired or processed

data to a distant device (another sensor, a workstation or a PDA) for visualization, in-

spection and decision-making by a front-end user. Each node on the network provides a

set of complementary services including data acquisition, data processing, communica-

tion and system. The mandatory system service monitors the local system performance

and manages data archiving. The communication service connects the various services on

the network by enabling message-passing, file transfer and caching. The sensor network

integrates a lightweight, interoperable and flexible RPC (Remote Procedure Call) proto-

col to achieve real-time control and monitoring of these distributed resources. A reliable

embedded database system is used to store metadata bound to acquired and processed

images. This database is also used to maintain information on neighbor nodes, and to

check access credentials of available local services. Finally, by adding store-and-forward

messaging capabilities, the application can be extended to work in wireless and mobile

networks.

©Copyright by Bertrand Boichon

March 28, 2003

All rights reserved

CytoSensor: An Application for Distributed Bio-sensor Networks

by

Bertrand Boichon

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented March 28, 2003
Commencement June 2003

Master of Science thesis of Bertrand Boichon presented on March 28, 2003

APPROVED:

Major Professor, representing Electrical & Computer Engineering

Chair of Department oftrical & Computer Engineering

Dean of Gruae School

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to any
reader upon request.

Bertrand Boichon, Author

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

ACKNOWLEDGMENT

First I would like to acknowledge Prof. Wojtek Kolodziej (Department of Elec-

trical and Computer Engineering), Prof. Byoung-Chul Ahn (Yeungnam University),

Prof. Frank Chaplen (Department of Bioresource Engineering), Prof. Philip McFadden

(Department of Microbology). I also would like to acknowledge DARPA (Defense Ad-

vanced Research Project Agency), NSF (National Science Foundation) and the Catalyst

Foundation that help us make this project possible.

Finally I would like to thank the entire Cytosensor Research Team including the

graduate students in Electrical and Computer Engineering Voranon Kiettrisalpipop, Ji-

seok Liew, Nicolas Roussel and Angela Teng.

TABLE OF CONTENTS

Page

1. INTRODUCTION . 1

2. THE CYTOSENSOR PROJECT ... 2

2.1. Motivation .. 2

2.2. Sensor, biosensor and CytoSensor 3

2.3. A multi-disciplinary project ... 4

2.4. Computer engineering objectives 5

2.5. Specifications ... 5

2.6. Related work .. 6

3. DESIGN OF THE CYTOSENSOR ... 8

3.1. Sensor configurations .. 8

3.1.1. Offline vs online usage ... 8
3.1.2. Field vs laboratory usage 8
3.1.3. Ad hoc vs infrastructure usage 9

3.2. Assumptions .. 9

3.3. Use cases ... 9

3.3.1. All-in-one sensor ... 10
3.3.2. Three interconnected nodes 11
3.3.3. A network of collaborating sensors 12

3.4. A top-down layered design .. 13

3.5. Sensor tasks ... 14

3.6. Sensor services and operations .. 16

3.6.1. A modular design .. 16

TABLE OF CONTENTS (Continued)

Page

3.6.2. Fault-tolerance 17
3.6.3. The system service ... 18
3.6.4. The data acquisition service 21
3.6.5. The data processing service 23
3.6.6. The communication service 24

3.7. User interfaces and presentation....................................... 32

3.8. Component diagram .. 32

3.9. Interaction diagrams .. 34

4. IMPLEMENTATION ... 39

4.1. Hardware integration .. 39

4.1.1. The Matrox 4Sight platform 40
4.1.2. The Euresys frame grabbers 41
4.1.3. Cameras, optics and chamber holders 41
4.1.4. Control devices .. 42
4.1.5. Prototypes ... 43

4.2. Software development and integration 47

4.2.1. Development tools ... 47
4.2.2. Techniques ... 50
4.2.3. Core technologies .. 50
4.2.4. Architecture ... 53

4.3. Image acquisition and device control libraries 54

4.3.1. The single channel image acquisition 57
4.3.2. The multichannel image acquisition 59

TABLE OF CONTENTS (Continued)

Page

4.4. Communication and system libraries 61

4.4.1. Data archiving ... 61
4.4.2. System monitoring ... 62
4.4.3. Messaging technology .. 62
4.4.4. Data transfers ... 65
4.4.5. Resource discovery and monitoring 66

5. LIMITATIONS AND FUTURE CONSIDERATIONS 67

5.1. Limitations ... 67

5.2. Possible improvements .. 67

5.2.1. Network simulations ... 67
5.2.2. Fault-tolerance ... 68
5.2.3. Scripting .. 68
5.2.4. Data fusion .. 68
5.2.5. Ad hoc mobile sensor networks 69

6. CONCLUSION ... 70

BIBLIOGRAPHY .. 71

LIST OF FIGURES

Figure Page

2.1 Exemplary variety of Betta Splendens also known as the Siamese fight-
ingfish.. 3

3.1 Collaboration scenario involving three interconnected nodes 11

3.2 Distributed resources and collaboration 12

3.3 General four-layer stack model for the CytoSensor 13

3.4 Logical connectivity across the CytoSensor network 15

3.5 The system service .. 20

3.6 The data acquisition service ... 22

3.7 The data processing service .. 24

3.8 The communication service .. 25

3.9 Component diagram of the CytoSensor services and operations 33

3.10 The acquisition sensor node .. 36

3.11 The processing sensor node .. 37

3.12 The archiving sensor node ... 38

4.1 An embedded stand-alone vision platform: the Matrox 4Sight 40

4.2 The expandable multichannel Picolo Pro acquisition card from Euresys 42

4.3 Typical input channel unit elements based on the Apollo-Il prototype 43

4.4 The PlC 16C765 from Microchip is used on a USB board to control the
light of an input channel unit for the Apollo-Il prototype 44

4.5 A Mercury prototype .. 45

4.6 A Gemini prototype ... 45

4.7 The input channel unit of the Apollo-I prototype 46

4.8 The complete Apollo-I prototype 47

4.9 The Apollo-IT prototype with two input channel units 48

LIST OF FIGURES (Continued)

Figure Page

4.10 An Apollo-IT input channel consisting of a CCD camera, optics, a cham-
ber holder and a USB board ... 48

4.11 Software implementation architecture for the Apollo-I sensor prototype.
It inherits from the previous Mercury/Gemini prototypes 55

4.12 Software implementation architecture for the Apollo-TI sensor prototype
(without the data processing service) 56

4.13 CytoSoft displays real-time acquired images of microscopic cells 57

4.14 CytoSoft processes acquired images and visually presents detection re-
suits (colorful grid) .. 58

LIST OF TABLES

Table Page

3.1 Types of failure in distributed systems 18

4.1 Hardware requirements by service 39

CYTOSENSOR: AN APPLICATION FOR
DISTRIBUTED BIO-SENSOR NETWORKS

1. INTRODUCTION

Environmental protection is a major concern for both developed and developing

countries. Among the high priority tasks is the protection against various hazardous

toxins of biological or chemical origin. Thus the availability of a reliable, accurate and

versatile sensor which can detect various toxins is of big interest. The goal could be,

for instance, to detect poisoning in food borne diseases brought by bacteria. Indeed

some bacteria such as staphylococcus or salmonella can release dangerous toxins. The

Departments of Microbiology, Biochemistry and BioPhysics at Oregon State University

have discovered that living cells are able to signal the presence of a broad variety of toxins.

An interdisciplinary project named CytoSensor was established to create a portable

device to detect such toxins using living cells. I have been involved in this project since

January 2000 as a graduate student in Electrical and Computer Engineering Department.

My main interest is to participate in the development of a distributed and collaborative

network of CytoSensors. My work is technically very challenging and consists of designing

software architecture for the CytoSensor, then implementing and integrating the various

operations. The design part defines the general guidelines used for the development of the

CytoSensor functionalities. The implementation describes the software development of

optimized image acquisition schemes integrated with highly specialized hardware. It also

describes the research and development of techniques enabling distributed collaboration

among the sensors.

2. THE CYTOSENSOR PROJECT

First the motivations and the goals of the project are introduced. After defining

what sensors are and what expert domains it involves, the objectives are exposed, along

with the computer engineering ones. The specifications pertaining to the project are

defined and some related works are discussed.

2.1. Motivation

Today most of the systems for detecting biological threats or dangerous chemi-

cal products are relatively specialized systems focused on a specific toxin or chemical

molecule, or the more versatile ones are neither portable nor standalone. Therefore the

need for an autonomous, mobile device for the detection of a wide variety of biological or

chemical threats is legitimate. Such detector or suitably referred to as computational

sensory device should encompass the acquisition of information, the detection itself

followed next by the threat assessment. Ultimately this kind of device could help save

both the environment and human lives. Currently no compact computational systems

can meet this challenge. At Oregon State University, we are developing a hybrid de-

tection device which combines biological reaction and digital acquisition and processing

technology. With the growth of knowledge in microbiology, new sciences are emerging

such as biotechnology and nanotechnology. These can provide useful and practical solu-

tions to today's problems concerning interaction with organisms and the environment.

The use of biotechnology in a computational device implies that a biological system is

used in the data processing operation and interacts with it. Some biological or chemical

threats (e.g. toxins, some bacteria) interact naturally with specific biological recogni-

tion elements, such as enzymes, antibodies, microorganisms or cells, microorganisms

or even organisms (e.g. a canary). These biological elements may naturally respond

3

and consequently provide data to the processing device which can filter and present the

information in a meaningful and useful manner. The Department of Microbiology of

Oregon State University has thus discovered idiosyncratic biological cells, namely chro-

matophores, part of the scales of exotic fishes such as the Betta Splendens shown in

Figure 2.1, capable of detecting a broad variety of toxins. These cells containing pig-

ments visually respond to physically close threats. The goal is to exploit these results in

order to create a biological sensor device.

FIGURE 2.1: Exemplary variety of Betta Splendens also known as the Siamese fighting
fish

2.2. Sensor, biosensor and CytoSensor

A sensor is generally defined as a device that can detect a change in a physical

quantity such as light, pressure and produce a signal. A biosensor is a subset of sensor

and is generally defined as follows:

"A biosensor can be defined as a compact analytical device incorporating a

biological or biologically-derived sensing element either integrated within or

4

intimately associated with a physicochemical transducer. The usual aim of a

biosensor is to produce either discrete or continuous digital electronic signals

which are proportional to a single anal yte or a related group of analytes."

We gave the name of CytoSensor to the biosensor device in order to emphasize

its specialization, i. e. detecting visual changes using living cells when exposed to toxic

agents (from the Latin prefix "cyto" meaning cell).

