Supplement Material **Table S1**. Details of environmental pCO₂-temperature and pCO₂-O₂ data sets from the northern and central California Current Ecosystem. We calculated pCO₂ values for two published and two unpublished carbonate chemistry data sets that consisted of total alkalinity (TA) and dissolved inorganic carbon (DIC) measurements. All TA and DIC measurements from those surveys were obtained following Feely et al. (2008, 2010) and had precisions of ~1.5 μmol kg⁻¹ and ~2.0 μmol kg⁻¹, respectively. We calculated pCO₂ using the R library 'seacarb' (Lavigne and Gattuso, 2010) with dissociation constants from Lueker *et al.* (2000). Additional information on sampling methods are provided in the cited references. | Sample
type | Name and/or approximate location | Sample depth (m) | Dates
(pCO ₂ -
temp) | Dates
(pCO ₂ -
O ₂) | Habitat | Sampling method | Reference | |------------------------|--|------------------|---------------------------------------|--|---|--|--| | Mooring time series | Chá bă, La Push, Washington (N
47.97, W 124.95) | 0.3 | Jul-2010
to Oct-
2010 | Jul-2010
to Oct-
2010 | Surface shelf waters
(mooring at 60 m
isobath, 5 km from
coast) | Direct (Licor
820 series
sensor) | Mathis et al. (2011) | | Mooring
time series | CCE2, Point Conception,
California
(N 34.32, W 120.81) | 0.3 | Jan-2010
to Feb-
2011 | Jan-2010
to Feb-
2011 | Surface shelf waters
(mooring at 60 m
isobath, 5 km from
coast) | Direct (Licor
820 series
sensor) | Sabine et al. (2011) | | Mooring time series | Cape Elizabeth, Washington (N 47.68, W 122.25) | 0.3 | Jun-2006
to Oct-
2010 | Jun-2006
to Oct-
2010 | Surface shelf waters
(mooring at 60 m
isobath, 5 km from
coast) | Direct (Licor
820 sensor) | Mathis et al. (2013) | | Mooring time series | NH10, Newport, Oregon
(N 44.63, W124.30) | 1 | Aug-
2007 to
May-
2008 | Aug-
2007 to
May-
2008 | Surface shelf waters
(mooring at 60 m
isobath, 20 km from
coast) | Direct
(Sunburst
SAMI-CO ₂
sensor) | Evans et al. (2011) | | Hatchery seawater | Whiskey Creek Hatchery, Netarts Bay, Oregon | 1 to 3 (tidal) | Feb-
2010, Jul- | | Tidal bay, no significant | Direct (Licor
840 sensor) | Barton et al. (2012), Hales et al. (unpub. data) | | intake time series | (N 45.40, W 123.95) | | 2010 | | freshwater input | | | |-----------------------|---|------|--|--|---|--|---| | Shipboard
discrete | Puget Sound, and Strait of Juan de Fuca, Washington | 0–50 | Feb-
2008,
Aug-
2008 | Feb-
2008,
Aug-
2008 | Fjord estuary | Calculated
(from DIC and
TA) | Feely et al. (2010) | | Shipboard
discrete | Puget Sound, Washington | 0–50 | Sep-
2009,
Oct-
2011,
Oct-2011 | Sep-
2009,
Oct-
2011,
Oct-2011 | Fjord estuary | Calculated
(from DIC and
TA) | Reum et al. (2014) | | Shipboard discrete | Southern British Columbia to
California | 0–50 | Aug-
2007 | Aug-
2007 | Open coast waters | Calculated
(from DIC and
TA) | Feely et al. (2011) | | Shipboard discrete | Southern British Columbia to
California | 0–50 | Aug-
2011,
Aug-
2012 | Aug-
2011,
Aug-
2012 | Open coast waters | Calculated
(from DIC and
TA) | R.A. Feely, S.R. Alin, and others (unpublished data) | | Shipboard
underway | Southern British Columbia
through central California,
including Puget Sound and Strait
of Juan de Fuca (34–51°N, 0–200
km offshore) | 2–5 | 2007–
2012 | | Open coast and fjord estuary surface waters | Direct (Licor
