AN ABSTRACT OF THE DISSERTATION OF

<u>Sierra L. Hartney</u> for the degree of <u>Doctor of Philosophy</u> in <u>Botany and Plant Pathology</u> presented on <u>November 28, 2011</u>.

Title: <u>TonB-dependent Outer-membrane Proteins of *Pseudomonas fluorescens*: Diverse and Redundant Roles in Iron Acquisition.</u>

Abstract approved:

Joyce E. Loper

Pseudomonas is a diverse genus of Gram-negative bacteria that includes pathogens of plants, insects, and humans as well as environmental strains with no known pathogenicity. *Pseudomonas fluorescens* itself encompasses a heterologous group of bacteria that are prevalent in soil and on foliar and root surfaces of plants. Some strains of *P. fluorescens* suppress plant diseases and the genomic sequences of many biological control strains are now available. I used a combination of bioinformatic and phylogenetic analyses along with mutagenesis and biological assays to identify and compare the TonBdependent outer-membrane proteins (TBDPs) of ten plant-associated strains of P. fluorescens and related species. TBDPs are common in Gram-negative bacteria, functioning in the uptake of ferric-siderophore complexes and other substrates into the cell. I identified 14 to 45 TBDRs in each strain of *P. fluorescens* or *P. chlororaphis*. Collectively, the ten strains have 317 TBDPs, which were grouped into 84 types based upon sequence similarity and phylogeny. As many as 13 TBDPs are unique to a single strain and some show evidence of horizontal gene transfer. Putative functions in the uptake of diverse groups of microbial siderophores, sulfur-esters, and other substrates were assigned to 28 of these TBDP types based on similarity to characterized orthologs from other *Pseudomonas* species. Redundancy of TBDP function was evident in certain strains of *P. fluorescens*, especially Pf-5, which has three TBDPs for ferrichrome/ferrioxamine uptake, two for ferric-citrate uptake and three for heme uptake.

Five TBDP types are present in all ten strains, and putative functions in heme, ferrichrome, cobalamin, and copper/zinc uptake were assigned to four of the conserved TBDPs.

The fluorescent pseudomonads are characterized by the production of pyoverdine siderophores, which are responsible for the diffusible UV fluorescence of these bacteria. Each of the ten plant-associated strains of P. fluorescens or P. chlororaphis has three to six TBDPs with putative roles in ferric-pyoverdine uptake (Fpv). To confirm the roles of the six Fpv outer membrane proteins in P. fluorescens Pf-5, I introduced deletions into each of the six *fpv* genes in this strain and evaluated the mutants and the parental strain for heterologous pyoverdine uptake. I identified at least one ferric-pyoverdine that was taken up by each of the six Fpv outer-membrane proteins of Pf-5. By comparing the ferric-pyoverdine uptake assay results to a phylogenetic analysis of the Fpv outermembrane proteins, I observed that phylogenetically-related Fpv outer-membrane proteins take up structurally-related pyoverdines. I then expanded the phylogenetic analysis to include nine other strains within the *P. fluorescens* group, and identified five additional types of Fpv outer-membrane proteins. Using the characterized Fpv outermembrane proteins of Pf-5 as a reference, pyoverdine substrates were predicted for many of the Fpv outer-membrane proteins in the nine other strains. Redundancy of Fpv function was evident in Pf-5, as some pyoverdines were recognized by more than one Fpv. It is apparent that heterologous pyoverdine recognition is a conserved feature, giving these ten strains flexibility in acquiring iron from the environment.

Overall, the TBDPs of the *P. fluorescens* group are a functionally diverse set of structurally-related proteins present in high numbers in many strains. While putative functions have been assigned to a subset of the proteins, the functions of most TBDPs remain unknown, providing targets for further investigations into nutrient uptake by *P. fluorescens* spp.. The work presented here provides a template for future studies using a combination of bioinformatic, phylogenetic, and molecular genetic approaches to predict and analyze the function of these TBDPs.

©Copyright by Sierra L. Hartney November 28, 2011 All Rights Reserved

TonB-dependent Outer-membrane Proteins of *Pseudomonas fluorescens*: Diverse and Redundant Roles in Iron Acquisition

by Sierra L. Hartney

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Presented November 28, 2011 Commencement June 2012 Doctor of Philosophy dissertation of Sierra L. Hartney presented on November 28, 2011

APPROVED:

Major Professor, representing Botany and Plant Pathology

Chair of the Department of Botany and Plant Pathology

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my dissertation to any reader upon request.

Sierra L. Hartney, Author

ACKNOWLEDGEMENTS

I would like to thank my husband Jason M. Hartney for his support and encouragement. You have been an anchor to reality and provided a place for me to return to after spending my days and sometimes nights immersed in science.

My advisor Dr. Joyce E. Loper has given her time and energy to help me complete my Ph.D. I will be forever grateful and humbled by her support, even when we faced challenges. I have grown as a person and a scientist while in her care. You are appreciated Joyce.

My appreciation goes out to my committee, Dr. Jeff Chang, Dr. Martin Schuster, Dr. Virginia O. Stockwell, and Dr. Walt Ream, who have provided advice and assistance when needed. I could not have had a better group of people as my committee, who I felt always want me to perform at my best.

The members of the Loper lab are without peer. I would like to thank Brenda Shaffer for her guidance, training and patience. Marcella Henkels for her enthusiasm and help with all things involving iron. Teresa Kidarsa for teaching me to make mutants and help me with molecular techniques that liked to put up a challenge. A big thank you to Megan Kelly, Ed Davis, Alyssa Carey, Ashley Bixenstein, Jennifer Lee, and Kedy Shen who provided lab support and lively conversation.

Friends and cohorts. Thank you to my fellow graduate students in the Botany and Plant Pathology department, we have had many conversations of commiseration and encouragement. I feel privileged to have gotten to know you. I would like to especially thank Ebba Peterson, Patricia Wallace, Clare Taylor, Lorena Rangel, Jeff Kimbrel and Bill Thomas for providing science help and friendship.

CONTRIBUTION OF AUTHORS

Dr. Sylvie Mazurier performed crossfeeding assays between the Pf-5 siderophore mutant and 39 of the 61 strains of *Pseudomonas* presented in Chapter 2. Sylvie performed crossfeeding assays between *fpv* mutants of Pf-5 and 19 of the 37 strains of *Pseudomonas* presented in Chapter 3. She also supervised the purification of pyoverdines from selected *Pseudomonas* spp. that were used in Chapter 3.

Dr. Teresa A. Kidarsa made the $\Delta pvdI$ -pchC mutant of Pf-5 used in crossfeeding assays presented in Chapter 2.

Dr. Maria Carolina Quecine observed the presence of a zone of clearing around colonies of Pf-5 on CAS agar as discussed in Chapter 2.

Neal Wilson did Bayesian analysis to generate the tree of *Pseudomonas* species based on multi-locus sequence analysis presented in Chapter 4.

Neal C. Goebel ran the HPLC analysis on the samples prepared from the Pf-5 siderophore mutants presented in Appendices 5 and 6.

Dr. Philippe Lemanceau advised the work of Sylvie Mazurier and provided encouraging support and critical review of the research presented in Chapters 2 and 3.

TABLE OF CONTENTS

	Page
Chapter 1. Introduction	1
Siderophores	2
TonB-dependent outer-membrane proteins	3
Regulation	6
Number of TonB-dependent outer-membrane proteins	8
Pyoverdine Uptake	9
Ferric-pyoverdine TonB-dependent outer-membrane proteins	10
Research objectives	12
References	14
Chapter 2. TonB-dependent Outer-membrane Proteins and Siderophore Utiliza Pseudomonas fluorescens Pf-5	
Abstract	20
Introduction	21
Materials and methods	23
Bacterial strains and growth conditions Pyoverdine peptide chain prediction	
Sequence compilation and domain analysis	
Secondary structure prediction	24
Phylogenetic analysis	
Construction of mutants of Pf-5	
Arbitrary PCR	
Iron limited growth	
Enantio-pyochelin extraction and detection	
CAS agar assay	

TABLE OF CONTENTS (Continued)

—	Page
Crossfeeding assays Siderophore utilization assays	
Results	31
Identification of conserved domains within the TonB-dependent outer- membrane proteins of <i>P. fluorescens</i> Pf-5	31
Phylogenetic analysis of TonB-dependent receptors (TBDRs)	
Phylogenetic analysis of TonB-dependent transducers (TBDTs)	
Characterization of siderophore-biosynthesis mutants of <i>P. fluorescens</i> Pf-5	
Utilization of diverse siderophores by <i>P. fluorescens</i> Pf-5	52
Discussion	59
Acknowledgments	61
References	62
Chapter 3. Pseudomonas fluorescens Pf-5: The Pyoverdine Pirate	72
Abstract	72
Introduction	73
Materials and methods	76
Bacterial growth conditions	
Pyoverdine peptide chain prediction	
Sequence alignment and structure prediction	
Construction of Pf-5 mutants	
Iron-limited growth Crossfeeding assays	
Pyoverdine purification	
Utilization of purified pyoverdines as iron sources	
Phylogenetic analysis	

TABLE OF CONTENTS (Continued)

<u>Page</u>

Results and discussion	81
Structural analysis of the pyoverdine TonB-dependent outer-membrane prof Iron-limited growth of <i>fpv</i> mutants of Pf-5	
Utilization of heterologous ferric-pyoverdines by Pf-5 and <i>fpv</i> mutants Phylogenetic analysis of Fpv outer-membrane proteins	
Functional redundancy of Fpv outer-membrane proteins in <i>P. fluorescens</i> Pf-5	102
Conclusion	110
Acknowledgments	110
References	111
Chapter 4. TonB-dependent Outer-membrane Proteins of the <i>Pseudomonas fluorese</i> Group	
Abstract	118
Introduction	119
Materials and methods	123
Sequence compilation	
Reciprocal BLASTP analysis	
Phylogenetic analysis	
Bacterial strains and growth conditions	124
Bioinformatic prediction of the amino acid composition of the pyoverdine peptide chain	124
Crossfeeding assays	
Purified pyoverdine recognition assays	
i united pyoverane recognition assuys	123

TABLE OF CONTENTS (Continued)

<u>Page</u>

Results and discussion	126
Number of TonB-dependent outer-membrane proteins	126
Core TonB-dependent outer-membrane proteins	131
Putative functions of non-core TBDPs	134
TBDP clusters and horizontal gene transfer	136
Pyoverdine iron-acquisition systems	137
Characterization of pyoverdines: bioinformatic structure predictions	
and crossfeeding of Pf-5	137
Bioinformatic and phylogenetic analysis of Fpv outer-membrane	
proteins	140
Functional characterization of Fpv outer-membrane proteins	145
Fpv functional groups	149
Conclusion	151
Acknowledgments	152
References	
Chapter 5. Concluding Remarks	159
References	164
Dissertation references	165
Appendices	181

LIST OF FIGURES

igure Page	<u>e</u>
1. Model of signaling pathway as discovered in <i>E. coli</i> for the TonB-dependent transducer FecA	5
2. Comparison of <i>P. aeruginosa</i> PAO1 and <i>P. fluorescens</i> Pf-5 pyoverdine biosynthetic regions	7
1. Schematic representation of TonB-dependent outer-membrane proteins in the Pf-5 genome	2
2. GC content of TBDTs and TBDRs	5
3. Phylogenetic analysis of TonB-dependent receptors	8
.4. Gene clusters with TBDRs and TBDTs of known function	1
.5. Maximum Parsimony analysis of TonB-dependent transducers	4
.6. Locations of mutations in the pyoverdine or enantio-pyochelin gene clusters of Pf-54	8
.7. Siderophore and orfamide A production detected as halos surrounding colonies of Pf-5 or derivative strains on the universal siderophore detection medium, CAS5	1
.8. Predicted length and composition of pyoverdine peptide chains	3
1. Homology models of the Pf-5 Fpv outer-membrane proteins	2

LIST OF FIGURES (Continued)

<u>Figure</u>	age
3.2. Alignment of PA2398 (FpvAI) from <i>P. aeruginosa</i> PAO1 with the six Fpv outer- membrane proteins from Pf-5	
3.3. Phylogenetic analysis of Fpv outer-membrane proteins and association with pyoverdine structures	101
3.4. Maximum Parsimony analysis of the plug domains from the 45 Pf-5 TonB- dependent outer-membrane proteins	109
4.1. Bayesian analysis of select strains of <i>Pseudomonas</i> spp. having fully sequenced genomes based on multilocus sequence analysis (MLSA)	120
4.2. Number of TonB-dependent outer-membrane proteins in the strains of the <i>P</i> . <i>fluorescens</i> group	127
4.3. Diagram showing the number of conserved TBDPs in ten strains within the <i>P</i> . <i>fluorescens</i> group	128
4.4. Conservation and diversity of TBDP types	130
4.5. Gene clusters and clades from Neighbor Joining analysis of the core TBDPs	132
4.6. Gene clusters and clades from Neighbor Joining analysis of TBDPs with putative functions	
4.7. Phylogenetic analysis of Fpv outer-membrane proteins and association with pyoverdine structures	143
4.8. Crossfeeding of strains in the <i>P. fluorescens</i> group by <i>Pseudomonas</i> strains producing pyoverdines recognized by the characterized Fpv outer-membrane proteins of Pf-5 (Chapter 3)	146
5.1. TBDP types within the <i>P. fluorescens</i> group	163

LIST OF TABLES

<u>Table</u> Page
1.1. Characterized pyoverdine TonB-dependent outer-membrane proteins and associated pyoverdines
2.1. Primers used in the construction of mutants of <i>P. fluorescens</i> Pf-527
2.2. Crossfeeding of the Pf-5 siderophore mutant by strains of <i>Pseudomonas</i>
2.3. Crossfeeding of the $\Delta pvdI$ -pchC mutant of Pf-5 by Enterobacter cloacae
3.1. Primers used in the construction of mutants of <i>P. fluorescens</i> Pf-578
3.2. Iron limited growth of Pf-5 mutants
3.3. Crossfeeding of single <i>fpv</i> mutants in a $\Delta pvdI$ - <i>pchC</i> mutant background of Pf-592
3.4. Crossfeeding assays with <i>fpv</i> deletions in $\Delta pvdI$ -pchA background of Pf-596
3.5. Purified pyoverdines stimulated iron-limited growth of derivatives of Pf-5 with deletions in specific <i>fpv</i> genes in a $\Delta pvdI$ -pchC mutant background98
3.6. Crossfeeding of double <i>fpv</i> mutants of Pf-5 by <i>P. fluorescens</i> WCS374 (shaded squares) or DSM50106 (open squares)
3.7. Crossfeeding of double <i>fpv</i> mutants of Pf-5 by <i>P. aeruginosa</i> LESB58 (type III pyoverdine-producing strain) and utilization of ferric-complexes of pyoverdines purified from <i>P. aeruginosa</i> Pa6 (type III)106
4.1. Ten strains with biological control ability in the <i>P. fluorescens</i> group122
4.2. Crossfeeding of single <i>fpv</i> mutants of Pf-5 in the $\Delta pvdI$ -pchC background139
4.3. Reciprocal BLASTP analysis of Fpv outer-membrane proteins of the <i>P. fluorescens</i> group
4.4. Purified ferric-pyoverdine stimulated growth assay

LIST OF APPENDICES

<u>Appendix</u> <u>Page</u>
1. Contiguous gene regions surrounding TBDP genes in <i>P. fluorescens</i> Pf-5182
2. Reciprocal BLASTP analysis of the <i>P. fluorescens</i> group
3. Neighbor Joining analysis of the anti-ECF sigma factors of the <i>P. fluorescens</i> group
 Neighbor Joining analysis of the N-terminal signaling domain of the TBDTs of the <i>P. fluorescens</i> group
5. HPLC analysis of enantio-pyochelin production by Pf-5 siderophore mutants20
6. Secondary metabolite production in Pf-5 siderophore mutants detected by HPLC203
 Thin layer chromatography of extracts from Pf-5, Pf-5 siderophore mutants and <i>Pseudomonas</i> sp. BG33R for the detection of enantio-pyochelin in Pf-5 and the secondary siderophore in BG33R
 Crossfeeding analysis of double <i>fpv</i> mutants in the Δ<i>pvdI-pchC</i> background of Pf-5

TonB-dependent Outer-membrane Proteins of *Pseudomonas fluorescens*: Diverse and Redundant Roles in Iron Acquisition

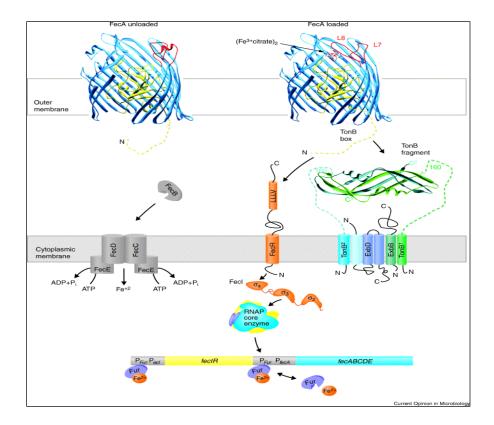
Chapter 1: Introduction

Pseudomonas species are ubiquitous inhabitants of soil, water, and plant surfaces (2, 51). Members of the genus live in association with roots, seeds, fruit, foliar and floral surfaces. These commensal species can have profound effects on plants by suppressing pests, enhancing access to key nutrients, altering physiological processes, or degrading environmental pollutants. The processes by which commensal microorganisms exert beneficial effects on plant health are poorly understood, and knowledge of these processes is needed to exploit microbe-plant interactions for the benefit of agriculture and the environment.

Plant diseases pose significant constraints to agriculturae and their management requires large inputs of time and money to maintain crop productivity. With the ever increasing costs of existing methods for disease control in agriculture, new options, such as biological control agents, are needed. In addition to the possibility of lowering costs, the use of naturally-occurring beneficial microorganisms could result in more stable and sustainable agricultural practices by reducing the current applications of compounds with detrimental effects on the environment. For example, certain *Pseudomonas* spp. are associated with disease suppressive soils (47), a natural process of biological control manifested in soils where plant disease remains negligible even when a pathogen is present. In addition, certain strains of *Pseudomonas* spp. suppress plant disease when used as microbial inoculants, and two strains of *Pseudomonas fluorescens* are currently used in US agriculture for disease management (17). The primary focus of the research presented in this dissertation is *Pseudomonas fluorescens* strain Pf-5, a model organism widely studied by the biological control research community and distinguished as the first fully sequenced biological control agent for plant disease (43).

Pseudomonas fluorescens Pf-5 is a soil bacterium that suppresses a number of soilborne pathogens (30). To suppress soilborne plant diseases, biological control bacteria like Pf-5 must colonize seed and root surfaces. The capacity to acquire iron is one factor contributing to the competitive fitness of bacteria in the rhizosphere (46). Understanding the mechanisms by which iron is taken up into the cell by *P. fluorescens* Pf-5 is of scientific interest, as iron is essential to cellular metabolism. Additionally, the mechanisms employed to enhance environmental fitness by a biological control strain could be applied to human and plant health. Within the genus *Pseudomonas* is the opportunistic human pathogen *Pseudomonas aeruginosa*, which has a severe impact on cystic fibrosis sufferers, and devastating plant pathogens like *Pseudomonas syringae*, which infects a wide range of economically-important crops. These bacteria share commonalities at the genomic level, so information generated through studies of Pf-5 can be extended to other *Pseudomonas* spp.

Siderophores


Gram-negative bacteria such as fluorescent *Pseudomonas* spp. are subject to iron limitation in aerobic environments due to the lack of readily-available Fe^{2^+} ionsthe form of iron needed for bacterial growth. To overcome the obstacle of limited iron, the fluorescent pseudomonads produce and utilize siderophores. Siderophores are iron-chelating compounds released into the environment to bind Fe^{3^+} , and taken up into the bacterial cell through TonB-dependent outer-membrane proteins (TBDPs). Inside the cell, the iron can be removed from the siderophore by redox reduction of Fe^{3^+} to Fe^{2^+} , which releases the iron from the siderophore due to reduced affinity for ferrous iron (22). Siderophores, Greek meaning iron carriers, are low molecular weight molecules produced by many organisms, such as plants, bacteria and fungi. Currently, 500 different siderophores are known, with 270 of them structurally characterized (22). Primarily, there are three structural types of siderophores based on the type of iron-binding ligand they contain: catecholates, hydroxamates, and carboxylates (22). In most cases, biosynthesis is by nonribosomal peptide synthetases, which use a modular domain system

to link amino acids together with post-translational modifications by associated proteins to create active siderophores (1). Examples of siderophores made by other biosynthetic mechanisms are aerobactin, which is produced using a different family of synthetases (1), and thioquinolobactin. Thioquinolobactin is the product of two separated metabolic pathways involving tryptophan catabolism and the production of thiocarboxylate (33).

TonB-dependent outer-membrane proteins

Characteristics of TonB-dependent outer-membrane proteins (TBDP) include their location on the outer membrane (OM) and a molecular weight of 70-90 kDa. A 22stranded β -barrel forms the pore through the outer membrane with an internal ~160 amino acid residue plug domain blocking the pore. The plug and β -barrel contribute to substrate binding. The residues binding the substrate vary among TBDPs having different substrate specificities (16, 23, 45). Extracellular loops of the β -barrel close over the channel when the substrate is bound, holding the substrate in place (45). Transport of substrates, siderophores and other bound molecules across the outer-membrane requires energy (16). TBDPs interact with the TonB protein complex to receive the needed energy, which it does through a motif called the TonB-box. The TonB-box is a heptapeptide located near the N-terminus of TBDPs (5, 38, 45). The proteins TonB, ExbB, and ExbD form an energy-transducing complex that harnesses proton motive force to provide energy to move substrates through the TonB-dependent outer-membrane protein (23, 27, 38). The accessory proteins ExbB and ExbD are anchored in the cytoplasmic membrane (CM) where they couple the proton gradient across the CM (16, 45). The domains of TonB are an N-terminal transmembrane domain acting as an anchor, a proline rich region, and residue 160 in the C-terminal region, which is important for interaction with the TBDP (49).

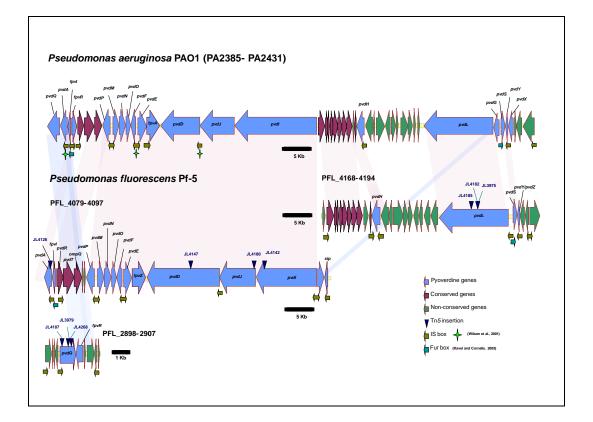

TonB-dependent transducers (TBDTs) are a subclass of TBDPs with an Nterminal extension that interacts with an anti-sigma factor, which then releases a cognate extra-cytoplasmic function (ECF) sigma factor to initiate a signaling cascade (45). TBDTs are the first proteins of a signaling pathway initiated by substrate binding and ending with expression of substrate-specific transport genes. This signaling pathway was elucidated for *Escherichia coli* FecA, which binds ferric citrate (5) (Fig. 1.1). The binding of TonB to a TBDT is dependent on substrate or siderophore binding at the surface (16) and leads to ligand-dependent transcriptional regulation of an import operon, containing genes for the transport proteins used to move the substrate across the CM. The ~79 residue signaling domain of the TBDT at the N-terminus interacts with the Cterminus of the anti-sigma factor (14, 16). Anti-sigma factors have a leucine rich motif of repeating heptapeptides (residues 247-268) flanked by three leucines and a valine: residues 1-79 of the anti-sigma factor interact with residues 101-317 of the TBDT (5). The anti-sigma factor spans the CM and its N terminus contacts a specific ECF sigma factor in the cytoplasm (5, 23). Upon release from its anti-sigma factor, the ECF sigma factor promotes RNA polymerase binding to the promoter of the import operon (16) (Fig. 1).

Fig. 1.1. Model of signaling pathway as discovered in *E. coli* for the TonBdependent transducer FecA (5). Reprinted with permission from Elsevier.

Regulation

Genes coding for TBDTs that function as ferric-siderophore receptors are typically expressed preferentially under iron-limited conditions, and were therefore among the genes identified in microarrays evaluating iron-regulated gene expression by *P. aeruginosa* (42) and *P. syringae* (6). The ferric uptake regulator (Fur) protein plays a central role in iron-mediated regulation, serving as a transcriptional repressor under iron-replete conditions (41). Therefore, the presence of Fur binding sites was one criterion used to differentiate TBDPs functioning in iron-acquisition from those with other catabolic functions in *X. campestris* (4). A Fur-iron complex is formed when iron is present and binds to a DNA motif called the Fur box located upstream of the genomic regions surrounding each putative TBDP gene in Pf-5 for the presence of these conserved binding sites identified a Fur binding site upstream of *fpvA*, which encodes a ferric-pyoverdine receptor (Fig. 1.2) and in other genomic regions with TBDPs, but also identified six TBDP regions that lack Fur-binding sites and include genes with putative catabolic functions (Appendix 1).

Fig. 1.2. Comparison of *P. aeruginosa* PAO1 and *P. fluorescens* Pf-5 pyoverdine biosynthetic regions. Illustration of the homologous genes, four Pf-5 gene regions, and Fur and PvdS binding sites.

Regulatory proteins, in addition to Fur, are involved in the expression of TBDPs. The ECF sigma factors, commonly encoded by genes located next to TBDP and antisigma factor genes, are integral in the regulation of TBDTs (11). The ECF sigma factor PvdS, called the iron starvation sigma factor, initiates pyoverdine siderophore production in low iron conditions by binding the iron starvation box (IS) motif to activate expression of siderophore biosynthetic genes (50). Two component regulatory protein pairs composed of a regulator and a sensor are also involved in the regulation of some TBDPs, specifically those involved in the uptake of enterobactin (13). AraC regulatory proteins are involved in the control of the pyochelin receptor in *P. aeruginosa* (37).

Number of TonB-dependent outer-membrane proteins

TonB-dependent outer-membrane proteins have long been known to function in ferric-siderophore uptake, vitamin B12 uptake, and phage recognition (45). Their broader functions in some bacteria, such as in uptake of sucrose (4), maltodextrins (28), nickel (48), sulfate (24), and other substrates, have been recognized more recently. Environmental bacterial tend to have more TBDPs than bacteria living in uniform environments, possibly because they occupy more diverse and dynamic habitats and need to adapt to continual changes in the nutrients available (4).

Gram-negative bacteria differ in the number of TonB-dependent outer-membrane proteins in their proteomes, with most strains having low numbers. In a survey of 226 Gram-negative bacterial genomes, 71% had less than 14 TBDPs and 16% had more than 30 (4). *Pseudomonas* species are among the bacteria with the largest numbers of TBDPs. Pf-5 has 45 TBDPs, which is on the high end of the range for *Pseudomonas* spp. (43). Of the 45 TonB-dependent outer-membrane proteins of Pf-5, 28 are similar to siderophore receptors of other *Pseudomonas* spp. (43). Eleven of the 36 TBDPs in the *P. aeruginosa* proteome are known to function in iron acquisition, with eight TBDPs having an established role in the uptake of microbial ferric-siderophore complexes (19). From a phylogenetic analysis of the TBDPs of Pf-5 and *P. aeruginosa* (43), candidate TBDPs likely to function in iron-acquisition of Pf-5 have been identified, but there are many other TBDPs that are unique to Pf-5 which do not appear to function in iron acquisition. The TBDPs not linked to iron uptake may play important roles that enable Pf-5 to adapt to and colonize the changing environments of seed and root surfaces.

Why does Pf-5 have so many TBDPs? Pf-5 is able to colonize plant surfaces as well as live in the soil where TBDPs may play a role in enhancing access to limited resources, like iron (9). A study on rhizosphere populations of fluorescent *Pseudomonas* spp. found that siderophore production conferred the advantage of higher populations on roots (46). Strains able to take up a siderophore produced by another rhizosphere bacterium were better able to compete on the root surface (46). The ability of *Pseudomonas* spp. to use heterologous siderophores also was shown in *Pseudomonas putida* using an ice nucleation reporter gene fused to an iron regulated promoter (29). The presence of siderophore-producing strains of *P. putida* and *Enterobacter cloacae* increased iron availability to *P. putida* in the rhizosphere of cucumbers (29). The utilization of carbon substrates found on and around plant surfaces is a likely role for a subset of the TBDPs in Pf-5. The study conducted by Blanvillain et al. (4) described a TBDP for sucrose uptake, indicating that TBDPs have expanded roles beyond iron and B12 uptake. In the genome of Pf-5, there are genes for the catabolism and uptake of a wide range of organic compounds found in seed and root exudates (30).

Pyoverdine Uptake

The fluorescent pseudomonads are characterized by the production of pyoverdine siderophores, composed of a dihydroxyquinoline chromophore, which is responsible for diffusible green fluorescence, an acyl side chain (either dicarboxylic acid or amide) bound to the amino group of the chromophore, and a peptide chain of variable length and composition. The structures of more than 70 pyoverdines from different strains and species of *Pseudomonas* have now been determined (7, 35). Different strains of *P. aeruginosa* produce pyoverdines falling into three structural groups, and two TBDTs

(termed FpvA and FpvB for <u>ferric-pyov</u>erdine uptake) are responsible for the uptake of these ferric-pyoverdines. A far more complex structure-function relationship must exist in Pf-5, which produces two siderophores (a pyoverdine and enantio-pyochelin) and six putative ferric-pyoverdine transducers (here termed FpvU to FpvZ) (43), which are likely to be responsible for its capacity to utilize ferric-pyoverdines from many *Pseudomonas* strains as a source of iron.

Ferric-pyoverdine TonB-dependent outer-membrane proteins

TonB-dependent outer-membrane proteins for the uptake of pyoverdine were initially characterized in plant growth promoting *Pseudomonas* spp. (Table 1.1). *Pseudomonas* sp. B10 and *P. putida* WCS358 were investigated for the presence of receptor proteins required for the uptake of the cognate pyoverdines (then called pseudobactins) (31-32). Receptor proteins in both strains were identified as being in the size range for TBDPs and expressed in low iron conditions (31-32). Further research showed that WCS358 has multiple receptors for pyoverdine uptake with PupA for the uptake of the cognate pyoverdine and PupB for heterologous pyoverdines (3, 25). Subsequently, four TBDPs for the uptake of pyoverdines were found in *Pseudomonas* sp. strain M114, with PbuA identified for uptake of its own pyoverdine (39).

Pyoverdine TBDP	Producing strain and pyoverdine peptide chain	Reference
	P. fluorescens ATCC13525: Ser-Lys-Gly-FOHOrn-(Lys-FOHOrn-Ser)	(20, 36)
	P. chlororaphis ATCC9446: Ser-Lys-Gly-FOHOrn-(Lys-FOHOrn-Ser)	
Env	P. aeruginosa PAO1: Ser–Arg–Ser–FOHOrn–(Lys–FOHOrn–Thr–Thr)	_
FpvA	P. fluorescens DSM 50106: Ser-Lys-Gly-FOHOrn-Ser-Ser-Gly-(Orn-FOHOrn-Ser)	
	P. fluorescens Pfl 18.1: Ser-Lys-Gly-FOHOrn-Ser-Ser-Gly-(Lys-FOHOrn-Ser)	
FpvB	P. aeruginosa PA01: Ser–Arg–Ser–FOHOrn–(Lys–FOHOrn–Thr–Thr)	(18)
- p+2	(Type I pyoverdine)	
	P. aeruginosa ATCC27853: Ser-FOHOrn-Orn-Gly-aThr-Ser-cOHOrn	(34)
FpvAII	(Type II pyoverdine)	
i p (1 iii	P. fluorescens PL7: Ser-AcOHOrn-Ala-Gly-aThr-Ala-cOHOrn	
	P. fluorescens PL8:Lys-AcOHOrn-Ala-Gly-aThr-Ser-cOHOrn	
Ence A III	P. aeruginosa 7NSK2: Ser-cDab-FOHOrn-Gln-Gln-FOHOrn-Gly	(12)
FpvAIII	(Type III pyoverdine)	
PupB	Bn7: Unknown	(26)
PupA	WCS358: Asp-ELys-OHAsp-Ser-aThr-Ala-Thr-Lys-cOHOrn	(32)
WCS358 RF2	P. fluorescens WCS374: Ser-Lys-Gly-FOHOrn-(Lys-FOHOrn-Ser)	(25)
WC5556 M12	P. fluorescens PAO1: Ser-Arg-Ser-FOHOrn-(Lys-FOHOrn-Thr-Thr)	
WCS358 RF3	P. fluorescens B10: ELys-OHAsp-Ala-aThr-Ala-cOHOrn	(25)
PbuA	P. fluorescens B10: εLys-OHAsp-Ala-aThr-Ala-cOHOrn	(39)
PupX	P. fluorescens B10: ELys-OHAsp-Ala-aThr-Ala-cOHOrn	(31, 39)

 Table 1.1. Characterized pyoverdine TonB-dependent outer-membrane proteins and associated pyoverdines

Underline denotes D-amino acids. Parentheses define cyclic residues. cOHOrn is cyclo-hydroxy-ornithine. FOHOrn is δN -formyl- δN -hydroxy-ornithine. ϵLys is Lys linked by ϵ -NH2. OHAsp is threo- β -hydroxy-aspartic acid. Dab is diamino-butanoic acid. aThr is allo-Thr. AcOHOrn is δN -acetyl- δN -hydroxy-ornithine.

The opportunistic pathogen *P. aeruginosa* has the best studied Fpv outermembrane proteins. Initial studies of the type strain and clinical strains identified two outer-membrane proteins with the potential for pyoverdine uptake (10). FpvA and FpvB from *P. aeruginosa* strains are present in different forms depending on the strain and are used for the uptake of the three pyoverdine types produced by *P. aeruginosa* strains and heterologous pyoverdines (12, 34, 44). The crystal structure of FpvA along with mechanistic analysis relating to pyoverdine binding and uptake have revealed how this receptor binds and moves ferric-pyoverdine across the outer membrane through interactions with both the plug and β -barrel (8, 40). A recent survey of fluorescent pseudomonads found variation in the number of the Fpv outer-membrane proteins among and within the species surveyed (9). As further research is done to characterize the TBDPs used for pyoverdine uptake, such as the work on Pf-5 presented here, variation of these proteins within the fluorescent pseudomonads will be elucidated.

Research objectives

TonB-dependent outer-membrane proteins of *P. fluorescens* Pf-5 are of interest due to their presence in high numbers within this strain. The characterization of TBDPs within Pf-5 and comparison to other fluorescent pseudomonads will aid in the understanding of how these environmental bacteria survive in complex conditions, particularly those relating to agricultural systems.

The first objective of my research was to analyze the 45 TBDPs in the proteome of *P. fluorescens* Pf-5, which consisted of categorizing the TBDPs as receptors or transducers based on the presence of characteristic domains. I then assigned putative functions based on amino acid similarity to characterized TBDPs and the functions and arrangement of associated genes. The putative functions of some TBDPs were determined by bioassays. A Pf-5 mutant deficient in the production of its own siderophores (pyoverdine and enantio-pyochelin) was derived and evaluated for growth in the presence of heterologous ferric-siderophores and iron-containing molecules. Upon sequencing the genome of Pf-5, initial annotation identified six putative TonB-dependent outer-membrane proteins for the uptake of ferric-pyoverdines. The second objective of my research was to assess the roles of the six Fpv outer-membrane proteins in the uptake of a diverse set of ferric-pyoverdines. Pf-5 mutants deficient in *fpv* genes were tested for crossfeeding by pyoverdine-producing strains of *Pseudomonas* and uptake of purified pyoverdines. A survey of the literature indicates that some Fpv outermembrane proteins recognize one pyoverdine structure (25, 31, 39) whereas other Fpv outer-membrane proteins recognize structurally-related pyoverdines (20, 34, 36). I hypothesize that the six Fpv outer-membrane proteins in Pf-5 could function in three ways; each Fpv recognizes a specific pyoverdine, each Fpv recognizes a distinct set of structurally-related pyoverdines, or two or more Fpv outer-membrane proteins recognize the same pyoverdine.

The results presented in Chapters 2 and 3 show that Pf-5 has TBDPs for the uptake of a variety of substrates primarily involved in the acquisition of iron. The roles of TBDPs in Pf-5 can be used as a platform for investigation of TBDPs in other fluorescent pseudomonads. Chapter 4 illustrates how, using Pf-5 as a template, a core set of five conserved TBDPs was identified for ten strains of *Pseudomonas fluorescens* and related species (termed the *P. fluorescens* group). The diversity of Fpv outer-membrane proteins present in strains of the *P. fluorescens* group also was assessed. The biological and genomic diversity of the ten strains of the *P. fluorescens* group is reflected in the diversity of the types of TBDPs present within the individual strains as well as those shared between the more related strains.

References

- 1. Barry, S. M., and G. L. Challis. 2009. Recent advances in siderophore biosynthesis. Curr. Opin. Chem. Biol. 13:205-215.
- 2. Beattie, G. A., and S. E. Lindow. 1995. The secret life of foliar bacterial pathogens on leaves. Annu. Rev. Phytopathol. 33:145-172.
- Bitter, W., J. D. Marugg, L. A. de Weger, J. Tommassen, and P. J. Weisbeek. 1991. The ferric-pseudobactin receptor PupA of *Pseudomonas putida* WCS358: homology to TonB-dependent *Escherichia coli* receptors and specificity of the protein. Mol. Microbiol. 5:647-655.
- Blanvillain, S., D. Meyer, A. Boulanger, M. Lautier, C. Guynet, N. Denance, J. Vasse, E. Lauber, and M. Arlat. 2007. Plant carbohydrate scavenging through TonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS One 2:e224.
- Braun, V., S. Mahren, and M. Ogierman. 2003. Regulation of the FecI-type ECF sigma factor by transmembrane signalling. Curr. Opin. Microbiol. 6:173-180.
- Bronstein, P., M. Filiatrault, C. Myers, M. Rutzke, D. Schneider, and S. Cartinhour. 2008. Global transcriptional responses of *Pseudomonas syringae* DC3000 to changes in iron bioavailability *in vitro*. BMC Microbiology 8:209.
- Budzikiewicz, H. 2004. Siderophores of the Pseudomonadaceae *sensu stricto* (fluorescent and non-fluorescent *Pseudomonas* spp.). Fortschr. Chem. Org. Naturst. 87:81-237.
- Cobessi, D., H. Celia, N. Folschweiller, I. J. Schalk, M. A. Abdallah, and F. Pattus. 2005. The crystal structure of the pyoverdine outer membrane receptor FpvA from *Pseudomonas aeruginosa* at 3.6 angstrom resolution. J. Mol. Biol. 347:121-134.
- 9. Cornelis, P., and J. Bodilis. 2009. A survey of TonB-dependent receptors in fluorescent pseudomonads. Environ. Microbiol. Rep. 1:256-262.
- Cornelis, P., D. Hohnadel, and J. M. Meyer. 1989. Evidence for different pyoverdine-mediated iron uptake systems among *Pseudomonas aeruginosa* strains. Infect. Immun. 57:3491-3497.

- 11. Cornelis, P., S. Matthijs, and L. Van Oeffelen. 2009. Iron uptake regulation in *Pseudomonas aeruginosa*. Biometals **22**:15-22.
- De Chial, M., B. Ghysels, S. A. Beatson, V. Geoffroy, J. M. Meyer, T. Pattery, C. Baysse, P. Chablain, Y. N. Parsons, C. Winstanley, S. J. Cordwell, and P. Cornelis. 2003. Identification of type II and type III pyoverdine receptors from *Pseudomonas aeruginosa*. Microbiology 149:821-831.
- Dean, C. R., S. Neshat, and K. Poole. 1996. PfeR, an enterobactin-responsive activator of ferric enterobactin receptor gene expression in *Pseudomonas aeruginosa*. J. Bacteriol. 178:5361-5369.
- Enz, S., S. Mahren, U. H. Stroeher, and V. Braun. 2000. Surface signaling in ferric citrate transport gene induction: interaction of the FecA, FecR, and FecI regulatory proteins. J. Bacteriol. 182:637-646.
- 15. Escolar, L., J. Peréz-Martín, and V. de Lorenzo. 1999. Opening the iron box: transcriptional metalloregulation by the Fur protein. J. Bacteriol. 181:6223-6229.
- Ferguson, A. D., C. A. Amezcua, N. M. Halabi, Y. Chelliah, M. K. Rosen, R. Ranganathan, and J. Deisenhofer. 2007. Signal transduction pathway of TonBdependent transporters. Proc. Natl. Acad. Sci. USA 104:513-518.
- Fravel, D. R. 2005. Commercialization and implementation of biocontrol. Ann. Rev. Phytopath. 43:337-359.
- Ghysels, B., B. T. Dieu, S. A. Beatson, J. P. Pirnay, U. A. Ochsner, M. L. Vasil, and P. Cornelis. 2004. FpvB, an alternative type I ferripyoverdine receptor of *Pseudomonas aeruginosa*. Microbiology 150:1671-1680.
- Ghysels, B., U. Ochsner, U. Mollman, L. Heinisch, M. Vasil, P. Cornelis, and S. Matthijs. 2005. The *Pseudomonas aeruginosa pirA* gene encodes a second receptor for ferrienterobactin and synthetic catecholate analogues. FEMS Microbiol. Lett. 246:167-174.
- Greenwald, J., M. Nader, H. Celia, C. Gruffaz, V. Geoffroy, J. M. Meyer, I. J. Schalk, and F. Pattus. 2009. FpvA bound to non-cognate pyoverdines: molecular basis of siderophore recognition by an iron transporter. Mol. Microbiol. 72:1246-1259.
- 21. Hassett, D. J., P. A. Sokol, M. L. Howell, J. F. Ma, H. T. Schweizer, U. Ochsner, and M. L. Vasil. 1996. Ferric uptake regulator (Fur) mutants of *Pseudomonas aeruginosa* demonstrate defective siderophore-mediated iron

uptake, altered aerobic growth, and decreased superoxide dismutase and catalase activities. J. Bacteriol. **178:**3996-4003.

- 22. Hider, R. C., and X. Kong. 2010. Chemistry and biology of siderophores. Nat. Prod. Rep. 27:637-657.
- 23. James, H. E., P. A. Beare, L. W. Martin, and I. L. Lamont. 2005. Mutational analysis of a bifunctional ferrisiderophore receptor and signal-transducing protein from *Pseudomonas aeruginosa*. J. Bacteriol. **187**:4514-4520.
- Kahnert, A., P. Mirleau, R. Wait, and M. A. Kertesz. 2002. The LysR-type regulator SftR is involved in soil survival and sulphate ester metabolism in *Pseudomonas putida*. Environ. Microbiol. 4:225-237.
- Koster, M., W. Ovaa, W. Bitter, and P. Weisbeek. 1995. Multiple outer membrane receptors for uptake of ferric pseudobactins in *Pseudomonas putida* WCS358. Mol. Gen. Genet. 248:735-743.
- 26. Koster, M., J. van de Vossenberg, J. Leong, and P. J. Weisbeek. 1993. Identification and characterization of the *pupB* gene encoding an inducible ferricpseudobactin receptor of *Pseudomonas putida* WCS358. Mol. Microbiol. 8:591-601.
- 27. Krewulak, K. D., and H. J. Vogel. 2011. TonB or not TonB: is that the question? Biochem. Cell. Biol. 89:87-97.
- 28. Lohmiller, S., K. Hantke, S. I. Patzer, and V. Braun. 2008. TonB-dependent maltose transport by *Caulobacter crescentus*. Microbiology **154**:1748-1754.
- 29. Loper, J. E., and M. D. Henkels. 1999. Utilization of heterologous siderophores enhances levels of iron available to *Pseudomonas putida* in the rhizosphere. Appl. Environ. Microbiol. **65**:5357-5363.
- Loper, J. E., I. T. Paulsen, and D. Y. Kobayashi. 2007. The genomic sequence of *Pseudomonas fluorescens* Pf-5: Insights Into Biological Control. Phytopathology 97:233-238.
- Magazin, M. D., J. C. Moores, and J. Leong. 1986. Cloning of the gene coding for the outer membrane receptor protein for ferric pseudobactin, a siderophore from a plant growth-promoting *Pseudomonas* strain. J. Biol. Chem. 261:795-799.
- 32. Marugg, J. D., L. A. de Weger, H. B. Nielander, M. Oorthuizen, K. Recourt, B. Lugtenberg, G. A. van der Hofstad, and P. J. Weisbeek. 1989. Cloning and characterization of a gene encoding an outer membrane protein required for

siderophore-mediated uptake of Fe³⁺ in *Pseudomonas putida* WCS358. J. Bacteriol. **171:**2819-2826.

- Matthijs, S., K. A. Tehrani, G. Laus, R. W. Jackson, R. M. Cooper, and P. Cornelis. 2007. Thioquinolobactin, a *Pseudomonas* siderophore with antifungal and anti-Pythium activity. Environ. Microbiol. 9:425-434.
- 34. Meyer, J. M., V. A. Geoffroy, C. Baysse, P. Cornelis, I. Barelmann, K. Taraz, and H. Budzikiewicz. 2002. Siderophore-mediated iron uptake in fluorescent *Pseudomonas*: characterization of the pyoverdine-receptor binding site of three cross-reacting pyoverdines. Arch. Biochem. Biophys. 397:179-183.
- 35. Meyer, J. M., C. Gruffaz, V. Raharinosy, I. Bezverbnaya, M. Schafer, and H. Budzikiewicz. 2008. Siderotyping of fluorescent *Pseudomonas*: molecular mass determination by mass spectrometry as a powerful pyoverdine siderotyping method. Biometals 21:259-271.
- Meyer, J. M., A. Stintzi, and K. Poole. 1999. The ferripyoverdine receptor FpvA of *Pseudomonas aeruginosa* PAO1 recognizes the ferripyoverdines of *P. aeruginosa* PAO1 and *P. fluorescens* ATCC 13525. FEMS Microbiol. Lett. 170:145-150.
- Michel, L., A. Bachelard, and C. Reimmann. 2007. Ferripyochelin uptake genes are involved in pyochelin-mediated signalling in *Pseudomonas aeruginosa*. Microbiology 153:1508-1518.
- Moeck, G. S., and J. W. Coulton. 1998. TonB-dependent iron acquisition: mechanisms of siderophore-mediated active transport. Mol. Microbiol. 28:675-681.
- Morris, J., D. F. Donnelly, E. O'Neill, F. McConnell, and F. O'Gara. 1994. Nucleotide sequence analysis and potential environmental distribution of a ferric pseudobactin receptor gene of *Pseudomonas* sp. strain M114. Mol. Gen. Genet. MGG 242:9-16.
- 40. Nader, M., L. Journet, A. Meksem, L. Guillon, and I. J. Schalk. 2011. Mechanism of ferripyoverdine uptake by *Pseudomonas aeruginosa* outer membrane transporter FpvA: no diffusion channel formed at any time during ferrisiderophore uptake. Biochemistry **50**:2530-2540.
- Ochsner, U. A., and M. L. Vasil. 1996. Gene repression by the ferric uptake regulator in *Pseudomonas aeruginosa*: cycle selection of iron-regulated genes. Proc. Natl. Acad. Sci. USA 93:4409-4414.

- 42. Ochsner, U. A., P. J. Wilderman, A. I. Vasil, and M. L. Vasil. 2002. GeneChip expression analysis of the iron starvation response in *Pseudomonas aeruginosa*: identification of novel pyoverdine biosynthesis genes. Mol. Microbiol. **45**.
- 43. Paulsen, I. T., C. M. Press, J. Ravel, D. Y. Kobayashi, G. S. A. Myers, D. V. Mavrodi, R. T. DeBoy, R. Seshadri, Q. Ren, R. Madupu, R. J. Dodson, A. S. Durkin, L. M. Brinkac, S. C. Daugherty, S. A. Sullivan, M. J. Rosovitz, M. L. Gwinn, L. Zhou, D. J. Schneider, S. W. Cartinhour, W. C. Nelson, J. Weidman, K. Watkins, K. Tran, H. Khouri, E. A. Pierson, L. S. Pierson, 3rd, L. S. Thomashow, and J. E. Loper. 2005. Complete genome sequence of the plant commensal *Pseudomonas fluorescens* Pf-5. Nat. Biotechnol. 23:873-878.
- 44. **Poole, K., S. Neshat, K. Krebes, and D. E. Heinrichs.** 1993. Cloning and nucleotide sequence analysis of the ferripyoverdine receptor gene *fpvA* of *Pseudomonas aeruginosa*. J. Bacteriol. **175:**4597-4604.
- 45. Postle, K., and R. J. Kadner. 2003. Touch and go: tying TonB to transport. Mol. Microbiol. 49:869–882.
- Raaijmakers, J. M., L. van der Sluis, P. A. H. M. Bakker, B. Schippers, M. Koster, and P. J. Weisbeek. 1995. Utilization of heterologous siderophores and rhizosphere competence of fluorescent *Pseudomonas* spp. Can. J. Microbiol. 41:126–135.
- Raaijmakers, J. M., and D. M. Weller. 1998. Natural plant protection by 2,4diacetylphloroglucinol-producing *Pseudomonas* spp. in take-all decline soils. Mol. Plant Microbe Interact. 11:144-152.
- 48. Schauer, K., B. Gouget, M. Carriere, A. Labigne, and H. de Reuse. 2007. Novel nickel transport mechanism across the bacterial outer membrane energized by the TonB/ExbB/ExbD machinery. Mol. Microbiol. **63:**1054-1068.
- 49. **Takase, H., H. Nitanai, K. Hoshino, and T. Otani.** 2000. Requirement of the *Pseudomonas aeruginosa tonB* gene for high-affinity iron acquisition and infection. Infect. Immun. **68:**4498-4504.
- Visca, P., L. Leoni, M. J. Wilson, and I. L. Lamont. 2002. Iron transport and regulation, cell signalling and genomics: lessons from *Escherichia coli* and *Pseudomonas*. Mol. Microbiol. 45:1177-1190.
- 51. Weller, D. M., W. J. Howie, and R. J. Cook. 1988. Relationship between in vitro inhibition of *Gaeumannomyces graminis* var. *tritici* and suppression of takeall of wheat by fluorescent pseudomonads. Phytopathology **78**:1094-1100.

Chapter 2

TonB-dependent Outer-membrane Proteins and Siderophore Utilization in Pseudomonas fluorescens Pf-5

Sierra L. Hartney, Sylvie Mazurier, Teresa A. Kidarsa, Maria Carolina Quecine, Philippe Lemanceau and Joyce E. Loper

Biometals

Springer

233 Spring Street

New York, NY 10013

Issue 24

Abstract

The soil bacterium Pseudomonas fluorescens Pf-5 produces two siderophores, a pyoverdine and enantio-pyochelin, and its proteome includes 45 TonB-dependent outermembrane proteins, which commonly function in uptake of siderophores and other substrates from the environment. The 45 proteins share the conserved β -barrel and plug domains of TonB-dependent outer-membrane proteins but only 18 of them have an Nterminal signaling domain characteristic of TonB-dependent transducers (TBDTs), which participate in cell-surface signaling systems. Phylogenetic analyses of the 18 TBDTs and 27 TonB-dependent receptors (TBDRs), which lack the N-terminal signaling domain, suggest a complex evolutionary history including horizontal transfer among different microbial lineages. Putative functions were assigned to certain TBDRs and TBDTs in clades including well-characterized orthologs from other Pseudomonas spp. A mutant of Pf-5 with deletions in pyoverdine and enantio-pyochelin biosynthesis genes was constructed and characterized for iron-limited growth and utilization of a spectrum of siderophores. The mutant could utilize as iron sources a large number of pyoverdines with diverse structures as well as ferric citrate, heme, and the siderophores ferrichrome, ferrioxamine B, enterobactin, and aerobactin. The diversity and complexity of the TBDTs and TBDRs with roles in iron uptake clearly indicate the importance of iron in the fitness and survival of Pf-5 in the environment.

Introduction

TonB-dependent outer-membrane proteins are important components of the bacterial cellular machinery for the uptake of substrates from the environment. These proteins bind with high affinity to specific substrates external to the cell as the first step in the energy-dependent transport of the substrate into the periplasmic space. The energy for transport across the outer membrane is supplied by TonB proteins (74). TonBdependent outer-membrane proteins are best known as receptors for siderophores, highaffinity iron-chelating compounds that are produced by microorganisms under ironlimiting conditions. Siderophores are exported from the cell, where they chelate ferric ions in the environment. Specific ferric-siderophore complexes are recognized by cognate TonB-dependent outer-membrane proteins, which initiate the process of iron transport into the cell where the iron becomes available for metabolic functions (38). The roles of TonB-dependent outer-membrane proteins as receptors for siderophores, vitamin B12, and certain phages have been recognized for decades (74) but their broader functions in the uptake of sucrose (7), maltodextrins (51), nickel (80), sulfate (44), and other substrates have been recognized only recently. Most bacteria have less than 14 TonB-dependent outer-membrane proteins in their proteomes but certain environmental bacteria, such as *Caulobacter crescentus* (27) and *Xanthomonas campestris* pv. campestris have very large numbers (7). This is also the case for Pseudomonas fluorescens Pf-5, a well-characterized soil bacterium that colonizes seed and root surfaces and protects plants from infection by certain soil-borne plant pathogens (52). The proteome of P. fluorescens Pf-5 includes 45 TonB-dependent outer-membrane proteins.

In environments in which iron is limited, fluorescent pseudomonads such as *P*. *fluorescens* produce pyoverdines. These siderophores are composed of a dihydroxyquinoline chromophore, an acyl side chain (either dicarboxylic acid or amide) bound to the amino group of the chromophore, and a peptide chain of variable length and composition. The structures of more than 70 pyoverdines from different strains and species of *Pseudomonas* have now been determined (64). Strains of *P. aeruginosa*

produce pyoverdines falling into three structural groups (66), and two of the 34 TonBdependent outer-membrane proteins in the proteome of PAO1 are responsible for the uptake of these ferric-pyoverdines (49). Other *Pseudomonas* spp. differ in the range of pyoverdine structures that they can utilize as iron sources. P. entomophila L48 utilizes a wide range of pyoverdines, whereas the related species P. putida KT2440 can utilize relatively few of these siderophores to acquire iron from the environment (57). In addition to pyoverdine, a second siderophore having a lower affinity for iron than pyoverdine is produced by many strains of *Pseudomonas* spp. (14). For example, pyochelin is produced by *P. aeruginosa*, and its optical antipode enantio-pyochelin is produced by *P. fluorescens* Pf-5 (94). Furthermore, pseudomonads have a remarkable capacity to utilize heterologous siderophores produced by diverse taxa of bacteria and fungi (17). Of the 34 TonB-dependent outer-membrane proteins in the proteome of P. *aeruginosa* PAO1, eight serve as receptors for the heterologous siderophores enterobactin, aerobactin, ferrichrome, ferrioxamine B, heme or ferric-citrate (15-16). A more complex structure-function relationship likely exists in P. fluorescens Pf-5, with its 45 TonB-dependent outer-membrane proteins including six putative ferric-pyoverdine receptors (71).

In addition to their roles as outer membrane receptors, certain TonB-dependent outer-membrane proteins serve as components of cell-surface signaling (CSS) systems used by bacteria to sense signals from the extracellular medium and transmit them into the cytoplasm (28). Typically, CSS systems have three components: an alternative sigma factor of the extracytoplasmic function (ECF) family, a sigma factor regulator (anti-sigma factor) located in the cytoplasmic membrane, and a TonB-dependent outer-membrane protein having an N-terminal signaling domain. This signaling domain interacts with the C-terminus of the cognate anti-sigma factor, which releases the ECF sigma factor to function in transcription of specific target genes (28). Therefore, upon substrate binding, TonB-dependent outer-membrane proteins having the N-terminal signaling domain initiate a signaling pathway that controls the transcription of target genes. Genes encoding the three CSS components are typically clustered in the bacterial genome. In this study, a combination of bioinformatic, phylogenetic and functional analyses were employed to characterize the 45 TonB-dependent outer-membrane proteins of *P. fluorescens* Pf-5. Motifs defining constituent domains were identified and the presence or absence of the N-terminal signaling domain was used to distinguish the 27 TonB-dependent receptors (TBDRs) from the 18 TonB-dependent transducers (TBDTs) in the Pf-5 proteome. Phylogenetic analyses of the TonB-dependent outer-membrane proteins from Pf-5 and characterized orthologs from other *Pseudomonas* spp. allowed the assignment of putative functions to certain Pf-5 TBDRs and TBDTs. A mutant of Pf-5 with deletions in pyoverdine and enantio-pyochelin biosynthesis genes was constructed and characterized for iron-limited growth and utilization of a spectrum of siderophores. Pf-5 exhibited a remarkable capacity to utilize pyoverdines with diverse structures produced by different *Pseudomonas* spp., as well as ferric citrate, heme, and the siderophores ferrichrome, ferrioxamine B, enterobactin, and aerobactin.

Materials and methods

Bacterial strains and growth conditions

Pseudomonas strains were grown on King's medium B (KMB) (45) at 27°C. *Escherichia coli* and *E. cloacae* were grown on Luria-Bertani (LB) at 37°C. Antibiotics were used at the following concentrations (μ g/ml): gentamicin (Gm) 40 (*P. fluorescens*) and 12.5 (*E. coli*), kanamycin (Km) 50, streptomycin (Sm) 100, tetracycline (Tet) 200 (*P. fluorescens*) and 20 (*E. coli*).

Pyoverdine peptide chain prediction

Pyoverdines produced by many strains of *Pseudomonas* spp. have unknown structures, but the amino acid composition of the peptide chain of these pyoverdines can be predicted bioinformatically from the nucleotide sequences of genes encoding the corresponding non-ribosomal peptide synthetases (NRPSs). Predicted amino acid sequences for the NRPSs for each strain were submitted to the NRPS/PKS predictor (2) and the NRPS predictor (http://www-

ab.informatik.uni-tuebingen.de/software/NRPSpredictor) which uses the methods of (84) and (76).

Sequence compilation and domain analysis

Alignments of amino acid sequences of the TonB-dependent outer-membrane proteins of Pf-5 were done using the multiple sequence alignment tool T-Coffee (69). Characteristic domains of TonB-dependent outer-membrane proteins were identified according to Pfam (31), using default settings with an E-value cutoff of 1.0. Additional domain analysis was done using the EMBL_EBI InterProScan domain search tool.

Secondary structure prediction

PSIPRED GenTHREADER (58) and a beta barrel prediction model (5) were used to predict secondary structure of the 45 TonB-dependent outer-membrane proteins in the Pf-5 genome.

Phylogenetic analysis

Amino acid sequences of TonB-dependent outer-membrane proteins were submitted to the NCBI database of non-redundant protein sequences to identify the five to ten best hits for each using the PSI-BLAST algorithm (1). Phylogenetic and molecular evolutionary analyses were conducted using MEGA version 4.0.2 (87). The Clustal W (90) based alignment option with a gap open penalty of 15 and a gap extension penalty of 0.3 was used to align the amino acid sequences. The aligned sequences were masked to remove gaps. The masked sequences were then subjected to bootstrapped maximum parsimony analysis. Branches corresponding to partitions reproduced in less than 50% of bootstrap replicates were collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (500 replicates) is shown next to the branches. The maximum parsimony tree was obtained using the Close-Neighbor-Interchange algorithm with search level 3 in which the initial trees were obtained with the random addition of sequences (10 replicates). All positions containing gaps and missing data were eliminated from the dataset (complete deletion option). The % GC for each gene encoding a TonB-dependent outer membrane protein was compiled and those differing significantly from the Pf-5 genomic average of 63.3% were identified by chi square analysis.

Construction of mutants of Pf-5

Mutants of Pf-5 were constructed using overlap extension PCR methods modified from Choi and Schweizer (12). The ofaA (PFL_2145) mutant of Pf-5 is described in Hassan et al. (37). The $\Delta pvdI$ deletion mutant was made by the method described in Hassan et al. (2010) using the primers pyv UpF-Bam, pyv UpR-FRT, pyv DnF-FRT, and pyv DnR-Bam (Table 2.1). The *pchA* and *pchC* gene constructs were made by modified methods as described below. The pchC (PFL_3490) gene was amplified with primers PFL3490-Up and PFL3490-Low (Table 2.1) using iProof DNA polymerase (Bio-Rad, Hercules, CA) and cloned into pCR-blunt (Invitrogen, Carlsbad, CA). The GmR-gfp gene cassette was amplified from pPS858 (39) with primers Gm-F and Gm-R using KOD DNA polymerase (Novagen (Merk), Darmstadt, Germany). The GmR-gfp cassette was used to interrupt the *pchC* gene by cloning into a unique *PshAI* site. The interrupted *pchC* gene was re-amplified with PFL3490-Up and PFL3490-Low primers using KOD DNA polymerase and ligated into the Smal site of pEX18Tc (39). This construct was introduced into Pf-5 as described in Hassan et al. (37). The pchA (PFL_3488) gene construct was made by PCR amplification of 5' and 3' regions of *pchA* with the primers 3488 UpFHind, 3488 UpR, 3488 DnF, and 3488 DnRHind (Table 2.1). The resulting PCR products were combined in a second round of PCR with the primers 3488 UpFHind and 3488 DnRHind added during the 3rd-cycle extension, yielding a product consisting of the 5' and 3' regions of the *pchA* gene with the middle portion of the gene deleted. The final PCR product was digested with *HindIII* and cloned into pEX18Tc (39). The pchA deletion construct was transformed into One Shot TOP10 Chemically Competent E. coli (Invitrogen) and then into the mobilizing strain E. coli S17-1 (83). Pf-5 transconjugants

were selected on KMB (45) with streptomycin (100 μ g/ml, innate resistance of Pf-5) and tetracycline (200 μ g/ml). Resulting colonies were grown for 3 h without selection in LB broth and plated on LB with 5% sucrose to favor growth of resolved merodiploids. Colonies growing on sucrose were patched onto KMB containing tetracycline (200 μ g/ml) to confirm resolution of merodiploids. Tetracyline-sensitive clones were screened for presence of the *pchA* deletion by PCR and the PCR product sequenced to confirm correct incorporation of the deleted allele.

Primer	Sequence 5'-3'
pchA	
3488 UpFHind	GACGAAGACGAAGCTTTTCTACCTGCGCGAGCAACA
3488 UpR	TGCTCGCGGATAACAGGCAGGATTCACTCATC
3488 DnF	AATCCTGCCTGTTATCCGCGAGCATGAGCAA
3488 DnRHind	GTGGTTGTGGAAGCTTATTCCTTCGCCATAAACCGC
pvdI	
pyv UpF-Bam	CTCTGCTTCTGGATCCTCGGTTTCTTCGTCAACACC
pyv UpR-FRT	TCAGAGCGCTTTTGAAGCTAATTCGGAGGTGTAGATCGAATAGGC
pyv DnF-FRT	AGGAACTTCAAGATCCCCAATTCGTGCTGGATGCATCCTTGCAA
pyv DnR-Bam	CACACCATCAGGATCCATCTGCCAGAACAGCCATTG
pchC	
PFL3490-Up	CGGCCAGGCTGTACACCAC
PFL3490-Low	TACCTGAGCACCGAGCAGC
Gm-F	CGAATTAGCTTCAAAAGCGCTCTGA
Gm-R	CGAATTGGGGATCTTGAAGTTCCT

Table 2.1. Primers used in the construction of mutants of *P. fluorescens* Pf-5

Arbitrary PCR

Tn5 insertions in an extant set of pyoverdine-deficient mutants (48) were mapped by using arbitrary PCR. Genomic DNA flanking the Tn5 insertion was amplified in two rounds of PCR reactions. In the first round, Primer 1 was complementary to sequences of Tn5 and Primer 2 was a degenerate primer. The 5' end of the degenerate primer was 5'-GGTCCG, a sequence that occurs 350 times, at an average of every 600 bp, in the pyoverdine region of Pf-5. This primer also contained 10 random nucleotides and a previously-described 20-nucleotide sequence (21). Round 2, Primer 1 was composed of the 3' 20 nucleotides from the round one degenerate primer. Round 2, Primer 2 was complementary to Tn5 at a location internal to the Round 1, Primer 1 sequence. The final product was sequenced to identify the DNA flanking the Tn5 insertion.