2.3. A multi-disciplinary project

Designing such a sensor requires various scientific and engineering expertise in-

cluding biology, optics, computer science, fluidics, chemistry, micromachining, etc. The

team of professors, students and technicians from various departments are involved in

the CytoSensor project. These include the departments of:

Microbiology

Pathology and Biology

Biochemistry

Chemical Engineering

Manufacturing Engineering

Electrical and Computer Engineering

Mechanical Engineering

The first four of the above areas are concerned with toxins, cells, their interaction and

their survival while the last three are involved in the acquisition, storage, sharing and

processing of information in a network of CytoSensors. The effort to share data in a

network of sensors is the object of this work. This project is funded by the Defense

5

Advanced Research Projects Agency (DARPA) and the National Science Foundation

(NSF). DARPA is the central research and development organization for the U.S. De-

partment of Defense (DoD), and its financial participation in the project is 1.9 million

dollars. NSF is an independent U.S. government agency responsible for promoting sci-

ence and engineering projects, and it is financially participating in the project with 1.2

million dollars.

2.4. Computer engineering objectives

The objective of this work is to design an architecture and develop practical tools

to acquire, exchange and process data between the sensors. We have to emphasize the

fact that the device should be an autonomous system, i.e. capable of processing by

itself acquired data. As cells are changing shape and colors based on the presence of

toxic agents, the detection is of a visual nature, and an autonomous imaging system

is needed. The CytoSensor must acquire a sequence of images, process them in the

real-time and finally assess the presence and type of toxins. My work concentrates on

the design of the software framework, a suitable network topology of such sensors, the

implementation of a robust data acquisition and the integration of diverse processing

tasks. The thesis will follow a simple approach, starting with the specifications, a design

and an implementation of several prototypes.

2.5. Specifications

First of all, project requirements need to be assessed, as a starting point of any

design. Originally, DARPA and NSF are interested in building a more general-purpose

biosensor for uses ranging from civilian such as urban pollution (air), environmental

threat assessments, to military such as a detection kit for soldiers on a battlefield (bi-

ological and chemical weapons). Certain criteria must be met to create a CytoSensor

device:

It must be compact and lightweight, i.e. portable,

It integrates the data acquisition and video image processing,

It yields good performance of numerical calculations,

It uses a wide variety of data acquisition hardware (frame grabbers and cameras)

in order to adapt the hardware to the experimental requirements,

It has standard I/O connectivity to control additional electrical and mechanical

devices,

It communicates with other sensors or computers,

It accommodates complex software tools in an easy and flexible way.

Search for a system with good performance while satisfying the industry standards

is a significant task towards ensuring a reliable, modifiable and reusable design.

These conditions are demanding and imply use of multipurpose yet powerful and ad-

vanced hardware. Finally, since the image processing requires large memory and pro-

cessing resources, technological choices (both hardware and software) must be judicious

in order to give the optimal results.

2.6. Related work

Advances in processor, memory and communications technology enable the cre-

ation of cheaper, smaller sensors capable of communication and significant computation.

Many projects are being developed in the areas of Distributed Sensor Networks (DSNs)

and Sensor Networks (SNs). The literature on distributed detection is quite extensive,

including the topic of multi-sensor data fusion as explained in [1] and [2].

7

Decentralized network development becomes increasingly popular and many re-

search groups and companies work on generic peer-to-peer frameworks such as the .NET

from Microsoft, the Intel Peer-to-Peer Accelerator Kit, Adaptinet or the JXTA virtual

network from Sun Microsystems. Collaboration networks also exist: for instance, the

SETI©home [3] project are examples of distributed applications on the Internet.

3. DESIGN OF THE CYTOSENSOR

Based on the specifications and needs discussed previously, a conceptual descrip-

tion and architecture of the different system components is explained. In the first part,

we focus on describing the different modes and required operations. Next a software

architecture is described thoroughly.

3.1. Sensor configurations

3.1.1. Offline vs online usage

The CytoSensor network is to be self-configuring, scalable, and robust in order

to adjust to changing topologies. A sensor is not necessarily always connected to its

network. If the sensor intends to perform its tasks disconnected from the rest of the

network, it must provide suitable resources. For instance, in the case of data acquisition,

the offline sensor will manage local data storages; for data processing, enough memory

and processor power are required. The online usage will take advantage of the distributed

network resources, but at the same time it must cope with possible and unpredictable

network failures.

3.1.2. Field vs laboratory usage

Although the goal of the CytoSensor network is to provide various kinds of envi-

ronmental monitoring, the sensor is presently only used in various laboratories across the

campus. This serves the dual purpose of gathering crucial experimental data along with

for various toxic agents name and concentration, and testing the sensor in a real-world

environment. The continuing experiments allow to build a knowledge base for van-

ous chemical and biological agents, and enhance the software capabilities for acquiring,

processing and presenting the results.

8.1.3. Ad hoc vs infrastructure usage

The third type of sensor configuration describes how the online sensors are in-

terconnected. Based on the existing Internet routing substrate, the network topology

is reduced to directly interconnect all the sensors at the application layer of the OSI

(Open System Interconnection) protocol stack model. The CytoSensor network there-

fore acts as an overlay network where any sensor can directly connect to any other

one using the underlying routers and switches. On the other hand, an ad hoc network

would interconnect the sensors using other sensors as the routing nodes. It is usually

used in an environment where a network infrastructure is not available, although both

configurations can operate jointly.

3.2. Assumptions

For the CytoSensor network, the infrastructure configuration will be used because

the design and the implementation are simplified. The subsequent design will therefore

assume the use of a routing substrate such as the Internet Protocol (IP), and the physical

interconnection of all the sensors. In the CytoSensor overlay network, a neighbor sensor

is defined as a node separated by exactly one logical network hop. In this case, any

sensor can therefore be seen as a potential neighbor sensor.

3.3. Use cases

Use cases are very useful tools when it comes to develop and plan a complex

software system involving many different scenarios. According to the Unified Modeling

10

Language (UML) standard [4], a use case is defined as a set of scenarios tied together

by a common user goal. The following use cases are the most important ones.

8.3.1. All-in-one sensor

All the basic operations are embedded in one sensor. The primary role of the

CytoSensor is to acquire and digitize raw data such as 2-dimensional still images. The

data are then stored on a permanent storage device to provide the operator with the

options of visualization (replay) or processing. The information has to be processed at

several stages before comparison to known cases in the CytoSensor knowledge base is

made. The decision-making based on the toxin detection outcome is the last stage of

CytoSensor operation.

1. As part of the first scenario, the operator starts a data acquisition session, for

instance during a laboratory experiment. The images are treated as the frames,

part of a sequence or "movie". The image sequence and its metadata, such as a

time stamp, the operator name, a hash key uniquely identifying the sequence, are

stored on a local mass storage device, e.g. a hard disk. The operator can ask either

to process and detect in the real time, or just to monitor the acquired sequence.

The operator ends the session manually by using a command or automatically by

setting a duration or size limit on the acquired sequence.

2. For the second scenario, the operator wants to view a previously acquired data

sequence. The latter can be processed at the same time to yield the final results

of detection. Intermediate data are computed at different stages, and they can be

stored on the media storage device along with their metadata (i.e. the correspond-

ing sequence ID, time stamp, algorithms used) for a post-analysis.

11

1 - Requests &
Controls

erator node

2 - Transmission of - Transmission of
acquired data requested information

Processing node

FIGURE 3.1: Collaboration scenario involving three interconnected nodes

3.8.2. Three interconnected nodes

Three nodes are interconnected on a wired or wireless network and each node per-

forms a specific task. The input node acquires data samples in real time. In the case of

the CytoSensor the samples are two-dimensional color images. The raw data are then

compressed in a lossy or lossless way depending on the next stage. The processing node

gets the raw data, transforms it and extracts information by using image segmentations

and data modeling algorithms. The control or operator node overlooks the global oper-

ation by suitably requesting and synchronizing functions between the data acquisition

and processing nodes.

Figure 3.1 shows a simple scenario describing the collaboration among the three

nodes for the detection of an agent. First the control node sends a request to the data

acquisition node to find out which input channels are available. The control node then

asks to grab data samples and ship them to the best available processing node. A default

sampling rate is applied although the operator may provide custom settings for each.

During the acquisition, the data is transferred to the processing node for analysis using

computer-intensive resources. The results are finally sent back to the control node for

visualization, interpretation and/or decision-making. The operator ends, pauses and

12

Sensor

Sensor

User

Sensor -- _
User

Operator

Processing nodes
& Data stores

FIGURE 3.2: Distributed resources and collaboration

resumes the acquisition and/or the processing by sending proper requests. This scenario

is typical in the usage of the CytoSensor network and it provides an insight of the

corresponding simple and streamlined architecture.

3.3.3. A networkof collaborating sensors

Operators and passive viewers remotely access resources such as sensing input de-

vices, data processing workstations and data repository systems. As shown in Figure 3.2,

these resources are combined to acquire, store and process information. A user can re-

quest to acquire live data samples using deployed portable sensors, transfer them to a

nearby processing facility where data is both organized and processed. Results can then

be provided on demand or broadcasted to a set of users.

For the scientific usage, sensors can be deployed in various restricted laboratories.

Using the existing network framework such as a local area network (LAN), the portable

sensors are used simply as data collectors or sources. Intermediate workstations for

13

Tasks

Ijii'
Services

LI \ _____________

).__Middleware
Operations I

Ii I

Hardware

FIGURE 3.3: General four-layer stack model for the CytoSensor

data archiving and processing act both as data sinks for the input sensors and data

sources for the users and operators. For the field usage, the network does not rely on

an existing framework, therefore the input sensors are conFigured in ad hoc mode where

they operate both as inputs and routers for the transmission of messages and data.

3.4. A top-down layered design

In order to overcome the relative complexity of implementing the CytoSensor net-

work, a simple top-down design approach is used. The design is defined and described

by a four-layer stack model shown in Figure 3.3.

The task layer: The layer offers the functionalities to control, process and display in-

formation requested by the user. It provides network-transparent tasks including

data acquisition, data processing, archiving and viewing. Each of these tasks uses

several services from the lower layer.

The service layer: A service is defined as a set of operations provided by a local sen-

sor node that are offered to other local or remote services. Services are offered by

a sensor to perform requested tasks. Not all the services are present in a sensor

14

node. Instead, a node can specialize into data acquisition, processing or archiving

and therefore the node needs only the corresponding service. However, because

the sensor network needs to store, monitor and transfer local or remote data, a

mandatory system service and a communication service implement core function-

alities necessary to perform distributed tasks.

The operation layer: Operations are the most basic functions used to build services.

