

Load Testing of Loan Search

Project Report

In completion of MS Project in EECS

Under the guidance of Dr Bose Bella

by Jiten Pai

Oregon State University

Table of Contents

1 Introduction ... 1

1.1 Objective .. 1

Broker Modules ... 1

Lender Modules ... 2

Administrative Module .. 2

1.2 Development and Testing Philosophy .. 2

2 System Architecture and Technology 3

2.1 Architecture ... 3

The MVC pattern ... 3

2.2 Implementation Platform .. 6

3 Load Testing .. 7

3.1 Definitions ... 7

3.2 Performance Expectations .. 8

3.3 Establishment of a Performance Baseline ... 8

3.4 Baseline Metrics .. 9

3.5 Bottlenecks Identified & Tuning .. 20

3.6 Post Tuning Metrics .. 21

4 Future Work .. 32

5 Appendix A – References .. 33

6 Appendix B – Application Screenshots 34

Preface

The purpose of this project is to load test, and fine tune the loan search functionality of

the Broker Blueprint web application, an innovative Business-to-Business (B2B) online

service aiding mortgage lenders and brokers in today's highly competitive mortgage

market.

Broker Blueprint enables brokers to search for suitable mortgage loans across various

participating lenders by entering their borrowers’ loan parameters on a single page.

The Broker Blueprint portal also expands the exposure of lending institutions’ loan

programs into untapped markets and gives participating lenders an edge over competing

institutions.

Page 1

1 Introduction

1.1 Objective
The purpose of this project is to develop an innovative Business-to-Business (B2B)

online service aiding mortgage lenders and brokers in today's highly competitive

mortgage market.

The Broker Blueprint portal has three main classes of users – Brokers, Lenders (lending

institutions), and application administrators. Following is the breakdown of application

modules by the user class and a brief description of module functionality:

Broker Modules

1. Loan Search

This module eases brokers’ loan search efforts by letting them enter borrower

information just once and presenting eligibility results from participating lending

institutions.

2. Loan Status Management

This module enables brokers to maintain non-personal loan information and status

of their borrowers online. The data maintained in this module is also the source

data for the broker business intelligence dashboard.

3. Dashboard

The dashboard module is the business intelligence presentation layer built on top

of a data warehouse. Loan status data entered through the Loan Status

Management page is transformed via a backend SQL based Extraction Translation

and Loading (ETL) process and loaded into the data wares house.

Besides the business intelligence charts, the dashboard also shows pipeline loan

statuses for all the loans a broker has. A mortgage loan typically takes 4-8 weeks

from submission to funding. During this time, the loan is said to be in the

pipeline, and access to pipeline loan status information is a key supporting feature

for broker users. The information entered and maintained in the Loan Status

Management area drives the pipeline status charts.

4. Website Customization

The Broker Blueprint portal enables brokers to choose a website template from a

set of available templates for customization and hosting. The standard templates

are stored in XSL format to which a transformation is applied with the customized

data in real-time for building the target site.

5. Locator Service

This is a Java Messaging System based supporting service run at the application

layer which is transparent to users. Any new broker or lender address information

inserted into the system or updates to existing address information in the system

triggers an asynchronous service call by this service to the Yahoo! geocoder

service with the address data. The Yahoo! geocoder service returns the validity of

the address along with the latitude and longitude information for the address. The

address coordinates are stored in the database and are used to calculate the

Page 2

location of the nearest branch relative to the broker’s office location for each

lending institution in the loan search results.

6. Online Registration and Payment

This module enables brokers to customize the service by picking the packages

they are interested in subscribing to, and register themselves via online credit card

payment. Addition of subscription packages is also handled by this module.

Credit card validation and payments are handled by this module by making an

SSL call to the Verisign Payflow service.

Lender Modules

7. Branch Management

This module enables lending institutions to manage their branch information like

location, contact information and address. The Locator Service uses this address

data to retrieve and store location coordinates.

8. Loan Program Management

Lending institutions use this module to create and update their loan program

guideline, pricing, and broker commission data. This data is used during loan

search by brokers to display qualifying loan programs for their search criteria.

Administrative Module

9. Online User Administration

The Online User Administration module enables users with administrative access

to add lender or broker accounts to the system. Broker accounts can be given

access to a combination of available packages, and creation of broker accounts via

this module bypasses subscription payment requirement.