Round 1, Primer 1: 5'-GGGCAGTACGGCGAGGAT-3'

Round 1, Primer 2: 5'-GGTCCGNNNNNNNNNNACTGATCAGCTGCGCACCGG-3'

Round 2, Primer 1: 5'-ACTGATCAGCTGCGCACCGG-3'

Round 2, Primer 2: 5'-CCTTTCTGATCGCCTCGG-3'

Iron limited growth

Pf-5 and derivative strains were tested for iron limited growth on KMB containing the iron chelator 2,2'-dipyridyl (Sigma-Aldrich, St Louis, MO) at 0, 100, 200, 400, 600, and 800 μ M. Bacterial cells from overnight cultures grown in KMB broth were collected by centrifugation and suspended in water to 0.1 OD₆₀₀. This suspension was diluted to 10⁻², 5 μ l of the diluted cell suspension was placed on the agar surface, and bacterial growth was observed following 24 hrs incubation at 27°C. Each strain was tested in at least two experiments, each evaluating two replicate plates.

Enantio-pyochelin extraction and detection

Production of enantio-pyochelin in Pf-5 and derivative strains was analyzed using the following method: for each treatment, four tubes each containing 5 ml M9 minimal medium (78) broth were inoculated with 5µl of overnight culture and incubated at 27° C for 48 hrs at 200 rpm. Two cultures were combined for each of two replicates and centrifuged at 7000 rpm for 10 min. Supernatants were decanted into 50 ml polypropylene conical screw-cap centrifuge tubes and adjusted to pH 2.0 with 1M HCl. The enantio-pyochelin was extracted by adding 0.5 volumes ethyl acetate and vortexing. The organic and aqueous phases were separated by centrifugation at 7000 rpm for 10 min. The organic top layer was transferred to 5 ml glass tubes and dried under vacuum. Dried samples were resuspended in 100 µl methanol and stored at -20 °C. Enantio-pyochelin extracts were separated on thin layer chromatography plates (silica gel 60 F_{254} on aluminum, EM Science, Gibbstown, NJ) using n-butyl alcohol/water/acetic acid 4:1:1 (v/v/v) as the mobile phase (94). Compounds were viewed by fluorescence at 365 nm and by spraying with 2 M FeCl₃ in 0.1 M HCl.

CAS agar assay

Pf-5 and mutants were tested for siderophore production by observing zones surrounding colonies grown on CAS (Chrome azurol S) agar for pseudomonads (81). Ten μ L of a 0.1 OD₆₀₀ cell suspension was spotted on the agar surface; plates were incubated at 27°C, and observed for zone formation. Each mutant was tested in at least two experiments, each evaluating two replicate plates. In some experiments, CAS agar was amended with FeCl₃ to a final concentration of 1 mM.

Crossfeeding assays

Pseudomonas spp. producing diverse pyoverdines (test strains presented in Table 2.2) were evaluated for their capacities to provide iron to the $\Delta pvdI$ -pchC mutant of Pf-5 (indicator strain) in crossfeeding experiments. Cells from test strains and the indicator

strain were collected from overnight cultures grown in KMB broth and suspended in water to 0.1 OD₆₀₀. Cell suspensions of the indicator strain were further diluted to 10^{-2} in sterile water. Ten µL each test strain suspension was placed on the surface of KMB amended with 2,2'-dipyridyl at 400 µM or 600 µM. Five µL of the diluted cell suspension of the indicator strain was spotted on the agar surface at a distance of 1 cm from each test strain. An alternative method was used for those test strains that did not grow on KMB amended with 2,2'-dipyridyl at 400 µM or 600 µM. For those strains, an agar plug (6mm) obtained from a 48 hr culture on KMB was substituted for the cell suspension on the surface of the test plate. Plates were incubated at 27°C, and growth of the indicator strain was observed at 24 hr and 36-48 hr. Each test strain was evaluated in at least two experiments, each evaluating two replicate plates.

Siderophore utilization assays

The capacity of Pf-5 to utilize specific ferric-siderophore complexes as sources of iron was evaluated. Cells of a $\Delta pvdI$ -pchC mutant of Pf-5 were collected from overnight cultures grown in KMB broth, suspended in water to 0.1 OD₆₀₀, diluted to 10⁻² in sterile water, and 100 µL of the diluted sample was spread on the surface of KMB amended with 400 µM or 600 µM 2,2'-dipyridyl. Filter paper disks (5 mm diameter) were placed at the center of the agar surface, and 10 µL of a purified siderophore solution or water (negative control) was placed on the filter paper disk. Plates were incubated at 27°C for 24 hr and then scored for the presence of bacterial growth in a halo surrounding the disk. The following compounds were tested: 20 mM ferric citrate in water, 7.7 mM hemin chloride in 10 mM NaOH, 5 mg hemoglobin in 1 ml PBS (phosphate-buffered saline), 20mM desferrioxamine in 10 mM Tris-HCl pH 8.8, and 10 mM ferrichrome in 0.5 M Tris-HCl, pH 8.8. All of the compounds were obtained from Sigma-Aldrich. Each assay was done twice, with each experiment evaluating two replicate plates.

Results

Identification of conserved domains within the TonB-dependent outer-membrane proteins of *P. fluorescens* Pf-5

Analysis of the amino acid sequences of each of the 45 TonB-dependent outermembrane proteins in the Pf-5 proteome revealed the conserved transmembrane pore and receptor domains of this protein family. Sequences characteristic of an outer membranespanning pore, formed by a β -barrel made up of repeated β -strands (Interpro: IPR000531) were identified in all 45 deduced peptide sequences (Fig. 2.1). Two domains involved in substrate binding, a receptor domain (Pfam: PF00593) comprising a highly conserved region of the pore, and a plug domain (Pfam: PF07715) (13, 72, 82), were also identified in 43 TonB-dependent outer-membrane proteins. The receptor domain was not identified in the proteins PFL_2919 and PFL_3612. A TonB box, defined as the five to seven amino acids required for interaction with TonB (73), was not identified consistently in the 45 proteins following analysis of sequence alignments with known TonB boxes in other *Pseudomonas* spp. The lack of conservation of this motif across the TonB-dependent outer-membrane proteins of Pf-5 may be related to the presence of four putative TonB proteins in the Pf-5 genome (71). Multiple copies of TonB are also present in other species of *Pseudomonas* (42, 95).

a. Location of transducer domains (amino acid)

Barrel

Receptor

STN Plug

Locus Tag	STN	Plug	Receptor	Barrel	Length
PFL_4092	67-116	159-263	570-821	274-822, 278-822	822
PFL_2391	74-125	168-272	579-822	283-823, 286-823	823
PFL_2527	73-124	166-267	584-808	276-809, 282-809	809
PFL_3315	66-116	159-262	576-823	273-824, 277-824	824
PFL_3485	66-115	157-260	562-804	270-806, 274-806	806
PFL_0125	98-149	191-298	609-855	311-856	856
PFL_0147	68-117	161-267	579-820	280-821	821
PFL_0982	111-162	190-305	586-834	317-835	835
PFL 0995	71-122	160-259	567-807	278-811	811
PFL 1371	55-105	128-236	566-850	319-853	853
PFL 2293	65-116	158-263	582-823	277-824	824
PFL 2365	64-107	127-235	662-942	361-944	944
PFL 3154	77-128	151-255	571-827	280-828	828
PFL 3612	62-113	131-258	N/A	354-931	931
PFL 4039	70-120	149-264	557-819	273-821	821
PFL 4627	76-120	148-259	598-871	305-872	872
PFL 5378	74-122	152-261	591-900	355-901	901
PFL_5706	61-112	154-255	565-808	269-809	809

Fig. 2.1. Schematic representation of TonB-dependent outer-membrane proteins in the Pf-5 genome. a. The TonB-dependent Transducers (TBDTs) have an additional N-terminal signaling domain (STN) (Pf07660). b. Conserved domains identified in the 28 TonB-dependent Receptors (TBDRs) include an outer membrane-spanning pore formed by a β -barrel made up of repeated β -strands (Interpro: IPR000531), and a receptor (Pfam: PF00593) and plug (Pf07715) involved in substrate binding.

		Barrel				
Plug			Dee	enter		
FINS			Kee	eptor		
Locus Tag	Plug	Receptor	Barrel	Length		
PFL_5511	71-178	424-655	186-654	654		
PFL_4912	45-151	420-679	238-679	679		
PFL_5169	81-194	459-712	205-712	712		
PFL_4063	28-130	450-691	144-691	691		
PFL_3620	57-173	447-696	203-696	696		
PFL_2240	96-205	459-697	217-695	697		
PFL_0310	60-156	462-699	171-699	699		
PFL_0932	74-174	477-711	187-711	711		
PFL_2772	52-163	442-707	195-707	708		
PFL_1740	46-156	563-708	186-708	708		
PFL_0646	58-163	468-709	180-709	709		
PFL_0648	64-173	449-710	179-710	710		
PFL_2604	57-157	477-711	173-711	711		
PFL_1417	71-171	474-718	184-718	718		
PFL_3835	69-169	485-727	180-727	727		
PFL_3498	97-199	503-743	212-743	743		
PFL_2663	50-170	465-746	181-746	746		
PFL_0992	47-158	487-746	196-746	746		
PFL_0255	101-210	523-784	244-784	784		
PFL_3176	58-167	487-756	201-756	756		
PFL_0864	78-178	512-761	191-761	761		
PFL_2970	122-227	530-770	243-770	770		
PFL_0213	73-181	518-790	186-790	790		
PFL_1386	50-172	507-788	265-822	822		
PFL_3177	53-177	510-823	272-823	823		
PFL_3715	52-158	567-839	254-839	840		
PFL_2919	65-161	N/A	189-859	859		

b. Location of receptor domains (amino acid)

Fig. 2.1., Continued

An N-terminal signaling domain (Pfam:PF07660), which is known to interact with regulatory proteins controlling the expression of ECF sigma factors (28), was identified in 18 of the 45 TonB-dependent outer-membrane proteins (Fig. 2.1). Seventeen of the genes encoding these proteins are immediately adjacent to or clustered with genes encoding ECF sigma factors and associated regulatory proteins (anti-sigma factors) in the Pf-5 genome (Fig. 2.2). One gene (PFL_4092) is located in a pyoverdine biosynthesis gene cluster also containing the corresponding ECF sigma factor gene FpvI (PFL_4080), but the corresponding anti-sigma factor encoding gene FpvR (PFL_2903) is distal in the genome.

The 27 TonB-dependent outer-membrane proteins lacking an N-terminal signaling domain range in length from 654 to 859 amino acids (72.9-93.8 kDa) whereas the 18 proteins having an N-terminal signaling domain are typically larger, ranging from 806 to 944 amino acids (88.05-104.48 kDa) (Fig. 2.1). Alignment of all 45 proteins showed a lack of conservation over much of the sequence between the groups, which is due partially to differences in protein length. Therefore, our phylogenetic analyses considered the TBDRs and TBDTs separately, revealing differences that could, in some cases, be assigned to distinct substrates.

	Linked	Linked ECF	GC content
	anti-sigma	sigma factor	of TBDR
Pyoverdine			
PFL_4092	PFL_2903	PFL_4080	62
PFL_2391	PFL_2392	PFL_2393	64
PFL_2527	PFL_2528	PFL_2529	64
PFL_3315	PFL_3314	PFL_3313	66*
PFL_3485	PFL_3485	PFL_3483	63
PFL_2293	PFL_2292	PFL_2291	66*
Ferrioxamine			
PFL_0125	PFL_0126	PFL_0127	62
Ferrichrome			
PFL_0147	PFL_0146	PFL_0147	64
PFL_5706	PFL_5705	PFL_5704	61*
Ferric citrate			
PFL_0982	PFL_0983	PFL_0984	65
PFL_4039	PFL_4040	PFL_4041	66*
Heme			
PFL_1371	PFL_1372	PFL_1373	64
PFL_2365	PFL_2364	PFL_2363	65
PFL_5378	PFL_5379	PFL_5380	66*
PFL_4627	PFL_4626	PFL_4625	63
Aerobactin			
PFL_3154	PFL_3155	PFL_3156	66*
Unknown			
PFL_3612	PFL_3611	PFL_3610	63
PFL_0995	PFL_0989	PFL_0988	65

Fig. 2.2. GC content of TBDTs and TBDRs. a. GC content of genes encoding TBDTs in the Pf-5 genome. **b.** GC content of genes encoding TBDRs in the Pf-5 genome. * %GC differs significantly from the genomic mean of 63% as determined by chi-square test.

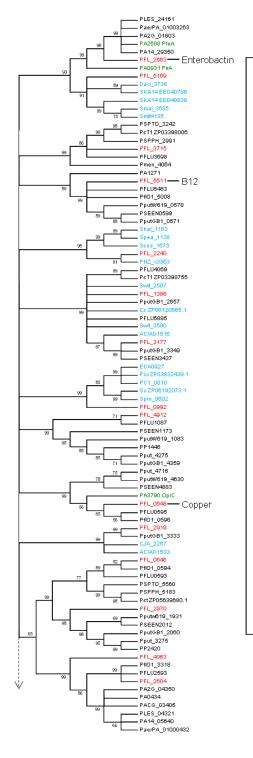

Locus Tag	GC content
PFL_5511	61*
PFL_4912	66*
PFL_5169	62
PFL_4063	66*
PFL_3620	64
PFL_2240	65
PFL_0310	65
PFL_0932	64
PFL_2772	67*
PFL_1740	64
PFL_0646	66*
PFL_0648	67*
PFL_2604	66*
PFL_1417	64
PFL_3835	64
PFL_3498	66*
PFL_2663	66*
PFL_0992	61*
PFL_0255	63
PFL_3176	65*
PFL_0864	61*
PFL_2970	65
PFL_0213	66*
PFL_1386	66*
PFL_3177	67*
PFL_3715	65
PFL_2919	67*

Fig. 2.2., Continued

Phylogenetic analysis of TonB-Dependent Receptors (TBDRs)

The compiled best hits from PSI_BLAST of the 27 TBDRs were aligned and subjected to maximum parsimony analysis, using two TBDRs from *Helicobacter* spp. as an outgroup. A tree with 22 distinct clades was generated (Fig. 2.3). The majority of the clades are composed exclusively of TBDRs from *Pseudomonas* spp., but nine of the 22 clades include TBDRs present in proteomes of diverse genera representing the alpha-, beta- and gamma-proteobacteria. For eight of the nine TBDR genes corresponding to the proteins in clades having a member from genera other than *Pseudomonas* spp., the % GC differs significantly from the Pf-5 genomic mean of 63.3% (Fig. 2.2). The diversity of genera with orthologous TBDRs implies that horizontal gene transfer of TBDR genes is a possible mode for acquisition.

Fig. 2.3. Phylogenetic analysis of TonB-dependent receptors. Phylogenetic analysis of the 27 TBDRs of P. fluorescens Pf-5 (PFL) and orthologs was done using the Maximum Parsimony method. The bootstrap consensus tree inferred from 500 replicates is taken to represent the evolutionary history of the proteins analyzed. Branches corresponding to partitions reproduced in less than 50% of bootstrap replicates are collapsed. The tree is rooted with two Helicobacter spp. TBDRs. Pf-5 proteins are shown in red font; proteins with known functions are shown in green font, and proteins from genera other than Pseudomonas are shown in blue font. Putative functions assigned to Pf-5 TBDRs are labeled. The tree has been divided into two portions to improve visualization, and positions where the tree is joined are indicated with dotted lines. Abbreviations for species represented in the tree are as follows: Acinetobacter sp. ADP1 (ACIAD), Azotobacter vinelandii DJ (Avin), Azotobacter vinelandii AvOP (Av), Caulobacter segnis ATCC 21756 (Cs), Cellvibrio japonicus Ueda107 (CJA), Delftia acidovorans SPH-1 (Daci), Helicobacter acinonychis str. Sheeba (Hac), Helicobacter pylori 26695 (HP), Janthinobacterium lividum (Jl), Methylobacillus flagellatus KT (Mfla), Methylotenera mobilis JLW8 (Mmol), P. aeruginosa 2192 (PA2G), P. aeruginosa C3719 (PACG), P. aeruginosa LESB58 (PLES), P. aeruginosa PA14 (PA14), P. aeruginosa PACS2 (PaerPA), P. aeruginosa PAO1 (PA), P. entomophila (PSEEN), P. fluorescens Pf0-1 (Pf101), P. fluorescens SBW25 (PFLU), P. mendocina ymp (Pmen), P. putida F1 (Pput), P. putida GB1 (PputGB1), P. putida KT2440 (PP), P. putida W619 (PputW619), P. stutzeri A1501 (PST), P. syringae pv. phaseolicola 1448A (PSPPH), P. syringae pv. syringae B728a (Psyr), P. syringae pv. tomato T1 (PsT1), Pectobacterium atrosepticum SCRI1043 (ECA), Pectobacterium carotovorum subsp. carotovorum PC1 (PC1), Pectobacterium carotovorum subsp. carotovorum WPP14 (Pcc), Phenylobacterium zucineum HLK1 (PHZ), Pseudomonas filiscindens (Pf), Pseudomonas sp. BG33R (Ps BG33R), Pseudomonas syringae pv. tomato DC3000 (PSPTO), Rhodopseudomonas palustris CGA009 (RPA), Rhodopseudomonas palustris TIE-1 (Rpa1), Serratia odorifera 4Rx13 (So), Serratia proteamaculans 568 (Spro), Shewanella halifaxensis HAW-EB4 (Shal), Shewanella pealeana ATCC 700345 (Spea), Shewanella sediminis HAW-EB3 (Ssed), Sphingomonas wittichii RW1 (Swit), Stenotrophomonas maltophilia K279a (Smlt), Stenotrophomonas maltophilia R551-3 (Smal), Stenotrophomonas sp. SKA14 (SKA14).

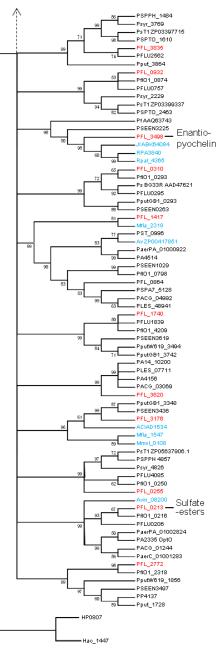
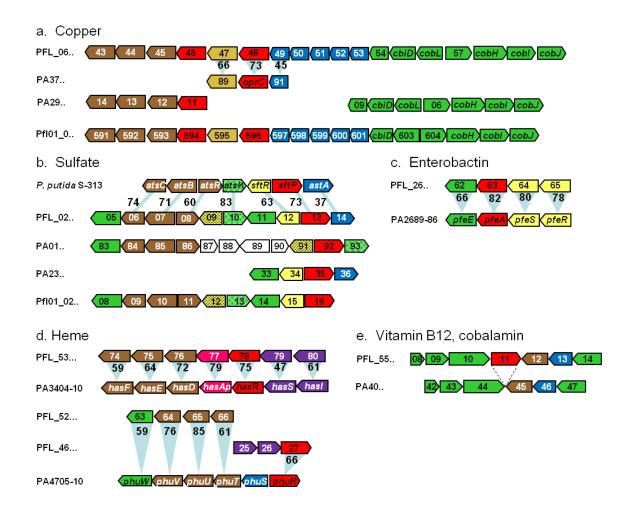
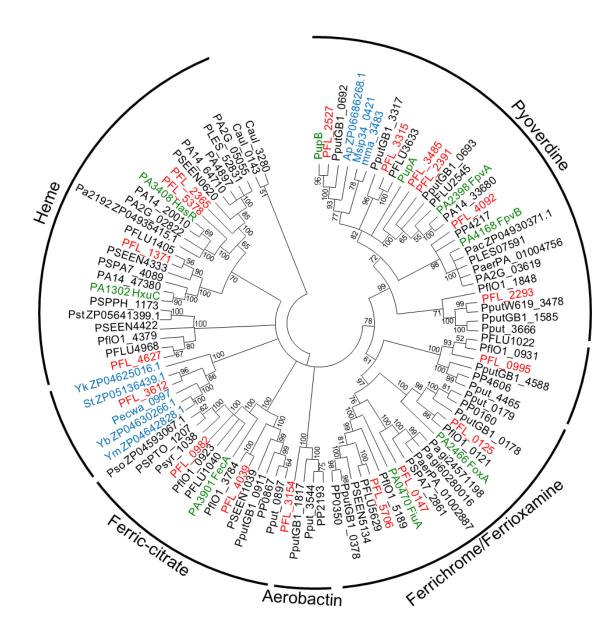



Fig. 2.3.

Of the 27 TBDRs, only PFL_3498 (*fetA*) has a demonstrated function in *P*. *fluorescens*, serving as the receptor for enantio-pyochelin (40). Putative functions were assigned to four other TBDRs (PFL_2663, PFL_0648, PFL_5511, PFL_0213) (Fig. 2.3) based on clustering with and similarity to sequences of functionally characterized TBDRs in other bacteria, as well as the identity of adjacent genes in the Pf-5 genome. PFL_2663 is 82% identical at the amino acid level to PfeA of PAO1 (PA2688), which functions as a receptor for the ferric complex of enterobactin, a catecholate siderophore produced by *E. coli* and other species of the Enterobacteriaceae (23). In the Pf-5 genome, PFL_2663 is clustered with orthologs of *pfeS* and *pfeR* (Fig. 2.4c), involved in the regulation of *pfeA* (22), and *pfeE*, which functions in esterification of enterobactin prior to transport across the cytoplasmic membrane (96). Amino acid sequences of each pair of orthologs in the syntenic *pfe* clusters of Pf-5 and PAO1 have 66% to 82% identity. Therefore, evidence for the role of PFL_2663 as a ferric-enterobactin receptor is provided both by sequence similarity to *pfeA* and conservation of the *pfe* gene cluster.

Fig. 2.4. Gene clusters with TBDRs and TBDTs of known function. Gene clusters in *P. fluorescens* Pf-5 (PFL_), *P. aeruginosa* PAO1 (PA), *P. putida* S-313, and *P.*

P. juuorescens PT-5 (PFL_), *P. aeruginosa* PAO1 (PA), *P. putida* S-313, and *P. fluorescens* Pf0-1 (Pfl01_) with characterized or putative functions in the uptake of **a**. Copper, **b**. Sulfate, **c**. Enterobactin, **d**. Heme or, **e**. Cobalamin (B12). Predicted gene functions are denoted by color: red, TBDR or TBDT; brown, ABC transport; gold, membrane protein (other than ABC transport); green, biosynthesis; purple, ECF sigma factor and anti-sigma factor; yellow, regulatory (other than ECF sigma factor); pink, hemophore; blue, hypothetical. Genes whose functions appear unrelated to that of the TBDR/TBDT are shown in white. Orthologs not readily identifiable by their position in the gene cluster are indicated by identical patterns. Light blue lines and triangles connect orthologs, and accompanying numbers indicate the percent identity of amino acid sequences.

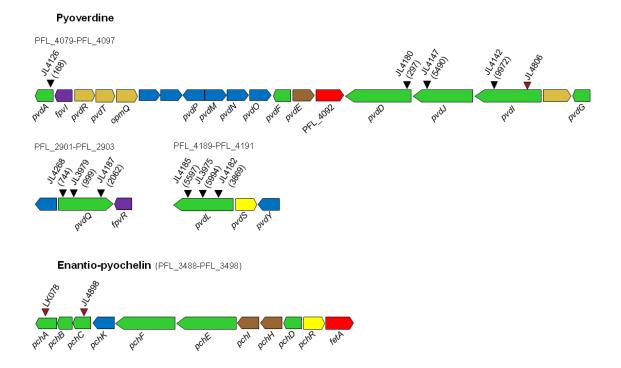

PFL_0648 is a putative copper receptor, having 73% identity at the amino acid level to PA3790 (oprC), which encodes a TBDR that binds copper and is thought to function in copper utilization in PAO1 (93). PFL_0648 is in a three-gene cluster that is conserved in *Pseudomonas* spp. but located in different genomic regions in *P. fluorescens* and *P. aeruginosa* (Fig. 2.4a). PFL_5511 is a putative receptor for vitamin B12 (cobalamin), exhibiting 29% identity at the amino acid level to BtuB, the characterized B12 receptor of E. coli. Protein structure analysis using PSIPRED GenTHREADER matched the TBDR encoded by PFL_5511 (2e⁻¹⁷) to BtuB from *E. coli*. In Pf-5, this TBDR is adjacent to a gene encoding a putative periplasmic binding protein for cobalamin (PFL_5512) (Fig. 2.4e), whereas the ortholog in PAO1 (PA1271) is adjacent to a cobalamin biosynthesis gene cluster. PFL_0213 is a putative receptor for sulfate esters, exhibiting 73% identity at the amino acid level to SftP, a TBDR required for growth of *P. putida* strain S-313 on aryl- or alkylsulfate esters (44). Contiguous to PFL_0213 are homologs for the sulfate ester/sulfonate transporter (*atsRBC*), a LysR-type regulator (*sftR*), an oxygenolytic alkylsulfatase (*atsK*), and an arylsulfotransferase (*astA*) clustered with sftP in P. putida S-313 (Fig. 2.4b), providing further evidence for the putative function of PFL_0213 as a sulfate ester receptor. Analysis of the sequenced Pseudomonas genomes indicates conservation of the gene cluster across the genus, with duplications of genes having metabolic functions evident in the genomes of P. fluorescens and those with metabolic and regulatory functions evident in P. aeruginosa.

Phylogenetic analysis of TonB-dependent transducers (TBDTs)

The compiled best PSI-BLAST hits for the 18 TBDTs were aligned and subjected to maximum parsimony analysis generating a tree with ten distinct, well-supported clades (Fig. 2.5). Close orthologs having known functions in *P. aeruginosa* PAO1 were also included. Two sequences from *Caulobacter* spp. were used as an outgroup to root the tree. Of the ten clades, two include TBDTs from bacteria other than *Pseudomonas* spp. PFL_3612 clusters with TBDTs from *Yersinia* spp., *Stenotrophomonas* spp., and *Pectobacterium wasabiae*, gamma-proteobacteria found in terrestrial or aquatic

environments. PFL_2527, which falls in the pyoverdine clade, clusters with TBDTs from the beta-proteobacteria *Achromobacter piechaudii* ATCC 43553, a human pathogen, and *Janthinobacterium* sp. and *Methylovorus* sp. SIP3-4, which are found in soil and aquatic environments, respectively. The capacity to utilize pyoverdines as iron sources has not been observed outside of *Pseudomonas* spp. and *Azotobacter vinelandii* to date (15), but these results highlight the possibility that such capacity exists in other bacteria. For six of the 18 TBDT genes, the % GC differs statistically from the Pf-5 genomic mean of 63.3% (Fig. 2.2), but none of the six corresponding proteins are in clades with genera other than *Pseudomonas* spp. Therefore, while horizontal gene transfer of the TBDTs provides the most plausible explanation for the presence of diverse genera of proteobacteria in certain clades, we did not uncover convincing evidence for recent horizontal acquisition as a mechanism of inheritance of these genes by Pf-5.

Fig. 2.5. Maximum Parsimony analysis of TonB-dependent transducers. A phylogenetic analysis of the 18 TBDTs of *P. fluorescens* Pf-5 (PFL_) and orthologous transducers was done using the Maximum Parsimony method. The bootstrap consensus tree inferred from 500 replicates is taken to represent the evolutionary history of the taxa analyzed. Branches corresponding to partitions reproduced in less than 50% of bootstrap replicates are collapsed. The tree is rooted with two transducers from *Caulobacter* sp. K31 as an outgroup. Pf-5 proteins are shown in red font; proteins with known functions are shown in green font; and proteins from genera other than Pseudomonas are shown in blue. Putative substrates assigned to Pf-5 TBDTs are labeled on the periphery of the circle. Abbreviations for species represented in the tree are as follows: Achromobacter piechaudii ATCC 43553 (Ap), Caulobacter sp. K31 (Caul), Janthinobacterium sp. Marseille (mma), Methylovorus sp. SIP3-4 (Msip34), P. aeruginosa (Pa), P. aeruginosa 2192 (PA2G), P. aeruginosa PA14 (PA14), P. aeruginosa PA7 (PSPA7), P. aeruginosa PACS2 (PaerPA), P. aeruginosa PAO1 (PA), P. entomophila (PSEEN), P. fluorescens Pf0-1 (Pf101), P. fluorescens SBW25 (PFLU), P. putida F1 (Pput), P. putida GB1 (PputGB1), P. putida KT2440 (PP), P. putida W619 (PputW619), P. syringae pv. oryzae str. 1 6 (Pso), P. syringae pv. phaseolicola 1448A (PSPPH), P. syringae pv. tabaci ATCC 11528 (Pst), Pectobacterium wasabiae WPP163 (Pecwa), Stenotrophomonas sp. SKA14 (St), Yersinia bercovieri ATCC 43970 (Yb), Yersinia kristensenii ATCC 33638 (Yk), Yersinia mollaretii ATCC 43969 (Ym).


Five of the 10 TBDT clades include characterized proteins known to function in iron uptake in other *Pseudomonas* spp. (Fig. 2.5). Four TBDTs (PFL_1371, PFL_2365, PFL_4627, and PFL_5378) are in a large clade also containing HasR and HxuC, which function in heme uptake in *P. aeruginosa* PAO1 (16, 70). PFL_5378 is 75% identical to PA3408 (HasR), the hemophore receptor in *P. aeruginosa* PAO1, and is clustered with orthologs of genes functioning in hemophore production and uptake (Fig. 2.4d). PFL_1371 is 61% identical to PA1302 (HxuC) with no conservation of contiguous genes beyond the sigma factors and anti-sigma factors adjacent to the transducers. The deduced amino acid sequence of PFL_4627 is 66% identical to PA4710 (PhuR), a heme receptor (18), but PFL_4627 is clustered with an ECF sigma factor/anti-sigma factor gene pair whereas PA4710 is clustered with other genes having a demonstrated role in heme uptake in *P. aeruginosa* (Fig. 2.4d). PA4710 does not have an N-terminal signaling domain so it was not included in the phylogenetic analysis of TBDTs in the Pf-5 genome. This large clade also includes PFL_2365, which is 69% identical to PA4897 (OptI), a TBDT that is iron regulated in *P. aeruginosa* (18).

Two of the 10 TBDT clades include proteins with known or putative roles in the uptake of ferric-complexes of citrate or aerobactin. PFL_0982 and PFL_4039 fall in a clade with PA3901 (FecA) (Fig. 2.5), which functions in ferric citrate uptake in *P. aeruginosa* PAO1 (55). PFL_0982 is clustered with an ECF sigma factor and anti-sigma factor pair orthologous to PA3900 (*fecR*) and PA3899 (*fecI*), as determined by reciprocal best-hit analysis, suggesting that the PFL_0982-PFL_0984 cluster is likely to function in ferric-citrate uptake. Another clade includes PFL_3154, which is similar (49% identity) to the TBDR PA4675 (ChtA) involved in aerobactin, rhizobactin 1021 and schizokinen uptake by *P. aeruginosa* (20). ChtA lacks a signaling domain so was not included in the phylogenetic analysis.

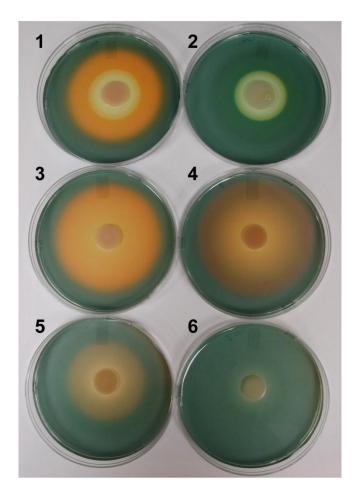
Three TBDTs (PFL_0125, PFL_0147, and PFL_5706) are in a large clade that also contains TBDTs functioning in the uptake of the hydroxamate siderophores ferrioxamine and ferrichrome in *P. aeruginosa*. PFL_0125 is 66% identical to FoxA

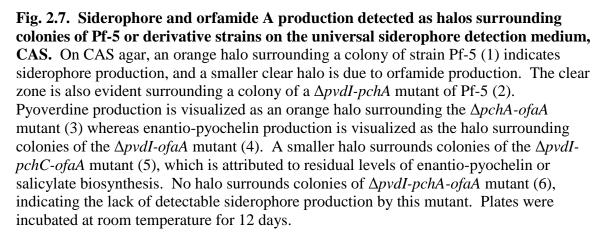
(PA2466), which is a ferrioxamine uptake receptor in PAO1 (36). PFL_0125 and *foxA* are components of syntenous clusters with orthologous genes encoding an ECF sigma factor, anti-sigma factor, and putative transmembrane protein. PFL_5706 is 66% identical to PA0470 (FiuA), the ferrichrome receptor of *P. aeruginosa* PAO1 (36). PFL_5706 is also clustered with an ECF sigma factor and anti-sigma factor pair orthologous to PA0471 and PA0472, as determined by reciprocal best-hit analysis, suggesting that the PFL_5704-PFL_5706 cluster is likely to function in ferrichrome uptake. Recently, Hannauer et al. reported that, in *P. aeruginosa*, both FiuA and FoxA transport ferrichrome, which suggests that the Pf-5 TBDTs in this clade may also exhibit relaxed specificities in the transport of these hydroxamate siderophores (36). The three Pf-5 TBDTs, PFL_0125, PFL_5706 and PFL_0147, are all contained within a well-supported clade, suggesting that PFL_0147 may also function in uptake of ferrichrome, ferrichrome, or both siderophores. PFL_0995 and orthologs from other *Pseudomonas* spp. form a clade related to the ferrichrome/ferrioxamine clade with a bootstrap of 61, indicating a possible role for these proteins in the uptake of hydroxamate siderophores.

Another large clade includes characterized pyoverdine receptors FpvA and FpvB from *P. aeruginosa* PAO1 (13, 33) and PupA and PupB from *P. putida* WCS358 (6, 47). Pf-5 has six TBDTs falling within this clade (Fig. 2.5), whose sequences are 35% to 68% identical to FpvA or FpvB of *P. aeruginosa* PAO1 at the amino acid level. PFL_4092 is present within one of the four pyoverdine gene clusters in the Pf-5 genome (Fig. 2.6) whereas the other five TBDTs in this clade are clustered with ECF sigma factor and antisigma factor gene pairs at dispersed locations in the Pf-5 genome. In this clade, PFL_2293 appears to be ancestral, and PFL_4092 forms its own sub-clade with FpvB from *P. aeruginosa* PAO1. The other four TBDTs in this clade (PFL_2391, PFL_3315, PFL_2527, and PFL_3485) are more closely related to each other and to FpvA, PupA and PupB.

clusters of Pf-5. Arrows denote genes functioning in siderophore biosynthesis (green), ABC transport (brown), ECF sigma factor and anti-sigma factor (purple), membrane proteins (other than ABC transport) (gold), regulatory (other than ECF sigma factor) (yellow), unknown function and hypothetical (blue). The TonB-dependent outermembrane proteins are in red. Black triangles denote sites of Tn5 insertions eliminating pyoverdine production, and red triangles denote sites of deletions eliminating pyoverdine or enantio-pyochelin production by Pf-5. Strain numbers of mutants having the designated mutations are shown above the triangles. In parentheses below strain number is the nucleic acid position of the Tn5 insertion.

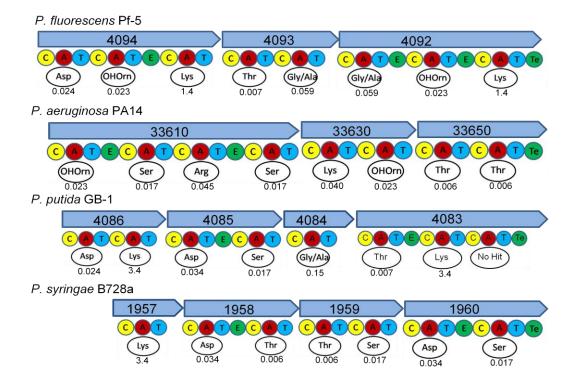
Characterization of siderophore-biosynthesis mutants of P. fluorescens Pf-5

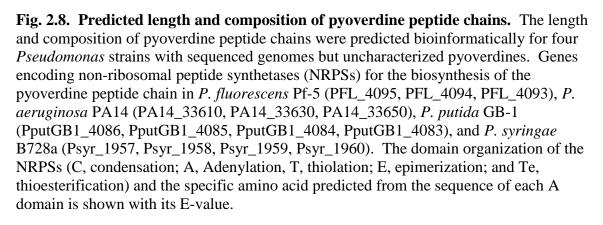

Arbitrary polymerase chain reaction (PCR) was used to map Tn5 insertions in nine Pf-5 mutants deficient in pyoverdine production (Pvd⁻) (48). Three insertions were mapped to $\Delta pvdL$, a non-ribosomal peptide synthetase involved in the biosynthesis of the pyoverdine chromophore (Fig. 2.6). Three Tn5 insertions mapped to the non-ribosomal peptide synthetases involved in biosynthesis of the pyoverdine peptide chain: one each in $\Delta pvdD$, $\Delta pvdI$, and $\Delta pvdJ$. Three insertions mapped to $\Delta pvdQ$, an acylase functioning in maturation of the pyoverdine (46). Therefore, the Tn5 insertions were mapped to three of the four pyoverdine gene clusters predicted from bioinformatic analysis of the Pf-5 genome, providing functional support for these predictions (Fig. 2.6).


To further characterize siderophore biosynthesis and uptake in Pf-5, we made unmarked deletions in the pyoverdine and enantio-pyochelin gene clusters of Pf-5. A pyoverdine deficient mutant, constructed by deletion of a sequence internal to $\Delta pvdI$ (PFL_4095), lacked the characteristic fluorescence of the pyoverdine siderophore when cultures grown on KMB were viewed under UV light. Mutants in enantio-pyochelin biosynthesis were constructed by deletion of a sequence internal to *pchA* (PFL_3488), or *pchC* (PFL_3490) (Fig. 2.6). PchA catalyses the first step in the synthesis of salicylate from chorismate (32) whereas PchC is a thioesterase involved in subsequent conversion of salicylate to pyochelin (77). Enantio-pyochelin was detected by TLC in culture extracts of Pf-5 but not the *pchA* mutant. Less than wildtype levels were detected in extracts of the *pchC* mutant (data not shown). A *pchC* mutant of *P. aeruginosa* also produces low levels of pyochelin compared to wild type (32).

Double mutants were created by stacking deletions in $\Delta pvdI$ with $\Delta pchA$ or $\Delta pchC$. These mutants were evaluated for growth under iron-limited conditions imposed by amending KMB with varying concentrations of the iron chelator 2,2'-dipyridyl. The wildtype Pf-5 grew on KMB amended with up to 800 μ M 2,2'-dipyridyl whereas the Pvd⁻Tn5 mutants and the $\Delta pvdI$ deletion mutant grew only on KMB containing 600 μ M or

less of the chelator, as expected due to the known role of pyoverdine production in ironlimited growth of *Pseudomonas* spp. The *pchC* and *pchA* mutants grew on KMB containing up to 800 μ M 2,2'-dipyridyl, indicating that enantio-pyochelin is not required for iron-limited growth of pyoverdine-producing strains. In contrast, the double $\Delta pvdI$ *pchC* and $\Delta pvdI$ -*pchA* mutants did not grow on KMB containing 400 μ M to 800 μ M 2,2'-dipyridyl, demonstrating the role of both siderophores in iron-limited growth of Pf-5.


The mutants were also characterized by observing their phenotypes on CAS agar, the universal siderophore detection medium (81). This medium contains a blue dye (CAS) that turns orange when iron is removed. Typically, siderophore production results in an orange zone surrounding a colony. In preliminary experiments, we found that Pf-5 also caused a cleared halo with a deep blue margin (Fig. 2.7), whereas this type of halo was not generated by an ofaA mutant of Pf-5 deficient in the production of orfamide A, an anionic biosurfactant (35). The clearing zone was also observed surrounding colonies of Pf-5, but not the ofaA mutant, on CAS agar amended with 1 mM FeCl₃ (data not shown). This clearing could be related to the formation of micelles around the CAS dye, which has been reported for anionic surfactants (11). Clear zones with blue margins were seen on CAS agar plates spotted with 10 µl of 1 mg/ml orfamide A or 1% sodium dodecyl sulfate (SDS) (data not shown), an anionic surfactant known to form micelles with CAS (11). Therefore, the *pchA*, *pchC*, and $\Delta pvdI$ mutations were introduced into an ofaA mutant of Pf-5, which lacks orfamide A production, so that siderophore production could be assessed on CAS agar without interference from the biosurfactant. By visualizing halos surrounding mutant colonies on CAS agar, we confirmed that both siderophores chelate iron and observed no additional siderophore produced by Pf-5 on this medium (Fig. 2.7).



Utilization of diverse siderophores by P. fluorescens Pf-5

The ability of Pf-5 to utilize a diverse set of pyoverdines as iron sources was assessed in crossfeeding experiments. Sixty-one strains of *Pseudomonas* spp. were tested, 34 of which produce pyoverdines of known amino acid composition (Table 2.2). Nine strains produce pyoverdines representing distinct siderotypes, although their structures are not known. The length and amino acid composition of the pyoverdine peptide chain was predicted bioinformatically from genomic sequence data for four strains (Pf-5, P. syringae B728A, P. syringae pv. tomato DC3000, and P. aeruginosa PA14) (Fig. 2.8). As stated above, the $\Delta pvdI$ -pchC mutant of Pf-5 did not grow on KMB amended with 400 µM 2,2'-dipyridyl under the conditions of this assay. When grown in proximity to 32 of the 61 test strains of *Pseudomonas* spp., however, the $\Delta pvdI$ -pchC mutant grew on this iron-limited medium, indicating its capacity to utilize siderophores produced by the test strains as iron sources. Pvd⁻ mutants were available for four of the crossfeeding strains, and these mutants did not crossfeed the $\Delta pvdI$ -pchC mutant of Pf-5 (Table 2.2), indicating that the pyoverdine was responsible for crossfeeding. The 32 strains of *Pseudomonas* spp. that crossfed the $\Delta pvdI$ -pchC mutant represent 17 pyoverdine structures. Therefore, Pf-5 can utilize a diverse set of pyoverdines as iron sources.

Test Strains	Cross-feeding ^a	Composition of Peptide Chain or Siderotype	Reference or source
Six amino acids			
P. fluorescens B10	+	ɛLys-OH <u>Asp</u> -Ala-a <u>Thr</u> -Ala-cOH <u>Orn</u>	(89)
P. lini DLE411J	+	Lys-OHAsp-Ala-Thr-Ala-OHOrn	(65)
P. putida CS111 syn SB8.3	+	Ala-Lys-Thr-Ser-OHOrn-OHOrn	(65)
P. putida CFML90-40	+	Asp-Ala-Asp-AOH <u>Orn</u> -Ser-cOHOrn	(60)
P. putida ATCC17470	+	Ser-ELys-OHHis-aThr-Ser-cOHOrn	(85)
Seven amino acids			
P. aeruginosa ATCC 27853	+	<u>Ser</u> - FOHOrn-Orn-Gly-a <u>Thr</u> -Ser-cOHOrn (Type II pyoverdine)	(88)
P. aeruginosa Pa6	+	(Ser-Dab)-FOHOrn-Gln- <u>Gln</u> –FOH <u>Orn-Gly</u> (Type III pyoverdine)	(34)
P. fluorescens CLR711 syn PL7	+	Ser-AOHOrn-Ala-Gly-aThr-Ala-cOHOrn	(3)
P. chlororaphis ATCC 9446	+	Ser-Lys-Gly-FOHOrn-(Lys-FOHOrn-Ser)	(59)
P. fluorescens ATCC 13525	+	Ser-Lys-Gly-FOHOrn-(Lys-FOHOrn-Ser)	(59)
P. fluorescens SBW25	+	Ser-Lys-Gly-FOHOrn-(Lys-FOHOrn-Ser)	(68)
P. fluorescens WCS374	+	Ser-Lys-Gly-FOHOrn-(Lys-FOHOrn-Ser)	(26)
P. fluorescens WCS374 Pvd-	-		(56)
P. fluorescens CTRp112 syn PL8	+	Lys-AOHOrn-Ala-Gly-aThr-Ser-cOHOrn	(3)
P. putida DSM3601 syn CFML90-33	-	Asp-Lys-Thr-OHAsp-Thr-aThr-cOHOrn	(86)
P. syringae ATCC 19310	-	ELys-OHAsp-Thr-(Thr-Ser-OHAsp-Ser)	(43)
P. syringae pv.syringae B728A	-	Lys-Asp-Thr-Thr-Ser-Asp-Ser	This study, predicted
P. syringae pv. tomato DC3000	-	ELys-OHAsp-Thr-(Thr-Ser-OHAsp-Ser)	(43)
P. cichorii	-	ELys-OHAsp-Thr-(Thr-Gly-OHAsp-Ser)	(10)
P. libanensis CFBP4841	-	Ala–Orn–OHAsp–Ser–Orn–Ser–cOHOrn	(64)
Eight amino acids		*	
P. chlororaphis DTR133	+	Asp-FOHOrn-Lys-(Thr-Ala-Ala-FOHOrn-Ala)	(3)

Table 2.2. Crossfeeding of the Pf-5 siderophore mutant by strains of *Pseudomonas*

Table 2.2. (Continued)

Test Strains	Cross-feeding ^a	Composition of Peptide Chain or Siderotype	Reference or source
P. aeruginosa PA14	+	Ser-Arg-Ser-FOHOrn-Lys-FOHOrn-Thr-Thr	This study,
0		(Type I pyoverdine)	predicted
P. aeruginosa PA14 Pvd-	-		(50)
P. aeruginosa PAO1	+	Ser-Arg-Ser-FOHOrn-(Lys-FOHOrn-Thr-Thr)	(25)
0		(Type I pyoverdine)	
P. fluorescens CHA0	+	Asp-FOHOrn-Lys-(Thr-Ala-Ala-FOHOrn-Lys)	(92)
P. fluorescens Pf-5	+	Asp-OHOrn-Lys-Thr-Ala/Gly-Ala/Gly-OHOrn-Lys	This study,
v			predicted
P. fluorescens Pf-5 Pvd-	-		
P. salomonii CFBP2022	+	Ser–Orn–FOHOrn–Ser–Ser–Lys–FOHOrn–Ser	(64)
Pseudomonas sp. 7SR1	-	(Ser-aOHOrn-Ala-Gly-(Ser-Ser-OHAsp-Thr)	(29)
P. fluorescens CTR1015 syn PL9	-	<u>Ser-AOHOrn-Ala-Gly-(Ser-Ser-OHAsp</u> -Thr)	(60)
P. putida GB-1	-	Asp-Lys-Asp-Ser-Gly-Thr-Lys-?	This study,
			predicted
Nine amino acids			
P. costantinii CFBP5705	+	<u>Ser-</u> AcOH <u>Orn</u> -Gly-a <u>Thr</u> -Thr-Gln-Gly- <u>Ser</u> -cOH <u>Orn</u>	(30)
P. fluorescens A6	+	<u>Lys</u> -AcOH <u>Orn</u> -Gly-a <u>Thr</u> -Thr-Gln-Gly- <u>Ser</u> -cOHOrn	(4)
P. putida ATCC 12633	-	Asp-Lys-OH <u>Asp</u> -Ser-Thr- <u>Ala-Glu</u> -Ser-cOHOrn	(65)
P. putida WCS358	-	Asp-ELys-OH <u>Asp</u> -Ser- <u>Thr-Ala</u> -Thr- <u>Lys</u> -OHOrn	(9)
P. putida CFBP2461	-	Asp- ɛ Lys-OH <u>Asp</u> -Ser-a <u>Thr</u> -Ala-Thr- <u>Lys</u> -OHOrn	(91)
P. monteilii DSM14164	-	Asp-Lys-AcOHOrn-Ala-Ser-Ser-Gly-Ser-cOHOrn	(64)
P. fluorescens Pf0-1	+	Ala-AcOHOrn-Orn-Ser-Ser-Ser-Arg-OHAsp-Thr	(64)
P. fluorescens Pf0-1 Pvd-	-		M. Silby
Ten amino acids			
P. fluorescens DSM50106	+	Ser-Lys-Gly-FOHOrn-Ser-Ser-Gly-(Orn-FOHOrn-Ser)	(64)
P. rhodesiae DSM14020	+	Ser-Lys-FOHOrn-Ser-Ser-Gly-(Lys-FOHOrn-Ser-Ser)	(62, 65)
P. fluorescens Pfl 17400	-	Ala-Lys-Gly-Gly-OHAsp-Gln/Dab-Ser-Ala-cOHOrn	(60)
P. tolaasii NCPPB 2192	-	Ser-Lys-Ser-Ser-Thr-Ser-AcOHOrn-Thr-Ser-cOHOrn	(24)

Table 2.2. (Continued)

Test Strains	Cross-feeding ^a	Composition of Peptide Chain or Siderotype	Reference
			or source
Unknown structures			
P. flectens CFBP3281	+	Unknown	http://www.straininfo.net/strains/6 21587
P. fluorescens ATCC17513	+	Unknown	(85)
P. fluorescens ATCC17518	+	Unknown	(85)
P. fluorescens CFBP2130	+	Unknown	http://www.straininfo.net/strains/7 57032
P. marginalis pv. alfalfae CFBP2039	+	Unknown	http://www.straininfo.net/strains/5 44626
<i>P. marginalis</i> pv. marginalis CFBP2037	+	Unknown	http://www.straininfo.net/strains/1 7707
<i>P. marginalis</i> pv. pastinacae CFBP2038	+	Unknown	http://www.straininfo.net/strains/5 44628
P. reactans NCPPB387	+	Unknown	http://www.straininfo.net/strains/5 3319
P. blatfordae CFBP3280	-	Unknown	http://www.straininfo.net/strains/7 57233
P. fluorescens ATCC17467	-	Unknown	(85)
P. fluorescens ATCC17559	-	Unknown	(85)
P. mosselii MFY161	-	Unknown	Isolated from a blood culture in Evreux, France
P. viridiflava CFBP2107	-	Unknown	http://www.straininfo.net/strains/2 70228
P. corrugata CFBP2431	-	Corr	(62); (60)
P. fluorescens C7R12	-	PL1	J.M. Meyer, personal communication

Table 2.2. (Continued)

Test Strains	Cross-feeding ^a	Composition of Peptide Chain or Siderotype	Reference
P. fradarikahangangia DSM12022		Fred	or source
P. frederiksbergensis DSM13022	-		(60, 62)
P. fuscovaginae CFBP2065	-	G17	(60, 62)
P. gessardii CIP105469	-	Gess-bren	(61)
P. graminis DSM11363	-	Gram	(60, 62)
P. kilonensis CFBP5372	-	Kilo	(61)
P. plecoglossicida DSM15088	-	Plec	(60, 63)
P. thivervalensis CFBP5754	-	Thiv/ML45	(60)

Underline denotes D-amino acids. Parentheses define cyclic residues. cOHOrn is cyclo-hydroxy-ornithine. FOHOrn is δ N-formyl- δ N-hydroxy-ornithine. ϵ Lys is Lys linked by ϵ -NH2. OHAsp is threo- β -hydroxy-aspartic acid. Dab is diaminobutanoic acid. OHH is threo- β -hydroxy-histidine. aThr is allo-Thr. AcOHOrn is δ N-acetyl- δ N-hydroxy-ornithine. Italicized peptide chains are inferred from siderotyping analysis (64). These pyoverdines are in the same siderotype as a pyoverdine having the structure provided. ^a + indicated growth of the $\Delta pvdI$ -pchC mutant in the presence of the test strain, - indicates no growth of the $\Delta pvdI$ -pchC mutant in the presence of the test strain.

E. cloacae strain	Genotype	Siderophores produced	Iron limited growth of JL4900
EcCT-501	Field isolate	enterobactin & aerobactin	+
LA122	Δiuc	enterobactin	+
LA266	Δent	aerobactin	+
LA235	$\Delta iuc \ \Delta ent$	None	-

Table 2.3. Crossfeeding of the $\Delta pvdI$ -pchC mutant of Pf-5 by Enterobacter cloacae

Genotype abbreviations: Aerobactin (iuc). Enterobactin (ent) (19)

Discussion

The 45 TonB-dependent outer-membrane proteins in the proteome of *P*. *fluorescens* Pf-5 (71) comprise 27 TBDRs and 18 TBDTs that share conserved β -barrel and plug domains but differ in the presence of an N-terminal signaling domain. Phylogenetic and bioinformatic analyses suggest a complex evolutionary history for the TonB-dependent outer-membrane proteins in Pf-5 including horizontal transfer among different microbial lineages. In a recent phylogenetic analysis of ~4,600 TonBdependent outer-membrane proteins, Mirus et al. reported that, with few exceptions, the proteins cluster according to their substrate rather than taxonomy (67). The results of our study also provide convincing evidence of lateral transmission of these proteins among diverse groups of bacteria.

Iron is a limiting factor for many soil microorganisms including Pf-5, which uses pyoverdine and enantio-pyochelin to retrieve iron from its surroundings (40, 94). Here, we showed that Pf-5 can utilize a broad spectrum of exogenous siderophores as sources of iron. Phylogenetic analysis of the TBDTs in the Pf-5 genome indicated a high level of redundancy for the uptake of certain compounds, notably ferrioxamine, ferric-citrate, heme, and pyoverdines. The number of TBDTs in certain phylogenetic clades, such as those with putative functions in heme and pyoverdine acquisition, exceeds the number found in other bacteria such as *P. aeruginosa* PAO1, which also has multiple TonB-dependent outer-membrane proteins functioning in the uptake of ferrioxamine, enterobactin, heme and pyoverdines (15, 17). The diversity and complexity of the TBDTs with roles in iron uptake clearly indicate the importance of iron in the biology of Pf-5.

P. fluorescens Pf-5 was isolated from soil (41) and establishes populations in the rhizosphere when inoculated onto seed or root surfaces (8, 48-49, 79). The roles of TonB-dependent outer-membrane proteins in enhancing the access of bacteria to limited resources in the rhizosphere or bulk soil has been demonstrated only for iron and sulfur to

date. Siderophore-mediated competition for iron is a major determinant in interactions between certain strains of *Pseudomonas* spp., and the capacity to utilize a pyoverdine produced by a competing strain was shown to enhance the fitness of P. fluorescens living on root surfaces (75). Furthermore, levels of iron available to *Pseudomonas* spp. in the rhizosphere are known to be enhanced by siderophores produced by other rhizosphere bacteria. For example, a pyoverdine-producing strain of *Pseudomonas* spp. and enterobactin- and aerobactin- producing strains of E. cloacae enhanced the levels of iron available to *P. putida* in the rhizosphere, assessed using an iron biosensor (53-54). The results from these studies indicate that TonB-dependent outer-membrane proteins confer an advantage to *Pseudomonas* spp. in the rhizosphere due to enhanced iron uptake. Similarly, the capacity to utilize sulfur esters is necessary for optimal survival of P. putida in agricultural and grassland soils (44), and the sulfur-inducible TonB-dependent receptor SftP appears to function in sulfate ester metabolism. In addition to the SftP ortholog PFL_0213, several other genes encoding TonB-dependent receptors are linked to transport proteins with putative functions in sulfur transport in the Pf-5 genome (data not shown), and their role in sulfur metabolism is an intriguing area for future study. In addition to their roles in iron and sulfur uptake, TonB-dependent outer-membrane proteins are likely to function more broadly in the acquisition of resources by environmental prokaryotes like P. fluorescens, and future investigations should reveal novel roles of these transport systems in the ecology of soil and rhizosphere bacteria.

Acknowledgements

We gratefully acknowledge the contributions of Dimitri Mavrodi in making the $\Delta pchC$ mutant of Pf-5, and Harald Gross, Marcella Henkels and Kedy Shen in characterizing the role of orfamide A in the CAS agar assays. We thank Jeff Chang, Martin Schuster, Mark Silby, Johan Leveau and Gail Preston for providing cultures and Cornelia Reimmann for the gift of authentic enantio-pyochelin. We are also grateful to Steven Giovannoni for advice on phylogenetic analyses, Philip Bronstein for advice on arbitrary PCR, and Jeff Chang and Martin Schuster for reviewing the manuscript.

This research was supported by National Research Initiative Competitive Grants 2006-35319-17427 and 2008-35600-18770 from the USDA Cooperative State Research, Education, and Extension Service. We also gratefully acknowledge a fellowship to MCQ from the State of São Paulo Research Foundation (FAPESP), Brazil.

References

- 1. Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389-3402.
- 2. Bachmann, B. O., and J. Ravel. 2009. Chapter 8. Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. Methods In Enzymology **458**:181-217.
- 3. Barelmann, I., K. Taraz, H. Budzikiewicz, V. Geoffroy, and J. M. Meyer. 2002. The structures of the pyoverdins from two *Pseudomonas fluorescens* strains accepted mutually by their respective producers. Z. Naturforsch. C **57:**9-16.
- 4. Beiderbeck, H., K. Taraz, and J. M. Meyer. 1999. Revised structures of the pyoverdins from *Pseudomonas putida* CFBP 2461 and from *Pseudomonas fluorescens* CFBP 2392. Biometals **12:**331-338.
- Bigelow, H. R., D. S. Petrey, J. Liu, D. Przybylski, and B. Rost. 2004. Predicting transmembrane beta-barrels in proteomes. Nucleic Acids Res. 32:2566-2577.
- Bitter, W., J. D. Marugg, L. A. de Weger, J. Tommassen, and P. J. Weisbeek. 1991. The ferric-pseudobactin receptor PupA of *Pseudomonas putida* WCS358: homology to TonB-dependent *Escherichia coli* receptors and specificity of the protein. Mol. Microbiol. 5:647-655.
- Blanvillain, S., D. Meyer, A. Boulanger, M. Lautier, C. Guynet, N. Denance, J. Vasse, E. Lauber, and M. Arlat. 2007. Plant carbohydrate scavenging through TonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS One 2:e224.
- Brodhagen, M., M. D. Henkels, and J. E. Loper. 2004. Positive autoregulation and signaling properties of pyoluteorin, an antibiotic produced by the biological control organism *Pseudomonas fluorescens* Pf-5. Appl. Environ. Microbiol. 70:1758-1766.
- Budzikiewicz, H. 2004. Siderophores of the Pseudomonadaceae sensu stricto (fluorescent and non-fluorescent *Pseudomonas* spp.). Fortschr. Chem. Org. Naturst. 87:81-237.
- Bultreys, A., I. Gheysen, B. Wathelet, M. Schafer, and H. Budzikiewicz. 2004. The pyoverdins of *Pseudomonas syringae* and *Pseudomonas cichorii*. Z. Naturforsch. C 59:613-618.

- Callahan, J. H., and K. D. Cook. 1984. Mechanism of surfactant induced changes in the visible spectrometry of metal-chrome azurol S complexes. Analytical Chemistry 56:1632-1640.
- Choi, K. H., and H. P. Schweizer. 2005. An improved method for rapid generation of unmarked *Pseudomonas aeruginosa* deletion mutants. BMC Microbiol. 5:30.
- Cobessi, D., H. Celia, N. Folschweiller, I. J. Schalk, M. A. Abdallah, and F. Pattus. 2005. The crystal structure of the pyoverdine outer membrane receptor FpvA from *Pseudomonas aeruginosa* at 3.6 angstrom resolution. J. Mol. Biol. 347:121-134.
- Cornelis, P. 2010. Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol. 86:1637-1645.
- Cornelis, P., C. Baysse, and S. Matthijs. 2008. Iron uptake in *Pseudomonas*, p. 213-235. *In* P. Cornelis (ed.), *Pseudomonas*: Genomics and Molecular Biology. Caister Academic Press, Norfolk, UK.
- 16. Cornelis, P., and J. Bodilis. 2009. A survey of TonB-dependent receptors in fluorescent pseudomonads. Environ. Microbiol. Rep. 1:256-262.
- Cornelis, P., and S. Matthijs. 2002. Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ. Microbiol. 4:787-798.
- 18. Cornelis, P., S. Matthijs, and L. Van Oeffelen. 2009. Iron uptake regulation in *Pseudomonas aeruginosa*. Biometals 22:15-22.
- Costa, J. M., and J. E. Loper. 1994. Characterization of siderophore production by the biological control agent *Enterobacter cloacae*. Mol. Plant. Microbe. Interact. 7:440-448.
- Cuiv, P. O., P. Clarke, and M. O'Connell. 2006. Identification and characterization of an iron-regulated gene, *chtA*, required for the utilization of the xenosiderophores aerobactin, rhizobactin 1021 and schizokinen by *Pseudomonas aeruginosa*. Microbiology 152:945-954.
- Das, S., J. C. Noea, S. Paika, and T. Kitten. 2005. An improved arbitrary primed PCR method for rapid characterization of transposon insertion sites. J. Microbiol. Meth. 63:89-94

- 22. Dean, C. R., S. Neshat, and K. Poole. 1996. *PfeR*, an enterobactin-responsive activator of ferric enterobactin receptor gene expression in *Pseudomonas aeruginosa*. J. Bacteriol. **178**:5361-5369.
- Dean, C. R., and K. Poole. 1993. Expression of the ferric enterobactin receptor (PfeA) of *Pseudomonas aeruginosa*: involvement of a two-component regulatory system. Mol. Microbiol. 8:1095-1103.
- 24. Demange, P., A. Bateman, C. Mertz, A. Dell, Y. Piemont, and M. A. Abdallah. 1990. Bacterial siderophores: structures of pyoverdins Pt, siderophores of *Pseudomonas tolaasii* NCPPB 2192, and pyoverdins Pf, siderophores of *Pseudomonas fluorescens* CCM 2798. Identification of an unusual natural amino acid. Biochemistry 29:11041-11051.
- 25. Demange, P., S. Wendenbaum, C. Linget, C. Mertx, M. Cung, A. Dell, and M. A. Abdallah. 1990. Bacterial siderophores: structure and NMR assignment of pyoverdins Pa, siderophores of *Pseudomonas aeruginosa* ATCC 15692. Biol. Metals 3:155-170.
- 26. **Djavaheri, M.** 2007. Iron-regulated metabolites of plant growth promoting *Pseudomonas fluorescens* WCS374: their role in induced systemic resistance. Thesis. Utrecht University, Utrecht, Netherlands.
- Eisenbeis, S., S. Lohmiller, M. Valdebenito, S. Leicht, and V. Braun. 2008. NagA-dependent uptake of N-acetyl-glucosamine and N-acetyl-chitin oligosaccharides across the outer membrane of *Caulobacter crescentus*. J. Bacteriol. 190:5230-5238.
- Ferguson, A. D., C. A. Amezcua, N. M. Halabi, Y. Chelliah, M. K. Rosen, R. Ranganathan, and J. Deisenhofer. 2007. Signal transduction pathway of TonB-dependent transporters. Proc. Natl. Acad. Sci. USA 104:513-518.
- Fernandez, D., V. Geoffroy, M. Schäfer, J. Meyer, and H. Budzikiewicz. 2003. Structure revision of several pyoverdins produced by plant-growth promoting and plant-deleterious *Pseudomonas* species. Monatsh. Chem. 134:1421-1431.
- Fernandez, D. U., R. Fuchs, K. Taraz, H. Budzikiewicz, P. Munsch, and J. M. Meyer. 2001. The structure of a pyoverdine produced by a *Pseudomonas tolaasii*like isolate. Biometals 14:81-84.
- 31. Finn, R. D., J. Mistry, J. Tate, P. Coggill, A. Heger, J. E. Pollington, O. L. Gavin, P. Gunasekaran, G. Ceric, K. Forslund, L. Holm, E. L. Sonnhammer,

S. R. Eddy, and A. Bateman. 2010. The Pfam protein families database. Nucleic Acids Res **38**:D211-222.

- 32. Gaille, C., C. Reimmann, and D. Haas. 2003. Isochorismate synthase (PchA), the first and rate-limiting enzyme in salicylate biosynthesis of *Pseudomonas aeruginosa*. J. Biol. Chem. 278:16893-16898.
- 33. Ghysels, B., B. T. Dieu, S. A. Beatson, J. P. Pirnay, U. A. Ochsner, M. L. Vasil, and P. Cornelis. 2004. FpvB, an alternative type I ferripyoverdine receptor of *Pseudomonas aeruginosa*. Microbiology 150:1671-1680.
- 34. Gipp, S., J. Hahn, K. Taraz, and H. Budzikiewicz. 1991. Two pyoverdins from *Pseudomonas-aeruginosa* R. Z. Naturforsch. C **46**:534-541.
- 35. Gross, H., V. O. Stockwell, M. D. Henkels, B. Nowak-Thompson, J. E. Loper, and W. H. Gerwick. 2007. The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters. Chem. Biol. 14:53-63.
- 36. Hannauer, M., Y. Barda, G. L. Mislin, A. Shanzer, and I. J. Schalk. 2010. The ferrichrome uptake pathway in *Pseudomonas aeruginosa* involves an iron release mechanism with acylation of the siderophore and recycling of the modified desferrichrome. J. Bacteriol. **192:**1212-1220.
- 37. Hassan, K. A., A. Johnson, B. T. Shaffer, Q. Ren, T. A. Kidarsa, L. D. H. Elbourne, S. Hartney, R. Duboy, N. C. Goebel, T. M. Zabriskie, I. T. Paulsen, and J. E. Loper. 2010. Inactivation of the GacA response regulator in *Pseudomonas fluorescens* Pf-5 has far-reaching transcriptomic consequences. Environ. Microbiol. 12:899-915.
- Hider, R. C., and X. Kong. 2010. Chemistry and biology of siderophores. Nat. Prod. Rep. 27:637-657.
- Hoang, T. T., R. R. Karkhoff-Schweizer, A. J. Kutchma, and H. P. Schweizer. 1998. A broad-host-range Flp-FRT recombination system for sitespecific excision of chromosomally-located DNA sequences: application for isolation of unmarked *Pseudomonas aeruginosa* mutants. Gene 212:77-86.
- 40. Hoegy, F., X. Lee, S. Noel, D. Rognan, G. L. Mislin, C. Reimmann, and I. J. Schalk. 2009. Stereospecificity of the siderophore pyochelin outer membrane transporters in fluorescent pseudomonads. J. Biol. Chem. **284**:14949-14957.
- 41. **Howell, C. R., and R. D. Stipanovic.** 1979. Control of *Rhizoctonia solani* in cotton seedlings with *Pseudomonas fluorescens* and with an antibiotic produced by the bacterium. Phytopathology **69:**480-482.

