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ABSTRACT

Bedload transport, particulate organic matter transport, tota l
suspended solids concentration, and turbidity were monitored during
storm runoff at Flynn Creek and Oak Creek in central Oregon's Coas t
Range . Flynn Creek drains a 2 .2 km2 watershed and Oak Creek drains a
7 .5 km2 watershed ; the dominant vegetative cover on both watersheds is
Douglas-fir .

Winter precipitation amounts were relatively low during th e
1976-1980 water years investigated during this study . Frequency analyses
indicated that peak flows had recurrence intervals of less than tw o
years . Rating curves were developed between particulate transport (Y )
and streamflow (Q) using using the equation form :

Y = a Qb

Exponential increases of 3 .4 to 4 .5 in bedload transport rates with
increasing flows were measured using both vortex tube and Helley-Smith
bedload samplers . The median particle diameter (d50) of bedload sedi-
ments averaged less than 0 .5 mm and less than 2 mm for Flynn Creek an d
Oak Creek, respectively . Coarse particulate organic matter (> 0 .2 mm)
represented an important but variable component of the total material i n
transport along the streambed . Channel cross-section measurements indi-
cated localized scour and fill was common during periods of storm -
generated runoff .

Rating curves of total suspended solids with streamflow were highl y
variable but dkponential increases in total suspended solids concentra -
tions with increasing flow were generally 1 .1 to 1 .6 when a wide range o f
flows were sampled . Total suspended solids concentrations were
influenced by (1) streamflow, (2) hydrograph characteristics, and (3) th e
sequence of storm events . Total suspended solids averaged approximately
60% inorganic sediments and 4O% organics . Total suspended solids con-
centration was found to be highly correlated with turbidity . Turbidities
(and total suspended solids concentrations returned to relatively lo w
levels within 24 hours after peak flows had occurred .
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INTRODUCTION

In the past decade, extensive progress has been made toward th e
control of point sources of water pollution . Federal and state water
quality goals have been established in an attempt to reduce the magnitud e
of cultural impacts upon aquatic ecosystems . However, achievement of
these goals may be overshadowed by the effects of non-point source s
(Cannon, 1976 ; Government Accounting Office, 1978) . The major non-point
pollution problem resulting from man's land use activities is accelerate d
sedimentation (Guy and Ferguson, 1970 ; Livesey, 1970 ; Froehlich, 1976) .

Theory indicates that a certain fluvial sediment load is necessar y
to maintain the physical integrity of a stream system (Committee o n
Erosion and Sedimentation, 1977) . A dynamic equilibrium is establishe d
between channel form and the natural sediment regime that provides fo r
both stability and resiliency (Heede, 1975 ; Park, 1976) . However ,
increases in sediment load can initiate channel adjustments that alte r
the physical and biological processes maintaining stream stability .
Repeated episodes of sediment loading may throw the system into dis -
equilibrium (Rosgen, 1978) .

Material transfer from undisturbed forested watersheds in th e
Pacific Northwest is controlled by channel processes that ultimatel y
break down and transport dissolved and particulate substances derive d
primarily from the hillslopes (Swanson et al ., in press) . The ability of
a stream to transport available solids is dependent on local hydrauli c
and streambed conditions, and on the size and density of the material .
Solution transport is the only persistent process . Dissolved solids may
be viewed as the dominant export mode, representing a large fraction o f
the total load in wet climates (Leopold et al ., 1964) . In contrast, par -
ticulate transport may range from frequent, low-magnitude suspende d
transfer to infrequent, but high magnitude debris torrent activity i n
mountain watersheds (Swanson et al ., in press) . The inchannel substrate s
that support biotic processes consist of both inorganic and organi c
matter . These materials determine the quality of habitat available t o
the predominantly heterotrophic communities present in headwater streams .
Thus, particulate matter transport, primarily of bed material, is a n
important parameter in studies of both stream channels and the associate d
biotic community .

A stream bed represents a unique liquid-solid interface that is sub-
ject to periodic deformation (Graf, 1971) . Bed material transport is o f
primary concern since its movement reflects channel stability and deter -
mines gravel bed composition (Johnson, 1970 ; Milhous and Klingeman, 1973 ;
Beschta and Jackson, 1979) . Sediment motion results from the action of
hydrodynamic and gravitational forces on particles within a turbulen t
medium. This interaction results in a biphase flow, which varies con-
tinuously in time and space . Particles may either move on or near the
bottom as bedload or be transported in suspension . Momentary hydraulic
conditions determine the extent of active interchange between the stati c
components of the bed, the bedload, and the suspended load (Graf, 1971) .
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bus, distinctions between the two modes of transport near the stream be d
are arbitrary .

Present knowledge of the mechanisms of sediment tranport is at a
qualitative level (Committee on Erosion and Sedimentation, 1977) .
Adequate characterization of the sediment regime in natural stream s
requires simultaneous study of both the suspended and bedload component s
of bed material load . Suspended sediment measurement techniques are wel l
documented (Vanoni, 1975) . Although bedload may comprise a relatively
small portion of the total sediment load, its movement has the dominan t
influence on channel characteristics . Direct measurement of bedload i s
diff!cult due to the highly stochastic nature of this transport mod e
(Graf, 1971 ; Griffiths, 1980) . Sampling requires an intensive fiel d
effort during high flow events initiated by storm or snowmelt runoff . In ,

addition, field studies of bedload movement have been limited by a lac k
of reliable sampling methods . Variations in research techniques hav e
compounded the problems of data analysis and comparison .

As a consequence, various bedload transport equations have been deve-
loped to estimate this total load fraction (Graf 1971 ; Vanoni, 1975) .
The formulas predict the maximum transport capacity of a stream i n
equilibrium at given hydraulic conditions and sediment characteristic s
(Graf, 1971) . The applicability of these steady-state models to bedload
movement in small mountain streams has been studied by a number o f
investigators (Klingeman, 1971 ; Hanson, 1972 ; Haddock, 1978) . The model s
appear inapplicable to high energy, headwater streams in which sedimen t
supply limitations exist as a result of flushing, deposition, an d
armoring (Milhous and Klingeman, 1973 ; Haddock, 1978) .

Relationships between particulate transfer processes in a mountai n
stream are not well understood . The supply of transportable be d
materials may be strongly dependent on the condition of the bed armo r
layer and the magnitude of transient flow events (Klingeman, 1971) . The
natural flushing regime in a mountain stream may be hindered by input o f
additional fines which, while being transported, could utilize strea m
energy otherwise available to disturb the stream bed (Beschta an d
Jackson, 1979) . The retentims-transport mechanisms and possible interac -
tions of coarss particulate organic debris in the fluvial transfe r
system are not well known .

The transport of sediment and organic matter in mountain streams i s
the result of numerous interacting processes . Before comprehensive
models of particulate (organic and inorganic) trjnsport in streams can b e
developed, these processes must be more thoroughly described throug h
field research . A unified concept of material transport would enhanc e
our ability to : 1) estimate sediment yields, 2) assess the physical an d
biological consequences of sediment movement, and 3) prescribe land us e
quidelines for the mitigation of potential instream damage (Cannon ,
1976) .

Although a substantial number of watershed studies have been con -
ducted in forested regions and have measured sediment yields from bot h
undisturbed and managed watersheds (e .g ., Fredriksen, 1970 ; Megahan ,
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1975 ; Beschta, 1978, Rice et al ., 1979), few of these have attempted to
evaluate sediment transport rates during storm periods . In contrast ,
this study utilized time-Intensive sampling to evaluate transport pro- .i-
cesses during periods of high flow when hydraulic conditions within the . 4 1
channel were rapidly changing .

ti
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OBJECTIVES

The overall objective of this study was to provide an improve d
understanding of sediment and organic matter movement in mountain streams .
Specific objectives included the foliewang :

(1) Determine rates of suspended sediment, bedload sediment an d
particulate organic matter transport during periods of stor m
runoff .

(2) Evaluate the effect of flow conditions upon the variabilit y
in suspended sediment concentrations and resultant sedimen t
rating curves .

(3) Identify relationshipo between turbidity and suspended sedimen t
concentrations .

(4) Develop an'improved understanding of the interactions between
suspended sediment, bedload sediment, and particulate organi c
matter transport .

(5) Develop correlations between bedload transport rates and stream -
flow for identifying conditions necessary for incipient bedloa d
movement and the frequency of occurrence of bedload transport .

This report summarizes streamflow and sediment transport data fo r
water years (WYs) 1977-1980 and WYs 1976-1980 at Flynn Creek and Oa k
Creek, respectively . At Flynn Creek, data collected during the first tw o
years of the study, WYs 1977 and 1978, formed the basis of a Masters o f
Science thesis by O'Leary (1980) . WY 1979 results at Flynn Creek hav e
been reported in another Masters of Science thesis by Edwards (1980) .
Previously unreported data for WY 1976 at Oak Creek and for WY 1980 a t
both Flynn Creek and Oak Creek are included in thds report .