Like the services, operations are part of the middleware which provides a com-

mon set of APIs (Application Programming Interfaces) to access local or remote

resources. For instance, the data acquisition service is composed of the digitizer

operation and the device control operation. Several operations are provided for the

data acquisition, data processing, archiving and networking. In order to provide

platform-independent service and task layers, this layer is defined as a hardware ab-

straction layer. As such, the layer is often an extension to the existing abstraction

layer of the operating system (e.g. Microsoft Windows NT).

The hardware layer: The hardware or physical layer defines functions and libraries

directly controling various hardware devices. Such devices include digitizers, cam-

eras, USB control devices, mass storage devices, network interface cards (NIC).

This layer will be described in detail in section 4.2.1..

3.5. Sensor tasks

A task defines an orderly arrangement of services in order to respond to a request.

It corresponds to a high-level functionality offered to the users and the operators of the

sensor network. The tasks are using services including data acquisition, data processing,

archiving, data transfers and presentation. As shown in Figure 3.4, these services are

logically connected in the network and they are the basic elements used to perform the

intended distributed task.

15

L-__-J
Services (Services (Services

Operations
I I I

Operations J1 I
Operations

Hardware I I I Hardware 1I I Hardware

Node X Node Y Node Z

FIGURE 3.4: Logical connectivity across the CytoSensor network

The tasks can be classified into four categories:

Data acquisition task defines the capability of acquiring, digitizing and archiving raw

input data samples. For the CytoSensor system, two-dimensional still color images

serve as the input data samples acquired at a constant rate. The mode also includes

the control of additional peripheral devices used to help and enhance the process of

acquisition: their usage is tightly synchronized with the processes of digitizing and

archiving. For instance, the CytoSensor must control the light intensity level in

order to acquire "good" quality color images. The image quality depends directly

on the processing task requirements.

Data processing task consists of several successive processing stages. In the case of

CytoSensor, it includes image segmentations, data modeling and decision-making.

Intermediate and final results can be stored and archived to improve the access of

useful information to the users and operators.

16

Archiving task ensures that acquired data samples, processed data and information

related to these data, also called metadata, are physically saved on a media storage

such as the hard disks. Archiving enables the access to the gathered information,

even in the event of certain faults.

Viewing task: User interfaces and presentation defines this task. User interfaces corre-

spond to the last layer in the system and they are used to present to the user the re-

quested information, either in the form of directly acquired data or processed data.

These interfaces provide a user-level access to the available operations. Therefore

this task translates difficult to interpret data and commands into comprehensible

information for the user.

The tasks can run concurrently on either local or remote nodes. They hide the

complexity of the underlying network of sensors. For instance, the data acquisition

can potentially perform the acquisition on one node and transfer the acquired data to

another node for processing. Both core local tasks of acquisition and processing then

have to agree on whether data are pulled from the source node or pushed onto the

sink node. The mechanism of local or remote task synchronization implies the use of

interprocess communication (IPC) such as messages or events. The choice of the IPC

for the implementation is discussed in section 4.2.3.4..

3.6. Sensor services and operations

8.6.1. A modular design

Decoupling the functions of data acquisition, data processing and archiving into

different physical locations of the network has significant advantages. Among these are

meeting the need for remote sensing capabilities in dangerous environments, portability,

mobility and fault-resilience. Also the interdependencies across operations are minimized

and loosely-coupled nodes are created. Grouping the functions into services helps to

17

define the sensor network as a network of services. It also helps to increase the flexibility

of software development and deployment. Modular distributed services prevent certain

faults from occuring and allow the creation of custom-made sensors.

A service can produce information for another local or remote service in the net-

work. It can give access or control to a local resource such as a digitizer. A service can

therefore be defined as a data source or resource provider. On the other hand, a service

can "consume" information from another service and can control a resource through its

corresponding service provider. A service can also be defined as a data sink or resource

requester.

Consequently, services are the active elements of a producer-consumer model where

data are created, exchanged and transformed by nodes and users. As the CytoSensor

network is data-centric, each service has a role in producing, sharing, archiving and

transforming the data. Four services are designed to fulfill these tasks: the system

service, the data acquisition service, the data processing service and the networking

service.

3.6.2. Fault-tolerance

The CytoSensor network is designed to provide few fault-tolerant characteristics,

meaning that the network and the sensor nodes can still provide their services even in

the presence of certain failures. Applied to distributed systems, fault-tolerance can be

classified into several types [5], described in Table 3.1. The crash, omission, incorrect

computation and Byzantine types of failure can also apply to the data acquisition or

processing systems.

According to [5], the fault-tolerance of a distributed system is related to the concept

of dependability which includes availability, reliability, safety and maintainability. For the

CytoSensor project, the two most important criteria we consider are the availability and

the reliability. Since the nodes in the CytoSensor network are loosely coupled due to its

FRI

Type of failure Description

Crash failure A node halts, but is working correctly until it halts

Omission failure A node fails to respond to incoming requests

Receive omission A node fails to receive incoming messages

Send omission A node fails to send messages

Timing failure A node's response lies outside the specified time interval

(timeout)

Incorrect computation failure A node's response is incorrect

Value failure The value of the response is wrong

- State transition failure A node deviates from the correct flow of control

Arbitrary or Byzantine failure A node may produce arbitrary responses at arbitrary times

TABLE 3.1: Types of failure in distributed systems

modular design, sensors can be unavailable because of a disconnection from the network

for instance. In a data-centric network such as the CytoSensor network, acquired data

and processed data should remain available to other nodes. The generic technique for

handling such failures is redundancy, and in the case of data availability in a distributed

system, the technique uses data replication.

3.6.3. The system service

The system service is the core service that provides basic operations necessary for

other local or remote services such as the data acquisition or processing. A remote service

can take control of the local acquisition and/or local processing if the latter services are

present. A remote service can also query a node's system in order to know what data is

present locally. This service is a complementary and necessary element linking the more

19

specialized services of data acquisition, processing and communication. Figure 3.5 shows

the system service can monitor its local resources such as CPU, memory, storage space

and can also archive information for the CytoSensor system.

3.6.3.1. The system monitoring operation

In order to manage a node's resources such as the CPU usage, the memory usage

and the mass storage usage, the real-time monitoring of these resources is critical. Gen-

erally, the underlying operating system on which the CytoSensor software runs, provides

needed information. The system chooses the "best" available nodes based on these per-

formance criteria, to distribute the workload in the case of a decentralized collaboration.

Moving or replicating data from one node to another node implies the knowledge of the

amount of available storage space. In the case of the data processing, the CPU and

memory usage are also checked to enable the quickest processing among the available

nodes.

3.6.3.2. The archiving operation

The data management is the most fundamental and shared element of a sensor's

system since every service manipulates data or metadata. Four types of data are stored

in one or several data stores:

. The first type is the acquired data samples or any intermediate processed data,

. The second type is the metadata directly related to the first type,

. The third type is the detection knowledge base used by the processing service,

. The fourth type is the sensor network metrics (latency, throughput) provided by

the communication service.

20

Cytosensor
applications

A

System Service

0) System
Archiving

-o monitoring
operationoperation

"__--.--...-
10)1

II
IL

I1II

ci)

-D
CPU memory

Pass (Datastorage store
devices

FIGURE 3.5: The system service

21

These data stores physically correspond to local mass storage devices such as hard disks

or tapes. A data store can be built on a logical layer such such as a database system.

The implementation of the data management is discussed in section 4.4.1..

Data samples or intermediate processed data can be produced locally by the cor-

responding services. They can also be received from a distant node and stored locally as

replicated data. Whenever acquired or processed data moves from one node to another,

their metadata move accordingly. The metadata provides additional information used

by operators to query and retrieve the corresponding data. Metadata may consist of

timestamps, the sensor identification, the operator identification, the type of cells, etc.

Built-in operations such as incremental, partial and total data backup can be

scheduled or manually triggered by a user. The backup consistently replicates data to

either a separate local mass storage device or a remote node if the source node knows

any online neighboring nodes (see section 3.6.6.4. for the resource discovery operation).

Distributed data backup can be seen as data sharing and it can not only improve data

availability in the network but it can also leverage performance. Data can be acquired

on one node, then backed up onto a second node providing both archiving and data

processing capabilities. Data can then be processed later and faster.

3.6.. The data acq'uisition service

The data acquisition manages and synchronizes the various input and control de-

vices connected locally. As shown in Figure 3.6, two operations compose the acquisition:

. The control of the digitizers and input channel devices, such as the frame grabbers

and the video cameras,

. The control of optional devices related to the acquisition such as the light intensity

control boards and the bar code readers to help track the experiments.

Cytosensor
applications

Data Acquisition Service

Digitizing Device control
operation operation

I I

E
'U)
Ia)

E
(I,

N..Ii
I-a

Digitizers

I

I U)

Ic
1(0

- N '21I I.II
lo I

Input External control
channels devices

FIGURE 3.6: The data acquisition service

23

The data acquisition combines the aforementioned operations to provide a complex

set of functionalities including:

. The detection and the initialization of the existing digitizers and input channel

devices,

. The initialization of the optional control devices: these devices provide an addi-

tional degree of control of the quality of the acquired data samples,

. The synchronization of the data capture process using the active input channels,

with the control devices (e.g. light on/off control),

The archiving of the acquired data and metadata on permanent data storage de-

vices: it may use also compression schemes to minimize the impact on data storage

and on data transfers between the nodes,

. The detection of failures when an input device is damaged or disconnected.

3.6.5. The data processing service

The data processing service is defined by several computation stages or operations

shown in Figure 3.7. The three successive stages of data pre-processing, data mod-

eling and decision-making [6] are generic stages but their implementation is data and

application dependent.

For the CytoSensor system where acquired data samples are two-dimensional im-

ages, complex image segmentation algorithms are applied before the data modeling.

Data modeling uses previous experiments to "recognize" known situations of detection

in order to determine the nature and concentration of an agent. The data modeling uses

the information stored in a local knowledge base to enable the final stage of decision-

making. Various output data at the various stages can be stored and transferred to a

node if necessary.

24

Data pre-
processing
operation

(segmentation)

Cytosensor
applications

Decision-
Data modelling making

operation operation

FIGURE 3.7: The data processing service

Finally, the data processing can compute additional corrective parameters to en-

hance the quality of the acquired data samples. In the case of the CytoSensor project,

a feedback control of the light intensity is developed to improve the quality of the color

image samples. It in turn enhances the data processing and it may improve the results

of the decision-making.

3.6.6. The communication service

The communication or networking service provides core functionalities for the

other services to interact through communication channels. If the sensor node is online,

this service is mandatory. The service lays ground to two communication schemes to

enable data sharing and collaboration among nodes in the network. The two communi-

cation schemes define the operations of this service i.e. the messaging operation and the

data transfer operation shown in Figure 3.8.

