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The general problem of testing goodness-of-fit with right censored

data is considered. The discussion is focused on testing for the under-

lying distribution in general regression models. Following Cox and

Snell (1968) the model is specified in terms of generalized residuals,

which have a uniform distribution on (0,1) when the model is true. The

problem can then be expressed as testing whether the assumed distribu-

tion of the residuals is correct.

A modification of the empirical distribution function for use with

censored data, proposed independently by Aitkin and Clayton (1980), is

-*
presented. This modified estimate, H , is used to estimate the dis-

n

tribution of the residuals. It is proposed that tests be based on the

I

1 -*
functionals n 1p

Z
(u) d[H

n
(u) - u] . It is shown that these func-

o

tionals are efficient scores from certain parametric alternatives, so

that likelihood theory can be used to find the asymptotic distributions.

A general discussion of possibilities for estimating the asymptotic

variance of the functionals is given. The connection with likelihood

theory is exploited to investigate the asymptotic structure of the

process ilLT [H
n

(u) u] .



A test of the type considered here that is of special interest is

the Neyman smooth test. Possibilities for estimating the asymptotic

variance for the Neyman smooth test for exponentiality are considered

in detail. The Neyman smooth test is used to test for underlying

exponential and Weibull distributions in two data sets taken from the

literature.
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GOODNESS-OF-FIT TESTS FOR CENSORED SURVIVAL DATA

I. Introduction

The problem considered here is testing whether the underlying

distribution in a general regression model has the assumed form. We

are particularly interested in models arising in the analysis of sur-

vival data, where a major complication is the presence of right cen-

soring in the data.

In survival analysis the data are times to some event. Here the

term "failure" is used to represent the event of interest, although

the models considered here are also appropriate for other kinds of

events. Let T. denote the failure time of the i-th experimental

unit, i = 1, , n , which for convenience we assume to be positive.

Throughout the paper, we use capital letters to represent random

variables and the corresponding lower case letters for observed values

of those variables. We assume the failures are independent, and that

Ti has continuous distribution function F.(t;y) with density

f.(t;y) and survivor function F.(t;y) = 1 - F.(t;y) , where y is

a vector of unknown parameters. Further, we assume Fi(t;y)=F(t;Ai,d),

A. = x: 13, y = (S,6) , where the x. are vectors of known constants.

Thecomponentsofthex.are the covariables in the regression. The

interest here is in the adequacy of the underlying distribution F.

For example, in the exponential model where F.(t ; 12, ) =

1 - exp{-texp(xiii3)} , it is the assumption of an exponential dis-

tribution we wish to examine.
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In general not all the failure times will be observed. We assume

that associated with the i-th observation is a censoring time V.
1

with distribution furicticm. C.(v) and survivor function C.(v) =

1 - C(v) , and that only Y. = min{T. , V.} and Z. = I(T. < V.) are
1 1 1 1 1 1 1

observed, where I(A) is the indicator function of the event A

(i.e., I(A) equals 1 if A is true and 0 otherwise). The cen-

soring times are assumed to be independent of each other and of the

failure times. The censoring is assumed to be noninformative, in that

C.(v) is assumed not to depend on y. We refer to the above model

as the heterogeneous censoring model. Two special cases of interest

are homogeneous random censorship, where Ci(v) = C(v) for all i

and type I censoring where Ci(v) = I(T < v) for all i , for a fixed

time T. The assumption of strict independence between the censoring

times and the failure times, which is used below in computing expected

values, excludes such censoring schemes as type II censoring, where

the experiment continues until a specified number of failures has

occurred.

An important subclass of regression models are the location-scale

models, where

F.(t;y) = G([h(t) x!8} /a)

Y=(s,0),forsomenionotorietransformatimilofT.1 and some

continuous distribution function G. In this case the question of

whether the underlying distribution is correct can be expressed as

whether the distribution of the (unobserved) true residuals

E. = (h(T.) - x! / a is given by G.
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This can be extended to the general setting. For the types of

models considered here it is always possible to find monotone trans-

formationssuchthattherandoulvariablesE.=r. (T. ;y)

are identically distributed. Then these Ei can be regarded as true

residuals and the question of the adequacy of the underlying distri-

bution can again be formulated as whether the assumed distribution

of the E. is correct.

Generalized residuals were first considered by Cox and Snell

(1968, 1971) for the uncensored case. They discussed how the observed

residualse.--r.(t.;y) , where y is the maximum likelihood

estimate of y, can be used much as ordinary residuals in location-

scale regression models to examine the adequacy of the model. With

Cellsoreddatathellseofplotsofthee.=r. (37. ;y) to examine dis-

tributional form has been considered by Crowley and Hu (1977) and

Aitkin and Clayton (1980). Crowley and Hu estimate the distribution

of the E. with the Kaplan-Meier estimate computed from the e. .

Aitkin and Clayton use a different estimate, which is discussed below.