Suspended sediment and turbidity comparisons for both watershed s
have been reported by Paustian (1978), Paustian and Beschta (1979), an d
Beschta (1980c) . Additional bedload transport and channel morphology
data were collected at Flynn Creek during WY 1979 (but not included i n
this report) as part of another study and forms the basis for a concep -
tual model of bed material routing in mountain streams (Jackson, 1980) .
It should also be noted that Flynn Creek was used as the undisturbe d
"control " watershed in the Alsea Watershed Study during WYs 1959-73 .
Summaries of that study can be found in Brown (1972), Harris (1973 ,
1977), Moring (1975 a, b), Moring and Lantz (1975), and Beschta (1978) .
Previous studies of bedload transport at Oak Creek include those b y
Milhous and Klingeman (1973) and Heineke (1976) .
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STUDY AREAS

The two streams monitored in this study drain watersheds located i n
the central Oregon Coast Range (Fig . 1) . The Flynn Creek Watershed i s
located about 20 km southeast of Newport and is a designated "Researc h
Natural Area " administered by the Siuslaw National Forest . The Oak Creek
Watershed, located 11 km northwest of Corvallis, is managed by the Schoo l
of Forestry at Oregon State University . This watershed is used as a
teaching and research facility in addition to commercial forest manage-
ment activities (road construction, yarding timber, regeneration opera-
tions, etc .) .

The Flynn Creek Watershed is 2 .2 km2 in size and ranges in elevatio n
from 180 to 400 m . The Oak Creek Watershed is approximately 7 .5 km2 in
size and ranges in elevation from 150 to 660 m . More detailed descrip-
tive information for Flynn Creek is reported by Paustian (1978), O'Lear y
(1980), and Edwards (1980) . Paustian (1978) also presents detaile d
information of Oak Creek . Additional streamflow data for Flynn Creek ,
collected prior to this study (i .e ., WYs 1959-73), have been summarize d
by Harris (1977) .

Climat e

The climate at both watersheds is largely influenced by marine ai r
masses which move inland from the Pacific Ocean . Characteristically ,
summers are warm and dry, and winters are wet and cool . Almost 90% of
the annual precipitation occurs between October and April . Most of thi s
winter precipitation results from long duration, low intensity fronta l
storms . However, periods of relatively high precipitation intensitie s
may occur within any given storm and result in freshets or periods o f
storm flow from the watersheds . Annual precipitation averages 230 cm a t
Flynn Creek but only 150 cm at Oak Creek . Snowfall amounts are typicall y
small and any accumulations of snow on the ground may last for only a fe w
days . Because of orographic effects and variations in characteristics o f
frontal storms, precipitation amounts and intensities for any given stor m
can vary appreciably between the two watersheds .

Vegetation

Both basins are densely forested with predominately 100- to 200-year-
old stands of Douglas-fir (Pseudotsuga menziesii) on the hillslopes and
red alder (Alnus rubra) throughout the riparian zones . Western redceda r
(Thuja plicata) is found on the uplands of both watersheds . At Oak
Creek, Oregon, white oak (Quercus garryana) and bigleaf maple (Acer
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FLYNN CREEK WATERSHED
RESEARCH NATURAL AREA
SIUSLAW NATIONAL FOREST

OAK CREEK. WATERSHED
McDONALD FORES T
OREGON STATE UNIVERSITY

FIGURE 1 . Location of Flynn Creek and Oak Creek Watersheds in the
Oregon Coast Range .
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macrophyllum) are also common . Understory vegetation is normally dense

and provides protection from surface erosion processes . Large organic

debris (root wads, boles, or large branches) has a major influence o n

channel morphology for both watersheds ; debris dams and log steps are a

major factor influencing pool-riffle sequences within the channel system .

Soils,GeologyandTopography

The geological characteristics of the two watersheds are con -

siderably different . The Flynn Creek Watershed is underlain by the

Flornoy Formation (formerly designated as Tyee sandstone), a rhythmicall y

bedded sandstone and siltstone which is subject to rapid attrition .

Soils in the drainage are thus derived from sandstone parent material ,

with 60% of the watershed covered by soils in the Slickrock Series .
Soils on the remainder of the watershed are mostly in the Bohannon Serie s

(USDA, 1973) . Botk soil series have moderate to high erosion potential .

Bed material in the channel is also sandstone which often rapidl y
weathers or mechanically abraids to sand-sized particles . Except for

bedrock sections of the channel, cobbles 1-10 cm in diameter typicall y

overlay sandy bed material . Additional hillslope and channel charac-
teristics for Flynn Creek and Oak Creek are summarized in Table 1 .
Morphometric analysis indicates the Flynn Creek Watershed has 9 .0 km, 2 . 9

km, and 1 .1 km of 1st-, 2nd-, and 3rd-order channels (Marston, 1978) .

The Oak Creek Watershed is located within the Marys Peak Instrusio n

Formation . Bedrock consists of basalts which weather into clay-loa m

soils . Dixonville and Price-Ritner Soil Series comprise most th e
watershed . Streambed sediments along the main channel are heterogenou s

mixtures of gravel, sand, and silt overlain by a distinct armor laye r
with particles averaging 5-10 cm . The upper reaches of Oak Creek ar e
deeply incised and portions appear similar to a gully system .

Mass soil movements (debris avalances, slumps, and creep) wit h
associated streambank undercutting at high flows are thought to be th e
major sediment contributing processes at both watersheds .

9



TABLE 1 . Selected hillslope and channel characteristics of Flynn Creek
and Oak Creek Watersheds .

Characteristics Flynn Creek Oak Creek

Average Hillslope 34%a

Channel Length 1433 mb 2900 and

Channel Gradient 0 .025 mime 0 .04 - 0 .24 m/md

Mean Summer Width 1 .74 mb 4 and

Mean Summer Depth 0 .13 mb 10 cm riffle sd
1 m pool s

aWilliams, 196 4

bChapman, 196 1

CMoring and Lantz, 197 5

dPaustian, 1978

10



METHODS

Precipitation and Streamflow

A weighing precipitation gage was installed at each watershed durin g
the winter months (October through March) to provide supplemental infor-
mation on rainfall intensity, duration and amount during storm runof f
periods .

Water level records at Flynn Creek were obtained at a broad-creste d
v-notch weir approximately 3d0 m upstream from the mouth of the water-
shed . Periodic stream gaging was used to establish and check ratin g
curves . At Oak Creek, a rectangular section of concrete channel (i .e . ,
flume) was used as a control section for stream gaging and water leve l
records . A rating curve developed by Heineke (1976) was used throughou t
this study for estimating flows at Oak Creek .

Bedload and Particulate Organic Matter Transport

Vortex Tube Sampler

At the mouth of the 2 .2-km2 Plynn Creek Watershed, a concret e
fishtrap was constructed in 1960 as part of a previous fisheries study .
The fishtrap provided a uniform rectangular control section (2 .54-m wide ,
1 .37-m deep, and 5 .38-m long) which was easily modified for installing a
vortex bedload sampler in the summer of 1976 . The vortex sampler at
Flynn Creek (Figure 2) is similar in principle to those used by Haywar d
and Sutherland (1974) and Klingeman and Milhous (1970) .

The vortex sampler at Flynn Creek consisted of a 30 .5-cm diameter
tube, with a 20 .3-cm opening along the top, which was placed into the bed
of the fish trap (control .section) . The tube was placed at an angle o f
65° to the direction of flow and had a total length of 2 .8 m . Five-
centimeter wide wooden strips of cedar were mounted at each edge of th e
tube to provide a tight contact with the concrete bed of the fishtra p
(Figure 3) . Experience at Oak Creek had shown that without the wood ,
concrete near the edge of the tube would chip and crack after severa l
years and perhaps alter hydraulic conditions at the edges of the vorte x
tube . Four years of use at Flynn Creek have shown that these wood strip s
appear to have overcome this problem .

As a mixture of water-sediment enters the tube, a circular or vorte x
flow pattern is established . With one end of the tube open, this mixture
is discharged into a sampling area adjacent to the channel where flow s
can be either bypassed back into the stream between sampling periods o r

11



FIGURE 2 . Schematic of vortex tube bedload sampler at Flynn Creek
(After Hayward and Sutherland, 1974, p . 42) .
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30 .5 cm

FIGURE 3 . Cross—section of vortex tube bedload sampler at Flynn Creek .
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into a 0 .3-m3 sampling box . Bedload paticles are deposited in th e
sampling box and the overflow water returned to the stream . A sample
volume of about 6 R. or less of material was considered desirable for ease
of handling . Thus, sampling periods varied from 3 minutes to 1 hour i n
length, depending upon flow and sediment transport conditions, to accumu-
late a sample of approximately this size .

The vortex sampler at Flynn Creek was operational for the WY s
1977-1980, although it was only used extensively only in WYs 1978 an d
1979 . Vortex samples were dried at 105°C for 24 hours after which an y
visible organic matter was removed by hand . The samples were then sieve d
and weighed to obtain total weights and particle size distributions .
Because the vortex sample box had a variable trapping efficiency fo r
sediments from 0 .15 to 10 mm in diameter, an adjustment procedure was
used for these particle sizes to obtain more accurate estimates of tha t
bedload transport and median particle sizes (O'Leary, 1980) .

Helley-Smith Sampler

A Helley-Smith pressure-differential bedload sampler (Helley an d
Smith, 1971) with a bag surface area and mesh size of 1950 cm2 and 0 .2 mm,
respectively, was used to provide supplemental transport information i n
the 1978 WY . This hand-held version was subsequently modified by
increasing the bag size to 6000 cm 2 (Johnson, et al ., 1977 ; Beschta
1980a) and was used as the primary sampling method during the 1979 an d
1980 WYs at Flynn Creek . At Oak Creek, this sampler was employed only
during the 1980 WY .