25

Cytosensor
applications

Resource
Communication Service discove

and
monitoring

Data Messaging
transfer operation operation

a) Q)> >
o (.)
2 2
-o -o

-o D
a)
(I) (I)

Network Interfaces (Ethernet, radio
transmission...)

FIGURE 3.8: The communication service

26

3.6.6.1. The messaging operation

Using the message passing scheme, a service can be accessed or controlled from a

distant node. The message passing communication model provides a highly flexible corn-

munication feature. Unfortunately, the handling of details such as data representation,

interoperability and failures makes the development of distributed applications difficult.

A standard mechanism called Remote Procedure Call (RPC) hides this complexity

[7]. Originally used as a mechanism for control and data transfers among processes in a

local computer, procedure calls are extended for communication across a network. The

RPC mechanism is based on the well understood mechanism of local procedure calls.

When a procedure is invoked remotely, the calling process (client) is suspended and

parameters are passed to the remote process (server) where the procedure is executed. On

completion of the procedure execution, the results are sent back to the client which then

resumes execution. Several implementations of RPC are discussed in section 4.2.3.4..

RPC is often based on a reliable transport protocol such as the connection-oriented

Transmission Control Protocol (TCP), part of the standard TCP/IP suite.

3.6.6.2. The data transfer operation

The second communication scheme used in our distributed collaborative applica-

tion is the transfer of important collections of acquired or processed data. While messages

enable the control of operations and tasks, an efficient and reliable protocol such as TCP

is used to transfer large amount of data necessary for these tasks. More powerful and

dedicated protocols exist but TCP is the most widely accepted protocol and its behavior

is well-known. For the CytoSensor project, each experiment run typically generates 300

to 1000 color image samples or frames. Each frame has a size of 900kB, providing that a

frame is an uncompressed RGB color image of 640 pixels by 480 pixels. Therefore, an ex-

periment may collect 0.5GB of uncompressed data on the average. If an experiment is to

27

be processed in a remote node, the sequence of frames must be transferred to this node.

Considering the large amount of data an experiment produces, efficient data transfers

may require on high-bandwidth networks and use lossy image compression schemes such

as JPEG or lossless image compression schemes such as PNG, applied to the frames.

3.6.6.3. Peer-to-peer models

In the CytoSensor network, sensor nodes are usually geographically scattered to

collect data before processing them. The sensor network is therefore built around a dis-

tributed data collection architecture. Collected data could then be stored and processed

by a central server. This scheme implies the use of a standard client/server architec-

ture where the clients are the acquisition nodes and the server stores and processes the

data. This scheme though does not allow remote users to access and operate directly

the acquisition node. Moreover, the centralization and the dependency defined in the

client/server model causes the server to become potentially a single point of failure. This

property is a major drawback for the development of a fault-tolerant distributed applica-

tion since critical data must remain available as much as possible. The solution to these

problems is the use of a second model called peer-to-peer (P2P). Peer-to-peer is not a

novel concept as it has existed since the Internet was taking form in the 1970s. The

greatest strengths of P2P-based models are their decreased dependency on the server,

their decentralization of control from servers and an increased network scalability. The

sensor nodes can directly establish connections to other nodes and the role of the server

is restricted to a bare minimum. The relegation of the server to the background could

prevent the situations of bottlenecks, low performance and even denial of service (DoS)

if the server crashes.

A pure peer-to-peer model can be used without relying on any central server.

However this model introduces two shortcomings: first, the resource and node discovery

tends to be long and difficult, and secondly, the network authentication is more complex

to implement. Two hybrid P2P models involve the use of a server that addresses the

latter problems. The first hybrid model uses a simple discovery server providing the

names and network addresses of the online sensor nodes. A node notifies the discovery

server by logging in and therefore it enables an easy authentication scheme for the sensor

network. In the second hybrid model, a discovery and lookup server is used to provide

the list of connected peers along with the resources and services available with each of

them. The major advantage of the second model over the first model is the reduction

of burden on peers, since there is no longer a need to visit each peer personally to look

for the required resource or service. Even though such a model depends on a server, it

improves considerably the performance of the resource discovery process.

3.6.6.4. Resource discovery and monitoring

Although the RPC mechanism can be used in the discovery and monitoring of

network resources, lightweight, unreliable, connectionless protocols such as the User

Datagram Protocol (UDP) can also be used. Datagrams are messages that are sent to

a single destination node (unicast), without obtaining acknowledgement of receipt of

the transmission. Therefore UDP packets could be discarded or delayed as explained in

[8]. Since monitoring resources is an operation performed on a regular basis, UDP is

well-suited for this task.

As discussed in section 3.6.6.3., resource discovery can be greatly improved by the

use of a simple lookup server. Yet another resource discovery improvement in a decen-

tralized system is the use of multicast protocols. In a packet switch network, multicast is

a technique that allows data to be simultaneously transmitted to a selected set of nodes,

usually without acknowledgement of reception. IP-based networks support multicast

by allowing a network interface to belong to one or more multicast groups: for IPv4,

multicast IP addresses range from 224.0.0.0 to 239.255.255.255 (Class D IP addresses);

for IPv6, the 128-bit multicast addresses consist of a byte of ones (255) followed by a

29

4-bit flag (permanent or not), a 4-bit scope (subnet to worldwide) and a 112-bit multi-

cast group identifier. In a multicast-enabled network, multicast resource discovery and

monitoring can save bandwidth and it can simplify the search of "nearby" resources.

Although this mechanism is more fault-resilient than the use of a central lookup server,

the lookup system can outperform multicast in certain networks. Therefore a hybrid

discovery strategy is designed and represents a trade-off between performance and fault-

tolerance. The strategy is defined by three steps used successively if a preceding step

fails:

1. A resource locator table is locally used to locate a remote resource. This table

stores the location of remote services and data in a local cache managed by the

system service of a sensor node. The local table keeps track of resources located

at the neighboring sensors.

2. If the first step fails, a discovery and lookup server is queried by the sensor to find

the resource and download the corresponding information into the local service

locator table.

3. If the second step fails, a mechanism called expanding ring is started to discover and

contact unknown sensor nodes. The expanding ring algorithm is carried out using

multicast. It increments the time-to-live (TTL) value of the multicast packets at

each search iteration until a CytoSensor node is found. The latter node transmits

its resource locator table back to the requester node. If no node is discovered after

a maximum number of iterations, the expanding ring is stopped and the sensor

failed to find the resource.

The expanding ring technique does not announce a resource but rather finds a resource,

either the requested remote service or the data. In contrast, the user directory algorithm

uses expanding-ring search to announce resources; however, it will not be considered for

the CytoSensor for simplicity purposes. Moreover, in order to help monitor resources of

30

the sensors, message updates can be sent to the discovery and lookup server and neighbor

nodes using unicast messages.

3.6.6.5. Identification

Each sensor node is required to have a permanent and unique ID used to track

the node and its data. The metadata, the acquired data and the processed data use the

ID to keep track of their origin. If the node changes location in the infrastructure, its

network address changes but the ID stays identical.

A data sequence is identified using its source sensor ID and the timestamp (date

and time) of the first frame. Each data sample in a sequence is identified by its time offset

or its index in the sequence. In order to ensure data consistency across the CytoSensor

network, a hash key could also be computed for each sequence based on a message digest

(MD) algorithm. Message digests are used to calculate a unique checksum from any kind

of data. The calculation is one way i.e. that it can not be reversed. It is theoretically

impossible to compute the same fixed-length binary message (or key) from two sets of

data differing by one single bit. The two most popular message digests are the Secure

Hash Algorithm (e.g. SHA-1), Message Digest (e.g. MD5, RIPEMD-160). They not only

provide unique identification but also a validity check of the data across the network.

Message digests are also easy and fast to compute, and they are implemented in most

major programming languages and environments. The main weakness is the risk of data

and digest forgery, but this problem can be alleviated by applying an encryption scheme.

3.6.6.6. Security

The CytoSensor network not only interconnects sensor nodes but also human oper-

ators from the Internet or from a large intranet. In order to ensure privacy and counteract

possible forgeries, the nodes have to enable the exchange of encrypted and authenticated

31

messages as well as encrypted data. Among cryptosystems, there exist two types: the

secret-key and the public-key.

In secret-key cryptography, also referred to as symmetric cryptography, the same

key is used for both encryption and decryption. The most popular secret-key cryptosys-

tern in use today is known as DES, the Data Encryption Standard.

In public-key or asymmetric cryptography, each CytoSensor node has a public

key and a private key. The public key is made known while the private key remains

secret. Encryption is performed with the public key while decryption is done with the

private key. The RSA (Rivest, Shamir, and Adlernan) public-key cryptosystem is the

most popular form of public-key cryptography.

In a secret-key system, the secret keys must be transmitted either manually or

through a communication channel, since the same key is used for encryption at the sender

and for decryption at the receiver. A serious concern is that an the secret key may be

discovered during transmission. By contrast, the advantage of public-key cryptography is

increased security and convenience: private keys never need to be transmitted or revealed

to anyone. Another major advantage of public-key systems is they can provide digital

signatures that cannot be repudiated. Authentication via secret-key systems requires

the sharing of some secret and sometimes requires trust of a third party as well. As a

result, a sender can repudiate a previously authenticated message by claiming the shared

secret was compromised by one of the parties sharing the secret. A disadvantage of using

public-key cryptography for encryption is speed. There are many secret-key encryption

methods that are significantly faster than any currently available public-key encryption

method. Nevertheless, public-key cryptography can be used in combination with secret-

key cryptography to get the best of both worlds. For encryption, the best solution is to

combine public and secret-key systems in order to get both the security advantages of

public-key systems and the speed advantages of secret-key systems. Such a protocol is

called a digital envelope.

32

3.7. User interfaces and presentation

The control of the various operations and the presentation of the results [9] are

part of the task layer. A task coordinates the distributed services by triggering events.

The services fire events to control the flow of actions of a task. These events include

manual events triggered by operators of the CytoSensor network. An operator fires

events through user interfaces to control a task. Several user interfaces are developed

to control the data acquisition and processing services as well as the data transfers.

3.8. Component diagram

The services and operations compose the middleware of the CytoSensor infras-

tructure. In Figure 3.9, the component diagram shows nine major operations divided

into four modular services that can be manipulated across the network and through user

interfaces.

The operations are the middleware interfaces to the hardware layer. They provide

the basic features to the aforementioned services. A short review of the nine main

operations is given below.

System monitoring provides metrics on the local system performance such as the

CPU, memory and mass storage usage.

Archiving manages data on permanent mass storage devices. It controls the file systems

and databases through the underlying operating system.