The formulation of models in terms of generalized residuals is

not unique. Since Fi is continuous, the random variables U. =
1

F.(T.;y) will always have a uniform distribution on (0,1) when the

model is true. In the general discussion it will be convenient to

restrict attention to this form of generalized residuals.

There are many other types of departures from the assumed model

that could be present. Some examples are failure to include important

covariables, incorrect specification of the form of the relationship

between the data and the covariables, lack of independence, and the



presence of outliers. In general the presence of these other types of

departures will have an effect on the techniques discussed below for

examining distributional form, so in practice it will be necessary to

combine other forms of residual analysis with these techniques before

any firm conclusions can be reached. However, in the discussion here

it is generally assumed that the only departure that might be present

is that the underlying distribution is not correctly specified. Under

this alternative, the U. remain independent and identically distri-

buted, but with some distribution other than the uniform. Thus the

problem with which we are concerned can be expressed as follows.

Given that the U. are independent and identically distributed, test

H: U. has a uniform distribution on (0,1) ,
1

4

(1.2)

againstthealternativethatU.1 has some other distribution.

In general the basic approach used in testing goodness-of-fit is

to compare an empirical estimate of the distribution to the hypothe-

sized distribution. To use this approach for the hypothesis (1.2),

weneedanestimateofthedistributionoftheU..Let H be the
1

truedistributionfunctionofU..First consider the uncensored
1

case, where the failure times t
i

are known for all observations. In

this case, H can be estimated with the empirical distribution

function,

LHn(u) = n
-1

L I(u > ui) $

i=1
0 < u < 1 , (1.3)

whichestimtesthedistributionofU.by placing a mass of n
-1

on each of the observed residuals u. = F.(t. ;y) . (When attention
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is restricted to the simple null hypothesis case the """ will usually

be dropped.) Tests for the hypothesis (1.2) in the uncensored case

are in general based on functionals of the stochastic process

y
n

(u) = V [H
n

(u) u] .

With censoring, we only have available the observed (censored)

residuals u. = F. (y.
1
;y) . For a censored observation, the value of

F.(t.;y)canlieanywhereintheinterval(u.,1] , since t. is
1 1 1

only known to be greater than yi. Thus for censored observations,

the mass of n
-1

can no longer be placed on F.(t. ;y) , as in (1.3).

One possibility for an estimate of H is the Kaplan-Meier (1958)

estimator,

z.

Kri(u) = [(n -ri) / (n r
1
4-1) ] 1 ,

.

1:1.1.<u

where r.
1

is the rank of (U. , 1 - z.) in the lexicographic ordering

of the sequence (u
1
,1-z

1
,) , (u

n
,1-z

n
) . The Kaplan-Meier

estimate places a mass of n
-1

on 11.
1

for uncensored observations,

and distributes a mass of n
-1

over the failures in the interval

(u1. , 1] for those u.
1

corresponding to censored observations. Tests

could again be based on functionals of the process

wn(u) = [ n(u) - u ] .

In this paper, instead of using the Kaplan-Meier estimator, we

use an approach suggested by Aitkin and Clayton (1980). In this

approach, we place a mass of n
-1

on u.
1

for uncensored observations,
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and for censored observations we distribute the mass of n
-1

over the

interval (u.,l] to be consistent with the null hypothesis (uniform)

distribution. This gives

* A

Hn (u) = n
-1

I(u>u.)-(z. + (1- z.1)(u -u.)/(1-u.1)}
1 1 1

1=1

(1.4)

A*
for the estimate of H. We call H

n
the modified empirical distri-

bution function (MEDF). This estimate is discussed in more detail in

sections III and V. We will base our tests on functionals of the form

1

fn
1

^ *
d y (u)

0 n

for arbitrary functions ipt. where

yn (u) = [ Hn (u) - u ] .

(1.5)

In the following section we review previous results for the

regression case with no censoring and the identically distributed

case with censoring. In Section III we begin by examining efficient

scores from a certain class of parametric alternatives, and show these

scores are the same as the functionals (1.5). Because of this connec-

tion, the asymptotic distributions are given by likelihood theory. In

Section IV we discuss the asymptotic distribution of the scores and

general issues in estimating their asymptotic variances. In Section

*
V the asymptotic distribution of y

n
is considered. In Section VI

chi-square and Neyman smooth tests are examined. In Section VII the

Neyman smooth test is applied to two data sets taken from the

literature.
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II. Review of Previous Results

In this section we discuss previous results on goodness-of-fit

tests, first for regression models in the uncensored case, and then

for the identically distributed case (where Fi ( ;y) a F( ;y) for

all i) with censoring.