At Flynn Creek, the Helley-Smith bedload sampler was used near th e
upstream end of the fishtrap where an excellent contact between th e
concrete bed and the sampler was assured . Equally-timed subsamples wer e
obtained at seven equally spaced locations across the channel and com-
bined to produce a single composite sample . In WY 1978, subsamples wer e
taken for 15 s at each of the first three locations across the channel .
The sample bag was then emptied and sampling continued at the remainin g
four locations . Upon changing bag size (WYs 1979 and 1980), clogging o f
the mesh was not as significant a problem and all seven subsample s
(sampling time = 30 s at each location) were obtained before the sample r
was emptied . However, during periods of high flow and high transpor t
rates, total sample times were reduced below 210 s to minimize cloggin g
of thg sample bag . Although subsample times were always equal, tota l
sample time for a composite sample was varied from 95 to 210 s dependin g
upon the amount of sediment in transport . After allowing the bedload
sediments and organics from each sample to settle for several minutes i n
a collection pan, water was decanted from the sample and the sample wa s
stored in a plastic bag for later analysis .

In the laboratory, Helley-Smith bedload samples were dried at 105° C
for 24 hours, weighed and then ashed at 320°C to remove organic materials .
After reweighing the samples, both inorganic (bedload sediment) and orga-
nic (particulate organic matter) transport rates were calculated .

14



Samples were also sieved to determine particle size distributions of th e
inorganic component .

Channel Measurements

During the summer of 1976, 12 cross-sections were located at Flyn n
Creek between the fishtrap and the weir . These cross-sections wer e
spaced at approximately 30-m intervals . Profile measurements were taken
during succeeding years to index net scour and/or deposition . In addi-
tion, glass marbles of varying sizes (9 .5, 14, and 22 mm) were place d
within 5 cm of the bed surface at each cross-section . The marbles at
each cross-section were used to estimate relative distances of travel fo r
particles in 9 .5- to 20-mm diameter range .

Total Suspended Solids and Turbidit y

Automatic pumping samplers (Instrument Specialties Company, Mode l
1392) were used to collect samples for subsequent laboratory analysis o f
suspended solids and tubidity . At Flynn Creek, the sampler intake wa s
located in the plunge pool directly downstream of the weir so that a well -
mixed sample could be obtained . At Oak Creek, after trying a variety o f
methods, the intake was supported in midstream on the end of a metal rod
attached to a small bridge (Beschta, 1980b) .

The automatic pumping samplers were connected to a " stage-activate d"
system whereby the sampler would begin sampling when the stage (wate r
level) of the stream reached a preset level (Beschta, 1980b) . Once acti-
vated, the pumping sampler would continue to sample until the 28-bottl e
capacity was exhausted . Subsamples were obtained every 0 .5 hours with
two subsamples per bottle . Thus, each bottle contained a sample from
which the average hourly suspended solids concentration could be deter -
mined .

Standard filtration and gravimetric techniques were utlized for th e
laboratory analysis of total suspended solids (American Public Healt h
Associablon, 1976) . Selected samples from the 1980 WY were ashed at
500°C to obtain an estimate of the organic component of the tota l
suspended material . Methods outlined by the American Public Health
Association (1976) were similarly utilized for determining turbidit y
using a model 2100A laboratory turbidimeter (Hach Chemical Company) .

15



RESULTS AND DISCUSSION

Precipitation and Streamflow

Precipitation amounts during the study period were below normal .
As a result, streamflow volumes were similarly low . During the Novembe r
through March periods in WYs 1977-1980, approximately 65% of the winte r
precipitation was measured as streamflow at the mouth of thes e
watersheds .

The 1977 WY had particularly low amounts with November through Marc h
precipitation totals for both Flynn Creek and Oak Creek (Table 2 an d
Table 3) less than one-half of average . The November-March water yield
of WY 1977 at Flynn Creek was the lowest measured during 19-years o f
record . This period of extremely low precipitation was not a local phe-
nomenon but prevailed throughout most of the western states that year .

Hydrographs of daily streamflow at Flynn Creek (Figure 4) furthe r
reflect the relatively low flows during the study . Although seasona l
streamflow volumes are not necessarily good predictors of peak flows, th e
effects of the relatively low runoff volumes was also apparent in th e
peak flows experienced over the four years . Frequency analysis of
instantaneous peak discharges at Flynn Creek, based on 20 years of recor d
(WYs 1959-72 and 1976-80), indicates the instantaneous peak flows for W Y
1977 and WY 1980 were the lowest of record (annual series, Figure 5) . In
addition, WY 1978 and WY 1979 had recurrence intervals of less than tw o
years .

Utilizing the largest 20 flow events of record (partial series )
shifts the expected recurrence intervals for the WY 1978 and WY 197 9
peaks to 1 .30 and 1 .24 years, respectively (Figure 5) . Frequency analy-
sis for daily flows at Flynn Creek (Figure 6) show similar patterns .
Long-term flow records were not available for Oak Creek and thus flo w
frequency analyses were not undertaken . Hydrographs of daily streamflows
at Oak Creek are shown in Figure 7 . In any event, precipitation and flow
data confirm that both watersheds experienced relatively low instan-
taneous, daily, monthly, and seasonal flows during the study .

Sampling Efficiency of Bedload Sampler s

Vortex Tube Sampler

One of the initial concerns of this study was the sampling effi-
ciency of the vortex sampler . Thus, several types of measurements were
undertaken to quantify the relative efficiency of this bedload sampler .
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TABLE 2 . Monthly precipitation and streamflow at Flynn Creek .

Months

Water year

	

Nov .

	

Dec .

	

Jan.

	

Feb .

	

Mar .

	

Total

	 Precipitation, cm	

1977

	

9 .1

	

9 .6

	

7 .4

	

25 .6

	

34 .5

	

86 . 2

1978

	

46 .7

	

53 .1

	

32 %8

	

8 . 4

1979

	

24 .6

	

20 .8

	

14 .0

	

50 .3

	

14 .0

	

123 . 7

1980

	

21 .6

	

41 .6

	

39 .6

	

24p9

	

20 .8

	

148 . 5

	 Streamflow, cmrf	 I--r.	 I--

1959-72a

	

20 .9

	

35 .3

	

44 .7

	

31 .4

	

27 .8

	

160 . 1

1977

	

2 .8

	

3 .4

	

5 .4

	

9 .5

	

33 .5

	

54 . 6

1978

	

33 .7

	

59 .4

	

32 .6

	

17 .4

	

9 .3

	

152 . 4

1979

	

4 .3

	

15 .9

	

9 .4

	

39 .8

	

18 .4

	

87 . 8

198j

	

10 .4

	

25 .9

	

31 .1

	

12 .6

	

15 .4

	

95 . 4

aFmom published U .G . Geological Survey streamflow records .
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TABLE 3 . Monthly precipitation and streamflow at Oak Creek .

Months

Water year

	

Nov .

	

Dec .

	

Jan .

	

Feb .

	

Mar .

	

Total

	 Precipitation, cm	

1977 3 .8 5 .6 3 .6 12 .7 17 .8 43 . 5

1978 21 .8 27 .9 17 .3 11 .4 4 .1 82 . 5

1979 6 .3 6 .6 24 . 9

1980 13 .0 15 .8 13 .0 11 .7 11 .6 65 . 1

1977

	 Streamflow, cm	

3 .1 2 .4 2 .3 7 . 1

1978 6 .3 20 .3 12 .9 7 .8 1 .8 49 . 1

1979 0 .7 2 .4 1 .8 15 .0 7 .2 27 . 1

1980 5 .2 8 .0 16 .1 5 .0 10 .7 45 .0

18



I

- WY 1977

I I i

1

1

-

~

- WY 197 8

I

1 I f 1

	

~

-

l

El 1- WY 1980

1 1.1

MONTHS

FIGURE 4 . Daily streamflow for November through April at Flynn Creek ,
WYs 1977-1980 .

0 . 4

0 . 2

0

0 . 6

0 . 4

0 . 2

0

0 . 4

0 . 2

0

0 . 4

0 . 2

0
JAN APRFEB MARDECNOV

19



1

	

2

	

4

	

6 8 10

	

20

	

4 0

RECURRENCE INTERVAL, year s

5

N
3
U)

M
E

1 . 0

0 . 1

FIGURE 5 . Frequency of instantaneous peak flows at Flynn Creek (2 0
years of record) .

20



5

m

M

0 .1

I

	

I

	

l

	

i

	

1

	

i■

	

I

	

i

	

I

	

I

- 1978 coo00? o 9
o

i
a ■ a

■a • ■

	

197 8
^'

197 9
-

	

■ 1980
Q Partial Serie s

0'4— 1977
a Annual Serie s

	!	 i	 I	 I	 T	 I	 T	 I	 I	 I	 I
1 2 4

	

6

	

8 10

	

2 0

RECURRENCE INTERVAL, Years

4 0

FIGURE 6 . Frequency of peak daily flows at Flynn Creek (20 years o f
record) .

21



I

	

I

	

+WY 1976 I

WY 1977

WY 1978

E

	

I

WY 1979 -

WY 1980

I

	

1

NOV

	

DEC

	

JAN

	

FEB

	

MAR

	

APR

MONTHS

FIGURE 7 . Daily streamflow for November through April at Oak Creek ,
WYs 1976-1980 .

0 . 2

0 . 1

0

0 . 1

0

0 . 3

0 . 2

3

	

0 . 1
r-I

m

"'E

	

0

0

0 . 3

0 . 2

0 . 1

0

22



It was originally assumed the sampler would be inefficient with clay an d
silt-sized particles, a variable efficiency through the sand sizes an d
nearly 100% efficient in the gravel sizes . The sampler was also expecte d
to be ineffective at trapping organic matter . However, one of the majo r
advantages of the vortex device is that it samples the entire channe l
width and thus sampling errors due to variations in transport rate s
across the channel should be minimal .