- 42. Huang, B., K. Ru, Z. Yuan, C. B. Whitchurch, and J. S. Mattick. 2004. TonB3 is required for normal twitching motility and extracellular assembly of type IV pili. J. Bacteriol. **186:**4387-4389.
- 43. Julich, M., K. Taraz, H. Budzikiewicz, V. Geoffroy, J. M. Meyer, and L. Gardan. 2001. The structure of the pyoverdin isolated from various *Pseudomonas syringae* pathovars. Z. Naturforsch. C 56:687-694.
- 44. Kahnert, A., P. Mirleau, R. Wait, and M. A. Kertesz. 2002. The LysR-type regulator SftR is involved in soil survival and sulphate ester metabolism in *Pseudomonas putida*. Environ. Microbiol. **4**:225-237.
- 45. King, E. O., M. K. Ward, and D. E. Raney. 1954. Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med. 44:301-307.
- 46. Koch, G., P. N. Jimenez, R. Muntendam, Y. Chen, E. Papaioannou, S. Heeb, M. Cámara, P. Williams, R. H. Cool, and W. J. Quax. 2010. The acylase PvdQ has a conserved function among fluorescent *Pseudomonas* spp. Environ. Microbiol. Rep. 2:433-439.
- 47. Koster, M., J. van de Vossenberg, J. Leong, and P. J. Weisbeek. 1993. Identification and characterization of the *pupB* gene encoding an inducible ferricpseudobactin receptor of *Pseudomonas putida* WCS358. Mol. Microbiol. 8:591-601.
- 48. Kraus, J., and J. E. Loper. 1992. Lack of evidence for a role of antifungal metabolite production by *Pseudomonas fluorescens* Pf-5 in biological control of Pythium damping-off of cucumber. Phytopathology **82**:264-271.
- Lamont, I. L., and L. W. Martin. 2003. Identification and characterization of novel pyoverdine synthesis genes in *Pseudomonas aeruginosa*. Microbiology 149:833-842.
- 50. Liberati, N. T., J. M. Urbach, S. Miyata, D. G. Lee, E. Drenkard, G. Wu, J. Villanueva, T. Wei, and F. M. Ausubel. 2006. An ordered, nonredundant library of *Pseudomonas aeruginosa* strain PA14 transposon insertion mutants. Proc. Natl. Acad. Sci. USA 103:2833-2838.
- 51. Lohmiller, S., K. Hantke, S. I. Patzer, and V. Braun. 2008. TonB-dependent maltose transport by *Caulobacter crescentus*. Microbiology **154**:1748-1754.
- Loper, J. E., and H. Gross. 2007. Genomic analysis of antifungal metabolite production by *Pseudomonas fluorescens* Pf-5. European Journal of Plant Pathology 119:265-278.

- 53. Loper, J. E., and M. D. Henkels. 1999. Utilization of heterologous siderophores enhances levels of iron available to *Pseudomonas putida* in the rhizosphere. Appl. Environ. Microbiol. **65**:5357-5363.
- Loper, J. E., and S. E. Lindow. 1994. A biological sensor for iron available to bacteria in their habitats on plant surfaces. Appl. Environ. Microbiol. 60:1934-1941.
- 55. Marshall, B., A. Stintzi, C. Gilmour, J. M. Meyer, and K. Poole. 2009. Citratemediated iron uptake in *Pseudomonas aeruginosa*: involvement of the citrateinducible FecA receptor and the FeoB ferrous iron transporter. Microbiology 155:305-315.
- 56. Marugg, J. D., M. van Spanje, W. P. Hoekstra, B. Schippers, and P. J. Weisbeek. 1985. Isolation and analysis of genes involved in siderophore biosynthesis in plant-growth-stimulating *Pseudomonas putida* WCS358. J Bacteriol 164:563-570.
- 57. Matthijs, S., G. Laus, J. M. Meyer, K. Abbaspour-Tehrani, M. Schafer, H. Budzikiewicz, and P. Cornelis. 2009. Siderophore-mediated iron acquisition in the entomopathogenic bacterium *Pseudomonas entomophila* L48 and its close relative *Pseudomonas putida* KT2440. Biometals 22:951-964.
- 58. McGuffin, L. J., K. Bryson, and D. T. Jones. 2000. The PSIPRED protein structure prediction server. Bioinformatics 16:404-405.
- 59. Meyer, J. M. 2000. Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent *Pseudomonas* species. Arch. Microbiol. **174:**135-142.
- 60. Meyer, J. M. 2007. Siderotyping and bacterial taxonomy: a siderophore bank for a rapid identification at the species level of fluorescent and non-fluorescent *Pseudomonas. In* A. Varma and S. B. Chincholkar (ed.), Soil Biology: Microbial Siderophores, vol. 12. Springer.
- 61. Meyer, J. M., and Geoffroy, Valerie A. 2004. Environmental fluorescent *Pseudomonas* and pyoverdine diversity: how siderophores could help microbiologists in bacterial identification and taxonomy. *In* A. R. Mey, Jorge H. Crosa, Shelley M. Payne (ed.), Iron transport in bacteria. ASM Press, Washington DC.
- Meyer, J. M., V. A. Geoffroy, N. Baida, L. Gardan, D. Izard, P. Lemanceau, W. Achouak, and N. J. Palleroni. 2002. Siderophore typing, a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads. Appl. Environ. Microbiol. 68:2745-2753.

- 63. Meyer, J. M., V. A. Geoffroy, C. Baysse, P. Cornelis, I. Barelmann, K. Taraz, and H. Budzikiewicz. 2002. Siderophore-mediated iron uptake in fluorescent *Pseudomonas*: characterization of the pyoverdine-receptor binding site of three cross-reacting pyoverdines. Arch. Biochem. Biophys. 397:179-183.
- 64. Meyer, J. M., C. Gruffaz, V. Raharinosy, I. Bezverbnaya, M. Schafer, and H. Budzikiewicz. 2008. Siderotyping of fluorescent *Pseudomonas*: molecular mass determination by mass spectrometry as a powerful pyoverdine siderotyping method. Biometals 21:259-271.
- Meyer, J. M., C. Gruffaz, T. Tulkki, and D. Izard. 2007. Taxonomic heterogeneity, as shown by siderotyping, of strains primarily identified as *Pseudomonas putida*. Int. J. Syst. Evol. Microbiol. 57:2543-2556.
- 66. Meyer, J. M., A. Stintzi, D. De Vos, P. Cornelis, R. Tappe, K. Taraz, and H. Budzikiewicz. 1997. Use of siderophores to type pseudomonads: the three *Pseudomonas aeruginosa* pyoverdine systems. Microbiology 143 (Pt 1):35-43.
- 67. Mirus, O., S. Strauss, K. Nicolaisen, A. von Haeseler, and E. Schleiff. 2009. TonB-dependent transporters and their occurrence in cyanobacteria. BMC Biol 7:68.
- Moon, C. D., X. X. Zhang, S. Matthijs, M. Schafer, H. Budzikiewicz, and P. B. Rainey. 2008. Genomic, genetic and structural analysis of pyoverdinemediated iron acquisition in the plant growth-promoting bacterium *Pseudomonas fluorescens* SBW25. BMC Microbiol. 8:7.
- 69. Notredame, C., D. G. Higgins, and J. Heringa. 2000. T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. **302:**205-217.
- Ochsner, U. A., Z. Johnson, and M. L. Vasil. 2000. Genetics and regulation of two distinct haem-uptake systems, *phu* and *has*, in *Pseudomonas aeruginosa*. Microbiology 146:185-198.
- 71. Paulsen, I. T., C. M. Press, J. Ravel, D. Y. Kobayashi, G. S. A. Myers, D. V. Mavrodi, R. T. DeBoy, R. Seshadri, Q. Ren, R. Madupu, R. J. Dodson, A. S. Durkin, L. M. Brinkac, S. C. Daugherty, S. A. Sullivan, M. J. Rosovitz, M. L. Gwinn, L. Zhou, D. J. Schneider, S. W. Cartinhour, W. C. Nelson, J. Weidman, K. Watkins, K. Tran, H. Khouri, E. A. Pierson, L. S. Pierson, 3rd, L. S. Thomashow, and J. E. Loper. 2005. Complete genome sequence of the plant commensal *Pseudomonas fluorescens* Pf-5. Nat. Biotechnol. 23:873-878.

- 72. Pawelek, P. D., N. Croteau, C. Ng-Thow-Hing, C. M. Khursigara, N. Moiseeva, M. Allaire, and J. W. Coulton. 2006. Structure of TonB in complex with FhuA, *E. coli* outer membrane receptor. Science **312**:1399-1402.
- 73. Peacock, R. S., A. M. Weljie, S. P. Howard, F. D. Price, and H. J. Vogel. 2004. The solution structure of the c-terminal domain of TonB and interaction studies with TonB box peptides. J. Mol. Biol. 345:1185–1197.
- 74. Postle, K., and R. J. Kadner. 2003. Touch and go: tying TonB to transport. Mol. Microbiol. 49:869–882.
- 75. Raaijmakers, J. M., L. van der Sluis, P. A. H. M. Bakker, B. Schippers, M. Koster, and P. J. Weisbeek. 1995. Utilization of heterologous siderophores and rhizosphere competence of fluorescent *Pseudomonas* spp. Can. J. Microbiol. 41:126–135.
- 76. Rausch, C., T. Weber, O. Kohlbacher, W. Wohlleben, and D. H. Huson. 2005. Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res. 33:5799-5808.
- 77. Reimmann, C., H. M. Patel, C. T. Walsh, and D. Haas. 2004. PchC thioesterase optimizes nonribosomal biosynthesis of the peptide siderophore pyochelin in *Pseudomonas aeruginosa*. J. Bacteriol. **186**:6367-6373.
- Sambrook, J., E. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
- 79. Sarniguet, A., J. Krause, M.D. Henkels, A.M. Muehlchen, and J. E. Loper. 1995. The sigma factor σ^s affects antibiotic production and biological control activity of *Pseudomonas fluorescens* Pf-5. Proc. Natl. Acad. Sci. USA **92**:12255-12259.
- Schauer, K., B. Gouget, M. Carriere, A. Labigne, and H. de Reuse. 2007. Novel nickel transport mechanism across the bacterial outer membrane energized by the TonB/ExbB/ExbD machinery. Mol. Microbiol. 63:1054-1068.
- 81. Schwyn, B., and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160:47-56.
- Shultis, D. D., M. D. Purdy, C. N. Banchs, and M. C. Wiener. 2006. Outer membrane active transport: structure of the BtuB:TonB complex. Science 312:1396-1399.

- Simon, R., U. Priefer, and A. Pühler. 1983. A broad host range mobilization system for *In Vivo* genetic engineering: transposon mutagenesis in gram negative bacteria. Nat. Biotechnol. 1:784 - 791.
- Stachelhaus, T., H. D. Mootz, and M. A. Marahiel. 1999. The specificityconferring code of adenylation domains in nonribosomal peptide synthetases. Chem. Biol. 6:493-505.
- 85. Stanier, R. Y., N. J. Palleroni, and M. Doudoroff. 1966. The aerobic pseudomonads: a taxonomic study. J. Gen. Microbiol. 43:159-271.
- 86. Sultana, R., K. Taraz, H. Budzikiewicz, J. M. Meyer. 2001. An isopyoverdin from *Pseudomonas putida* CFML90-44. Z. Naturforsch. C 56:303-307.
- Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599.
- Tappe R, T. K., Budzikiewicz H, Meyer JM, Lefevre JF. 1993. Structure elucidation of a pyoverdin produced by *Pseudomonas aeruginosa* ATCC27853. J. Prakt. Chem. 335:83-87.
- Teintze, M., M. B. Hossain, C. L. Barnes, J. Leong, and D. van der Helm. 1981. Structure of ferric pseudobactin, a siderophore from a plant growth promoting *Pseudomonas*. Biochemistry 20:6446-6457.
- 90. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680.
- 91. Uria-Fernandez D, G. V., Schäfer M, Meyer JM, Budzikiewicz H 2003. Structure revision of several pyoverdins produced by plant-growth promoting and plant-deleterious *Pseudomonas* species. Monatsh. Chem. **134:**1421-1431.
- 92. Wong-Lun-Sang, S., J.-J. Bernardini, C. Hennard, P. Kyslík, A. Dell, and M. A. Abdallah. 1996. Bacterial siderophores: Structure elucidation, 2D ¹H and ¹³C NMR assignments of pyoverdins produced by *Pseudomonas fluorescens* CHAO Tetrahedron Lett. **37**:3329-3332.
- 93. Yoneyama, H., and T. Nakae. 1996. Protein C (OprC) of the outer membrane of *Pseudomonas aeruginosa* is a copper-regulated channel protein. Microbiology 142: 2137-2144.

- 94. Youard, Z. A., G. L. Mislin, P. A. Majcherczyk, I. J. Schalk, and C. Reimmann. 2007. *Pseudomonas fluorescens* CHAO produces enantio-pyochelin, the optical antipode of the *Pseudomonas aeruginosa* siderophore pyochelin. J. Biol. Chem. 282:35546-35553.
- 95. Zhao, Q., and K. Poole. 2002. Mutational analysis of the TonB1 energy coupler of *Pseudomonas aeruginosa*. J. Bacteriol. **184:**1503-1513.
- 96. Zhu, M., M. Valdebenito, G. Winkelmann, and K. Hantke. 2005. Functions of the siderophore esterases IroD and IroE in iron-salmochelin utilization. Microbiology 151:2363-2372.

Chapter 3: Pseudomonas fluorescens Pf-5: The Pyoverdine Pirate

Abstract

The soil bacterium Pseudomonas fluorescens Pf-5 produces two siderophores, a pyoverdine and enantio-pyochelin, and also utilizes ferric-complexes of pyoverdines produced by other strains of *Pseudomonas* spp. as sources of iron. Previously, phylogenetic analysis of the 45 TonB-dependent outer-membrane proteins in Pf-5 indicated that six are related to ferric-pyoverdine (Fpv) receptors from other *Pseudomonas* spp. Here, we introduced mutations in each of the six *fpv* genes to investigate their roles in heterologous pyoverdine uptake by Pf-5. Uptake of ferriccomplexes of 14 pyoverdine structures was eliminated in Pf-5 by deleting a single *fpv*. We identified at least one ferric-pyoverdine that was taken up by each of the six Fpv outer-membrane proteins of Pf-5 and determined that phylogenetically-related Fpv proteins take up structurally-related pyoverdines. Functional redundancy of the Pf-5 Fpv outer-membrane proteins also was apparent, with several ferric-pyoverdines taken up by all single fpv mutants but not by mutants having deletions in two fpv genes, and eight ferric-pyoverdines taken up by all of the double *fpv* mutants of Pf-5. We speculate that the combined low-affinity uptake of ferric-pyoverdines by the six Fpv outer membrane proteins of Pf-5 provides access to iron sequestered by a broad set of structurally-diverse pyoverdines that are not taken up with high affinity by any single Fpv. Both high-affinity and low-affinity uptake mechanisms may operate in natural habitats of Pf-5, allowing the bacterium to access iron from the structurally-diverse pyoverdines produced by its coinhabitants in soil and the rhizosphere.

Introduction

Pseudomonas is a genus of γ proteobacteria known for its ubiquity in natural habitats and striking ecological, metabolic and biochemical diversity. *Pseudomonas fluorescens* are common inhabitants of soil and plant surfaces, and certain strains function in the biological control of plant disease, protecting plants from infection by soilborne and aerial plant pathogens. The soil bacterium *P. fluorescens* Pf-5 is a well-characterized biological control strain, distinguished by its prolific production of secondary metabolites including a spectrum of antibiotics that suppress plant pathogenic fungi (29, 35). Among the secondary metabolites produced by Pf-5 are two siderophores, enantio-pyochelin (66) and a pyoverdine, which function in iron acquisition by the bacterium.

Biologically-available iron is limited in aerobic environments at neutral pH. This lack of readily available iron stimulates the fluorescent pseudomonads to produce and release into the environment pyoverdine siderophores capable of binding ferric iron with high affinity (1, 19). Pyoverdines are a diverse group of siderophores with over 70 structures identified (10, 43). They are composed of a dihydroxyquinoline chromophore, which is responsible for diffusible green fluorescence; an acyl side chain (either dicarboxylic acid or amide) bound to the amino group of the chromophore; and a peptide chain of variable length (6-14 amino acids) and composition (43). The structural differences are primarily in the peptide chain, but differences in the chromophore and acyl side chains also occur (10). Iron is bound through interactions with the catechol unit of the chromophore and hydroxamate- or hydroxy acid-containing amino acids of the peptide chain (10).

Like other siderophores, the ferric-pyoverdines are bound and transported into the bacterial cell by TonB-dependent outer-membrane proteins (TBDPs) called ferricpyoverdine (Fpv) outer-membrane proteins. The structure of Fpv outer-membrane proteins include a 22-stranded β -barrel, which forms a channel for transport of the ferricpyoverdine complex through the outer-membrane, extra-cellular loops, and a plug domain to block the channel formed by the β -barrel (13, 19, 50). Ferric-pyoverdines are moved via Fpv outer-membrane proteins across the outer-membrane into the periplasm, where the iron is released from the pyoverdine (22). Transport of ferric-siderophore complexes by Fpv outer-membrane proteins requires energy (18), which is provided by proton motive force by means of TonB-ExbB-ExbD complexes in the inner membrane. In FpvAI, a well-characterized Fpv in *P. aeruginosa*, a six amino acid motif called the TonB box is required for the interaction with TonB (50). To date, all Fpv outermembrane proteins also have an N-terminal signaling domain that interacts with a regulatory protein (anti-sigma factor), which controls the expression of an ECF sigma factor (18, 25). Together, the TBDP, ECF sigma factor, and anti-sigma factor constitute a cell surface signaling system that functions in environmental sensing and signal relay into the cytoplasm.

The ferric-pyoverdine/Fpv interaction is best understood in *P. aeruginosa* PAO1 where the structural components and key binding residues of FpvAI have been characterized (49, 56). Collectively, strains of P. aeruginosa produce pyoverdines having three distinct structures (type I, II or III), with each strain producing one pyoverdine and the corresponding variant of FpvA (FpvAI, FpvAII, and FpvAIII). The ferric complex of the type I pyoverdine produced by PAO1 is bound by specific amino acids located in the plug, extra-cellular loops, and the β -barrel of FpvAI. These amino acid residues interact primarily with the pyoverdine chromophore and the hydroxamatecontaining amino acids of the peptide chain (23). The specificity of Fpv outer-membrane proteins in binding and transport of cognate pyoverdines is well established (23, 50), but Fpv outer-membrane proteins also can function in the uptake of ferric complexes of heterologous pyoverdines having similar peptide chain sequences (23, 42, 45). For example, FpvAI can bind and take up ferric-pyoverdines produced by several Pseudomonas spp., albeit with varied affinities. Not all ferric-pyoverdines are bound by FpvAI, so the affinity determinants must lie outside of the regions common to all pyoverdines (i.e., the chromophore and iron-chelating hydroxamates) (23). The

conformation of the first three residues of the pyoverdine peptide chain are critical determinants of affinity, but other factors such as isomerization also play a role in binding and transport by FpvAI (23).

The capacity to utilize siderophores produced by other microorganisms provides a selective advantage to bacteria, providing a mechanism to acquire iron without investing in siderophore biosynthesis (27). Gram-negative bacteria commonly have multiple TBDPs in their outer membranes, some of which function in uptake of ferric complexes of siderophores produced by other organisms (28). For example, the soil bacterium Pseudomonas fluorescens Pf-5 has 45 TBDPs, many of which have predicted functions in the uptake of ferric-complexes of heterologous siderophores such as enterobactin, aerobactin, citrate, ferrioxamine, or ferrichrome (25). Phylogenetic analysis of the 45 TBDPs in the Pf-5 proteome indicated that six TBDPs are related to Fpv outer-membrane proteins from Pseudomonas spp. (25). Like many other Pseudomonas spp. (23, 31, 36, 46, 52), Pf-5 can utilize the ferric-complexes of many structurally-distinct pyoverdines as iron sources (25). The goal of this study was to characterize the six putative Fpv outermembrane proteins in the proteome of Pf-5. First, homology modeling provided further evidence for the functions of the six putative Fpv outer-membrane proteins in uptake of ferric-pyoverdine complexes. We confirmed these functions by constructing six mutants, each having a deletion in one *fpv* gene, and assessing the mutants for utilization of specific heterologous pyoverdines produced by 37 strains of Pseudomonas spp. in crossfeeding assays. Each of the six mutants lacked the capacity to utilize ferriccomplexes of one or more structurally-related pyoverdines, enabling the assignment of specific pyoverdines to each of the Fpv outer-membrane proteins in the Pf-5 genome. These results demonstrate that the capacity of P. fluorescens Pf-5 to utilize a diverse spectrum of ferric-pyoverdines as iron sources is achieved both through the capacity of individual Fpv outer-membrane proteins to take up pyoverdines with similar structures and the possession of six Fpv outer-membrane proteins, each recognizing structurallydistinct pyoverdines.

Materials and methods

Bacterial growth conditions

Pseudomonas strains were grown on King's medium B (KMB) (30) at 27°C. *Escherichia coli* was grown on solidified Luria-Bertani at 37°C. Antibiotics were used at the following concentrations (μ g/ml): gentamicin 40 (*P. fluorescens*) and 12.5 (*E. coli*), kanamycin 50, streptomycin 100, tetracycline 200 (*P. fluorescens*) and 20 (*E. coli*) for generation of mutants.

Pyoverdine peptide chain prediction

The amino acid composition of the peptide chain of pyoverdines with unknown structures was predicted from the nucleotide sequences of genes encoding the corresponding non-ribosomal peptide synthetases (NRPSs) using the NRPS/PKS predictor (3) and the NRPS predictor (http://www-ab.informatik.uni-tuebingen.de/software/NRPSpredictor) (53, 58).

Sequence alignment and structure prediction

The multiple sequence alignment tool T-Coffee was used to align the amino acid sequences of the Fpv outer-membrane proteins of Pf-5 (51). PSIPRED GenTHREADER (37) and a β -barrel prediction model (7) were used to predict the secondary structure of the six Fpv outer-membrane proteins in the Pf-5 proteome. Homology modeling of the six Fpv outer-membrane proteins was done using the SWISS-MODEL server and Deepview (2, 9). The homology models were constructed using a structure-based sequence alignment with the crystal structure of FpvAI from *P. aeruginosa* PAO1 as a template.

Construction of Pf-5 mutants

Individual deletion constructs for the six *fpv* genes and PFL_2772 were made as described in Hassan et al. (26) using overlap-extension PCR methods modified from Choi

and Schweizer (12) with primers specific to each gene (Table 1). Deletions were introduced into Pf-5 and into mutants deficient in pyoverdine and enantio-pyochelin production (i.e., $\Delta pvdI$ -pchC and $\Delta pvdI$ -pchA mutants), which were derived previously (25). Combinations of fpv deletions were introduced into the $\Delta pvdI$ -pchC mutant background as described previously (25).

 Table 3.1. Primers used in the construction of mutants of P. fluorescens Pf-5

Target gene and primers	Sequence 5'-3'						
FpvZ (PFL_4092)							
4092UpFBam	CACACCATCAGGATCCACAACACCGACTGACCCCTTT						
4092DnFFRT-1	AGGAACTTCAAGATCCCCAATTCGATGCCGGAGCCATCTATGA						
4092UpRFRT	TCAGAGCGCTTTTGAAGCTAATTCGATGTTCTGGTCATCCATGCGC						
4092DnRBam-1	CTCTGCTTCTGGATCCTGTAGATGGTGTTCTGGCCA						
FpvW (PFL_2293)							
2293UpFHind	GTGGTTGTGGAAGCTTTTCACAAGTCGAAGTTGGCC						
2293DnFFRT	AGGAACTTCAAGATCCCCAATTCGCCGACGACAGCTACTACGAAA						
2293UpRFRT	TCAGAGCGCTTTTGAAGCTAATTCGTCTCCATCACCTGGTCAATG						
2293DnRHind	GACGAAGACGAAGCTTAGTTGTCACTCTGGGCGTTGA						
FpvX (PFL_3315)							
3315UpFBam	GTTGTGCTGAGGATCCCAAACGGTGACGGTGATCA						
3315DnFFRT-1	AGGAACTTCAAGATCCCCAATTCGTGGTCTACGACCTCAACGACA						
3315UpRFRT	TCAGAGCGCTTTTGAAGCTAATTCGTGAAGTACATCGGGAAGCC						
3315DnRBam-1	GAGAAGGAGAGGATCCGAAGCCGGTGCTGAAATTG						
FpvV (PFL_2527)							
2527UpFBam	GTGTGGTAGTGGATCCTGCACCGTAGTTACCGTAGGA						
2527DnFFRT	AGGAACTTCAAGATCCCCAATTCGTTGCGGATCAGGTTGATGGT						
2527UpRFRT	TCAGAGCGCTTTTGAAGCTAATTCGTACACCAGCATCTTCAACCC						
2527DnRBam	CACACCATCAGGATCCGCGCACATTTTGCTGTCCTA						
FpvU (PFL_2391)							
2391UpFBam	CTCTGCTTCTGGATCCACAGGTTCTGGGTGATCTGGT						
2391DnFFRT	AGGAACTTCAAGATCCCCAATTCGTTCTTGCGCACCAGGTTGAT						
2391UpRFRT	TCAGAGCGCTTTTTGAAGCTAATTCGAAGGACAGCAAGCTGCTCAA						
2391DnRBam	GAGAAGGAGAGGATCCAACTGAGTACCCAGAGCGGTT						
FpvY (PFL_3485)							
3485UpFBam	GAGAAGGAGAGGATCCCGGGCTATCGGGGTAATACA						
3485DnFFRT1	AGGAACTTCAAGATCCCCAATTCGCCTACTTCGAGGTGCATGA						
3485UpRFRT	TCAGAGCGCTTTTGAAGCTAATTCGTCGAGGATGCCGTAGTAGA						
3485DnRBam	GTGAGTTGCTGGATCCCCTTGCCGTAGTTGCTGAGTA						
PFL_2772							
2772UpFHind	CAGCACGAAGCTTCGGTTTTCACCGCCAGCTTC						
2772UpR	GGCGTGATGGCGCTCCAGCAATTCATAGGGC						
2772DnF	TTGCTGGAGCGCCATCACGCCTTACGAACT						
2772DnRHind	CTCCTCGAAGCTTAGGAGTACCTGGTGATACGC						

Iron-limited growth

The six *fpv* mutants of Pf-5 were tested for iron-limited growth as described in Hartney et al. (25). Briefly, bacterial cells from overnight cultures grown in KMB broth were suspended in water to 0.1 OD_{600} . 5 µl of 100 fold diluted cell suspension was placed on KMB agar containing the iron chelator 2, 2'-dipyridyl (Sigma-Aldrich, St Louis, MO, USA) at 0, 100, 200, 400, 600, and 800 µM. Bacterial growth was observed following 24 h incubation at 27°C. Each strain was tested in at least two experiments, each evaluating two replicate plates.

Crossfeeding assays

Crossfeeding assays were performed as described in Hartney et al. (25). Briefly, cells from test strains and indicator strains were suspended in water to 0.1 OD_{600} . Indicator strain cell suspensions were diluted 100 fold in sterile water. Ten µl of the test strain suspension and 5 µl of the diluted cell suspension of the indicator strains were placed 10 mm apart from one another on the surface of KMB amended with 2,2'-dipyridyl at 400 µM or 600 µM. For test strains that did not grow on KMB amended with 2,2'-dipyridyl at 400 µM or 600 µM, an agar plug (6 mm) obtained from a 48 h culture on KMB was substituted for the cell suspension. Plates were incubated at 27°C, and growth of the indicator strain was observed at 24 h and 36 to48 h. Growth of each test strain was evaluated on two replicate plates in at least two experiments.

Pyoverdine purification

Pyoverdines from *Pseudomonas* spp. were obtained from cultures grown in succinate medium (41) at 25°C with shaking at 200 rpm. After 72 h incubation, bacterial cells were harvested by centrifugation. The supernatant was adjusted to pH 6.0 and centrifuged again (5200 x g, 30 min) before ion exchange chromatography onto a column of Amberlite XAD-4 (11). The pyoverdines were eluted with 100% methanol.

Pyoverdine eluate was evaporated in a rotary evaporator, suspended in 5 ml of milliQ water and placed at 4°C overnight. A second ion exchange chromatography was performed on a column of LiChroprep RP-18 (40-63 µm) (Merck, Whitehouse Station, NJ). After loading, the column was rinsed with EDTA (0.1M) followed by pH 4.0 acidified water (formic acid 1%) and pyoverdines were eluted with 50% methanol. After use, the column was washed with methanol, regenerated with 1% HCl, rinsed with deionized water, and stored at 4°C. Pyoverdines were concentrated and lyophilized prior to storage at 4°C in the dark.

Utilization of purified pyoverdines as iron sources

Fpv mutants of Pf-5 were evaluated for utilization of pyoverdines produced by selected strains of *Pseudomonas* spp. One hundred μ l of a 100 fold dilution of a 0.1 OD₆₀₀ suspension of a Pf-5 mutant was spread onto KMB agar plates amended with 400 μ M 2,2'-dypyridyl. Five μ l of an aqueous pyoverdine solution (8 mM) was applied to a 5mm filter paper disk placed on the agar surface. Plates were incubated at 27°C for 24 h prior to evaluation of growth of the mutant strain.

Phylogenetic analysis

A phylogenetic analysis of the six Fpv outer-membrane proteins from Pf-5 and orthologous proteins was performed using the Neighbor Joining method available through MEGA version 4.0.2 (60). Alignment of the amino acid sequences was done using Clustal W with a gap open penalty of 15 and a gap extension penalty of 0.3. The aligned and masked sequences were subjected to Neighbor Joining analysis. The bootstrap consensus tree inferred from 1000 replicates represented the evolutionary history of the taxa analyzed. Branches corresponding to partitions reproduced in less than 30% bootstrap replicates were collapsed. Phylogenetic analysis of the plug domains from the 45 TBDPs in Pf-5 was preformed as above, except using the Maximum Parsimony analysis method.

Results and discussion

Structural analysis of the pyoverdine TonB-dependent outer-membrane proteins

Protein structure analysis using PSIPRED GenTHREADER matched all six of the putative Pf-5 Fpv outer-membrane proteins to FpvAI (PA2398) from *P. aeruginosa* PAO1. Due to their similarities to FpvAI, we adopted the naming convention established for *P. aeruginosa*, and the six pyoverdine uptake proteins in Pf-5 are hereafter called FpvU (PFL_2391), FpvV (PFL_2527), FpvW (PFL_2293), FpvX (PFL_3315), FpvY (PFL_3485), and FpvZ (PFL_4092).

Homology modeling of the six Pf-5 Fpv outer-membrane proteins was done using the known crystal structure of FpvAI (PDB: 2w16A) as a template (Fig. 3.1a). A model of FpvW could not be generated due to its divergence from FpvAI, but root mean squared (RMS) values were calculated for backbone residues of the other five Fpv outermembrane proteins in Pf-5: FpvU, 0.173Å; FpvY, 0.40Å; FpvX, 0.55Å; FpvZ, 0.626Å; and FpvV, 1.51Å. Comparison of the six Fpv outer-membrane proteins of Pf-5 to FpvAI indicated secondary structural similarities of the proteins, which is especially evident in the β -strands of the β -barrel, the plug domain involved in binding and movement of substrate (50), and the N-terminal signaling domain involved in the signaling cascade to regulate pyoverdine biosynthesis (56) (Fig. 3.1a, Fig. 3.2). Differences in the extracellular loops and the position of the connecting loop between the plug and the Nterminal signaling domain can be seen between the models of FpvAI and FpvV, Y, X, and Z (Fig. 3.1a1, a3-a6).

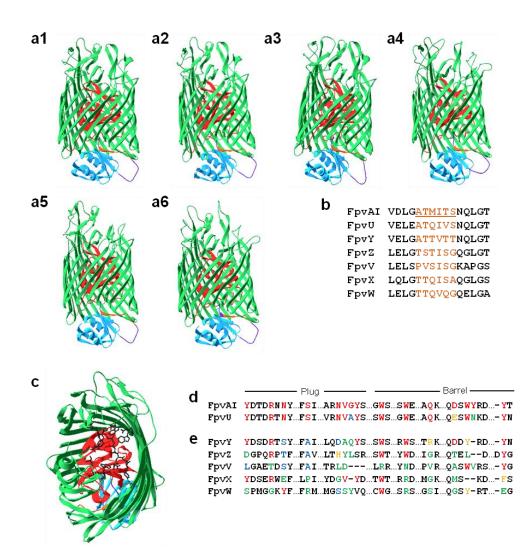


Fig. 3.1. Homology models of the Pf-5 Fpv outer-membrane proteins. Models of the Fpv outer-membrane proteins in Pf-5 and FpvAI showing the structural components with the β -barrel in green, plug in red, N-terminal signaling domain in blue, connecting loop in purple, and TonB box in brown. a1, FpvAI; a2, FpvU; a3, FpvY; a4, FpvZ; a5, FpvV; a6, FpvX. b. Alignment of the TonB box region for FpvAI and the six Fpv outer-membrane proteins from Pf-5. The characterized amino acid residues from FpvAI are underlined. The TonB box residues located within the sheet structure are in brown. c. Position of amino acid residues in FpvU from the plug and β -barrel with homology to the residues of FpvAI that are involved in the binding of pyoverdine. Amino acid side chain structures are shown in black. d & e. Alignment of FpvAI and the six Pf-5 Fpv outer-membrane proteins showing amino acid residues of FpvAI involved in pyoverdine binding in the plug and β -barrel domains (red). Identical residues are in red, conservative substitutions are in blue, semi-conservative substitutions are in yellow and non-conservative substitutions are in green.

The RMS values and sequence alignments of the Pf-5 proteins indicate that FpvU is the most closely related to FpvAI (68% identical at the amino acid level). Of the 15 amino acids located in the binding pocket of FpvAI that interact with amino acids in the peptide chain of the ferric pyoverdine complex of PAO1 (Fig. 3.1d) (23, 56), 12 amino acids also are present in the binding pocket of FpvU (Fig. 3.1d). Homology modeling between FpvAI and FpvU indicated that the 15 binding residues are in identical locations in both proteins: the channel of the β -barrels, the extra-cellular loops, and the plug domains (Fig. 3.1c). Two of the altered binding residues are conservative substitutions (G230 to A237 in the plug domain, and D597 to E606 in the β -barrel) whereas one is a non-conservative substitution (Y600 to N609 in the β -barrel). Based upon this high level of conservation in the binding residues of FpvU and FpvAI, we expect that FpvU and FpvAI would recognize similar pyoverdines. Putative pyoverdine binding residues of FpvZ, FpvV, FpvW, FpvX, and FpvY could not be identified from homology models or by alignment due to their divergence from FpvAI (Fig. 3.1e).

The amino acid sequences of the TonB boxes of the Pf-5 Fpv outer-membrane proteins are divergent, but nevertheless, could be identified based on their locations in corresponding structural models and the presence of bordering leucine residues (Fig. 3.1a and 3.1b). FpvU shares four of the six residues with the well-characterized TonB box of FpvAI (13, 57), whereas the TonB boxes of the other five Fpv outer-membrane proteins of Pf-5 share only one to three of the six residues. The lack of sequence conservation in TonB boxes was noted previously for the 45 TonB-dependent outer membrane proteins of Pf-5 (25) and for an extensive set of characterized TonB-dependent outer-membrane proteins from other bacteria (33). The latter study concluded that divergence in the amino acid sequence of the TonB box has little effect on substrate binding as long as the surrounding residues forming a β -strand are conserved. Secondary protein structure rather than primary amino acid sequence is thought to determine binding to TonB; specifically the interaction of a β -strand encompassing the TonB box motif of the TBDP with the β -sheet structure of TonB (33). Homology models of five of the Pf-5 Fpv outer-membrane proteins clearly indicate the presence of a β -strand structure overlapping the

TonB box (Fig. 3.1a), providing evidence for the secondary structure being required for interaction with TonB.

Fig. 3.2. Alignment of PA2398 (FpvAI) from *P. aeruginosa* PAO1 with the six Fpv outer-membrane proteins from Pf-5. The colored lines above the alignment delineate domains and conserved regions based on the characterized residues of FpvAI. The N-terminal signaling domain is blue. The connecting loop is purple. The TonB box is brown. The plug domain is red and the β -strands of the β -barrel are in dark green. Amino acid residues of FpvAI (PA2398) involved in pyoverdine binding are indicated with an asterisk. Residues are highlighted to show levels of similarity. Similar residues are green, identical residues are pink and black residues are globally conserved.

PA2398MDADHGTS - PISKAFTMRRAFQ-RRILPHSLAWAT - SLPLAGYV AQUVU PFL 2391 MQIIPISYGTSMHTP - TUTPARSILALAI - CLACNPVK VEP - TTATD - NQATATYSP PFL 3485MHIRUT - PIA - ATRPVIG - USVASTBPLA - ARTGAVTDHQQRDT PFL 4092MPAQHRUT - PIA - ATRPVIG - USVASTBPLA - ARTGAVTDHQQRDT PFL 2527 MSSAVTQRR - HRTF - SI KQNLAGAVAQG - UVCLGASTATAI - DFTWALAREQAQVE PFL 3315MPSPRRSLPFHTLP CTA
PA2398 DIPROADGSA DOELGROADIOVLYRPEVYNIESSAIKCELEPNOAITELLRGGASVDF PFL 2391 ATAROSIANADOLSTOSBLOTASSAIAOUIESAOVSGAMSAEGALGKI AGTGIGFER PFL 3485 ATARONDOVIGIEGOSSANAIDINISSAKKSTGINGESVAEGORIKTIGGOVAVA PFL 402 NIVSSISSAICER GOVGANSWIAIDINISSAKKSTGIGESVAEGORIKTIGGOVAVA PFL 402 NIVSSISSAICER GOVGANNOVLYNPDDVOGISSANISGESVAEGORIKTIGGOVAVA PFL 3315 SIGOCPLVTVINKRAEGSAVFTAGHNIAADIGSPOINCINSVAELULEANNGLOAQA PFL 2293 DIAACDITEVISSISSAIGAAISED ROTACLESAOKCESGOVGEFARITASGOVGAEP
PA2398 QGN-AITISVAEAADSSUDLCATMITSNQLCTITEDSGCYTPGTIATATRIVITPETPO PFL_2391 NGANAVLITRIPOSSQAVILEATQUYSNQLCTITEDSGCYTPGTIATATRIVITPETPO PFL 3485 EGAG-YRVIQ-ASGERVILEATQUYSNQLCTVTEOSSGYTPGTIATATRIVITPETPO PFL 4092 KD-NSVTI-RNHCONGSLILGTTIEGGCGCTTEDTGUTTCANGTASKISLABETPO PFL 2527 GANG-DYSLQTRONGASIILSPVS16GKAPGTTEGTGETTYSSSSTRINITPETPO PFL 3315 VSG-GYVKVLPATSCPLOLCTTOISAGGLGCTTEGTGUTTCANGTASKISLABETPO PFL 2529 QSNGSFVLRPVPOGSGALIGTTOISAGGLGCTTEYSGSYTTCANGINISLETPO PFL 2529 QSNGSFVLRPVPOGSGALIGTTOISAGGLGCTTEYSGSYTTCANGINISLETPO PFL 2539 XSG-GYVKVLPATSCPLOLCTTOISAGGLGCTTEYSGSYTTCANGINISLETPO FFL 2539 XSGSFVLRPVPOGSGALIGTOVCOCELCATEYSGSYTTCANGINISLETPO
PA2398 SITUTRONNOD FOLMNIDDVMRH DGITVAYDTDRNNYARGYSINN-YOYDGIPS PFL 2391 SITUTROHN DFOLMNUDVMRH DGITVAYDTDRNYYARGYSINN-YOYDGIPS PFL 3485 SISVYROHNDFOLMSTDYNRH DGITVATYDBDTSYSRGAION-YOYDGIPS PFL 4092 SVTVIROANDFOLMSTDYNRH DGITVATYDBDTSYSRGAION-YOYDGIPI PFL 2527 SITVYRORDONNSTDYLEAPGISITKDGPOPTFYSRGAION-WEDGVPT PFL 3315 TVTVIRORDONNSTDYLEAPGIVTROLGAETDSYNSRGAION-WEDGVPT PFL 2527 SITVYRORDONNSTDYLEAPGIVTROLGAETDSYNSRGAION-WEDGVPT PFL 3315 TVTVIRONDONNSTDYLEAPGITYDD-SPMGGKYFYSRGRHTGOYCYDGVPL ****
PA2398 TARNUG YSAGNT LSDMAIYDRVEVLEGATGLLTGAGSLGATINLIRK PTHE KGHVELG PFL_2391 TVRNVAYSAGNT LSDMAIYDRVEVLEGATGLLTGAGSLGATINLURK PTAQ rOGHALG PFL_3485 - LQDAQ SSCH, LTDTVY DRVETLEGATGLITGAGSLGATINLVRK PTAP FVGHDLG PFL 492 DLTHVLSRDMG GADMAIYDRVEVVEGATGMOGAGNPSAINMVRK PTAFFVGHDLG PFL_2527 NTRLDNYSQSMAYDRMEVVEGATGLISGMON SATINLIRK PTSFAQASITGQ PFL_3315 TYDGY-YDYGTESTMAATDRVEVEGATGLISGAGNPSATINLIRK PTKRYKASVTGT PFL_2293 DMGSSYVQADSFCSDMAFTDRVEILGATGLICGAGCTAGSVNFVRK SQATTRLTK
PA2398 AGSWDNYRSELDVSGPLTESGNVRGRAVANYOKHSYNDHYBERGSVYYGILEFDDNPDT PFL 2391 MGSNDNYRSELDVSGPLTEGNVRGRAVANYOKHSYNDHYBERGSVYGILEDDLSDAT PFL 3485 AGSWDNYRSEDVSGPLTEGNVRGRAVANYOKGSTDDIYSERGTYGILEFDLSPDT PFL 3492 AGSWDYRGOVDVSGPLTBGNVRGRWAANYOKSFOFYDHYQROSVYGILEFDLSPDT PFL 4092 AGSWDYRTDASNAHKSGTLSGPLYGVNGGSSGSGFOFYVGVTGLGESTDLSEDT PFL 2527 AGTNDRYGGGVDVSGPLTBGNVRGRLVADYKTESAWVDREKQQNOLLYGISTDLSEDT PFL 315 VGNNDYRSGDTSGPLYESGLRGEFVGVGOTSSTDAYONTKDLAYGITHADITPT PFL 2293 AGSWDYYRAQVDTGGPLNBACTVRGRAVVYQOTRQYFDLGEEKDQVYYGAUTDLSDAT
PA2398 MLTUCADYODNDPKCC, GSPLLDBOGNRNDVSRSP.NCAKWSC, ECYTR, VPANLEH PPL 2391 LLTUC DYODNIPKCSS, GSPLLDBOGNRNDVSRSP.NCAKWSC, ECYTR, AFAMLEH PFL 3485 LLTUCADYODNPKCSS, GSSSLDSKGNAISTERSTINCASWS, SYTR, AFTTLH PFL 402 TFTFCASNOSCH-NNTS, GG-LVY-AADGSDLHKRSTINCASWS, SYTR, AFTTLH PFL 402 TFTFCASNOSCH-NNTS, GG-LVY-AADGSDLHKRSTINCSKWSLDNNTAAFSRLY PFL 2527 LLTUCSYORT VDSPLRG - LPTRFSGERTDFKRST, PATDWSRDFKNO, LFTSLQ PFL 3315 LLTUCLONTRSKGAT, GG-LVRFSDGSDLKLGRSTCLNAWNNSRSKRAYTADTS PFL 2293 TLGCMAYEVVSS-PC, GG-LVRFSDGSDLKLGRSTCLNAWNNSRSKRAYTADTCL *
PA2398 NFANCWVGKVQLDEKINGVHAPICAIMCDWP MPDNSAKIVAQKYTCETKSNSLDIYLT PFL 2391 DLCDCWVTKLQLDEKINSYHAELGEIQFDEP - OTDGTAKVNAQKYTCETKSNSLDIYLT PFL 3485 SFANCWVARAQYNQINCYNAPLCELMSP-N - ATDGTAKVNAQKYTCETVSDSCDLYAT PFL 4092 RFANSWKMLSASKSWSDLNM-LGEIPER - NCANYDEFGONIGR DYEDQONSYDGYYC PFL 2527 DLCIGSGVEFTEAELQEDELFNFAMCSV - NKDGSGLTQLPVRFSCTPRQNLDLYDT PFL 3315 OLANDWILKVSYDELRRQHDTLLGGASCGNDQASGDCMFMYMGCKKCDQRQNLDINH PFL 2293 OLNDWALKVAGVYTRITQDIEYAFPSCSV YCGSRSSTLMLGSI DYDQVDYGFDAYVD
PA2398 COPOPLORINE INVOCTOR FROMWECKSWWNLRNYD-NTTD-DFIN DCDIG P PFL 2391 COPINITION CONTRACTOR AND RWTCKOWSPDFPGGK-GNVV-DFWN HCKIERP PFL 3485 COPDIL CREMCINV CAREN SHWCKORDTSA-T-NH-NNFY-DYRN DCHSPXP PFL 4092 COPE IF CETHINVCARE NBH
PA2398 WGTPSQYIDKTRQLGSIMARFNWIDDINGTCGRVVDRRVT-GLNPT PFL 2391 IWGDPAQRTDTVRQTGTKMITRINGDDINGFCGRVVNHHLT-GLTPS PFL 3485 WGRITKKNDETTROSAGINARFSINDDISLCGRVNNHEVS-GTSR- PFL 4092 MMSANPWTQRTSQLGTYTTRISTDDIKLIGGRUNN-EVS-GTSR- PFL 2527 SQNVSGKASIDENGYARTSKSTDDIKLIGGRUNNSSD-SSDRPYG PFL 2155 DIFKIGDNDLLQRGTGAKIARFKFTDDIKLIGTRVSDKGI-DNMRVLDPN PFL 2293 DSYYESNSTRGGPTDLRIQQQLSSVRIKAPT

Fig. 3.2.

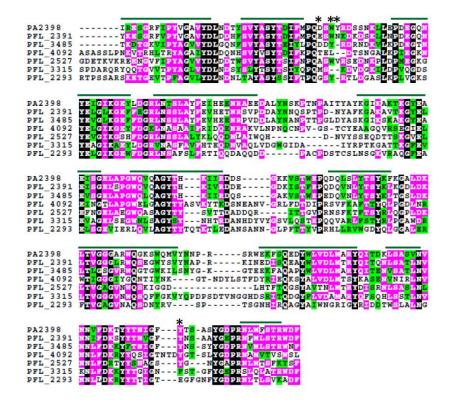


Fig. 3.2., Continued

Iron-limited growth of fpv mutants of Pf-5

To determine the functions of the six Fpv outer-membrane proteins in ferricpyoverdine uptake, a deletion in each *fpv* gene was introduced into wild type Pf-5 and its $\Delta pvdI$ -pchC and $\Delta pvdI$ -pchA mutant derivatives, which are deficient in producing pyoverdine and enantio-pyochelin siderophores. Deletions in five of the *fpv* genes had no detectable effect on iron-limited growth when introduced into the wild type background (Table 3.2). These five mutants (*fpvU*, *fpvV*, *fpvW*, *fpvX*, and *fpvY*) exhibited wild type levels of fluorescence and, like Pf-5, grew on KMB amended with up to 800 µM of the chelator 2,2'-dipyridyl. In contrast, a mutation in *fpvZ*, which is located in a pyoverdine biosynthesis gene cluster, reduced the capacity of Pf-5 for iron-limited growth. This mutant, like a $\Delta pvdI$ mutant of Pf-5, grew only on KMB containing $\leq 600 \ \mu$ M 2,2'dipyridyl (Table 3.2). In *P. aeruginosa* the coordinate regulation of pyoverdine biosynthesis and transport genes has been described, where the FpvA mutant exhibits loss of pyoverdine production (54-55). We attribute the phenotype of the *fpvZ* mutant to the loss of pyoverdine production due to altered regulation of the pyoverdine biosynthesis genes related to the deleted *fpvZ* gene.

Siderophore **Deleted** *fpv* Fluorescence^a 2,2'-dipyridyl **Strain** biosynthesis # Concentration mutations $(\mu M)^{b}$ 200 400 600 800 Pvd^+ , Pch^+ JL4585 +++ ++(Pf-5 Wt)pvdI * JL4806 _ + + _ (PFL_4095) JL4898 pchC+++++(PFL_3490) * LK078 *pchA* ++++(PFL_3488) JL4900 pvdI, pchC * _ + _ _ LK032 pvdI, pchA * +_ _ _ JL4992 Pvd^+ , Pch^+ fpvZ * _ +++JL4993 pvdI, pchC fpvZ * _ _ _ +LK155 pvdI, pchA fpvZ +* _ _ _ LK157 Pvd^+ , Pch^+ fpvV +++++ $fpv\overline{V}$ JL4994 pvdI, pchC * +_ _ _ fpvV LK151 pvdI, pchA * +_ _ -LK149 Pvd^+ , Pch^+ fpvU +++++* JL4997 pvdI, pchC fpvU +_ _ _ LK154 pvdI, pchA fpvU * _ +-_ LK176 Pvd^+ , Pch^+ fpvY ++ +++JL4996 pvdI, pchC * fpvY _ +_ _ LK148 pvdI, pchA fpvY * _ +_ _ LK177 Pvd^+ , Pch^+ fpvX ++ +++JL4995 pvdI, pchC fpvX +* _ _ fpvX LK150 pvdI, pchA +* _ _ _ LK156 Pvd^+ , Pch^+ fpvW +++ ++LK036 pvdI, pchC fpvW +* ---* LK153 pvdI, pchA fpvW _ _ + _ pvdI, pchC LK124 fpvW * fpvZ +_ _ _ pvdI, pchC * fpvZ fpvY LK072 +_ _ _ LK054 pvdI, pchC fpvU * fpvZ + _ _ _ LK074 pvdI, pchC fpvZ fpvX * +_ -_ fpvZ fpvV JL4999 pvdI, pchC * _ _ +_ LK000 pvdI, pchC * fpvV føvX +_ _ _ LK125 * pvdI, pchC fpvV fpvW +--pvdI, pchC fpvV fpvY * LK073 +_

 Table 3.2. Iron limited growth of Pf-5 mutants

Table 3.2. (Continued)

Strain #	Siderophore biosynthesis mutations		Delet	ed <i>fp</i>	V		Fluorescence ^a	2,2'-dipyridyl Concentration (µM) ^b			
								200	400	600	800
LK076	pvdI, pchC	fpvV	fpvU				-	+	*	-	-
LK128	pvdI, pchC		fpvU			fpvW	-	+	*	1	-
JL4998	pvdI, pchC		fpvU	fpvY			-	+	*	-	-
LK075	pvdI, pchC		fpvU		fpvX		-	+	*	-	-
LK126	pvdI, pchC				fpvX	fpvW	-	+	*	-	-
LK127	pvdI, pchC			fpvY		fpvW	-	+	*	-	-
LK071	pvdI, pchC			fpvY	fpvX		_	+	*	-	-

 $^{\rm a}+$ indicates fluorescence of colonies under UV light. – indicates no fluorescence of colonies under UV light. $^{\rm b}+$ indicates growth, - indicates no growth, * indicates limited growth

Utilization of heterologous ferric-pyoverdines by Pf-5 and *fpv* mutants

Thirty-one strains of *Pseudomonas* spp. known to crossfeed the $\Delta pvdI$ -pchC mutant of Pf-5 (25) and six additional strains were tested for crossfeeding of the six *fpv* mutants (*fpvU*, *fpvV*, *fpvW*, *fpvX*, *fpvY*, and *fpvZ*) in the $\Delta pvdI$ -pchC mutant background (Table 3.3). A subset of strains was tested for crossfeeding of *fpv* mutants in a $\Delta pvdI$ -pchA background to rule out the influence of residual enantio-pyochelin production by the $\Delta pvdI$ -pchC mutant (25). There was no detectable difference between a given *fpv* mutant in the two mutant backgrounds in crossfeeding assays (Table 3.3 and Table 3.4).

As predicted from its location within a pyoverdine biosynthesis gene cluster (25), FpvZ was necessary for uptake of the pyoverdine produced by wildtype Pf-5. FpvZ also was necessary for crossfeeding by *P. chlororaphis* DTR133, *P. fluorescens* CFBP2130, *P. fluorescens* CHA0, and *P. chlororaphis* subsp. *aureofaciens* ATCC13985 (Table 3.3). Three of these strains with known structures produce pyoverdines having eight amino acids in the peptide chain with the first four amino acids (Asp-FOHOrn-Lys-Thr) in common (Table 3.3).

Pyoverdine-Producing Strain		P	f-5 Deleti	on Mutan	t ^a		Composition of Peptide Chain ^b	Reference or Source	
	fpvZ	fpvU	fpvX	fpvW	fpvY	fpvV			
P. fluorescens Pf-5	-	+	+	+	+	+	Asp-FOH <u>Orn</u> -Lys-Thr-Ala-Ala-FOH <u>Orn</u> -Lys	Harald Gross, University of Bonn	
P. fluorescens CHA0	-	+	+	+	+	+	Asp-FOHOrn-Lys-(Thr-Ala-Ala-FOHOrn-Lys)	(63)	
P. chlororaphis D- TR133	-	+	+	+	+	+	Asp-FOH <u>Orn</u> -Lys-(Thr-Ala-Ala-FOH <u>Orn</u> -Ala)	(43)	
P. fluorescens CFBP2130	-	+	+	+	+	+	Unknown	http://www.strain info.net/strains/75 7032	
P. chlororaphis subsp. aureofaciens ATCC 13985	-	+	+	+	+	+	Unknown	(59)	
P. aeruginosa PAO1	+	-	+	+	+	+	Ser-Arg-Ser-FOHOrn-(Lys-FOHOrn-Thr-Thr) (Type I pyoverdine)	(16)	
P. aeruginosa PA14	+	-	+	+	+	+	Ser-Arg-Ser-FOHOrn-Lys-FOHOrn-Thr-Thr	(25)	
P. fluorescens SBW25	+	-	+	+	+	+	Ser-Lys-Gly-FOHOrn-(Lys-FOHOrn-Ser)	(47)	
P. fluorescens ATCC 13525	+	-	+	+	+	+	Ser-Lys-Gly-FOHOrn-(Lys-FOHOrn-Ser)	(39)	
<i>P. chlororaphis</i> ATCC 9446	+	-	+	+	+	+	Ser-Lys-Gly-FOHOrn-(Lys-FOHOrn-Ser)	(39)	
P. fluorescens ATCC 17518	+	-	+	+	+	+	Unknown	(59)	
<i>P. putida</i> CS111 syn SB8.3	+	+	-	+	+	+	Ala-Lys-Thr-Ser-OHOrn-OHOrn	(44)	

Table 3.3. Crossfeeding of single *fpv* mutants in a $\Delta pvdI$ -pchC mutant background of Pf-5

Г

Pyoverdine-Producing		Р	f-5 Deleti	on Mutan	t ^a				
Strain	fpvZ fpvU fpvX fpvW fpvY fpvV				fpvY	fpvV	Composition of Peptide Chain ^b	Reference or Source	
P. putida ATCC 17470	+	+	-	+	+	+	Unknown	(59)	
P. fluorescens B10	+	+	+	-	+	+	ɛLys-OH <u>Asp</u> -Ala-a <u>Thr</u> -Ala-cOH <u>Orn</u>	(62)	
P. lini DLE411J	+	+	+	-	+	+	Lys-OHAsp-Ala-Thr-Ala-OHOrn	(44)	
P. fluorescens ATCC 17513	+	+	+	-	+	+	Unknown	(59)	
P. putida W4P63	+	+	+	-	+	+	Unknown	(64)	
P. rhodesiae CFML92-104	+	+	+	+	-	+	Ser-Lys-FOHOrn-Ser-Ser-Gly-(Lys-FOHOrn-Ser-Ser)	(10)	
P. rhodesiae DSM14020	+	+	+	+	-	+	Ser-Lys-FOHOrn-Ser-Ser-Gly-(Lys-FOHOrn-Ser-Ser)	(43-44)	
P. salomonii CFBP2022	+	+	+	+	-	+	Ser-Orn-FOHOrn-Ser-Ser-Lys-FOHOrn-Ser	(38)	
<i>P. marginalis</i> pv. alfalfa NCPPB 2644	+	+	+	+	-	+	Unknown	(65)	
P. marginalis pv. marginalis NCPPB 667	+	+	+	+	-	+	Unknown	(65)	
P. marginalis pv. pastinacae NCPPB 806	+	+	+	+	-	+	Unknown	(65)	
P. reactans NCPPB387	+	+	+	+	-	+	Unknown	http://www .straininfo. net/strains/ 53319	
P. putida Bn7	+	+	+	+	+	-	Unknown	(32)	
P. fluorescens WCS374	+	+	+	+	+	+	Ser-Lys-Gly-FOHOrn-(Lys-FOHOrn-Ser)	(17)	
P. fluorescens DSM50106	+	+	+	+	+	+	Ser-Lys-Gly-FOHOrn-Ser-Ser-Gly-(Orn-FOHOrn-Ser)	(43)	
P. fluorescens CLR711 syn PL7	+	+	+	+	+	+	<u>Ser</u> -AcOH <u>Orn</u> -Ala-Gly-a <u>Thr</u> -Ala-cOHOrn	(5)	

Table 3.3. (Continued)

Pvoverdine-Producing	Pf-5 Deletion Mutant ^a							
Strain	fpvZ	fpvU	fpvX	fpvW	fpvY	fpvV	Composition of Peptide Chain ^b	Reference or Source
P. costantinii CFBP5705	+	+	+	+	+	+	Ser-AcOHOrn-Gly- aThr-Thr-Gln-Gly-Ser-cOHOrn	(40)
<i>P. fluorescens</i> CTRp112 syn PL8	+	+	+	+	+	+	Lys-AcOHOrn-Ala-Gly-a <u>Thr</u> -Ser-cOHOrn	(5)
P. fluorescens A6	+	+	+	+	+	+	Lys-AcOHOrn-Gly-aThr-Thr-Gln-Gly-Ser-cOHOrn	(6)
P. putida CFML90-40	+	+	+	+	+	+	Asp-Ala-Asp-AcOH <u>Orn</u> -Ser-cOHOrn	(44)
P. fluorescens Pf0-1	+	+	+	+	+	+	Ala-AcOHOrn-Orn-Ser-Ser-Ser-Arg-OHAsp-Thr	(43)
P. aeruginosa ATCC 27853	+	+	+	+	+	+	<u>Ser</u> -FOH <u>Orn</u> -Orn-Gly-a <u>Thr</u> -Ser-cOHOrn (Type II pyoverdine)	(61)
P. aeruginosa 7NSK2	+	+	+	+	+	+	<u>Ser</u> -FOH <u>Orn</u> -Orn-Gly-a <u>Thr</u> -Ser-cOHOrn (Type II pyoverdine)	(14)
P. aeruginosa Pa6	+	+	+	+	+	+	<u>Ser</u> -cDab-FOHOrn-Gln- <u>Gln</u> -FOH <u>Orn</u> -Gly (Type III pyoverdine)	(21)
P. aeruginosa LESB58	+	+	+	+	+	+	Ser-?-OHOrn-Gln-Gln-OHOrn-Gly (Type III pyoverdine)	This study, predicted structure

Table 3.3. (Continued)

 a^{+} indicates growth of the Pf-5 mutant on an iron-limited medium in the presence of the pyoverdine-producing strain. – indicates no growth of the mutant in the presence of the pyoverdine-producing strain.

^bUnderline denotes D-amino acids. Parentheses define cyclic residues. cOhOrn is cyclo-hydroxy-ornithine. FOHOrn is δ N-formyl- δ N-hydroxy-ornithine. ϵ Lys is Lys linked by its ϵ -NH2. OHAsp is threo- β -hydroxy-aspartic acid. Dab is diaminobutanoic acid. OHHis is threo- β -hydroxy-histidine. aThr is allo-Thr. AcOHOrn is δ N-acetyl- δ N-hydroxy-ornithine. Italicized peptide chains are inferred from siderotyping analysis (43). These pyoverdines are in the same siderotype as a pyoverdine having the structure provided. ^a + indicates growth of the mutant in the presence of the donor strain. – indicates no growth of the mutant in the presence of the donor strain. As described above, FpvU is similar to FpvAI, which recognizes the type I pyoverdine produced by *P. aeruginosa*. As expected, a deletion in *fpvU* eliminated crossfeeding of Pf-5 by the type I-pyoverdine-producing strains *P. aeruginosa* PAO1 and *P. aeruginosa* PA14. FpvU also was required for crossfeeding by *P. fluorescens* SBW25, *P. fluorescens* ATCC 13525, *P. chlororaphis* ATCC 9446, and *P. fluorescens* ATCC 17518. Of these four strains, three make pyoverdines with known structures (Table 3.3). The pyoverdines recognized by FpvU have seven or eight amino acids in the peptide chain, with D-Ser in the first position, Arg or Lys in the second position, a small residue (Ser or Gly) in the third position, followed by FOHOrn-Lys-FOHOrn (Table 3.3). Thus, the first four amino acids of the peptide chains recognized by FpvU are identical to those of the pyoverdines found by Greenwald et al. (23) to bind with high affinity to FpvAI.

FpvY is similar in sequence to FpvU of Pf-5 and FpvAI of *P. aeruginosa* PAO1, with 60% amino acid identity to both proteins. FpvY and FpvU also share six of the fifteen substrate binding residues in the plug and receptor domains, as determined through comparison to FpvAI (Fig. 3.1d & e; Fig. 3.2). Despite the sequence similarity between FpvY and FpvU, deletion of *fpvY* indicated its requirement for crossfeeding by a different set of *Pseudomonas* spp. than FpvU (*P. rhodesiae* DSM14020, *P. rhodesiae* CFML92-104, *P. salomonii* CFBP2022, *P. reactans* NCPPB387, and three pathovars of *P. marginalis*). Three of the strains produce pyoverdines with peptide chains identified chemically or by siderotyping (Table 3.3). Pyoverdines of these three strains have peptide chains with eight or ten residues, and share similar amino acid sequences that vary in a Lys in the second position, and insertions of Gly in the sixth position and a Ser residue at the C-terminus (two strains of *P. rhodesiae*).

	Pf-5 <i>fpv</i> mutants in Δ <i>pvdI-pchA</i> background ^a					ground ^a
Feeding Strains	fpvZ	fpvU	fpvV	fpvX	fpvY	fpvW
P. fluorescens Pf-5	-	ND	ND	ND	ND	ND
P. fluorescens CHA0	-	ND	ND	ND	ND	ND
P. chlororaphis subsp. aureofaciens ATCC 13985	-	ND	ND	ND	ND	ND
P. fluorescens SBW25	ND	-	ND	ND	ND	ND
P. aeruginosa PA14	ND	-	ND	ND	ND	ND
P. aeruginosa PAO1	ND	-	ND	ND	ND	ND
P. fluorescens ATCC 13525	ND	-	ND	ND	ND	ND
P. chlororaphis ATCC 9446	ND	-	ND	ND	ND	ND
P. fluorescens ATCC 17518	ND	-	ND	ND	ND	ND
<i>P. putida</i> Bn7	+	+	-	+	+	+
P. putida ATCC 17470	+	+	+	-	+	+
P. putida CS111 syn SB8.3	+	+	+	_	+	+
P. reactans NCPPB387	ND	ND	ND	ND	-	ND
P. fluorescens B10	ND	ND	ND	ND	ND	-
P. putida W4P63	ND	ND	ND	ND	ND	-
P. aeruginosa LESB58	+	+	+	+	+	+

Table 3.4. Crossfeeding assays with *fpv* deletion mutants in a $\Delta pvdI$ -*pchA* background of Pf-5

^a– indicates lack of growth promotion by the *Pseudomonas* strain, + indicated growth promotion and ND indicates that this combination was not tested.