For general regression models in the uncensored case, it was indi-

cated by Pierce and Kopecky (1979) and proven in detail by Loynes (1980),

that, subject to regularity conditions, yn converges weakly to a mean

0 Gaussian process y under the null hypothesis. The main result of

the Pierce-Kopecky paper is that for the location-scale models (1.1),

the covariance structure of y is the same for regression models as

in the identically distributed case, and thus known (Durbin, 1973) not

to depend on the true values of the parameters. Consequently, for

location-scale regression models in the uncensored case, the asymptotic

distribution of suitably continuous functionals of yn(u) will be the

same as in the identically distributed case, and so will not depend on

the covariables or the true values of the parameters, but only on the

type of distribution. In the general uncensored case the result of

Loynes shows that the asymptotic distributions of functionals of

y
n
(u) do in general depend on the covariables and the true values of

the parameters. Since for many common goodness-of-fit statistics

these asymptotic distributions are difficult to find, the use of such

statistics to test the hypothesis (1.2) will not be easy in practice.

Loynes suggests using a random adjustment of the parameter estimates,

and shows that if the adjustment is of the proper form, the asymptotic
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process reduces to a standard brownian bridge. However, the introduc-

tion of a random adjustment is conceptually unappealing. The methods

discussed in the following sections for use with censored data should

also be useful in the general uncensored case.

Loynes also gives the asymptotic distribution of yn(u) under a

sequence of local alternatives. In the appendix, his result is used to

show that for the location-scale models (1.1), functionals of yn(u)

have "no local power" against omitting covariables from the model, in

the sense that the asymptotic distribution is the same under the

sequenceoflocalalternativesTinG[ (h(t) - x! f3, w: a ) /a] ,

n

i= 1 , n, where a
n

= X/i4i., as it is under the null hypothesis

(X=0) . This result does not extend to general regression models or

to location-scale models with censoring, and an example in Section VII

shows the effect can be substantial.

With censored data the problem of testing goodness-of-fit becomes

considerably more complex. In the identically distributed, simple null

hypothesis case the asymptotic distribution of the process wn(u) was

established by Breslow and Crowley (1974) under homogeneous random

censorship, and was found to depend on the censoring distribution C.

Related results, including a transformation of wn(u) that asymptoti-

cally does not depend on the censoring, were given by Burke, CsOrg6 and

Horva.th (1981). There are a number of results on specific tests avail-

able in the simple null hypothesis case with randomly censored data.

A Cramer-von Mises statistic was given by Koziol and Green (1976) and

Kolomogorov-Smirnov tests by Fleming et. al. (1980) and Fleming and

Harrington (1981). Koziol (1980) gave a different approach to both
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types of statistics, as well as Kuiper statistics. Hyde (1977) and

Hollander and Proschan (1979) gave tests that have their power focused

more toward particular alternatives than these omnibus procedures.

Confidence bands for an unknown distribution function (and associated

tests) were considered by Gillespie and Fisher (1979), Hall and Well-

ner (1980) and Nair (1981).

With a composite null hypothesis, the transformations considered

by several of the above authors no longer remove the dependence on the

censoring distribution, and there are only a few results on tests

available, even in the identically distributed case, mostly for special

censoring models. Smith and Bain (1976) gave correlation type statis-

tics for several distributions with type II censoring, and Chen (1981)

considered similar tests under several random censoring distributions.

Pettit (1976, 1977) considered Cramer-von Mises tests for normal and

exponential distributions with type I and type II censored data. Turn-

bull and Weiss (1978) gave a likelihood ratio test for grouped data.

Chi-square tests were studied by Mihalko and Moore (1980) for type II

censoring and by Habib (1981) for homogeneous random censoring. Bargal

(1981) considered several procedures for testing for Weibull and Gamma

distributions with type I censoring.

Habib showed the asymptotic normality of the finite dimensional

distributions of w
n
(u) , although he did not prove weak convergence

of the process. Even for location-scale families, these asymptotic

distributions depend on the censoring distribution and on the true

values of the parameters. This dependence is also seen in the other

results listed above, except that of Turnbull and Weiss (as discussed
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in Section IV, below, the likelihood function does not depend on the

censoring distribution).

In the censored regression case there are no results on function-

als of w
n,

although there are some results for examining goodness-of-

fit in specialized situations. For example, Farewell and Prentice

(1977) considered use of the generalized gamma distribution for dis-

criminating between several simpler distributions. Since in the

identically distributed, location-scale case, the asymptotic distribu-

tions of functionals of w
n
(u) depend on the true values of the para-

meters and the censoring, this dependence, as well as dependence on

the covariables, will also be seen in the regression case, even for

location-scale models. As in the uncensored case with general regres-

sion models, this will make many common types of goodness-of-fit

statistics very difficult to use. It will be seen below that the

connection between the functionals (1.5) and the efficient scores

allows asymptotic likelihood theory to be used here, so to some extent

the complex distributional problems associated with many other methods

can be avoided.
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III. Efficient Scores and the MEDF

In this section we begin by considering efficient scores for a

certain class of parametric alternatives. Then we show the scores are

the same as the functionals (1.5). The section is concluded by further

exploring the relationship between the MEDF and the Kaplan-Meier esti-

mator.