Bed material samples collected immediately upstream from the Flyn n
Creek fishtrap showed that the median particle size (d 50 ) ranged from 1
to 11 mm and averaged 5 mm . Unfortunately, based on measurement* of
sampling efficiency, this particle-size range represents a size that th e
Flynn Creek vortex tube was not 100% efficient at trapping . This was the
primary reason for not utilizing the vortex sampler extensively after th e
1979 WY . A sampling efficiency of less than 100% was the result of two
characteristics of the sampler . One involved the sampling efficiency of
the vortex tube in the stream and the second was due to the sample box .

During periods of storm runoff, the amount of organic matter (leaves ,
needles, cones, pieces of wood and small branches) is relatively high i n
Flynn Creek and at times may represent 50% of the total particulate loa d
in transport . This is particularly the situation with the first majo r
fall storms . While operating the vortex sampler during these storms, we
observed that leaves, twigs, and branches would accumulate on the down -
stream edge of the vortex tube . Periodically, these organics had to b e
manually removed . Whether this buildup substantially affected the
trapping efficiency of the vortex tube is not known . Although the
sampling efficiency (based on a comparison with Helley-Smith samples )
appeared to be lower during periods of high organic matter transport ,
variability in the data precluded any definitive conclusions .

The hand-held Helley-Smith bedload sampler (0 .2-mm mesh size ; 1950-
cm2 bag surface area) was used during WY 1978 to measure transport rate s
immediately upstream and downstream from the vortex tube . Regression
analysis indicated that approximately 63% of the material in transpor t
upstream from the vortex was being measured by the downstream sample r
(Figure 8) . Thus, only 37% of the material (> 0 .2 mm) in transport
within the lower 7 .6 cm of the stream was being sampled by the vorte x
tube .

Because the vortex sampler would most likely be effective a t
trapping the larger particles in transport, the d 90 of upstream and
downstream samples were also compared . Any change in d90 betwee n
upstream and downstream samples would thus index the relative efficienc y
of the vortex tube, over a range of particle sizes . Regression analysi s
resulted in the following :

Y = 0 .74 X0 .54

	

r2 = 0 .5 3

where Y = d90 of downstream Helley-Smith samples, mm
X = d90 of upstream Helley-Smith samples, mm
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The range of d90 's over which the above equation was developed was
from 0 .5 to 5 .2 mm for upstream samples . This relationship indicate s
that as particle size increases, an increasing proportion of the par-
ticles will be trapped by the vortex tube . For example, at a
d90 upstream of 1 .0 mm, the d90 downstream would be 0 .74 mm . This rela-
tively small change indicates the vortex tube at Flynn Creek is inef-
ficient at trapping sand-sized particles . However, for an upstream
d90 of 5 mm, the downstream d90 would be 1 .76 mm, indicating the vortex
tube is increasing efficient with larger particle sizes . Sampling effi-
ciencies of the vortex tube at Flynn Creek are probably close to 100% fo r
gravel particles > 10 mm in diameter and cobble particles (64-256 mm) .

Once water and sediment enter the vortex tube, they then flow t o
the sample box where the sediments settle out and the overflow wate r
returns to the stream . Tests conducted during the summer of 1976 indi-
cated that the trapping efficiency of the sample box varied with particl e
size but that it was also nearly independent of the amount of wate r
diverted by the vortex tube . The amount of water diverted through th e
tube during these tests ranged from 0 .10 to 0 .16 m3 s-1 . Additional
confirmed tests conducted in the summer of 1977 (at a vortex flow of 0 .16
m 3 s-1 ) confirmed a rapid drop in sample box efficiency with a decreas e
in particle size (Figure 9) . For particles > 10 mm in diameter, th e
sample box was nearly 100% efficient, whereas for particles < 0 .2 mm
trapping efficiencies are essentially zero . Thus, even if the vortex
tube was 100% efficient for particles 0 .2 to 10 mm in diameter (which i t
was not) the variable efficiency of the sample box over this particle -
size range created additional problems . A comparison of bedload
transport rates based upon the amount of material caught by the sampl e
box and the upstream Helley-Smith indicated the vortex system (includin g
inefficiencies due to both the tube and sample box) was trapping only 15 %
of the total bedload in transport (Figure 10) . Because the d50 o f
bedload in transport at Flynn Creek is typically < 1 mm, the vorte x
sampler may not accurately measure actual transport rates . After the
1979 WY vortex measurements at Flynn Creek were deemphasized and mor e
intensive sampling with the Helley-Smith sampler (0 .2-mm mesh size ;
6000-cm2 bag size) was employed .

During the runoff events of WY 1978, nearly 200 bedload samples wer e
obtained with the vortex sampler . These samples were individually sieved
to obtain particle-size distributions . The relationship shown is Figur e
9 was then used to adjust transport rates based on the measured inef -
ficiencies of the sample box . No attempt was made to further adjus t
sample weights to compensate for the effects of the vortex tube . Thus ,
the transport rates based on the vortex sampler and presented in thi s
report represent conservative estimates of actual transport rates i n
Flynn Creek . Although absolute transport rates averaged only 40% to 50 %
of those measured by the Helley-Smith sampler (Figure 10), the bedloa d
transport rates measured with the vortex sampler are assumed to inde x
relative transport rates over time and with changing flows . These data
thus provide important insights and evidence regarding the dynamics o f
bedload transport in Coast Range streams .
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In summary, the vortex sampler provides a unique method of obtainin g
bedload transport measurements in small streams . Criteria specified by
Robinson (1962) and Klingeman and Milhous (1970) were utilized in th e
design of the vortex sampler at Flynn Creek . Advantages of this sample r
include : (1) an integrated sample across the channel is obtained and (2 )
the length of time over which sampling occurs can be easily varie d
depending upon flow conditions and transport rates . Disadvantages of the
vortex sampler at Flynn Creek include : (1) substantial modification of a
natural channel is necessary to install the device, (2) the sampler i s
inefficient for trapping small gravels (i .e ., < 10 mm), sand-sized par-
ticles and particulate organic matter, and (3) organic matter i n
transport accumulates on the downstream edge of the vortex tube an d
causes an unknown effect (if any) on the sampling efficiency of the tube .

Helley-Smith Sampler

Because the Helley-Smith sampler was not designed for streams wit h
high amounts of organic matter and sand-sized sediments, a number of in -
stream and flume measurements were made to evaluate sampling efficienc y
(Beschta, 1980a) . In summary, these tests showed that the Helley-Smit h
sampler with a standard collection bag (0 .2-mm mesh size ; 1950-cm2 bag
surface area) quickly clogged during periods of bedload transport . In an
attempt to reduce the effects of the bag clogging (and an associate d
reduction in samping efficiency) sampling times were kept short (on e
minute or less) . As indicated previously, the Helley-Smith sampler wit h
a standard collection bag was used during both WYs 1977 and 1978 .

As a result of measurements by Johnson et al . (1977) and Beschta
(1980a), a larger bag (0 .2-mm mesh size ; 6000-cm2 bag surface area) was
initially used during the 1979 WY . The threefold increase in bag surfac e
area appeared to greatly reduce the problem of clogging (Beschta, 1980a) .
Because the Helley-Smith sampler (with the larger bag) appeared to per -
form adequately over a range of sediment transport and flow conditions ,
this device was used as the principal sampling method in WYs 1979 an d
1980 and only infrequently were vortex samples obtained . However, due to
the change in sampler characteristics, the Helley-Smith data for WYs 197 9
and 1980 are not directly comparable with those of previous years .

Advantages of the Helley-Smith sampler include : (1) a capability to
measure transport rates of both sand-sized sediments and particulate orga-
nic matter, (2) flexibility in sampling at selected points across th e
channel to evaluate spatial variability in transport, and (3) the sample r
is inexpensive and easy to use . Disadvantages include : (1) the
necessity to composite subsamples for estimating average transport rate s
and (2) an unpredictable reduction in sampling efficiency when the ba g
begins to clog . If the sampler is used in an undisturbed stream channel ,
one must also be careful to prevent " scooping " of bed materials during
placement or removal of the sampler at the stream bed . This was not a
concern at the Flynn Creek fish trap or at Oak Creek . In both instances ,
the sampler rested on a flat, concrete portion of the channel durin g
sampling .
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Bedload and Particulate Organic Matter Transport

Flynn Creek :	 Vortex Tube Sample r

Although the vortex tube had been installed in the late summer o f
1976, the record low flows of WY 1977 (Figure 4) resulted in essentiall y
no bedload transport at Flynn Creek . Thus the storms for WY 1978 repre-
sent the first period of measurements with the vortex sampler .
Streamflow and bedload transport data for several storms are illustrate d
in Figure 11 . Although all three storms in WY 1978 peaked within a range
of 0 .66 to 0 .79 m3s-ikm2 , a pronounced trend towards increasing bedloa d
transport during the latter storms is apparent . Why this progressive
increase in transport rate occurred from storm to storm is not known bu t
may be the result of channel adjustments upstream from the vortex due t o
raising the streambed slightly during installation of the vortex tube .
During the 1977-78 winter approximately 7 .0 cm of deposition had occurre d
immediately upstream from the fishtrap . Thus, if bedload sediments were
accumulating in the upstream channel during the first several storms ,
this could account for the relatively low transport rates . The higher
rates measured during the December 13-15 storm may indicate upstrea m
storage had largely been satisfied and bedload transport was returnin g
towards equilibrium rates .