Data transfers enable the movement of data from a remote sensor to the local system.

They download sets of data; if data need to be uploaded, for a backup for instance,

a message is sent to the archiving node telling it to download the data. The

transmitted data are typically image files for the CytoSensor network.

33

Tasks
4 Middleware and

User interfaces
Operations -Services

r--LSystem monitoring
operation

hivin oper

Data
transfer operation

essaging operation

Digitizing operation

Dece ctropeion

Data pre-processing
operation (segmentation)

;peration
JII

Decision-making
operation

System Service

(mandatory)

Communication
Service

(mandatory only t the
risonli)

FIGURE 3.9: Component diagram of the CytoSensor services and operations

34

Messaging is a core operation allowing sensor nodes to communicate. The protocol

used needs to be interoperable in order to interconnect sensor services developed

in various operating systems and languages.

Digitizing controls the acquisition of data samples at regular intervals. For the Cy-

toSensor project, it initializes and accesses CCD cameras and frame grabbers that

digitize two-dimensional color images.

Device control is used and synchronized by the digitizing operation to control and

enhance the data acquisition process. For this project, various serial bus devices

are developed to control the light intensity necessary for the optical image capture.

Data pre-processing is the first operation of the data processing service. It processes

the acquired image samples of a sequence using application-specific segmentation

algorithms.

Data modeling is the second operation of the data processing service. It computes a

statistical models using time series techniques.

Decision-making is the third and last operation of the data processing service. It

matches the current model to existing scenarios stored in a knowledge base, and

produces the final detection result.

3.9. Interaction diagrams

The previous design elements of the CytoSensor network have been explained and

described as the modules. The following diagrams show the interaction of the services

and operations inside a specific sensor node. Diagram 3.10 shows a data acquisition

sensor node, whereas diagram 3.11 describes a data processing node and diagram 3.12

shows a data archiving node.

35

In Figure 3.10, a message is received by the data acquisition node from another

node on the network. This message requests the node to start acquiring at a certain sam-

pling rate. The data acquisition service is then notified and starts the task accordingly.

The data and metadata are next archived by the system service, and shared at the same

time to let the remote sensor download it through the communication service. In Fig-

ure 3.11, a data sequence is downloaded from a remote sensor node. While the download

operation is in progress, the data processing service starts computations. Intermediary

processed data are stored by the local system service. The results are shared with the

rest of the network and can be safely downloaded by other nodes. In Figure 3.12, the

archiving node is used to store and view the data. A local operator can send a message

to a data acquisition node to start data collection. Each data sample is then available

for download. The operator can choose to process the data using a third node with a

data processing service. The acquired and processed data are then available for down-

load from the third node. The operator can choose the type of information (acquired,

processed) to be displayed on the local archiving node.

36

CytoSensor Acquisition Node

Forinstance:
in a vision- Application-specific
based User Interfaces
sensor,
it is
composed of
camera(s) Display
and frame & Control
grabber(s)

Sensor
Digitizer

IArray

cesve Acquisition
L Data samples

Control
Service & metadata

control

For instance:
external USB Store data
devices samplessuch as light Notifications and Archive
intensity & Control metadata (data store)
control messages on mass
board(s) storage

device(s)

I

System

Communication Service

with resource discovery and network Data samples
monitoring

j I

ansfersfers

Network

FIGURE 3.10: The acquisition sensor node

CytoSensor Processing Node

Application-specific
User Interfaces

Display
& Control

re-processing

odeIIing
Processing

I

Service I

sion-making

Notifications
& Control
messages

Communication Service

with resource discovery and network monitoring

(transf)

Network

Acquired and
processed

data

Store data
samples and
metadata on

mass
storage

device(s)

FIGURE 3.11: The processing sensor node

Archive
(data store)

System

Acquired and
processed

data

37

CytoSensor Archiving Node

Application-specific
User Interfaces

1

Display
& Control

Archive
(data store)

System ervice

Notifications
& Control
messages

Communication Service

with resource discovery and network monitoring

Network

FIGURE 3.12: The archiving sensor node

39

4. IMPLEMENTATION

Following the specifications and the design guidelines described in the previous

sections, an implementation of the CytoSensor is discussed. The implementation starts

with the selection of the hardware platform used as a base for the software development.

The software development is therefore limited to the hardware capabilities and the goal

here is to create a set of reusable libraries and tools that can be deployed across platforms

and programming languages.

4.1. Hardware integration

In order to stay flexible during the development cycle of the CytoSensor, a general-

purpose platform is selected which meets the hardware requirements necessary to imple-

ment the services described in section 3.6.. As listed in Table 4.1, these requirements

can be met by a modern PC workstation. They include a powerful CPU, large RAM

memory, a hard disk, and additional connectivity for communications.

Services Hardware requirements

System Large hard disks

Communication Network interfaces including LAN Ethernet and wireless op-

tions

Data Processing Powerful and industry-standard CPU, memory (extendable)

Data Acquisition - Digitizers: image frame grabbers for image acquisition

Input devices: CCD color cameras

- Control devices: external programmable boards

TABLE 4.1: Hardware requirements by service

40

FIGURE 4.1: An embedded stand-alone vision platform: the Matrox 4Sight

4.1.1. The Matrox 4Sight platform

One key element that characterizes the sensor is its portability. Therefore the PC

machine should have a small footprint and high connectivity to enable its mobility. After

careful search and tests, an industrial vision system was selected. The Matrox 4Sight

combines embedded PC technology and compactness in a rugged enclosure as shown

in Figure 4.1. This stand-alone platform offers the same performance as a desktop

PC, and integrates image capture, processing, display, networking and general purpose

I/Os. In order to easily communicate with the hardware elements, a robust, low-cost

and industry-standard operating system called MS Windows NT (version 4 and 5) is

used. This operating system provides a common architecture to attach various types of

hardware through the Hardware Abstraction Layer (HAL).

The platform provides various powerful frame grabbers to enable standard ana-

log color video acquisition. The Matrox 4Sight integrates various compatible Matrox

frame grabber products such as the Meteor, Meteor-Il and Orion cards using the small

footprint, industry-standard PC/104 form factor. Several different frame grabbers are

used for different CytoSensor prototypes to adapt to the changing needs of the data

acquisition.

41

The Matrox computer contains an Intel Pentium class microprocessor, 256MB of

RAM, a 6GB IDE hard disk which allows to archive locally up to 15 sequences (or experi-

ment runs) of 400 uncompressed image samples each. Additional connectors such as USB

ports, serial ports (RS232, RS485), a parallel port, IEEE 1394 ports (FireWire), display

(VGA/TV) and Ethernet (RJ-45) ports are also present on this platform. They bring

flexibility and allow evolution in the development process of the software components.

4.1.2. The Euresys frame grabbers

One of the goals of the project is to create a large knowledge base of agent "signa-

tures" used by the detection algorithms. To this end, multiple experiment runs should be

carried out simultaneously using the same sensor. A multiple-camera acquisition system

is then integrated into a single sensor machine. As the sensor is to be used mainly in

microbiology and bioengineering research labs, the machine does not need to be highly

portable, so a regular PC can be used. This choice offers more options in terms of selec-

tion of a powerful and low-cost multichannel acquisition devices. The Euresys company

allows the use of expandable PCI frame grabbers through its Picolo Pro family of prod-

ucts, shown in Figure 4.2. The various types of acquisition hardware also motivate code

reuse in order to minimize the impact on software development.

4.1.3. Cameras, optics and chamber holders

In order to acquire image samples, small size CCD color cameras are used. They

produce high-quality, high-resolution images of the microscopic living cells, which in turn

supply the necessary data for processing and detection. In addition, high quality optics

are used to magnify the cell image and focus in random areas of the cell holding vial, with

the field of view ranging from (0.5mm)2 to (1.5mm)2 depending on the sensor prototype.

The vial is a small sealed chamber containing the living fish cells at the bottom. The

42

FIGURE 4.2: The expandable multichannel Picolo Pro acquisition card from Euresys

chamber holder in which the vial is placed may be equipped with switches capable of

detecting the presence of a vial. This helps the operator and the sensor to minimize

experimental errors before or during the process of data acquisition. Figure 4.3 shows

the arrangement of the different elements of an input channel unit based on the A polio-Il

prototype described in section 4.1.5.3..

The cameras used can produce various standard video signals ranging from the

NTSC RGB signal for the single channel prototypes to the NTSC Y/C (S-video) for the

multichannel prototype.

4.1.. Control devices

Throughout the CytoSensor prototypes, control devices are developed to carry out

specific and important tasks such as light control, pump control, switch change detection

and sample ID using a bar code reader. The devices are external boards integrating a

programmable microcontroller for which a specific firmware is developed. They are

connected to the sensor (Matrox 4Sight platform) using standard USB or serial (RS-

232) ports. The devices are controlled by the acquisition service and they enable duplex

LED

Switch

Mirror(45 Front
surface turning)

IIWUFdV flUIUI

Mlcro-swltchforthe cell
containter detection

. ED
Aperture

I LENS(Bmm.Ø
L.L_LJI 124m,FL

Hastling triplet)
Extension

Extension Camera

Remark total path length:
lens to CCD 15cm.

Camera
connector

43

FIGURE 4.3: Typical input channel unit elements based on the Apollo-IT prototype

communications in order to access the status of operation. The development involves

programming microcontrollers or PlC (Programmable Interrupt Controller) to perform

specific tasks such as setting the intensity of light for the vial. The PICDEM USB board

from Microchip used in the Apollo-TI prototype uses the PlC 16C765 (Figure 4.4).

4L1.5. Prototypes

Since the beginning of the project, several steps in the development of the Cy-

toSensor have been developed and they have resulted in three major successive stages

called Mercury, Gemini and Apollo.

4.1.5.1. The Mercury prototypes

The Mercury family of prototypes shown in Figure 4.5 is the early stage of de-

velopment where various cell chambers are tested and a high magnification is used. An

external light is used but it tends to change the image quality from one experiment run

to another. Using the Matrox 4Sight platform, the image acquisition library is based

FIGURE 4.4: The PlC 16C765 from Microchip is used on a USB board to control the
light of an input channel unit for the Apollo-IT prototype

only on the Matrox Imaging Library (MIL). Together with the data processing library,

the libraries are integrated into a MS Windows application called CytoSoft. The acqui-

sition library is at this point hardware-dependent, data and metadata are stored locally

as uncompressed image files.

4.1.5.2. The Gemini prototypes

The Gemini prototypes (Figure 4.6) capture images from an increased cell area

(lower magnification) with a different type of cell chamber. Several configurations of

light are tested such as the use of indirect or direct light through the chamber.