Under the null hypothesis the U. are uniformly distributed on

(0,1) . We consider alternative distributions with densities of the

form exp{ et t (u) K(0)} , 0 < u < 1, where the tpt are known
Q =1

functions and K(e) is a normalizing constant. This gives a family

of densities for T. of
1

f.(t;y) exp{ et t [F.(t.y)] - K.0)1 .

'

t=1
(3.1)

These reduce to the null hypothesis density when e = o. The prin-

cipal advantage of this approach to goodness-of-fit tests is that the

complex distributional problems of other approaches can to some extent

be avoided by using asymptotic likelihood theory. Another advantage

is that the power of the tests can be focused against alternatives of

particular interest. A third advantage is that consideration of (3.1)

leads to some general principles of interest, independently of the

particular choice of the 4,,e.

Under the censoring models introduced in Section I, the log

likelihood of the data under the alternative densities is



t(y,8) = fz. (log f. (Y ;Y) + X

i=1 1
a.

=1

1 m
+ (1 --z.) log

1
exp{ 1 89 iPz(u)} du - K(0)1 .

IF.3. (Y.;Y) 2 =1

F.(y.;y)l)1 1

12

(3.2)

(This actually holds under less restrictive assumptions on the censor-

ing. For a discussion see Kalbfleisch and Prentice, 1980, Section

5.2.) We will base our tests on the efficient scores

n 1

a,t(y
o'

0)/D0 = {z. (u ) + (1-z.) f (u) du /(1-u.) ax(0)/ae
i=1 -a.

1

n
= X izi 4),e(ui.) + (1-zi) E[ipt(U) I U > ui] - E[11),e(U)] 1, (3.3)

i=1

where U has a uniform distribution on (0,1) , yo is the maximum

likelihood estimate for y when e = 0, and as before ui=Fi(yi;y0)

(Other estimates besides the maximum likelihood estimate could be con-

sidered, but some of the details of the tests would be different.) The

expression for aK(0)/ae comes from differentiating the equation
m

exp{ X et ipt(u) K(8) }du = 1.

o t=1
Uncensored observations contribute a term of tpt[Fi(ti;y0)] to

(3.3). For censored observations the value of ti is not observed.

Under the assumptions made in Section I about the censoring, all that

isknownaboutt.forallobservationcensoredatis that t.>y. .
1 Y. 1 1

For censored observations the score (3.3) takes the intuitively reason-

able approach of replacing the unobserved contribution yFi(ti;y0)]



with its conditional expectation EH iiPt[Fi(Ti;10] Ti > yi} ,

= y
0

13

where E
H

denotes the expectation under the null hypothesis. Another
o

way of looking at (3.3) is that it is the expectation of the score for

uncensored data conditional on the observed censored data. This is

similar to the idea of the EM algorithm of Dempster, Laird and

Rubin (1977).

Instead of using the scores (3.3), we could consider other likeli-

hood based methods, specifically the likelihood ratio test or tests

based on the maximum likelihood estimate 8 . All three methods are

asymptotically equivalent (see, for example, Cox and Hinkley, 1974,

pages 323-4). However, for these other methods, it is necessary to fit

the alternative model, which can be much more difficult than fitting

the original model. Also, only the scores (3.3) have a direct inter-

pretation as functionals of yn .

The class of tests arising from the scores (3.3) is very broad.

*
It is shown below that any functional of y

n
of the form (1.5) is a

score of the form (3.3). Two omnibus tests included in this class in

the uncensored, identically distributed case are the Rao-Robson (1974)

modified x2 test and the Neyman smooth test. The extensions of these

tests to the censored regression setting given by (3.3) and (1.5) are

considered in Section VI. This class also includes efficient scores

from some alternatives not of the form (3.1). For example, the effi-

cient score for the Weibull (F(t;a,a) = 1 - exp{ -(t/a)G}) alternative

to the exponential (a= 1) is given by (3.3) with

(u) = 1 + log [ - log (1 - u) ] [ 1+ log (1 - u)] .
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To see that the scores (3.3) and the functionals (1.5) are the

same, note that

1 1 1

Io

" *
*t.(u) d yn (u) = n *t(u) d Hn (u) - *t(u) du 1 (3.4)

n 1

z
(tii)+(1-zi)

J
ipt(u) du/ (1-ui)-E[*t(U)

i=1 l U.
1

n

= z. *
t
(u

i
) + (1-z.)E[* (U) 1 U >u.]

t
(U)]

i=1

which is the same as (3.3). From (3.4) we see that the scores (3.3)

(or the functionals (1.5)) compare the MEDF distribution to the null

hypothesis distribution by taking the difference of the expectations

of various functions * under the two distributions.

Instead of the MEDF, we could use the Kaplan-Meier estimate, and
1

consider statistics of the form
f

*t(u)dw
n
(u) . However, such

o

statistics would not be efficient scores from parametric alternatives,

so likelihood theory could not be exploited to find the asymptotic

distributions. Below we explore in some detail the differences be-

tween the Kaplan-Meier estimate and the MEDF in the simple null

hypothesis case.