Bedload rating curves from WY 1978 to WY 1979 (Figure 12) show addi-
tional evidence of a progressive increase in transport rates in relatio n
to stream discharge . The regression equations for each rating curve are
included in Table 4 . However, this shift in the rating curve may also
have been caused by changing the hydraulic conditions of flow over th e
vortex tube . During the high flows of the 1978 WY, supercritical flo w
was observed over the vortex tube . Flows entering the hydraulically
"smooth" fishtrap accelerated, became supercritical over the vortex tub e
and returned to subcritical flow at a standing wave less than 1 m
downstream from the sampler . To eliminate this condition, a contro l
board (the top of which was at the same elevation as the top of the vor-
tex tube) at the downstream end of the fishtrap (approximately 2 m
downstream from the vortex tube) was raised 9 cm in elevation during th e
summer of 1979 . This increased elevation of the control board decrease d
the velocity of flow over the sampling tube and storm flows remaine d
subcritical during the 1979 and 1980 WYs . For example, during the WY
1979	 peak flow of 0 .75 m3 s-1 km -2 at Flynn Creek, the Froude numbe r
(V 3 gy ) was only 0 .52 over the vortex tube . However, the increase in
height of the control board could also have caused additional depositio n
upstream from the fishtrap . Indeed, over the 1979-80 winter, several
centimeters of additional deposition occurred in a 40-m reach immediatel y
upstream from the fishtrap . However, if material was being deposited ,
this would tend to keep transport rates at a given discharge relativel y
low and does not explain the increases demonstrated in WY 1979 . Although
it was unfortunate that such a change in the characteristics of the '
fishtrap occurred mid-way through the study, the effects of raising th e
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TABLE 4 . Summary of regression equations relating to streamflow to bed -
load transport and to total suspended solids concentration .

Water Year

	

Regression Equationsa

Flynn Creek : Bedload

1978

	

V = 422 Q4 .51

1978

	

HS = 446 Q3 .87

1979

	

V = 376 Q3 .41

1979

	

HS = 9 . 6 Q3 .41

1980

	

HS = 11 .4 Q-1 .22

Oak Creek : Bedload

1980

	

HS = 21,650 Q3 .44

Flynn Creek : Total suspended Solid s

1978

	

TSS = 188 Q1 .33

1979

	

TSS = 424 Q1 .56

1980

	

TSS = 28 Q-0 ' 11

Oak Creek : Total Suspended Solid s

1976

	

TSS = 579 Q1-2 6

1977

	

TSS = 238 Q0 .5 7

1978

	

TSS = 525 Q1 ' 12

1979

	

TSS = 61 Q0 .2 5

1980

	

TSS = 1,225 Q1 .44

n r2

187 0 .58

24 0 .36

86 0 .7 2

157 0 .9 2

114 0 .6 2

183 0 .8 6

82 0 .1 6

118 0 .6 5

145 0 .01

194 0 .47

12 0 .14

80 0 .35

293 0 .03

212 0 .49

aQ = streamflow, m3 S-1 km2 .
V = bedload transport based on vortex tube samples, kg hr 1 .
HS1 = Bedload transport based on Helley-Smith samples using a bag wit h

0 .2 mm mesh size and 1950 cm 2 of surface area, kg hr 1 .
HS2 = Bedload transport based on Helley-Smith samples using a bag wit h

0 .2 mm mesh size and 6,000 cm2 of surface area, kg hr-l .
TSS = Total suspended solids from pumped samples, mg k-1 .
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control board may not be unlike those caused when large woody debri s
naturally enters the channel, a common situation in Oregon Coast Rang e
streams . In any event, a shift in the rating curve between WYs 1978 an d
1979 is evident . Whether this shift is due to sampling error, changes i n
sampling efficiency of the vortex, channel adjustments upstream, o r
natural variation in transport versus streamflow is not known .

The median particle diameter ( d50 ) of material in transport range d
from 0 .2 to l .+8 mm in WY 1978 and 0 .2 to 0 .8 mm in WY 1979 . The averag e
d50 for each year was 0 .5 mm indicating that most bedload transport i n
Flynn Creek involves sand-sized particles .

Flynn Creek :	 Helley-Smith Sampler

As was found with the vortex sampler, bedload rates measured wit h
the Helley-Smith sampler showed pronounced fluctuations over time (Figur e
13) . Although the apparent "cyclic" variations in transport rates ar e
not systematic, the fluctuations appear to last anywhere from one t o
three hours . In addition, maximum bedload transport typically occurre d
after peak streamflow in any given storm . Thus, sediment rating curve s
developed from individual storms would demonstrate a hysteresis between
streamflow and bedload transport (i .e ., transport rates being relativel y
low during rising flow conditions and relatively high during flo w
recession) .

Sediment rating curves of bedload transport versus stream discharg e
fpr WYs 1978, 1979, and 1980 at Flynn Creek are illustrated in Figure 1 4
and summarized in Table 4 . Only a few samples were obtained during th e
relatively low flows of WY 1977 and are not included in Figure 14 .
Similar to the results of the vortex sampler, a shift in the rating cur -
ves between WY 1978 and WY 1979 is evident . The installation of a highe r
control board (for improved sampling efficiency of the vortex sampler )
should not be a factor in causing the rating curve shift shown here .
However, after WY 1978, the sampling bag of the Helley-Smith sampler ha d
been increased in size (from 1950 cm2 to 6000 cm2 of bag surface area) to
overcome clogging problems . Thus, whether the upward shift in the curve
is a result of increased sampling efficiency or higher transport rate s
(following upstream channel adjustments), or both, is not known .

The rating curve for WY 1980 (based on N.4..eem ies) eepresents an
interesting `paracox whereby bedload transport rates are actually shown to
be relatively high at lower discharges . Theoretical considerations o f
stream power, tractive forces, etc ., would arl indicate a direct rela -
ttonship between stream discharge and bedload transport as is shown fo r
WYs 1978 and 1979 . Initially then, the results for WY 1980 do not see m
plausable . Data for the 1980 WY were collected during four storms
(December 4 and 12, 1979, and January 9 and 14, 1980) . Although thes e
were the largest flow events of that winter, the sampled flows range d
from only 0 .22 to 0 .44 m3 s-1 km7 2 . Many of these samples were collected
during the falling limb of a storm hydrograph when often the highes t
bedload transport rates are observed in Flynn Creek . As a result of the
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timing of sample collection in relation to the hydrograph peak, th e
hysteresis in bedload transport versus flow, and the relatively smal l
range in flows over which samples were collected, a rating curve with a
negative slope resulted (it should be noted that the slopes of ratin g
curves for individual storms in WY 1980 were all positive) . Such results
indicate that a wide range of flows must be sampled in order to obtain a
direct relationship between bedload transport and streamflow .

With the exception of WY 1980, the exponential slopes of the ratin g
curves derived from both the vortex and Helley-Smith samplers range fro m
3 .41 to 4 .51 for an average of 3 .8 . Thus, a doubling of streamflo w
results in approximately a 14-fold increase in bedload transport which i n
turn implies that the larger and relatively infrequent flow events on th e
Oregon Coast Range are responsible for moving the majority of bedloa d
sediments . Nearly all bedload transport at Flynn Creek occurs at
discharge of greater than about 0 .2 m3 s-1 km-2 , a flow that occurs les s
than 6% of the time .

As indicated previously, there is a tendency for maximum transpor t
rates of bedload to occur after the peak of the hydrograph . In addition,
because streamflow recession at Flynn Creek occurs much slower than th e
rise in flow during a storm, the volume of bedload sediments moved durin g
receeding flows is much greater than during the rising flows . For a
given storm, data collected at Flynn Creek indicate 75% or more of th e
total bedload transport occurs during conditions of receeding streamflow .
Furthermore, the amount of suspended solids (inorganic sediments an d
organic matter) and particulate organic matter are also relatively lo w
following the peak in stream discharge . Thus, if riffle scour and depo-
sition processes are active after peak discharge, this situation may pro -
vide a mechanism for the flushing of fine sediments and organic matte r
from gravels . Movement of the streambed gravels is necessary befor e
flushing of fines can occur (Beschta and Jackson, 1979 ; Adams and
Beschta, 1980) .

The d50 for samples collected with the Helley-Smith bedload sample r
averaged 0 .5 mm, a result identical with that of the vortex sampler .
Also, the d 50 appeared to be relatively insensitive to changing flow con-
ditions .

In contrast to the variability in bedload transport, the transpor t
rates of particulate organic matter (POM) seemed relatively "wel l
behaved" and in-phase with the storm hydrograph (Figure 13) . POM rates
increased during the rising limb of the storm hydrograph, peaked slightl y
before the hydrograph peak, and then followed a fairly uniform decay wit h
time as flows receeded . This pattern of response is similar to that o f
the suspended solids (discussed later) . During the early and late por-
tions of the storm hydrograph, POM transport was of nearly the sam e
magnitude as the bedload component .
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Oak Creek :	 Helley-Smith Sampler

Bedload and particulate organic matter measurements with th e
Helley-Smith bedload sampler (0 .2-mm mesh bag, surface area of 6000 cm 2 )
were obtained only in WY 1980 . Although four storms were sample d
(December 23, 1979, January 9 and 14, 1980 and March 14, 1980) only dat a
from the largest storm (peak flow = 0 .36 mi s-1 km2 ) are illustrated in
Figure 15 . In contrast to Flynn Creek, storm hydrographs at Oak Cree k
typically have steeper rising and falling limbs and hence a "flashier "
stream response to rainfall even though Oak Creek is a larger drainage .
During the rapid rise in flow for the storm of January 14, 1980, bedloa d
transport rates increased rapidly and peaked prior to the peak of th e
storm hydrograph . However, similar to Flynn Creek, substantial fluc-
tuations in transport rates occurred throughout the period of stormflow .