FIGURE 4.5: A Mercury prototype

4.1.5.3. The Apollo prototypes

I

_1

45

The Apollo prototypes define the most recent stage in the development of the

CytoSensor. The Apollo-I prototype uses a single channel to capture high resolution

RGB images of living cells located in a sealed vial. As shown in Figure 4.7, the input

-

FIGURE 4.6: A Gemini prototype

46

,.- Chamber Housing

Detector
Light system

rdThi fl LE:JTo Matrox Unit
< Extender(5 mm.)f Aperture Controlf Lens

Camera Fixture

Extender(25+ mm.)

mera

FIGURE 4.7: The input channel unit of the Apollo-I prototype

channel unit is composed of a vertical stand, a Pulnix CCD camera, a set of extenders,

lenses and an aperture to control the depth of field.

The Apollo-I prototype also uses a light ring of 6 LEDs controlled by a microcon-

troller. The PlC allows the operator to switch on and off the lights, change the intensity

level and check the status of the LEDs and the current they draw. The complete Apollo-I

sensor is shown in Figure 4.8.

The A poiio-ii prototype is an enhancement of the Apollo-I prototype. It allows

the acquisition of up to 12 simultaneous experiment runs and the aim is to help build a

knowledge base for the detection of broad variety of agents and concentrations. Figure 4.9

shows the sensor, its touch panel and a USB hub connecting two input channel units.

The Apollo-Il sensor uses a Matrox 4Sight platform equipped with a Matrox On-

on/Dual frame grabber capable of sequentially acquiring from up to 12 NTSC Y/C

(S-video) video sources. As shown in Figure 4.10, each input channel unit is composed

47

FIGURE 4.8: The complete Apollo-I prototype

of a CCD color camera (640 by 480 pixels), optics, a chamber holder, an LED light ring,

switches, an LED status and USB board integrating the Microchip PlC 16C765. The

latter controls through an 12C bus the LED intensity of the light ring. It also controls the

LED status, it checks various switches such as vial detection switch and it communicates

with the Matrox 4Sight platform through its USB interface.

4.2. Software development and integration

.2.1. Development tools

After the selection of the hardware platform for the development of the sensor

prototypes, tools for the software development have to be chosen. As the Matrox 4Sight

platform integrates the widely-used and general-purpose operating system MS Windows

NT, the development uses the language C/C++ and the Visual Studio (6.0) tools. Both

of them allow us to easily produce effective applications and libraries.

FIGURE 4.9: The Apollo-TI prototype with two input channel units

FIGURE 4.10: An Apollo-TI input chaimel consisting of a CCD camera, optics, a
chamber holder and a USB board

49

In order to control the hardware such as the TJSB control devices, the hard disks

or the network card, low-level libraries are provided by the operating system in the

form of Application Programming Interfaces (API). In the case of non-generic tasks

such as the acquisition from a Matrox or Euresys frame grabber, the manufacturer of

the device provides the API to control it. The Matrox frame grabbers use a common

library for acquisition, display and buffer management called the Matrox Imaging Library

(MIL); and the Euresys products integrate a native library called the MultiCam API.

The CytoSensor middleware libraries then use these APIs to develop the functionalities

specific to the operation and service. The middleware libraries can therefore be described

as the link between the hardware and the applications. The goal is to produce a set of

reusable code that can be used across sensor platforms and with various hardware. At

the same time, since different types of sensors tend to expose the same basic operations

and services such as digitizing, archiving and transferring data, the middleware libraries

attempt to create a set of reusable code for a broader class of sensors. To achieve

hardware independence, the middleware libraries have to create a common abstraction

layer. While Windows NT provides such a layer for operations such as networking,

mass storage access, serial and USB communications, no abstraction exists for the data

acquisition from industrial frame grabbers. Some efforts by Microsoft have designed

and produced an unfinished Software Development Kit (SDK) called the Vision SDK.

It enables the selection, initialization and use of various image sources, and its greatest

strength is its extensibility to unknown hardware. The Vision SDK is extended to control

the Matrox Meteor, Meteor-IT and Orion/Dual cards as well as the Euresys Picolo Pro

cards. Finally, the Driver Development Kit (DDK) is used to develop the control device

library for the management of USB transactions with the external PlC devices.

50

.2.2. Techniques

As described in section 3.6.1., the operations and services have a modular struc-

ture. The process of the CytoSensor software development is an iterative and incremental

development process. It consists of an elaboration or design phase and a construction or

implementation phase. The implementation itself consists of many iterations in which

each iteration builds tested and integrated software that satisfies a subset of the require-

ments of the project. In order to help the maintainability of the CytoSensor project,

a set of rules should be followed from the design to the implementation. Therefore a

standard object modeling language called the Unified Modeling Language (TJML) [4] is

used. Together with the Object-Oriented Design (OOD), it eases the team development

of the complex distributed CytoSensor applications.

Finally, a Concurrent Versions System (CVS) is deployed to let the developers

safely share, update and correct different pieces of the libraries. Integrated with the

MS Visual Studio development tool, the MS Visual SourceSafe is a project-oriented

version control system that allows to keep track of the various versions of the CytoSensor

applications and libraries.

4.2.3. Core technologies

Many different software aild hardware technologies are used in the CytoSensor

at different levels of the development. These technologies are in general recognized as

industry-standard tools to create programs, control hardware devices, exchange infor-

mation between application processes.

51

4.2.3.1. Standard Template Library

Operations and services that do not provide User Interfaces (UI) use the Stan-

dard Template Library (STL). This library is compliant with the standard C++ and it

provides a standard I/O library and a set of generic data structures called containers

(vectors, linked lists, queues, stacks...). STL-enabled code can then be reused on other

platforms such as Unix and Windows.

4.2.3.2. User Interfaces

The presentation of coherent information is made possible through the use of User

Interfaces (UI) specific to the platform of development. For instance, MFC (Microsoft

Foundation Classes) are used to build standard Windows interfaces for the operators

of the CytoSensor. Platform and language dependent libraries such as MFC should be

used only for the development of user interfaces in order to reduce the dependability on

specific systems.

4.2.3.3. Information encoding scheme

A common data encoding scheme must be used to consistently encapsulate the

data and messages in order to enable interoperability across heterogenous sensors nodes.

A widespread information encoding scheme on the Internet is the eXtensible Markup

Language (XML) which is well understood and implemented across many platforms.

XML is a simpler version of the SGML (Standard Generalized Markup Language) and

the two basic operations are parsing and building XML documents. XML can be used

to encode messages for a message-passing scheme such as the XML-RPC described in

the subsequent section.

52

4.2.3.4. Interprocess Communications

The services are part of the CytoSensor middleware libraries that are integrated

into local processes or running tasks. Since the services are designed to interact between

each other and with the hardware, these processes must communicate either locally or

remotely through communication channels. Three classes of Interprocess Communication

(IPC) are used with the CytoSensor.

Communications between the local processes: The first class involves the use of

local synchronization objects. These objects are usually fast kernel objects part of

the multitask-enabled operations systems. On Windows NT and Unix, such core

objects are mutexes, semaphores, critical sections (very fast) and events. These

objects are used for the synchronization between the operations of a service such

as the digitizing operation and the control device operation. Each operation and

service can use one or several threads of execution that can be controlled using

the kernel objects. Besides the critical sections, these objects can be used to

synchronize processes on a local sensor. Providing separate processes for the user

interfaces and the core services can prevent faults from occuring if a local operator

misuses an application. Other forms of interprocess communication are the shared

memory and the pipes that provide a mechanism to exchange large amount of

data between processes. Pipes can be used across local and remote processes, but

network sockets are preferred because they can work on various types of network

and machine. Shared memory is integrated into the Vision SDK to share acquired

images in memory. This allows other local processes such as the data processing

service to quickly access the images without using the slower hard disks.

Serial communications with the control devices: Communications are also devel-

oped between the control device operation running on the Matrox 4Sight and the

control device firmware running on the PlC. The communication channel is the

53

RS-232 serial bus for the Apollo-I prototype and the USB 1.1 bus for the Apollo-Il

prototype. Windows NT defines HID (Human Interface Device) classes to access

and control USB devices. The firmware communicates with the HID USB driver

which in turn communicates with the CytoSensor middleware libraries.

Communications between the remote processes: Two tasks on two distant sen-

sors can exchange information through a wired or wireless communication channel,

using sockets. The standard Berkeley sockets use the TCP/IP protocols as they

have better overall performance than named pipes, especially on slower networks.

Built on top of the TCP/IP protocols, additional protocols implements the Remote

Procedure Call (RPC) scheme discussed in section 3.6.6.1.. The protocols are in

general platform-dependent, such as CORBA for Unix, COM+ for Microsoft and

Java RMI for Java. Used as a message passing scheme between network sensors

on the Internet, two web-based protocols called SOAP (Simple Object Access Pro-

tocol) and XML-RPC add more flexibility of use across platforms and languages.

The XML-RPC protocol is selected for the development of the messaging operation

because the protocol is lightweight and easy to use in applications but it allows the

exchange of complex data structures. XML-RPC uses the universal HTTP as the

transport protocol and XML as the data encoding scheme.

4.2.4. Architecture

The development of the Mercury and Gemini prototypes lead to the architecture

for a single channel data acquisition, archiving and data processing system called Apollo-

I (Figure 4.11). The CytoSoft application integrates all the services into a single user

interface accessible with a touch panel. The CytoGrab application only acquires and

stores images but it is based on a common middleware libraries called CytoCore. The

libraries comprise the image digitizer and display, the device control, the archiving man-

54

agement (data store) and the data processing. Two separate Windows NT services called

CytoMonitor and CytoScheduler provide networking functionalities. The former moni-

tors the system resources (e.g. CPU and memory usage) using the performance counters

provided by the Windows NT kernel; and it broadcasts this information to a multicast

group for the other CytoSensor nodes. This mechanism serves both to announce the

resource information on the overlay network and to discover new sensor nodes. But

several multicast-enabled routers must be available in order to take advantage of this

mechanism, therefore the latter is not used in the subsequent Apollo prototypes. Also a

Windows NT service, the CytoScheduler application performs scheduled tasks of trans-

ferring the data from the local sensor to a backup server or to any other node. The

data can be automatically transferred daily, weekly or monthly. Both CytoMonitor and

CytoScheduler can be controlled using a control panel applet.

The Apollo-Il architecture in Figure 4.12 shows the latest work where the multi-

channel data acquisition service libraries, the communication service libraries and the

system service libraries are separated from one another. These modular middleware li-

braries are built on hardware and operating system dependent APIs such as MIL, VFW

(Video For Windows) or the file system. The major difference with the previous archi-

tecture is the use of the MS Vision SDK for the data acquisition to control multiplexed

input cameras, the use of control devices on a single USB bus, the use of XML-RPC and

a HTTP server for the communication service, and the use of a MySQL database for the

archiving operation.