6262 or 7000
sensor) | Bakker et al. (2013), Pfeil et al. (2013), Feely and Sabine (2008a), Feely and Cosca (2012) | ## References - Bakker, D.C.E., Pfeil, B., Smith, K., *et al.* 2013 An update to the surface ocean CO₂ atlas (SOCAT version 2). Earth System Science Data Discussions, 6, doi: 10.5194/essdd-6-465-2013, 465–512. - Barton, A., Burke, H., Waldbusser, G.G., Langdon, C., and Feely, R.A. 2012. The Pacific oyster, *Crassostrea gigas*, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean acidification effects. Limonology and Oceanography, 57: 698–710. - Evans, T.G., Chan, F., Menge, B.A., and Hofmann, G.E. 2013. Transcriptomic responses to ocean acidification in larval sea urchins from a naturally variable pH environment. Molecular ecology, 22: 1609-1625. - Feely, R.A., Alin, S.R., Newton, J., Sabine, C.L., Warner, M., *et al.* 2010. The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuarine Coastal and Shelf Science, 88: 442-449. - Feely, R.A., Sabine, C.L., Hernandez-Ayon, J.M., Ianson, D., and Hales, B. 2008. Evidence for upwelling of corrosive "acidified" water onto the continental shelf. Science, 320: 1490-1492. - Feely, R., and Sabine, C. 2008a. Sea surface and atmospheric fCO₂ data measured in the coastal Pacific ocean onboard the R/V McArthurII 2007 Cruises. http://cdiac.ornl.gov/ftp/oceans/McArthurII/2007_Data/. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US - Department of Energy, Oak Ridge, Tennessee. doi: - 10.3334/CDIAC/otg.GCP_McArthurII_2007 - Lavigne, H., and Gattuso, J. 2010. Seacarb: seawater carbonate chemistry with R. R package version 2.4.3. - Lueker, T.J., Dickson, A.G., and Keeling, C.D. 2000. Ocean pCO₂ calculated from dissolved inorganic carbon, alkalinity, and equations for K₁ and K₂: validation based on laboratory measurements of CO₂ in gas and seawater at equilibrium. Marine Chemistry, 70: 105-119. - Mathis, J., Sutton, A., Sabine, C., Musielewicz, S., Maenner, S., and Bott, R. 2011. Highresolution ocean and atmosphere pCO₂ time-series measurements from mooring LaPush 125W 48N. http://cdiac.esd.ornl.gov/ftp/oceans/Moorings/LaPush 125W 48N/. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee. - doi: 10.3334/CDIAC/otg.TSM LaPush 125W 48N - Mathis, J., Sutton, A., Sabine, C., Musielewicz, S., and Maenner, S. 2013. High-resolution ocean and atmosphere pCO₂ time-series measurements from mooring WA 125W 47N. http://cdiac.esd.ornl.gov/ftp/oceans/Moorings/WA_125W_47N/. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee. doi: 10.3334/CDIAC/OTG.TSM WA 125W 47N - Pfeil, B., Olsen, A., Bakker, D.C.E. et al. (2013) A uniform, quality controlled surface ocean CO₂ atlas (SOCAT). Earth System Sciences Data, 5, doi: 10.5194/essd-5-125-2013. - Reum, J. C., Alin, S. R., Feely, R. A., Newton, J., Warner, M., and McElhany, P. 2014. Seasonal carbonate chemistry covariation with temperature, oxygen, and salinity in a fjord estuary: implications for the design of ocean acidification experiments. PLoS ONE, 9: e89619. - Sabine, C., Maenner, S., and Sutton, A. 2011. High-resolution ocean and atmosphere pCO₂ time- series measurements from mooring CCE2_121W_34N. http://cdiac.esd.ornl.gov/ftp/oceans/Moorings/CCE2_121W_34N/. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee. doi:10.3334/CDIAC/otg.TSM_CCE2_121W_34N.