Asbefore,letui=F(y.)andassumetheli.=F (T.) are
i 1 1 i 1

identically distributed with distribution function H. As discussed

in Section I, for censored observations, the unobserved value Fi(ti)

can be anywhere in the interval (ui , 1] . Thus for an observation

censored at yi , we have Ui < u with conditional probability

P(Di < > ui] = [H(u)-H(ui)] / [1 -H(ui)] . (3.5)
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The contribution of a censored observation to the estimate of H(u)

should represent n
-1

times the conditional probability (3.5). For

the MEDF, H
n,

this probability is estimated by computing it under

the null hypothesis distribution, giving n-1 I(u > u.)(u -u.)/(1 - u.)

for the contribution of a censored observation (see (1.4)). Efron

(1967) showed that for the Kaplan-Meier estimator Kn, (3.5) is

actually computed under the Kaplan-Meier estimator of the distribution;

that is, the Kaplan-Meier estimator satisfies

n
Kn (u) = n-j" I (u > ui) zi + (1-zi) [Kn (u) - Kn (ui) ] / [1 - Kn (ui) ] .

i=1

Efron called this property self-consistency.

The MEDF is always defined on the entire line, whereas the

Kaplan-Meier estimate is not clearly defined beyond the largest cen-

soring time when there are no larger failure times. The MEDF is

exactly unbiased in finite samples under the null hypothesis (see

(5.2)), whereas the Kaplan-Meier estimate is slightly biased. In

Section V it is shown (see (5.4)) that

n
,

Var
Ho

[ H (u) ] = (1-u) 2
n-1 I

d.

C
=

(y) E Cy)
-2

d F. (y)

l=1 Jo

where d. = sup{t :F.(t) = u }, which reduces to

d

(1 -u)2 C (y) [F(y)]- d F(y)

0

in the identically distributed, homogeneous censorship case. In com-

parison, the asymptotic variance of the Kaplan-Meier estimate in this

case, as given by Efron (1967) and Breslow and Crowley (1974), is

(1 2 .1 16(y) F2 (y) d F(y) .
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Since in general C(y)--0.0 as y--0. 010, the Kaplan-Meier estimate

will be much more variable in the right tail of the distribution.

On the other hand, since the mass for censored observations is

spread out over the interval (ui , 1] to be consistent with the null

hypothesis, the MEDF is not a true nonparametric estimate, and will not

be a consistent estimate of the true distribution function when the null

hypothesis is not true, unlike the Kaplan-Meier estimate. Thus the MEDF

could not be used to construct confidence intervals on an unknown dis-

tribution function, for example. However, these facts do not make use

of the MEDF unreasonable in testing goodness-of-fit. Because of the

censoring, there is a loss of information about goodness-of-fit (as

compared with a complete sample of the same size). The Kaplan-Meier

estimate reflects this with a large variability in the right tail of

the distribution. To the extent that information has been lost, the

MEDF has been smoothed to be consistent with the null hypothesis, and

has a corresponding reduction in its variability. Thus in the right

tail, the MEDF has a small variance but is consistent with the null

hypothesis, and the Kaplan-Meier estimate has a large variance and is

therefore compatible with a wide class of distributions. It is diffi-

cult to say if one estimator better reflects the information in the

sample about lack of fit. The variability of the estimators should be

kept in mind when comparing plots of them, however.
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IV. Quadratic Score Statistics

IV.1. The Asymptotic Distribution of the Scores, and Possibilities

for Estimating Their Variance

The standard asymptotic likelihood result for the scores (3.3) is

that subject to mild regularity conditions, under the null hypothesis

(1.2),

n -2 32.(y
o

0)/ae N 0, I
'

(4.1)
86Iy

JC
where ---+ denotes convergence in distribution, I 1

661y

-1
'I 1I I I I , and I = is the average Fisher

ee eY YY ye
Ay 66

information per observation (that is, I = lim
where

k
n

I
(n)

,

eek

I
(n)

= n
-1 cov[at(y,o)/aet, at.(y,o)/@ek] , and so on). For a dis-

k

cussion of asymptotic likelihood results with censored data and

references on the general theory see Kalbfleisch and Prentice, (1980),

Section 3.4. To actually carry out the test, we can use the quadratic

score statistic

Qm = n-1 M(y0,0)/D0.17 Vr -1 [a2(Y0,0)/3el

which 4 under the null hypothesis when V is any consistent

estimate of I0811

A natural way to estimate the asymptotic variance I 1 is
801y

with the average expected information in the sample, In()
Oely

(n) (n) (n)
-1

(n)
I , evaluating (y,e) at (1

o
,0) .