With online tools like Loan Search and Loan Status Management, and status tools like

Pipeline Management and Dashboard, brokers can more efficiently service their

customers and identify key market segments with opportunities for growth based on

historical trends.

1.2 Development and Testing Philosophy
With a philosophy of ‘what you deliver’, not ‘what you plan to deliver’, the Broker

Blueprint project achieved whiteboard-to-production implementation within four months

of inception. The Agile methodology helped continuously deliver quality user

requirements against a backdrop of evolving requirements against maturing market

conditions. Tight integration of systems, tools and business processes, and component-

based techniques helped in becoming more responsive to new requirements.

Page 3

2 System Architecture and Technology

2.1 Architecture

The Broker Blueprint portal is developed on a J2EE platform and implements the MVC

architecture pattern by utilizing the Struts 1.1 framework to separate the Model, the View

and, the Controller.

This architecture pattern was chosen for the ease of maintenance and the separation of

business logic of the application from the presentation layer (user interface), and the data

model; any changes to one component may raise the need to make changes to code in the

other components; however, since there is code separation, ease of making changes is

higher, and chances of inadvertent introduction of bugs is much lower.

The MVC pattern

Model-view-controller (MVC) is a software architecture that separates an application's

data model, user interface, and control logic into three distinct components so that

modifications to one component can be made with minimal impact to the others.

In broad terms, constructing an application using an MVC architecture involves defining

three classes of modules.

 Model: The domain-specific representation of the information on which the

application operates. The model is another name for the domain layer. Domain

logic adds meaning to raw data (e.g. calculating the total monthly subscription

charges for a broker account based on the packages chosen, calculation of the

closest lender’s branch relative to a broker office location).

 View: Renders the model into a form suitable for interaction, typically a user

interface element. MVC is often seen in web applications, where the view is the

HTML page and the code which gathers dynamic data for the page.

 Controller: Responds to events, typically user actions, and invokes changes on the

model and perhaps the view.

Page 4

Figure 2.1.1 – System Architecture

Page 5

Figure 2.1.2 – MVC Model

Page 6

2.2 Implementation Platform

Java Platform, Enterprise Edition (Java EE) is the industry standard for developing portable,

robust, scalable and secure server-side Java applications. Building on the solid foundation of

Java SE, Java EE provides web services, component model, management, and communications

APIs that make it the industry standard for implementing enterprise class service-oriented

architecture (SOA) and Web 2.0 applications.

Some of the reasons why the J2EE platform was chosen over competing technologies are below:

1. Choice of OS and Application Server: Implementation of J2EE applications can be

done on proven and reliable application servers like JBoss, which do not require license

fees. In addition, these application servers can be run on a choice of free operating

systems like Linux or Solaris.

2. Integrated Development Environments: Development environments like Eclipse or

NetBeans are freely available to support development of J2EE applications.

3. Connectors: The Java Connector Architecture (JCA) is a standard for connecting to

Enterprise Information Systems (EIS). JCA supports access to SAP, IBM CICS,

PeopleSoft, Oracle, Siebel, Screens 3270, AS/400, Unisys, ADABAS-C, VSAM,

Codasyl, IMS, Tuxedo, etc. Such a level of connectivity options is not available with any

other implementation platform.

4. Messaging Architecture: The Java Messaging Service (JMS) standard is supported by

multiple vendors such as IBM, TibCo, Progress, SpiritSoft, Fiorina, Swift, Open3, JBoss,

etc.

5. Mature O/R mapping tools: It is best practice in Object Oriented development to

decouple business objects from their underlying relational database representation. Java

has several mature and robust products that support the mapping of relational databases

to objects such as TopLink, CocoBase, Hibernate, OJB, etc.

6. Standardized Authentication and Authorization: Java has a standard way of providing

Authentication and Authorization (JSSE). The choices in .NET are limited and in fact a

well-published bug in the way IE handled digital certificates required a service pack to

fix.

7. Distributed Caching: There are multiple vendors and open source projects that provide

distributed caching (i.e. SpiritCache, Coherence, Gemstone, JCS, Oracle). Such a choice

is not available with competing platforms.