Bedload rating curves for individual storms at Oak Creek along wit h
a composite rating curve based on all data are shown in Figure 16 . For
the individual storms, exponential increases in bedload transport wit h
increasing discharge vary from 1 .72 to 4 .50 indicating individual storm
relationships are not useful for extrapolation purposes . The exponential
increase in bedload transport of 3 .44 as a function of discharge for th e
composite rating curve (Table 4) is similar to that found for Flyn n
Creek, although the intercept is approximately 3 .5 times higher . Thus ,
for a given stream discharge per unit area of watershed (m3 s-1 km-2 ) the
bedload transport rate at Oak Creek is higher than that at Flynn Creek .
This higher transport rate appears to be nearly proportional to the rati o
of drainage areas (e .g ., 7 .5 km2 /2 .2 km2 = 3 .4) of the two watersheds .
This is an interesting result in view of the differing geology, soils ,
topography, channel morphology, percipitation amounts, etc ., charac-
terizing the two watersheds .

Median particle diameters for Helley-Smith samples at Oak Creek ,
although larger than those at Flynn Creek, averaged less than 2 mm . The
d95 for all samples was less than 15 mm .

Particulate organic matter (POM) comprises a relatively small com-
ponent of the total transport measured with the Helley-Smith sampler a t
Oak Creek (Figure 15) . As at Flynn Creek, POM transport rates tend to
increase or decrease in direct response to changes in flow rates . Thi s
inphase relationship of POM with the storm hydrograph is in contrast t o
the hysteresis effects often seen with the suspended solids and bedloa d
components .

Channel Measurement s

At channel cross-sections above the Flynn Creek fishtrap, measure-
ments indicated localized scour and fill of the channel was a commo n
occurrence . Even during the relatively low flows of WY 1977, a ne t
degradation of 5 cm was measured at the 12 cross-sections in the 300- m
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JAN 14, 1980

FIGURE 15 . Time series of streamflow (Q), bedload transport (HS) an d
particulate organic matter transport (POM) for a storm

at Oak Creek .

	

Both bedload and particulate organic matte r
transport were measured with the Helley-Smith bedload sampler .
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FIGURE 16 . Bedload rating curves for individual storms and a composit e
curve for WY 1980 at Oak Creek .
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reach upstream of the fishtrap . Because essentially no bedload transpor t
was measured at the fishtrap in WY 1977, these data indicate loca l

adjustments within the reach . No significant aggradation or degradation
of the reach occurred in WYs 1978 and 1979 even through individual cross -

sections showed net scour and/or fill and bedload transport had defini-
tely occurred . The cross-sections were not remeasured after the winte r

flows of 1979-80 .

The use of 12 cross-sections, spread over a 300-m reach of channel ,
may not be adequate for accurately defining changes in the channe l
morphology resulting from small to moderate runoff events at Flynn Creek .
The highly variable occurrence of pools and riffles makes interpretatio n
of the above data difficult . For example, the 5-cm changes whic h
occurred in the WY 1977 indicate general changes occurred and we can onl y
hypothesize that this material was moved into pools . However, becaus e
none of the cross-sections were established at pool locations, definitiv e

evidence to support this hypothesis is not available . The dynamics of
riffles, pools, and intermediate locations in the channel regardin g
bedload routing (storage and transport) represents a major void in ou r
knowledge of sedimentation processes in mountain streams . Unfortunately ,
the measurement of state variables (channel depth, width, etc .) between
seasons or between storms provide limited insights as to how the variou s
portions of the channel respond to and interact with bedload transport a t
high flows . Concurrent measurements of channel geometry with those o f
bedload transport during storms are needed to overcome this situation .

Results of the marble studies were also inconclusive due to th e
problems in recovering them after movement had occurred . The following
tabulation summarizes average transport distances for all recovere d
marbles :

Marble
diameter

1976-77
winter

1977-7 8
winter

22 mm 1 .3 m 2 .3 m
14 mm 0 .7 m 7 .5 m
9 .6 mm 23 .8 m

It was orginally hoped that the marbles would be trapped by the vorte x
sampler during stormflow periods and could be used to index transpor t
distances . And because marbles at each cross-section were a distinc t
color, they would also indicate whether certain sections of the channe l
were scouring while other sections remained stable . Unfortunately, n o
marbles were ever found in any of the vortex samples and no conclusion s
can be drawn regarding the above hypothesis .
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Total Suspended Solid s

Because of the substantial amounts of particulate organic matter i n
transport along the bottom of the stream (as indexed by Heliey-Smit h
samples), we attempted to evaluate tape composition of suspended solids i n
transport . Essentially, the question was--what percent of the tota l
suspended solids was sediment (inorganics) and what percent was organi c
matter? The transport of particulate organics, particularly close to th e
bed where larger sediment particles (sands and gravels) were moving ,
could result in rapid abrasion and shredding of this organic matter int o
smaller particles . Thus, during WY 1980, suspended solids samples (5 4
samples from Flynn Creek and 123 samples from Oak Creek) were ashed a t

500°C to remove the organic component . Samples that originally had tota l
suspended solids concentrations of < 15 mg k-1 had been excluded from
analysis because the rebeedve errors involved in weighing small sample s
could have large effects on the calculated percentages . As a result of
the ashing procedure, we found that the organic matter content average d
39 and 38 percent for samples at Flynn Creek and Oak Creek, respectively .
There also appeared to be an inverse relationship between strea m
discharge and percentage organic matter . For example, at the highes t
total suspended solids concentrations measured in WY 1980, the relativ e
amount of organic matter had dropped to approximately 30 to 35 percent a t
Flynn Creek and 20 tY 25 percent at Oak Creek . Such data indicate tha t
the use of terminology such as "suspended sediment" when describing th e
total suspended solids concentrations and yields from forested watershed s
in western Oregon may be misleading and inappropriate . Previously
published "suspended sediment " data for Flynn Creek and Oak Creek (Brown ,
1972 ; Harris, 1977 ; Beschta, 1978 ; Paustian and Beschta, 1979 ; and
Beschta, 1980c) undoubtedly reflect a relatively large but unknown pro -
portion of organic matter .

This relatively large organic component may further"affect th e
conclusions drawn from previously published results for the Alse a
Watershed Study (Brown 1972 ; Harris 1977 ; and Beschta 1980), of which
Flynn Creek served as the untreated control watershed . During that
study, two watersheds adjacent to Flynn Creek were logged (with asso-
ciated road construction, yarding and slash disposal operations) . If the
increases in "suspended sediment " concentrations and yields that wer e
measured after logging were almost entirely inorganic in composition (a s
a result of accelerated erosion by mass soil movements) the relativ e
increases in sediment production would be considerably greater than pre-
viously reported . This conclusion assumes that the organic component o f
the total suspended solids yielded from the treated watersheds was no t
markedly increased from that measured during pretreatment periods .
Unfortunately, the above arguments are only speculative but should b e
coiTsidered in any future watershed studies attempting to evaluate the
effects of land use activities on the export of "suspended sediment . "
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Flynn Creek

No samples of total suspended solids were collected at Flynn Cree k
in WY 1977 because of the low streamflow . However, total suspended
solids rating curves in relation to stream discharge for individua l
storms during WYs 1978, 1979, and 1980 are shown in Figure 17 . Although
regression analysis was used to define each relation (based on th e
equation form Y = aXb , Table 4), the significance level of each regres -
sion equation is not included in this report . The concentration of tota l
suspended solids in a sample collected at time t is not independent of t-
1, t-2, etc . (where units are in hours) . Thus the linear regression
assumption of independent X and Y data pairs is not met and the power o f
any subsequent statistical test cannot be defined . Because of the depen-
dency characteristics associated with time serie1s data collected ove r
relatively short time intervals, tests of significance regarding an y
regression equations, such as illustrated in Figure 17, have limited uti-
lity . Identifying the memory characteristics and structure of this
dependency component in time series data of suspended solids represent s
one of the important tasks facing research hydrologists and statisti -
cians .