AA By 'TY Ye
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(n)
Formulas for the components of I

eely
under the heterogeneous censor-

ing model are

n I(8 n) = n Cov[IPz(U) k (U)]

. k

covtipz(u) ok(u) u > Fi(y;y)] Tp yy;y)d Ci(y)
1=1

n r

= j

1

(y;y) sik (Y;Y) -ji(Y)dFi (Y;Y)
i =1

n I(n) = Cov[Slogf.(T.;y)/Sy. , tp [F.(T. ; y)]]
0 y. .

j 1=1

and

- f Cov[Slogfi(Ti;y)/Dyi, Ipt[Fi(Ti;y)]

nc

=

1.`

f s.0 (y;y) q..(Y;Y) -Ei(Y) dFi(Y;1)
1=1

(4.2)

Ti > y]ii(y;y)dCi(y)

n
n I(n) i= Cov[alog f.(T.;y)/s slog f.(T.;y)/Dyk]

Yjlk 1=1

Cov[Slog fi(Ti;y)/Syj , slog fi(Ti;y)/Syk 1Ti> y]
J

YT.(y;y) d C. ( )

= X q.. (Y;Y) q. (y;y) -di(Y) d F. (Y;Y)

1=1

(4.3)

(4.4)
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where sit(y;y) = *
t i
[F(y.y)] - ENt(U) I U > F. (y;y)] ,qij (y;y) =

a{loef.(M)/F.(YVY)i}/3y. , and as before U has a uniform distri-
1 1 3

bution on (0,1) . Derivations of these formulas are given in the

next section. In each case the first expression is in terms of the

expected information when there is no censoring minus a correction

for the censoring, and the second expression may be easier to use for

computational purposes. This is particularly true of survival models,

since they are often formulated in terms of the hazard function,

f./F. , which appears in qij .

These expected information terms depend on the censoring distri-

butionsC..In some cases censoring arises in some systematic way

and there is some prior knowledge of the distributional form, so

there are censoring distributions, possibly with parameters estimated

from the data, available to use in computing the expected information.

Also, if there is little censoring, any reasonable censoring model

should give similar results. In this case choice of a parametric

censoring distribution could be guided by ease of computation. Un-

fortunately, outside of these special cases assumption of a particular

parametric form for the censoring distribution will not be reasonable.

Censoring can arise from a variety of sources. For example, in

clinical trials where the failure times are times to death from a

particular cause, some possible sources of censoring are the subject

dying from an unrelated cause, the subject moving away from the study

area, and the experiment being stopped before the subject has died.

In general, little is known about the distributions of these events,

and adequately representing them can be a difficult problem. Further,
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the chances of these events might not be the same for all subjects in

the study, which would require different distributions for different

subjects (although it is assumed here that factors affecting the cen-

soring have no influence on the failures). Because of the difficulties

in representing the censoring, it is desirable to find a conditional

reference set that eliminates the need to specify censoring distribu-

tions. In some special cases the potential censoring times v ...,v
n

are known for all subjects. For example, if the only source of cen-

soring is the experiment being stopped before all subjects have died,

then the potential censoring times are just the times from entry into

the experiment until the end of the experiment, which are known for

all subjects. In this case we can condition on these potential censor-

ing times by taking Ci(y) = I(y > vi) in computing the expected

information. If the potential censoring times for uncensored observa-

tions are not known, one possibility for a conditional approach is to

compute the expected information using Ci(y) = I(y > vi) for censored

observations and C.(y) EE 0 for uncensored observations. In effect

this assumes that uncensored observations could not have been censored.

We call this the "totally conditional" model. It is shown in Section

VI that this can be very conservative.

Even if the censoring distributions are not exactly the same for

all subjects, it might still be a reasonable approximation to assume

the censoring is homogeneous. In this case (or if the censoring

actually is homogeneous), rather than specify the censoring distri-

bution we can use the Kaplan-Meier estimator to estimate the unknown

censoring distribution from the data. One minor difficulty with this
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approach is that the Kaplan-Meier estimate of the censoring distribu-

tion does not reduce to 0 if the largest observation is a failure

time. We suggest the slightly conservative approach of leaving the

unassigned mass at + 00.

In addition to the difficulty in choosing a censoring model,

another problem with the use of the expected information is that the

integrals in (4.2)-(4.4) can be very difficult to evaluate. An alter-

nate approach is to use simulations, generating failures under the

parametric maximum likelihood estimate of the failure distributions

and the censoring times from any of the above censoring models, to

compute the actual finite sample variance of the scores.