Page 7

3 Load Testing

Load testing of an application is done after the functionality of the application has been

determined to be correct and matching user expectations. Load testing of an application is

primarily used to ensure:

1. The system responds in a timely way to user requests, and it’s performance degrades

gracefully with increasing user load

2. The system scales to an established number of concurrent users

3. The system remains stable under varying load

4. Ensuring Service Level Agreements are met for the established number of concurrent

users

The load testing for the Broker Blueprint application was carried out with OpenSTA (Open,

System Testing Architecture), a mature, open source web testing architecture. The OpenSTA

toolset has the capability of performing scripted HTTP and HTTPS heavy load tests with

performance measurements from Win32 platforms.

OpenSTA is available for download from http://opensta.org/

3.1 Definitions
Following are definitions for some typical terms used in the load testing any application

User Base

User base of an application is the total number of users who use an application. For loan search,

the user base is the count of the number of broker users who are subscribed to the service.

Concurrent Users

The number of users using an application at any given moment is the Concurrent User count.

This count varies by time of the day, day of the week, day of the month, and month of the year,

as influenced by working hours of brokers and the housing market conditions.

Virtual Users (VUs)

A Virtual User (VU) is a simulation of a real user by the load testing software. The test pane

defines the actions to be performed by sets of virtual users during a test run.

Timers

After recording load testing scripts, timers can be inserted into the scripts to time the response

times when the scripts are run. With different number of VUs, the web application being tested

returns different response times, and timers help record this at run time.

Data Parameterization

http://opensta.org/

Page 8

Parameterization of data refers to using varying, pre-defined input data when a load testing script

is run. During recording, OpenSTA records data supplied by the user during the session. To

simulate a realistic scenario, the input data used by virtual users needs to vary to overcome false

response times due to caching at various levels in the technology stack (the web server, the

application server, and the database server).

Virtual User Batches

During a test run with OpenSTA, the number of virtual users using the application can be

ramped up over time by “releasing” virtual users over the test run, so as to observe the behavior

of the web application with increasing virtual users.

Performance Baseline

Performance baseline of an application is the set of performance metrics for a given hardware

and software configuration established by running a set of performance tests. Once the baseline

is established, software and hardware configuration is modified so that improved and metrics are

achieved, which meet the SLAs of various stakeholders.

3.2 Performance Expectations
Broker Blueprint expects an initial broker user base of up to 300 users. The maximum number of

concurrent users expected to use the web application, most of them running the loan search

function, is 100.

The maximum acceptable response time for loan search was set to 15 seconds.

User base = 300 users

Concurrent users of application = 100

Expected Response Time for loan search of <= 15 seconds

3.3 Establishment of a Performance Baseline
For the purpose of load testing, OpenSTA scripts were run against an environment which was a

mirror image of the production setup in terms of hardware and software configuration. The steps

used for the establishment of a performance baseline were as follows:

1. Plan and model transactions

The transactions modeled for this test consisted of opening homepage, navigation to the

login page, login action, navigation to the loan search page, loan search action (iterated

five times), and the logout action.

Timers were created to measure the start and end times of each navigation and action for

the VUs.

Page 9

Data used by VUs for the login and loan search transactions was parameterized so as to

overcome the skewing of metrics due to caching at various levels in the web application.

2. Model VU batches

VU batches were modeled so that at start time, three VUs would be released over a three-

second ramp up time to start performing the transactions in the sequence listed above.

Thereafter, every seven seconds, a new batch of three virtual users were released with the

same ramp up time. Effectively, every 10 seconds, 3 new users would be introduced into

the test until all the virtual users were released.

3. Measure metrics with various total VUs

Five runs were made with the above VU batch model and 30, 50, 65, 75, and 100 total

VUs in each run respectively.

With these five baselines, a good indication of system behavior could be established with

increasing user load. Given the VU release model, where VUs were released into the

system over time, it would be improbable to have all the VUs active at any given time, as

some of the VUs would have completed their transactions by the time new ones were

released. The batch of 100 VUs had a maximum of just over 60 concurrent VUs active

during the test run.

4. Plotting of metrics

Metrics measured during various test runs were imported into Microsoft Excel as Comma

Separated Value (CSV) files and were the basis for the measurement plots.

3.4 Baseline Metrics
The following plots were created with the metrics collected using OpenSTA for different

numbers of VUs performing the same operations.