In spite of the above problems and the inherent variability of rela -
tionships shown in Figure 17, several general comments about the ratin g
curves can be made . For example, within a storm, the concentration o f
total suspended solids at any given discharge may vary by nearly an orde r
of magnitude (i .e ., 10 6-fold) . There is also a tendency for concentra-
tions to be higher on the rising limb■of a storm hydrograph than they ar e
at the same flow on the falling limb . This situation can result in a
pronounced hysteresis loop (which is opposite to that for bedloa d
transport and streamflow) when individual data points for a particula r
storm are connected in chronological order (see storm C, WY 1979, Figur e
17) . Such hysteresis effects do not always occur but are often prominen t
in the lager runoff events that do not have complex hydrographs . The
exact cause of this hysteresis effect undoubtedly involves the availabi -
lity of suspendabLe sediment and organic matter in and along the imme-
diate channel . Sediments picked up for transport during conditions o f
rising flow are no longer available during the recession limb of th e
storm hydrograph . Further evidence supporting the sediment availabilit y
concept occurs during storms with the same peak discharge, but which hav e
either relatively fast or relatively slow rising limbs of the stor m
h dro-graph . Invariably, the storm with the relsArively fast rime in flow
will have the higher suspended solids concentrations yet the tota l
suspended solids yielded during the rising limb of both storms may b e
essentially the same . The concentrations are higher on the storm wit h
the steep rising limb because suspended solids are being made availabl e
(as the wetted perimeter of the channel increases and the stream networ k
expands headward in the drainage) at a faster rate . The interaction of
these two factors, (1) rising vs . recession flow conditions and (2) rela-
tive rate of increased' flow (i .e ., steepness of the rising limb of the
storm hydrowaph), are thus important factors affecting the variabilit y
in total suspended solids concentrations found for successjve storms .
Because overland flow is a relatively unimportant process for undisturbe d
forested watersheds such as Flynn Creek, most suspended sediments an d
organics must originate within or close to the channel network .
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FIGURE 17 . Total suspended solids rating curves for individual storm s
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In addition to the above factors affecting total suspended solid s
concentrations, another watershed reponse can be identified in Figure 17 .

Generally, there tends to be a pattern of reduced concentrations, at a
given flow, as the winter runo.f season pogresses . This situation con-
firms that the early fall storms tend to have higher concentrations an d
that a flushing of suspendable solids occurs during the winter stor m
season . Thus, storms in late winter or spring, after the occurrence o f
previous storm peaks, tend to have greatly reduced suspended solids con-
centrations and lend additional variability to the graphed data (and
resultant rating curves) .

An upward shift of the total suspended solids rating curves from W Y
1979 to WY 1980 (Figure 18), similar to the shift found for the bedloa d
rating curves, also occurred at Flynn Creek . The reason for this shif t
in the relationships is not known . However, those factors that were
identified as possibly causing the shift in the bedload curves should no t
be a factor here because the suspended solids •samples were collected a t
the stream gaging station, approximately 300-m upstream from th e
fishtrap . Furthermore, the total suspended solids rating curve for W Y
1980 has a negative slope (similar to the 1980 WY bedload rating curve) .
The relatively small runoff events that occurred in WY 1980 and th e
limited range of flows (0 .11 to 0 .32 m3 s-1 km-2 ) in conjunction with th e
timing of sample collection apparently resulted in this inverse rela-
tionship . Although the WY 1980 curve lies within the general rela -
tionships shown for WYs 1978 and 1979, the potential errors from
extrapolating this relationship for predicting concentrations at highe r
or lower flows are obvious .

Rating curves developed from years when flows exceeded 0 .3 m3 s- 1
km-2 (i .e, WYs 1978, 1979) have slopes ranging from 1 .32 to 1 .56 (Table
4) and average 1 .44 . This indicates that at the higher flows, a doublin g
of flow would result in approximately a 2 ..7-times increase in suspended
solids concentration .

Oak Creek

As at Flynn Creek, the total suspended solids rating curves fo r
individual storms at Oak Creek (Figure 19) show pronounced variability .
WY 1976 data (although not collected as part of this study) are include d
in Figure 19 . The hysteresis effect also occurs at Oak Creek, but it i s
usually not nearly as pronounced as at Flynn Creek due to the rapidity a t
which flows change during storms . However, there is a similar genera l
downward shift in the positioning of each curve with successive storms .

By combining data from individual storms, annual rating curves o f
total suspended solids and discharge were developed (Figure 20) . Even
though each curve is based on a relatively large number of samples (Tabl e
4), considerable variability in the resultant rating curves is evident .
It is readily apparent that total suspended solids at Oak Creek cannot b e
simply characterized by a single rating curve . In addition, the collec-
tion of numerous samples does not reduce the inherent variability betwee n
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total suspended solids and streamflow . Rating curves developed durin g
years when flows exceeded 0 .3 m3 s-1 km-2 have slopes ranging from 1 .12
to 1 .44 and average 1 .27 . This indicates that at the higher flows, a
doubling of flow would result in approximately a 2 . times increase in
total suspended solids concentration .

TotalSuspendedSolids and Turbidity

In the Pacific Northwest, state regulatory agencies (Department o f
Environmental Quality, 1974) often use turbidity to define acceptable an d
unacceptable changes in total suspended solids concentrations (o r
suspended sediment concentrations) of streams and rivers . Detailed com-
parisons of suspended solids concentrations and turbidity for Flynn Cree k
and Oak Creek have been previously reported by Beschta (1980c) . Those
results confirmed that total suspended solids was the most important fac-
tor affecting turbidity of Oregon's Coast Range streams . However, the
relationships between these two parameters varied between storms and bet-
ween drainages illustrating that predictive relationships must be deve-
loped on a watershed-by-watershed basis . The results also demonstrate d
that turbidities (and hence total suspended solids concentrations )
quickly return to less than 30 ntu (nephlometric turbidity units )
following runoff peak . For example, an analysis of ten storm hydrograph s
at Flynn Creek with peak discharges ranging from 0 .28 to 1 .2 6
m3 s-1 km-2 showed that turbidities dropped below 30 ntu within 14 hour s
after the peak--eight storms were actually less than 30 ntu within 6
hours after the discharge peak . At Oak Creek, an analysis of 24 storm s
with peak discharges ranging from 0 .10 to 0 .62 m3 s-1 km-2 showed that
within 12 hours, 71 percent of the storms had turbidities less than 3 0
ntu . Within 24 hours of the peak, 96 percent of the storms had tur-
bidities which had returned to levels of less than 30 ntu . Thus, even
though total suspended solids concentrations and rating curves of eithe r
suspended solids or turbidity with stream dischange are highly variable ,
these results indicate Coast Range streams return to relatively lo w
levels of turbidity (i .e ., < 30 ntu) within 24 hours of a storm peak .
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SUMMARY AND CONCLUSIONS

Intensive sampling, over time, during periods of storm runoff wer e
utilized to gain insights regarding the effect of streamflow upon bedloa d
transport, particulate organic matter transport, total suspended solid s
concentration and turbidity . Additional precipitation and channe l
morphology information were also collected .

Precipitation and Streamflow

Approximately 65% of the winter precipitation (November throug h
March) was measured as streamflow at the mouth of these two watersheds .
However, during the study period, both seasonal precipitation amounts an d
flows remained relatively low in comparison to other years . Based on a
frequency analysis of 20 years of record at Flynn Creek, the instan-
taneous peak flows measured at Flynn Creek in WY's 1977 and 1980 were th e
lowest on record . Even the instantaneous peaks for WY's 1978 and 197 9
had recurrence intervals of less than 2 years . Thus, the results pre-
sented within this report must be viewed within the context that they ar e
the result of relatively frequent but small to moderate runoff events .

BedloadSamplers

Two methods of sampling bedload transport were employed at Flyn n
Creek : (1) the vortex tube bedload sampler and (2) the Helley-Smith
bedload sampler . Only the Helley-Smith bedload sampler was used at Flynn
Creek although previous studies by Milhous and Klingeman (1973) an d
Heineke (1976) utilized a vortex tube sampler . Although the vortex
sampler provided a sample taken from across the entire width of the chan-
nel, the device proved to be relatively inefficient r at trapping bedload
particles less than 10 mm in diameter . This situation resulted from th e
combined effects of trapping inefficiencies (1) at the entrance of th e
vortex tube where water and sediment were removed from the flow and (2 )
at the sample box where bedload particles were to settle out from th e
water overflowing the top of the box . The sampler was entirely ineffect-
ive at trapping particulate organic matter .

In contrast to the vortex sampler, use of the Helley-Smith bedloa d
device required that several subsamples be taken across the channel an d
then combined to determine an overall transport rate . A threefold
increase in bag surface area, from 1,950 cm to 6,000 cm 2 , reduced
clogging at the 0 .2-mm mesh bag . Subsamples were collected over shor t
time intervals (30 seconds or less) to further minimize the effect of ba g
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clogging and a resultant rapid decreases in sampler efficiency . The

Helley-Smith sampler was used for quantifying both bedload .(inorganic

sediments) and particulate organic matter transport .

Bedload and Particulate Organic Matter Transpor t

Results'of bedload measurements at both Flynn and Oak Cree k
illustrate the highly stochastic nature of the transport process .
Although transport rates do not occur in a strict "cyclic" pattern ove r
time, there are alternating periods of relatively high and relatively lo w

transport rates . It is suspected that periods of high transport indicat e
active scour (localized degradation) of the streambed somewhere upstream .

Conversely, relatively low transport would inc sgte that the depositio n
process is active upstream. Because various sections of the upstream
channel may be undergoing scour and fill at , different times, their addi -
tive effect upon the transport of bedload sediments (measured at a
downstream location) would cause unpredictable and apparently rando m
fluctuations in transport rates . The longitudinal channel distance bet -
ween any reach of active scour and deposition and the point of bedloa d
measurements would also influence measured transport rates . As a result ,
it is highly probable that transport rates measured at a given locatio n
in the channel may be considerably different from those measured severa l
tens of meters either upstream or downstream from that location . This
would be particularly true for the small to moderate sized storm s
measured during this study . During larger runoff events, where storms
have recurrence intervals of greater than approximately five to te n
years, transport rates may become more uiiform along the longitudina l
dimension of a channel . However, such speculation requires additional
verification with field measurements of bedload transport during larg e
runoff events .