FpvW is 75.3% identical to PbuA from *Pseudomonas* sp. strain M114, which recognizes the pyoverdine produced by *P. fluorescens* B10 (48). FpvW was required for crossfeeding by *P. fluorescens* B10, *P. lini* DLE411J, *P. putida* W4P63, and *P. fluorescens* ATCC17513. Of these strains, only B10 and DLE411J have characterized pyoverdines, which share the peptide chain of εLys-OHAsp-Ala-aThr-Ala-cOHOrn (Table 3.3).

Three strains of *Pseudomonas putida* crossfed Pf-5 via FpvX or FpvV. FpvX was required by Pf-5 for crossfeeding by *P. putida* ATCC 17470 and *P. putida* CS111, and FpvV was required for crossfeeding by *P. putida* Bn7 (Table 3.3). FpvV is 79% identical to PupB from *P. putida* WCS358, which also recognizes the pyoverdine from *P. putida* Bn7 (32).

In summary, each of the six Fpv outer-membrane proteins was required by Pf-5 for crossfeeding by one to seven strains of *Pseudomonas* spp. Crossfeeding by a total of 25 strains was eliminated by knocking out a single *fpv* gene. Of the 25 strains, 14 produce pyoverdines having peptide chains with known or bioinformatically-predicted amino acid composition (Table 3.2). Samples of representative pyoverdines, which were partially purified from culture supernatants of *Pseudomonas* sp., were tested to verify the crossfeeding assays. Recognition of specific purified pyoverdines by the six Fpv outer-membrane proteins was confirmed (Table 3.3). Therefore, specific pyoverdines were associated with each of the Fpv outer-membrane proteins of Pf-5, and purified pyoverdines of known structure could be matched to five of the Fpv outer-membrane proteins.

Strain isolated from	<i>fpv</i> mutant ^b							
		pvdI-pchA	fpvZ	fpvU	fpvX	fpvW	fpvY	fpvV
P. fluorescens Pf-5	Asp-FOH <u>Orn</u> -Lys-Thr-Ala- <u>Ala</u> -FOH <u>Orn</u> -Lys	+	-	+	+	+	+	+
P. aeruginosa PAO1	Ser-Arg-Ser-FOHOrn-(Lys-FOHOrn-Thr-Thr)	+	+	-	+	+	+	+
	(Type I pyoverdine)							
P. putida SB8.3	Ala-Lys-Thr-Ser-AOHOrn-cOHOrn	+	+	+	-	+	+	+
P. putida CS111	Ala-Lys-Thr-Ser-OHOrn-OHOrn	+	+	+	-	+	+	+
P. fluorescens B10	ɛLys-OH <u>Asp</u> -Ala-a <u>Thr</u> -Ala-cOH <u>Orn</u>	+	+	+	+	-	+	+
P. rhodeisiae CFML92-104	Ser-Lys-FOHOrn-Ser-Ser-Gly-(Lys-FOHOrn-Ser-Ser)	+	+	+	+	+	-	+
P. putida Bn7	Unknown	+	+	+	+	+	+	-
P. aeruginosa ATCC 27853	Ser-FOHOrn-Orn-Gly-aThr-Ser-cOHOrn	+	+	+	+	+	+	+
	(Type II pyoverdine)							
P. aeruginosa 7NSK2	Ser-FOHOrn-Orn-Gly-aThr-Ser-cOHOrn	+	+	+	+	+	+	+
	(Type II pyoverdine)							
P. aeruginosa Pa6	Ser-cDab-FOHOrn-Gln-Gln-FOHOrn-Gly	+	+	+	+	+	+	+
	(Type III pyoverdine)							

Table 3.5. Purified pyoverdines stimulated iron-limited growth of derivatives of Pf-5 with deletions in specific *fpv* genes in a $\Delta pvdI$ -pchA mutant background

^aUnderline denotes D-amino acids. Parentheses define cyclic residues. cOHOrn is cyclo-hydroxy-ornithine. FOHOrn is δ N-formyl- δ N-hydroxy-ornithine. ϵ Lys is Lys linked by its ϵ -NH2. OHAsp is threo- β -hydroxy-aspartic acid. Dab is diamino-butanoic acid. OHH is threo- β -hydroxy-histidine. Italicized structures were predicted by siderotyping.

 b + indicates growth of the mutant in the presence of the purified pyoverdine. – indicates no growth of the mutant in the presence of the purified pyoverdine.

Phylogenetic analysis of Fpv outer-membrane proteins

The six Fpv outer-membrane proteins of Pf-5, their closest orthologs, and characterized Fpv outer-membrane proteins with known substrates from other *Pseudomonas* spp. were aligned and subjected to phylogenetic analysis. Of the six Fpv outer-membrane proteins in Pf-5, three are closely related to characterized Fpv outermembrane proteins. FpvV is in the same clade as PupB from P. putida WCS358 (32) and, both recognize the pyoverdine produced by *P. putida* Bn7 (Fig. 3.3). FpvY and FpvU are related to FpvAI from P. aeruginosa PA01 as well as Fpv outer-membrane proteins from P. fluorescens SBW25 and P. putida GB1. FpvY and FpvU of Pf-5 exhibited similarities in substrate recognition, taking up ferric-complexes of pyoverdines having similar, but not identical, peptide chains. For the pyoverdines taken up by FpvY and FpvU, the N-terminal amino acids of the peptide chain have high levels of conservation. The first four amino acids of these peptide chains are identical to those found in pyoverdines that bind with high affinity to FpvAI (23), which is in the same clade as FpvY and FpvU in our phylogenetic analysis (Fig. 3.3). FpvW from Pf-5 is in a sub-clade with PbuA, the Fpv from Pseudomonas sp. M114, and Fpv outer-membrane proteins from *P. brassicacearum* and *P. putida* W619. PbuA is reported to recognize the pyoverdine produced by *P. fluorescens* B10 (48), which agree with the role of FpvW in the uptake of the B10 pyoverdine by Pf-5 (Fig. 3.3). Pf-5 does not have an ortholog to PupA, which recognizes the pyoverdine from *P. putida* WCS358 (8). These data are consistent with our earlier observation that the WCS358 pyoverdine is not recognized by Pf-5 (25). FpvZ, the TBDP for the uptake of Pf-5s own pyoverdine, appears to be distantly related to FpvB, the secondary Fpv of *P. aeruginosa* spp., as they form a clade with their related orthologs, despite sharing only 47% amino acid identity. The clade with FpvZ is underrepresented as there is a lack of similar Fpv outer-membrane proteins currently sequenced, contributing to low resolution of the phylogenetic relationships of FpvZ to other Fpv outer-membrane proteins (Fig. 3.3). FpvX is unique in that it is the only characterized TBDP in the clade it forms with Fpv outer-membrane proteins from P. *fluorescens* SBW25 and *P. putida* GB-1. FpvX recognizes the pyoverdines produced by *P. putida* strains CS111, SB8.3, and ATCC 17470, but few orthologous sequences are available. Further sequencing of Fpv outer-membrane proteins will aid in resolving the distribution and evolution of this Fpv in *Pseudomonas* spp..

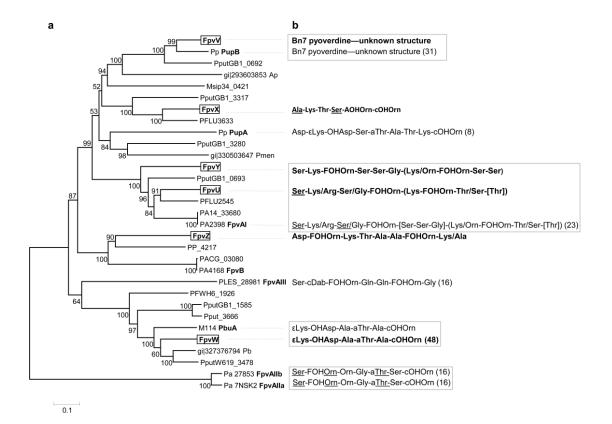


Fig. 3.3. Phylogenetic analysis of Fpv outer-membrane proteins and association with pyoverdine structures. a. Neighbor Joining analysis of Fpv outer-membrane proteins. Pf-5 Fpv outer-membrane proteins are shown in bold boxed font and Fpv outermembrane proteins having known substrates are shown in **bold** font. Abbreviations for species represented in the tree are as follows: P. fluorescens Pf-5 (Fpv), Achromobacter piechaudii ATCC 43553 (AP), P. putida GB-1 (PputGB1), P. putida F1 (Pput), P. putida W619 (W619), Methylovorus sp. SIP3-4 (Msip34), P. fluorescens SBW25 (PFLU), P. fluorescens WH6 (PFWH6), P. aeruginosa LESB58 (PLES), P. aeruginosa PA14 (PA14), P. sp. M114 (M114), P. putida (Pp), P. brassicacearum subsp. brassicacearum NFM421 (Pb), P. aeruginosa C3717 (PACG), P. aeruginosa (Pa), P. mendocina NK-01 (Pmen), P. aeruginosa 7NSK2 (Pa 7NSK2) and P. aeruginosa 27853 (Pa 27853). b. Pyoverdine peptide chain sequences recognized by the adjacent Fpv receptors. Pyoverdines associated with Fpv outer-membrane proteins of Pf-5 in this study are in bold font. Peptide chains that are a consensus of multiple peptide chains contain amino acids in brackets indicating an addition, or a / indicating either of two residues, being present at that position. References are in parentheses after peptide chains.

Functional redundancy of Fpv outer-membrane proteins in P. fluorescens Pf-5

Twelve of the 37 pyoverdine-producing strains of *Pseudomonas* spp. crossfed all of the single *fpv* mutants, indicating that crossfeeding by these strains was not mediated by a single Fpv outer-membrane protein in Pf-5. P. fluorescens WCS374 was among the twelve strains that crossfed all of the single *fpv* mutants of Pf-5. This result was unexpected because the pyoverdine produced by WCS374 (17) is reported to be identical to the pyoverdines produced by other strains (P. fluorescens SBW25, P. fluorescens ATCC 13525, and P. chlororaphis ATCC 9446), which crossfeed Pf-5 via FpvU. WCS374 produces the secondary siderophore pseudomomine (17), which could mask the role of FpvU in crossfeeding if the ferric-complex of pseudomomine also is utilized as an iron source by Pf-5. A pyoverdine-deficient mutant of WCS374 did not crossfeed the Pf- $5 \Delta pvdI$ -pchC mutant (25), indicating that the pyoverdine, rather than pseudomomine or any other secondary siderophore that may be produced by this strain, was responsible for the crossfeeding. Because the first four amino acids (Ser-Lys-Gly-FOHOrn) of the peptide chain of the WCS374 pyoverdine conform to those produced by strains that crossfed Pf-5 via FpvU and FpvY (Table 3.3), we reasoned that there may be overlap in pyoverdine uptake by these two closely-related Pf-5 proteins. To explore this possibility, we generated and tested a double fpvU-fpvY mutant in the $\Delta pvdI$ -pchC background and found that it was not crossfed by strain WCS374. Therefore, strain WCS374 crossfed Pf-5 via both FpvU and FpvY whereas three other strains that produce pyoverdines having peptide sequences with identical amino acid composition crossfed Pf-5 via FpvU alone. This apparent discrepancy could be due to unknown differences between the chemical structures of the pyoverdines, such as amino acid modification or isomerization. For example, FpvAI recognizes with high affinity only one of the possible stereoisomers of ferric-pyoverdine complexes, and has low affinity for pyoverdines that exist primarily in the incorrect conformation (23). It also is possible that FpvU and FpvY differ from one another with respect to the efficiency of their uptake of the various derivatives of a given pyoverdine, which could explain their differential roles in the crossfeeding tests of this study. A given strain of *Pseudomonas* spp. commonly produces derivatives (or analogs)

of a pyoverdine due to somewhat relaxed specificity of the adenylation domains of an NRPS or incomplete amino acid modifications (10).

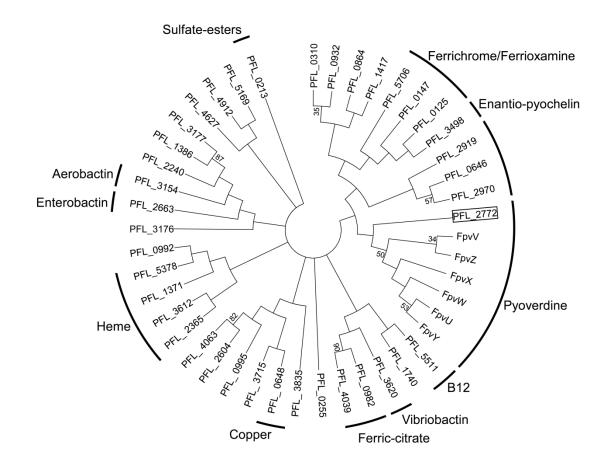
Due to the redundancy of FpvU and FpvY in uptake of the WCS374 pyoverdine, we tested strain DSM50106, which produces a similar pyoverdine, for crossfeeding of the *fpvU-fpvY* mutant in a $\Delta pvdI-pchC$ background. DSM50106 failed to promote growth of this mutant, indicating that, like WCS374, DSM50106 crossfed Pf-5 via FpvU and the closely-related FpvY (Table 3.6). Pyoverdines produced by strains WCS374 and DSM50106 have the same amino acids in the first four and the last two positions of their peptide chains (Table 3.3). We submit that the conserved amino acid motifs common to these pyoverdines are involved in their interactions with both FpvU and FpvY, allowing uptake of the ferric-pyoverdine complexes by either receptor. Overlapping functions of TBDPs are not uncommon. For example, *P. aeruginosa* has two TonB-dependent receptors for enterobactin (15, 20) and two for ferrichrome (24). In Pf-5, the closelyrelated FpvU and FpvY provide similar redundancy for the uptake of certain pyoverdines. The capacity to utilize these pyoverdines as iron sources may contribute to the fitness of the bacterium in some habitats that functional redundancy developed in Pf-5.

	fpvZ	fpvU	fpvX	fpvW	fpvY	fpvV
fpvZ		+	+	+	+	+
fpvU	+		+	+	-	+
fpvX	+	+		+	+	+
fpvW	+	+	+		+	+
fpvY	+	-	+	+		+
fpvV	+	+	+	+	+	

Table 3.6. Crossfeeding of double *fpv* mutants of Pf-5 by *P. fluorescens* WCS374 (shaded squares) or DSM50106 (open squares).

+ indicates growth of derivatives of Pf-5 with deletions in two *fpv* genes in a $\Delta pvdI$ -*pchC* background on an iron-limited medium in the presence of the strains. – indicates no growth on the iron-limited medium in the presence of the strains.

Due to the overlapping roles of FpvU and FpvY in pyoverdine uptake, we tested the possibility that other Pf-5 Fpv outer-membrane proteins also have overlapping functionalities. The remaining ten strains of *Pseudomonas* spp. that crossfed all single fpv mutants were tested for crossfeeding of mutants lacking two of the six Fpv outermembrane proteins in all combinations (data not shown). One strain, P. aeruginosa LESB58, crossfed Pf-5 via FpvZ and FpvY (Table 3.7), which was unexpected given the structural difference between its pyoverdine (type III) and those that crossfed Pf-5 via FpvZ or FpvY exclusively (Table 3.3). The type III pyoverdine purified from P. aeruginosa strain Pa6 also crossfed Pf-5 via both FpvZ and FpvY, confirming the role of FpvZ and Y in uptake of the type III pyoverdine (Table 3.7). Although beyond the scope of the present study, we speculate that the signaling and regulatory roles of FpvZ could provide an explanation for this result. The *fpvZ* mutant of Pf-5 was deficient in pyoverdine production and may lack other aspects of iron homeostasis, including altered expression of other Fpv outer-membrane proteins. When the primary Fpv (FpvZ) is nonfunctional, other Fpv outer-membrane proteins, such as FpvY, may be over-expressed, thereby facilitating iron acquisition through low affinity binding of a heterologous ferricpyoverdine. A similar pattern was observed by Mirleau et al. (46), who evaluated heterologous ferric-pyoverdine uptake by P. fluorescens C7R12. In that study, quantitative differences in the levels of iron incorporated from ferric-pyoverdines by C7R12 and a pyoverdine-biosynthesis mutant were attributed to alterations in the expression of the iron-regulated genes caused by the mutation.


Table 3.7. Crossfeeding of double *fpv* mutants of Pf-5 by *P. aeruginosa* LESB58 (type III pyoverdine-producing strain) (open squares) and utilization of ferric-complexes of pyoverdines purified from *P. aeruginosa* Pa6 (type III) (shaded squares).

	fpvZ	fpvU	fpvX	fpvW	fpvY	fpvV
fpvZ		+	+	+	-	+
fpvU	+		+	+	+	+
fpvX	+	+		+	+	+
fpvW	+	+	+		+	+
fpvY	-	+	+	+		+
fpvV	+	+	+	+	+	

+ indicates growth of derivatives of Pf-5 with deletions in two *fpv* genes in a $\Delta pvdI$ -pchC background on an iron-limited medium in the presence of the purified pyoverdine from *P*. *aeruginosa* Pa6 or a colony of *P*. *aeruginosa* LESB58. – indicates no growth on the iron-limited medium.

Eight of the remaining nine strains crossfed all of the double fpv mutants. To verify the results for two strains, we isolated the type II pyoverdines from culture supernatants of *P. aeruginosa* strains 7NSK2 and ATCC 27853 and tested them in crossfeeding experiments. The pyoverdines, like the producing strains, crossfed all of the double fpv mutants of Pf-5 (Appendix 8). As described above, secondary siderophores produced by the strains could be responsible for crossfeeding Pf-5, but this possibility could be excluded for two strains (Pf0-1 and 7NSK2) for which a mutant deficient in pyoverdine production was available. The pyoverdine-deficient mutants did not crossfeed the $\Delta pvdI$ -pchC mutant of Pf-5, indicating that the pyoverdines produced by Pf0-1 and 7NSK2 were responsible for crossfeeding. We also considered the possibility that TBDPs other than the six identified Fpv outer-membrane proteins could function in crossfeeding of Pf-5 by the eight strains. To test that possibility, we identified PFL_2772 as the protein most closely related to the Fpv outer-membrane proteins from a phylogenetic tree constructed from the plug domains of all TBDPs in the Pf-5 proteome (Fig. 3.4). We derived a mutant in PFL_2772 in the $\Delta pvdI$ -pchC background and tested it for crossfeeding. All nine strains crossfed the PFL_2772-pvdI-pchC mutant (data not shown), indicating that this TBDP plays no role in uptake of pyoverdines produced by the nine strains. Based on these results, we conclude that functional redundancy of the Pf-5 Fpv outer-membrane proteins is the most likely explanation for our observations that eight strains crossfed all of the double *fpv* mutants. Pyoverdines produced by the strains differ structurally from those associated with the Fpv outer-membrane proteins, as determined through the single *fpv* mutant analysis (Table 3.3) nevertheless; they may be recognized by these Fpv outer-membrane proteins. Although Fpv outer-membrane proteins exhibit strict specificity in high affinity pyoverdine uptake, previous studies have shown that pyoverdines can be transported into the cell with lower affinity by Fpv outermembrane proteins lacking strict specificity (23). Differences between high and lowaffinity uptake cannot be distinguished in cross-feeding experiments such as those done in this study, but low-affinity uptake of pyoverdines by multiple Fpv outer-membrane

proteins is a likely explanation for our observation that one third of the strains of *Pseudomonas* spp. tested crossfed Pf-5 via more than one Fpv outer-membrane protein.

Fig. 3.4. Maximum Parsimony analysis of the plug domains from the 45 Pf-5 TonB-dependent outer-membrane proteins. Bootstrap values greater than 30 are shown. PFL_2772 is boxed to indicate that is receptor was deleted and tested in crossfeeding assays. TBDPs with putative functions are labeled with the substrate as characterized in Hartney et al. (25).

Conclusion

For a soil bacterium like P. fluorescens Pf-5, which can establish in the rhizosphere where biologically-available iron is limited, the ability to use heterologous pyoverdines can provide a competitive advantage (4, 34). Utilizing heterologous pyoverdines transfers the cost of pyoverdine production to neighboring bacterial cells while sequestering iron away from competitors (27). Piracy is a good way to describe the behavior of *P. fluorescens* Pf-5, which is able to produce and utilize the high affinity siderophore pyoverdine and the lower affinity siderophore enantio-pyochelin to provide itself with iron, yet maintains an arsenal of TonB-dependent outer-membrane proteins for the uptake of heterologous siderophores. In this study, we demonstrated that Pf-5 uses its six Fpv outer-membrane proteins to utilize a variety of pyoverdines produced by other pseudomonads as iron sources. We employed a combination of phylogenetics, bioinformatics, mutagenesis, and crossfeeding bioassays to assign functionalities to each of the six Fpv outer-membrane proteins in the Pf-5 proteome. We demonstrated that phylogenetically-related Fpv outer-membrane proteins take up ferric complexes of structurally-related pyoverdines, thereby establishing structure-function relationships that can be employed in the future to predict the pyoverdine substrates of Fpv outermembrane proteins in other *Pseudomonas* spp.

Acknowledgments

We thank Keith Poole for providing *P. putida* Bn7, Karl Hassan for assistance with Deepview. Isabelle Schalk and Valérie Geoffroy for providing strains of *Pseudomonas* spp., and Eric Bernaud for his technical assistance. This work was supported by grants 2006-35319-17427 and 2008-35600-18770 from the USDA National Institute of Food and Agriculture.

References

- 1. Andrews, S. C., A. K. Robinson, and F. Rodríguez-Quiñones. 2003. Bacterial iron homeostasis. FEMS Microbiol. Rev. 27:215-237.
- 2. Arnold, K., L. Bordoli, J. Kopp, and T. Schwede. 2006. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics **22**:195-201.
- 3. **Bachmann, B. O., and J. Ravel.** 2009. Chapter 8. Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. Meth. Enzymol. **458**:181-217.
- Bakker, P. A. H. M., R. Van Peer, and B. Schippers. 1990. Specificity of siderophores and siderophore receptors and biocontrol by *Pseudomonas* spp., p. 131-142. *In* D. Hornby (ed.), Biological control of soil-borne plant pathogens. CAB International, Wallingford, UK.
- 5. **Barelmann, I., K. Taraz, H. Budzikiewicz, V. Geoffroy, and J. M. Meyer.** 2002. The structures of the pyoverdins from two *Pseudomonas fluorescens* strains accepted mutually by their respective producers. Z. Naturforsch. C **57:**9-16.
- 6. Beiderbeck, H., K. Taraz, and J. M. Meyer. 1999. Revised structures of the pyoverdins from *Pseudomonas putida* CFBP 2461 and from *Pseudomonas fluorescens* CFBP 2392. Biometals **12:**331-338.
- Bigelow, H. R., D. S. Petrey, J. Liu, D. Przybylski, and B. Rost. 2004. Predicting transmembrane beta-barrels in proteomes. Nucleic Acids Res. 32:2566-2577.
- Bitter, W., J. D. Marugg, L. A. de Weger, J. Tommassen, and P. J. Weisbeek. 1991. The ferric-pseudobactin receptor PupA of *Pseudomonas putida* WCS358: homology to TonB-dependent *Escherichia coli* receptors and specificity of the protein. Mol. Microbiol. 5:647-655.
- Bordoli, L., F. Kiefer, K. Arnold, P. Benkert, J. Battey, and T. Schwede. 2009. Protein structure homology modeling using SWISS-MODEL workspace. Nat. Protoc. 4:1-13.
- Budzikiewicz, H. 2004. Siderophores of the Pseudomonadaceae sensu stricto (fluorescent and non-fluorescent *Pseudomonas* spp.). Fortschr. Chem. Org. Naturst. 87:81-237.

- 11. Carson, K. C., J. M. Meyer, and M. J. Dilworth. 2000. Hydroxamate siderophores of root nodule bacteria. Soil Biol. Biochem. 32:11-21.
- Choi, K. H., and H. P. Schweizer. 2005. An improved method for rapid generation of unmarked *Pseudomonas aeruginosa* deletion mutants. BMC Microbiol. 5:30.
- Cobessi, D., H. Celia, N. Folschweiller, I. J. Schalk, M. A. Abdallah, and F. Pattus. 2005. The crystal structure of the pyoverdine outer membrane receptor FpvA from *Pseudomonas aeruginosa* at 3.6 angstrom resolution. J. Mol. Biol. 347:121-134.
- 14. De Chial, M., B. Ghysels, S. A. Beatson, V. Geoffroy, J. M. Meyer, T. Pattery, C. Baysse, P. Chablain, Y. N. Parsons, C. Winstanley, S. J. Cordwell, and P. Cornelis. 2003. Identification of type II and type III pyoverdine receptors from *Pseudomonas aeruginosa*. Microbiology 149:821-831.
- Dean, C. R., and K. Poole. 1993. Cloning and characterization of the ferric enterobactin receptor gene (*pfeA*) of *Pseudomonas aeruginosa*. J. Bacteriol. 175:317-324.
- Demange, P., S. Wendenbaum, C. Linget, C. Mertx, M. Cung, A. Dell, and M. A. Abdallah. 1990. Bacterial siderophores: structure and NMR assignment of pyoverdins Pa, siderophores of *Pseudomonas aeruginosa* ATCC 15692. Biol. Metals 3:155-170.
- 17. **Djavaheri, M.** 2007. Iron-regulated metabolites of plant growth promoting *Pseudomonas fluorescens* WCS374: their role in induced systemic resistance. Thesis. Utrecht University, Utrecht, Netherlands.
- Ferguson, A. D., C. A. Amezcua, N. M. Halabi, Y. Chelliah, M. K. Rosen, R. Ranganathan, and J. Deisenhofer. 2007. Signal transduction pathway of TonBdependent transporters. Proc. Natl. Acad. Sci. USA 104:513-518.
- Ferguson, A. D., and J. Deisenhofer. 2002. TonB-dependent receptors structural perspectives. Biochem. Biophys. Acta 1565:318-332.
- Ghysels, B., U. Ochsner, U. Mollman, L. Heinisch, M. Vasil, P. Cornelis, and S. Matthijs. 2005. The *Pseudomonas aeruginosa pirA* gene encodes a second receptor for ferrienterobactin and synthetic catecholate analogues. FEMS Microbiol. Lett. 246:167-174.
- 21. Gipp, S., J. Hahn, K. Taraz, and H. Budzikiewicz. 1991. Two pyoverdins from *Pseudomonas-aeruginosa* R. Z. Naturforsch. C **46**:534-541.

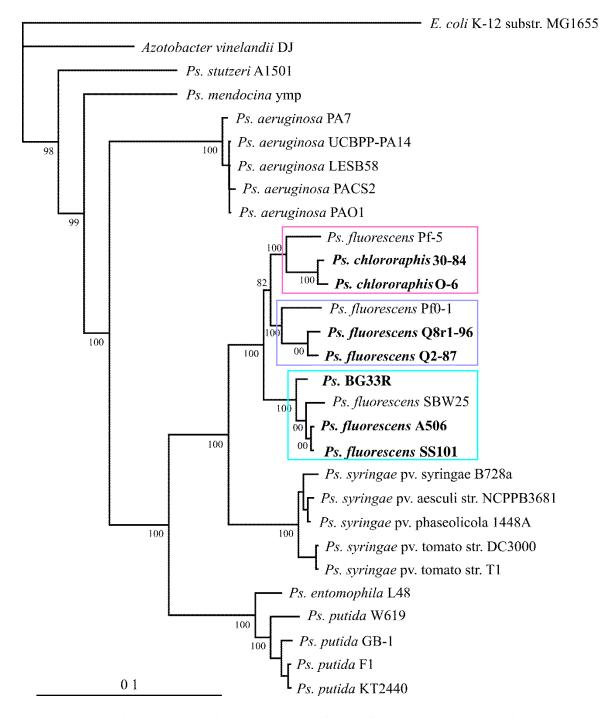
- 22. Greenwald, J., F. Hoegy, M. Nader, L. Journet, G. L. Mislin, P. L. Graumann, and I. J. Schalk. 2007. Real time fluorescent resonance energy transfer visualization of ferric pyoverdine uptake in *Pseudomonas aeruginosa*. A role for ferrous iron. J. Biol. Chem. 282:2987-2995.
- Greenwald, J., M. Nader, H. Celia, C. Gruffaz, V. Geoffroy, J. M. Meyer, I. J. Schalk, and F. Pattus. 2009. FpvA bound to non-cognate pyoverdines: molecular basis of siderophore recognition by an iron transporter. Mol. Microbiol. 72:1246-1259.
- 24. Hannauer, M., Y. Barda, G. L. Mislin, A. Shanzer, and I. J. Schalk. 2010. The ferrichrome uptake pathway in *Pseudomonas aeruginosa* involves an iron release mechanism with acylation of the siderophore and recycling of the modified desferrichrome. J. Bacteriol. **192:**1212-1220.
- 25. Hartney, S. L., S. Mazurier, T. A. Kidarsa, M. C. Quecine, P. Lemanceau, and J. E. Loper. 2011. TonB-dependent outer-membrane proteins and siderophore utilization in *Pseudomonas fluorescens* Pf-5. Biometals 24:193-213.
- 26. Hassan, K. A., A. Johnson, B. T. Shaffer, Q. Ren, T. A. Kidarsa, L. D. H. Elbourne, S. Hartney, R. Duboy, N. C. Goebel, T. M. Zabriskie, I. T Paulsen, and J. E. Loper . 2010. Inactivation of the GacA response regulator in *Pseudomonas fluorescens* Pf-5 has far-reaching transcriptomic consequences. Environmental Microbiology 12:899-915.
- Hibbing, M. E., C. Fuqua, M. R. Parsek, and S. B. Peterson. 2010. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Micro. 8:15-25.
- 28. Hider, R. C., and X. Kong. 2010. Chemistry and biology of siderophores. Nat. Prod. Rep. 27:637-657.
- 29. Howell, C. R., and R. D. Stipanovic. 1979. Control of *Rhizoctonia solani* in cotton seedlings with *Pseudomonas fluorescens* and with an antibiotic produced by the bacterium. Phytopathology **69**:480-482.
- King, E. O., M. K. Ward, and D. E. Raney. 1954. Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med. 44:301-307.
- Koster, M., W. Ovaa, W. Bitter, and P. Weisbeek. 1995. Multiple outer membrane receptors for uptake of ferric pseudobactins in *Pseudomonas putida* WCS358. Mol. Gen. Genet. 248:735-743.

- Koster, M., J. van de Vossenberg, J. Leong, and P. J. Weisbeek. 1993. Identification and characterization of the *pupB* gene encoding an inducible ferricpseudobactin receptor of *Pseudomonas putida* WCS358. Mol. Microbiol. 8:591-601.
- Krewulak, K. D., and H. J. Vogel. 2011. TonB or not TonB: is that the question? Biochem. Cell. Biol. 89:87-97.
- Loper, J. E., and M. D. Henkels. 1997. Availability of iron to *Pseudomonas fluorescens* in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Appl. Environ. Microbiol. 63:99-105.
- Loper, J. E., I. T. Paulsen, and D. Y. Kobayashi. 2007. The genomic sequence of *Pseudomonas fluorescens* Pf-5: Insights Into Biological Control. Phytopathology 97:233-238.
- 36. Matthijs, S., G. Laus, J. M. Meyer, K. Abbaspour-Tehrani, M. Schafer, H. Budzikiewicz, and P. Cornelis. 2009. Siderophore-mediated iron acquisition in the entomopathogenic bacterium *Pseudomonas entomophila* L48 and its close relative *Pseudomonas putida* KT2440. Biometals 22:951-964.
- 37. McGuffin, L. J., K. Bryson, and D. T. Jones. 2000. The PSIPRED protein structure prediction server. Bioinformatics 16:404-405.
- Meyer, J. M. 2010. Pyoverdine siderophores as taxonomic and phylogenic markers, p. 201-233. *In J. L. Ramos and A. Filloux (ed.)*, *Pseudomonas*. Springer Netherlands.
- 39. Meyer, J. M. 2000. Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent *Pseudomonas* species. Arch. Microbiol. **174:**135-142.
- 40. Meyer, J. M. 2007. Siderotyping and Bacterial Taxonomy: A Siderophore Bank for a Rapid Identification at the Species Level of Fluorescent and Non-Fluorescent *Pseudomonas*. *In* A. Varma and S. B. Chincholkar (ed.), Soil Biology: Microbial Siderophores, vol. 12. Springer.
- Meyer, J. M., and M. A. Abdallah. 1978. The fluorescent pigment of *Pseudomonas fluorescens*: biosynthesis, purification and physicochemical properties. J. Gen. Microbiol. 107:319-328.
- 42. Meyer, J. M., V. A. Geoffroy, C. Baysse, P. Cornelis, I. Barelmann, K. Taraz, and H. Budzikiewicz. 2002. Siderophore-mediated iron uptake in fluorescent *Pseudomonas*: characterization of the pyoverdine-receptor binding site of three cross-reacting pyoverdines. Arch. Biochem. Biophys. **397**:179-183.

- 43. Meyer, J. M., C. Gruffaz, V. Raharinosy, I. Bezverbnaya, M. Schafer, and H. Budzikiewicz. 2008. Siderotyping of fluorescent *Pseudomonas*: molecular mass determination by mass spectrometry as a powerful pyoverdine siderotyping method. Biometals 21:259-271.
- 44. Meyer, J. M., C. Gruffaz, T. Tulkki, and D. Izard. 2007. Taxonomic heterogeneity, as shown by siderotyping, of strains primarily identified as *Pseudomonas putida*. Int. J. Syst. Evol. Microbiol. **57:**2543-2556.
- 45. Meyer, J. M., A. Stintzi, and K. Poole. 1999. The ferripyoverdine receptor FpvA of *Pseudomonas aeruginosa* PAO1 recognizes the ferripyoverdines of *P. aeruginosa* PAO1 and *P. fluorescens* ATCC 13525. FEMS Microbiol. Lett. 170:145-150.
- 46. Mirleau, P., S. Delorme, L. Philippot, J.-M. Meyer, S. Mazurier, and P. Lemanceau. 2000. Fitness in soil and rhizosphere of *Pseudomonas fluorescens* C7R12 compared with a C7R12 mutant affected in pyoverdine synthesis and uptake. FEMS Microbiol. Ecol. **34**:35-44.
- Moon, C. D., X. X. Zhang, S. Matthijs, M. Schafer, H. Budzikiewicz, and P. B. Rainey. 2008. Genomic, genetic and structural analysis of pyoverdine-mediated iron acquisition in the plant growth-promoting bacterium *Pseudomonas fluorescens* SBW25. BMC Microbiol. 8:7.
- 48. Morris, J., D. F. Donnelly, E. O'Neill, F. McConnell, and F. O'Gara. 1994. Nucleotide sequence analysis and potential environmental distribution of a ferric pseudobactin receptor gene of *Pseudomonas* sp. strain M114. Mol. Gen. Genet. MGG 242:9-16.
- 49. Nader, M., W. Dobbelaere, M. Vincent, L. Journet, H. Adams, D. Cobessi, J. Gallay, and I. J. Schalk. 2007. Identification of residues of FpvA involved in the different steps of Pvd-Fe uptake in *Pseudomonas aeruginosa*. Biochemistry 46:11707-11717.
- 50. Nader, M., L. Journet, A. Meksem, L. Guillon, and I. J. Schalk. 2011. Mechanism of ferripyoverdine uptake by *Pseudomonas aeruginosa* outer membrane transporter FpvA: no diffusion channel formed at any time during ferrisiderophore uptake. Biochemistry 50:2530-2540.
- 51. Notredame, C., D. G. Higgins, and J. Heringa. 2000. T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. **302:**205-217.

- Raaijmakers, J. M., L. van der Sluis, P. A. H. M. Bakker, B. Schippers, M. Koster, and P. J. Weisbeek. 1995. Utilization of heterologous siderophores and rhizosphere competence of fluorescent *Pseudomonas* spp. Can. J. Microbiol. 41:126–135.
- 53. Rausch, C., T. Weber, O. Kohlbacher, W. Wohlleben, and D. H. Huson. 2005. Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res. 33:5799-5808.
- 54. **Ravel, J., and P. Cornelis.** 2003. Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends Microbiol. **11**:195-200.
- 55. **Redly, G. A., and K. Poole.** 2003. Pyoverdine-mediated regulation of FpvA synthesis in *Pseudomonas aeruginosa*: involvement of a probable extracytoplasmic-function sigma factor, FpvI. J. Bacteriol. **185**:1261-1265.
- Schalk, I. J., I. L. Lamont, and D. Cobessi. 2009. Structure-function relationships in the bifunctional ferrisiderophore FpvA receptor from *Pseudomonas aeruginosa*. Biometals 22:267-268.
- 57. Shirley, M., and I. L. Lamont. 2009. Role of TonB1 in pyoverdine-mediated signaling in *Pseudomonas aeruginosa*. J. Bacteriol. **191:**5634-5640.
- Stachelhaus, T., H. D. Mootz, and M. A. Marahiel. 1999. The specificityconferring code of adenylation domains in nonribosomal peptide synthetases. Chem. Biol. 6:493-505.
- 59. Stanier, R. Y., N. J. Palleroni, and M. Doudoroff. 1966. The aerobic pseudomonads: a taxonomic study. J. Gen. Microbiol. 43:159-271.
- Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599.
- Tappe, R., K. Taraz, H. Budzikiewicz, J. M. Meyer, and J. F. Lefevre. 1993. Structure elucidation of a pyoverdin produced by *Pseudomonas aeruginosa* ATCC27853. J. Prakt. Chem. 335:83-87.
- 62. **Teintze, M., M. B. Hossain, C. L. Barnes, J. Leong, and D. van der Helm.** 1981. Structure of ferric pseudobactin, a siderophore from a plant growth promoting *Pseudomonas*. Biochemistry **20**:6446-6457.

- 63. Wong-Lun-Sang, S., J.-J. Bernardini, C. Hennard, P. Kyslík, A. Dell, and M. A. Abdallah. 1996. Bacterial siderophores: Structure elucidation, 2D ¹H and ¹³C NMR assignments of pyoverdins produced by *Pseudomonas fluorescens* CHAO Tetrahedron Lett. 37:3329-3332.
- 64. Xu, G. W., and D. C. Gross. 1986. Selection of fluorescent pseudomonads antagonistic to *Erwinia carotovora* and suppressive of potato seed piece decay. Phytopathology **76**:414-422.
- 65. Yamamoto, S., H. Kasai, D. L. Arnold, R. W. Jackson, A. Vivian, and S. Harayama. 2000. Phylogeny of the genus *Pseudomonas*: intrageneric structure reconstructed from the nucleotide sequences of *gyrB* and *rpoD* genes. Microbiology 146: 2385-2394.
- 66. Youard, Z. A., G. L. Mislin, P. A. Majcherczyk, I. J. Schalk, and C. Reimmann. 2007. *Pseudomonas fluorescens* CHAO produces enantio-pyochelin, the optical antipode of the *Pseudomonas aeruginosa* siderophore pyochelin. J. Biol. Chem. 282:35546-35553.


Chapter 4: TonB-dependent Outer-membrane Proteins of the *Pseudomonas* fluorescens Group

Abstract

The *Pseudomonas fluorescens* group is made up of environmental bacteria including strains associated with soil or plant surfaces that have biological control capabilities. This study identifies the TonB-dependent outer-membrane proteins (TBDP) in the predicted proteomes of ten strains of the *P. fluorescens* group. Among the ten strains, the number of TBDPs ranges from 14 to 45. Collectively, the ten strains have 317 putative TBDPs, which phylogenetic analysis places into 84 groups. Of the 84 TBDP types, 28 have putative roles in the uptake of vitamin B12, sulfur-esters, or iron, including 11 groups for the uptake of pyoverdine siderophores. In 54 TBDP types, no putative functions could be assigned. The five TBDP types conserved in all ten strains have putative functions in uptake of vitamin B12, heme, and the siderophore ferrichrome, with the remaining two of unknown function. Each strain has three to six ferric-pyoverdine outer-membrane proteins (Fpvs). Using a strategy developed for *P. fluorescens* Pf-5 (Chapter 3), I assigned putative pyoverdine substrates to many Fpv outer-membrane proteins in strains of the *P. fluorescens* group.

Introduction

The bacterial genus *Pseudomonas* is made up of diverse species (35), including *P*. fluorescens, P. chlororaphis and 50 other related species that fall within the P. fluorescens group. Among the heterogeneous bacteria in the P. fluorescens group are plant-associated strains that suppress plant disease. Multi-locus sequence analysis of ten conserved genes in the Pseudomonas group by Bayesian analysis placed ten nonpathogenic plant- or soil-associated strains into a single clade (Loper et al. unpublished) (Fig. 4.1), which corresponds to the *P. fluorescens* group identified by Mulet et al. (35). This clade has three sub-clades. Two strains of *P. chlororaphis* (30-84 and O-6) and *P.* fluorescens Pf-5 make up sub-clade 1. Sub-clade 2 is composed of P. fluorescens Q2-87, P. fluorescens Q8r1-96, and the distantly-related P. fluorescens Pf0-1. Four strains make up sub-clade 3: P. fluorescens strains A506, SS101, SBW25, and Pseudomonas sp. BG33R (previously called *P. synxantha* BG33R). These ten strains are environmental bacteria isolated from soil, the rhizosphere, or the phyllosphere. Each of the strains can function in biological control or suppress certain plant diseases (Table 4.1). Seven of the strains were recently sequenced, which, along with three previously-sequenced strains (37, 44, 45) facilitated investigation into genomic similarities. The ten strains share a core of 2831 predicted proteins representing 46-53% of each strains predicted proteome (Loper et al., unpublished). With only half of the proteins shared among the ten strains a high level of genomic diversity is indicated.

Fig. 4.1. Bayesian analysis of select strains of *Pseudomonas* **spp. having fully sequenced genomes based on multilocus sequence analysis (MLSA).** The three subclades of the species group are highlighted, sub-clade 1 in pink, sub-clade 2 in purple, and sub-clade 3 in blue. (Bayesian tree provided by Neal Wilson)

A goal of this study was to identify the TBDPs in the sequences of ten strains of the *P. fluorescens* group, and to identify the core TBDPs conserved in all ten genomes. Other members of the genus *Pseudomonas* have TBDPs numbering in the 20s and 30s. For example, *P. aeruginosa* PAO1 has 35, *P. putida* KT2440 has 30, *P. syringae* DC3000 has 25, and *P. entomophila* L48 has 31 (http://img.jgi.doe.gov/cgi-bin/pub/main.cgi). A recent survey of TonB-dependent outer-membrane proteins in the fluorescent pseudomonads focused on sequenced strains of *P. aeruginosa*, *P. syringae*, and *P. putida*/*P. entomophila* (7). The authors found high levels of diversity and identified a core set of TBDPs within the species of *Pseudomonas*. PhuR, which is involved in heme uptake, is the only TBDP present in all the *Pseudomonas* strains surveyed (7, 36). Within seven *P. aeruginosa* strains, a core of 26 TBDPs was identified. Three strains of *P. putida* have a core of 14; the inclusion of *P. entomophila* reduces the core to 11 TBDPs (7). The strains of *P. syringae* surveyed have a core of 13 TBDPs.

A second goal of this study was to assign putative functions to the TBDPs in the P. fluorescens group. Many of the TBDPs found in P. aeruginosa and other Gramnegative bacteria have been assigned functions, but the functions of many TBDPs remain unknown. Some of the substrates recognized by TBDPs are vitamin B12 (cobalamin) (43), copper (53), nickel (42), maltodextrins (29), sucrose (3) and ferric complexes of siderophores including pyochelin, enterobactin, aerobactin, ferrioxamine, ferrichrome, ferric-citrate, vibriobactin, and pyoverdines (6, 8, 15). The fluorescent pseudomonads produce pyoverdines that vary in the structure of the peptide chain and Fpv outermembrane proteins, which are the TBDPs for ferric-pyoverdine uptake (4, 46). One Fpv is used for the uptake of the cognate pyoverdine, but many fluorescent pseudomonads have additional Fpv outer-membrane proteins for heterologous pyoverdine uptake (16, 26, 37). In Chapter 3, I proposed a strategy for assigning pyoverdine substrates to Fpv outer-membrane proteins based on the relationships observed between the Fpv sequences and structures of pyoverdine substrates in Pf-5. Continuing this strategy here, I assigned putative pyoverdine substrates to many Fpv outer-membrane proteins in ten strains of the P. fluorescens group.

Strain	Source Target Disease		References
P. chloror	raphis		
30-84	Wheat rhizosphere, Kansas, USA	Take-all	(38)
0-6	Wheat rhizosphere, Utah, USA	Soft-rot, cucumber mosaic virus	(50)
P. fluores	cens	-	
Pf-5	Soil, Texas, USA	Pythium damping off	(22, 37)
Pf0-1	Soil, Massachusetts, USA	Soil borne diseases	(44)
SBW25	Sugar beet phyllosphere, Oxfordshire, UK	Soil borne diseases	(44)
Q8r1-96	Wheat rhizosphere, Washington, USA	Take-all	(39)
Q2-87	Wheat rhizosphere, Washington, USA	Take-all	(51)
A506	Pear phyllosphere, California, USA	Fire blight	(28)
SS101	Wheat rhizosphere, The Netherlands	Oomycete plant pathogens	(10)
Pseudomo	<i>pnas</i> sp.		
BG33R	Peach rhizosphere, South Carolina, USA	Root knot nematode	(25)

 Table 4.1. Ten strains with biological control ability in the P. fluorescens group

Methods and materials

Sequence compilation

The predicted proteomes of the ten strains in the *P. fluorescens* group were surveyed for TonB-dependent outer-membrane proteins based on the presence of conserved domains. Candidate TBDPs were compiled from each strain and submitted to Pfam to check for the presence of conserved receptor (Pfam: PF00593), plug (Pfam: PF07715) and N-terminal signaling domains (Pfam: PF07660) characteristic of TBDPs and the location of the domains within each protein. The TBDPs within each strain were categorized as receptors or transducers as described by Hartney et al. (20).

Reciprocal BLASTP analysis

The TBDPs from each strain were compared to each of the other strains by reciprocal BLASTP analysis. TBDPs were considered orthologs if they shared greater than 60% amino acid identity over the entire protein.

Phylogenetic analysis

Phylogenetic and molecular evolutionary analyses were conducted using *MEGA* version 4.0.2 (48). The clustalW based alignment option ws used to align the amino acid sequences with a gap open penalty of 3 and a gap extension penalty of 1.8. The aligned sequences were masked to remove gaps and subjected to Neighbor Joining and Maximum Parsimony analysis, the resulting consensus tree was used. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates were collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (500 replicates) is shown next to the branches. The Maximum Parsimony tree was obtained using the Close-Neighbor-Interchange algorithm with search level 3 in which the initial trees were obtained with the random addition of sequences (10

replicates). All positions containing gaps and missing data were eliminated from the dataset (Complete Deletion Option).

Bacterial strains and growth conditions

Pseudomonas strains (Table 4.1) were grown on King's medium B (KMB) at 27°C for 24 h (24). Mutants used in crossfeeding and heterologous pyoverdine utilizations assays are *P. fluorescens* Pf-5 $\Delta pvdI$ -pchA (20), *P. fluorescens* Pf0-1 $\Delta pvdI$ (Mark Silby), *P. chlororaphis* 30-84 $\Delta pvdL$ (Leland Pierson III), *P. fluorescens* A506 Pvd⁻ (Steve Lindow), and *P. fluorescens* SS101 $\Delta pvdI$ (Jos Raaijmakers).

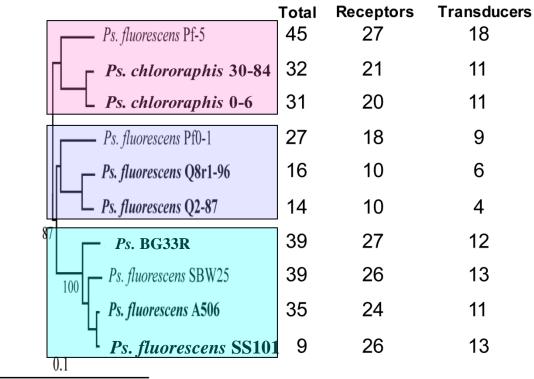
Bioinformatic prediction of the amino acid composition of the pyoverdine peptide chain

The predicted amino acid sequences of the genes encoding the non-ribosomal peptide synthetases were submitted to the NRPS/PKS predictor (1) and the NRPS predictor (http://www-ab.informatik.uni-tuebingen.de/software/NRPSpredictor) (40, 47).

Crossfeeding assays

Crossfeeding of strains Pf-5 $\Delta pvdI$ -pchA, 30-84 $\Delta pvdL$, and Pf0-1 pvdI was tested on KMB amended with 400 μ M 2,2 dipyridyl, as described in Hartney et al. (20). Crossfeeding assays with the pyoverdine-deficient mutants of A506 and SS101 were performed on KMB amended with 800 μ M 2,2 dipyridyl as this was the concentration at which these two mutants were limited in growth. Crossfeeding assays with strains A506 Pvd⁻ and SS101 $\Delta pvdI$ were done by placing agar plugs of donor strains on KMB amended with 800 μ M 2,2 dipyridyl. 5 μ l of a 100-fold dilution of a 0.1 OD₆₀₀ suspension of the feeding strain were placed 10mm from the agar plug. Plates were incubated at 27°C. Readings were taken at 24 and 48 h. Assays were done on duplicate plates in multiple experiments.

Purified pyoverdine recognition assays


Pyoverdine mutants of 30-84, Pf0-1, A506, and SS101 were tested for their ability to recognize purified pyoverdines. Cells from the pyoverdine mutants were collected from KMB agar plates, suspended in sterile water to 0.1 OD_{600} , and diluted 100 fold in sterile water before spreading on KMB amended with 400 μ M 2,2'-dipyridyl for 30-84 and Pf0-1 or 800 μ M 2,2'-dipyridyl for A506 and SS101. 100 μ L of the bacterial suspensions were spread on the plates to create a lawn. 5 μ L of 8 mM pyoverdine solution was then placed on 5 mm diameter filter paper disks on the agar surface of these plates. Assays were done on duplicate plates in multiple experiments.

Results and discussion

Numbers of TonB-dependent outer-membrane proteins


The total number of TBDP genes within the strains of the *P. fluorescens* group varies between 45 (Pf-5) and 14 (Q2-87). The number of the two types of TBDPs, receptors and transducers, also varies among strains (Fig. 4.2). The range of receptors is from 27 in Pf-5 to ten in Q8r1-96 and Q2-87; the range of transducers is from 18 in Pf-5 to four in Q2-87. All strains have approximately twice as many receptors as transducers. Similarities in the number of TBDPs are found between some of the more related strains. For example, BG33R, SBW25, and SS101 all have 39 TBDPs (Fig. 4.2).

Orthologous TBDPs were defined as having >60% amino acid identity over the entire protein, being the reciprocal best hit, and clustering in a common clade in phylogenetic analysis. The clade with BG33R, SBW25, A506, and SS101 share the most TBDPs at 23 (Fig. 4.3a). The clade with Pf0-1, Q2-87 and Q8r1-96 share the fewest TBDPs at seven. This is due to the large difference in the total number of TBDPs between Pf0-1 (27) and Q2-87 (14) and Q8r1-96 (16). Higher levels of similarity, > 80% amino acid identity, are found between 30-84 and O-6, which share 25 TBDPs, A506 and SS101 sharing 33 TBDPs, and Q2-87 and Q8r1-96 sharing ten TBDPs. Five TBDPs are conserved in all ten strains (Fig. 4.3a).

Concatenated tree

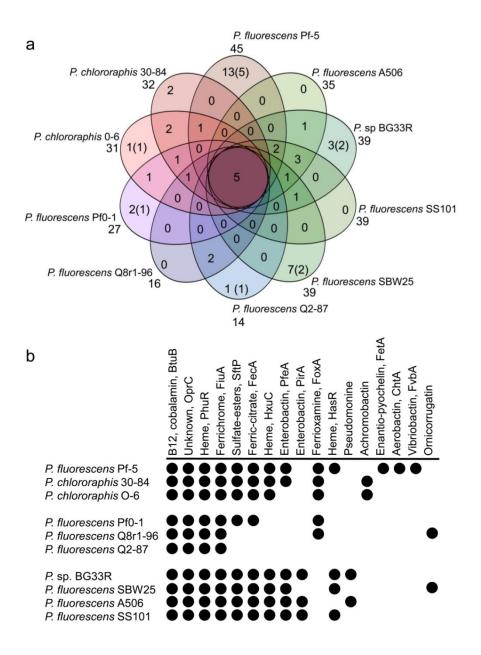

Fig. 4.2. Number of TonB-dependent outer-membrane proteins in the strains of the *P. fluorescens* group. Clade representing the *P. fluorescens* group (from Fig. 4.1), illustrating the phylogenetic relationships between the ten strains, with sub-clades highlighted corresponding to assignment in Figure 4.1. The total number of TBDPs found in each strain is listed along with the two types of TBDPs, receptors and transducers. Transducers have the addition of an N-terminal signaling domain that is not present in the receptors.

Fig. 4.3. Diagram showing the number of conserved TBDPs in ten strains within the *P. fluorescens* **group. a.** The number of TBDPs in each proteome (outside circle), the number of orthologous TBDPs shared by all strains in a given sub-clade (second circle from perimeter), and the number of orthologous TBDPs shared by all 10 strains (center). **b.** Lists of the orthologous TBDPs for SBW25 (blue circle, sub-clade 3), Pf-5 (pink circle, sub-clade 1), Pf0-1 (purple circle, sub-clade 2) corresponding to the three sub-clades and orthologs in Pf-5 to the five core TBDPs (yellow circle).

а

The distribution of the TBDPs within the three clades and within the *P*. *fluorescens* group is further illustrated in Figure 4.4a, a Venn diagram showing the TBDPs unique to an individual strain and specific combinations of strains. Pf-5 and SBW25 have the most TBDPs, 13 and seven, respectively, not found in other strains of the *P. fluorescens* group. Orthologs of these TBDPs are present in the proteomes of bacteria other than *P. fluorescens* group strains (Fig. 4.4a), suggesting horizontal gene transfer as discussed in Chapter 2. The most similarity is between A506, BG33R, and SS101, which have three TBDPs not found in the other strains of the species group. At the level of >60% amino acid identity, 73 TBDP types were identified. Seventeen of the 73 types were assigned putative functions (Fig. 4.4b). This number does not include the TBDPs with putative roles in pyoverdine uptake as they are too divergent from each other to conform to the >60% amino acid cutoff.

Fig. 4.4. Conservation and diversity of TBDP types. **a.** Venn diagram showing the number of TBDPs in strains of the *P. fluorescens* group. The total number of TBDPs is shown next to the strain name. TBDPs unique to each strain are shown in the outermost section with the number of TBDPs having orthologs in bacteria outside of the *P. fluorescens* group in parenthesis. **b.** TBDPs for which putative functions could be assigned among the ten strains.

Core TonB-dependent outer-membrane proteins

The core TBDPs includes orthologs of OprC, BtuB (vitamin B12/cobalamin), PhuR (heme), and FiuA (ferrichrome) and an unknown TBDP. The putative functions were assigned to each core TBDP by comparison to well-characterized TBDPs from other *Pseudomonas* spp. by amino acid percent identity and gene cluster organization (Fig. 4.5). The gene clusters in which the core TBDPs are located illustrate conservation of the TBDP and the surrounding genes (Fig. 4.5). The clades of the orthologous TBDPs making up the core are also shown illustrating evolutionary relationships of these proteins. The orthologs of OprC are in gene clusters having the most diversity in the number and arrangement of genes compared to the other gene clusters containing core TBDPs (Fig. 4.5a). OprC may have a role in copper uptake as it binds and is regulated by copper in *P. aeruginosa* (53). NosA, an ortholog of OprC from *P. stutzeri*, transports copper that is needed for nitrate reductase activity (27). However, oprC is not regulated by copper in P. putida KT2440 (33) and is up-regulated in the presence of zinc in Pf-5 (Lim et al. unpublished). Therefore, the substrate for OprC is not clearly defined and may differ among strains of Pseudomonas spp. The gene cluster containing the TBDP for vitamin B12 uptake is conserved among the strains (Fig. 4.5b) as are the gene clusters containing the ferrichrome TBDP (Fig. 4.5c) and the TBDP of unknown function (Fig. 4.5e). The putative heme TBDPs orthologous to PhuR are adjacent to ECF sigma and anti-sigma factors (Fig. 4.5d). PhuR orthologs have also been identified in strains of P. aeruginosa, P. syringae, P. putida, and P. entomophila (7). The recently sequenced P. fluorescens WH6 also has a PhuR ortholog as well as orthologs for BtuB, FiuA, OprC and the TBDP of unknown function. The number of conserved TBDPs within the ten strains increases to nine if the strains Q2-87 and Q8r1-96 are removed from the comparison, as they have the fewest TBDPs in their genomes. Two of the four additional TBDPs have putative functions for sulfate-ester (SftP) (23) and ferric citrate (FecA) (31) uptake, but the other two are unknown in function.

Fig. 4.5. Gene clusters and clades from Neighbor Joining analysis of the core **TBDPs.** Gene clusters and clades containing core TBDPs are shown for strains Pf-5 (PFL_), Pf0-1 (Pf101_), SBW25 (PFLU), SS101 (Pf1SS101_), BG33R (PseBG33_), A506 (Pf1A506_), 30-84 (Pch13084_), O-6 (Pch1O6), Q2-87 (Pf1Q2_), and Q8r1-96 (Pf1Q8_). The five core TBDPs are **a.** OprC, **b.** Cobalamin (B12), **c.** Ferrichrome, **d.** Heme, and **e.** Unknown. Predicted gene functions are denoted by color: red, TBDP; brown, ABC transport; gold, membrane protein (other than ABC transport); green, biosynthesis; purple, ECF sigma factor and anti-sigma factor; yellow, regulatory (other than ECF sigma factor); blue, hypothetical. Genes whose functions appear unrelated to that of the TBDP are shown in white. Orthologs not readily identifiable by their position in the gene cluster are indicated by identical patterns.

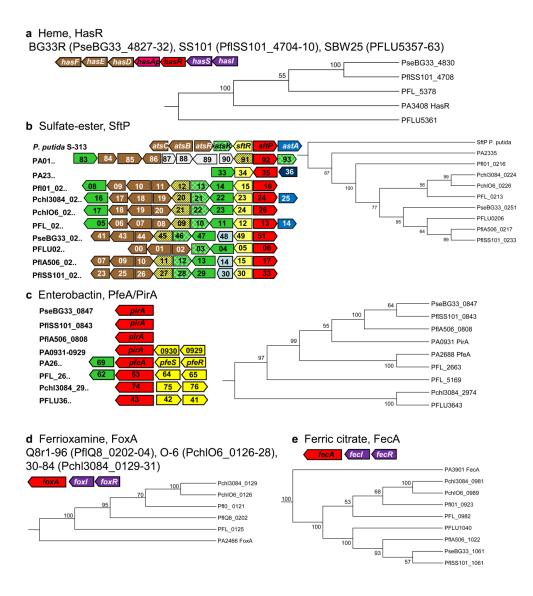


Fig. 4.5.

Putative functions of non-core TBDPs

Some of TBDPs which are not part of the core are orthologs of well-characterized TBDPs (Fig. 4.4b). For example, Pf-5, SBW25 and BG33R have orthologs to HasR and the hemophore HasS (Fig. 4.6a) (7). An additional putative heme TBDP orthologous to HxuC from *P. aeruginosa* is found in A506, 30-84, O-6, BG33R, SBW25 and Pf-5 (6), bringing the number of heme TBDPs in Pf-5, SBW25, and BG33R to three. Eight of the strains surveyed have orthologs to SftP for sulfate-ester uptake (Fig. 4.6b). TBDPs with putative functions in enterobactin uptake were identified. Pf-5, SBW25 and 30-84 have orthologs to PfeA and the adjacent two component regulatory genes (Fig. 4.6c), whereas A506, SS101 and BG33R have orthologs to FoxA for the uptake of ferrioxamine were identified in Pf0-1, O-6, 30-84, and Pf-5 (Fig. 4.6d) (19). All the strains except Q2-87 and Q8r1-96 have orthologs to FecA for ferric citrate uptake (Fig. 4.6e) (8).

Some strains of fluorescent pseudomonads make a secondary siderophore (Fig. 4.4b). Pf-5 makes enantio-pyochelin with the TBDP FetA located in the biosynthetic gene cluster for uptake (20-21). SBW25 makes the secondary siderophore ornicorrugatin with a corresponding TBDP and there is an ortholog found in Q8r1-96 (5). TBDPs were found in gene clusters for a pseudomonine-like siderophore in A506 and BG33R. Gene clusters for the production of an achromobactin-like siderophore were identified in 30-84 and O-6 with an adjacent TBDP.

Fig. 4.6. Gene clusters and clades from Neighbor Joining analysis of TBDPs with putative functions. Gene clusters and clades containing TBDPs are shown for strains Pf-5 (PFL_), Pf0-1 (Pf101_), SBW25 (PFLU), SS101 (Pf1SS101_), BG33R (PseBG33_), A506 (Pf1A506_), 30-84 (Pch13084_), O-6 (Pf1O6_), Q2-87 (Pf1Q2_), and Q8r1-96 (Pf1Q8_) with putative functions in the uptake of **a.** Heme, **b.** Sulfate-esters, **c.** Enterobactin, **d.** Ferrioxamine, **e.** Ferric citrate. Predicted gene functions are denoted by color: red, TBDP; brown, ABC transport; gold, membrane protein (other than ABC transport); green, biosynthesis; purple, ECF sigma factor and anti-sigma factor; yellow, regulatory (other than ECF sigma factor); pink, hemophore; blue, hypothetical. Genes whose functions appear unrelated to that of the TBDP are shown in white. Orthologs not readily identifiable by their position in the gene cluster are indicated by identical patterns.

TBDP clusters and horizontal gene transfer

In the process of comparing the TBDPs of the ten strains, I noticed that some TBDPs appear to be duplicated. Two contiguous TBDPs in BG33R, PseBG33_2355 and PseBG33_2354 are 55% identical at the amino acid level to each other and have 55% amino acid identity to Veis_2440 in *Verminephrobacter eiseniae* EF01_2, with the next most similar TBDPs found in *Nitrococcus mobilis* and *Paracoccus denitrificans*. The GC content of PseBG33_2354 (62.5%) differs significantly from BG33R's genomic average of 59.6%. Interestingly, these two TBDPs are located next to a biosynthetic gene cluster for a mycobactin-like siderophore in BG33R (11). Two TBDPs in SBW25, PFLU2509 and PFLU2941 are orthologs of PSPTO_1855 from *P. syringae* pv. tomato DC3000, a possible indication of a duplication event within SBW25, as they are 87% identical to each other.

Clustered TBDP genes, within two genes of each other, were found in Pf-5, 30-84, O-6, BG33R, Pf0-1, SBW25, and Q2-87. Pf-5 has three clusters (PFL_3176-3177; PFL_0646, PFL_0648; PFL_0992, PFL_0995). PFL_3176 and PFL_3177 are not related to each other but they are orthologous to PSEEN3436 and PSEEN3437 from *P. entomophila* (7). Clustered orthologs to PFL_0646 and PFL_0648 are found in 30-84, O-6, BG33R, Pf0-1, and SBW25. The clustered TBDPs PchlO6_0633 and PchlO6_0635 in the O-6 genome are 93% and 97% identical to Pchl3084_0505 and Pchl3084_0507, respectively, from 30-84. Q2-87 (PflQ2_2928 and PflQ2_2925) and O-6 (PchlO6_3255 and PchlO6_3258) share another pair of clustered orthologous genes. The conservation of these clustered TBDPs within some of the strains suggests horizontal transfer or the loss of TBDPs from some strains.

Candidates for horizontal gene transfer (HGT) were identified as some of the strains have TBDPs without orthologs within the pseudomonads (Fig. 4.4a). In O-6, PchlO6_3555 is 75% identical to Acav_1899 from *Acidovorax avenae* subsp. *avenae* and is phylogenetically related to Fpv outer-membrane proteins (Fig. 4.7a). In Q2-87

PflQ2_3242 is 45% identical to a TBDP in *Nitrococcus mobilis* Nb-231 and is similar to TBDPs found in *Ralstonia eutropha* and *Achromobacter xylosoxidans*. This TBDP is adjacent to a cluster of genes with characteristics of siderophore production and is in the Fpv outer-membrane protein clade (Fig. 4.8a). Pf01_2342 is 56% identical to Smal_3152 from *Stentrophomonas maltophilia* R551-3 and TBDPs in other *Stentrophomonas* spp., and has a significantly different % GC of 64% compared to the genomic average of 60.6%. In Pf-5, the candidates for horizontal gene transfer are described in Hartney et al. (20).