Three runs were preformed for each set, and the average of these metrics is shown in the tables

and used in the adjoining plots.

Page 10

VUs T_ACT_LOANSEARCH T_ACT_LOGIN T_ACT_LOGOUT T_NAV_LOANSEARCH T_NAV_LOGIN

5 7.170 9.800

6 4.810

9 7.550

10 11.680

12 11.700

14 11.650

15 9.750

18 11.700

20 12.070 7.020 8.130

21 5.140

24 12.110

25 11.725

27 12.210

29 12.260

30 12.053 7.340 4.860 8.040 13.650

Table 3.4.1 – 30 Maximum VUs, Average of three test runs

Page 11

Virtual Users (30 max) Vs Transaction Times

0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

0 5 10 15 20 25 30 35

Virtual Users (VUs)

T
ra

n
s
a
c
ti

o
n

 T
im

e
 (

s
)

Navigate to Login Page

Login Action

Navigate to Loan Search Page

Loan Search Action

Logout Action

Figure 3.4.1 – 30 Maximum VUs, Average of three test runs

Page 12

VUs T_ACT_LOANSEARCH T_ACT_LOGIN T_ACT_LOGOUT T_NAV_LOANSEARCH T_NAV_LOGIN

6 6.970 9.815

9 7.020 7.480

11 4.830

12 11.720 7.760 9.860

15 11.700 6.980 4.800 7.480

17 11.730 4.900

21 11.758 7.390 9.970

23 11.947 4.840

24 11.817 7.500 7.830

26 11.700

27 12.083 8.030 10.020

30 12.310 7.720

32 11.866 5.080

35 12.490 5.360

36 12.837 9.330 12.040

38 13.813 12.610 7.710 9.580

39 14.986 11.810 9.365 12.740 15.575

41 15.170 13.540 10.010 15.150 17.490

Table 3.4.2 – 50 Maximum VUs, Average of three test runs

Page 13

Virtual Users (50 max) Vs Transaction Times

0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

20.000

0 5 10 15 20 25 30 35 40 45

Virtual Users (VUs)

T
ra

n
s
a
c
ti

o
n

 T
im

e
 (

s
)

Navigate to Login Page

Login Action

Navigate to Loan Search Page

Loan Search Action

Logout Action

Figure 3.4.2 – 50 Maximum VUs, Average of three test runs

Page 14

VUs T_ACT_LOANSEARCH T_ACT_LOGIN T_ACT_LOGOUT T_NAV_LOANSEARCH T_NAV_LOGIN

6 6.960 10.025

9 7.020 7.530

10 4.860

12 11.740 7.790 10.070

15 11.710 7.030 7.550 9.800

17 11.900 5.150

20 11.790 4.840

21 12.230 7.360 9.930

23 11.675 4.830

24 11.953 7.630 8.160

27 12.080 8.070 10.840

28 11.687

30 12.310 8.610

31 11.838 4.960

34 11.793 4.910

36 13.000 9.530 14.650

38 11.840 4.950

39 14.816 12.375 9.165 14.730 15.920

41 13.090 11.420

43 15.773 14.515 10.325 15.520 18.070

44 16.633 16.445 11.720 18.240 19.815

47 16.710 16.490 14.300 18.990 20.210

Table 3.4.3 – 65 Maximum VUs, Average of three test runs

Page 15

Virtual Users (65 max) Vs Transaction Times

0.000

5.000

10.000

15.000

20.000

25.000

0 5 10 15 20 25 30 35 40 45 50

Virtual Users (VUs)

T
ra

n
s
a
c
ti

o
n

 T
im

e
 (

s
)