4.3. Image acquisition and device control libraries

The development of the image acquisition libraries is divided into two categories of

prototypes: the single channel image acquisition prototypes and the multichannel image

acquisition prototype.

I
-

j
)

.
5

C
'
-
)

0
1
1

S
So

0

I
1
0

(
1
)

0o
-
J

(
g

0

91
O.

.

>'
3
)

E

.
2

-
o

Tasks
_______C

ytoS
ensor_____

and
4

M
iddlew

are
U

I

5
5

FIG
U

R
E 4.11: Softw

are im
plem

entation architecture for the A
pollo-I sensor prototype.

It inherits from
 the previous M

ercury/G
em

ini prototypes

+
1

Coo,
o_ ;;-

Cl)

Ij

C/D
0

-
CD U)

H

ii

CD :D)
Cl))

CD

I.'

Control Panel 4AppletMCytoSoft

I _______
Data Acquisition Service IN

LibrariesLilyanes
Communication Service

[L System Service Libraries

I Digitizing I\ I Control Data
SystemvingI

& Display Device Messaging

Libra Librar

L
Library

Library

L

Archi
Monitoring

transfer

File server

LMYSQL
N

L

Vision SDK XML-RPC (HUP) API

___________ HTTP-4-SSI

M1L Picolo VFW

OQ)

go

Frame grabbers
(Matrox,

Euresys Picolo)

CCD color
cameras
(Pulnix)

Fi Perfoance
USS HID

System
JJ

Soets Lnters
__-----..-.

U)

c_)

_____Im[
0

CD
CD Network Interface Card h I Hard N memory(Ethernet LAN) [CPU

L Ldisks jC

IcI
II0)

External Sensor
control
devices

L
Neork

(PlC)
C_TI

57

,

t.m .4

FIGURE 4.13: CytoSoft displays real-time acquired images of microscopic cells

4.3.1. The single channel image acquisition

The development of this important part of the software starts with the Mercury

prototype, then the image acquisition is adapted for the Gemini prototype and a mature

and stable architecture is used for the Apollo-I prototype. The latter controls a single

color high-quality CCD camera plugged to the Matrox 4Sight. A unique control device

composed of a PlC controling a LED light ring around the chamber communicates with

the image acquisition library through the RS-232 serial bus of the Matrox 4Sight. The

intensity level of the LED light is controlled by the software. Flashing low-power LEDs

are used in lieu of regular flash lights to reduce the effects of heat on the living cells in the

chamber. The LED flashes are synchronized with the image captures taking place at a

constant sampling rate chosen by the operator before an experiment starts. The operator

controls the processes of data acquisition and processing using CytoSoft, a simple user

interface shown in Figure 4.13 and Figure 4.14.

58

r-i

t.

FIGURE 4.14: CytoSoft processes acquired images and visually presents detection
results (colorful grid)

The CytoGrab and CytoSoft applications use a separate thread to perform the

responsive image capture on a preemptive scheduling operating system such as Windows

NT. On Windows NT, the time quantum, defined as an assigned CPU time unit, cannot

be less than lOms for high priority threads. In reality, when the applications capture

images every 2 seconds, a timing error not greater than 5Oms is introduced. This timing

error is tolerable since the cell changes occur gradually and span over several minutes.

But a major issue is the time drift that can potentially be introduced at each capture

of image samples. To avoid the problem and acquire in the real time, the delay between

two image samples is not calculated using the prior image sample's absolute timestamp

but rather by using the first image sample's absolute timestamp. Therefore the timing

error is bounded and its impact is minimal.

Finally, the Apollo-I prototype implements the data acquisition operations de-

signed earlier but it lacks a solid device-independent data acquisition in order to use

59

the applications on different data acquisition platforms. The device independence is

attempted with the latest prototype, the Apollo-IT.

4.3.2. The multichannel image acquisition

The Apollo-Il prototype introduces a major change for the image acquisition plat-

form: multiple cameras acquire images from several simultaneous experiment runs. The

platform must operate 12 color video channels. To realize this with a relatively low-cost

and compact solution, the video quality is lowered by choosing cameras delivering a

NTSC Y/C video signal and a resolution of 640 by 480 pixels. Two frame grabbers are

tested before one of them is selected: the Matrox Orion/Dual frame grabber and the

Euresys Picolo Pro frame grabber. In order to find the most suitable hardware platform

in a short time, the image acquisition operation relies on the MS Vision SDK libraries

that allow to enable various image sources such as the Matrox frame grabbers and the

Euresys frame grabbers. The MS Vision SDK offers a common and fast substrate to the

CytoSensor middleware image acquisition libraries. However the actual version of the

Vision SDK is limited to the VFW (Video For Windows) compliant cameras and the

Matrox Meteor frame grabber. The Image Source library is therefore extended to accept

the Matrox Orion/Dual frame grabber and Euresys Picolo Pro frame grabber.

On the Matrox Orion/Dual frame grabber, the input channels are multiplexed.

The captures are therefore sequential and the use of multiple threads concurrently ac-

cessing their associated channel yield poor performances. Using the thin Vision SDK

layer, the CytoSensor image acquisition library uses a single thread to sequentially cap-

ture still images from the 12 cameras. Each capture from a single channel takes 4Oms

and the channel switching adds another 4Oms in order to synchronize the digitizer onto

the video input signal. Adding the MIL library overhead and the transfer delay of the

image into the host (Matrox 4Sight platform) memory, an image capture from one chan-

nel takes around lOOms in reality. Therefore with 12 channels, 1.2 seconds is necessary

60

to grab a round of 12 images. The smallest sampling time interval unit that an operator

can choose is 2 seconds for the Apollo-IT prototype. For each channel, a custom sampling

interval is selected as a multiple of 2 seconds. At each round, the images from the 12

channels are captured and only the images satisfying their sampling rate condition are

stored on the hard disk. This process ensures that the time interval between image sam-

ples of a channel is respected and the timing errors are minimized even for experiments

running for hours.

Each input channel unit is composed of a camera, optics, a chamber holder, an

LED light ring around it, a switch to detect the presence of a vial, a manual switch and

a USB board. The Microchip PlC 16C765 is integrated onto the USB board to control

the light ring and the switches, and it communicates with the Matrox 4Sight platform

through the USB bus. The data acquisition library identifies, initializes and accesses

each USB device using the standard HID driver provided by the Windows NT. Various

commands can be sent from the host to the USB device:

. Switch the light on or off,

Switch the light on, wait a given amount of time (e.g. 50 ms) then switch off the

light,

Set the global intensity level (between 0 and 100) of the light,

Get the actual global intensity level,

Get the status of the light ring (on, off or unknown),

Get the status of the manual switch (pressed or unpressed),

Check whether or not a vial is present in the chamber holder,

Perform a full diagnostic test on the hardware controlled by the board (LED light

ring, switches...)

The USB device can report status changes or events:

61

The manual switch is pressed or

A vial is inserted into the holder or

The vial is removed from the holder.

These commands and events are packed in messages called report descriptors transmit-

ting 2 bytes of data each.

4.4. Communication and system libraries

The Apollo-IT prototype also defines two libraries used to enable the distributed

collaboration between sensors across the network. The first two sections describe the

archiving operation and the system monitoring of the system service. Finally the im-

plementation of the three major components of the communication service (messaging,

data transfers and resource discovery) is exposed.

4.4.1. Data archiving

The early Mercury, Gemini and Apollo-I prototypes implement the archiving op-

eration using exclusively image files physically stored on a local hard disk of the sensor.

An new experiment creates a new disk folder where the image frames are saved un-

compressed. The metadata such as the sensor ID, timestamp and time offset used to

identify each frame, are written directly in the corresponding file name. The Apollo-TI

prototype stores and accesses its data using both the file system and a MySQL database.

MySQL is an efficient and reliable relational database system that allows to store the

metadata and other information such as the network metrics (latency, throughput) and

credentials. MySQL can also be used on many different platform and languages and an

embedded version allows to integrate a small database into the system service libraries.

The image files are still stored in folders on the hard disk. But a feature is added: in

62

order to identify consistently the sequences of data, a fixed-length hash key is computed

for the sequence using the fast MD5 algorithm. It is based on the data contained in

the image frames of the sequence. When the sequence is transferred from one node to

another, the hash key is used for validity check and it ensures that the data from the

source node is identical with the data on the destination node. The MySQL database

can be concurrently accessed and updated by the local data acquisition service, the data

processing service, the system and communication service. Retrieving data based on its

metadata is made possible by using the Structured Query Language (SQL).

4.4.2. System monitoring

The system service monitors the local resources of the sensor using the underlying

API of the operating system. Windows NT updates its resource information through

its performance counters. These counters store dynamic system information such as the

current CPU usage workload, the current memory usage the space available on the hard

disks. Some general networking metrics are also updated in the Windows NT counters.

But statistical information (average throughput, average latency) for each sensor are

preferred, therefore the information is collected by the file server (HTTP) under the

communication service.

4.4.3. Messaging technology

As described in the design section, the message-passing scheme is an essential el-

ement in building a collaborative network of sensors. Several technologies have been

previously discussed and XML-RPC is the messaging protocol implemented in the Cy-

toSensor network. XML-RPC is based on the XML encoding scheme and the HTTP

protocol. A real advantage of this mechanism is the interoperability between networks,

platforms and languages. Using the small XMLRPCPP library implementation for C++,

63

a Windows application on the Matrox 4Sight can easily integrate a XML-RPC server

and client stub to access other XML-RPC servers. An Internet user can easily communi-

cate with the Matrox 4Sight sensor node using a Java applet loaded with the XML-RPC

client class package.

First an XML message request is built specifying the remote procedure (or method)

name and its parameters using special XML tags defined by the XML-RPC specifica-

tions. The major parameter types include the numerical values (integer, double...), the

character string, a structure of any complexity (nested or not) and the array. Then the

XML message is wrapped up into a HTTP packet. The latter is transmitted to the

sensor node identified by its IP address, port number (the default is 80). The message

must be posted onto the "RPC2" service of the XML-RPC server. The HTTP packet

is unwrapped and the XML message is parsed. The XML-.RPC server calls the specified

method and a message reply is computed accordingly. The reply is sent back to the

requester node that was waiting for the answer. An typical example of a XML-RPC

request packet is shown below.