Pyoverdine iron-acquisition systems

Characterization of pyoverdines: bioinformatic structure predictions and crossfeeding of Pf-5

For the seven recently sequenced strains, the length and amino acid composition of the pyoverdine peptide chains were predicted bioinformatically from the amino acid sequences of the non-ribosomal peptide synthetases in the pyoverdine biosynthetic gene clusters. The predicted pyoverdine peptide chain structures of 30-84 and O-6 and the Pf-5 pyoverdine are identical in the first four amino acid residues (Asp-FOHOrn-Lys-Thr) with minor differences in the N-terminal portion of the peptide chain (Table 4.2). The predicted pyoverdine peptide chains of BG33R, SS101, and A506 are very similar; the only difference in the first four residues is due to an unknown in the sequence of the BG33R pyoverdine, and the last three residues are conserved. The predicted peptide chains of Q2-87 and Q8r1-96 are both eight amino acids long and are conserved in five of the residues at identical positions in the peptide chains (Table 4.2). Therefore, the strains within each sub-clade produce identical or very similar pyoverdines. The seven strains were tested for crossfeeding of Pf-5 $\Delta pvdI$ -pchC and derivatives with deletions in the six fpv genes (Table 4.2). Pf-5 was crossfed by BG33R, A506, 30-84, O-6, and SS101, but not by Q2-87 and Q8r1-96. Strains 30-84 and O-6 did not crossfeed the *fpvZ* mutant. BG33R did not crossfeed the *fpvU* mutant (Table 4.2). The predicted amino acid composition of the BG33R pyoverdine is similar to the pyoverdines produced by other

pseudomonads that were recognized by FpvU (Chapter 3). They may differ however, because not all of the amino acid residues in BG33R pyoverdine could be predicted bioinformatically. SS101 did not crossfeed the *fpvY* mutant of Pf-5. The peptide chain of the pyoverdine produced by strain SS101 is identical to that of the P. fluorescens 18.1 pyoverdine, which is taken up with high affinity by FpvAI, an ortholog of FpvY (18). It appears that the first four amino acids of the SS101 peptide chain (Lys-Gly-FOHOrn) conform exactly to the sequence of pyoverdines transported by FpvAI (18) and FpvU (Chapter 3). The observation that strain SS101 crossfed Pf-5 via FpvY rather than FpvU indicates that other residues in the peptide chain also confer specificity for pyoverdine binding. A506 was able to crossfeed all of the single *fpv* mutants, therefore A506 and a pyoverdine deficient mutant of A506 were tested for crossfeeding of double *fpv* mutants of Pf-5 $\Delta pvdI$ -pchC siderophore mutant. A506 did not crossfeed a mutant of Pf-5 deficient in both $f_{pv}U$ and $f_{pv}Y$ (Table 4.2). The pyoverdine-deficient mutant of A506 did not promote the growth of the Pf-5 siderophore mutant or any of the *fpv* mutants tested. This same result was observed in crossfeeding assays with P. fluorescens WCS374, which has the same peptide chain structure as A506 (Chapter 3). Therefore, the results of the crossfeeding assays were as expected based on the ferric-pyoverdines assigned to the Fpv outer-membrane proteins of Pf-5 in Chapter 3.

Test Strains	fpv mutants ^a						Bioinformatic prediction of peptide chain ^b				
	fpvZ	<i>L</i> fpvU fpvX fpvW fpvY fpvV		fpvV							
P. chlororaphis 30-84	-	+	+	+	+	+	Asp-FOH <u>Orn</u> -Lys-Thr-Gly/Ala- <u>Gly/Ala</u> -FOH <u>Orn</u> -?/Ala				
P. chlororaphis O-6	-	+	+	+	+	+	Asp-FOHOrn-Lys-Thr-Gly-Gly-FOHOrn-Lys				
P. sp.BG33R	+	-	+	+	+	+	Ser-?-Gly-FOHOrn-Lys-FOHOrn-?/Ser				
P. fluorescens SS101	+	+	+	+	-	+	Ser-Lys-Gly-FOHOrn-Ser-Ser-Gly-Lys-FOHOrn-Ser				
P. fluorescens A506	+	+*	+	+	+*	+	Ser-Lys-Gly-FOHOrn-Lys-FOHOrn-Ser				
P. fluorescens Q2-87	-	-	-	-	-	-	Ser-AcOHOrn-Gly-Gly-Ser-Asp-Thr/Dhb				
P. fluorescens Q8r1-96	-	-	-	-	-	-	Ala/Gly-AcOHOrn-Ala-Gly-Ser-Ala/Gly-Asp-Thr/Dhb				

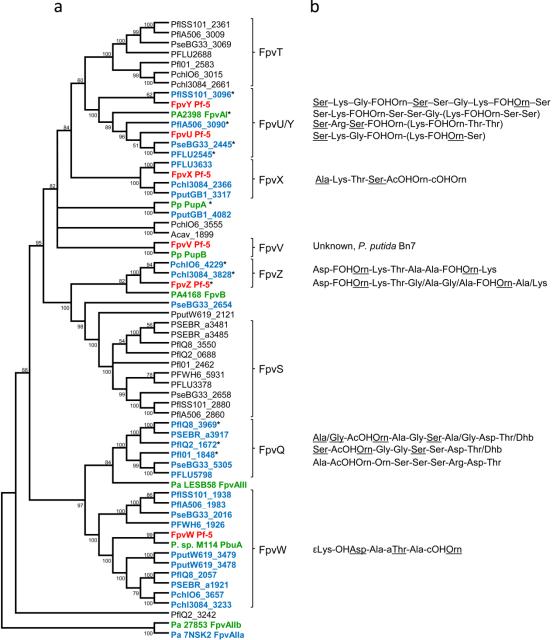
Table 4.2. Crossfeeding of single *fpv* mutants of Pf-5 in the $\Delta pvdI$ -pchC background

^a+ indicates growth of the mutant in the presence of the test strain. – indicates no growth of the mutant in the presence of the test strain. * Negative crossfeeding obtained with a *fpvU fpvY* mutant. ^bUnderline denotes D-amino acids. FOHOrn is δ N-formyl- δ N-hydroxy-ornithine. Dhb is diamino-butanoic acid. AcOHOrn is δ N-acetyl- δ N-hydroxy-ornithine.

Bioinformatic and phylogenetic analysis of Fpv outer-membrane proteins

The amino acid sequences of the six characterized Fpv outer-membrane proteins from Pf-5 were individually submitted to BLASTP analysis against the predicted proteomes of the nine other strains of the *P. fluorescens* group. Orthologs were found in all of the strains at a cutoff of >60% amino acid identity (% ID) (Table 4.3). A506 and BG33R have orthologs of FpvU. Six of the strains have Fpv outer-membrane proteins similar to FpvW (55-68%ID). SBW25 has an ortholog of FpvX, and *P. chlororaphis* 30-84 and O-6 have orthologs of FpvZ. To identify any Fpv outer-membrane proteins not found in the initial BLASTP analysis, the TBDPs from each strain were subjected to BLASTP against the protein sequences of the other strains. Additional Fpv outermembrane proteins were identified in Q2-87, BG33R, SS101, and SBW25. It was observed that the % ID between the Fpv outer-membrane proteins of the ten strains covers a wide range, but there is a basal level of amino acid identity at approximately 32-35%. This level of identity exceeds the 20% ID between any Fpv and a TBDP of different function.

Fpv outer-membrane proteins involved in ferric-pyoverdine uptake are present in all ten strains. In each strain, one *fpv* is located in the pyoverdine-biosynthesis gene cluster and two to five additional *fpv* genes are located elsewhere in the genome. Phylogenetic analysis indicates distinct clades and sub-clades of Fpv outer-membrane proteins (Fig. 4.7a). Four sub-clades include Fpv outer-membrane proteins that are located in pyoverdine biosynthetic gene clusters (denoted by an asterisk in Fig. 4.7a). The TBDPs with putative roles in ferric-pyoverdine uptake are both receptors (black) and transducers (blue) (Fig. 4.7a). Pf-5 has Fpv transducers only but all other strains have both Fpv receptors and transducers. Fpv outer-membrane proteins in the receptor class cluster separately from Fpv outer-membrane proteins in the transducer class, although there is a level of relatedness as the Fpv receptors form clades with Fpv transducers at external and internal branch points (Fig. 4.7a). The Fpv outer-membrane proteins

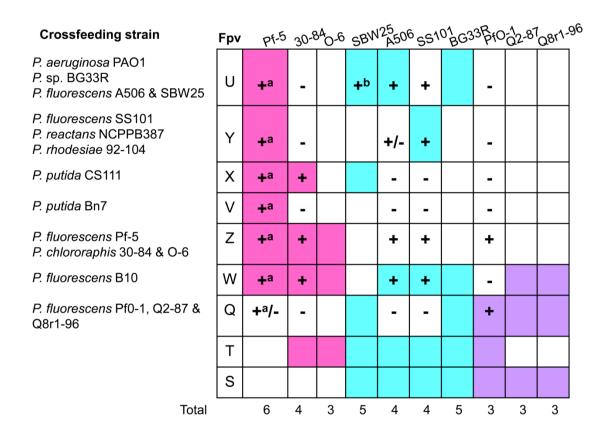

identified in this study are not considered as part of the core due to their diversity within and between the ten strains, as no one Fpv is found in all ten strains.

		%		%		%		%		%		%		%		%	O 8r1-	%		%
Pf-5	Pf-5	ID	30-84	ID	O 6	ID	SBW25	ID	A506	ID	BG33R	ID	SS101	ID	Pf0-1	ID	96	ID	Q2-87	ID
	Fpv		Pch13084_		PchlO6_		PFLU		PflA506_		PseBG33_		PflSS101_		Pf101_		PflQ8_		PflQ2_	
FpvW			3355	68	3657	68	5798	40	1983	55	2016	55	1938	55	1848	41	2057	68	1672	38
FpvU			2488	41	4229	38	2545	72	3090	70	2445	70	3096	57	2583	40	3550	36	0688	37
FpvV			2488	36	4229	33	3633	42	3090	36	2445	34	3154	34	2462	39	3550	35	0688	35
FpvX			2488	55	3015	41	3633	75	3090	41	2445	39	3154	40	2583	43	3550	37	0688	37
FpvY			2488	38	3555	39	2545	58	3090	52	2445	54	3154	55	2583	40	2057	34	0688	35
FpvZ			3950	83	4229	83	3378	49	2860	47	2654	42	2880	46	2462	48	3550	46	0688	47
Q2-87																				\vdash
PflQ2_3242	FpvY	35	3355	33	3657	32	2545	35	3090	34	2445	32	3096	35	1848	33	2057	32		
BG33R																				-
PseBG33_3069	FpvX	40	2783	72	3015	73	2688	89	3008	91			2361	91	2583	71	2057	35	0688	34
PseBG33_2658	FpvZ	47	3950	45	4229	46	3378	85	2860	88			288	88	2462	81	3550	79	0688	80
PseBG33_5305	FpvW	40	3355	41	3657	41	5798	94	1983	41			1938	42	1848	56	3969	51	1672	52
SS101																				-
PflSS101_2361	FpvX	40	2783	72	3015	72	2688	88	3008	97	3069	91			2583	72	2057	35	0688	34
SBW25																				┼──
PFLU2688	FpvX	41	2783	74	3015	74			3008	88	3069	89	2361	88	2583	72	3550	33	1672	32

 Table 4.3. Reciprocal BLASTP analysis of Fpv outer-membrane proteins of the P. fluorescens group

Fig. 4.7. Phylogenetic analysis of Fpv outer-membrane proteins and association with pyoverdine structures. a. Maximum Parsimony analysis of Fpv outer-membrane proteins from the P. fluorescens group, close orthologs and characterized Fpv outermembrane proteins. The characterized Fpv outer-membrane proteins from Pf-5 are in red. An asterisk indicates that the TBDP is in a pyoverdine biosynthetic gene cluster, and blue indicates that the Fpv is a transducer. Branches are collapsed for bootstraps <50. Abbreviations for species are as follows: P. fluorescens A506 (PflA506_), P. fluorescens SS101 (PflSS101_), P. fluorescens Q2-87 (PflQ2_), P. fluorescens Q8r1-96 (PflQ8_), P. fluorescens Pf-5 (PFL), P. fluorescens SBW25 (PFLU), P. fluorescens Pf01 (Pfl01), P. sp. BG33R (PseBG33_), P. chlororaphis 30-84 (Pchl3084_), P. chlororaphis O-6 (PchlO6), P. putida GB-1 (PputGB1), Acidovorax avenae subsp. avenae (Acav), P. putida W619 (PputW619_), P. fluorescens WH6 (PFWH6_), P. aeruginosa LESB58 (Pa LESB58), P. aeruginosa PAO1 (PA), P. sp. M114, P. putida (Pp), P. brassicacearum subsp. brassicacearum NFM421 (PSEBR_), P. aeruginosa ATCC27853 (Pa 27853), and P. aeruginosa 7NSK2 (Pa 7NSK2). b. Pyoverdine peptide chains associated with the Fpv functional groups. Underline denotes D-amino acids. Parentheses define cyclic residues. cOHOrn is cyclo-hydroxy-ornithine. FOHOrn is δN -formyl- δN -hydroxyornithine. ε Lys is Lys linked by its ε -NH2. OHAsp is threo- β -hydroxy-aspartic acid. Dab is diamino-butanoic acid. AcOHOrn is δ N-acetyl- δ N-hydroxy-ornithine. A slash between two amino acids means that the pyoverdine peptide chain recognized by the associated Fpv contains either of the amino acids.

b



144

Functional characterization of Fpv outer-membrane proteins

Mutants deficient in pyoverdine biosynthesis in strains 30-84, Pf0-1, A506 and SS101 were tested for growth on an iron-limited medium in the presence of the members of the *P. fluorescens* group. These strains were also tested in crossfeeding assays with *Pseudomonas* strains that produce pyoverdines previously linked to specific Pf-5 Fpv outer-membrane proteins (20) (Chapter 3) (Fig. 4.8). 30-84 was crossfed by *P. chlororaphis* O-6, *P. fluorescens* Pf-5 and B10, and *P. putida* CS111. Pf0-1 was crossfed by *P. fluorescens* Pf-5, Q2-87, and Q8r1-96, *P. chlororaphis* 30-84 and O-6. A506 was crossfed by *P. aeruginosa* PAO1, *P. fluorescens* SS101, SBW25, Pf-5, B10, *P.sp.* BG33R, *P. chlororaphis* 30-84, O-6, and *P. reactans* NCPPB387. SS101 was crossfed by *P. aeruginosa* PAO1, *P. fluorescens* SS101, SBW25, Pf-5, B10, *P. sp.* BG33R, *P. chlororaphis* 30-84, O-6, P. *rhodesiae* 92-104 and *P. reactans* NCPPB387.

There is some correlation between the ability to crossfeed the pyoverdine mutants and which clade the feeding strains are in, which is related to the similar pyoverdine peptide chains produced by the more related strains (Table 4.2). The pyoverdines produced by the strains of the Pf-5 clade crossfed all four strains (A506, SS101, 30-84 and Pf0-1). The pyoverdines produced by the strains in the SBW25 clade crossfed Pf-5, A506, and SS101; in addition, SS101 crossfed Pf0-1. The pyoverdines produced by Q2-87 and Q8r1-96 crossfed Pf0-1 only, and Pf0-1 crossfed Pf-5 only (20).

Fig. 4.8. Crossfeeding of strains in the *P. fluorescens* group by *Pseudomonas* strains producing pyoverdines recognized by the characterized Fpv outer-membrane proteins of Pf-5^a (Chapter 3). Colored boxes represent the presence of the Fpv in the strain. Pink corresponds to the Pf-5, 30-84, and O-6 clade. Blue corresponds to the SBW25, A506, SS101, and BG33R clade. Purple corresponds to the Pf0-1, Q2-87, and Q8r1-96 clade. + means growth of the mutant and - means no growth of the mutant in the presence of the pyoverdine producing strain (i.e., crossfeeding strain). Open boxes lacking a plus or minus indicate that the crossfeeding test was not done. ^bPublished in Moon et al. (34).

To identify the recognition capabilities for diverse pyoverdine peptide chain structures, mutants deficient in pyoverdine biosynthesis in strains 30-84, Pf0-1, A506, and SS101 were tested for crossfeeding by heterologous ferric-pyoverdines produced by *Pseudomonas* strains, which are unique in structure and known to be recognized by the Fpv outer-membrane proteins of Pf-5 (20) (Chapter 3) (Table 4.4).

The *P. chlororaphis* 30-84 pyoverdine mutant was able to grow in the presence of the purified pyoverdines produced by *P. fluorescens* B10, Pf-5, and *P. putida* SB8.3 (Table 4.4). The pyoverdine deficient mutant of SS101 was able to grow in the presence of the purified pyoverdines from B10, *P. aeruginosa* PAO1, *P. rhodesiae* CFML92-104 and Pf-5 (Table 4.4). The pyoverdine mutant of Pf0-1 was able to grow in the presence of the purified pyoverdines from *P. rhodesiae* CFML 92-104 and *P. fluorescens* Pf-5. The pyoverdine mutant of A506 was able to grow in the presence of the ferric-pyoverdines from *P. fluorescens* B10 and Pf-5, and *P. aeruginosa* PAO1 (Table 4.4).

The three ferric-pyoverdine types produced by *P. aeruginosa* strains (52) were tested, resulting in differing utilization patterns between the pyoverdine mutants of 30-84, Pf0-1, A506, and SS101 (Table 4.4). A506 and SS101 were able to recognize the type I and type II ferric-pyoverdines. Pf0-1 was able to recognize the type II and type III ferric-pyoverdines, and 30-84 was able to recognize the type III ferric-pyoverdine.

Strain	fpv*	Pyoverdine peptide chain structure ^a	Pvd- Mutants ^b					
			30-84	Pf0-1	A506	SS101		
P. rhodesiae CFML92-104	Y	Ser-Lys-FOHOrn-Ser-Ser-Gly-(Lys-FOHOrn-Ser-Ser) (4)	-	+	-	+		
P. aeruginosa PA01	U	Ser-Arg-Ser-FOHOrn-(Lys-FOHOrn-Thr-Thr)	-	-	+	+		
		(Type I pyoverdine) (14)						
P. putida SB8.3	Х	Ala-Lys-Thr-Ser-AOHOrn-cOHOrn (32)	+	-	-	-		
P. putida Bn7	V	Unknown	-	-	-	-		
P. fluorescens Pf-5	Ζ	Asp-FOHOrn-Lys-Thr-Ala-Ala-FOHOrn-Lys (20)	+	+	+	+		
P. fluorescens B10	W	ELys-OHAsp-Ala-aThr-Ala-cOHOrn (49)	+	-	+	+		
P. aeruginosa 7NSK2		Ser-FOHOrn-Orn-Gly-aThr-Ser-cOHOrn	-	+	+	+		
		(Type II pyoverdine) (9)						
P. aeruginosa Pa6		Ser-cDab-FOHOrn-Gln-Gln-FOHOrn-Gly	+	+	-	-		
		(Type III pyoverdine) (17)						

Table 4.4. Purified ferric-pyoverdine stimulated growth assay

^aUnderline denotes D-amino acids. Parentheses define cyclic residues. cOHOrn is cyclo-hydroxy-ornithine. FOHOrn is δ N-formyl- δ N-hydroxy-ornithine. OHAsp is threo- β -hydroxy-aspartic acid. Dab is diamino-butanoic acid. AOHOrn is δ N-acetyl- δ N-hydroxy-ornithine. ^b+ sign indicates growth of the pyoverdine deficient mutant in the presence of the pyoverdine producing strain, – sign indicates no growth of the pyoverdine deficient mutant in the presence of the pyoverdine strain. *See Chapter 3.

Fpv functional groups

Based on % amino acid identity, crossfeeding/ferric-pyoverdine growth promotion assays, and phylogenetic analysis, eight Fpv functional groups were identified (Fig. 4.7b; Fig. 4.8). Fpv outer-membrane proteins orthologous to the characterized Fpv outer-membrane proteins of Pf-5 were identified in each of the nine strains and correlated with specific ferric-pyoverdines through crossfeeding and purified ferric-pyoverdine utilization assays.

Orthologs of FpvU and FpvY form the FpvU/Y functional group. Strains Pf-5, SS101 (PfISS101_3069), A506 (PfIA506_3090), BG33R (PseBG33_2445), and SBW25 (PFLU2545) have Fpv outer-membrane proteins in this group, including FpvAI from *P. aeruginosa* PAO1. All of the ferric-pyoverdines recognized by this group have a Ser in position one and similar residues making up the rest of the peptide chain. The Fpv outer-membrane proteins in this group, except for Pf-5, are located in pyoverdine biosynthetic regions (Fig. 4.7a). The overlapping nature of FpvY and FpvU is supported by SS101 and A506 having orthologs of Y and U, respectively. *P. aeruginosa* PAO1 was able to crossfeed SS101 even though it does not have an ortholog of FpvU, so it is feasible that SS101 is using PfISS101_3096 to take up PAO1's pyoverdine. A506 has PfIA506_3090 as an ortholog to FpvU and is able to grow in the presence of ferric-pyoverdines recognized by FpvU. A506 is also able to recognize the pyoverdines from SS101 and *P. reactans* NCPPB387, which are linked to FpvY, but not the *P. rhodesiae* CFML92-104 pyoverdine, which appears to be specific to FpvY.

The FpvX functional group contains orthologous Fpv outer-membrane proteins from Pf-5, SBW25 (PFLU3633), and 30-84 (Pchl3084_2366) (Fig. 4.7b). The ferric-pyoverdines recognized by these Fpv outer-membrane proteins are produced by *P. putida* strains CS111 and SB8.3 (Fig. 4.8).

Orthologs of FpvZ, which are found in Pf-5, 30-84 (Pchl3084_3828), and O-6 (PchlO6_4229), make up the FpvZ functional group. These three TBDP genes are

located in the pyoverdine biosynthetic gene clusters of these strains and are involved in the uptake of the cognate ferric-pyoverdines (Fig. 4.7).

FpvV, which is found in Pf-5 and is orthologous to *P. putida* PupB, makes up the FpvV functional group. Pf-5 is the only strain with FpvV, and only Pf-5 could grow in the presence of the *P. putida* Bn7 pyoverdine (Fig. 4.8).

Orthologs of FpvW, found in all the *P. fluorescens* group strains except Pf0-1, SBW25 and Q2-87, make up the FpvW functional group. The pyoverdine mutants with Fpv outer-membrane proteins in this group were able to grow in the presence of the pyoverdine produced by *P. fluorescens* B10 (Fig. 4.8).

Orthologs found in strains Q2-87, Q8r1-96, Pf0-1, BG33R, and SBW25 make up the FpvQ functional group. The Fpv outer-membrane proteins from Q2-87 (PfIQ2_1672), Q8r1-96 (PfIQ8_3969), and Pf0-1 (PfI01_1848) are located in pyoverdine biosynthetic gene clusters of these strains (Fig. 4.7a). Pf0-1 showed positive crossfeeding with the strains Q2-87 and Q8r1-96, whereas all of the other strains tested had negative crossfeeding with these strains (Fig. 4.8). PfI01_1848 is phylogenetically related to Fpv outer-membrane proteins from these two strains and is the likely candidate for the recognition of the pyoverdines produced by Q2-87 and Q8r1-96 (Fig. 4.7a).

The FpvS and FpvT functional groups are made up of receptors found in all the strains except Pf-5 and also include Fpv outer-membrane proteins from *P. fluorescens* WH6 and *P. brassicacearum* subsp. brassicacearum NFM421. To our knowledge this is the first report of TBDPs of the receptor type being putative Fpv outer-membrane proteins. There is some indication that these Fpv receptors are involved in pyoverdine recognition as some strains were able to grow in the presence of pyoverdines despite a lack of the associated Fpv transducer. Pf0-1, A506, and SS101 do not have an ortholog of FpvZ but growth was promoted with the Pf-5 ferric-pyoverdine and in crossfeeding assays with Pf-5, 30-84 and O-6 (Fig. 4.8). Pf101_2462, PfISS101_2880, and

PfIA506_2860 are in the FpvS functional group (Fig. 4.7a), which may be how these strains are recognizing the pyoverdines produce by Pf-5, 30-84, and O-6.

Conclusion

Two levels of core TBDPs are evident in the *P. fluorescens* group, one at the species group level and the other within the more related strains. Within the *P. fluorescens* group is a core of five TBDPs. The five conserved TBDPs are used for the uptake of vitamin B12 (cobalamin) and substrates with bound metals such as iron and copper. These metals function as co-factors for proteins in essential metabolic pathways. Putative functions of TBDPs outside the core are largely related to iron uptake primarily from siderophores, but the majority of the TBDP functions are unknown. The heme binding TBDP PhuR was identified in all ten strains surveyed here and was also identified in the eleven strains surveyed by Cornelis and Bodilis (7). PhuR appears to be core to the genus *Pseudomonas*. The TBDP core for the *P. fluorescens* group is small compared to the TBDP cores identified in other *Pseudomonas* species (7), which is reasonable due to the diversity of the strains within this group. Within this species group, 84 TBDP types were identified, made up of 17 TBDP types with putative functions, eight Fpv functional groups, three additional Fpv outer-membrane proteins, and 56 unknown TBDP types.

TBDPs with putative functions in ferric-pyoverdine uptake are found within each strain. The abundance and diversity of the Fpv outer-membrane proteins in this species group indicates the importance of acquiring iron through heterologous pyoverdine siderophores. The characterized Fpv outer-membrane proteins of Pf-5, *P. aeruginosa* PAO1 and *P. putida* facilitated the identification of 28 Fpv outer-membrane proteins in the seven recently-sequenced strains and provides a method for Fpv identification in other pyoverdine-producing bacteria. The strategy proposed in Chapter 3 for identifying and predicting ferric-pyoverdine recognition of Fpv outer-membrane proteins was successful for the majority of the Fpv outer-membrane proteins present in the strains of

this study. Some of the Fpv outer-membrane proteins are divergent from the currently characterized Fpv outer-membrane proteins, preventing association with ferric-pyoverdines. Mutagenesis of these Fpv outer-membrane proteins followed by assays with ferric-pyoverdines of known structures not recognized by the currently characterized Fpv outer-membrane proteins may identify substrates for these Fpv outer-membrane proteins.

The ten strains evaluated in this study are associated with soil, root and leaf surfaces (Table 4.1). These are diverse environments, which provide challenges to the associated bacteria in nutrient acquisition (2, 30, 41). TonB-dependent outer-membrane proteins have been found to aid in the uptake of essential minerals, particularly iron, as well as carbohydrates (3, 5, 27, 42). The diversity in the numbers and types of TBDPs found in the strains of the *P. fluorescens* group reflects the diverse nature of these strains as well as their commonalities.

Acknowledgments

I thank Jos Raaijmakers for the pyoverdine mutant of SS101 and Leland S. Pierson III for the pyoverdine mutant of 30-84. I also thank Ashley Bixenstein and Jennifer Lee for assisting with identification of TBDP domains, and compilation of sequences.

References

- Bachmann, B. O., and J. Ravel. 2009. Chapter 8. Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. Methods In Enzymology 458:181-217.
- 2. Beattie, G. A., and S. E. Lindow. 1999. Bacterial colonization of leaves: a spectrum of strategies. Phytopathology **89:**353-359.
- 3. Blanvillain, S., D. Meyer, A. Boulanger, M. Lautier, C. Guynet, N. Denance, J. Vasse, E. Lauber, and M. Arlat. 2007. Plant carbohydrate scavenging through tonb-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS One 2:e224.
- 4. **Budzikiewicz, H.** 2004. Siderophores of the Pseudomonadaceae *sensu stricto* (fluorescent and non-fluorescent *Pseudomonas* spp.). Fortschr. Chem. Org. Naturst. **87:**81-237.
- 5. Cornelis, P. 2010. Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol 86:1637-1645.
- 6. **Cornelis, P., C. Baysse, and S. Matthijs.** 2008. Iron uptake in *Pseudomonas*, p. 213-235. *In* P. Cornelis (ed.), *Pseudomonas*: Genomics and Molecular Biology. Caister Academic Press, Norfolk, UK.
- 7. Cornelis, P., and J. Bodilis. 2009. A survey of TonB-dependent receptors in fluorescent pseudomonads. Environ. Microbiol. Reports 1:256-262.
- 8. Cornelis, P., and S. Matthijs. 2002. Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ. Microbiol. 4:787-798.
- De Chial, M., B. Ghysels, S. A. Beatson, V. Geoffroy, J. M. Meyer, T. Pattery, C. Baysse, P. Chablain, Y. N. Parsons, C. Winstanley, S. J. Cordwell, and P. Cornelis. 2003. Identification of type II and type III pyoverdine receptors from *Pseudomonas aeruginosa*. Microbiology 149:821-831.
- de Souza, J. T., M. de Boer, P. de Waard, T. A. van Beek, and J. M. Raaijmakers. 2003. Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by *Pseudomonas fluorescens*. Appl. Environ. Microbiol. 69:7161-7172.

- 11. De Voss, J. J., K. Rutter, B. G. Schroeder, and C. E. Barry, 3rd. 1999. Iron acquisition and metabolism by mycobacteria. J. Bacteriol. 181:4443-4451.
- Dean, C. R., S. Neshat, and K. Poole. 1996. PfeR, an enterobactin-responsive activator of ferric enterobactin receptor gene expression in *Pseudomonas aeruginosa*. J. Bacteriol. 178:5361-5369.
- Dean, C. R., and K. Poole. 1993. Expression of the ferric enterobactin receptor (PfeA) of *Pseudomonas aeruginosa*: involvement of a two-component regulatory system. Mol. Microbiol 8:1095-1103.
- Demange, P., S. Wendenbaum, C. Linget, C. Mertx, M. Cung, A. Dell, and M. A. Abdallah. 1990. Bacterial siderophores: structure and NMR assignment of pyoverdins Pa, siderophores of *Pseudomonas aeruginosa* ATCC 15692. Biol. Metals 3:155-170.
- 15. Elias, S., E. Degtyar, and E. Banin. 2011. FvbA is required for vibriobactin utilization in *Pseudomonas aeruginosa*. Microbiology **157**:2172-2180.
- Ghysels, B., B. T. Dieu, S. A. Beatson, J. P. Pirnay, U. A. Ochsner, M. L. Vasil, and P. Cornelis. 2004. FpvB, an alternative type I ferripyoverdine receptor of *Pseudomonas aeruginosa*. Microbiology 150:1671-1680.
- 17. Gipp, S., J. Hahn, K. Taraz, and H. Budzikiewicz. 1991. Two pyoverdins from *Pseudomonas-aeruginosa* R. Z. Naturforsch. C **46**:534-541.
- Greenwald, J., M. Nader, H. Celia, C. Gruffaz, V. Geoffroy, J. M. Meyer, I. J. Schalk, and F. Pattus. 2009. FpvA bound to non-cognate pyoverdines: molecular basis of siderophore recognition by an iron transporter. Mol. Microbiol. 72:1246-1259.
- Hannauer, M., Y. Barda, G. L. Mislin, A. Shanzer, and I. J. Schalk. 2010. The ferrichrome uptake pathway in *Pseudomonas aeruginosa* involves an iron release mechanism with acylation of the siderophore and recycling of the modified desferrichrome. J. Bacteriol. **192:**1212-1220.
- Hartney, S. L., S. Mazurier, T. A. Kidarsa, M. C. Quecine, P. Lemanceau, and J. E. Loper. 2011. TonB-dependent outer-membrane proteins and siderophore utilization in *Pseudomonas fluorescens* Pf-5. Biometals 24:193-213.
- Hoegy, F., X. Lee, S. Noel, D. Rognan, G. L. Mislin, C. Reimmann, and I. J. Schalk. 2009. Stereospecificity of the siderophore pyochelin outer membrane transporters in fluorescent pseudomonads. J. Biol. Chem. 284:14949-14957.

- 22. Howell, C. R., and R. D. Stipanovic. 1979. Control of *Rhizoctonia solani* in cotton seedlings with *Pseudomonas fluorescens* and with an antibiotic produced by the bacterium. Phytopathology **69:**480-482.
- 23. Kahnert, A., P. Mirleau, R. Wait, and M. A. Kertesz. 2002. The LysR-type regulator SftR is involved in soil survival and sulphate ester metabolism in *Pseudomonas putida*. Environ. Microbiol. **4:**225-237.
- 24. King, E. O., M. K. Ward, and D. E. Raney. 1954. Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med. 44:301-307.
- Kluepfel, D. A., T. M. McInnis, and E. I. Zehr. 1993. Involvement of rootcolonizing bacteria in peach orchard soils suppressive of the nematode *Criconemella xenoplax*. Phytopathology 83:1250-1245.
- Koster, M., W. Ovaa, W. Bitter, and P. Weisbeek. 1995. Multiple outer membrane receptors for uptake of ferric pseudobactins in *Pseudomonas putida* WCS358. Mol. Gen. Genet. 248:735-743.
- 27. Lee, H. S., A. H. Abdelal, M. A. Clark, and J. L. Ingraham. 1991. Molecular characterization of *nosA*, a *Pseudomonas stutzeri* gene encoding an outer membrane protein required to make copper-containing N₂O reductase. J. Bacteriol. **173**:5406-5413.
- 28. Lindow, S. E., G. McGourty, and R. Elkins. 1996. Interaction of antibiotics with *Pseudomonas fluorescens* strain A506 in the control of fire blight and frost injury to pear. Phytopathology **86**:841-848.
- 29. Lohmiller, S., K. Hantke, S. I. Patzer, and V. Braun. 2008. TonB-dependent maltose transport by *Caulobacter crescentus*. Microbiology **154**:1748-1754.
- Loper, J. E., and M. D. Henkels. 1997. Availability of iron to *Pseudomonas fluorescens* in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Appl. Environ. Microbiol. 63:99-105.
- Marshall, B., A. Stintzi, C. Gilmour, J. M. Meyer, and K. Poole. 2009. Citratemediated iron uptake in *Pseudomonas aeruginosa*: involvement of the citrateinducible FecA receptor and the FeoB ferrous iron transporter. Microbiology 155:305-315.
- Meyer, J. M., C. Gruffaz, T. Tulkki, and D. Izard. 2007. Taxonomic heterogeneity, as shown by siderotyping, of strains primarily identified as *Pseudomonas putida*. Int. J. Syst. Evol. Microbiol. 57:2543-2556.

- 33. Miller, C. D., B. Pettee, C. Zhang, M. Pabst, J. E. McLean, and A. J. Anderson. 2009. Copper and cadmium: responses in Pseudomonas putida KT2440. Lett. Appl. Microbiol. 49:775-783.
- 34. Moon, C. D., X. X. Zhang, S. Matthijs, M. Schafer, H. Budzikiewicz, and P. B. Rainey. 2008. Genomic, genetic and structural analysis of pyoverdinemediated iron acquisition in the plant growth-promoting bacterium *Pseudomonas fluorescens* SBW25. BMC Microbiol. 8:7.
- Mulet, M., J. Lalucat, and E. Garcia-Valdes. 2010. DNA sequence-based analysis of the *Pseudomonas* species. Environ. Microbiol. 12:1513-1530.
- Ochsner, U. A., Z. Johnson, and M. L. Vasil. 2000. Genetics and regulation of two distinct haem-uptake systems, *phu* and *has*, in *Pseudomonas aeruginosa*. Microbiology 146 :185-198.
- 37. Paulsen, I. T., C. M. Press, J. Ravel, D. Y. Kobayashi, G. S. A. Myers, D. V. Mavrodi, R. T. DeBoy, R. Seshadri, Q. Ren, R. Madupu, R. J. Dodson, A. S. Durkin, L. M. Brinkac, S. C. Daugherty, S. A. Sullivan, M. J. Rosovitz, M. L. Gwinn, L. Zhou, D. J. Schneider, S. W. Cartinhour, W. C. Nelson, J. Weidman, K. Watkins, K. Tran, H. Khouri, E. A. Pierson, L. S. Pierson, 3rd, L. S. Thomashow, and J. E. Loper. 2005. Complete genome sequence of the plant commensal *Pseudomonas fluorescens* Pf-5. Nat. Biotechnol. 23:873-878.
- Pierson, L. S., 3rd, and L. S. Thomashow. 1992. Cloning and heterologous expression of the phenazine biosynthetic locus from *Pseudomonas aureofaciens* 30-84. Mol. Plant Microbe Interact. 5:330-339.
- Raaijmakers, J. M., and D. M. Weller. 2001. Exploiting genotypic diversity of 2,4-diacetylphloroglucinol-producing *Pseudomonas* spp.: characterization of superior root-colonizing *P. fluorescens* strain Q8r1-96. Appl. Environ. Microbiol. 67:2545-2554.
- 40. Rausch, C., T. Weber, O. Kohlbacher, W. Wohlleben, and D. H. Huson. 2005. Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res. 33:5799-5808.
- 41. **Rengel, Z., and P. Marschner.** 2005. Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytol. **168**:305-312.
- 42. Schauer, K., B. Gouget, M. Carriere, A. Labigne, and H. de Reuse. 2007. Novel nickel transport mechanism across the bacterial outer membrane energized by the TonB/ExbB/ExbD machinery. Mol. Microbiol. **63**:1054-1068.

- Shultis, D. D., M. D. Purdy, C. N. Banchs, and M. C. Wiener. 2006. Outer membrane active transport: structure of the BtuB:TonB complex. Science 312:1396-1399.
- 44. Silby, M. W., A. M. Cerdeno-Tarraga, G. S. Vernikos, S. R. Giddens, R. W. Jackson, G. M. Preston, X. X. Zhang, C. D. Moon, S. M. Gehrig, S. A. Godfrey, C. G. Knight, J. G. Malone, Z. Robinson, A. J. Spiers, S. Harris, G. L. Challis, A. M. Yaxley, D. Harris, K. Seeger, L. Murphy, S. Rutter, R. Squares, M. A. Quail, E. Saunders, K. Mavromatis, T. S. Brettin, S. D. Bentley, J. Hothersall, E. Stephens, C. M. Thomas, J. Parkhill, S. B. Levy, P. B. Rainey, and N. R. Thomson. 2009. Genomic and genetic analyses of diversity and plant interactions of *Pseudomonas fluorescens*. Genome Biol. 10:R51.
- 45. Silby, M. W., C. Winstanley, S. A. C. Godfrey, S. B. Levy, and R. W. Jackson. 2011. *Pseudomonas* genomes: diverse and adaptable. FEMS Microbiol. Rev. 35:652-680.
- 46. Smith, E. E., E. H. Sims, D. H. Spencer, R. Kaul, and M. V. Olson. 2005. Evidence for diversifying selection at the pyoverdine locus of *Pseudomonas* aeruginosa. J. Bacteriol. 187:2138-2147.
- 47. **Stachelhaus, T., H. D. Mootz, and M. A. Marahiel.** 1999. The specificityconferring code of adenylation domains in nonribosomal peptide synthetases. Chem. Biol. **6**:493-505.
- Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599.
- Teintze, M., and J. Leong. 1981. Structure of pseudobactin A, a second siderophore from plant growth promoting *Pseudomonas* B10. Biochemistry 20:6457-6462.
- Tucker, B., C. Radtke, S. I. Kwon, and A. J. Anderson. 1995. Suppression of bioremediation by *Phanerochaete chrysosporium* by soil factors. J. Hazard. Mater. 41:251-265.
- 51. Vincent, M. N., L. A. Harrison, J. M. Brackin, P. A. Kovacevich, P. Mukerji, D. M. Weller, and E. A. Pierson. 1991. Genetic analysis of the antifungal activity of a soilborne *Pseudomonas aureofaciens* strain. Appl. Environ. Microbiol. 57:2928-2934.
- 52. Visca, P., F. Imperi, and I. L. Lamont. 2007. Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol. 15:22-30.

Yoneyama, H., and T. Nakae. 1996. Protein C (OprC) of the outer membrane of *Pseudomonas aeruginosa* is a copper-regulated channel protein. Microbiology 142: 2137-2144.

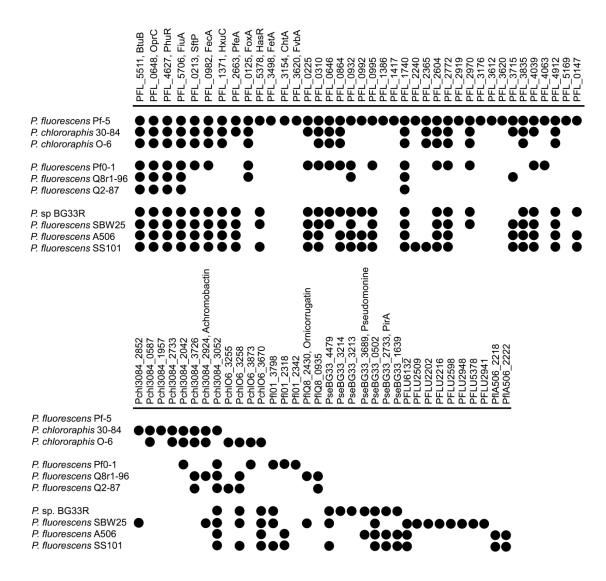
Chapter 5: Concluding remarks

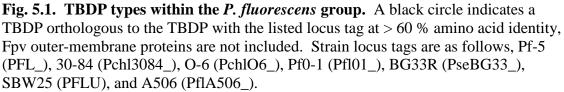
TonB-dependent outer-membrane proteins (TBDPs) are a large family of paralogous proteins found in Gram-negative bacteria. They are structurally very similar to each other, but very diverse in their functions. There is ~20-25% amino acid similarity over all TBDPs, which is enough to maintain the amino acid residues required for the formation of the secondary and tertiary structures required for functionality. The types of TBDPs within the bacterial species surveyed here appear to have differing origins, with some acquired through horizontal gene transfer and duplication events, while others are ancestral to these strains. Horizontal gene transfer appears to be a common mechanism for moving TBDPs among Gram-negative bacteria, but it is not easy to tell the direction of TBDP transfer.

In Chapter 2, a combination of bioinformatic and phylogenetic analyses and bioassays were employed to characterize the 45 TBDPs of *P. fluorescens* Pf-5. Motifs defining constituent domains were identified and the presence or absence of the Nterminal signaling domain was used to distinguish the 27 TonB-dependent receptors (TBDRs) from the 18 TonB-dependent transducers (TBDTs) in the Pf-5 proteome. Phylogenetic analyses of the TBDPs from Pf-5 and characterized orthologs from other *Pseudomonas* spp. allowed the assignment of putative functions to certain TBDRs and TBDTs of Pf-5.

With the initial investigations of the TBDPs in the Pf-5 proteome, it became apparent that a good portion of the transducers are involved in iron acquisition, whereas the receptors may have broader functions that largely remain unknown. The prevalence of TBDPs for the binding and uptake of ferric-substrates directed further investigations into the utilization capabilities of Pf-5 for various iron-containing compounds. Pf-5 exhibited a remarkable capacity to utilize ferric-citrate, heme, and the siderophores ferrichrome, ferrioxamine B, enterobactin, and aerobactin, as well as pyoverdines with diverse structures produced by different *Pseudomonas* spp.. The ability of Pf-5 to be crossfed by such a variety of pyoverdine-producing *Pseudomonas* spp. was an exciting prospect as six Fpv outer-membrane proteins of Pf-5 were predicted to be involved in heterologous pyoverdine uptake.

In Chapter 3, I discuss the characterization of the six Fpv outer-membrane proteins in Pf-5. The association between the Fpv outer-membrane proteins of Pf-5 and specific pyoverdines with known peptide chain structures is the culmination of making and testing many mutants in crossfeeding assays and with purified pyoverdines. Previous investigations into the association between the Fpv outer-membrane proteins within a bacterial strain and heterologous pyoverdines were limited by either too few Fpv outermembrane proteins or too few heterologous pyoverdines tested. The presence of six functional Fpv outer-membrane proteins within Pf-5 and the 37 Pseudomonas strains tested make this research novel and a good model for further characterization of Fpv outer-membrane proteins and associated pyoverdines. There are currently ~70 structurally characterized pyoverdines, many of them being unique (3). The individual Fpv outer-membrane proteins used for heterologous pyoverdine uptake show diversity in the portions of the protein responsible for pyoverdine binding as the individual Fpv outermembrane proteins are used for the uptake of a specific set of structurally related pyoverdines. The specificity of the Fpv for certain structures of pyoverdines indicates parallel evolution of the Fpv and the pyoverdine (3, 5). As pyoverdines with new peptide chains arose, Fpv outer-membrane proteins used for uptake developed to recognize the new pyoverdine structure.


The recent genome sequencing of seven plant-associated strains within the *P*. *fluorescens* group gave me an opportunity to extend the analysis of TBDPs to these strains, as discussed in Chapter 4. I manually annotated the TBDPs and associated genes, such as those encoding ECF sigma factors and TonB proteins, in each of the genomes. With the completion of the annotation of the TBDPs, I set out to see if a core set of TBDPs is present in the ten strains of the *P*. *fluorescens* group. The TBDPs of the *P*. *fluorescens* group form two levels of core TBDPs, one at the species group level and the


other within sub-clades of related strains. The related strains *P. fluorescens* WH6 and *P. brassicacearum* sp. brassicacearum the same core of five distinct TBDPs (4, 6). My analysis showed (i) the number of TBDPs varies between strains; (ii) higher levels of conservation of TBDPs within the more related strains; (iii) a core of five TBDPs conserved among all strains; (iv) putative functions for 28 TBDP types; (v) and high levels of diversity among the Fpv functional groups.

Phylogenetic analysis of the TBDPs in the *P. fluorescens* group indicates a high level of redundancy for the uptake of certain compounds, notably ferrioxamine/ferrichrome, ferric-citrate, heme, and pyoverdines. The number of TBDPs in certain phylogenetic clades, such as those with putative functions in heme and pyoverdine acquisition, exceeds the number found in other bacteria such as *P. aeruginosa* PAO1 (1-2). The diversity and complexity of the TBDPs with roles in iron uptake clearly indicate the importance of iron in the biology of Pf-5 and related *Pseudomonas* spp..

A multi-faceted approach of BLASTP analysis, phylogenetics and pyoverdine growth promotion assays developed in the characterization of the Fpv outer-membrane proteins from Pf-5 was employed to identify Fpv outer-membrane proteins in the *P*. *fluorescens* group and associate them with pyoverdine peptide chain structures. Fpv outer-membrane proteins were found in multiple copies within each strain. I identified eight Fpv functional groups and three additional Fpv outer-membrane proteins. The abundance and diversity of the Fpv outer-membrane proteins in this species group indicates the importance of acquiring iron through heterologous pyoverdine siderophores. The characterized Fpv outer-membrane proteins of Pf-5, *P*. sp. M114, *P. aeruginosa* PAO1 and *P. putida* WCS358 facilitated the identification of 28 Fpv outer-membrane proteins in the seven recently-sequenced *Pseudomonas* species group strains and provides a method for Fpv identification in other pyoverdine-producing bacteria. Siderotyping is a method of classifying pyoverdine producing pseudomonads based on structural similarities of the cognate pyoverdine to aid in taxonomy (4). An important counterpart to this is the Fpv outer-membrane protein composition of a strain. Each strain has an Fpv for its own pyoverdine that also may be able to recognize structurally-similar pyoverdines. The Fpv for the cognate pyoverdine adds another criterion, along with siderotype, by which bacterial strains can be characterized.

In summary, the ten strains of the *P. fluorescens* group have 317 TBDPs that fall into 84 types. Seventy three TBDP types are composed of TBDPs sharing >60 % amino acid identity (Fig. 5.1). An additional 11 TBDP types are made up of the Fpv outermembrane proteins found in these strains. Of the 73 types, 17 of them have been assigned putative functions. This is a small proportion of the total, leaving ample room for further investigation. Experiments to look at changes in the expression of the TBDPs in the presence of diverse substrates may provide candidates for more targeted analysis to further research of the unknown TBDPs.

References

- 1. **Cornelis, P., C. Baysse, and S. Matthijs.** 2008. Iron uptake in *Pseudomonas*, p. 213-235. *In* P. Cornelis (ed.), *Pseudomonas*: Genomics and Molecular Biology. Caister Academic Press, Norfolk, UK.
- 2. Cornelis, P., and S. Matthijs. 2002. Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ. Microbiol. 4:787-798.
- Greenwald, J., M. Nader, H. Celia, C. Gruffaz, V. Geoffroy, J. M. Meyer, I. J. Schalk, and F. Pattus. 2009. FpvA bound to non-cognate pyoverdines: molecular basis of siderophore recognition by an iron transporter. Mol. Microbiol. 72:1246-1259.
- 4. Kimbrel, J. A., S. A. Givan, A. B. Halgren, A. L. Creason, D. I. Mills, G. M. Banowets, D. J. Armstrong, and J. H. Chang. 2010. An improved, high-quality draft genome sequence of the Germination-Arrest-Factor-producing *Pseudomonas fluorescens* WH6. BMC Genomics. **11**:522.
- 5. **Meyer, J. M.** 2010. Pyoverdine siderophores as taxonomic and phylogenic parkers, p. 201-233. *In* J. L. Ramos and A. Filloux (ed.), *Pseudomonas*. Springer Netherlands.
- Ortet, P., M. Barakat, D. Lalaouna, S. Fochesato, V. Barbe, B. Vacherie, C. Santaella, T. Heulin, and W. Achouak. 2011. Complete genome sequence of a beneficial plant root-associated bacterium, *Pseudomonas brassicacearum*. J. Bacteriol. 193:3146.
- Smith, E. E., E. H. Sims, D. H. Spencer, R. Kaul, and M. V. Olson. 2005. Evidence for diversifying selection at the pyoverdine locus of *Pseudomonas aeruginosa*. J. Bacteriol. 187:2138-2147.

Dissertation references

Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. **25**:3389-3402.

Andrews, S. C., A. K. Robinson, and F. Rodríguez-Quiñones. 2003. Bacterial iron homeostasis. FEMS Microbiol. Rev. 27:215-237.

Arnold, K., L. Bordoli, J. Kopp, and T. Schwede. 2006. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics **22**:195-201.

Bachmann, B. O., and J. Ravel. 2009. Chapter 8. Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. Methods In Enzymology **458**:181-217.

Bakker, P. A. H. M., R. Van Peer, and B. Schippers. 1990. Specificity of siderophores and siderophore receptors and biocontrol by *Pseudomonas* spp., p. 131-142. *In* D. Hornby (ed.), Biological control of soil-borne plant pathogens. CAB International, Wallingford, UK.

Barelmann, I., K. Taraz, H. Budzikiewicz, V. Geoffroy, and J. M. Meyer. 2002. The structures of the pyoverdins from two *Pseudomonas fluorescens* strains accepted mutually by their respective producers. Z. Naturforsch. C **57:**9-16.

Barry, S. M., and G. L. Challis. 2009. Recent advances in siderophore biosynthesis. Curr. Opin. Chem. Biol. **13**:205-215.

Beattie, G. A., and S. E. Lindow. 1999. Bacterial colonization of leaves: a spectrum of strategies. Phytopathology **89**:353-359.

Beattie, G. A., and S. E. Lindow. 1995. The secret life of foliar bacterial pathogens on leaves. Annu. Rev. Phytopathol. 33:145-172.

Beiderbeck, H., K. Taraz, and J. M. Meyer. 1999. Revised structures of the pyoverdins from *Pseudomonas putida* CFBP 2461 and from *Pseudomonas fluorescens* CFBP 2392. Biometals **12:**331-338.

Bigelow, H. R., D. S. Petrey, J. Liu, D. Przybylski, and B. Rost. 2004. Predicting transmembrane beta-barrels in proteomes. Nucleic Acids Res. **32**:2566-2577.

Bitter, W., J. D. Marugg, L. A. de Weger, J. Tommassen, and P. J. Weisbeek. 1991. The ferric-pseudobactin receptor PupA of *Pseudomonas putida* WCS358: homology to TonB-dependent *Escherichia coli* receptors and specificity of the protein. Mol. Microbiol. **5:**647-655.

Blanvillain, S., D. Meyer, A. Boulanger, M. Lautier, C. Guynet, N. Denance, J. Vasse, E. Lauber, and M. Arlat. 2007. Plant carbohydrate scavenging through TonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS One 2:e224.

Bordoli, L., F. Kiefer, K. Arnold, P. Benkert, J. Battey, and T. Schwede. 2009. Protein structure homology modeling using SWISS-MODEL workspace. Nat. Protoc. **4:**1-13.

Braun, V., S. Mahren, and M. Ogierman. 2003. Regulation of the FecI-type ECF sigma factor by transmembrane signalling. Curr. Opin. Microbiol. **6**:173-180.

Brodhagen, M., M. D. Henkels, and J. E. Loper. 2004. Positive autoregulation and signaling properties of pyoluteorin, an antibiotic produced by the biological control organism *Pseudomonas fluorescens* Pf-5. Appl. Environ. Microbiol. **70:**1758-1766.

Bronstein, P., M. Filiatrault, C. Myers, M. Rutzke, D. Schneider, and S. Cartinhour. 2008. Global transcriptional responses of *Pseudomonas syringae* DC3000 to changes in iron bioavailability *in vitro*. BMC Microbiol. **8:**209.

Budzikiewicz, H. 2004. Siderophores of the Pseudomonadaceae *sensu stricto* (fluorescent and non-fluorescent *Pseudomonas* spp.). Fortschr. Chem. Org. Naturst. **87:**81-237.

Bultreys, A., I. Gheysen, B. Wathelet, M. Schafer, and H. Budzikiewicz. 2004. The pyoverdins of *Pseudomonas syringae* and *Pseudomonas cichorii*. Z. Naturforsch. C **59**:613-618.

Callahan, J. H., and K. D. Cook. 1984. Mechanism of surfactant induced changes in the visible spectrometry of metal-chrome azurol S complexes. Anal. Chem. **56:**1632-1640.

Carson, K. C., J. M. Meyer, and M. J. Dilworth. 2000. Hydroxamate siderophores of root nodule bacteria. Soil Biol. Biochem. **32:**11-21.

Choi, K. H., and H. P. Schweizer. 2005. An improved method for rapid generation of unmarked *Pseudomonas aeruginosa* deletion mutants. BMC Microbiol. **5:**30.

Cobessi, D., H. Celia, N. Folschweiller, I. J. Schalk, M. A. Abdallah, and F. Pattus. 2005. The crystal structure of the pyoverdine outer membrane receptor FpvA from *Pseudomonas aeruginosa* at 3.6 angstrom resolution. J. Mol. Biol. **347:**121-134.

Cornelis, P. 2010. Iron uptake and metabolism in pseudomonads. Appl. Microbiol. Biotechnol. **86:**1637-1645.

Cornelis, P., C. Baysse, and S. Matthijs. 2008. Iron uptake in *Pseudomonas*, p. 213-235. *In* P. Cornelis (ed.), *Pseudomonas*: Genomics and Molecular Biology. Caister Academic Press, Norfolk, UK.

Cornelis, P., and J. Bodilis. 2009. A survey of TonB-dependent receptors in fluorescent pseudomonads. Environ. Microbiol. Rep. **1**:256-262.

Cornelis, P., D. Hohnadel, and J. M. Meyer. 1989. Evidence for different pyoverdine-mediated iron uptake systems among *Pseudomonas aeruginosa* strains. Infect. Immun. **57:**3491-3497.

Cornelis, P., and S. Matthijs. 2002. Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ. Microbiol. **4**:787-798.

Cornelis, P., S. Matthijs, and L. Van Oeffelen. 2009. Iron uptake regulation in *Pseudomonas aeruginosa*. Biometals **22**:15-22.

Costa, J. M., and J. E. Loper. 1994. Characterization of siderophore production by the biological control agent *Enterobacter cloacae*. Mol. Plant Microbe. Interact. **7:**440-448.

Cuiv, P. O., P. Clarke, and M. O'Connell. 2006. Identification and characterization of an iron-regulated gene, *chtA*, required for the utilization of the xenosiderophores aerobactin, rhizobactin 1021 and schizokinen by *Pseudomonas aeruginosa*. Microbiology **152**:945-954.

Das, S., J. C. Noea, S. Paika, and T. Kitten. 2005. An improved arbitrary primed PCR method for rapid characterization of transposon insertion sites. J. Microbiol. Meth. **63**:89-94

De Chial, M., B. Ghysels, S. A. Beatson, V. Geoffroy, J. M. Meyer, T. Pattery, C. Baysse, P. Chablain, Y. N. Parsons, C. Winstanley, S. J. Cordwell, and P. Cornelis. 2003. Identification of type II and type III pyoverdine receptors from *Pseudomonas aeruginosa*. Microbiology **149**:821-831.

De Souza, J. T., M. de Boer, P. de Waard, T. A. van Beek, and J. M. Raaijmakers. 2003. Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by *Pseudomonas fluorescens*. Appl. Environ. Microbiol. **69:**7161-7172.

De Voss, J. J., K. Rutter, B. G. Schroeder, and C. E. Barry, 3rd. 1999. Iron acquisition and metabolism by mycobacteria. J. Bacteriol. **181**:4443-4451.

Dean, C. R., S. Neshat, and K. Poole. 1996. PfeR, an enterobactin-responsive activator of ferric enterobactin receptor gene expression in *Pseudomonas aeruginosa*. J. Bacteriol. **178:**5361-5369.

Dean, C. R., and K. Poole. 1993. Cloning and characterization of the ferric enterobactin receptor gene (*pfeA*) of *Pseudomonas aeruginosa*. J. Bacteriol. **175:**317-324.

Dean, C. R., and K. Poole. 1993. Expression of the ferric enterobactin receptor (PfeA) of *Pseudomonas aeruginosa*: involvement of a two-component regulatory system. Mol. Microbiol. **8**:1095-1103.

Demange, P., A. Bateman, C. Mertz, A. Dell, Y. Piemont, and M. A. Abdallah. 1990. Bacterial siderophores: structures of pyoverdins Pt, siderophores of *Pseudomonas tolaasii* NCPPB 2192, and pyoverdins Pf, siderophores of *Pseudomonas fluorescens* CCM 2798. Identification of an unusual natural amino acid. Biochemistry **29**:11041-11051.

Demange, P., S. Wendenbaum, C. Linget, C. Mertx, M. Cung, A. Dell, and M. A. Abdallah. 1990. Bacterial siderophores: structure and NMR assignment of pyoverdins Pa, siderophores of *Pseudomonas aeruginosa* ATCC 15692. Biol. Metals **3**:155-170.

Djavaheri, M. 2007. Iron-regulated metabolites of plant growth promoting *Pseudomonas fluorescens* WCS374: their role in induced systemic resistance. Thesis. Utrecht University, Utrecht, Netherlands.

Eisenbeis, S., S. Lohmiller, M. Valdebenito, S. Leicht, and V. Braun. 2008. NagA-dependent uptake of N-acetyl-glucosamine and N-acetyl-chitin oligosaccharides across the outer membrane of *Caulobacter crescentus*. J. Bacteriol. **190:**5230-5238.

Elias, S., E. Degtyar, and E. Banin. 2011. FvbA is required for vibriobactin utilization in *Pseudomonas aeruginosa*. Microbiology **157**:2172-2180.

Enz, S., S. Mahren, U. H. Stroeher, and V. Braun. 2000. Surface signaling in ferric citrate transport gene induction: interaction of the FecA, FecR, and FecI regulatory proteins. J. Bacteriol. **182:**637-646.

Escolar, L., J. Pérez-Martín, and V. de Lorenzo. 1999. Opening the iron box: transcriptional metalloregulation by the Fur protein. J. Bacteriol. **181**:6223-6229.

Ferguson, A. D., C. A. Amezcua, N. M. Halabi, Y. Chelliah, M. K. Rosen, R. Ranganathan, and J. Deisenhofer. 2007. Signal transduction pathway of TonB-dependent transporters. Proc. Natl. Acad. Sci. USA **104:**513-518.

Ferguson, A. D., and J. Deisenhofer. 2002. TonB-dependent receptors structural perspectives. Biochem. Biophys. Acta 1565:318-332.

Fernandez, D. U., R. Fuchs, K. Taraz, H. Budzikiewicz, P. Munsch, and J. M. Meyer. 2001. The structure of a pyoverdine produced by a *Pseudomonas tolaasii*-like isolate. Biometals **14**:81-84.

Finn, R. D., J. Mistry, J. Tate, P. Coggill, A. Heger, J. E. Pollington, O. L. Gavin, P. Gunasekaran, G. Ceric, K. Forslund, L. Holm, E. L. Sonnhammer, S. R. Eddy, and A. Bateman. 2010. The Pfam protein families database. Nucleic Acids Res. 38:D211-222.

Fravel, D. R. 2005. Commercialization and implementation of biocontrol. Annu. Rev. Phytopathol. **43:**337-359.

Gaille, C., C. Reimmann, and D. Haas. 2003. Isochorismate synthase (PchA), the first and rate-limiting enzyme in salicylate biosynthesis of *Pseudomonas aeruginosa*. J. Biol. Chem. **278:**16893-16898.

Ghysels, B., B. T. Dieu, S. A. Beatson, J. P. Pirnay, U. A. Ochsner, M. L. Vasil, and P. Cornelis. 2004. FpvB, an alternative type I ferripyoverdine receptor of *Pseudomonas aeruginosa*. Microbiology **150**:1671-1680.

Ghysels, B., U. Ochsner, U. Mollman, L. Heinisch, M. Vasil, P. Cornelis, and S. Matthijs. 2005. The *Pseudomonas aeruginosa pirA* gene encodes a second receptor for ferrienterobactin and synthetic catecholate analogues. FEMS Microbiol. Lett. **246:**167-174.

Gipp, S., J. Hahn, K. Taraz, and H. Budzikiewicz. 1991. Two pyoverdins from *Pseudomonas aeruginosa* R. Z. Naturforsch. C **46**:534-541.

Greenwald, J., F. Hoegy, M. Nader, L. Journet, G. L. Mislin, P. L. Graumann, and I. J. Schalk. 2007. Real time fluorescent resonance energy transfer visualization

of ferric pyoverdine uptake in *Pseudomonas aeruginosa*. A role for ferrous iron. J. Biol. Chem. **282**:2987-2995.

Greenwald, J., M. Nader, H. Celia, C. Gruffaz, V. Geoffroy, J. M. Meyer, I. J. Schalk, and F. Pattus. 2009. FpvA bound to non-cognate pyoverdines: molecular basis of siderophore recognition by an iron transporter. Mol. Microbiol. **72**:1246-1259.

Gross, H., V. O. Stockwell, M. D. Henkels, B. Nowak-Thompson, J. E. Loper, and W. H. Gerwick. 2007. The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters. Chem. Biol. 14:53-63.

Hannauer, M., Y. Barda, G. L. Mislin, A. Shanzer, and I. J. Schalk. 2010. The ferrichrome uptake pathway in *Pseudomonas aeruginosa* involves an iron release mechanism with acylation of the siderophore and recycling of the modified desferrichrome. J. Bacteriol. **192:**1212-1220.

Hartney, S. L., S. Mazurier, T. A. Kidarsa, M. C. Quecine, P. Lemanceau, and J. E. Loper. 2011. TonB-dependent outer-membrane proteins and siderophore utilization in *Pseudomonas fluorescens* Pf-5. Biometals **24:**193-213.

Hassan, K. A., A. Johnson, B. T. Shaffer, Q. Ren, T. A. Kidarsa, L. D. H. Elbourne, S. Hartney, R. Duboy, N. C. Goebel, T. M. Zabriskie, I. T. Paulsen, and J. E. Loper . 2010. Inactivation of the GacA response regulator in *Pseudomonas fluorescens* Pf-5 has far-reaching transcriptomic consequences. Environ. Microbiol. 12:899-915.

Hassett, D. J., P. A. Sokol, M. L. Howell, J. F. Ma, H. T. Schweizer, U. Ochsner, and M. L. Vasil. 1996. Ferric uptake regulator (Fur) mutants of *Pseudomonas aeruginosa* demonstrate defective siderophore-mediated iron uptake, altered aerobic growth, and decreased superoxide dismutase and catalase activities. J. Bacteriol. **178:**3996-4003.

Hibbing, M. E., C. Fuqua, M. R. Parsek, and S. B. Peterson. 2010. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Micro. 8:15-25.

Hider, R. C., and X. Kong. 2010. Chemistry and biology of siderophores. Nat. Prod. Rep. 27:637-657.