Navigate to Login Page

Login Action

Navigate to Loan Search Page

Loan Search Action

Logout Action

Figure 3.4.3 – 65 Maximum VUs, Average of three test runs

Page 16

VUs T_ACT_LOANSEARCH T_ACT_LOGIN T_ACT_LOGOUT T_NAV_LOANSEARCH T_NAV_LOGIN

6 7.040 10.170

9 7.010 7.830

12 11.740 7.510 9.810

15 11.660 7.090 7.510

17 11.680 4.810

20 11.700 4.820

21 11.750 7.140 9.780

24 11.747 7.140 7.590

27 12.133 7.960 10.050

30 11.864 7.980 4.810

34 11.773 5.090

36 12.665 9.700 11.090

38 11.892

39 14.677 11.450 9.430 14.290 15.900

42 14.694 15.215 9.447 16.070 18.930

43 16.770 16.180 19.820

45 13.920 10.830 14.500

46 15.803 15.750 10.890 16.750

47 17.380 12.460 18.990

48 17.984 16.965 12.760 19.240 21.355

49 17.372 16.950 18.790 22.010

Table 3.4.4 – 75 Maximum VUs, Average of three test runs

Page 17

Virtual Users (75 max) Vs Transaction Times

0.000

5.000

10.000

15.000

20.000

25.000

0 10 20 30 40 50 60

Virtual Users (VUs)

T
ra

n
s
a
c
ti

o
n

 T
im

e
 (

s
)

Navigate to Login Page

Login Action

Navigate to Loan Search Page

Loan Search Action

Logout Action

Figure 3.4.4 – 75 Maximum VUs, Average of three test runs

Page 18

VUs T_ACT_LOANSEARCH T_ACT_LOGIN T_ACT_LOGOUT T_NAV_LOANSEARCH T_NAV_LOGIN

6 7.320 9.875

9 7.050 7.550

12 11.730 7.470 11.080

14 4.800

15 11.740 7.290

19 11.675 4.820

21 11.800 7.230 7.590 9.920

24 11.853 7.150 8.020

25 11.695 4.860

27 12.107 7.760 10.050

29 11.730 4.865

30 12.077 8.420

34 11.737

36 13.370 9.250 12.050

39 14.896 12.175 9.160 13.070 15.355

40 11.922 5.230

42 15.890 13.440 17.280 18.970

43 16.437 11.770 18.700

44 16.800 16.035 12.520 17.700 19.920

45 13.914 6.565

48 17.495 16.620 12.200 19.525 20.640

49 16.636 15.840 13.580 17.400 22.465

52 16.718 11.160 19.365

54 18.872 19.095 14.530 21.460 23.450

55 18.110 13.700

56 19.994 22.600 24.800

57 20.070 21.120 15.860

58 19.333 21.800 14.360 23.690

60 20.920 25.020 24.990 26.080

62 21.220 26.660

63 21.582 24.160 17.420 26.650 28.515

Table 3.4.5 – 100 Maximum VUs, Average of three test runs

Page 19

Virtual Users (100 max) Vs Transaction Times

0.000

5.000

10.000

15.000

20.000

25.000

30.000

0 10 20 30 40 50 60 70

Virtual Users (VUs)

T
ra

n
s
a
c
ti

o
n

 T
im

e
 (

s
)

Navigate to Login Page

Login Action

Navigate to Loan Search Page

Loan Search Action

Logout Action

Figure 3.4.5 – 100 Maximum VUs, Average of three test runs

Page 20

3.5 Bottlenecks Identified & Tuning
During various runs, application server and database server logs were monitored to ensure there

were no errors. Additionally, manually analyzing these logs along with the metrics collected

indicated primary bottlenecks in the following areas

Network

Latency in network communication between the application and database servers was identified

as one of the potential bottlenecks in the system hampering the performance of loan search with

increasing load.

The network switch between the two hardware servers was only capable of 100Mb/s, whereas

the interfaces on both the servers were 1Gb/s capable. Due to the switch being slower than the

interfaces, the effective network speed was only 100Mb/s.

To address this, the network switch was replaced with a 1Gb/s capable switch.

Java Virtual Machine heap memory configuration

The initial configuration for the heap memory allocated to the Java Virtual Machine (JVM) on

the application server was set as follows:

Initial memory allocation (Xms parameter) = 128MB

Maximum memory allocation (Xmx parameter) = 256MB

Typically, in a production setup it is recommended to set the above two server parameters for the

JVM both to the same number. This is to avoid delays due to repeated, on-demand incremental

memory allocations by the JVM at run time.

To address the memory allocation issue, both the initial and maximum heap memory available to

the JVM was set to 256MB.

Database index creation

Database indexes can be created to speed up certain queries against the data in the table. The

LOAN_DETAILS table is primarily used for the loan search functionality.