POST /RPC2 ff[TP/1.0
UserAgent:CytoCom/1 .Ob(W1nNT)

Host: 128 .193.48.232
ContentType: text /xml
Contentlength: 181

<?xml version=" 1.0"?>
<methodCall>

<metliodName>Acquisition . startNewExperiment</xnethodNaine>
<par ams>

<p ar am>

<valuo><i4>2</i4></value>
<value >< i4>2 000<1 i4></value>

</param>

64

</params>

</niethodCall>

And the corresponding reply message look like this:

IfITP/1.1 200 OK
Con ne ct ion : c lose

ContentLength: 158
ContentType: text /xml
Date:Fri, 12 Oct 2002 23:55:08 GIVW
Server: CytoCom / 1. 0b

<?xml version=" 1.0"?>
<methodResponse>

<paranis>

<par am>

<value ><b 0018 an>1 </b ool e an></value>

</param>

</p arams>

</methodResponse>

Various situations such as the call of an unknown method, too many parameters

or a computational fault can produce error replies:

HTTP/1.1 200 OK
Co nnect ion : c lose

ContentLength: 426
ContentType: text /xml
Date:Fri , 12 Oct 2002 19:55:02 GVff
Server:CytoCom/1 .Ob

<?xml version=" 1.0"?> <methodRe spouse>

<fault>

65

<value>
<st ru Ct>

<member>

<name>fault Code</name>
<value><int>4</int></value>
</member>

<member>

<name>faultString</name>
<value><string>Too many parameters . </string></value>
</member>

</struct>
</value>

</f ault>
</methodResponse>

Tithe authentication and the encryption of messages is necessary, XML-RPC can

easily integrate the powerful and widespread Secure Socket Layer (SSL) protocol since

the latter is well integrated into the HTTP protocol: XML-RPC then uses HTTPS for

Secure HTTP.

Data transfers

Many protocols exist to efficiently transfer data from one node to another. But

HTTP is the only universal protocol that can easily interconnect users and machines

throughout on the Internet, and also offer a secure transmission (HTTPS). Therefore

a lightweight HTTP server is developed in order to be used as a image samples server.

Other nodes can download the image samples by connecting to the communication ser-

vice that integrates the HTTP server. The latter is implemented using Berkeley standard

sockets. A listener thread accepts connections from the remote sensors. When a connec-

tion arrives, an idle worker thread is picked up from a pool of idle threads to process the

66

request. This efficient technique of thread pooling can be enhanced by with the Win-

dows I/O completion ports in order to create highly scalable servers. Messages and data

transfers using the HTTP protocol can also be moved to and from any firewall-enabled

network using the standard port 80. The technique is known as HTTP tunnelling or

cloaking. Nothing in the firewall setup needs to be changed and no involvement is re-

quired from the network administrator.

445. Resource discovery and monitoring

Instead of using the multicast discovery and announcement mechanism used in

the Mercury, Gemini and Apollo-I prototypes, the Apollo-Il uses unicast XML-RPC

messages and a discovery and lookup server. The server uses a MySQL database and

a XML-RPC server to inform the users and operators of the available services on the

CytoSensor network. An operator can contact such a server to locate a sensor or a

service on the network, then the operator connects directly to the sensor to perform a

task. The MySQL database on the server stores information about a CytoSensor node

such as its sensor ID, its IP address(es) and its service(s). A node can directly query

a remote sensor to check the data available for download or to monitor the workload

of the sensor in terms of CPU and memory usage. This can help in choosing the best

collaborator to perform a distributed task.

67

5. LIMITATIONS AND FUTURE CONSIDERATIONS

The actual implementation of the Apollo-IT prototype needs improvements in pro-

gramming the libraries, the design and the technological choices.

5.1. Limitations

Most of the actual implementation involves the development of the core middleware

libraries. Higher-level services and distributed tasks are yet to be implemented.

The CytoSensor is presently used on a high-speed network with a small set of

sensors. Although the peer-to-peer models are more scalable, deployment on a larger

scale and tests must be conducted to assess the performance changes. Moreover the

actual simplified design is based on the underlying network infrastructure where all the

nodes are interconnected.

The data acquisition service of every CytoSensor prototype is specialized in image

acquisition since a visual detection of toxins is used. However the actual design is aimed

at developing a more general-purpose sensor by creating layered middleware libraries.

Therefore there are still flaws in the design and implementation.

5.2. Possible improvements

5.2.1. Network simulations

Programs such as NS2 (Network Simulator 2) can simulate complex network

topologies using discrete events. Simulated data can then be compared to improve the

design of the CytoSensor network.

5.2.2. Fault-tolerance

Software fault-tolerance can be greatly improved in the actual implementation.

The data acquisition library service must cope with eventual hardware failures from the

frame grabbers and cameras or from the USB control devices. For instance, a camera

may be disconnected, but it should not affect the acquisition performance. A transfer of

data may be interrupted between 2 sensors, then a recovery procedure must be started.

5.2.3. Scripting

In order to create flexible distributed tasks across the network, a scripting layer

can be used on top of the service layer. A general-purpose middleware can then be devel-

oped to perform basic operations such as acquiring, archiving and transferring the data

samples. The application-specific data processing is performed at a higher level above

the middleware and a distributed task is defined by a script using the aforementioned

basic operations.

5.2.4. Data fusion

The present design focuses on the processing of data collected on individual sensors.

Although the data acquisition and processing are distributed among nodes, no data fusion

takes place at a higher level to assess a threat using a multitude of sensors concentrated in

a geographical area. As described in [1], the basic idea is to have a number of independent

sensors each making a local decision and then to combine these decisions at a fusion

center to generate a global decision. For instance, [10] considers the case where the local

decisions made at a number of sensors are communicated to multiple root nodes for data

fusion.

69

5.2.5. Ad hoc mobile sensor networks

Finally, another improvement is the deployment of the CytoSensor on an ad hoc

network where the sensors act as nodes and routers. Unlike the actual design, a sensor

cannot connect directly to the requested node: instead other nodes route the messages

and data to the final destination. This is referred to as the store-and-forward property.

Complexity in the discovery of resources such as a node, a service or data, increases

greatly and performance may be lower.

70

6. CONCLUSION

The CytoSensor project is an attempt to produce a portable sensor device special-

ized in the detection of toxic agents. This work involves the development of the real-time

image acquisition, the data management and data transfers across a network. The devel-

opment includes the creation and integration of various libraries and applications that

control highly specialized hardware to meet the user needs. Prototypes called Mercury,

Gemini and Apollo have been designed and built. To adapt to the hardware changes

inherent to the prototypes, a layered and modular design of the software is used. As a

result, the CytoSensor middleware libraries allow the applications developed on top of

them to gain in flexibility and to reduce the development cycle. Through the course of

this project, application of industry standards was of a high priority. The data acquisi-

tion uses the Vision SDK to capture images from various frame grabbers and USB as a

universal scheme to connect many control devices such as the light control. Moreover,

services of a single sensor were extended to a distributed sensor environment. Using

XML-RPC messages and HTTP transfers, a sensor is able to acquire, share, process and

propagate information among other sensors and Internet users. Assumptions have been

made for the design and the implementation of the CytoSensor network. Therefore, they

should be addressed in order to develop the project into a wireless and mobile ad hoc

sensor network.

71

BIBLIOGRAPHY

1. R. Viswanathan and P. K. Varshney, "Distributed detection with multiple sensors:
Part i fundamentals," 1997, vol. 85, pp. 54-63, Proceedings of the IEEE.

2. J. N. Tsistsiklis, "Decentralized detection," in Advances in Statistical Signal Pro-
cessing, Signal Detection, 1993, vol. 2.

3. "Seti©home," http://setiathome.ssl.berkeley.edu.

4. Martin Fowler and Kendall Scott, UML distilled: a brief guide to the standard
object modeling language, Addison-Wesley, 2nd edition, 2000.

5. Andrew S. Tanenbaum and Maarten van Steen, Distributed systems: principles and
paradigms, Prentice Hall, 1st edition, 2002.

6. Nicolas Roussel, "Advanced image segmentation, and data clustering concepts
applied to digital video featuring the response of organic material to toxicological
agents," M.S. thesis, Oregon State University, 2003.

7. Mukesh Singhal and Niranjan G. Shivaratri, Advanced concepts in operating sys-
tems: distributed, database and multiprocessor operating systems, McGraw-Hill,
mc, 1994.

8. James F. Kurose and Keith W. Ross, Computer Networking: A Top-Down Approach
Featuring the Internet, Addison-Wesley, 2nd edition, 2002.

9. Voranon Kiettrisalpipop, "Cytosensor: System integration and human interface
design," MS. thesis, Oregon State University, 2003.

10. K. R. Pattipati Z. B. Tang and D. L. Kleinman, "Optimization of distributed
detection networks: Part ii generalized tree structures," 1993, vol. 23, pp. 211-221,
IEEE Trans. Syst.

11. Athanassios Boulis and Mani B. Srivastava, "A framework for efficient and pro-
grammable sensor networks," 2002, OPENARCH.

12. Rajkumar Buyya, High Performance Cluster Computing: Architecture and Systems
(Volumel), Prentice Hall, 1999.

13. Andy Oram, Peer-to-peer: Harnessing the power of disruptive technologies, O'reilly
and Associates, mc, 1st edition, 2001.

14. Bo Leuf, Peer-to-peer: Collaboration and Sharing over the Internet, Addison-
Wesley, 2002.

72

15. Ji seok Liew, "Web-based distributed applications for cytosensor," M.S. thesis,
Oregon State University, 2003.

16. "Hypertext transfer protocol http/1.1," RFC 2616, Internet Engineering Task
Force, June 1999, http://www.ietf.org/rfc/rfc2616.txt.

17. "Rpc: Remote procedure call protocol spefication version 2," RFC 1831, Internet
Engineering Task Force, Aug. 1995, http://www.ietf.org/rfc/rfc1831.txt.

18. "Extensible markup language (xml)," 1998, http://www.w3.org.

19. Dave Winer, "Xml-rpc specification," 1999, http://www.xm1rpc.com/spec.

20. Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn,
Henrik Frystyk Nielsen, Satish Thatte, and Dave Winer, "Simple object access
protocol (soap) 1.1," 2000, http://www.w3.org.

21. Matrox, Matrox 4Sight-II: hardware reference, 2002.

22. Matrox, Matrox Imaging Library, 2002.

23. Euresys, Multicam API for Picolo Pro frame grabbers, 2002.

24. Microchip, PICDEM: USB board hardware reference, 2002.

25. Microchip, PIG 16C765: USB firmware and application notes, 2002,
http://www.microchip.com.

26. Walter Oney, Programming the Microsoft Windows Driver Model, Microsoft, 2002.

27. David A. Solomon and Mark E. Russinovich, Inside Microsoft Windows 2000,
Microsoft Press, 2000.