Hoang, T. T., R. R. Karkhoff-Schweizer, A. J. Kutchma, and H. P. Schweizer. 1998. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked *Pseudomonas aeruginosa* mutants. Gene **212:**77-86. Hoegy, F., X. Lee, S. Noel, D. Rognan, G. L. Mislin, C. Reimmann, and I. J. Schalk. 2009. Stereospecificity of the siderophore pyochelin outer membrane transporters in fluorescent pseudomonads. J. Biol. Chem. **284**:14949-14957.

Howell, C. R., and R. D. Stipanovic. 1979. Control of *Rhizoctonia solani* in cotton seedlings with *Pseudomonas fluorescens* and with an antibiotic produced by the bacterium. Phytopathology **69:**480-482.

Huang, B., K. Ru, Z. Yuan, C. B. Whitchurch, and J. S. Mattick. 2004. TonB3 is required for normal twitching motility and extracellular assembly of type IV pili. J. Bacteriol. **186**:4387-4389.

James, H. E., P. A. Beare, L. W. Martin, and I. L. Lamont. 2005. Mutational analysis of a bifunctional ferrisiderophore receptor and signal-transducing protein from *Pseudomonas aeruginosa*. J. Bacteriol. **187:**4514-4520.

Julich, M., K. Taraz, H. Budzikiewicz, V. Geoffroy, J. M. Meyer, and L. Gardan. 2001. The structure of the pyoverdin isolated from various *Pseudomonas syringae* pathovars. Z. Naturforsch. C **56**:687-694.

Kahnert, A., P. Mirleau, R. Wait, and M. A. Kertesz. 2002. The LysR-type regulator SftR is involved in soil survival and sulphate ester metabolism in *Pseudomonas putida*. Environ. Microbiol. **4**:225-237.

Kimbrel, J. A., S. A. Givan, A. B. Halgren, A. L. Creason, D. I. Mills, G. M. Banowets, D. J. Armstrong, and J. H. Chang. 2010. An improved, high-quality draft genome sequence of the Germination-Arrest-Factor-producing *Pseudomonas fluorescens* WH6. BMC Genomics. **11**:522.

King, E. O., M. K. Ward, and D. E. Raney. 1954. Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med. 44:301-307.

Kluepfel, D. A., T. M. McInnis, and E. I. Zehr. 1993. Involvement of rootcolonizing bacteria in peach orchard soils suppressive of the nematode *Criconemella xenoplax*. Phytopathology **83**:1250-1245.

Koch, G., P. N. Jimenez, R. Muntendam, Y. Chen, E. Papaioannou, S. Heeb, M. Cámara, P. Williams, R. H. Cool, and W. J. Quax. 2010. The acylase PvdQ has a conserved function among fluorescent *Pseudomonas* spp. Environ. Microbiol. Rep. **2**:433-439.

Koster, M., W. Ovaa, W. Bitter, and P. Weisbeek. 1995. Multiple outer membrane receptors for uptake of ferric pseudobactins in *Pseudomonas putida* WCS358. Mol. Gen. Genet. **248**:735-743.

Koster, M., J. van de Vossenberg, J. Leong, and P. J. Weisbeek. 1993. Identification and characterization of the *pupB* gene encoding an inducible ferricpseudobactin receptor of *Pseudomonas putida* WCS358. Mol. Microbiol. **8:**591-601.

Kraus, J., and J. E. Loper. 1992. Lack of evidence for a role of antifungal metabolite production by *Pseudomonas fluorescens* Pf-5 in biological control of Pythium damping-off of cucumber. Phytopathology **82:**264-271.

Krewulak, K. D., and H. J. Vogel. 2011. TonB or not TonB: is that the question? Biochem. Cell. Biol. **89:**87-97.

Lamont, I. L., and L. W. Martin. 2003. Identification and characterization of novel pyoverdine synthesis genes in *Pseudomonas aeruginosa*. Microbiology **149**:833-842.

Lee, H. S., A. H. Abdelal, M. A. Clark, and J. L. Ingraham. 1991. Molecular characterization of *nosA*, a *Pseudomonas stutzeri* gene encoding an outer membrane protein required to make copper-containing N₂O reductase. J. Bacteriol. **173**:5406-5413.

Liberati, N. T., J. M. Urbach, S. Miyata, D. G. Lee, E. Drenkard, G. Wu, J. Villanueva, T. Wei, and F. M. Ausubel. 2006. An ordered, nonredundant library of *Pseudomonas aeruginosa* strain PA14 transposon insertion mutants. Proc. Natl. Acad. Sci. USA 103:2833-2838.

Lindow, S. E., G. McGourty, and R. Elkins. 1996. Interaction of antibiotics with *Pseudomonas fluorescens* strain A506 in the control of fire blight and frost injury to pear. Phytopathology **86**:841-848.

Lohmiller, S., K. Hantke, S. I. Patzer, and V. Braun. 2008. TonB-dependent maltose transport by *Caulobacter crescentus*. Microbiology **154**:1748-1754.

Loper, J. E., and H. Gross. 2007. Genomic analysis of antifungal metabolite production by *Pseudomonas fluorescens* Pf-5. Eur. J. Plant Pathol. **119:**265-278.

Loper, J. E., and M. D. Henkels. 1997. Availability of iron to *Pseudomonas fluorescens* in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Appl. Environ. Microbiol. **63**:99-105.

Loper, J. E., and M. D. Henkels. 1999. Utilization of heterologous siderophores enhances levels of iron available to *Pseudomonas putida* in the rhizosphere. Appl. Environ. Microbiol. **65**:5357-5363.

Loper, J. E., and S. E. Lindow. 1994. A biological sensor for iron available to bacteria in their habitats on plant aurfaces. Appl. Environ. Microbiol. **60**:1934-1941.

Loper, J. E., I. T. Paulsen, and D. Y. Kobayashi. 2007. The Genomic Sequence of *Pseudomonas fluorescens* Pf-5: Insights Into Biological Control. Phytopathology **97:**233-238.

Magazin, M. D., J. C. Moores, and J. Leong. 1986. Cloning of the gene coding for the outer membrane receptor protein for ferric pseudobactin, a siderophore from a plant growth-promoting *Pseudomonas* strain. J. Biol. Chem. **261**:795-799.

Marshall, B., A. Stintzi, C. Gilmour, J. M. Meyer, and K. Poole. 2009. Citratemediated iron uptake in *Pseudomonas aeruginosa*: involvement of the citrateinducible FecA receptor and the FeoB ferrous iron transporter. Microbiology **155**:305-315.

Marugg, J. D., L. A. de Weger, H. B. Nielander, M. Oorthuizen, K. Recourt, B. Lugtenberg, G. A. van der Hofstad, and P. J. Weisbeek. 1989. Cloning and characterization of a gene encoding an outer membrane protein required for siderophore-mediated uptake of Fe³⁺ in *Pseudomonas putida* WCS358. J. Bacteriol. **171**:2819-2826.

Marugg, J. D., M. van Spanje, W. P. Hoekstra, B. Schippers, and P. J. Weisbeek. 1985. Isolation and analysis of genes involved in siderophore biosynthesis in plantgrowth-stimulating *Pseudomonas putida* WCS358. J. Bacteriol. **164:**563-570.

Matthijs, S., G. Laus, J. M. Meyer, K. Abbaspour-Tehrani, M. Schafer, H. Budzikiewicz, and P. Cornelis. 2009. Siderophore-mediated iron acquisition in the entomopathogenic bacterium *Pseudomonas entomophila* L48 and its close relative *Pseudomonas putida* KT2440. Biometals **22**:951-964.

Matthijs, S., K. A. Tehrani, G. Laus, R. W. Jackson, R. M. Cooper, and P. Cornelis. 2007. Thioquinolobactin, a *Pseudomonas* siderophore with antifungal and anti-*Pythium* activity. Environ. Microbiol. **9**:425-434.

McGuffin, L. J., K. Bryson, and D. T. Jones. 2000. The PSIPRED protein structure prediction server. Bioinformatics **16**:404-405.

Meyer, J. M. 2010. Pyoverdine Siderophores as Taxonomic and Phylogenic Markers, p. 201-233. *In* J. L. Ramos and A. Filloux (ed.), *Pseudomonas*. Springer Netherlands.

Meyer, J. M. 2000. Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent *Pseudomonas* species. Arch. Microbiol. **174:**135-142.

Meyer, J. M. 2007. Siderotyping and Bacterial Taxonomy: A Siderophore Bank for a Rapid Identification at the Species Level of Fluorescent and Non-Fluorescent *Pseudomonas. In* A. Varma and S. B. Chincholkar (ed.), Soil Biology: Microbial Siderophores, vol. 12. Springer-Verlag, Berlin Heidelberg, Germany.

Meyer, J. M., and M. A. Abdallah. 1978. The fluorescent pigment of *Pseudomonas fluorescens*: biosynthesis, purification and physicochemical properties. J. Gen. Microbiol. **107:**319-328.

Meyer, J. M., and V. A. Geoffroy. 2004. Environmental fluorescent *Pseudomonas* and pyoverdine diversity: how siderophores could help microbiologists in bacterial identification and taxonomy. *In* J. H. Crosa, A. R. Mey, and S. M. Payne (ed.), Iron transport in bacteria. ASM Press, Washington DC, USA.

Meyer, J. M., V. A. Geoffroy, N. Baida, L. Gardan, D. Izard, P. Lemanceau, W. Achouak, and N. J. Palleroni. 2002. Siderophore typing, a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads. Appl. Environ. Microbiol. **68**:2745-2753.

Meyer, J. M., V. A. Geoffroy, C. Baysse, P. Cornelis, I. Barelmann, K. Taraz, and H. Budzikiewicz. 2002. Siderophore-mediated iron uptake in fluorescent *Pseudomonas*: characterization of the pyoverdine-receptor binding site of three crossreacting pyoverdines. Arch. Biochem. Biophys. **397**:179-183.

Meyer, J. M., C. Gruffaz, V. Raharinosy, I. Bezverbnaya, M. Schafer, and H. Budzikiewicz. 2008. Siderotyping of fluorescent *Pseudomonas*: molecular mass determination by mass spectrometry as a powerful pyoverdine siderotyping method. Biometals **21**:259-271.

Meyer, J. M., C. Gruffaz, T. Tulkki, and D. Izard. 2007. Taxonomic heterogeneity, as shown by siderotyping, of strains primarily identified as *Pseudomonas putida*. Int. J. Syst. Evol. Microbiol. **57:**2543-2556.

Meyer, J. M., A. Stintzi, D. De Vos, P. Cornelis, R. Tappe, K. Taraz, and H. Budzikiewicz. 1997. Use of siderophores to type pseudomonads: the three *Pseudomonas aeruginos*a pyoverdine systems. Microbiology **143**:35-43.

Meyer, J. M., A. Stintzi, and K. Poole. 1999. The ferripyoverdine receptor FpvA of *Pseudomonas aeruginosa* PAO1 recognizes the ferripyoverdines of *P. aeruginosa* PAO1 and *P. fluorescens* ATCC 13525. FEMS Microbiol. Lett. **170:**145-150.

Michel, L., A. Bachelard, and C. Reimmann. 2007. Ferripyochelin uptake genes are involved in pyochelin-mediated signalling in *Pseudomonas aeruginosa*. Microbiology **153**:1508-1518.

Miller, C. D., B. Pettee, C. Zhang, M. Pabst, J. E. McLean, and A. J. Anderson. 2009. Copper and cadmium: responses in *Pseudomonas putida* KT2440. Lett. Appl. Microbiol. **49**:775-783.

Mirleau, P., S. Delorme, L. Philippot, J.-M. Meyer, S. Mazurier, and P. Lemanceau. 2000. Fitness in soil and rhizosphere of *Pseudomonas fluorescens* C7R12 compared with a C7R12 mutant affected in pyoverdine synthesis and uptake. FEMS Microbiol. Ecol. **34**:35-44.

Mirus, O., S. Strauss, K. Nicolaisen, A. von Haeseler, and E. Schleiff. 2009. TonB-dependent transporters and their occurrence in cyanobacteria. BMC Biol. **7:**68.

Moeck, G. S., and J. W. Coulton. 1998. TonB-dependent iron acquisition: mechanisms of siderophore-mediated active transport. Mol. Microbiol. **28**:675-681.

Moon, C. D., X. X. Zhang, S. Matthijs, M. Schafer, H. Budzikiewicz, and P. B. Rainey. 2008. Genomic, genetic and structural analysis of pyoverdine-mediated iron acquisition in the plant growth-promoting bacterium *Pseudomonas fluorescens* SBW25. BMC Microbiol. **8**:7.

Morris, J., D. F. Donnelly, E. O'Neill, F. McConnell, and F. O'Gara. 1994. Nucleotide sequence analysis and potential environmental distribution of a ferric pseudobactin receptor gene of *Pseudomonas* sp. strain M114. Mol. Gen. Genet. MGG 242:9-16.

Mulet, M., J. Lalucat, and E. Garcia-Valdes. 2010. DNA sequence-based analysis of the *Pseudomonas* species. Environ. Microbiol. **12**:1513-1530.

Nader, M., W. Dobbelaere, M. Vincent, L. Journet, H. Adams, D. Cobessi, J. Gallay, and I. J. Schalk. 2007. Identification of residues of FpvA involved in the different steps of Pvd-Fe uptake in *Pseudomonas aeruginosa*. Biochemistry **46**:11707-11717.

Nader, M., L. Journet, A. Meksem, L. Guillon, and I. J. Schalk. 2011. Mechanism of ferripyoverdine uptake by *Pseudomonas aeruginosa* outer membrane transporter FpvA: no diffusion channel formed at any time during ferrisiderophore uptake. Biochemistry **50**:2530-2540.

Notredame, C., D. G. Higgins, and J. Heringa. 2000. T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. **302**:205-217.

Ochsner, U. A., Z. Johnson, and M. L. Vasil. 2000. Genetics and regulation of two distinct haem-uptake systems, *phu* and *has*, in *Pseudomonas aeruginosa*. Microbiology **146**:185-198.

Ochsner, U. A., and M. L. Vasil. 1996. Gene repression by the ferric uptake regulator in *Pseudomonas aeruginosa*: cycle selection of iron-regulated genes. Proc. Natl. Acad. Sci. USA **93:**4409-4414.

Ochsner, U. A., P. J. Wilderman, A. I. Vasil, and M. L. Vasil. 2002. GeneChip expression analysis of the iron starvation response in *Pseudomonas aeruginosa*: identification of novel pyoverdine biosynthesis genes. Mol. Microbiol. **45**:1277-1287.

Ortet, P., M. Barakat, D. Lalaouna, S. Fochesato, V. Barbe, B. Vacherie, C. Santaella, T. Heulin, and W. Achouak. 2011. Complete genome sequence of a beneficial plant root-associated bacterium, *Pseudomonas brassicacearum*. J. Bacteriol. **193**:3146.

Paulsen, I. T., C. M. Press, J. Ravel, D. Y. Kobayashi, G. S. A. Myers, D. V.
Mavrodi, R. T. DeBoy, R. Seshadri, Q. Ren, R. Madupu, R. J. Dodson, A. S.
Durkin, L. M. Brinkac, S. C. Daugherty, S. A. Sullivan, M. J. Rosovitz, M. L.
Gwinn, L. Zhou, D. J. Schneider, S. W. Cartinhour, W. C. Nelson, J. Weidman,
K. Watkins, K. Tran, H. Khouri, E. A. Pierson, L. S. Pierson, 3rd, L. S.
Thomashow, and J. E. Loper. 2005. Complete genome sequence of the plant
commensal *Pseudomonas fluorescens* Pf-5. Nat. Biotechnol. 23:873-878.

Pawelek, P. D., N. Croteau, C. Ng-Thow-Hing, C. M. Khursigara, N. Moiseeva, M. Allaire, and J. W. Coulton. 2006. Structure of TonB in complex with FhuA, *E. coli* outer membrane receptor. Science **312**:1399-1402.

Peacock, R. S., A. M. Weljie, S. P. Howard, F. D. Price, and H. J. Vogel. 2004. The solution structure of the C-terminal domain of TonB and interaction studies with TonB box peptides. J. Mol. Biol. **345**:1185–1197.

Pierson, L. S., 3rd, and L. S. Thomashow. 1992. Cloning and heterologous expression of the phenazine biosynthetic locus from *Pseudomonas aureofaciens* 30-84. Mol. Plant Microbe Interact. **5:**330-339.

Poole, K., S. Neshat, K. Krebes, and D. E. Heinrichs. 1993. Cloning and nucleotide sequence analysis of the ferripyoverdine receptor gene *fpvA* of *Pseudomonas aeruginosa*. J. Bacteriol. **175:**4597-4604.

Postle, K., and R. J. Kadner. 2003. Touch and go: tying TonB to transport. Mol. Microbiol. **49:**869–882.

Raaijmakers, J. M., L. van der Sluis, P. A. H. M. Bakker, B. Schippers, M. Koster, and P. J. Weisbeek. 1995. Utilization of heterologous siderophores and rhizosphere competence of fluorescent *Pseudomonas* spp. Can. J. Microbiol. **41**:126–135.

Raaijmakers, J. M., and D. M. Weller. 2001. Exploiting genotypic diversity of 2,4diacetylphloroglucinol-producing *Pseudomonas* spp.: characterization of superior root-colonizing *P. fluorescens* strain Q8r1-96. Appl. Environ. Microbiol. **67:**2545-2554.

Raaijmakers, J. M., and D. M. Weller. 1998. Natural plant protection by 2,4diacetylphloroglucinol-producing *Pseudomonas* spp. in take-all decline soils. Mol. Plant Microbe Interact. **11:**144-152.

Rausch, C., T. Weber, O. Kohlbacher, W. Wohlleben, and D. H. Huson. 2005. Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res. 33:5799-5808.

Ravel, J., and P. Cornelis. 2003. Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends Microbiol. **11**:195-200.

Redly, G. A., and K. Poole. 2003. Pyoverdine-mediated regulation of FpvA synthesis in *Pseudomonas aeruginosa*: involvement of a probable extracytoplasmic-function sigma factor, FpvI. J. Bacteriol. **185**:1261-1265.

Reimmann, C., H. M. Patel, C. T. Walsh, and D. Haas. 2004. PchC thioesterase optimizes nonribosomal biosynthesis of the peptide siderophore pyochelin in *Pseudomonas aeruginosa*. J. Bacteriol. **186**:6367-6373.

Rengel, Z., and P. Marschner. 2005. Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytol. **168**:305-312.

Sambrook, J., E. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA.

Sarniguet, A., J. Krause, M.D. Henkels, A.M. Muehlchen, and J. E. Loper. 1995. The sigma factor σ^{s} affects antibiotic production and biological control activity of *Pseudomonas fluorescens* Pf-5. Proc. Natl. Acad. Sci. USA **92**:12255-12259.

Schalk, I. J., I. L. Lamont, and D. Cobessi. 2009. Structure-function relationships in the bifunctional ferrisiderophore FpvA receptor from *Pseudomonas aeruginosa*. Biometals **22**:267-268.

Schauer, K., B. Gouget, M. Carriere, A. Labigne, and H. de Reuse. 2007. Novel nickel transport mechanism across the bacterial outer membrane energized by the TonB/ExbB/ExbD machinery. Mol. Microbiol. **63:**1054-1068.

Schwyn, B., and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160:47-56.

Shirley, M., and I. L. Lamont. 2009. Role of TonB1 in pyoverdine-mediated signaling in *Pseudomonas aeruginosa*. J. Bacteriol. **191:**5634-5640.

Shultis, D. D., M. D. Purdy, C. N. Banchs, and M. C. Wiener. 2006. Outer membrane active transport: structure of the BtuB:TonB complex. Science **312:**1396-1399.

Silby, M. W., A. M. Cerdeno-Tarraga, G. S. Vernikos, S. R. Giddens, R. W.
Jackson, G. M. Preston, X. X. Zhang, C. D. Moon, S. M. Gehrig, S. A. Godfrey,
C. G. Knight, J. G. Malone, Z. Robinson, A. J. Spiers, S. Harris, G. L. Challis, A.
M. Yaxley, D. Harris, K. Seeger, L. Murphy, S. Rutter, R. Squares, M. A. Quail,
E. Saunders, K. Mavromatis, T. S. Brettin, S. D. Bentley, J. Hothersall, E.
Stephens, C. M. Thomas, J. Parkhill, S. B. Levy, P. B. Rainey, and N. R.
Thomson. 2009. Genomic and genetic analyses of diversity and plant interactions of *Pseudomonas fluorescens*. Genome Biol. 10:R51.

Silby, M. W., C. Winstanley, S. A. C. Godfrey, S. B. Levy, and R. W. Jackson. 2011. *Pseudomonas* genomes: diverse and adaptable. FEMS Microbiol. Rev. **35:**652-680.

Simon, R., U. Priefer, and A. Pühler. 1983. A broad host range mobilization system for *In Vivo* genetic engineering: transposon mutagenesis in gram negative bacteria. Nat. Biotechnol. **1**:784-791.

Smith, E. E., E. H. Sims, D. H. Spencer, R. Kaul, and M. V. Olson. 2005. Evidence for diversifying selection at the pyoverdine locus of *Pseudomonas aeruginosa*. J. Bacteriol. **187:**2138-2147.

Stachelhaus, T., H. D. Mootz, and M. A. Marahiel. 1999. The specificityconferring code of adenylation domains in nonribosomal peptide synthetases. Chem. Biol. **6**:493-505.

Stanier, R. Y., N. J. Palleroni, and M. Doudoroff. 1966. The aerobic pseudomonads: a taxonomic study. J. Gen. Microbiol. **43:**159-271.

Sultana R, S. B., Taraz K, Budzikiewicz H, MeyerJM. 2001. An isopyoverdin from *Pseudomonas putida* CFML90-44. Z Naturforsch C 56:303-307.

Takase, H., H. Nitanai, K. Hoshino, and T. Otani. 2000. Requirement of the *Pseudomonas aeruginosa tonB* gene for high-affinity iron acquisition and infection. Infect. Immun. **68:**4498-4504.

Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599.

Tappe, R., K. Taraz, H. Budzikiewicz, J. M. Meyer, and J. F. Lefevre. 1993. Structure elucidation of a pyoverdin produced by *Pseudomonas aeruginosa* ATCC27853. J. Prakt. Chem. **335:**83-87.

Teintze, M., M. B. Hossain, C. L. Barnes, J. Leong, and D. van der Helm. 1981. Structure of ferric pseudobactin, a siderophore from a plant growth promoting *Pseudomonas*. Biochemistry **20**:6446-6457.

Teintze, M., and J. Leong. 1981. Structure of pseudobactin A, a second siderophore from plant growth promoting *Pseudomonas* B10. Biochemistry **20:**6457-6462.

Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. **22:**4673-4680.

Tucker, B., C. Radtke, S. I. Kwon, and A. J. Anderson. 1995. Suppression of bioremediation by *Phanerochaete chrysosporium* by soil factors. J. Hazard. Mater. **41:**251-265.

Uria-Fernandez, D., V. A. Geoffroy, M. Schäfer, J. M. Meyer, and H. Budzikiewicz. 2003. Structure revision of several pyoverdins produced by plantgrowth promoting and plant-deleterious *Pseudomonas* species. Monatsh. Chem. **134**:1421-1431.

Vincent, M. N., L. A. Harrison, J. M. Brackin, P. A. Kovacevich, P. Mukerji, D. M. Weller, and E. A. Pierson. 1991. Genetic analysis of the antifungal activity of a soilborne *Pseudomonas aureofaciens* strain. Appl. Environ. Microbiol. **57:**2928-2934.

Visca, P., F. Imperi, and I. L. Lamont. 2007. Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol. 15:22-30.

Visca, P., L. Leoni, M. J. Wilson, and I. L. Lamont. 2002. Iron transport and regulation, cell signalling and genomics: lessons from *Escherichia coli* and *Pseudomonas*. Mol. Microbiol. **45**:1177-1190.

Weller, D. M., W. J. Howie, and R. J. Cook. 1988. Relationship between in vitro inhibition of *Gaeumannomyces graminis* var. *tritici* and suppression of take-all of wheat by fluorescent pseudomonads. Phytopathology **78**:1094-1100.

Wong-Lun-Sang, S., J.-J. Bernardini, C. Hennard, P. Kyslík, A. Dell, and M. A. Abdallah. 1996. Bacterial siderophores: Structure elucidation, 2D ¹H and ¹³C NMR assignments of pyoverdins produced by *Pseudomonas fluorescens* CHAO. Tetrahedron Lett. **37:**3329-3332.

Xu, G. W., and D. C. Gross. 1986. Selection of fluorescent pseudomonads antagonistic to *Erwinia carotovora* and suppressive of potato seed piece decay. Phytopathology **76:**414-422.

Yamamoto, S., H. Kasai, D. L. Arnold, R. W. Jackson, A. Vivian, and S. Harayama. 2000. Phylogeny of the genus *Pseudomonas*: intrageneric structure reconstructed from the nucleotide sequences of *gyrB* and *rpoD* genes. Microbiology 146: 2385-2394.

Yoneyama, H., and T. Nakae. 1996. Protein C (OprC) of the outer membrane of *Pseudomonas aeruginosa* is a copper-regulated channel protein. Microbiology **142**: 2137-2144.

Youard, Z. A., G. L. Mislin, P. A. Majcherczyk, I. J. Schalk, and C. Reimmann. 2007. *Pseudomonas fluorescens* CHAO produces enantio-pyochelin, the optical antipode of the *Pseudomonas aeruginosa* siderophore pyochelin. J. Biol. Chem. **282:**35546-35553.

Zhao, Q., and K. Poole. 2002. Mutational analysis of the TonB1 energy coupler of *Pseudomonas aeruginosa*. J. Bacteriol. **184:**1503-1513.

Zhu, M., M. Valdebenito, G. Winkelmann, and K. Hantke. 2005. Functions of the siderophore esterases IroD and IroE in iron-salmochelin utilization. Microbiology 151:2363-2372.

APPENDICES

Appendix 1. Contiguous gene regions surrondoing TBDP genes in *P. fluorescens* Pf-5. TBDPs are highlighted in green. Transcription regulators are in orange. TonB protein complex genes are in blue. ABC transport genes are in yellow.

117 118 122 6292		Function glutaryl-CoA dehydrogenase CoA-transferase, family III 23S ribosomal RNA 5S ribosomal RNA 5S ribosomal RNA PepSY-associated TM helix domain protein TBDP ferrichrome-iron receptor, Transducer sigma factor regulatory protein, FecR/PupR family	PA01 homolog PA0447 PA0446 PA2465 PA2466 optS PA2467	Other homologs	Fur box motif
127	pctA	RNA polymerase sigma-70 factor, ECF subfamily chemotactic transducer PctA	PA2468	PP2249, Pfl01 0128	TAATGATAAT
144 145 146 147 148 149 150		efflux transporter, outer membrane factor lipoprotein, NodT family RNA polymerase sigma-70 factor, ECF subfamily sigma factor regulatory protein, FecR/PupR family TBDP ferrichrome-iron receptor, Transducer CHP CHP membrane protein, putative	PA2837 PA5441	PP1273 PP3086 PP3085 PP3084	TAATGATAAT
208 209 210 211 212	atsB atsR atsK sftR sftP	sulfate ester ABC transporter, permease protein AtsB sulfate ester ABC transporter, periplasmic sulfate ester-binding protein AtsR transcriptional regulator StR homolog alkylsulfatase AtsK sulfatase domain protein transcriptional regulator StR TBDP StP, sulfate-ester, Receptor HP HP HP HP CHP	PA0185 PA0186 PA0191 PA0193 PA2333 PA2334 PA2335 optO PA2336 PA5403 PA5402		
250	dcyD betT	D-cysteine desulfhydrase serine acetyltransferase, putative high-affinity choline transporter, BCCT family, BetT oxidoreductase, short chain dehydrogenase/reductase family transcriptional regulator, LysR family transcriptional regulator, LacI family TBDP, Receptor Initioltriacetate monocxygenase component A, NtaA L-glyceraldehyde 3-phosphate reductase YghZ auxiliary transport protein, membrane fusion protein (MFP) family drug resistance transporter, EmrB/QacA subfamily transcriptional regulator, AraC family AMP-binding protein	PA3933 PA2335	PSPTO 5179 PSEEN0208 PSEEN2587 Pfi01 0249, PSPPH 4858 Pfi01 0250 Pfi01 0251 Pfi01 0252 PSEEN2707	GATAAT
305 306 307 308 309 310 311 312		glucose-1-phosphate thymidylyltransferase dTDP-glucose 4.6-dehydratase phosphotransferase family/aminotransferase, class III N-carbamoylputrescine amidase agmatine deiminase HP TBDP, Receptor CHP HP outer membrane porin OprE3 HP HP TPR domain protein	PA5163 PA5161 PA0293 PA0292 PA0058 PA2760	PP4154 PP0267, PSEEN0263	GATAAT
642 643 644 645 646 647 648 650 651 652 653 654	oprC	CHP iron-compound ABC transporter, permease protein iron compound ABC transporter, iron compound-binding protein iron compound ABC transporter, ATP-binding protein TBDP, Receptor PepSY-associated membrane protein TBDP, copper, OprC, Receptor HP Protein of unknown function (DUF461) family HP HP HP Precorrin-6x reductase CbiJ/CobK	PA2914 PA2913 PA2912 PA3789 PA3790 PA3791 PA3785 PA3786 PA2909	PSEEN3939 PSEEN3938	

PFL		Function	PAO1 homolog	other homologs	Fur box motif
	fruR	fructose transport system repressor FruR	PA3563		GATAAT
859		phosphoenolpyruvate-protein phosphotransferase, EIIA/HPr/EI components	PA3562		
	fruK	1-phosphofructokinase	PA3561		
862	fruA	PTS system, fructose-specific IIBC component PhoD family protein	PA3560 PA3910		
863		flavodoxin/oxidoreductase NAD binding domain	PA3910 PA4513		
864		TBDP, Receptor	PA4514 piuA		
865		oxidoreductase, 20G-Fe(II) oxygenase family	PA4515		
866		Sel1 domain protein	PA4516		
867		ornithine decarboxylase	PA4519		
	opuCA	glycine betaine/carnitine/choline ABC transporter, ATP-binding protein	PA3891		
	opuCB	glycine betaine/carnitine/choline ABC transporter, permease protein	PA3890		
870	opuCC	glycine betaine/L-proline ABC transporter, periplasmic substrate-binding protei	PA3889		
0.26	###25	toluene tolerance protein Ttg2F	PA4451		
	ttg2F murA	UDP-N-acetylglucosamine 1-carboxyvinyltransferase	PA4451 PA4450		
	his G	ATP phosphoribosyltransferase	174400		
	hisD	histidinol dehydrogenase	PA4448		
930	hisC	histidinol-phosphate aminotransferase	PA4447		
931		HP	_	PP3326	
932		TBDP, Receptor	PA4837		
	algW	serine protease AlgW	PA4446		
934	-	CHP	PA4445		
	cysD	sulfate adenylyltransferase, small subunit	PA4443		
	cysN	sulfate adenylate transferase, large subunit/adenylylsulfate kinase, putative	PA4442		
937 938	nta	acyltransferase phosphate acetyltransferase	PA0834 PA0835		
930	pta	phosphale acelyliansierase	FA0035		
979	sdaA	L-serine ammonia-lyase 2			
980	oddri	transcriptional regulator, LysR family			
981		СНР			
982		TBDP, ferric-citrate, FecA, Transducer	PA3901 fecA		
983		anti-sigma factor, FecR	PA3900		
984		RNA polymerase sigma factor Facl	PA3899		
985		HP	PA0800		
986		PepSY-associated TM helix domain protein	PA0801		
987 988		HP RNA polymerase sigma-70 factor, ECF subfamily	PA0802 PA0149		
989		sigma factor regulatory protein, FecR/PupR family	PA0149 PA0150		
990		transport energizing protein, ExbD family	1 70100	PSPPH 0912	GATAAT
	tonB	TonB domain protein		PSPPH 0913	
992		TBDP, Receptor		PSPPH 0914	
993		transporter, MotA/TolQ/ExbB proton channel family		PSPPH 0915	
994		Ser/Thr protein phosphatase/5'-nucleotidase domain protein		PP1414	
995		TBDP, Transducer	PA0151		
996		HP			
997		acid phosphatase, putative			
998 999		outer membrane porin, OprD family transcriptional regulator, AraC family	PA3898		GATAAT
1000		integral membrane protein, DUF6 family	PA3897		GATAAT
	ghrB2	glyoxylate/hydroxypyruvate reductase B	PA3896		
		<u>,,,,,</u>			
1367		CobW/P47K family protein		PSPPH 3929	
1368		HP		PSPPH 3928	
1369		HP			
1370		HP			
	hxuC	TBDP, heme, Transducer	PA1302 hxuC	DOFENIASSS	
1372 1373		sigma factor regulatory protein, FecR/PupR family RNA polymerase sigma-70 factor, ECF subfamily	PA1300	PSEEN4332	
1373		rhodanese-like domain protein	PA1300 PA2603		
1574		nodanese-like domain protein	FA2005		
1383		renal dipeptidase family protein			
1384		amine oxidase, flavin-containing			
1385		endoribonuclease L-PSP family protein			
1386		TBDP, Receptor	PA2089		
1387		alkanesulfonate ABC transporter, periplasmic substrate-binding protein			
1388		HP			
1389		HP			
1414			DA1267		
1411 1412		FAD dependent oxidoreductase proline racemase family protein	PA1267 PA1268		
1412		dihydrodipicolinate synthetase family protein	PA1256 PA1254		
1413		aspartate:proton symporter YveA		PP1259	
1415	aldH	NADP-dependent fatty aldehyde dehydrogenase			
1416		malate/L-lactate dehydrogenase family protein	PA1252		
1417		TBDP, Receptor			
1418		acetyltransferase, GNAT family			
1419		HP		B/04 045-	
1420		HP		Pfl01 3187	
1421		HP HP			
1422 1423		HP HP			
1423		10			

PFL		Function	PAO1 homolog	Other homologs	Fur box motif
1737 1738	fabA	3-hydroxydecanoyl-[acyl-carrier-protein] dehydratase sensor histidine kinase/response regulator			
1739		HP			
1740 1741	apsA	TBDP, Receptor glycerol-3-phosphate dehydrogenase	PA2070		
1742 1743		HP phosphohistidine phosphatase SixA			
	3127				
2237 2238		MASE2 domain/diguanylate cyclase domain protein iron compound ABC transporter, iron compound-binding protein, putative			
2239		HP			
2240 2241	astA	TBDP, Receptor arginine N-succinyltransferase, beta subunit	PA2289		
2242		arginine N-succinyltransferase, alpha subunit			
2243		amino acid transporter, AAT family			
2288		phenazine biosynthesis protein, PhzF family	PA1367		
2289 2290	hemB	HP delta-aminolevulinic acid dehydratase		Pfl01 3751	
2291		RNA polymerase sigma factor Fecl	PA1912		TAAGTAATAG
2292 2293		sigma factor regulatory protein FecR TBDP, Transducer	PA4221 fptA		
2294		transcriptional regulator, LysR family			
2295 2296		oxidoreductase, short-chain dehydrogenase/reductase family FAD dependent oxidoreductase			
2361		nhaanhatranafaraaa familu/aantidaaa M22 familu/aminatranafaraaa alaaa III		PP3361	
2361		phosphotransferase family/peptidase, M23 family/aminotransferase, class III transcriptional regulator, AsnC family		PP3362	
2363 2364		RNA polymerase sigma-70 factor, ECF subfamily sigma factor regulatory protein, FecR/PupR family		Pfl01 3796 PSPPH 2748	TAATAGTAAT
2365		TBDP, Transducer	PA4897 optl	F 6F F 11 2/40	Fur box
2366 2367		lipoprotein, putative HP	PA2581 PA1906		
2368		HP	1 41300		
2388		membrane protein, putative			
2389		HP			
2390 2391	fpvU	hydrolase, NUDIX family TBDP, Transducer	PA2398 fpvA	PSPPH 2763	
2392		sigma factor regulatory protein, FecR/PupR family			
2393 2394		RNA polymerase sigma-70 family protein HP			
2524		radical SAM domain protein		Pfl01 3469	
2525		HP		Pfl01 3468	
2526 2527	fpvV	HP TBDP Transducer	l	PSEEN2529	
2528	pupR	sigma factor regulatory protein PupR			
2529 2530		RNA polymerase sigma-70 factor, ECF subfamily branched-chain amino acid aminotransferase	PA5013		
2531	bkdC	2-oxoisovalerate dehydrogenase E3 component, dihydrolipoyl dehydrogenase	PA2250	PA14 35490	TAATAG
2601		HP			TAATAG
2602 2603		HP ABC transporter, quaternary amine uptake transporter (QAT) family, substrate-	PA1968		
2604		TBDP, Receptor	1 40100	Pfl01 3318	
2605 2606	phaG	HP probable K(+)/H(+) antiporter subunit G	PA1059		
2607		probable $K(+)/H(+)$ antiporter subunit F	PA1058		
2660		TRAP transporter, DctM subunit	PA0886		
	mag1	DNA-3-methyladenine glycosylase	D 4 9 9 9 9		
2662 2663		Putative esterase superfamily TBDP PfeA, Receptor	PA2689 PA2688, 0931 p	irA	AGTAATAGTAAG
2664		sensor protein PfeS transcriptional activator PfeR	PA2687		
2665 2666	prek	YheO-like PAS domain protein	PA2686		
2766		HP			
2767		FAD linked oxidase domain protein	PA3026		
2768 2769		FAD dependent oxidoreductase carbohydrate kinase, FGGY family	PA3025 PA3024		
2770		HP			
2771 2772		HP TBDP, Receptor	PA2289	PP4137	
2773		HP			
2774 2775		HP beta-lactamase		PSPTO 2834	
2776		HP			
2777 2778		Ypar31 protein amidase family protein	PA4163		
2110					

PFL 2912 2913	name	Function betaine aldehyde dehydrogenase, putative alcohol dehydrogenase, iron-containing	PA1146	Other homologs PP0708	Fur box motif
2914 2915		amino acid permease, APC family transcriptional regulator, LysR family	PA1147	PSPPH 3618	
2916 2917 2918 2919		transporter, major facilitator family oxidoreductase membrane protein, FAD-binding monooxygenase, SsuD family TBDP. Receptor	PA0545 PA2598		
2920		HP			
2921 2922		bacterial extracellular solute-binding proteins, family 5 monooxygenase, SsuD family			
2923		HP		PSEEN3419	
2967 2968		HP HP			
2969 2970		HP TBDP, Receptor	PA2911		
2971 2972		NAD-dependent epimerase/dehydratase family protein	PA3064 PelA	PA14 24480	TAATAGAAC
2973		HP	PA3063 PelB	PA14 24490	
3151 3152		ATPase, AFG1 family HP	PA2353	PfI01 2579 PfI01 2578	
3153 3154		DNA-binding protein	DA 4075 : 44/-64	PfI01 2577	
3155		TBDP, Transducer sigma factor regulatory protein, FecR/PupR family	PA4675 iutA/cht	PP2192	
3156 3157	vgfO	RNA polymerase sigma-70 factor, ECF subfamily high-affinity xanthine transporter, NCS2 family, YgfO		PfI01 2573	
3170		ABC transporter, ATP-binding protein		PSEEN3426	
3171 3172		ABC transporter, ATP-binding protein monooxygenase, SsuD family		PSEEN3427 PSEEN3428	
3173 3174		monooxygenase, putative monooxygenase, putative		PSEEN3429 PSEEN3430	
3175 3176		TBDP. Receptor	PA2089	PSEEN3436	
3177		TBDP OptO, Receptor	PA2335 optO	PSEEN3437	
3178 3179		ABC transporter, permease protein ABC transporter, permease protein		PSEEN3438 PSEEN3439	
3180 3181		ABC transporter, ATP-binding protein putative nitrate/nitrite/cyanate ABC transporter, NitT family, permease protein		PSEEN3440	
3182		putative nitrate/nitrite/cvanate ABC transporter, NitT family, periplasmic nitrate			
3312 3313		phosphotransferase system, EIIC domain/cyclic diguanylate phosphodiesterase RNA polymerase sigma-70 factor, ECF subfamily	e (EAL) domain p	rotein	
3314 3315	fovX	sigma factor regulatory protein, FecR/PupR family TBDP, Transducer			
3316 3317		3-demethylubiquinone-9 3-methyltransferase domain protein transcriptional regulator, AraC family	PA2721		
3318		translocator protein, LysE family			
3482 3483		transcriptional regulator, MarR family/acetyl transferase, GNAT family			GATAAT
3484		RNA polymerase sigma-70 factor, ECF subfamily sigma factor regulatory protein, putative			
3485 3486		TBDP, Transducer HP		PfI01 1951	
3487 3488	pchA	HP isochorismate synthase	PA4231		
3495		ABC transporter, ATP-binding/permease protein	PA4223		
3496 3497	pchD	salicyl-AMP ligase regulatory protein Pchr	PA4228 PA4227		TAAAGGATAAT
3498 3499	fetA	TBDP FetA, Receptor PepSY-associated membrane protein		PSEEN3225	
3500 3501		iron-chelate uptake ABC transporter, FeCT family, periplasmic iron-chelate-bin iron-chelate uptake ABC transporter, FeCT family, permease protein	ding protein, puta	Pmen 0797 Pmen 0798	
3609		flavin reductase like domain protein		PSEEN3104	
3610		RNA polymerase sigma-70 family protein		FSEENSTU4	TGATAATCA
3611 3612		sigma factor regulatory protein, FecR/PupR family TBDP, Transducer			
3613 3614		Di-haem cytochrome c peroxidase family protein phosphoenolpyruvate-dependent sugar phosphotransferase system, EIIA 2			
3615 3616		efflux transporter, outer membrane factor lipoprotein, NodT family efflux transporter, RND family, MFP subunit			
3617 3618		RND transporter, hydrophobe/amphiphile efflux-1 (HAE1) family molybdenum-pterin-binding protein			
3619 3620		monooxygenase, Nta/Sna/SoxA family TBDP ferric vibriobactin, Receptor	PA4155 PA4156		
3621		transcriptional regulator, IcIR family	PA4157		
3622 3623		ferric enterobactin ABC transporter, ATP-binding protein FepC ferric enterobactin ABC transporter, periplasmic ferric enterobactin-binding pro	PA4158 PA4159		GTAATAGTATAC
3709		oxidoreductase, FAD-linked	PA5327		
3710 3711		HP tonB protein, putative	PA5328 PA5531	PSPPH 2987	Fur box
3712 3713	toIR	toIR protein toIQ protein			
3714 3715		3-phytase family protein TBDP. Recentor			
3716		diguanylate cyclase (GGDEF) domain protein			
3717 3718		transcriptional regulator, AraC family aldehyde dehydrogenase (NAD) family protein	PA2323		
	moeA	membrane protein, putative molybdopterin biosynthesis MoeA protein		PSPTO 0520	
3721	moaB	molybdenum cofactor biosynthesis protein B		PSEEN4045	TAATAG

App	pendi	x 1. Continued			
PFL 3832 3833	name	Function HP HP	PAO1 homolog	Other homologs	Fur box motif
3834 3835 3836 3837		HP TBDP UfrA, Receptor oxidoreductase, FAD-binding transcriptional regulator, LysR family	PA1910 ufrA		
3838 4036 4037 4038 4039 4040 4041 4042		transporter, major facilitator family transcriptional regulator, LysR family transporter, major facilitator family TBDP FecA-like, Transducer sigma factor regulatory protein, FecR/PupR family RNA polymerase sigma-70 factor, ECF subfamily HP	PA3532 PA3268		GAGATAATCA
4060 4061 4062 4063 4064 4065 4066	ndvB	putative membrane protein HP HP TBDP. Receptor HP NdvB protein transcriptional regulator-related protein	PA0435 PA0434 PA0433		GTAATAGT
4090	pvdO pvdF pvdE	protein of unknown function DUF323 N(5)-hydroxyornithine transformylase PvdF pyoverdine ABC export system, permease/ATP-binding protein TBDP, Transducer NRPS NRPS NRPS	PA2395 PA2396 PA2397 PA4168 fpvB PA2402 PA2399		
4625 4626 4627	mgsA phuR hemO	methylqlvoxal synthase RNA polymerase sigma-70 factor, ECF subfamily sigma factor regulatory protein, FecR/PupR family TBDP, PhuR, Transducer heme oxygenase HP methyl-accepting chemotaxis protein	PA4710 phuR PA0672	Pmen 1310 Pfl01 4377 Pfl01 4378 Pfl01 4379 Pfl01 4380 Pfl01 4381 Pfl01 4382	GATAAT
4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918	oprB2	putative proline-specific permease, ProY family HP transcriptional regulator, PadR family siderophore-interacting protein family protein membrane protein, putative HP TBDP, Receptor transcriptional regulator, GntR family benzoate transport protein carbohydrate-selective porin OprB quinoprotein glucose dehydrogenase HP lipoprotein, putative	PA0789 PA0781 PA2290	PSEEN1179 PSEEN1177 PSEEN1176 PSEEN1175 PSEEN1174 PSEEN3859 PSEEN1171	ATATAATAGATA
5169 5170	ychF pobA pobR	ribosomal protein L25, Ctc-form peptidyl-tRNA hydrolase GTP-binding protein YchF TBDP, Receptor 4-hydroxybenzoate 3-monooxygenase transcriptional regulator PobR fosmidomycin resistance protein	PA4671 PA4672 PA4673 PA0247 PA0248	PSPTO 1103 PSPTO 1102 PSPTO 1101 PSPTO 0784 PSPTO 1907 PSPTO 1908 PSPTO 3799	
5376 5377 5378 5379 5380	hasE hasD hasAp hasR hasS hasI aroQ	type 1 secretion system membrane fusion protein HasE type 1 secretion system ATPase HasD heme acquisition protein HasAp TBDP HasR, Transducer sigma factor regulatory protein HasS RNA polymerase sigma-70 factor, ECF subfamily 3-dehydroquinate dehydratase, type II	PA3405 PA3406 PA3407 PA3408 hasR PA3409 PA3410 PA0245		
5509 5510	dxs btuB	exodeoxyribonuclease VII, small subunit geranvltranstransferase 1-deoxy-D-xylulose-5-phosphate synthase TBDP, B12, BtuB, Receptor periplasmic cobalamin-binding protein HP GTP cyclohydrolase II	PA1271		TAATAG
5703 5704 5705 5706 5707 5708 5709		exonuclease RNA polymerase sigma-70 family protein sigma factor regulatory protein, FecR/PupR family TBDR FiuA, Transducer PepSY-associated membrane protein HP HP	PA3232 PA0472 PA0471 PA0470 fiuA PA1909	Pfi01 5191	

186

Appendix 2: Reciprocal BLASTP analysis of the *P. fluorescens* **group.** Color scale applied to the % amino acid ID values goes from red for the most similar to green for the least similar.