In using the expected information, there is also the deeper issue

of whether the inference should depend on the possibility that uncen-

sored observations could have been censored. To evaluate the expected

information some assumption about the nature of the potential censoring

for uncensored observations must be made. Even in the totally condi-

tion model, where the assumption is that uncensored observations would

never be censored, an assumption is still being made about the nature

of the potential censoring for uncensored observations. A procedure

which avoids making such assumptions, and also avoids the difficulty

involved in giving a reasonable parametric model for the censoring, is

to use the observed information (the negative of the second deriva-

tives of the log likelihood function) to get an estimate of I
eeli

The log likelihood (3.1) is the same under any censoring scheme

that is independent and noninformative (see Kalbfleisch and Prentice,

1980, section 5.2), and does not involve the censoring distributions.
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Thus in computing the second derivatives of the log likelihood, it is

not necessary to specify censoring distributions, or even to make

assumptions about whether uncensored observations could have been cen-

sored. Under the null hypothesis the observed information does pro-

vide a consistent estimate of the expected information, subject to

mild regularity conditions, so the adjusted observed information

= t
ee

+
Gy yy ye

,

teely

where t = D2t(y
o

, o)/ae BA
k

and so on, could be used for nV into

Q
m

. This gives a procedure where the inference will be the same under

any independent and noninformative censoring model that is compatible

with the data.

Although from a conceptual standpoint use of the observed infor-

mation is ideal, in practice there can be serious difficulties. In

computing the observed information, the derivatives are evaluated at

(y0,0) . This point is usually not the global maximum of t(y,e) ,

so if £(y,8) is not concave everywhere, the observed information

need not even be positive definite at (y0,0) .

is shown that this does happen with the Neyman smooth test.

Another possible approach to estimating the variance would be to

jackknife the scores. However, nonparametric estimation of the

variance through such methods as the jackknife and nonparametric

bootstrap does not seem appropriate here. These methods estimate the

variance under the empirical distribution of the data, but it is

preferable to use the variance under the null hypothesis distribution.

There are other difficulties with these methods.

In Section VI.2 it
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In the ordinary jackknife observations are deleted one at a time,

or in groups, and the statistic recomputed from the remaining observa-

tions. The variability between these recomputed statistics is then

used to estimate the variance of the original statistic. In the uncen-

sored, identically distributed case the jackknife has been discussed

in considerable detail. See Miller (1974) for a review. With regres-

sion data the jackknife can perform poorly (see Hinkley, 1977). It

is thought that by deleting observations in groups, where there is a

certain degree of balance in the covariables between the groups, will

improve the performance somewhat. It is not known what effect censor-

ing might have on the jackknife, but it may again be necessary to

delete the observations in groups, where the censoring is balanced

between the groups.

In the bootstrap, introduced by Efron (1979), the variance of the

statistic is actually computed under the empirical distribution of the

data, often by using simulations. Efron (1979) also gives a method of

bootstrapping regression data (in the uncensored case), and explains

why it is generally better than the jackknife. This method, in the

context of the general regression models considered here, is to use

the empirical distribution Hn(u) of the residuals ui = Fi(ti;y) ,

and compute the variance assuming the distribution of Ti is that of

-1
F. (U;y) , where U H

n.
Efron (1981) has considered methods for

bootstrapping censored data in the identically distributed case. His

approach with randomly censored data is to assume the censoring is

homogeneous and then use the Kaplan-Meier estimates of both the

failure and censoring distributions. Thus to use this method with
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censored data it is necessary to make some assumptions about the nature

of the censoring. Also, since it would be necessary to use simulations

in using the bootstrap to estimate the variance of the scores (3.3), it

would be no simpler than the conceptually preferred method of using the

parametric estimates of the failure distributions in the simulations.

Even if all these difficulties could be overcome, there can still

be a serious problem with the size of the test using the jackknife and

the bootstrap, even in the uncensored, identically distributed case.

In Section VI.2 we show that the size of the Neyman smooth test for

exponentiality is substantially larger than the nominal level when the

jackknife or the bootstrap is used to estimate the variance, in the

uncensored, identically distributed case.

IV.2. Expected Information Calculations

In this section details are given for the derivation of the ex-

pected information formulas (4.2)-(4.4). For convenience we suppress

the dependence of F. on y.

Under the heterogeneous censoring model introduced in Section I,

if E I g(Yi. , Zi.) I < , then

E[g(Y. , Z.) ] = E[g(Yi , 0) I Z. = 0] P[Zi = 0]

+ E[g(Yi , 1) I Zi = 1] P[Zi = 1]

(4.5)
00

= g (y , 0) d Ci(y) + g(y,l) Ci (y) d Fi(y)

0 0

Setting ait(y) = tpz[Fi(y) ] , biz(y) = E[Ipz(U) I U > Fi(y) ] and
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ria(y) = Ekbt(U) Pk(U) 1 U > Fi(y)] , then from (3.3) and (4.5) we

have

Now

n I
(e n)

= Cov[3.e(y,0)/30 3,e(y,0)/a0
k

]

8
k

= E[Z
i

a
it

(Y ) a
ik

(Y
i
) + (1-Z ) b (Y )b

ik
(Y )]

i=1

- E[Ipz(U)] E[4,k(U)] (4.6)

=
i

a (Y
i

) a
ik

(Y ) + (1-Z
i

) r (Y ) -

i=1
ilk i

(1-zi)[ria(iii)-biz(Yi) bik(Yi)Oi

E[ike(U)] ENk(U)]

n (

= j aa(Y) sik(Y)Ti(y)dFi(y)
i=1

rizk(Y)Ti(Y) d Ci(y) - E['liz(U)] E Nk(U) I

iriek(Y) biz(y) bik(y) d Ci(y) (4.7)