By analyzing some of the typical queries used by brokers during loan search, the following

indexes were created by the database administrator:

1. Index on Property Type

2. Index on Loan Purpose, and

3. Index on Documentation Type

Page 21

3.6 Post Tuning Metrics
The following metrics were collected and respective charts plotted by running the same suite of

five load tests after the identified bottlenecks were mitigated to a satisfactory degree.

As with the baseline metrics measurement, each test set was run three times and the average of

the metrics is shown in the tables and used in the adjoining plots.

The time taken to perform loan search operation with up to 100 VUs using the system was

brought down to under the 15 second acceptance mark.

It is also noticeable that the system performance degradation is not accelerated at the number of

VUs on the system increased up to 100 – the performance curves are flatter. This indicates a

more graceful degradation in performance than before the tuning of the system.

Page 22

VUs T_ACT_LOANSEARCH T_ACT_LOGIN T_ACT_LOGOUT T_NAV_LOANSEARCH T_NAV_LOGIN

4 6.750 9.510

6 11.480 4.460

8 7.140

12 11.510

15 11.460 9.440

18 11.600 6.750

21 11.475 4.470 7.710

24 11.593

27 11.635

30 11.470 6.740 4.480 7.130 9.460

Table 3.6.1 – 30 Maximum VUs, Average of three test runs

Page 23

Virtual Users (30 max) Vs Transaction Times

0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

0 5 10 15 20 25 30 35

Virtual Users (VUs)

T
ra

n
s
a
c
ti

o
n

 T
im

e
 (

s
)

Navigate to Login Page

Login Action

Navigate to Loan Search Page

Loan Search Action

Logout Action

Figure 3.6.1 – 30 Maximum VUs, Average of three test runs

Page 24

VUs T_ACT_LOANSEARCH T_ACT_LOGIN T_ACT_LOGOUT T_NAV_LOANSEARCH T_NAV_LOGIN

4 6.730 9.420

5 4.510

8 11.470 7.130

11 11.470

12 11.460

15 9.420

17 11.470 4.450

18 11.480 6.750 7.120

21 11.583

24 11.470

26 11.485

27 11.483 6.750 4.510 9.550

30 11.470 4.640 9.980

31 11.470

32 11.506 6.760 7.180 9.540

33 11.530 6.750 4.780 7.370

Table 3.6.2 – 50 Maximum VUs, Average of three test runs

Page 25

Virtual Users (50 max) Vs Transaction Times

0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

0 5 10 15 20 25 30 35

Virtual Users (VUs)

T
ra

n
s
a
c
ti

o
n

 T
im

e
 (

s
)

Navigate to Login Page

Login Action

Navigate to Loan Search Page

Loan Search Action

Logout Action

Figure 3.6.2 – 50 Maximum VUs, Average of three test runs

Page 26

VUs T_ACT_LOANSEARCH T_ACT_LOGIN T_ACT_LOGOUT T_NAV_LOANSEARCH T_NAV_LOGIN

4 6.730 9.550

8 11.470 4.460 7.150

12 11.470 9.450

15 7.180

16 11.470

18 14.320 7.180

20 11.470 4.460

21 11.475 9.420

22 11.470

24 11.475 6.940 7.160

26 11.470

30 11.482 4.470 9.420

31 11.480 6.743 7.140

32 11.473 4.475 8.615 9.600

33 11.474 6.730 4.470 7.160 9.440

Table 3.6.3 – 65 Maximum VUs, Average of three test runs

Page 27

Virtual Users (65 max) Vs Transaction Times

0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

0 5 10 15 20 25 30 35

Virtual Users (VUs)

T
ra

n
s
a
c
ti

o
n

 T
im

e
 (

s
)

Navigate to Login Page

Login Action

Navigate to Loan Search Page

Loan Search Action

Logout Action

Figure 3.6.3 – 65 Maximum VUs, Average of three test runs

Page 28

VUs T_ACT_LOANSEARCH T_ACT_LOGIN T_ACT_LOGOUT T_NAV_LOANSEARCH T_NAV_LOGIN

4 6.740 9.420

8 7.150

10 4.660

12 11.470 9.420

14 11.480

15 11.470 6.760

18 11.470 7.140

21 11.553 4.480 9.510

24 11.700 6.900

25 11.735

27 7.650

30 12.198 4.710

32 11.504 9.610

33 11.578 6.843 4.545 7.273 11.440

34 11.597 6.870 4.760 8.020 9.630

Table 3.6.4 – 75 Maximum VUs, Average of three test runs

Page 29

Virtual Users (75 max) Vs Transaction Times

0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

0 5 10 15 20 25 30 35 40

Virtual Users (VUs)