PFL_0213 Sulphate PflAS06_0217 82.9 88 Pch13084_0224 85.2 90 Pch06_0225 83 91 PFL_0210 PflAS06_0227 77 79 Pch13084_0227 81.9 87 Pch06_0225 85.2 32 PFL_0646 PflAS06_0277 77 79 Pch13084_0227 79 77 Pch106_0633 78 77 87 PFL_0646 PflAS06_0576 74 88 Pch13084_0627 76.9 87 Pch106_0633 78 77 87 PFL_0982 PflAS06_0745 76.6 81 Pch13084_0855 82 84 Pch106_0324 30 PFL_0992 PflAS06_1012 87.1 77 Pch13084_0851 85.7 86 Pch106_4138 78.2 24 PFL_0995 PflAS06_1013 87.1 77 Pch13084_3848 78.1 42 Pch106_0361 42 Pch13084_1476 97.7 58 Pch106_0323 85.6 87 PFL_1316 PflAS06_1183 90.4 55 Pch13084_3848 78.1 42 Pch106_04133 77.6 48 </th <th>A. F. Juoresce</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	A. F. Juoresce									
PFL_0125 ferrioxamine PflA506_0139 88.8 36 Pch1308_0129 90.6 82 Pch06_0126 91.2 81 PFL_0213_biphate PflA506_0139 73 Pch1308_0124 85.2 90 Pch106_0125 90 PFL_0213_biphate PflA506_0292 77 88 Pch1308_0207 81.9 87 Pch06_0235 85.2 93 PFL_0646 PflA506_0301 78.1 30 Pch1308_0227 79 77 Pch106_0335 77 87 PFL_0646 PflA506_0705 74 88 Pch1308_0627 75.9 87 Pch106_0335 77 87 PFL_0982 PflA506_0705 74 88 Pch1308_0629 75.9 87 Pch106_0334 78.1 78 Pch106_0389 85.5 86 Pch106_0383 87.2 23 78 PrL0992 PflA506_1001 87.1 77 Pch1308_1084 78.1 42 Pch106_138 78.2 23 24 Pch106_138 78.2 23 PrL_1316 PrL<092 PfL306 138 85.8 64 77 PfL PrL<041	Pf-5	A506			30-84			O-6		
PFL_0147 ferrichrome PflAS06_0139 73 Pch13084_0129 38 Pch106_0126 33 PFL_0213 Sulphate PflAS06_0217 82.9 88 Pch13084_0224 85.2 90 Pch106_0225 90 PFL_0310 PflAS06_0292 77 79 Pch13084_0227 79.7 77 Pch106_0324 77.5 80 PFL_0648 Copper PflAS06_0798 82 Pch13084_0627 75.9 87 Pch106_035 77 78 PFL_0648 Copper PflAS06_0798 82 Pch13084_0837 82.8 84 Pch106_0381 82.1 84 PFL_0982 PflAS06_1020 82.5 76 Pch13084_3174 77.8 43 Pch106_4138 78.2 23 PFL_0992 PflAS06_101 87.1 77 Pch13084_3848 78.1 42 Pch06_4138 78.2 78 PFL_1371 heme HxuC PflAS06_1368 96 47 97 Pch3084_3848 78.1 42 Pch106_4138 78.2 78 <	Locus tag		M.W.	% ID		M.W.	% ID		M.W.	% ID
PFL_0213 Sulphate PflAS06_0217 82.9 88 Pchl3084_0224 85.2 90 Pchl06_0225 90 PFL_02310 PflAS06_0227 77 Pch10304_0207 81.9 87 Pch106_0225 85.2 32 PFL_0540 PfLAS06_0277 77 Pch10304_0227 77 Pch106_0234 77.5 80 PFL_0648 PfLAS06_0776 74 88 Pch10304_0627 79 77 Pch06_0334 78 77 PFL_0648 PfLAS06_0775 76 81 Pch10384_0525 82 84 Pch10_0324 83.0 85.5 86 PFL_0932 PfLAS06_1021 82.5 76 Reh10384_3344 75.1 42 Pch106_4138 78.2 42 PFL_0317 PfLAS06_1363 91.6 64 Pch1034_3448 75.1 42 Pch106_4318 75.2 88 Pch106_4318 75.2 88 Pch106_4318 75.6 84 Pch1241 Pch105_61561 76 84 Pch12417 Pch1056_01661	PFL_0125 ferrioxamine	PfIA506_0139	88.8	36	Pchl3084_0129	90.6	82	PchlO6_0126	91.2	81
PFL_0255 PflAS06_3446 76 88 Pch13084_0273 81.9 87 Pch06_0225 85.2 32 PFL_0310 PfAS06_0292 77 79 Pch13084_0277 79 Pch06,0324 77.5 80 PFL_0646 PflAS06_0576 74 88 Pch13084_0227 79 97 Pch06_0635 77 87 PFL_0648 PfLAS06_0798 82 Pch13084_0227 77.9 87 Pch106_0635 77 87 PFL_0932 PflAS06_1022 84.9 87 Pch13084_0281 85.7 86 Pch106_0433 78.2 23 PFL_0992 PfIAS06_1030 82.5 76 Pch13084_1354 95.5 85 Pch06_1433 78.2 23 PFL_1371 PfLAS06_1861 87.1 77 Pch13084_1355 92.7 Pch106_0861 42 Pch1308_0355 92.4 Pch106_08137 77.6 84 PFL_21740 PfLAS06_1861 77.3 79 Pch13084_3355 92.4 Pch106_04337 72.6 84 Pch106_04337 72.6 84 Pch106_04337 72.6	PFL_0147 ferrichrome	PfIA506_0139		73	Pchl3084_0129		38	PchlO6_0126		38
PFL_0310 PflAS06_0292 77 79 Pch10304_027 77.4 80 Pch106_0324 77.5 80 PFL_0646 PfLAS06_0576 74 88 Pch13084_027 79 77 Pch06.0633 78 77 PFL_0646 PfLAS06_0798 82 Pch13084_0855 82 84 Pch106_06361 82.1 84 PFL_0982 PfLAS06_1074 76.6 81 Pch13084_0855 82 84 Pch106_00361 82.1 30 PFL_0982 PfLA506_1030 82.5 76 Pch13084_3848 78.1 23 Pch106_04138 78.2 23 PFL_0992 PfLA506_1001 87.1 77 Pch13044_3848 78.1 42 Pch106_4138 78.2 42 PFL_1316 PfLA506_1001 87.1 77 84 Pch106_0861 42 42 Pch106_0861 42 42 Pch106_0861 42 Pch1304_345 55 Pch2 42 Pch106_6183 77.6 84 Pch1264 42 Pch106_423 10.4 82 42 Pch106_6183 77.6 84 </td <td>PFL_0213 Sulphate</td> <td>PfIA506_0217</td> <td>82.9</td> <td>88</td> <td>Pchl3084_0224</td> <td>85.2</td> <td>90</td> <td>PchlO6_0225</td> <td></td> <td>90</td>	PFL_0213 Sulphate	PfIA506_0217	82.9	88	Pchl3084_0224	85.2	90	PchlO6_0225		90
PFL_0646 PflAS06_3017 78.1 30 Pch1084_0627 79 77 Pch106_0633 78 77 PFL_0648 copper PflAS06_0576 74 88 Pch1084_0625 82 84 Pch106_0635 77 87 PFL_0932 PflAS06_0745 76.6 81 Pch13084_0851 82 84 Pch106_0831 78 72 PFL_0992 PflAS06_1022 84.9 87 Pch13084_3848 78.1 42 Pch106_4138 78.2 23 PFL_0992 PflAS06_1001 87.1 77 Pch13084_3848 78.1 42 Pch106_4138 78.2 42 PFL_1316 PflAS06_1363 91.6 64 Pch13084_3484 74.4 Pch106_323 89.6 47 PFL_1417 PflAS06_1363 91.6 64 Pch13084_3484 74.4 Pch106_3235 89.6 47 PFL_2240 PflAS06_1861 77.3 79 Pch13084_3484 24 Pch106_4318 77.6 84 Pch106_4318 <	PFL_0255	PfIA506_3446	76	88	Pchl3084_0273	81.9	87	PchlO6_0225	85.2	32
PFL_0646 PfAS06_3017 78.1 30 Pch3084_0627 79 77 Pch06_0633 78 77 PFL_0648 copper PfIAS06_0576 74 88 Pch1084_0625 76.9 87 Pch06_0633 77 87 PFL_0864 PfIAS06_0745 76.6 81 Pch13084_0855 82 84 Pch106_0633 78 72 PFL_0992 PfIAS06_1022 84.9 87 Pch13084_084 78.1 43 Pch106_4138 78.2 23 PFL_0992 PfIAS06_1136 87.1 64 Pch13084_3848 78.1 42 Pch106_4138 78.2 24 PFL_1316 PfIAS06_1363 91.6 64 Pch13084_4164 97.7 76 84 Pch106_4138 78.2 42 PFL_13186 PfIAS06_1861 77.3 79 Pch13084_488 244 Pch106_4138 77.6 84 Pch106_4138 78.2 668 PFL_2240 PfIAS06_1983 90.4 55 Pch13084_4288 82.2 <td>PFL_0310</td> <td>PfIA506_0292</td> <td>77</td> <td>79</td> <td>Pchl3084_0320</td> <td>77.4</td> <td>80</td> <td>PchlO6_0324</td> <td>77.5</td> <td>80</td>	PFL_0310	PfIA506_0292	77	79	Pchl3084_0320	77.4	80	PchlO6_0324	77.5	80
PFL_0864 PflA506_0798 82 Pch13084_0855 82 84 Pch106_0861 82.1 84 PPL_0932 PflA506_0745 76.6 81 Pch13084_0981 85.7 86 Pch106_0324 30 PFL_0992 PflA506_1022 84.9 87 Pch384_3848 78.1 23 Pch106_0138 78.2 23 PFL_0995 PflA506_1303 82.5 76 Pch3084_3848 78.1 23 Pch106_1313 78.2 24 PFL_1386 PflA506_1363 916 64 Pch3084_3848 78.1 24 Pch106_1313 95.5 88 64 77 PFL_1316 PflA506_1363 90.4 55 Pch3084_3355 42 Pch106_0861 422 PFL_2320 PflA506_1818 70 Pch3084_3355 89.3 68 Pch106_3237 76.64 PFL_2331 pyoverdine PflA506_3017 90.3 22 Pch3084_3355 89.3 68 Pch106_4229 91.1 38 PFL_2331 pyoverdine <td>PFL_0646</td> <td>PfIA506_3017</td> <td>78.1</td> <td>30</td> <td>Pchl3084_0627</td> <td>79</td> <td></td> <td></td> <td>78</td> <td>77</td>	PFL_0646	PfIA506_3017	78.1	30	Pchl3084_0627	79			78	77
PFL_0932 PflA506_0745 76.6 81 Pchl3084_3174 77.8 43 Pchl06_0324 30 PFL_0992 PflA506_1022 84.9 87 Pchl3084_981 85.7 86 Pchl06_0989 85.5 86 PFL_0992 PflA506_101 87.1 77 Pchl3084_3848 78.1 42 Pchl06_4138 78.2 42 PFL_13171 PflA506_1584 86 38 Pchl3084_2164 97.7 25 Pchl06_1433 77.6 84 PFL_11740 PflA506_1584 86 38 Pchl3084_1705 77.6 84 Pchl06_1433 77.6 84 PFL_2239 pyoverdime PflA506_4779 90.3 32 Pchl3084_3848 24 Pchl06_4138 24 PFL_2393 pyoverdime PflA506_6308 87.6 70 Pchl3084_2211 103.9 82 Pchl06_4235 104 82 PFL_2329 pyoverdime PflA506_0308 81.3 50 Pchl3084_2707 78.7 82 Pchl06_2626 78.7 81	PFL_0648 copper	PfIA506_0576		88		76.9			77	
PFL_0982 citrate PflA506_1022 84.9 87 Pch13084_0981 85.7 86 Pchl06_0989 85.5 86 PFL_0992 PflA506_1001 87.1 77 Pch13084_3848 78.1 23 Pchl06_4138 78.2 42 PFL_0995 PflA506_1563 91.6 64 Pch13084_3154 95.5 85 Pchl06_1431 95.5 85 PFL_1371 heme HxuC PflA506_0798 42 Pch13084_1254 97.7 25 Pchl06_1837 77.6 84 Pchl06_4138 76 74 PFL_1740 PflA506_1861 77.3 79 Pch13084_3855 8.3 68 Pchl06_4138 7.6 84 PFL_231 pyoverdine PflA506_1833 90.4 55 Pch13084_3255 8.3 68 Pchl05_4138 7.6 84 PFL_230 pyoverdine PflA506_1893 90.4 55 Pch13084_3251 10.3 82 Pchl06_4229 1.3 88 PFL_231 pyoverdine PflA506_3089 87.6 70 Pch13084_2488 8.2 41 Pchl06_62226 78.7 81 P	PFL_0864	PfIA506_0798		82	Pchl3084_0855	82	84		82.1	84
PFL_0982 citrate PflA506_1022 84.9 87 Pch13084_3848 78.1 28 Pch106_4138 78.2 24 PFL_0995 PflA506_1031 82.5 76 Pch13084_3848 78.1 42 Pch106_4138 78.2 42 PFL_1371 PflA506_1363 91.6 64 Pch13084_3848 78.1 42 Pch106_4138 78.2 42 PFL_1386 PflA506_5184 86 38 Pch13084_1354 95.5 85 Pch106_4138 77.3 78 PFL_1740 PflA506_1783 77.3 79 Pch13084_1705 77.6 84 Pch106_4138 24 PFL_2240 PflA506_1831 77.3 79 Pch13084_3848 24 Pch106_4138 24 PFL_2351 proverdime PflA506_1893 90.4 55 Pch13084_2488 89.2 41 Pch106_4229 11.3 38 PFL_251 proverdime PflA506_3089 87.6 70 Pch13084_2488 89.2 41 Pch106_4229 11.3 38 PFL_2527 proverdime PflA506_3089 81.3	PFL 0932	PfIA506 0745	76.6	81	Pchl3084 3174	77.8	43	PchlO6 0324		30
PFL_0995 PflAS06_1001 87.1 77 Pchl3084_3848 78.1 42 Pchl06_4138 78.2 442 PFL_1371 heme HxuC PflAS06_1363 91.6 64 Pchl3084_1354 95.5 85 Pchl06_1431 95.5 85 PFL_117 PflAS06_0798 42 Pchl3084_2105 77.6 84 Pchl06_0861 42 PFL_2147 PflAS06_0798 42 Pchl3084_2105 77.6 84 Pchl06_1837 77.6 84 PFL_2240 PflAS06_1983 90.4 55 Pchl3084_3355 89.3 68 Pchl06_4138 24 PFL_2230 pyoverdine PflAS06_3089 87.6 70 Pchl3084_2488 89.2 41 Pchl06_4229 91.1 38 PFL_2301 pyoverdine PflAS06_3089 87.6 70 Pchl3084_2470 78.8 Pchl06_2626 78.7 81 PFL_2304 PflAS06_3017 81 Pchl3084_2470 77.2 28 Pchl06_2626 78.7 81 PFL_2772 PflAS06_3137 7.3 61 Pchl3084_2739 72.3 28 Pchl06_2626	PFL 0982 citrate	PfIA506 1022	84.9	87	Pchl3084_0981	85.7			85.5	86
PFL_0995 PflAS06_1001 87.1 77 Pchl3084_3848 78.1 42 Pchl06_4138 78.2 442 PFL_1371 heme HxuC PflAS06_1363 91.6 64 Pchl3084_1354 95.5 85 Pchl06_1431 95.5 85 PFL_117 PflAS06_0798 42 Pchl3084_2105 77.6 84 Pchl06_0861 42 PFL_2147 PflAS06_0798 42 Pchl3084_2105 77.6 84 Pchl06_1837 77.6 84 PFL_2240 PflAS06_1983 90.4 55 Pchl3084_3355 89.3 68 Pchl06_4138 24 PFL_2230 pyoverdine PflAS06_3089 87.6 70 Pchl3084_2488 89.2 41 Pchl06_4229 91.1 38 PFL_2301 pyoverdine PflAS06_3089 87.6 70 Pchl3084_2470 78.8 Pchl06_2626 78.7 81 PFL_2304 PflAS06_3017 81 Pchl3084_2470 77.2 28 Pchl06_2626 78.7 81 PFL_2772 PflAS06_3137 7.3 61 Pchl3084_2739 72.3 28 Pchl06_2626	 PFL 0992	PfIA506 1030	82.5	76		78.1	23		78.2	23
PFI_1371 heme HxuC PflAS06_1363 91.6 64 Pchl3084_1354 95.5 85 Pchl06_1431 95.5 85 PFL_1386 PflAS06_5184 86 38 Pchl3084_1264 97.7 25 Pchl06_02861 42 PFL_1417 PflAS06_1861 77.3 79 Pchl3084_1705 77.6 84 Pchl06_1837 77.6 PFL_2240 PflAS06_1861 77.3 79 Pchl3084_3355 89.3 68 Pchl06_4138 24 PFL_2391 pyoverdine PflAS06_0398 87.6 70 Pchl3084_2355 89.2 41 Pchl06_4229 91.1 88 PFL_2391 pyoverdine PflAS06_3089 87.6 70 Pchl3084_2488 89.2 41 Pchl06_4229 91.1 88 PFL_2301 pyoverdine PflAS06_3089 87.6 70 Pchl3084_2477 72.3 28 Pchl06_2262 78.7 81 PFL_2604 PflAS06_317 81.3 Pchl3084_2477 72.3 28 Pchl06_2744 72.8 28 Pchl06_2744 72.8 28 Pchl06_2745 75.8 83	 PFL 0995		87.1			78.1			78.2	
PFL_1386 PfAS06_5184 86 38 Pchl3084_2164 97.7 25 Pchl06_3258 89.6 47 PFL_1417 PfAS06_778 42 Pchl3084_0855 42 Pchl06_0831 42 PFL_1417 PfAS06_1861 77.3 79 Pch3084_1705 77.6 84 Pchl06_4138 24 PFL_2240 PfAS06_4759 25 Pch13084_3348 24 Pch06_4138 24 PFL_2365 heme PfAS06_4277 90.3 32 Pch13084_2111 103.9 82 Pch106_4235 104 82 PFL_23231 pyoverdine PfIAS06_3089 87.6 70 Pch13084_2211 103.9 82 Pch106_2425 91.1 38 PFL_2527 pyoverdine PfIAS06_3017 81 Pch13084_2407 78.7 82 Pch106_2626 78.7 81 PFL_2702 PfIAS06_3139 77.3 61 Pch13084_2519 77.2 82 Pch106_2633 66 22 PFL_2172 PfIAS06_317 31 Pch13084_0273 61 Pch106_0633 62 23 Pch106_2633 66 22 <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-									
PFL_1417 PflA506_0798 42 Pch3084_0855 42 Pch106_0861 42 PFL_1740 PflA506_1851 77.3 79 Pch3084_1705 77.6 84 Pch106_1837 77.6 84 PFL_2239 pyoverdine PflA506_4779 0.3 32 Pch3084_3285 89.3 68 Pch106_4138 0.4 88 PFL_239 pyoverdine PflA506_4277 90.3 32 Pch3084_2211 10.3 82 Pch106_4229 91.1 38 PFL_2391 pyoverdine PflA506_3089 87.6 70 Pch3084_2488 89.2 41 Pch106_4229 91.1 38 PFL_263 entorbactin PflA506_3089 87.6 70 Pch3084_2488 89.2 41 Pch106_4229 91.1 38 PFL_263 entorbactin PflA506_3089 87.6 70 Pch3084_2488 89.2 41 Pch106_4229 91.2 22 PFL_2772 PflA506_3139 77.3 61 Pch13084_0273 20 Pch106_6133 62 37 PFL_3154 aerobactin <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>89.6</td><td></td></td<>									89.6	
PFL_1740 PflAS06_1861 77.3 79 Pchl3084_1705 77.6 84 Pchl06_1837 77.6 84 PFL_2240 PflAS06_4759 25 Pchl3084_3348 24 Pchl06_4138 24 PFL_2239 pyoverdine PflAS06_4277 90.3 32 Pchl3084_2211 103.9 82 Pchl06_4229 91.1 38 PFL_2391 pyoverdine PflAS06_3089 87.6 70 Pchl3084_2488 89.2 41 Pchl06_4229 91.1 38 PFL_2301 pyoverdine PflAS06_3089 87.6 70 Pchl3084_2488 89.2 41 Pchl06_4229 91.1 38 PFL_2604 PflAS06_0308 81.3 50 Pch3084_2974 72.3 82 Pchl06_2726 78.7 81 PFL_2701 PflAS06_3017 81.3 23 Pch3084_2074 74.3 32 Pchl06_0716 94.5 22 Pchl06_0716 94.5 22 Pchl06_0716 94.5 22 PFL_3176 PflAS06_317 31 Pch3084_0273 30 Pchl06_0235 81 29 PFL<3176										
PFL 2240 PflAS06_4759 25 Pchl3084_3848 24 Pchl06_4138 24 PFL_2293 pyoverdine PflAS06_1983 90.4 55 Pchl3084_3355 89.3 68 Pchl06_4138 92.4 68 PFL_2326 heme PflAS06_4277 90.3 32 Pchl3084_2111 103.9 82 Pchl06_4229 104 82 PFL_2527 pyoverdine PflAS06_3089 87.6 70 Pchl3084_2488 36 Pchl06_4229 133 PFL_2527 pyoverdine PflAS06_3017 81 Pchl3084_2407 78.7 82 Pchl06_5240 22 PFL_2527 PflAS06_3139 77.3 61 Pchl3084_2519 77.2 82 Pchl06_6233 62 PFL_2919 PflAS06_311 77.9 29 Pch13084_0273 30 Pchl06_633 62 PFL_315 aerobactin PflAS06_3811 77.9 29 Pch3084_0273 30 Pchl06_3255 81 29 PFL_315 PflAS06_3089 41 Pch13084_2488 55			77.3			77.6			77.6	84
PFL_2293 pyoverdine PflAS06_1983 90.4 55 Pch13084_3355 89.3 68 Pch16_3657 89.2 68 PFL_2391 pyoverdine PflAS06_4277 90.3 32 Pch13084_2211 103.9 82 Pch106_4229 91.1 38 PFL_2391 pyoverdine PflAS06_3089 87.6 70 Pch13084_2488 88.2 41 Pch106_4229 93.3 PFL_2604 PflAS06_3080 81.3 50 Pch13084_2474 77.3 82 Pch106_2626 78.7 81 PFL_2604 PflAS06_3139 77.3 61 Pch13084_2974 77.2 82 Pch106_02676 94.5 22 PFL_2702 PflAS06_317 31 Pch3084_0709 94.3 22 Pch106_0716 94.5 22 PrL3076 PflAS06_3017 31 Pch3084_0273 30 Pch106_0432 22 Pch106_0432 22 Pch106_0432 23 PFL_3176 PflAS06_3089 52 Pch3084_2164 26 Pch106_3155 74.6 <td></td>										
PFL_2365 heme PflA506_4277 90.3 32 Pchl3084_2211 103.9 82 Pchl06_2435 104 82 PFL_2391 pyoverdine PflA506_3089 87.6 70 Pchl3084_2488 89.2 41 Pchl06_4229 91.1 38 PFL_2527 pyoverdine PflA506_3089 36 Pchl3084_2488 36 Pchl06_2262 78.7 81 PFL_2664 PflA506_3017 81 Pchl3084_2974 77.3 82 Pchl06_2744 77.5 83 PFL_2712 PflA506_0798 81.3 23 Pchl3084_2079 94.3 22 Pchl06_0716 94.5 22 PFL_2970 PflA506_3117 31 Pchl3084_0273 61 Pchl06_0633 62 PFL_3176 PflA506_5184 38 Pchl3084_2164 26 Pchl06_3255 81 29 PFL_3177 PflA506_5184 38 Pchl3084_2164 26 Pchl06_3155 86.6 30 Pchl3084_2488 38 Pchl06_5726 39 9 9 41			90.4	55	Pchl3084_3355	89.3			89.2	
PFL_2391 pyoverdine PflA506_3089 87.6 70 Pchl3084_2488 89.2 41 Pchl06_4229 91.1 38 PFL_2527 pyoverdine PflA506_3089 36 Pchl3084_2488 36 Pchl06_4229 33 PFL_2604 PflA506_3017 81 Pchl3084_2407 78.7 82 Pchl06_2626 78.7 81 PFL_2663 enterobactin PflA506_0808 81.3 50 Pchl3084_2974 72.3 28 Pchl06_2744 77.5 83 PFL_2919 PflA506_0798 81.3 23 Pchl3084_0799 94.3 22 Pchl06_0716 94.5 22 PFL_2910 PflA506_311 77.9 29 Pch3084_0273 30 Pchl06_4229 22 22 PFL_3176 PflA506_5184 38 Pch3084_2164 26 Pchl06_3555 86.6 30 PFL_3185 pyoverdine PflA506_0139 88.8 41 Pch3084_5442 38 Pchl06_3555 74.6 39 PFL_3620 PflA506_1995 86.6									104	
PFL_2527 pyoverdine PflA506_3089 36 Pchl3084_2488 36 Pchl06_4229 33 PFL_2604 PflA506_3017 81 Pchl3084_2407 78.7 82 Pchl06_2626 78.7 81 PFL_2663 enterobactin PflA506_0808 81.3 50 Pchl3084_2974 72.3 28 Pchl06_2626 78.7 81 PFL_21772 PflA506_0798 81.3 23 Pchl3084_2719 77.2 82 Pchl06_0716 94.5 22 PFL_2970 PflA506_3017 31 Pchl3084_0273 61 Pchl06_4229 22 PFL_3154 aerobactin PflA506_3446 30 Pchl3084_0273 30 Pchl06_43255 81 29 PFL_3177 PflA506_3089 41 Pchl3084_2164 26 Pchl06_3015 82.6 41 PFL_315 Pyoverdine PflA506_0389 52 Pchl3084_2164 39 Pchl06_3756 39 PFL_3498 enantio-pch PflA506_0139 88.8 41 Pchl3084_3828 88.4 3	-									
PFL_2604 PflA506_3017 88 Pchl3084_2407 78.7 82 Pchl06_2626 78.7 81 PFL_2663 enterobactin PflA506_0808 81.3 50 Pchl3084_2974 72.3 28 Pchl06_5400 22 PFL_2772 PflA506_3139 77.3 61 Pchl3084_2519 77.2 82 Pchl06_0716 94.5 22 PFL_2970 PflA506_3017 31 Pchl3084_0627 61 Pchl06_0633 62 22 PFL_3154 aerobactin PflA506_3141 77.9 29 Pchl3084_0273 30 Pchl06_4229 22 PFL_3176 PflA506_5184 30 Pchl3084_2164 26 Pchl06_3155 81.2 PFL_3177 PflA506_1039 41 Pchl3084_2488 38 Pchl06_3555 74.6 39 PFL_3185 PflA506_1039 52 Pch3084_2488 38 Pchl06_5726 39 PFL_3612 PflA506_1039 88.8 41 Pch3084_3628 88.4 30 Pchl06_3255 74.6 39 PFL_3620 PflA506_1039 88.6 30 Pch3084_3659 </td <td></td>										
PFL_2663 enterobactin PflA506_0808 81.3 50 Pchl3084_2974 72.3 28 Pchl06_5540 22 PFL_2772 PflA506_3139 77.3 61 Pchl3084_2519 77.2 82 Pchl06_2744 77.5 83 PFL_2919 PflA506_0798 81.3 23 Pchl3084_0709 94.3 22 Pchl06_0716 94.5 22 PFL_2970 PflA506_3017 31 Pchl3084_0627 61 Pchl06_0633 62 PFL_3154 aerobactin PflA506_3446 30 Pchl3084_0273 30 Pchl06_4229 22 PFL_3176 PflA506_5184 38 Pchl3084_2164 26 Pchl06_3015 86.6 31 PFL_3435 pyoverdine PflA506_3089 41 Pch3084_2488 38 Pchl06_5726 39 PFL_3485 pyoverdine PflA506_1019 88.8 41 Pch3084_2828 88.4 30 Pchl06_4739 94.3 22 PFL_3498 enantio-pch PflA506_1019 88.8 41 Pch3084_3828 88.4 30 Pchl06_3555 74.6 39 PFL_3620 PflA506						78.7			78.7	
PFL_2772 PflA506_3139 77.3 61 Pchl3084_2519 77.2 82 Pchl06_2744 77.5 83 PFL_2919 PflA506_0798 81.3 23 Pchl3084_0709 94.3 22 Pchl06_0716 94.5 22 PFL_2970 PflA506_3017 31 Pchl3084_0627 61 Pchl06_0633 62 PFL_3154 aerobactin PflA506_3811 77.9 29 Pchl3084_3950 91.2 25 Pchl06_4229 22 PFL_3176 PflA506_5184 30 Pchl3084_2164 26 Pchl06_3670 86.2 37 PFL_31375 PflA506_0309 41 Pchl3084_2488 55 Pchl06_3015 82.6 41 PFL_3485 pyoverdine PflA506_0139 88.8 41 Pch3084_5442 39 Pchl06_5726 39 PFL_3612 PflA506_1995 86.6 30 Pch3084_3828 88.4 30 Pchl06_3255 25 PFL_3715 PflA506_2311 78.2 74 Pch3084_3659 79.7 80 Pchl06_3952 80 81 PFL_4039 citrate PflA506_1995 <td>PFL 2663 enterobactin</td> <td></td> <td>81.3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	PFL 2663 enterobactin		81.3							
PFL_2919 PflA506_0798 81.3 23 Pchl3084_0709 94.3 22 Pchl06_0716 94.5 22 PFL_2970 PflA506_3017 31 Pchl3084_0627 61 Pchl06_0633 62 PFL_3154 aerobactin PflA506_3811 77.9 29 Pchl3084_3950 91.2 25 Pchl06_4229 22 PFL_3176 PflA506_5184 30 Pchl3084_0273 30 Pchl06_3670 86.2 37 PFL_3177 PflA506_5184 38 Pchl3084_2488 55 Pchl06_3015 82.6 41 PFL_3485 pyoverdine PflA506_0389 52 Pchl3084_2488 38 Pchl06_3755 74.6 39 PFL_3612 PflA506_0139 88.8 41 Pch3084_5442 39 Pchl06_5726 39 PFL_3620 PflA506_1995 86.6 30 Pch3084_3828 88.4 30 Pchl06_3255 25 PFL_3620 PflA506_2346 92.5 85 Pch3084_3659 93.6 86 Pchl06_03952 80 81 PFL_4039 citrate PflA506_2311 78.2 74	-				_				77.5	
PFL_2970 PflAS06_3017 31 Pchl3084_0627 61 Pchl06_0633 62 PFL_3154 aerobactin PflAS06_3811 77.9 29 Pchl3084_3950 91.2 25 Pchl06_4229 22 PFL_3176 PflAS06_3446 30 Pchl3084_0273 30 Pchl06_3255 81 29 PFL_3177 PflAS06_5184 38 Pchl3084_2164 26 Pchl06_3015 86.2 37 PFL_3315 pyoverdine PflAS06_3089 41 Pchl3084_2488 55 Pchl06_3015 82.6 41 PFL_3485 pyoverdine PflAS06_1039 88.8 41 Pchl3084_2488 38 Pchl06_3755 74.6 39 PFL_3612 PflAS06_1395 86.6 30 Pchl3084_3828 88.4 30 Pchl06_3255 25 PFL_3620 PflAS06_2346 92.5 85 Pchl3084_3655 93.6 86 Pchl06_3255 25 PFL_3835 PflAS06_2311 78.2 74 Pchl3084_3655 93.6 86 Pchl06_03952 80 81 PFL_4039 citrate PflAS06_2317 75 <t< td=""><td></td><td></td><td>81.3</td><td>23</td><td></td><td>94.3</td><td></td><td></td><td>94.5</td><td>22</td></t<>			81.3	23		94.3			94.5	22
PFL_3154 aerobactin PflA506_3811 77.9 29 Pchl3084_3950 91.2 25 Pchl06_4229 22 PFL_3176 PflA506_3446 30 Pchl3084_0273 30 Pchl06_3255 81 29 PFL_3177 PflA506_5184 38 Pchl3084_2164 26 Pchl06_3670 86.2 37 PFL_3315 pyoverdine PflA506_3089 41 Pchl3084_2488 55 Pchl06_3015 82.6 41 PFL_3485 pyoverdine PflA506_0139 88.8 41 Pchl3084_2488 38 Pchl06_3555 74.6 39 PFL_3498 enantio-pch PflA506_1395 86.6 30 Pchl3084_3828 88.4 30 Pchl06_4739 94.3 22 PFL_3620 PflA506_2346 92.5 85 Pchl3084_3605 93.6 86 Pchl06_0861 25 PFL_3835 PflA506_2311 78.2 74 Pch3084_3659 79.7 80 Pchl06_3952 80 81 PFL_4039 citrate PflA506_23017 55 Pch1384_	 PFL 2970									62
PFL_3176 PflA506_3446 30 Pchl3084_0273 30 Pchl06_3255 81 29 PFL_3177 PflA506_5184 38 Pchl3084_2164 26 Pchl06_3670 86.2 37 PFL_3315 pyoverdine PflA506_3089 41 Pchl3084_2488 55 Pchl06_3015 82.6 41 PFL_3485 pyoverdine PflA506_0139 88.8 41 Pchl3084_2488 38 Pchl06_3555 74.6 39 PFL_3498 enantio-pch PflA506_0139 88.8 41 Pchl3084_2488 38 Pchl06_3555 74.6 39 PFL_3612 PflA506_1395 86.6 30 Pchl3084_3828 88.4 30 Pchl06_3756 39 PFL_3620 PflA506_2346 92.5 85 Pchl3084_3605 93.6 86 Pchl06_0861 25 PFL_3835 PflA506_2311 78.2 74 Pch3084_3659 79.7 80 Pchl06_3952 80 81 PFL_4039 citrate PflA506_1995 78.8 47 Pch3084_3659 79.7 80 Pchl06_4229 83 81 PFL_4039 cit	_		77.9			91.2				22
PFL_3177 PflA506_5184 38 Pchl3084_2164 26 Pchl06_3670 86.2 37 PFL_3315 pyoverdine PflA506_3089 41 Pchl3084_2488 55 Pchl06_3015 82.6 41 PFL_3485 pyoverdine PflA506_03089 52 Pch13084_2488 38 Pchl06_3555 74.6 39 PFL_3498 enantio-pch PflA506_1019 88.8 41 Pch13084_2488 38 Pchl06_5726 39 PFL_3612 PflA506_1995 86.6 30 Pch13084_3828 88.4 30 Pchl06_3255 22 PFL_3620 PflA506_2346 92.5 85 Pch13084_3605 93.6 86 Pchl06_3255 25 PFL_3715 PflA506_2311 78.2 74 Pch3084_3659 79.7 80 Pchl06_3952 80 81 PFL_4039 citrate PflA506_1995 77 Pch3084_3828 86 Pchl06_0899 45 PFL_4032 pyoverdine PflA506_2859 78.8 47 Pch3084_3828 86 Pchl06_02626 58 PFL_4032 pyoverdine PflA506_2859 78.8 47									81	29
PFL_3315 pyoverdine PflA506_3089 41 Pchl3084_2488 55 Pchl06_3015 82.6 41 PFL_3485 pyoverdine PflA506_0139 52 Pchl3084_2488 38 Pchl06_3555 74.6 39 PFL_3498 enantio-pch PflA506_0139 88.8 41 Pchl3084_5442 39 Pchl06_5726 39 PFL_3612 PflA506_1995 86.6 30 Pchl3084_3828 88.4 30 Pchl06_4739 94.3 22 PFL_3620 PflA506_23466 20 Pchl3084_3605 93.6 86 Pchl06_0861 25 PFL_3715 PflA506_2311 78.2 74 Pchl3084_3659 79.7 80 Pchl06_3952 80 81 PFL_4039 citrate PflA506_1995 77 Pchl3084_3659 79.7 80 Pchl06_2626 58 88 PFL_4092 pyoverdine PflA506_2859 78.8 47 Pch3084_3950 83 PchI06_4729 83 PFL_4027 heme PhuR PflA506_4277 76 Pch3084_4710 72.8 86 PchI06_4739 72.9 85 PFL_4912 PflA									86.2	37
PFL_3485 pyoverdine PflA506_3089 52 Pchl3084_2488 38 Pchl06_3555 74.6 39 PFL_3498 enantio-pch PflA506_0139 88.8 41 Pchl3084_5442 39 Pchl06_5726 39 PFL_3612 PflA506_1995 86.6 30 Pchl3084_3828 88.4 30 Pchl06_4739 94.3 22 PFL_3620 PflA506_2346 0 20 Pchl3084_0273 21 Pchl06_3255 0 25 PFL_3715 PflA506_2346 92.5 85 Pchl3084_3605 93.6 86 Pchl06_0861 25 PFL_4039 citrate PflA506_2311 78.2 74 Pchl3084_3659 79.7 80 Pchl06_3952 80 81 PFL_4039 citrate PflA506_1995 77 Pchl3084_3828 86 Pchl06_0989 45 PFL_4092 pyoverdine PflA506_2859 78.8 47 Pch3084_3950 83 Pch106_4229 68 PFL_4027 heme PhuR PflA506_4277 76 Pch3084_4498 94.3 74 Pch06_4739 72.9 85 PFL_4912 PflA506_0808<	-			41					82.6	41
PFL_3498 enantio-pch PflA506_0139 88.8 41 Pchl3084_5442 39 Pchl06_5726 39 PFL_3612 PflA506_1995 86.6 30 Pchl3084_3828 88.4 30 Pchl06_4739 94.3 22 PFL_3620 PflA506_3446 20 Pchl3084_0273 21 Pchl06_3255 25 PFL_3715 PflA506_2346 92.5 85 Pchl3084_3605 93.6 86 Pchl06_0861 25 PFL_3835 PflA506_2311 78.2 74 Pchl3084_3659 79.7 80 Pchl06_3952 80 81 PFL_4039 citrate PflA506_1995 77 Pchl3084_3828 86 Pchl06_0989 45 PFL_4063 PflA506_3017 55 Pch13084_3950 83 Pchl06_2626 58 PFL_4092 pyoverdine PflA506_2859 78.8 47 Pch3084_3950 83 Pchl06_4739 74 PFL_4027 heme PhuR PflA506_1059 71.9 82 Pch3084_4498 94.3 74 Pch06_4739 74.9 PFL_4912 PflA506_1059 71.9 82 Pch3084_2974		PfIA506 3089		52					74.6	39
PFL_3612 PflAS06_1995 86.6 30 Pchl3084_3828 88.4 30 Pchl06_4739 94.3 22 PFL_3620 PflAS06_3446 20 Pchl3084_0273 21 Pchl06_3255 25 PFL_3715 PflAS06_2346 92.5 85 Pchl3084_3605 93.6 86 Pchl06_0861 25 PFL_3835 PflAS06_2311 78.2 74 Pchl3084_3659 79.7 80 Pchl06_3952 80 81 PFL_4039 citrate PflAS06_1995 77 Pchl3084_3629 79.7 80 Pchl06_0899 45 PFL_4063 PflAS06_1995 77 Pchl3084_3828 86 Pchl06_0289 45 PFL_4063 PflAS06_2017 55 Pchl3084_2407 57 Pchl06_2626 58 PFL_4092 pyoverdine PflAS06_2859 78.8 47 Pch3084_3950 83 Pchl06_4739 74 PFL4027 heme PhuR PflAS06_4277 76 Pch3084_4498 94.3 74 Pch06_4739 74 PFL_4912 PflAS06_1059 71.9 82 Pch3084_2974 31 Pch06_4			88.8	41						39
PFL_3715 PflA506_2346 92.5 85 Pchl3084_3605 93.6 86 Pchl06_0861 25 PFL_3835 PflA506_2311 78.2 74 Pchl3084_3659 79.7 80 Pchl06_3952 80 81 PFL_4039 citrate PflA506_1995 77 Pchl3084_3828 86 Pchl06_0989 45 PFL_4063 PflA506_3017 55 Pchl3084_3820 83 Pchl06_2626 58 PFL_4092 pyoverdine PflA506_2859 78.8 47 Pchl3084_3950 83 Pchl06_4229 83 PFL_4027 heme PhuR PflA506_4277 76 Pchl3084_4498 94.3 74 Pchl06_4739 74 PFL_4912 PflA506_1059 71.9 82 Pch13084_4710 72.8 86 Pchl06_4957 72.9 85 PFL_5169 PflA506_0808 31 Pchl3084_2974 31 Pchl06_5540 25 PFL_5378 heme HasR PflA506_4277 28 Pch13084_1354 25 Pchl06_4739 28 PFL_5511 B12 PflA506_4759 69.5 68 Pch13084_5442 88.1 94 <td></td> <td>PfIA506 1995</td> <td>86.6</td> <td>30</td> <td></td> <td>88.4</td> <td>30</td> <td> PchlO6_4739</td> <td>94.3</td> <td>22</td>		PfIA506 1995	86.6	30		88.4	30	 PchlO6_4739	94.3	22
PFL_3715 PflA506_2346 92.5 85 Pchl3084_3605 93.6 86 Pchl06_0861 25 PFL_3835 PflA506_2311 78.2 74 Pchl3084_3659 79.7 80 Pchl06_3952 80 81 PFL_4039 citrate PflA506_1995 77 Pchl3084_3828 86 Pchl06_0989 45 PFL_4063 PflA506_3017 55 Pchl3084_3820 83 Pchl06_2626 58 PFL_4092 pyoverdine PflA506_2859 78.8 47 Pchl3084_3950 83 Pchl06_4229 83 PFL_4027 heme PhuR PflA506_4277 76 Pchl3084_4498 94.3 74 Pchl06_4739 74 PFL_4912 PflA506_1059 71.9 82 Pch13084_4710 72.8 86 Pchl06_4957 72.9 85 PFL_5169 PflA506_0808 31 Pchl3084_2974 31 Pchl06_5540 25 PFL_5378 heme HasR PflA506_4277 28 Pch13084_1354 25 Pchl06_4739 28 PFL_5511 B12 PflA506_4759 69.5 68 Pch13084_5442 88.1 94 <td> PFL 3620</td> <td>PfIA506 3446</td> <td></td> <td>20</td> <td>Pchl3084_0273</td> <td></td> <td>21</td> <td> PchlO6_3255</td> <td></td> <td>25</td>	 PFL 3620	PfIA506 3446		20	Pchl3084_0273		21	 PchlO6_3255		25
PFL_3835 PflA506_2311 78.2 74 Pchl3084_3659 79.7 80 Pchl06_3952 80 81 PFL_4039 citrate PflA506_1995 0 77 Pchl3084_3828 0 86 Pchl06_0989 0 455 PFL_4063 PflA506_3017 0 55 Pchl3084_2407 0 57 Pchl06_2626 0 58 PFL_4092 pyoverdine PflA506_2859 78.8 47 Pchl3084_3950 0 83 Pchl06_4229 0 83 PFL_4027 heme PhuR PflA506_4277 0 76 Pchl3084_4498 94.3 74 Pchl06_4739 0 74 PFL_4912 PflA506_1059 71.9 82 Pch13084_4710 72.8 86 Pchl06_4957 72.9 85 PFL_5169 PflA506_0808 0 31 Pchl3084_2974 0 31 Pchl06_5540 0 25 PFL_5378 heme HasR PflA506_4277 0 28 Pch13084_5255 70.3 71 Pchl06_5540 70.3 72 86 PFL_5706 ferrichrome PflA506_4932 88.2	 PFL 3715	PfIA506 2346	92.5	85	Pchl3084_3605	93.6	86			
PFL_4039 citrate PflA506_1995 77 Pchl3084_3828 86 Pchl06_0989 45 PFL_4063 PflA506_3017 55 Pchl3084_2407 57 Pchl06_2626 58 PFL_4092 pyoverdine PflA506_2859 78.8 47 Pchl3084_3950 83 Pchl06_4229 83 PFL_4027 heme PhuR PflA506_4277 76 Pchl3084_4498 94.3 74 Pchl06_4739 74 PFL_4912 PflA506_1059 71.9 82 Pchl3084_2771 72.8 86 Pchl06_4739 72.9 85 PFL_5169 PflA506_0808 31 Pchl3084_2974 31 Pchl06_5540 72.9 85 PFL_5378 heme HasR PflA506_4277 28 Pch3084_1354 25 Pchl06_4739 28 PFL_5511 B12 PflA506_4275 69.5 68 Pch3084_5255 70.3 71 Pchl06_5726 88 94 PFL_5706 ferrichrome PflA506_4932 88.2 87 Pch3084_5442 88.1 94 Pch106_5726 88						79.7			80	
PFL 4063 PflAS06_3017 55 Pchl3084_2407 57 Pchl06_2626 58 PFL 4092 pyoverdine PflAS06_2859 78.8 47 Pchl3084_3950 83 Pchl06_4229 83 PFL 4627 heme PhuR PflAS06_4277 76 Pchl3084_4498 94.3 74 Pchl06_4739 74 PFL_4912 PflAS06_1059 71.9 82 Pchl3084_2974 31 Pchl06_4957 72.9 85 PFL_5169 PflAS06_0808 31 Pchl3084_2974 31 Pchl06_5540 25 PFL_5378 heme HasR PflAS06_4277 28 Pchl3084_1354 25 Pchl06_4739 28 PFL_5511 B12 PflAS06_4759 69.5 68 Pch3084_5255 70.3 71 Pchl06_5726 88 94 PFL_5706 ferrichrome PflAS06_4932 88.2 87 Pch3084_5442 88.1 94 Pch06_5726 88 94	-									
PFL_4092 pyoverdine PflA506_2859 78.8 47 Pchl3084_3950 83 Pchl06_4229 10 83 PFL_4627 heme PhuR PflA506_4277 0 76 Pchl3084_4498 94.3 74 Pchl06_4739 0 74 PFL_4912 PflA506_1059 71.9 82 Pchl3084_4710 72.8 86 Pchl06_4957 72.9 85 PFL_5169 PflA506_0808 0 31 Pchl3084_2974 31 Pchl06_5540 0 25 PFL_5378 heme HasR PflA506_4277 0 28 Pchl3084_1354 25 Pchl06_4739 0 28 PFL_5511 B12 PflA506_4759 69.5 68 Pch3084_5255 70.3 71 Pchl06_5726 88 94 PFL_5706 ferrichrome PflA506_4932 88.2 87 Pch3084_5442 88.1 94 Pch06_5726 88 94	 PFL 4063									
PFL_4627 heme PhuR PflA506_4277 76 Pchl3084_4498 94.3 74 Pchl06_4739 74 PFL_4912 PflA506_1059 71.9 82 Pchl3084_4710 72.8 86 Pchl06_4957 72.9 85 PFL_5169 PflA506_0808 31 Pchl3084_2974 31 Pchl06_5540 25 PFL_5378 heme HasR PflA506_4277 28 Pchl3084_1354 25 Pchl06_4739 28 PFL_5511 B12 PflA506_4759 69.5 68 Pchl3084_5255 70.3 71 Pchl06_5540 70.3 69 PFL_5706 ferrichrome PflA506_4932 88.2 87 Pchl3084_5442 88.1 94 Pchl06_5726 88 94			78.8							83
PFL PflAS06_1059 71.9 82 Pchl3084_4710 72.8 86 Pchl06_4957 72.9 85 PFL_5169 PflAS06_0808 31 Pchl3084_2974 31 Pchl06_5540 25 PFL_5378 heme HasR PflA506_4277 28 Pchl3084_1354 25 Pchl06_4739 28 PFL_5511 B12 PflA506_4759 69.5 68 Pchl3084_5255 70.3 71 Pchl06_5540 70.3 69 PFL_5706 ferrichrome PflA506_4932 88.2 87 Pch13084_5442 88.1 94 Pchl06_5726 88 94						94.3				74
PFL_5169 PflA506_0808 31 Pchl3084_2974 31 Pchl06_5540 25 PFL_5378 heme HasR PflA506_4277 28 Pchl3084_1354 25 Pchl06_4739 28 PFL_5511 B12 PflA506_4277 69.5 68 Pchl3084_5255 70.3 71 Pchl06_5540 70.3 69 PFL_5706 ferrichrome PflA506_4932 88.2 87 Pchl3084_5442 88.1 94 Pchl06_5726 88 94			71.9						72.9	85
PFL_5378 heme HasR PflA506_4277 28 Pchl3084_1354 25 Pchl06_4739 28 PFL_5511 B12 PflA506_4759 69.5 68 Pchl3084_5255 70.3 71 Pchl06_5540 70.3 69 PFL_5706 ferrichrome PflA506_4932 88.2 87 Pchl3084_5442 88.1 94 Pchl06_5726 88 94										25
PFL_5511 B12 PflA506_4759 69.5 68 Pchl3084_5255 70.3 71 Pchl06_5540 70.3 69 PFL_5706 ferrichrome PflA506_4932 88.2 87 Pchl3084_5442 88.1 94 Pchl06_5726 88 94										28
PFL_5706 ferrichrome PflA506_4932 88.2 87 Pchl3084_5442 88.1 94 Pchl06_5726 88 94			69.5			70.3			70.3	69
										94

A. P. fluorescens Pf-5

A.	P .	fluorescens	Pf-5 ,	Continued

Pf-5	Q8r1-96			Q2-87			BG33R		
Locus tag		M.W.	% ID		M.W.	% ID		M.W.	% ID
PFL_0125 ferrioxamine	PflQ8_0202	91.6	81	PflQ2_0538	88.7	36	PseBG33_5128	88.4	36
PFL_0147 ferrichrome	PflQ8_5352	88.8	38	PflQ2_0538		38	PseBG33_0163	88.9	72
PFL_0213 Sulphate	PflQ8_0935		35	PflQ2_4530		36	PseBG33_0251	83	88
PFL 0255	PflQ8 0935	86.9	30	PflQ2 4530	86.6	31	PseBG33 3630	79.7	88
PFL 0310	PflQ8 4827	77.5	32	PflQ2 3112	78.1	27		76.8	79
PFL 0646	PflQ8 2798		26	PflQ2 2980		26	PseBG33 0610		72
 PFL_0648 copper	PflQ8 0637	77	85	PflQ2 5073	76.8	84			83
 PFL 0864	PflQ8 3242	78.3	27	PflQ2 3112				80.6	82
 PFL 0932	PflQ8_4827		84	PflQ2 3112		46		76.5	81
PFL 0982 citrate	PflQ8 5352		21	PflQ2 1695	88.5			84.9	
 PFL 0992	PflQ8 2798		22	PflQ2 2980			 PseBG33_1069	82.6	77
 PFL 0995	PflQ8 2798	77.6	42	PflQ2 2980	74.7		 PseBG33_1043	87.2	75
PFL 1371 heme HxuC	PflQ8 1239	94.1	23	PflQ2 4231	94.3		 PseBG33 1530	93.9	64
 PFL 1386	PflQ8 5164			PflQ2 2928	89.9		 PseBG33_3617	85.9	44
 PFL_1417	PflQ8_3242			PflQ2_3112			 PseBG33_0836		42
PFL_1740	PflQ8 4192	78.9	81	PflQ2 1453	78.9		PseBG33 1898	77.6	79
PFL 2240	PflQ8 5164			PflQ2 4902			PseBG33 4946		25
PFL_2293 pyoverdine	PflQ8 2057	89.7		PflQ2 1672	89.8		PseBG33 2016	90.2	55
PFL_2365 heme	PflQ8 1239			PflQ2_4231			PseBG33_4831	95.9	26
PFL_2391 pyoverdine	PflQ8 3550	79.7		PflQ2 0688	80		PseBG33 2445	88.4	70
PFL_2527 pyoverdine	PflQ8_3550			PflQ2_0688			PseBG33_2445		34
PFL 2604	PflQ8 4827			PflQ2 3112			PseBG33 2513	78.2	81
PFL 2663 enterobactin	PflQ8 0637		21	PflQ2 4902			PseBG33 0847	81.3	51
PFL 2772	PflQ8 2057			PflQ2 1695			PseBG33 3265	77.6	62
PFL_2919	PflQ8 2798	77.6		PflQ2 2980			PseBG33 0610	77.4	25
PFL 2970	PflQ8 0202			PflQ2 2980			PseBG33 0610		60
PFL_3154 aerobactin	PflQ8 1239			PflQ2 4231			PseBG33_0163		23
PFL_3176	PflQ8 0935		29	PflQ2 4530			PseBG33 3630		30
PFL 3177	PflQ8_4192		22	PflQ2 2928			PseBG33 5403	85.9	38
PFL_3315 pyoverdine	PflQ8 3550		37	PflQ2 0688			PseBG33 2445		39
PFL_3485 pyoverdine	PflQ8 2057		34	PflQ2 0688			PseBG33 2445		54
PFL 3498 enantio-pch	PflQ8 5352		42	PflQ2 0538			PseBG33 0163		41
PFL 3612	PflQ8 1239			PflQ2 1695			PseBG33 2445	88.4	29
PFL 3620	PflQ8 2430	75.9		PflQ2 2925	78.8		PseBG33 2355	74.3	22
PFL 3715	PflQ8 3000	93.1	85	PflQ2 4231			PseBG33 0836		25
PFL 3835	PflQ8 2987	87.2		PflQ2 2980			PseBG33 3219	79.1	74
PFL_4039 citrate	PflQ8 3969	87.9	21	PflQ2 1695			PseBG33_2027	86.8	77
PFL 4063	PflQ8 3242			PflQ2 3112			PseBG33 2513		55
PFL_4092 pyoverdine	PflQ8 3550		46	PflQ2_0688			PseBG33 2654	87.3	42
PFL 4627 heme PhuR	PflQ8 1239		74	PflQ2 4231			PseBG33 4466	91.6	
PFL 4912	PflQ8 1239		26	PflQ2 1695			PseBG33 1099	71.8	82
PFL 5169	PflQ8 5164			PflQ2 4902			PseBG33 0847		31
PFL_5378 heme HasR	PflQ8_1239		27	PflQ2_4231			PseBG33 4831	96	76
PFL 5511 B12	PflQ8_5164	70.2		PflQ2 4902	70.3		PseBG33 4946	69.7	68
PFL_5706 ferrichrome	PflQ8_5352	, 0.2		PflQ2_0538	, 0.5		PseBG33_5128	55.7	68
	1.1100_3332	87.05	50		86			89.8	50

A. P. fluorescens Pf-5, Continued

Pf-5	ss101			Pf0-1		P. putida GB-1		SBW25		WH6	
Locus tag		M.W.	% ID	Gene	% ID	Gene	% ID	Gene	%ID	Gene	%ID
PFL_0125 ferrioxamine	PflSS101_4985	88.2	36	Pfl01_0121	86	PputGB1_0178	71	PFLU2598	39	PFWH6_5394	35
PFL_0147 ferrichrome	PflSS101_0139	88.9	72	Pfl01_5189	38	PputGB1_3322	46	PFLU2598	42	PFWH6_5394	37
PFL_0213 Sulphate	PflSS101_0233	83	88	Pfl01_0216	90	PputGB1_0235	74	PFLU0206	93	PFWH6_2193	21
PFL 0255	PfISS101 3463	75.9	88	Pfl01 0250	86	PputGB1 0235	32	PFLU4085	90	PFWH6 2193	24
PFL 0310	PflSS101 0311	76.9	79	Pfl01 0293	81	PputGB1 0293	75	PFLU0295	80	PFWH6 0295	79
PFL 0646	PflSS101_2915	77.9	29	Pfl01_0594	81	PputGB1_2060	62	PFLU0593	77	PFWH6_0295	25
PFL_0648 copper	PflSS101_0606	73.9	89	Pfl01_0596	87	PputGB1_4894	81	PFLU0595	88	PFWH6_0621	82
PFL_0864	PflSS101_0832		83	Pfl01_0798	66	PputGB1_0904	65	PFLU0295	29	PFWH6_5214	28
 PFL_0932	PflSS101_0775	76.6	81	Pfl01_0874	87	PputGB1_0293	33	PFLU0757	83	PFWH6_0820	25
PFL_0982 citrate	PflSS101_1061	84.9	87	Pfl01_0923	88	PputGB1_4596	78	PFLU1040	89	PFWH6_1047	87
 PFL 0992	PflSS101_1069	82.4	76	Pfl01 0923	23	PputGB1 4761	27	PFLU1022	32	PFWH6 1796	57
 PFL 0995	PflSS101 1043	87.2	75	Pfl01 0931	77	PputGB1 4588	69	PFLU1022	78	PFWH6 1030	75
PFL 1371 heme HxuC	PflSS101 1406	93.7	64	Pfl01_4379	24	PputGB1 1005	23	PFLU1405	68	PFWH6 1417	65
PFL 1386	PflSS101 3450	85.9	44	Pfl01_2342	38	PputGB1 2657	48	PFLU4069	47	PFWH6_3831	43
 PFL_1417	PflSS101_0832		42	Pfl01_0798	42	PputGB1_0904	43	PFLU0295	30	PFWH6_0820	41
 PFL_1740	PflSS101_1822	77.4	80	Pfl01_4209	82	PputGB1_3742	72	PFLU1839	81	PFWH6_1770	79
PFL_2240	PflSS101_2030	71.2	74	Pfl01_5008	25	PputGB1_0571	27	PFLU5463	26	PFWH6_5214	26
PFL_2293 pyoverdine	PflSS101_1938	90.4	55	Pfl01_1848	41	PputGB1_1585	56	PFLU5798	40	PFWH6_0820	23
PFL 2365 heme	PflSS101_3593	104	78	 Pfl01_4379	31	PputGB1 1523	32	PFLU5361	27	PFWH6_4738	31
PFL_2391 pyoverdine	PfISS101 3096	88.2	57	Pfl01 2583	40	PputGB1 0693	68	PFLU2545	72	PFWH6 1926	35
PFL 2527 pyoverdine	PflSS101 3096		34	Pfl01 2462	39	PputGB1 0692	67	PFLU3633	42	PFWH6 3086	34
PFL 2604	PflSS101 2915		81	Pfl01 3318	81	PputGB1 2047	56	PFLU2593	82	PFWH6_0766	82
PFL_2663 enterobactin	PflSS101_0843	81.3	49	Pfl01_2342	24	PputGB1_1870	51	PFLU3643	29	PFWH6_5214	21
 PFL_2772	PflSS101_3147	77.5	63	Pfl01_2318	86	PputGB1_3519	31	PFLU3750	64	PFWH6_3525	63
PFL_2919	PflSS101_0832	82.3	21	Pfl01_0594	30	PputGB1_3333	83	PFLU0593	26	PFWH6_0820	24
PFL_2970	PflSS101_2915		31	Pfl01_0594	62	PputGB1_2060	72	PFLU0593	59	PFWH6_0295	25
PFL_3154 aerobactin	PflSS101_3832	77.9	29	Pfl01_4379	22	PputGB1_3544	77	PFLU2545	28	PFWH6_5931	24
PFL_3176	PflSS101_3463		30	Pfl01_0250	31	PputGB1_3348	84	PFLU4085	30	PFWH6_2193	26
PFL_3177	PfISS101 5234	86	38	Pfl01 2342	35	PputGB1 3349	85	PFLU5895	39	PFWH6 3831	37
PFL_3315 pyoverdine	PflSS101_3096		40	Pfl01_2583	43	PputGB1_3317	55	PFLU3633	75	PFWH6_3086	37
PFL_3485 pyoverdine	PflSS101_3096		55	Pfl01_2583	40	PputGB1_0693	59	PFLU2545	57	PFWH6_1926	35
PFL_3498 enantio-pch	PflSS101_0139		41	Pfl01_5189	42	PputGB1_0747	45	PFLU2598	44	PFWH6_5994	39
PFL_3612	PflSS101_1951	86.6	31	Pfl01_3784	29	PputGB1_0911	29	PFLU5361	32	PFWH6_1417	30
PFL_3620	PflSS101_3463		20	Pfl01_0250	23	PputGB1_1801	72	PFLU3218	30	PFWH6_2193	28
PFL_3715	PflSS101_3074	92.5	85	Pfl01_4379	24	PputGB1_1005	22	PFLU3698	88	PFWH6_0820	22
 PFL_3835	PflSS101_2208	78.9	74	Pfl01_3798	28	PputGB1_1424	66	PFLU2562	74	PFWH6_2397	74
PFL_4039 citrate	PflSS101_1951		77	Pfl01_3784	88	PputGB1_0911	76	PFLU1040	46	PFWH6_1047	45
PFL_4063	PflSS101_2915		55	Pfl01_3318	61	PputGB1_2047	59	PFLU2593	58	PFWH6_1926	54
PFL_4092 pyoverdine	PflSS101_2880	78.9	46	Pfl01_2462	47	PputGB1_4082	38	PFLU3378	49	PFWH6_3086	47
PFL_4627 heme PhuR	PflSS101_4358	93.2	76		77	PputGB1_1005	69	PFLU4968	78		75
 PFL_4912	PflSS101_1097	71.9	82		22	PputGB1_4359	78	PFLU1087	88	PFWH6_0820	83
 PFL_5169	PflSS101_0843		31		26	PputGB1_1870	30	PFLU3643	33	 PFWH6_5214	24
 PFL_5378 heme HasR	PflSS101_4708	96.1	77		27	PputGB1_1005	26		52	 PFWH6_4738	27
 PFL_5511 B12	PflSS101_4814	69.5	67		74	PputGB1_0571	65	PFLU5463	69	 PFWH6_5214	67
 PFL_5706 ferrichrome	PflSS101_4985		88	Pfl01_5189	81	PputGB1_0378	79	PFLU5629	89	 PFWH6_5394	86
		89.09									

A. P. chlororaphis 30-84

30-84		0-6	C	Q8r1-96		Q2-87		BG33R		SS101		Pf-5	A506			SBW25		Pf01		WH6	
ORF	Locus tag		% ID		% ID		% ID		% ID		% ID		% ID		% ID		% ID		%ID		%ID
ORF00002	Pchl3084_0007	PchIO6_0126	93 P	vflQ8_0202	85	PflQ2_0538	36	PseBG33_5128	36	PflSS101_0139	36	PFL_0125	85 PfIA50	06_0139	37	PFLU2598	41	Pfl01_0121	89	PFWH6_5394	35
ORF00104	Pchl3084_0102	PchIO6_0225	90 P	vflQ8_0935	35	PflQ2_4530	37	PseBG33_0251	89	PflSS101_0233	89	PFL_0213	92 PflA50	06_0217	89	PFLU0206	94	Pfl01_0216	90	PFWH6_2193	21
ORF00156	Pchl3084_0151	PchIO6_0225	33 P	flQ8_0935	29	PflQ2_4530	31	PseBG33_3630	87	PflSS101_3463	88	PFL_0255	93 PfIA50	06_3446	88	PFLU4085	90	Pfl01_0205	91	PFWH6_2193	24
ORF00206	Pchl3084_0198	PchIO6_0861	96 P	flQ8_4827	33	PflQ2_3112	27	PseBG33_0836	77	PflSS101_0832	77	PFL_0310	81 PflA50	06_1983	57	PFLU0295	80	Pfl01_0293	78	PFWH6_0295	79
ORF00524	Pchl3084_0505	PchIO6_0633	94 P	flQ8_2798	27	PflQ2_2980	27	PseBG33_0610	73	PflSS101_2915	29	PFL_0646	83 PfIA50	06_3017	29	PFLU0593	77	Pfl01_0594	84	PFWH6_0295	26
ORF00526	Pchl3084_0507	PchIO6_4739	95 P	vflQ8_0637	86	PflQ2_5073	85	PseBG33_4466	85	PflSS101_4358	85	PFL_0648	89 PfIA50	06_0576	85	PFLU0595	84	Pfl01_0596	88	PFWH6_0621	83
ORF00609	Pchl3084_0587	PchIO6_0716	97 P	flQ8_3969	25	PflQ2_1672	24	PseBG33_2654	27	PflSS101_5488	22	PFL_2919	27 PfIA50	06_5433	22	PFLU2598	22	Pfl01_0293	34	PFWH6_5931	22
ORF00750	Pchl3084_0733	PchIO6_0861	96 P	flQ8_3242	28	PflQ2_3112	27	PseBG33_0836	85	PflSS101_0832	85	PFL_0864	86 PfIA50	06_0798	86	PFLU0295	30	Pfl01_0798	68	PFWH6_0820	86
ORF00878	Pchl3084_0859	PchIO6_0989	92 P	flQ8_5352	21	PflQ2_1695	42	PseBG33_1061	83	PflSS101_1061	83	PFL_0982	90 PfIA50	06_1022	84	PFLU1040	89	Pfl01_0923	89	PFWH6_1047	84
ORF01255	Pchl3084_1232	PchIO6_1431	94 P	flQ8_1239	24	PflQ2_4231	24	PseBG33_1530	65	PflSS101_1406	65	PFL_1371	89 PfIA50	06_1363	65	PFLU1405	69	Pfl01_4379	24	PFWH6_1417	66
ORF01622	Pchl3084_1583	PchIO6_1837	97 P	flQ8_4192	85	PflQ2_1453	86	PseBG33_1898	81	PflSS101_1822	81	PFL_1740	84 PfIA50	06_1861	81	PFLU1839	_	Pfl01_4209		PFWH6_1770	83
ORF01992	Pchl3084_1957	PchIO6_0324	32 P	flQ8_3242	28	PflQ2_3112	28	PseBG33_0325	32	PflSS101_0311	32	PFL_0310	34 PfIA50	06_0292	32	PFLU0295	34	Pfl01_0293	34	PFWH6_0295	33
ORF02079	Pchl3084_2042	PchIO6_2381	92 P	flQ8_5164	34	PflQ2_2928	24	PseBG33_5403	25	PflSS101_5234	25	PFL_3177	27 PfIA50	06_5184	25	PFLU2202	27	Pfl01_3740	90	PFWH6_3831	28
ORF02129	Pchl3084_2089	PchIO6_2435	94 P	flQ8_1239	30	PflQ2_4231	29	PseBG33_4831	27	PflSS101_3593	81	PFL_2365	85 PfIA50	06_1363	22	PFLU5361	25	Pfl01_4379	32	PFWH6_4738	26
ORF02337	Pchl3084_2285	PchIO6_0633	95 P	flQ8_4827	25	PflQ2_3112	24	PseBG33_0610	81	PflSS101_0832	82	PFL_2604	83 PfIA50	06_3017	82	PFLU2593		Pfl01_3318	87	PFWH6_0820	25
ORF02421	Pchl3084_2366	PchIO6_3555		flQ8_3550	39	PflQ2_0688	38	PseBG33_2445	41	PflSS101_3096	42	PFL_3315	56 PflA50	06_3089	44	PFLU3633	55	Pfl01_2583		PFWH6_3086	39
ORF02454	Pchl3084_2397	PchIO6_2744	96 P	flQ8_1239	22	PflQ2_4231		PseBG33_3265	64	PflSS101_3147	65	PFL_2772	86 PfIA50	06_3139	63	PFLU3750	65	Pfl01_2318	91	PFWH6_3525	64
ORF02719	Pchl3084_2661	_	95 P	flQ8_3550	33	PflQ2_0688		PseBG33_3069		PflSS101_2361		PFL_2719	43 PfIA50	-	_	PFLU2688	_	Pfl01_2583		PFWH6_3086	35
ORF02792	Pchl3084_2733	PchIO6_3108	93 P	flQ8_3242		PflQ2_3112	29	PseBG33_0836	36	PflSS101_0832	37	PFL_1417	40 PfIA50	06_0798	37	PFLU2365		Pfl01_0798	35	PFWH6_0820	36
ORF02912	Pchl3084_2852	_	25 P	flQ8_1239	24	PflQ2_4231		PseBG33_0847		PflSS101_0843	28	PFL_5169	33 PfIA50	06_0808	28	PFLU3643	88	Pfl01_4379		PFWH6_5214	25
ORF02986	Pchl3084_2924	_	94 P	vflQ8_2987	82	PflQ2_0538	23	PseBG33_2000	39	PflSS101_2109	39	PFL_3835	29 PfIA50	06_2218	39	PFLU4093	85	Pfl01_3798	42	PFWH6_3849	82
ORF03122	Pchl3084_3052			vflQ8_3242		PflQ2_3112		PseBG33_2364		PflSS101_2136		PFL_0932	44 PfIA50	_		PFLU2365		Pfl01_2232		PFWH6_2249	71
ORF03307	Pchl3084_3233	_		oflQ8_2057		PflQ2_1672		PseBG33_2016		PflSS101_1938		PFL_2293	72 PfIA50	-		PFLU5798		Pfl01_1848		PFWH6_1926	57
ORF03565	_	_		oflQ8_3000		PflQ2_4231		PseBG33_4466		PflSS101_0832		PFL_3715	87 PfIA50	-		PFLU3698		Pfl01_4379		PFWH6_0820	
ORF03620	Pchl3084_3537	_		flQ8_2987		PflQ2_2980		PseBG33_3219		PflSS101_2207		PFL_3835	81 PfIA50	_		PFLU2562		Pfl01_3798		PFWH6_2397	73
ORF03792	Pchl3084_3706	_		vflQ8_3969		PflQ2_1695		PseBG33_2027		PflSS101_1951		PFL_4039	90 PfIA50	_		PFLU1040		Pfl01_3784		PFWH6_1047	45
ORF03815	Pchl3084_3726	_		flQ8_2798		PflQ2_2980		PseBG33_1043		PflSS101_1043		PFL_0995	43 PfIA50	_		PFLU1022		Pfl01_0931		PFWH6_1030	
ORF03922	Pchl3084_3828	_		oflQ8_3550		PflQ2_0688		PseBG33_2654		PflSS101_2880	47	PFL_4092	85 PfIA50	_		PFLU3378		Pfl01_2462		PFWH6_3086	
ORF04457	Pchl3084_4376	-		oflQ8_1239		PflQ2_4231		PseBG33_4753		PflSS101_4358		PFL_4627	79 PfIA50	_		PFLU4968		Pfl01_4379		PFWH6_4738	
ORF04674	Pchl3084_4588	_		oflQ8_5164	_	PflQ2_1695		PseBG33_1099		PflSS101_1097		PFL_4912	91 PflA50	_		PFLU1087		Pfl01_0594		PFWH6_5214	
ORF05222	_	_		oflQ8_5164		PfIQ2_4902		PseBG33_4946		PfISS101_4814		PFL_5511	73 PfIA50	-		PFLU5463		Pfl01_5008		PFWH6_5214	
ORF05401	Pchl3084_5228	PchIO6_5726	99 P	vflQ8_5352	67	PflQ2_0538	67	PseBG33_5128	68	PflSS101_4985	90	PFL_5706	95 PflA50	06_4932	88	PFLU5629	90	Pfl01_5189	83	PFWH6_5394	86

B. P. chlororaphis O-6

O-6	Q8r1-96	% ID Q2-87	% ID BG33R	% ID SS101	% ID A506	% ID Pf-5	% ID 30-84	% ID SBW25	%ID Pf01	%ID WH6	%ID
ORF	Locus tag										
ORF00005	PchIO6_0126 PfIQ8_0202	85 PflQ2_0538	36 PseBG33_5128	36 PflSS101_4985	35 PflA506_013	9 36 PFL_0125	86 Pchl3084_0129	92 PFLU2598	41 Pfl01_0121	90 PFWH6_5394	35
ORF00108	PchlO6_0225 PflQ8_0935	35 PflQ2_4530	37 PseBG33_0251	89 PflSS101_0233	8 89 PflA506_021	7 88 PFL_0213	95 Pchl3084_0224	89 PFLU0206	94 Pfl01_0216	90 PFWH6_2193	21
ORF00209	PchlO6_0324 PflQ8_4827	33 PflQ2_3112	28 PseBG33_0325	77 PflSS101_0311	. 77 PflA506_0293	2 77 PFL_0310	81 Pchl3084_0320	96 PFLU0295	79 Pfl01_0293	78 PFWH6_0295	78
ORF00530	PchIO6_0633 PfIQ8_2798	26 PflQ2_2980	26 PseBG33_0610	73 PflSS101_2915	30 PflA506_301	7 30 PFL_0646	82 Pchl3084_0627	93 PFLU0593	78 Pfl01_0594	85 PFWH6_0295	26
ORF00532	PchlO6_0635 PflQ8_0637	88 PflQ2_5073	87 PseBG33_0612	85 PflSS101_0606	5 85 PflA506_057	5 85 PFL_0648	89 Pchl3084_0629	97 PFLU0595	84 Pfl01_0596	89 PFWH6_0621	85
ORF00618	PchlO6_0716 PflQ8_3969	25 PflQ2_1672	24 PseBG33_2654	27 PflSS101_5488	21 PflA506_543	3 21 PFL_2919	27 Pchl3084_0709	97 PFLU2598	22 Pfl01_0293	34 PFWH6_5931	21
ORF00767	PchlO6_0861 PflQ8_3242	28 PflQ2_3112	27 PseBG33_0836	85 PflSS101_0832	85 PflA506_0798	3 85 PFL_0864	86 Pchl3084_0855	96 PFLU0295	30 Pfl01_0798	68 PFWH6_0767	85
ORF00900	PchIO6_0989 PfIQ8_2987	24 PflQ2_1695	43 PseBG33_1061	85 PflSS101_1061	. 85 PflA506_102	2 85 PFL_0982	90 Pchl3084_0981	93 PFLU1040	90 Pfl01_0923	90 PFWH6_1047	85
ORF01351	PchlO6_1431 PflQ8_1239	24 PflQ2_4231	23 PseBG33_1530	64 PflSS101_1406	6 63 PflA506_136	3 66 PFL_1371	87 Pchl3084_1354	94 PFLU1405	68 Pfl01_4379	24 PFWH6_1417	65
ORF01761	PchlO6_1837 PflQ8_4192	84 PflQ2_1453	86 PseBG33_1898	81 PflSS101_1822	2 81 PflA506_186	1 81 PFL_1740	85 Pchl3084_1705	97 PFLU1839	83 Pfl01_4209	84 PFWH6_1770	83
ORF02295	PchlO6_2381 PflQ8_5164	34 PflQ2_2928	24 PseBG33_5403	25 PflSS101_5234	25 PflA506_518	4 25 PFL_3177	27 Pchl3084_2164	92 PFLU2202	27 Pfl01_3740	90 PFWH6_3831	28
ORF02350	PchlO6_2435 PflQ8_1239	30 PflQ2_4231	30 PseBG33_4831	27 PflSS101_3593	8 80 PflA506_136	3 23 PFL_2365	84 Pchl3084_2211	94 PFLU5361	27 Pfl01_4379	32 PFWH6_4738	26
ORF02550	PchlO6_2626 PflQ8_4827	25 PflQ2_3112	24 PseBG33_2513	81 PflSS101_2915	82 PflA506_301	7 82 PFL_2604	83 Pchl3084_3771	95 PFLU2593	81 Pfl01_3318	87 PFWH6_0621	85
ORF02670	PchlO6_2744 PflQ8_1239	21 PflQ2_4231	21 PseBG33_3265	62 PflSS101_3147	7 63 PfIA506_3139	9 61 PFL_2772	86 Pchl3084_2519	94 PFLU3750	65 Pfl01_2318	92 PFWH6_3525	62
ORF02949	PchlO6_3015 PflQ8_3550	33 PflQ2_0688	34 PseBG33_3069	73 PflSS101_2361	. 72 PflA506_300	3 72 PFL_3315	42 Pchl3084_2783	95 PFLU2688	74 Pfl01_2583	78 PFWH6_3086	34
ORF03045	PchlO6_3108 PflQ8_3242	29 PflQ2_3112	29 PseBG33_0836	36 PflSS101_0832	2 36 PflA506_079	37 PFL_1417	41 Pchl3084_2855	93 PFLU2365	30 Pfl01_0798	36 PFWH6_0820	35
ORF03204	PchIO6_3255 PfIQ8_2430	27 PflQ2_2925	90 PseBG33_3630	30 PflSS101_3463	30 PfIA506_344	5 30 PFL_3176	30 Pchl3084_0273	30 PFLU4085	31 Pfl01_0250	31 PFWH6_2193	27
ORF03207	PchlO6_3258 PflQ8_5164	25 PflQ2_2928	90 PseBG33_3617	59 PflSS101_3450	0 60 PflA506_5184	4 37 PFL_1386	49 Pchl3084_2164	34 PFLU4069	60 Pfl01_2342	37 PFWH6_3831	61
ORF03257	PchlO6_3307 PflQ8_2987	83 PflQ2_0538	23 PseBG33_2000	39 PflSS101_2109	39 PflA506_221	39 PFL_3835	29 Pchl3084_3046	95 PFLU4093	86 Pfl01_3798	42 PFWH6_3849	82
ORF03519	PchlO6_3555 PflQ8_3550	38 PflQ2_0688	38 PseBG33_2445	36 PflSS101_3096	38 PflA506_308	9 40 PFL_3315	41 Pchl3084_2488	43 PFLU3633	42 Pfl01_2583	37 PFWH6_3086	38
ORF03614	PchlO6_3657 PflQ8_2057	81 PflQ2_1672	39 PseBG33_2016	58 PflSS101_1938	8 57 PflA506_198	3 58 PFL_2293	72 Pchl3084_3355	92 PFLU5798	42 Pfl01_1848	41 PFWH6_1926	57
ORF03627	PchlO6_3670 PflQ8_4192	22 PflQ2_2928	36 PseBG33_5403	81 PflSS101_5234	81 PflA506_518	4 81 PFL_3177	38 Pchl3084_2164	27 PFLU5895	83 Pfl01_2342	41 PFWH6_3831	38
ORF03833	PchlO6_3872 PflQ8_5164	26 PflQ2_2928	32 PseBG33_2166	37 PflSS101_1702	2 37 PflA506_518	4 32 PFL_3177	37 Pchl3084_2164	65 PFLU2216	26 Pfl01_3121	89 PFWH6_3831	32
ORF03835	PchlO6_3873 PflQ8_1239	25 PflQ2_2928	36 PseBG33_2166	35 PflSS101_5234	24 PflA506_5184	4 24 PFL_3177	34 Pchl3084_2164	26 PFLU2202	40 Pfl01_3124	84 PFWH6_3831	37
ORF03918	PchlO6_3952 PflQ8_2987	26 PflQ2_2980	25 PseBG33_3219	74 PflSS101_2208	8 74 PflA506_231	1 73 PFL_3835	81 Pchl3084_3659	96 PFLU2562	77 Pfl01_3798	28 PFWH6_2397	73
ORF04103	PchlO6_4138 PflQ8_2798	82 PflQ2_2980	84 PseBG33_1043	42 PflSS101_1043	42 PflA506_100	1 42 PFL_0995	43 Pchl3084_3848	95 PFLU1022	41 Pfl01_0931	41 PFWH6_1030	40
ORF04196	PchlO6_4229 PflQ8_3550	50 PflQ2_0688	49 PseBG33_2654	44 PflSS101_2880	47 PflA506_285	9 49 PFL_4092	85 Pchl3084_3950	89 PFLU3378	49 Pfl01_2462	48 PFWH6_3086	49
ORF04706	PchlO6_4739 PflQ8_1239	81 PflQ2_4231	79 PseBG33_4466	74 PflSS101_4358	8 74 PflA506_427	7 73 PFL_4627	79 Pchl3084_4498	95 PFLU4968	75 Pfl01_4379	84 PFWH6_4738	73
ORF04935	PchlO6_4957 PflQ8_1239	27 PflQ2_1695	22 PseBG33_1099	86 PflSS101_1097	7 86 PfIA506_1059	9 86 PFL_4912	91 Pchl3084_4710	96 PFLU1087	89 Pfl01_5008	30 PFWH6_5214	22
ORF05521	PchlO6_5540 PflQ8_5164	80 PflQ2_4902	80 PseBG33_4946	71 PflSS101_4814	71 PflA506_475	9 72 PFL_5511	72 Pchl3084_5255	92 PFLU5463	76 Pfl01_5008	83 PFWH6_5214	71
ORF05708	PchlO6_5726 PflQ8_5352	66 PflQ2_0538	66 PseBG33_5128	67 PflSS101_4985	88 PfIA506_493	2 87 PFL_5706	94 Pchl3084_5442	97 PFLU5629	89 Pfl01_5189	83 PFWH6_5394	84