At any given location along the streambed, the bed sediments wil l
remain in place (stable) until the bed shear stress or tractive forc e
exceeds a critical value, after which active transport of bedload sedi -
ments may begin . However, because of variability in hydraulic charac-
teristics of the flow during storm runoff, variability in particle size s
comprising the bed, and variability in channel geometry, a particula r
flow cannot be identified at which " incipient motion " of the bed occurs .
Instead the transport of sediments occurs as a continuous power functio n
of streamflow and thus any designation of incipient motion for the bed o f
a channel is arbitrary and perhaps a result of sampling techniques .

Results of this study confirm that bedload transport, with its asso -
ciated scour and fill, is an extremely important process shaping th e
character of natural streams and the quality of stream habitats . Yet
bedload transport occurs during relatively limited periods of time as i s
indicated by the following tabulation for Flynn Creek :

59



Bedload transport rate (kg h r-1 ) 1 10 100

Streamflow (m3 s-1 km-2 ) 0 .15 - 0 .2 0 .25 - 0 .35 0 .5 - 0 . 7

Percent of time that indicate d
flow is exceeded

6 4 1

In other words, based on 15 years of continuous flow data and the bedloa d
rating curves established in this study, transport rates > 100 k g
hr-1 occur only one percent of the time or approximately 3 .5 days each
year. This information indicates that the transporting capability of
bedload sediment is relatively limited during a "typical" runoff year an d
that the accelerated entry of bedload sediments due to management activi-
ties may quickly alter the dynamic equilibirum characteristics of a chan-
nel system. In addition, these data further illustrate that the
relatively infrequent but relatively large runoff events are the majo r
transport periods for bedload sediments in mountain streams . The slope
of the bedload rating curves indicate that doubling flows causes a 10 t o
20 times increase in bedload transport rates .

Because of the vertical and horizontal velocity profiles found a t
any given cross section in the channel, the transport rates of bedloa d
sediments do not occur uniformily across the channel . Field measurement s
and observations indicate that the material is moving downstream i n
"ribbons " (longitudinal zones of relatively high particle concentrations )
that may continually shift back and forth near the center of the channel .
This behavior poses serious sampling problems when attempting to measur e
transport rates with portable samplers (such as the Helley-Smith bedload
sampler used in this study) . This lateral migration back and forth may
also cause apparent " pulses " of bedload transport measurements . However ,
the fact that similar pulses in transport rates were also measured wit h
the vortex sampler (which samples across the entire channel) indicate s
the large variation in transport rates over time is not an artifact o f
the sampling methods employed in this study . Hayward and Sutherland
(1974) similarly found bedload transport to be highly unsteady eve n
during conditions of relatively constant flow in a New Zealand stream .

The movement of bedload particles in mountain streams is the resul t
of numerous interacting processes . Historically, flume studies have bee n
used in an attempt to characterize transport rates and mechanisms uti-
lizing conditions of uniform flow and uniform channel geometry .
Unfortuantely, none of these criteria adequately describe Flynn Creek o r
Oak Creek . Due to the complex channel geometry (pools, riffles, mean-
ders, etc .) and large roughness elements (logs, root wads, boulders ,
etc .) found in these streams, flows are seldom uniform through any give n
reach . As a result, flows are accelerating or decelerating along variou s
sections of the channel and velocity profiles are highly variable . In
addition, the transient nature of storm hydrographs indicates that flo w
rates are continually changing with time . The problem of nonuniform par-
ticle size is also a major confounding feature (unlike in flume studie s
where particle sizes in transport are often rigidly controlled) tha t
creates problems in the interpretation of field data . Within any give n

60



reach of a stream, median particle diameters may range over an order o f

magnitude in size . In addition, the occurrence of armoring at the

streambed-water interface is undoubtedly an important factor limiting th e

transport of the underlying (and smaller) bed sediments . The periodic

disruption of this armor layer may be the major mechanism by whic h
" pulses " of bedload sediment are released for transport downstream .

Median particle diameters (d 50 ) of bedload samples collected with
the vortex sampler at Flynn Creek (after adjusting for the inefficiencie s
of the sample box) were generally within the range of 0 .2 to 0 .8 mm and
averaged 0 .5 mm. Although this result was somewhat surprising due to th e
low trapping efficiency of the sampler for these particle sizes, i t
nevertheless indicates that the vast majority of bedload sediments i n
transport at Flynn Creek are of sand size . Similarly, all Helley-Smit h

samples had a d50 of less than 0 .5 mm . Larger bedload particles wer e
typically carried by Oak Creek where the d50 and d95 averaged less than 2
mm and 15 mm, respectively .

The transport rates of particulate organic matter indicated in th e
results section represent conservative estimates of actual rates . This
is because these data are based on measurements obtained with th e
Helley-Smith bedload sampler which only samples the lower 7 .6 cm of the
water column . Although the amount of particulate organic matter i n
transport measured near the surface of the water was often only one-tent h
that measured at the bed, a relatively large but unknown amount of orga -
nics were carried over the top of the sampler .

Channel Morphology

Cross-section profiles at 12 locations at Flynn Creek indicated a
net degradation of 5 cm in WY 1977 and no change in WY 1978 . However ,
localized scour and fill at individual cross sections was common eve n
when no net change occurred over the entire reach .

Total Suspended Solids

Almost 40 percent of the total suspended solids concentration a t
both Flynn Creek and Oak Creek were found to consist of organic matter ,
based on samples analyzed for the 1980 WY . The percentage organic matte r
appeared to decrease with an increase in flow .

Total suspended solids concentration was regressed against stream -
flow for individual storms and water years at each watershed . Coef-
ficients of determination ( r 2 ) for water year relationships ranged from
0 .01 to 0 .65 . However, those years that experienced a relatively wid e
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range in flows showed exponential increases in total suspended solid s
concentrations from 1 .12 to 1 .56 indicating a doubling of flow woul d
result in approximately a 2 .5 times increase in total suspended solid s
concentration and a 5 times increase in total suspended solids discharge .
This rate of increase in total suspended solids discharge is much lowe r
than that for bedload and indicates that material transport in Coas t
Range streams shifts towards the bedload component at high flows . The
bedload component of the total material discharge also becomes mor e
important during the recession limb of a storm hydrograph because of th e
opposing hysteresis relationships of bedload and suspended solids wit h
streamflow .

Several storm characterisitics were also found to be important i n
influencing total suspended solids concentrations . These factors include
(1) streamflow, (2) hydrograph slope, and (3) sequence of storm events .
In general, increases in total suspended solids were positively corre-
lated with increases in streamflow . Thus, as expected, the higher flow s
usually have higher concentrations and discharges (concentration x
streamflow) of total suspended solids . However, the effect of factors
(2) and (3) is to create additional variability in any computed ratin g
curves . The role of hydrograph slope can be further subdivided int o
several factors . First, pronounced differences in total suspended solid s
concentrations occur between periods of flow increases (positive slope )
and periods of flow decreases (negative slope) . Almost always, con-
centrations are higher on the rising limb of a storm hydrograph at an y
specified streamflow than on the falling limb, at that same flow .
However, this situation may not be apparent when a complex hydrograp h
(i .e ., a storm with several streamflow peaks) occurs . Second, the rat e
of flow increase with time (dQ/dt) also affects resultant concentrations .
Relatively fast increases in streamflow tend to have higher con -
centrations than when streamflow increases are slower . However, the
total amount of material discharged from the watershed during two storm s
that have the same peak flow may be essentially the same even though th e
storm which causes the most rapid rise in flow will also have higher con-
centrations .

The third factor, the sequencing of storm events each winter ,
further confuses attempts to obtain useful correlations between con-
centration and flow . A general shift in the rating curves of individua l
storms each winter indicates that runoff events which occur later tend t o
have lower concentrations for a given flow . This seasonal " flushing "
thus adds additional variability to the composite rating curves for eac h
year and may cause the negative exponent illustrated in the relationshi p
for the 1980 WY at Flynn Creek (Table 3) . The factors identified abov e
do not operate independently of each other .

The interaction of factors (1), (2), and (3) makes the use o f
regression analysis of limited value in attempting to develop accurat e
predictive relationships between concentration and flow . This is par-
ticularly evident by inspecting the individual storm rating curves .
Thus, curves developed for a given storm cannot be used to predict con -
centrations for other runoff events even though the hydrographs may b e
identical . Similarly, individual storm relationships cannot be extrapo -
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lated to predict the total suspended solids concentrations for flow s

larger or smaller than those sampled . A wide range of flows (at least an
order of magnitude) and a variety of runoff events should be sampled i n

Oregon's Coast Range watersheds to establish a total suspended solid s

rating curve that is "representative" of a particular drainage . A large

number of samples over a limited flow range will not be adequate . The
data presented here also indicate that year-to-year shifts in rating cur-
ves may occur and represent another problem when attempting to utilize a
rating curve approach for assessing the effects of land management acti-
vities upon stream sediment loads .

Total Suspended Solids and Turbidity

Results indicated that total suspended solids concentrations ar e
highly correlated with turbidity . However, the relationships betwee n
these two variables are highly varied necessitating that predictiv e
equations must be developed on a watershed-by-watershed basis . Both
Flynn Creek and Oak Creek generally have turbidities less than 30 nt u
within 24 hours after a hydrograph peak . Because turbidity is a relati -
vely sensitive indicator of changing erosive conditions on a watershed ,
coupled with its ease of measurement, this variable may well serve as a
useful variable for indexing changes in water quality brought about b y

land use activities .
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