T
ra

n
s
a
c
ti

o
n

 T
im

e
 (

s
)

Navigate to Login Page

Login Action

Navigate to Loan Search Page

Loan Search Action

Logout Action

Figure 3.6.4 – 75 Maximum VUs, Average of three test runs

Page 30

VUs T_ACT_LOANSEARCH T_ACT_LOGIN T_ACT_LOGOUT T_NAV_LOANSEARCH T_NAV_LOGIN

4 7.100 4.560 9.550

7 11.480

8 7.200

11 11.500

12 11.660 9.630

15 11.510 7.060

18 11.480 4.460 7.160

21 11.475

22 11.480

24 11.538 9.650

27 6.980 7.140

28 11.460 4.500 10.100

30 11.840 4.880

31 11.558 6.805 9.740

32 11.507 6.755 4.475 7.140 9.465

33 11.741 6.720 4.475 7.303 9.465

34 11.497 6.770 7.780

Table 3.6.5 – 100 Maximum VUs, Average of three test runs

Page 31

Virtual Users (100 max) Vs Transaction Times

0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

0 5 10 15 20 25 30 35 40

Virtual Users (VUs)

T
ra

n
s
a
c
ti

o
n

 T
im

e
 (

s
)

Navigate to Login Page

Login Action

Navigate to Loan Search Page

Loan Search Action

Logout Action

Figure 3.6.5 – 100 Maximum VUs, Average of three test runs

Page 32

4 Future Work

There is further scope for improvement in the performance of the loan search functionality of the

Broker Blueprint application in particular, and all of the available functionality as a whole. Some

of the areas already identified for performance improvement are listed below and should be

explored.

SQL tuning and schema refactoring

The SQL queries run for loan search are dynamically built by the application, and then executed.

There is much scope for improving the loan search SQL queries. The ability to refactoring the

schema along with tuning the SQL gives additional flexibility in tuning for optimum

performance.

Application server configuration

The application server configuration can be further tweaked to achieve a better performance. The

challenge for this is to run repeated tests with configuration changes to find the point of balance

between

Static content server

One of the most beneficial elements in having a dedicated web server like Apache which takes

web user requests and passes them on to the application server is that static content like images ,

java script and style sheet files can be served by the web server, while the application server

deals with the logical component of the application.

This speeds up the response time dramatically, since web servers are highly optimized to serve

static content, and the application server can dedicate its resources to the logical processing of

the application requests.

Load Testing with SNMP metrics collection

Load testing can be performed with SNMP metrics collection configured so that database and

application server metrics like transactions per second, CPU load, etc. can be collected, and a

single time-lined view can be presented with all the metrics. This helps in better locating system

bottlenecks and also to better understand system performance and reliability under varying load

conditions.

Page 33

5 Appendix A – References

1. “OpenSTA User Guide” by OpenSTA Community

http://www.opensta.org/docs/ug/

2. “User Experience, not Metrics” by Scott Barber

http://www-128.ibm.com/developerworks/rational/library/4228.html

3. “Script Control Language Reference” by OpenSTA Community

http://www.opensta.org/docs/sclref/

http://www.opensta.org/docs/ug/
http://www-128.ibm.com/developerworks/rational/library/4228.html
http://www.opensta.org/docs/sclref/

Page 34

6 Appendix B – Application Screenshots

Figure 3.6.1 – Main Page (Unauthenticated User)

Page 35

Figure 3.6.1 – Login Page

Page 36

Figure 3.6.2 – Main Page After Login Action (Authenticated User)

Page 37

Figure 3.6.3 – Navigation to Loan Search Page (Step 1)

Page 38

Figure 3.6.4 –Loan Search Page

Page 39

Figure 3.6.5 – Loan Search Page with Search Data

Page 40

Figure 3.6.6 – Loan Search Results

Page 41

Figure 3.6.7 – User Logged Out