	С.	P. fluorescens	Pf0-1
D(0		D(F	

C. I. ji	uorescen	5 1 10-1								
Pf0-1	Pf-5	SBW25	Q2-87	Q8r1-96	30-84	O-6	A506	BG33R	SS101	
Losuc tag		% ID	%ID	%ID	%ID	%ID	%ID	%ID	%ID	%ID
Pfl01_0121	PFL_0125	86 PFLU2598	39 PflQ2_0538	36 PflQ8_0202	85 Pchl3084_0129	87 PchlO6_0126	87 PfIA506_4932	35 PseBG33_5128	36 PflSS101_4985	36
Pfl01_0216	PFL_0213	90 PFLU0206	89 PflQ2_4530	36 PflQ8_0935	34 Pchl3084_0224	80 PchlO6_0225	80 PfIA506_0217	82 PseBG33_0251	82 PflSS101_0233	82
Pfl01_0250	PFL_0255	86 PFLU4085	92 PflQ2_4530	30 PflQ8_0935	29 Pchl3084_0273	83 PchlO6_0225	31 PfIA506_3446	84 PseBG33_3630	84 PflSS101_3463	85
Pfl01_0293	PFL_0310	81 PFLU0295	81 PflQ2_3112	28 PflQ8_4827	30 Pchl3084_0320	77 PchlO6_0324	77 PfIA506_0292	77 PseBG33_0325	77 PflSS101_0311	77
Pfl01_0594	PFL_0646	81 PFLU0593	78 PflQ2_2980	26 PflQ8_2798	27 Pchl3084_0627	80 PchlO6_0633	81 PfIA506_3017	31 PseBG33_0610	73 PflSS101_2915	31
Pfl01_0596	PFL_0648	87 PFLU0595	88 PflQ2_5073	87 PflQ8_0637	87 Pchl3084_0629	88 PchlO6_0635	89 PfIA506_0576	87 PseBG33_0612	86 PflSS101_0606	87
Pfl01_0798	PFL_0864	66 PFLU0295	29 PflQ2_3112	26 PflQ8_3242	26 Pchl3084_0855	66 PchlO6_0861	66 PfIA506_0798	64 PseBG33_0836	64 PflSS101_0832	64
Pfl01_0874	PFL_0932	85 PFLU0757	83 PflQ2_3112	46 PflQ8_4827	83 Pchl3084_3174	42 PchlO6_0324	31 PfIA506_0745	82 PseBG33_0782	81 PflSS101_0775	82
Pfl01_0923	PFL_0982	88 PFLU1040	89 PflQ2_1695	41 PflQ8_5352	21 Pchl3084_0981	85 PchlO6_0989	85 PfIA506_1022	83 PseBG33_1061	84 PflSS101_1061	84
Pfl01_0931	PFL_0995	77 PFLU1022	79 PflQ2_2980	43 PflQ8_2798	43 Pchl3084_3848	41 PchlO6_4138	40 PfIA506_1001	75 PseBG33_1043	76 PfISS101_1043	76
Pfl01_1848	PFL_2293	42 PFLU5798	57 PflQ2_1672	53 PflQ8_3969	52 Pchl3084_3355	39 PchlO6_3657	39 PfIA506_1983	41 PseBG33_5305	55 PflSS101_1938	41
Pfl01_2232	PFL_0932	45 PFLU2365	86 PflQ2_3112	79 PflQ8_3242	80 Pchl3084_3174		29 PfIA506_2242	82 PseBG33_2364	82 PflSS101_2136	81
Pfl01_2318	PFL_2772	86 PFLU3750	66 PflQ2_4231	22 PflQ8_1239	22 Pchl3084_2519		90 PfIA506_3139	62 PseBG33_3265	63 PfISS101_3147	64
Pfl01_2342	PFL_3177	34 PFLU5895	41 PflQ2_2928	36 PflQ8_5164	29 Pchl3084_2974		39 PfIA506_5184	40 PseBG33_5403	41 PflSS101_5234	41
Pfl01_2462	PFL_4092	46 PFLU3378			80 Pchl3084_3950		45 PfIA506_2859			77
Pfl01_2583	PFL_3315	42 PFLU2688	72 PflQ2_1327	30 PflQ8_3550	31 Pchl3084_2783	_	74 PfIA506_3008	68 PseBG33_3069	68 PfISS101_2361	69
Pfl01_2952 truncate	_	51 PFLU2593			27 Pchl3084_2407	_	51 PfIA506_3017	48 PseBG33_2513	_	
Pfl01_3121	PFL_2202	25 PFLU3177	37 PflQ2_2928	24 PflQ8_5164	26 Pchl3084_2164		86 PfIA506_5184	29 PseBG33_3617		
Pfl01_3124	PFL_2202	36 PFLU3177		_	26 Pchl3084_2164		81 PfIA506_5184	24 PseBG33_3617	23 PfISS101_3450	23
Pfl01_3318	PFL_2604	81 PFLU2593		24 PflQ8_4827	25 Pchl3084_2407		86 PfIA506_3017	85 PseBG33_2513		
Pfl01_3740	PFL_2202	28 PFLU3177		25 PflQ8_5164	36 Pchl3084_2164	_	84 PfIA506_5184	25 PseBG33_5318	_	
Pfl01_3784	PFL_4039	88 PFLU1040		84 PflQ8_0202	20 Pchl3084_3828		44 PfIA506_1995	80 PseBG33_2027	_	
Pfl01_3798	PFL_3835	28 PFLU3566			40 Pchl3084_3046		42 PfIA506_2218	_	_	
Pfl01_4209	PFL_1740	82 PFLU1839		87 PflQ8_4192	85 Pchl3084_1705		84 PfIA506_1861	78 PseBG33_1898	_	
Pfl01_4379	PFL_4627	75 PFLU4968		80 PflQ8_1239	81 Pchl3084_4498		81 PfIA506_4277	71 PseBG33_4466	_	
Pfl01_5008	PFL_5511	74 PFLU5463			80 Pchl3084_5255	_	82 PfIA506_4759	77 PseBG33_4946	_	
Pfl01_5189	PFL_5706	81 PFLU5629	81 PflQ2_0538	68 PflQ8_5352	67 Pchl3084_5442	81 PchlO6_5726	80 PfIA506_4932	77 PseBG33_5128	68 PfISS101_4985	78

D. P. fluorescens Q8r1-96

Q8r1-96	Ŭ	Q2-87	Pf-5	A506	30-84	O-6	SS101	BG33R	Pf0-1	SBW25	WH6	
ORF	Locus tag		% ID	% ID	% ID	% ID	% ID	% ID	% ID	% ID	% ID	%ID
ORF00043	PfIQ8_0202	PflQ2_0538	34 PFL_0125	83 PfIA506_4932	34 Pchl3084_0129	84 PchlO6_0126	83 PflSS101_4985	34 PseBG33_5128	35 Pfl01_0121	87 PFLU2598	39 PFWH6_5394	34
ORF00502	PfIQ8_0637	PflQ2_5073	95 PFL_0648	86 PfIA506_0576	85 Pchl3084_0629	88 PchlO6_0635	88 PflSS101_0606	84 PseBG33_0612	85 Pfl01_0596	86 PFLU0595	85 PFWH6_0502	84
ORF00804	PflQ8_4827	PflQ2_3112	45 PFL_0932	84 PfIA506_0745	83 Pchl3084_3174	44 PchlO6_0324	32 PflSS101_0775	83 PseBG33_0782	82 Pfl01_0874	85 PFLU0757	84 PFWH6_0766	83
ORF01477	PflQ8_4192	PflQ2_1453	92 PFL_1740	82 PfIA506_1861	79 Pchl3084_1722	85 PchlO6_1837	84 PflSS101_1822	79 PseBG33_1898	78 Pfl01_4209	85 PFLU1839	80 PFWH6_1770	81
ORF01699	PfIQ8_3969	PflQ2_1672	86 PFL_2293	41 PflA506_1983	40 Pchl3084_3355	39 PchlO6_3657	39 PflSS101_1938	40 PseBG33_5305	49 Pfl01_1848	53 PFLU5798	50 PFWH6_1926	39
ORF02118	PflQ8_3550	PflQ2_0688	82 PFL_4092	47 PflA506_2859	79 Pchl3084_3950	47 PchlO6_4229	47 PflSS101_2880	80 PseBG33_2658	80 Pfl01_2462	86 PFLU3378	84 PFWH6_3086	79
ORF02446	PflQ8_3242	PflQ2_3112	89 PFL_0932	46 PfIA506_2242	77 Pchl3084_3174	68 PchlO6_4138	31 PflSS101_2136	76 PseBG33_2364	77 Pfl01_2232	84 PFLU2365	82 PFWH6_2249	76
ORF02703	PfIQ8_3000	PflQ2_4231	21 PFL_3715	87 PfIA506_2346	84 Pchl3084_3605	86 PchlO6_0861	24 PflSS101_3074	84 PseBG33_0836	23 Pfl01_4379	24 PFLU3698	87 PFWH6_0820	23
ORF02716	PflQ8_2987	PflQ2_3112	23 PFL_3835	27 PflA506_2218	38 Pchl3084_3046	78 PchlO6_3307	79 PflSS101_2109	38 PseBG33_2000	37 Pfl01_3798	41 PFLU4093	86 PFWH6_3849	81
ORF02907	PfIQ8_2798	PflQ2_2980	89 PFL_0995	43 PflA506_1001	42 Pchl3084_3848	80 PchlO6_4138	81 PflSS101_1043	42 PseBG33_1043	42 Pfl01_0931	43 PFLU1022	43 PFWH6_1030	40
ORF03272	PfIQ8_2430	PflQ2_2925	28 PFL_3620	30 PfIA506_3446	24 Pchl3084_0224	23 PchlO6_3255	27 PflSS101_3463	24 PseBG33_3630	24 Pfl01_0216	24 PFLU3218	73 PFWH6_2193	78
ORF03651	PfIQ8_2057	PflQ2_1672	40 PFL_2293	73 PflA506_1983	57 Pchl3084_3355	82 PchlO6_3657	81 PflSS101_1938	57 PseBG33_2016	57 Pfl01_1848	41 PFLU5798	41 PFWH6_1926	58
ORF04510	PflQ8_1239	PflQ2_4231	85 PFL_4627	76 PflA506_4277	72 Pchl3084_4498	81 PchlO6_4739	81 PflSS101_4358	73 PseBG33_4466	73 Pfl01_4379	85 PFLU4968	73 PFWH6_4738	72
ORF04819	PflQ8_0935	PflQ2_4530	88 PFL_0213	36 PflA506_0217	35 Pchl3084_0224	36 PchlO6_0225	36 PflSS101_0233	35 PseBG33_2000	37 Pfl01_0216	35 PFLU0206	35 PFWH6_2193	24
ORF05160	PflQ8_5164	PflQ2_4902	85 PFL_5511	69 PflA506_4759	70 Pchl3084_5255	79 PchlO6_5540	79 PflSS101_4814	69 PseBG33_4946	69 Pfl01_5008	81 PFLU5463	75 PFWH6_5214	69
ORF05340	PflQ8_5352	PflQ2_0538	92 PFL_5706	67 PfIA506_4932	65 Pchl3084_5442	67 PchlO6_5726	66 PflSS101_4985	66 PseBG33_5128	82 Pfl01_5189	69 PFLU5629	66 PFWH6_5394	65

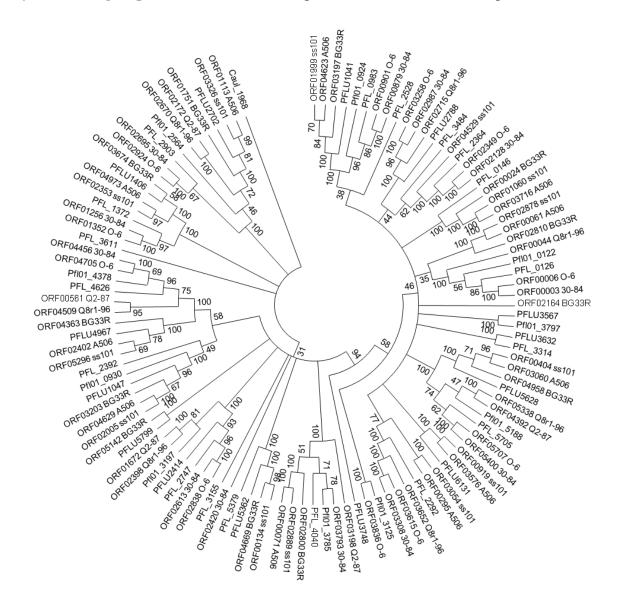
E. P. fluorescens Q2-87

Q2-87	A506	% ID 30-84	% ID 0-6	% ID Q8r1-96	% ID BG33R	% ID SS101	% ID PF-5	% ID SBW25	% ID Pf0-1	% ID
ORF Loc	cus tag									
ORF04393 Pfl	Q2_0538 PflA506_4932	64 Pchl3084_5442	67 PchlO6_5726	66 PflQ8_5352	92 PseBG33_5128	81 PfISS101_4985	65 PFL_5706	67 PFLU5629	66 Pfl01_5189	69.7
ORF04245 Pflo	Q2_0688 PflA506_2859	83 Pchl3084_3950	49 PchlO6_4229	49 PflQ8_3550	85 PseBG33_2658	83 PfISS101_2880	83 PFL_4092	50 PFLU3378	82 Pfl01_2462	84.7
ORF03440 Pfl	Q2_1453 PflA506_1861	80 Pchl3084_1705	86 PchlO6_1837	85 PflQ8_4192	95 PseBG33_1898	78 PflSS101_1822	80 PFL_1740	82 PFLU1839	80 Pfl01_4209	86.8
ORF03223 Pfl	Q2_1672 PflA506_1983	41 Pchl3084_3950	39 PchlO6_4229	39 PflQ8_3969	87 PseBG33_5305	52 PflSS101_1938	41 PFL_2293	39 PFLU5798	52 Pfl01_1848	54.8
ORF03197 Pfl	Q2_1695 PflA506_1995	77 Pchl3084_3828	86 PchlO6_0989	44 PflQ8_0202	20 PseBG33_2027	77 PflSS101_1951	77 PFL_4039	87 PFLU1040	45 Pfl01_3784	86
ORF01916 Pfl	Q2_2925 PflA506_3446	30 Pchl3084_0273	32 PchlO6_3255	90 PflQ8_0935	26 PseBG33_3630	30 PfISS101_3463	30 PFL_3176	30 PFLU4085	32 Pfl01_0250	32.4
ORF01913 Pfl	Q2_2928 PflA506_5184	36 Pchl3084_2164	26 PchlO6_3258	87 PflQ8_5164	25 PseBG33_3617	56 PfISS101_3450	57 PFL_1386	47 PFLU4069	59 Pfl01_2342	36.4
ORF01860 Pfl	Q2_2980 PflA506_1001	42 Pchl3084_3848	81 PchlO6_4138	82 PflQ8_2798	89 PseBG33_1043	42 PflSS101_1043	42 PFL_0995	43 PFLU1022	43 Pfl01_0931	43.3
ORF01721 Pfl	Q2_3112 PflA506_2242	78 Pchl3084_3174	70 PchlO6_4138	31 PflQ8_3242	90 PseBG33_2364	77 PflSS101_2136	77 PFL_0932	47 PFLU2365	81 Pfl01_2232	82.6
ORF01583 Pfl	Q2_3242 PflA506_3089	34 Pchl3084_3355	33 PchlO6_3657	32 PflQ8_2057	32 PseBG33_2445	32 PflSS101_3096	35 PFL_2391	35 PFLU2545	35 Pfl01_1848	33.2
ORF00560 Pfl	Q2_4231 PflA506_4277	70 Pchl3084_4498	79 PchlO6_4739	79 PflQ8_1239	86 PseBG33_4466	70 PfISS101_4358	70 PFL_4627	75 PFLU4968	72 Pfl01_4379	83.6
ORF00254 Pfl	Q2_4530 PflA506_0217	36 Pchl3084_0224	38 PchlO6_0225	38 PflQ8_0935	90 PseBG33_0251	36 PflSS101_0233	35 PFL_0213	37 PFLU0206	36 Pfl01_0216	36.5
ORF04571 Pfl	Q2_4902 PflA506_4759	75 Pchl3084_5255	83 PchlO6_5540	82 PflQ8_5164	89 PseBG33_4946	73 PflSS101_4814	74 PFL_5511	68 PFLU5463	75 Pfl01_5008	80.6
ORF04750 Pfl	Q2_5073 PflA506_0576	85 Pchl3084_0629	87 PchlO6_0635	87 PflQ8_0637	95 PseBG33_0612	84 PfISS101_0606	84 PFL_0648	86 PFLU0595	86 Pfl01_0596	86.9

F. *P.* sp. BG33R

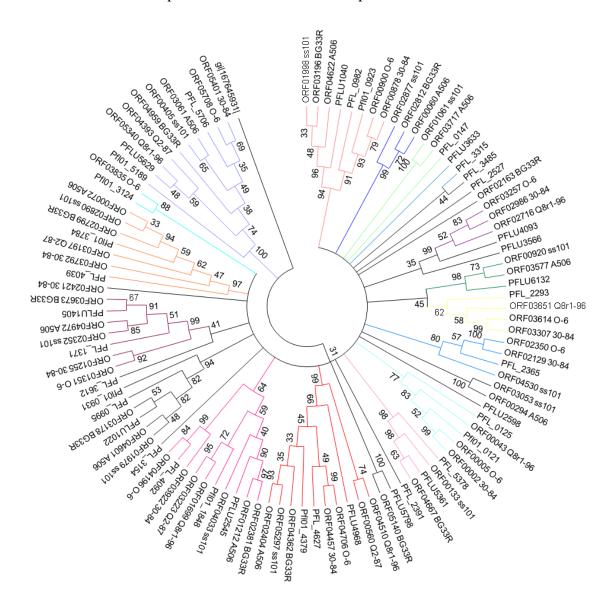
BG33R		A506	30-84	O-6	Q8r1-96	Q2-87	SS101	Pf-5	PfO-1	SBW25	WH6	
ORF	Locus tag		% ID	% ID	% ID	% ID	% ID	% ID	% ID	% ID	% ID	%ID
ORF00025	PseBG33_0163	PfIA506_0139	96 Pchl3084_0129	38 PchlO6_0126	37 PflQ8_5352	39 PflQ2_0538	38 PflSS101_0139	96 PFL_0147	72 Pfl01_5189	38 PFLU2598	42 PFWH6_5394	36
ORF00111	PseBG33_0251	PfIA506_3446	91 Pchl3084_0273	86 PchlO6_3255	86 PflQ8_0935	34 PflQ2_4530	35 PflSS101_3463	91 PFL_0213	91 Pfl01_0216	88 PFLU0206	95 PFWH6_2193	21
ORF00191	PseBG33_0325	PfIA506_0292	94 Pchl3084_0320	78 PchlO6_0324	78 PflQ8_4827	32 PflQ2_3112	28 PflSS101_0311	94 PFL_0310	80 Pfl01_0293	79 PFLU0295	89 PFWH6_0295	87
ORF00362	PseBG33_0489	PfIA506_0460	86 Pchl3084_5442	22 PchlO6_5726	22 PflQ8_5352	23 PflQ2_0538	22 PflSS101_0492	88 PFL_5706	22 Pfl01_0931	27 PFLU0473	91 PFWH6_5394	22
ORF00488	PseBG33_0610	PfIA506_3017	30 Pchl3084_0627	75 PchlO6_0633	74 PflQ8_3242	25 PflQ2_3112	25 PflSS101_2915	31 PFL_0646	77 Pfl01_0594	77 PFLU0593	90 PFWH6_0295	25
ORF00490	PseBG33_0612	PfIA506_0576	95 Pchl3084_0629	85 PchlO6_0635	85 PflQ8_0637	85 PflQ2_5073	84 PflSS101_0606	96 PFL_0648	85 Pfl01_0596	85 PFLU0595	93 PFWH6_0621	94
ORF01166	PseBG33_3630	PfIA506_3446	97 Pchl3084_0273	97 PchlO6_0225	32 PflQ8_0935	30 PflQ2_4530	31 PflSS101_3463	97 PFL_0255	89 Pfl01_0250	87 PFLU4085	94 PFWH6_2193	24
ORF01180	PseBG33_3617	PfIA506_5184	37 Pchl3084_2164	37 PchlO6_3258	57 PflQ8_5164	25 PflQ2_2928	55 PflSS101_3450	91 PFL_1386	47 Pfl01_2342	37 PFLU4069	94 PFWH6_3831	89
ORF01533	PseBG33_3265	PfIA506_3446	86 Pchl3084_0273	59 PchlO6_2626	59 PflQ8_1239	24 PflQ2_1672	35 PflSS101_3463	88 PFL_2772	65 Pfl01_2318	64 PFLU3750	91 PFWH6_3525	81
ORF01583	PseBG33_3219	PfIA506_2222	89 Pchl3084_3046	77 PchlO6_3307	77 PflQ8_2987	27 PflQ2_2980	26 PflSS101_2113	93 PFL_3835	74 Pfl01_3798	28 PFLU2562	92 PFWH6_2397	86
ORF01737	PseBG33_3069	PfIA506_3008	91 Pchl3084_2783	72 PchlO6_3015	73 PflQ8_2057	35 PflQ2_0688	34 PflSS101_2361	91 PFL_3315	40 Pfl01_2583	71 PFLU2688	89 PFWH6_3086	33
ORF01976	PseBG33_2840	PfIA506_2771	62 Pchl3084_3046	38 PchlO6_3307	39 PflQ8_2987	40 PflQ2_2980	24 PflSS101_2153	42 PFL_3835	28 Pfl01_3798	36 PFLU4093	39 PFWH6_2186	40
ORF02159	PseBG33_2658	PfIA506_2859	88 Pchl3084_3950	45 PchlO6_4229	46 PflQ8_3550	79 PflQ2_0688	80 PflSS101_2880	88 PFL_4092	48 Pfl01_2462	82 PFLU3378	85 PFWH6_3086	80
ORF02163	PseBG33_2654	PfIA506_2859	49 Pchl3084_3950	43 PchlO6_4229	43 PflQ8_3550	52 PflQ2_0688	51 PflSS101_2880	50 PFL_4092	43 Pfl01_2462	50 PFLU3378	51 PFWH6_3086	50
ORF02313	PseBG33_2513	PfIA506_3017	94 Pchl3084_2407	81 PchlO6_2626	81 PflQ8_3242	25 PflQ2_3112	24 PflSS101_2915	93 PFL_2604	80 Pfl01_3318	83 PFLU2593	90 PFWH6_0820	25
ORF02381	PseBG33_2445	PfIA506_3089	74 Pchl3084_2488	42 PchlO6_4229	42 PflQ8_3550	38 PflQ2_0688	38 PfISS101_3096	60 PFL_2391	70 Pfl01_2583	38 PFLU2545	90 PFWH6_1926	36
ORF02466	PseBG33_2364	PfIA506_2242	92 Pchl3084_3174	70 PchlO6_4138	30 PflQ8_3242	78 PflQ2_3112	77 PflSS101_2136	91 PFL_0932	44 Pfl01_2232	86 PFLU2365	91 PFWH6_2274	89
ORF02475	PseBG33_2355	PfIA506_0217	24 Pchl3084_0273	25 PchlO6_0225	24 PflQ8_0935	33 PflQ2_2925	23 PflSS101_3463	24 PFL_0255	25 Pfl01_0250	26 PFLU4085	27 PFWH6_1926	24
ORF02476	PseBG33_2354	PfIA506_3446	28 Pchl3084_3840	28 PchlO6_0225	28 PflQ8_0935	25 PflQ2_4530	27 PflSS101_0233	27 PFL_0213	28 Pfl01_0216	27 PFLU0206	27 PFWH6_2193	25
ORF02799	PseBG33_2027	PfIA506_1995	91 Pchl3084_3828	77 PchlO6_0989	43 PflQ8_0202	22 PflQ2_1695	75 PflSS101_1951	91 PFL_4039	81 Pfl01_3784	81 PFLU1040	44 PFWH6_1047	42
ORF02812	PseBG33_2016	PfIA506_1983	93 Pchl3084_3355	57 PchlO6_3657	56 PflQ8_2057	56 PflQ2_1672	39 PflSS101_1938	92 PFL_2293	57 Pfl01_1848	43 PFLU5798	43 PFWH6_1926	77
ORF02828	PseBG33_2000	PfIA506_2222	38 Pchl3084_3659	39 PchlO6_3952	39 PflQ8_2987	38 PflQ2_3112	23 PflSS101_2109	95 PFL_3835	26 Pfl01_3798	61 PFLU3566	59 PFWH6_3849	39
ORF02914	PseBG33_0782	PfIA506_0745	93 Pchl3084_3174	43 PchlO6_0126	29 PflQ8_4827	83 PflQ2_3112	46 PflSS101_0775	93 PFL_0932	81 Pfl01_0874	83 PFLU0757	91 PFWH6_2914	89
ORF02965	PseBG33_0836	PfIA506_0798	92 Pchl3084_0855	83 PchlO6_0861	82 PflQ8_3242	26 PflQ2_3112	25 PflSS101_0832	89 PFL_0864	84 Pfl01_0798	66 PFLU0295	30 PFWH6_0820	88
ORF02976	PseBG33_0847	PfIA506_0808	94 Pchl3084_2974	27 PchlO6_5540	24 PflQ8_1239	24 PflQ2_4231	24 PflSS101_0843	94 PFL_2663	53 Pfl01_5008	25 PFLU3643	28 PFWH6_4738	21
ORF03178	PseBG33_1043	PfIA506_1001	93 Pchl3084_3848	42 PchlO6_4138	42 PflQ8_2798	43 PflQ2_2980	43 PflSS101_1043	92 PFL_0995	79 Pfl01_0931	75 PFLU1022	86 PFWH6_1030	83
ORF03196	PseBG33_1061	PfIA506_1022	95 Pchl3084_0981	87 PchlO6_0989	87 PflQ8_2987	23 PflQ2_1695	43 PflSS101_1061	96 PFL_0982	89 Pfl01_0923	89 PFLU1040	96 PFWH6_1047	91
ORF03204	PseBG33_1069	PfIA506_1030	93 Pchl3084_3950	21 PchlO6_0633	21 PflQ8_3242	24 PflQ2_2980	25 PflSS101_1069	93 PFL_0992	79 Pfl01_2232	25 PFLU1022	26 PFWH6_1796	56
ORF03236	PseBG33_1099	PfIA506_1059	92 Pchl3084_4710	84 PchlO6_4957	85 PflQ8_1239	25 PflQ2_4902	25 PflSS101_1097	92 PFL_4912	88 Pfl01_0594	41 PFLU1087	94 PFWH6_1047	21
ORF03673	PseBG33_1530	PfIA506_4277	91 Pchl3084_4498	65 PchlO6_4739	64 PflQ8_1239	24 PflQ2_4231	23 PflSS101_4358	92 PFL_1371	67 Pfl01_4379	26 PFLU1405	74 PFWH6_1417	85
ORF04054	PseBG33_1898	PfIA506_0808	91 Pchl3084_2974	79 PchlO6_0225	80 PflQ8_4192	76 PflQ2_1453	76 PflSS101_0843	91 PFL_1740	80 Pfl01_4209	77 PFLU1839	93 PFWH6_1770	87
ORF04083	PseBG33_1930	PfIA506_1893	96 Pchl3084_0855	22 PchlO6_0861	22 PflQ8_2798	25 PflQ2_2980	26 PflSS101_1855	96 PFL_0992	57 Pfl01_0931	25 PFLU1022	28 PFWH6_1796	88
ORF04362	PseBG33_4466	PfIA506_4277	95 Pchl3084_4498	74 PchlO6_4739	75 PflQ8_1239	73 PflQ2_4231	71 PflSS101_4358	95 PFL_4627	78 Pfl01_4379	74 PFLU4968	86 PFWH6_4738	88
ORF04667	PseBG33_4831	PfIA506_4277	27 Pchl3084_4498	27 PchlO6_4739	27 PflQ8_1239	25 PflQ2_4231	25 PflSS101_4708	88 PFL_5378	75 Pfl01_4379	26 PFLU5361	52 PFWH6_4738	26
ORF04786	PseBG33_4946	PfIA506_4759	93 Pchl3084_5255	73 PchlO6_5540	73 PflQ8_5164	72 PflQ2_4902	72 PflSS101_4814	93 PFL_5511	70 Pfl01_5008	76 PFLU5463	90 PFWH6_5214	86
ORF04959	PseBG33_5128	PfIA506_4932	67 Pchl3084_5442	68 PchlO6_5726	67 PflQ8_5352	83 PflQ2_0538	82 PflSS101_4985	69 PFL_5706	68 Pfl01_5189	69 PFLU5629	67 PFWH6_5394	67
ORF05140	PseBG33_5305	PfIA506_1983	41 Pchl3084_3355	41 PchlO6_3657	41 PflQ8_3969	51 PflQ2_1672	52 PflSS101_1938	42 PFL_2293	40 Pfl01_1848	56 PFLU5798	94 PFWH6_1926	41
ORF05242	PseBG33_5403	PfIA506_5184	96 Pchl3084_2164	29 PchlO6_3670	81 PflQ8_5164	24 PflQ2_2928	36 PflSS101_5234	97 PFL_3177	39 Pfl01_2342	41 PFLU5895	96 PFWH6_3831	40
ORF02656 truncated	PseBG33_2167											

G. P. fluorescens SBW25

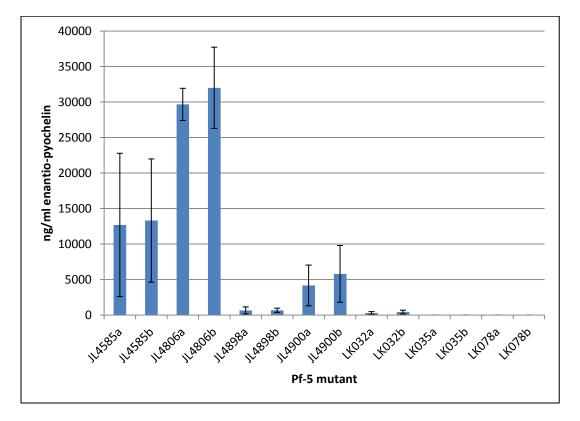

0.	1. junoi est									
SBW25	A506	% ID 30-84	% ID O-6	% ID Q8r1-96	% ID Q2-87	% ID BG33R	% ID SS101	% ID Pf0-1	% ID Pf-5	%ID
Locus tag				_	_	_				
PFLU0473	PfIA506_0460	85 Pchl3084_5442	21 PchlO6_5726	22 PflQ8_5352	23 PflQ2_0538	22 PseBG33_0489	91 PfISS101_0492	87 Pfl01_5189	22.8 PFL_5706	22.6
PFLU0593	PfIA506_3017	31 Pchl3084_0627	75 PchlO6_0633	76 PflQ8_2798	26 PflQ2_2980	26 PseBG33_0610	88 PflSS101_2915	32 Pfl01_0593	78 PFL_0646	77
PFLU1022	PfIA506_1001	82 Pchl3084_3848	41 PchlO6_4138	41 PflQ8_2798	42 PflQ2_2980	42 PseBG33_1043	82 PfISS101_1043	82 Pfl01_0931	78 PFL_0995	78
PFLU1040	PfIA506_1022	93 Pchl3084_0981	87 PchlO6_0989	87 PflQ8_2987	23 PflQ2_1695	43 PseBG33_1061	93 PflSS101_1061	94 Pfl01_0923	89 PFL_0982	89
PFLU1087	PfIA506_1059	93 Pchl3084_4710	86 PchlO6_4957	86 PflQ8_0637	21 PflQ2_5073	22 PseBG33_1099	92 PflSS101_1097	93 Pfl01_0594	41.38 PFL_4912	87
PFLU1405	PfIA506_1363	72 Pchl3084_1354	67 PchlO6_1431	67 PflQ8_1239	22 PflQ2_4231	22 PseBG33_1530	72 PflSS101_1406	73 Pfl01_3784	22 PFL_1371	68
PFLU1839	PfIA506_1861	89 Pchl3084_1705	78 PchlO6_1837	78 PflQ8_4192	75 PflQ2_1453	76 PseBG33_1898	88 PflSS101_1822	89 Pfl01_4209	79 PFL_1740	81
PFLU0206	PfIA506_0217	89 Pchl3084_0224	85 PchlO6_0225	85 PflQ8_0935	34 PflQ2_4530	35 PseBG33_0251	89 PflSS101_0233	89 Pfl01_0216	88 PFL_0213	91
PFLU2202	PfIA506_5184	37 Pchl3084_2164	24 PchlO6_3258	43 PflQ8_2798	22 PflQ2_2928	44 PseBG33_3617	40 PflSS101_3450	41 Pfl01_2342	33 PFL_1386	44
PFLU2216	PfIA506_5184	40 Pchl3084_2164	34 PchlO6_3258	41 PflQ8_5164	28 PflQ2_2928	42 PseBG33_3617	45 PflSS101_3450	44 Pfl01_2342	37 PFL_1386	46
PFLU2365	PfIA506_2242	87 Pchl3084_3174	71 PchlO6_4138	30 PflQ8_3242	79 PflQ2_3112	78 PseBG33_2364	87 PflSS101_2136	87 Pfl01_2232	86 PFL_0932	45
PFLU2509	PfIA506_1022	21 Pchl3084_0981	22 PchlO6_0989	21 PflQ8_3242	22 PflQ2_1695	20 PseBG33_0489	23 PfISS101_0492	24 Pfl01_0923	23 PFL_0982	26
PFLU2545	PfIA506_3089	73 Pchl3084_2488	43 PchlO6_4229	41 PflQ8_3550	38 PflQ2_1672	34 PseBG33_2445	88 PfISS101_3096	59 Pfl01_2583	39 PFL_2391	74.5
PFLU2562	PfIA506_2311	87 Pchl3084_3659	76 PchlO6_3952	76 PflQ8_2987	27 PflQ2_2980	26 PseBG33_3219	90 PflSS101_2208	90 Pfl01_3798	27.71 PFL_3835	74
PFLU2593	PfIA506_3017	91 Pchl3084_2407	80 PchlO6_2626	80 PflQ8_3242	25 PflQ2_3112	24 PseBG33_2513	90 PflSS101_2915	90 Pfl01_3318	82.14 PFL_2604	81.6
PFLU2598	PfIA506_0139	40 Pchl3084_5442	39 PchlO6_5726	39 PflQ8_5352	39 PflQ2_0538	38 PseBG33_0163	39 PflSS101_0139	40 Pfl01_0121	39 PFL_5706	41
PFLU2688	PfIA506_3008	88 Pchl3084_2486	74 PchlO6_3015	74 PflQ8_3550	33 PflQ2_1672	32 PseBG33_3069	89 PflSS101_2361	88 Pfl01_2583	72 PFL_3315	41
PFLU2941	PfIA506_1022	21 Pchl3084_0981	22 PchlO6_0989	26 PflQ8_3242	21 PflQ2_1695	22 PseBG33_1034	22 PflSS101_0492	24 Pfl01_0923	22.94 PFL_0982	26.6
PFLU2948	PfIA506_5184	36 Pchl3084_2164	33 PchlO6_3258	40 PflQ8_5164	24 PflQ2_2928	41 PseBG33_3617	40 PflSS101_3450	41 Pfl01_3121	34 PFL_1386	42
PFLU0295	PfIA506_0292	88 Pchl3084_0320	79 PchlO6_0324	78 PflQ8_4827	32 PflQ2_3112	28 PseBG33_0325	87 PflSS101_0311	88 Pfl01_0293	81 PFL_0310	81
PFLU3218	PfIA506_3446	24 Pchl3084_0224	24 PchlO6_3255	26 PflQ8_2430	71 PflQ2_2925	27 PseBG33_3630	24 PflSS101_3463	24 Pfl01_0216	23.9 PFL_3620	29
PFLU3378	PfIA506_2859	82 Pchl3084_3950	48 PchlO6_4229	49 PflQ8_3550	87 PflQ2_1672	37 PseBG33_2658	87 PflSS101_2880	83 Pfl01_2462	86 PFL_4092	49
PFLU3566	PfIA506_2218	38 Pchl3084_3046	42 PchlO6_3307	42 PflQ8_2987	41 PflQ2_0538	25 PseBG33_2000	59 PflSS101_1922	58 Pfl01_3798	68 PFL_3835	28
PFLU3633	PfIA506_3089	43 Pchl3084_2488	55 PchlO6_3015	42 PflQ8_3550	37 PflQ2_0538	25 PseBG33_2445	41 PflSS101_3096	41 Pfl01_2583	41 PFL_3315	74
PFLU3643	PfIA506_0808	28 Pchl3084_2974	85 PchlO6_5540	26 PflQ8_1239	23 PflQ2_4231	23 PseBG33_0847	28 PflSS101_0843	28 Pfl01_5008	25 PFL_5169	34
PFLU3698	PfIA506_2346	89 Pchl3084_3605	86 PchlO6_0861	24 PflQ8_3000	85 PflQ2_4231	23 PseBG33_0836	22 PflSS101_3074	89 Pfl01_4379	23.34 PFL_3715	87.9
PFLU3750	PfIA506_3139	86 Pchl3084_2519	62 PchlO6_2744	62 PflQ8_2798	21 PflQ2_4231	21 PseBG33_3265	88 PflSS101_3147	88 Pfl01_2318	64.6 PFL_2772	64.4
PFLU4069	PfIA506_5184	38 Pchl3084_2164	24 PchlO6_3258	57 PflQ8_5164	26 PflQ2_2928	56 PseBG33_3617	92 PflSS101_3450	92 Pfl01_2342	36 PFL_1386	47
PFLU4085	PfIA506_3446	90 Pchl3084_0273	87 PchlO6_0225	32 PflQ8_0935	31 PflQ2_4530	32 PseBG33_3630	90 PflSS101_3463	91 Pfl01_0250	91.6 PFL_0255	90.1
PFLU4093	PfIA506_2218	37 Pchl3084_3046	83 PchlO6_3307	83 PflQ8_2987	83 PflQ2_2980	24 PseBG33_2000	39 PflSS101_2109	37 Pfl01_3798	43 PFL_3835	28
PFLU4968	PfIA506_4277	81 Pchl3084_4498	74 PchlO6_4739	73 PflQ8_1239	72 PflQ2_4231	70 PseBG33_4466	83 PflSS101_4358	81 Pfl01_4379	71 PFL_4627	78
PFLU5361	PfIA506_4277	24 Pchl3084_2211	24 PchlO6_2435	24 PflQ8_1239	24 PflQ2_4231	24 PseBG33_4831	52 PflSS101_4708	51 Pfl01_4379	24 PFL_5378	51
PFLU5463	PfIA506_4759	89 Pchl3084_5255	76 PchlO6_5540	75 PflQ8_5164	74 PflQ2_4902	75 PseBG33_4946	89 PflSS101_4814	88 Pfl01_5008	75 PFL_5511	69
PFLU5629	PfIA506_4932	89 Pchl3084_5442	89 PchlO6_5726	88 PflQ8_5352	65 PflQ2_0538	66 PseBG33_5128	67 PflSS101_4985	91 Pfl01_5189	81 PFL_5706	89
PFLU5798	PfIA506_1983	42 Pchl3084_3355	42 PchlO6_3657	41 PflQ8_3969	50 PflQ2_1672	52 PseBG33_5305	94 PflSS101_1938	43 Pfl01_1848	57 PFL_2293	41
PFLU5895	PfIA506_5184	94 Pchl3084_2164	29 PchlO6_3670	81 PflQ8_5164	28 PflQ2_2928	36 PseBG33_5403	94 PflSS101_5234	94 Pfl01_2342	41 PFL_3177	39
PFLU0595		93 Pchl3084_0629	84 PchlO6_0635	84 PflQ8_0637	85 PflQ2_5073	85 PseBG33_0612	93 PflSS101_0606	92 Pfl01_0596	85 PFL_0648	84
PFLU6132	PfIA506_5433	92 Pchl3084_0129	36 PchlO6_0126	36 PflQ8_0202	36 PflQ2_0538	35 PseBG33_5128	35 PflSS101_4985	34 Pfl01_0121	38 PFL_0125	38
PFLU0757	PfIA506_0745	89 Pchl3084_3174	44 PchlO6_0324	31 PflQ8_4827	83 PflQ2_3112	47 PseBG33_0782	89 PflSS101_0775	89 Pfl01_0874	83 PFL_0932	82

H. P. fluorescens A506

A506	J	30-84	O-6	Q8r1-96	Q2-87	BG33R	SS101	Pf-5	PFO-1	SBW25	WH6	
ORF	Locus tag		% ID	% ID	% ID	% ID	% ID	% ID	% ID	% ID	% ID	%ID
ORF00060	PfIA506_1983	Pchl3084_3355	56 PchlO6_3657	56 PflQ8_2057	55 PflQ2_1672	39 PseBG33_2016	93 PfISS101_1938	92 PFL_2293	57 Pfl01_1848	42.8 PFLU5798	43 PFWH6_1926	77
ORF00072	PfIA506_1995	Pchl3084_3828	78 PchlO6_0989	43 PflQ8_0202	22 PflQ2_1695	76 PseBG33_2027	93 PfISS101_1951	96 PFL_4039	80 Pfl01_3784	80.6 PFLU1040	45 PFWH6_1047	43
ORF00294	PflA506_2218	Pchl3084_3046	39 PchlO6_3307	39 PflQ8_2987	39 PflQ2_0538	24 PseBG33_2840	42 PfISS101_2109	95 PFL_3835	29 Pfl01_3798	37.8 PFLU4093	39 PFWH6_2186	82
ORF00298	PfIA506_2222	Pchl3084_3046	42 PchlO6_3307	42 PflQ8_2987	41 PflQ2_2980	27 PseBG33_2840	43 PfISS101_2113	100 PFL_3835	27 Pfl01_3798	41.1 PFLU4093	41 PFWH6_2190	93
ORF00319	PfIA506_2242	Pchl3084_3174	72 PchlO6_4138	30 PflQ8_3242	78 PflQ2_3112	77 PseBG33_2364	92 PfISS101_2136	94 PFL_0932	45 Pfl01_2232	86 PFLU2365	91 PFWH6_2249	88
ORF00395	PfIA506_2311	Pchl3084_3659	75 PchlO6_3952	75 PflQ8_2987	27 PflQ2_2980	26 PseBG33_3219	89 PflSS101_2208	90 PFL_3835	75 Pfl01_3798	27.3 PFLU2562	90 PFWH6_2397	88
ORF00435	PfIA506_2346	Pchl3084_3605	84 PchlO6_0861	24 PflQ8_3000	84 PflQ2_4231	23 PseBG33_0836	23 PfISS101_3074	95 PFL_3715	86 Pfl01_4379	23 PFLU3698	92 PFWH6_0820	23
ORF00877	PfIA506_2772	Pchl3084_3046	37 PchlO6_3307	37 PflQ8_2987	38 PflQ2_3112	25 PseBG33_2840	62 PflSS101_2109	39 PFL_3835	26 Pfl01_3798	36.2 PFLU4093	39 PFWH6_2186	38
ORF00968	PfIA506_2860	Pchl3084_3950	48 PchlO6_4229	48 PflQ8_3550	83 PflQ2_0688	82 PseBG33_2658	88 PfISS101_2880	93 PFL_4092	49 Pfl01_2462	84.6 PFLU3378	84 PFWH6_3086	84
	PfIA506_3009	Pchl3084_2783	72 PchlO6_3015	71 PflQ8_2057	35 PflQ2_0688	33 PseBG33_3069	91 PflSS101_2361	96 PFL_3315	41 Pfl01_2583	71 PFLU2688	88 PFWH6_3086	33
ORF01138	PfIA506_3018	Pchl3084_2407	82 PchlO6_2626	82 PflQ8_4827	25 PflQ2_3112	24 PseBG33_2513	94 PflSS101_2915	97 PFL_2604	81 Pfl01_3318	85.2 PFLU2593	91 PFWH6_0820	25
ORF01212	PfIA506_3090	Pchl3084_2488	43 PchlO6_4229	40 PflQ8_3550	36 PflQ2_0688	36 PseBG33_2445	72 PfISS101_3096	59 PFL_2391	73 Pfl01_2583	40.2 PFLU2545	75 PFWH6_1926	33
	PfIA506_3140	Pchl3084_2519	57 PchlO6_2744	57 PflQ8_1239	28 PflQ2_1453	33 PseBG33_3265	84 PflSS101_3147	85 PFL_2772	66 Pfl01_2318	65.2 PFLU3750	90 PFWH6_3525	
ORF01571	PfIA506_3447	Pchl3084_0707	87 PchlO6_0225	32 PflQ8_0935	30 PflQ2_4530	31 PseBG33_3630	95 PflSS101_3463	97 PFL_0255	89 Pfl01_0250	88.6 PFLU4085	94 PFWH6_2193	
ORF01922	PfIA506_3812	Pchl3084_4498	21 PchlO6_4739	21 PflQ8_1239	20 PflQ2_4231	20 PseBG33_4466	20 PfISS101_3832	96 PFL_3154	31 Pfl01_2318	65.2 PFLU4968	23 PFWH6_4738	20
ORF02404	PfIA506_4278	Pchl3084_4498	73 PchlO6_4739	74 PflQ8_1239	73 PflQ2_4231	71 PseBG33_4466	95 PfISS101_4358	98 PFL_4627	77 Pfl01_4379	73 PFLU4968	86 PFWH6_4738	87
ORF02895	PfIA506_4759	Pchl3084_5255	77 PchlO6_5540	76 PflQ8_5164	76 PflQ2_4902	76 PseBG33_4946	95 PfISS101_4814	97 PFL_5511	71 Pfl01_5008	77.5 PFLU5463	89 PFWH6_5214	
ORF03061	PfIA506_4932	Pchl3084_5442	88 PchlO6_5726	88 PflQ8_5352	66 PflQ2_0538	65 PseBG33_5128	68 PflSS101_4985	93 PFL_5706	87 Pfl01_5189	80.1 PFLU5629	90 PFWH6_5394	
ORF03319	PflA506_5184	Pchl3084_2164	26 PchlO6_3670	82 PflQ8_5164	25 PflQ2_2928	36 PseBG33_5403	98 PfISS101_5234	99 PFL_3177	38 Pfl01_2342	40.5 PFLU5895	96 PFWH6_3831	
ORF03577	PflA506_5433	Pchl3084_0129	35 PchlO6_0126	35 PflQ8_0202	35 PflQ2_0538	34 PseBG33_5128	34 PfISS101_5488	96 PFL_0125	38 Pfl01_0121	36.3 PFLU6132	92 PFWH6_5931	
	PfIA506_0139	Pchl3084_5442	37 PchlO6_5726	37 PflQ8_5352	39 PflQ2_0538	39 PseBG33_0163	94 PflSS101_0139	96 PFL_0147	73 Pfl01_5189	38.3 PFLU2598	43 PFWH6_5394	
	PflA506_0217	Pchl3084_0224	86 PchlO6_0225	85 PflQ8_0935	34 PflQ2_4530	35 PseBG33_0251	90 PflSS101_0233	90 PFL_0213	90 Pfl01_0216	87.8 PFLU0206	95 PFWH6_2193	
	PfIA506_0292	Pchl3084_0320	76 PchlO6_0324	75 PflQ8_4827	33 PflQ2_3112	28 PseBG33_0325	91 PfISS101_0311	95 PFL_0310	80 Pfl01_0293	80 PFLU0295	90 PFWH6_0295	
	PfIA506_0460	Pchl3084_5442	22 PchlO6_5726	22 PflQ8_5352	21 PflQ2_0538	22 PseBG33_0489	86 PfISS101_0492	85 PFL_5706	23 Pfl01_0931	26.2 PFLU0473	85 PFWH6_5394	
	PflA506_0576	Pchl3084_0629	90 PchlO6_0635	90 PflQ8_0637	89 PflQ2_5073	89 PseBG33_0612	93 PfISS101_0606	94 PFL_0648	89 Pfl01_0596	88.8 PFLU0595	93 PFWH6_0621	
	PflA506_0745	Pchl3084_3174	44 PchlO6_5726	29 PflQ8_4827	82 PflQ2_3112	46 PseBG33_0782	93 PfISS101_0775	97 PFL_0932	81 Pfl01_0874	83.5 PFLU0757	91 PFWH6_0766	
	PfIA506_0798	Pchl3084_0855	84 PchlO6_0861	83 PflQ8_3242	27 PflQ2_3112	26 PseBG33_0836	92 PfISS101_0832	89 PFL_0864	84 Pfl01_0798	66 PFLU0295	_	
	PfIA506_0808	Pchl3084_2974	27 PchlO6_0989	21 PflQ8_1239	24 PflQ2_4231	24 PseBG33_0847	92 PfISS101_0843	94 PFL_2663	53 Pfl01_2342	23.5 PFLU3643		
	PflA506_1001	Pchl3084_3848	42 PchlO6_4138	42 PflQ8_2798	43 PflQ2_2980	43 PseBG33_1043	93 PfISS101_1043	92 PFL_0995	77 Pfl01_0931	74.6 PFLU1022	85 PFWH6_1030	
	PflA506_1022	Pchl3084_0981	87 PchlO6_0989	87 PflQ8_2987	23 PflQ2_1695	42 PseBG33_1061	93 PflSS101_1061	94 PFL_0982	89 Pfl01_0923	88.6 PFLU1040		
	PflA506_1030	Pchl3084_3848	22 PchlO6_4138	21 PflQ8_3242	24 PflQ2_2980	25 PseBG33_1069	89 PfISS101_1069	94 PFL_0992	78 Pfl01_2232	25 PFLU1022		
	PfIA506_1059	Pchl3084_4710	86 PchlO6_4957	86 PflQ8_5164	26 PflQ2_1695	21 PseBG33_1099	94 PfISS101_1097	95 PFL_4912	88 Pfl01_0596	23.2 PFLU1087		
	PfIA506_1363	Pchl3084_1354	65 PchlO6_1431	64 PflQ8_1239	25 PflQ2_4231	25 PseBG33_1530	92 PfISS101_1406	97 PFL_1371	67 Pfl01_4379	25.9 PFLU1405	74 PFWH6_1417	
	PfIA506_1861	Pchl3084_1705	77 PchlO6_1837	77 PflQ8_4192	74 PflQ2_1453	75 PseBG33_1898	89 PfISS101_1822	93 PFL_1740	79 Pfl01_4209	77.8 PFLU1839	_	
ORF05482	PflA506_1893	Pchl3084_0855	23 PchlO6_0861	23 PflQ8_2798	26 PflQ2_2980	27 PseBG33_1930	96 PfISS101_1855	99 PFL_0992	57 Pfl01_0798	20.2 PFLU1022	28 PFWH6_1796	90


I. P. fluorescens SS101

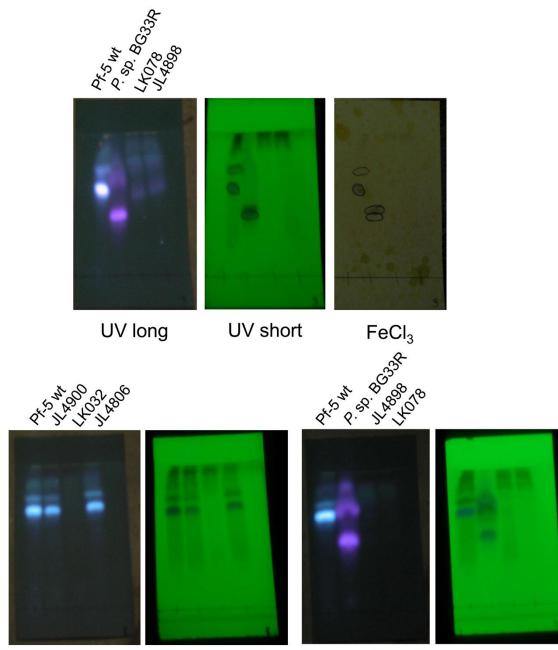
SS101	-	A506	% ID 30-84	% ID O-6	% ID Q8r1-96	% ID Q2-87	% ID BG33R	% ID Pf-5	% ID SBW25	% ID Pf0-1	% ID	
ORF	Locus tag											
ORF00133	PflSS101_4708	PfIA506_4277	27 Pchl3084_2211	25 PchlO6_2435	24 PflQ8_1239	26 PflQ2_4231	26 PseBG33_4831	90 PFL_5378	76 PFLU5361	52 Pfl01_4379	27	
ORF00242	PflSS101_4814	PfIA506_4759	97 Pchl3084_5255	76 PchlO6_5540		74 PflQ2_4902	75 PseBG33_4946	95 PFL_5511	70 PFLU5463	89 Pfl01_5008	77	
ORF00405	PflSS101_4985	PfIA506_4932	93 Pchl3084_5442	90 PchlO6_5726		67 PflQ2_0538	66 PseBG33_5128	70 PFL_5706	89 PFLU5629	92 Pfl01_5189	81	
ORF00660	PflSS101_5234	PflA506_5184	99 Pchl3084_2164	26 PchlO6_3670	82 PflQ8_4192	24 PflQ2_2928	37 PseBG33_5403	98 PFL_3177	39 PFLU5895	96 Pfl01_2342	41	
ORF00920	PflSS101_5488	PfIA506_5433	96 Pchl3084_0129	36 PchlO6_0126	36 PflQ8_0202	36 PflQ2_0538	34 PseBG33_5128	33 PFL_0125	38 PFLU6132	92 Pfl01_0121	37	
ORF01061	PflSS101_0139	PfIA506_0139	96 Pchl3084_5442	37 PchlO6_5726	37 PflQ8_5352	40 PflQ2_0538	39 PseBG33_0163	94 PFL_0147	73 PFLU2598	42 Pfl01_5189	38	
ORF01155	PflSS101_0233	PfIA506_0217	92 Pchl3084_0224	84 PchlO6_0225	84 PflQ8_0935	33 PflQ2_4530	34 PseBG33_0251	91 PFL_0213	90 PFLU0206	95 Pfl01_0216	88	
ORF01237	PflSS101_0311	PfIA506_0292	95 Pchl3084_0320	76 PchlO6_0324	75 PflQ8_4827	33 PflQ2_3112	28 PseBG33_0325	91 PFL_0310	80 PFLU0295	90 Pfl01_0293	79	
ORF01428	PflSS101_0492	PfIA506_0460	85 Pchl3084_5442	21 PchlO6_5726	21 PflQ8_5352	21 PflQ2_0538	21 PseBG33_0489	88 PFL_5706	23 PFLU0473	87 Pfl01_0931	27	
ORF01546	PflSS101_0606	PfIA506_0576	94 Pchl3084_0629	90 PchlO6_0635	90 PflQ8_0637	89 PflQ2_5073	88 PseBG33_0612	93 PFL_0648	89 PFLU0595	93 Pfl01_0596	88	
ORF01711	PflSS101_0775	PfIA506_0745	97 Pchl3084_3174	44 PchlO6_5726	29 PflQ8_4827	82 PflQ2_3112	46 PseBG33_0782	93 PFL_0932	81 PFLU0757	91 Pfl01_0874	83	
	PflSS101_0832	PfIA506_0798	89 Pchl3084_0855	83 PchlO6_0861		26 PflQ2_3112	26 PseBG33_0836	89 PFL_0864	85 PFLU0295	31 Pfl01_0798		
ORF01777	_	PfIA506_0808	94 Pchl3084_2974	27 PchlO6_5540		24 PflQ2_4231	24 PseBG33_0847	93 PFL_2663	53 PFLU3643	28 Pfl01_5008	25	
ORF01979	PflSS101_1043	PfIA506_1001	92 Pchl3084_3848	42 PchlO6_4138		43 PfIQ2_2980	43 PseBG33_1043	92 PFL_0995	77 PFLU1022	85 Pfl01_0931	74	
ORF01998	_	PfIA506_1022	97 Pchl3084_0981	87 PchlO6_0989		23 PflQ2_1695	43 PseBG33_1061	96 PFL_0982	89 PFLU1040	96 Pfl01_0923	89	
ORF02006	-	PfIA506_1030	94 Pchl3084_3848	23 PchlO6_4138		24 PflQ2_2980	25 PseBG33_1069	90 PFL_0992	78 PFLU1022	26 Pfl01_2232	25	
	_	PfIA506_1059	95 Pchl3084_4710	86 PchlO6_4957		23 PflQ2_5073	21 PseBG33_1099	94 PFL_4912	88 PFLU1087	95 Pfl01_0594	41	
ORF02352	PflSS101_1406	PfIA506_1363	96 Pchl3084_1354	64 PchlO6_1431		25 PflQ2_4231	24 PseBG33_1530	92 PFL_1371	67 PFLU1405	74 Pfl01_4379	26	
ORF02769	_	PfIA506_1861	93 Pchl3084_1705	77 PchlO6_1837	77 PflQ8_4192	75 PflQ2_1453	75 PseBG33_1898	89 PFL_1740	80 PFLU1839	94 Pfl01_4209		
ORF02799	-	PfIA506_1893	99 Pchl3084_0855	23 PchlO6_0861		26 PflQ2_2980	27 PseBG33_1930	96 PFL_0992	57 PFLU1022	28 Pfl01_0931	27	
ORF02861	PflSS101_1922	PfIA506_2218	38 Pchl3084_3046	39 PchlO6_3307		38 PfIQ2_2980	23 PseBG33_2000	92 PFL_3835	26 PFLU3566	59 Pfl01_3798	60	
ORF02877	_	PfIA506_1983	90 Pchl3084_3355	56 PchlO6_3657		56 PflQ2_1672	39 PseBG33_2016	90 PFL_2293	58 PFLU5798	44 Pfl01_1848	43	
	_	PfIA506_1995	96 Pchl3084_3828	78 PchlO6_0989		22 PflQ2_1695	76 PseBG33_2027	93 PFL_4039	81 PFLU1040	44 Pfl01_3784	81	
ORF02973	PflSS101_2030	PfIA506_4759	22 Pchl3084_3848	23 PchlO6_5540		23 PfIQ2_2980	23 PseBG33_4946	22 PFL_2240	75 PFLU5463	23 Pfl01_5008	23	
ORF03053	PflSS101_2109	PfIA506_2218	95 Pchl3084_3046	39 PchlO6_3307	39 PflQ8_2987	39 PflQ2_0538	24 PseBG33_2840	42 PFL_3835	29 PFLU4093	39 Pfl01_3798	38	
ORF03057	PflSS101_2113	PfIA506_2222	100 Pchl3084_3046	42 PchlO6_3307		41 PflQ2_2980	27 PseBG33_2840	43 PFL_3835	27 PFLU4093	41 Pfl01_3798	40	
ORF03080	PflSS101_2136	PfIA506_2242	94 Pchl3084_3174	71 PchlO6_4138		78 PflQ2_3112	77 PseBG33_2364	91 PFL_0932	44 PFLU2365	91 Pfl01_2232		
	PflSS101_2208	PfIA506_2311	90 Pchl3084_3659	76 PchlO6_3952		27 PflQ2_2980	26 PseBG33_3219	93 PFL_3835	74 PFLU2562	92 Pfl01_3798		
	PflSS101_2361	PfIA506_3008	97 Pchl3084_2783	72 PchlO6_3015		35 PflQ2_0688		91 PFL_3315	40 PFLU2688	88 Pfl01_2583		
ORF03808	PflSS101_2880	PfIA506_2859	93 Pchl3084_3950	47 PchlO6_4229		83 PfIQ2_0688	82 PseBG33_2658	88 PFL_4092		86 Pfl01_2462		
ORF03842	PflSS101_2915	PfIA506_3017	97 Pchl3084_2407	82 PchlO6_2626		23 PflQ2_3112	23 PseBG33_2513	93 PFL_2604	81 PFLU2593	91 Pfl01_3318	86	
ORF04009	PflSS101_3074	PfIA506_2346	96 Pchl3084_3605	86 PchlO6_0861		85 PflQ2_4231		23 PFL_3715	86 PFLU3698	92 Pfl01_4379	23	
ORF04033	PflSS101_3096	PfIA506_3089	57 Pchl3084_2488	40 PchlO6_4229		33 PfIQ2_0688	34 PseBG33_2445	57 PFL_3485	62 PFLU2545	61 Pfl01_1848	37	
ORF04087	PflSS101_3147	PfIA506_3139	87 Pchl3084_2519	60 PchlO6_2744		23 PflQ2_1695	22 PseBG33_3265	89 PFL_2772	68 PFLU3750	91 Pfl01_2318	67	
ORF04397	PflSS101_3450	PfIA506_5184	38 Pchl3084_2164	38 PchlO6_3258		26 PflQ2_2928	57 PseBG33_3617	91 PFL_1386		94 Pfl01_2342		
ORF04412	PflSS101_3463	PfIA506_3446	97 Pchl3084_3950	47 PchlO6_3957		30 PflQ2_4530	31 PseBG33_3630	96 PFL_0255		95 Pfl01_0250	88	
	PflSS101_3593	PfIA506_1363	28 Pchl3084_2211	80 PchlO6_2435		29 PflQ2_4231	_	28 PFL_2365	80 PFLU5361	29 Pfl01_4379	33	
ORF04772	PflSS101_3832	PfIA506_3811	96 Pchl3084_4498	20 PchlO6_4739		18 PflQ2_4231	21 PseBG33_4466	21 PFL_3154	30 PFLU4968	23 Pfl01_4379	22	
ORF05297	PflSS101_4358	PfIA506_4277	97 Pchl3084_4498	71 PchlO6_4739	72 PflQ8_1239	71 PflQ2_4231	69 PseBG33_4466	92 PFL_4627	76 PFLU4968	86 Pfl01_4379	73	


Appendix 3. Neighbor Joining analysis of the anti-ECF sigma factors of the *P*. *fluorescens* group. Branches with bootstrap values less than 30 are collapsed.

Appendix 4. Neighbor Joining analysis of the N-terminal signaling domain of the **TBDTs of the** *P. fluorescens* group. Branches are colored to indicate related TBDTs. Branches with bootstrap values less than 30 are collapsed.

	phenotype,	Enar	tio-pyochelin (ng/ml)		
Lab #	mutant	10/6/2010	10/21/2010	11/17/2010	Average	St dev
JL4585a	Wt	23665.1	3813.3	10583.9	12687.433	10091.69
JL4585b	Wt	20697.1	3755.9	15472.7	13308.567	8675.464
JL4806a	pvd-, <i>pvdI</i>	28302.4	32278	28421.3	29667.233	2261.772
JL4806b	pvd-, <i>pvdI</i>		27953.1	36047	32000.05	5723.252
JL4898a	reduced epch, <i>pchC</i>	602.2	182.3	1174	652.83333	497.7851
JL4898b	reduced epch, pchC	752.4	345.3	931	676.23333	300.1868
JL4900a	pvd- reduced epch, <i>pvdI</i> <i>pchC</i>	5865.9	856.3	5791.7	4171.3	2871.114
JL4900b	pvd- reduced epch, <i>pvdI</i> <i>pchC</i>	8565.6	1214.6	7614.5	5798.2333	3997.927
LK032a	pvd- reduced epch, <i>pvdI</i> <i>pchA</i>	374.6	56.7	423.5	284.93333	199.1624
LK032b	pvd- reduced epch, <i>pvdI</i> <i>pchA</i>	240.2	present	608.7	424.45	260.5688
LK035a	pvd- pch-, pvdI-pchA pchC	not run	0	0	0	0
LK035b	pvd- pch-, pvdI- pchA pchC	not run	0	0	0	0
LK078a	pch-, pchA	0	0	0	0	0
LK078b	pch-, pchA	0	0	0	0	0

Appendix 5. HPLC analysis of enantio-pyochelin production by Pf-5 siderophore mutants.



Appendix 5. Continued. Graph of enantio-pyochelin production of Pf-5 siderophore mutants detected by HPLC.

	phenotype,	Ру	oluteorin (ng	/ml)	Phizoxi	n (ng/ml)	0	rfamide (ng/n	nl)
Lab #	mutant	10/6/2010	10/21/2010	11/17/2010	10/6/2010	10/21/2010	10/6/2010	10/21/2010	11/17/2010
JL4585a	Wt	701.6	288.7	863.4	171.5	not reported	18874.7	33508.1	23692.3
JL4585b	Wt	804	309.9	807.6	174.7	not reported	16861	27887	20307
JL4806a	pvd-, <i>pvdI</i>	1470.1	642.4	1332.5	124.9	not reported	11721.4	18717.5	16717.3
JL4806b	pvd-, <i>pvdI</i>		544.4	1483.3		not reported		19126.8	14254.6
JL4898a	reduced epch, <i>pchC</i>	1381	900.6	1126.1	60.9	not reported	15235.4	19162.3	15161.7
JL4898b	reduced epch, <i>pchC</i>	1526.6	1127.8	950.7	41.1	not reported	16934.6	21832.5	19822
JL4900a	pvd- reduced epch, pvdI-pchC	1802.3	1706.1	2891.2	119	not reported	14818.1	20044.3	12756.1
JL4900b	pvd- reduced epch, <i>pvdI-pchC</i>	1944.4	2983.9	3228.1	139.9	not reported	13188.6	16725.9	9134.2
LK032a	pvd- reduced epch, <i>pvdI-pchA</i>	5204.8	928.9	2714.5	59.5	not reported	10792	18424.4	4145.5
LK032b	pvd- reduced epch, <i>pvdI-pchA</i>	4565.6	1144.6	2854.9	41	not reported	7309.7	14159.3	3508.2
LK035a	pvd- epch-, pvdI-pchA-pchC	not run	782	782	not run	not reported	not run	15935.1	15935.1
LK035b	pvd- epch-, pvdI pchA pchC	not run	844.3	3040.8	not run	not reported	not run	16667.2	1717.5
LK078a	epch-, <i>pchA</i>	1050.1	457.4	1136.3	103.1	not reported	14601.8	24105.1	19173.5
LK078b	epch-, <i>pchA</i>	964.9	670.4	1205.4	87.6	not reported	16686.6	23090	13391

Appendix 6. Secondary metabolite production in Pf-5 siderophore mutants detected by HPLC

Appendix 7. Thin layer chromatography of extracts from Pf-5, Pf-5 siderophore mutants and P. sp. BG33R for the detection of enantio-pyochelin in Pf-5 and the secondary siderophore in BG33R. LK078 (ΔpchA), JL4898 (ΔpchC), LK032 (ΔpvdI*pchA*), JL4806 (Δ*pvdI*).

UV long

UV short

UV long

	Pf-5 mutants ^a														
Feeding Strains	fpvV, fpvY	fpvZ, fpvV	fpvZ, fpvY	fpvU, fpvV	fpvU, fpvY	fpvU, fpvZ	fpvX, fpvY	fpvX, fpvZ	fpvX, fpvU	fpvX, fpvV	fpvW, fpvZ	fpvW, fpvV	fpvW, fpvX	fpvW, fpvU	fpvW, fpvY
P. fluorescens A506	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+
P. fluorescens WCS374	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+
P. fluorescens DSM50106	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+
P. aeruginosa LESB58	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+
P. fluorescens CLR711	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
P. fluorescens CTRp112	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
P. costantinii CFBP5705	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
P. fluorescens A6	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
P. putida CFML90-40	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
P. fluorescens Pf0-1	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
P. aeruginosa ATCC 27853	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
P. aeruginosa Pa6	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
P. aeruginosa 7NSK2	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

Appendix 8. Crossfeeding analysis of double *fpv* mutants in the $\Delta pvdI$ -pchC background of Pf-5.