Irick (Y)
Ti(y)dCi(y) = k(y)j-1 11 tp,e(u)Ipk(u) du

o F.(Y)

yT.(y)d C. (y)

Applying change of variables to the inner integral and Fubini's

theorem gives
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t=ate(t) a
ik

(t) C. (t) d F. ) .

o

Thus the sum of the first two integrals in (4.7) is

ate(y) aik(y) d Fi(y) = E[tpz(U) tpk(U)] . Also rtek(y) biz(Y) bik(Y)

= CovElpz(U) tpk(U) U > Fi(y)] . Making these substitutions in (4.7)

gives the first expression in (4.2).

On the other hand, from (4.5) and (4.6),

Now

n I(n)
0£

k
ai,e(Y) aik(y) Ei(y) d Fi(y)

(4.8)

+ J biz(y)bik(y)Ti(y)dCi(y) -E[41,e(U) ] EN/k(U)1

b (y) b
ik

(y) (y) d C. (y)

1

= J [Ti(Y)]-1[ ipz(u) du ] [ (u) du ] d C. (Y)

Fi(y) Fi(y)

= E[4,z(U) ]E [tPk(U)] [ait(y)bik(y) + aik(y)biz(y)-bik(y)bit(y)]

d Fi(y)

after an integration by parts. Substituting this in (4.8) gives

n I(n) =e e .
[a
it

(y) b
it

(y)] [a
ik(y)

b
ik

(y)] d Fi(y)

k 3.=1
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which is the same as the second expression in (4.2), since

sit(y) = ait(y) bit(y)

The derivations of (4.3) and (4.4) are very similar to the

above, and will not be given here.
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V. Further Properties of the MEDF

In this section further consideration is given to the properties

of the MEDF, Hn , defined in (1.4). Note that if we take Ipz(x) =

I(a >x) in (3.1), then from (3.3),

n
-1/2n at.(y0,0)/ae=n-2lHa > u.)

i=1

+ (1-zi) E[I(az > U) IU > ui] E[I(az >

n

=n- 2I I( az>ud[zi+(1-zi)(az-ui)/(1-ui)] -ad
i=11

-* -*
= [Hn (az) - az] = yn(u) . (5.1)

This connection between the scores (3.3) and the MEDF will be ex-

ploited in the following, where we will examine the distribution of

the MEDF under the null hypothesis, first giving the mean and co-

variance of H
n

in the simple null hypothesis case, and then the

asymptotic structure of yn in the composite null hypothesis case.

The dependence of the distribution function on y will usually be

suppressed.

Let a
1

and a
2

be fixed constants, with 0 < a
1

< a
2
< 1,

andsetdicsup{y:Fi(y)<az}.NotethatsinceF.is con-
].

tinuous, Fi(diz) = az. Then using (4.5),the expected value of

H
n
(a
t

) under the null hypothesis is



n
E[Hn(at) ] = n

-1
X

i=1
E!I(az > ui) [zi + (1-zi) (az ui) / (1-ui) is

(

-1=

n

i=1 (

I(a > F. (y))di(y) d F. (y)

+ J I(az > Fi(y)) [at - Fi(y)] d Ci(y) .

Now I(at > Fi(y)) = I(diz > y) , so

n (did
d

E[H
n
(at)] = n-1 X ( ) d F . (y) +1 [at - Fi(y)] d C. (y)

i =1 10 0

Applying an integration by parts to the second integral gives

d.

relit
E y[H*n (a ) = n IN I ( ) d Fi (y) +az - d F. (y)

i=1 o

= at.

Thus, under the null hypothesis, Hn is exactly unbiased.

For the covariance, note that Cov[AT en(ai), H:(a2) I =

Cov[yn(al) , yn(a2)] = n-1 Cov[le(y,0)/881 , 8t(y,0)/302] , from

(5.1), where again ty,e(x) = I(at > x) in the scores. Then from

(4.2) we have

where

29

(5.2)

C
yov[In-Hn* (al), n

(a
2
)] = n-1 X s. (y) s. (y) d F.( ) ,

12
i=1

sit (Y) = I(az > Fi(Y)) E( Vat> U)ILI >Fi(y)]

= I(at > Fi(y)) (1-ae)/ Fi (y) . (5.3)
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Also, I(al > Fi(y)) I(a2 > Fi(y))=I(ai > Fi(y)), since al < a2.

Thus

dil

Cov[AT H:(al) , H:(a2)1= (1-al)(1-a2)n-1 X I CF.(y)]-2
i=1 o 1

d Fi(y) . (5.4)

-*
To investigate the asymptotic structure of the process y

n
(u)

in the composite null hypothesis case, we use the relationship (5.1)

and asymptotic likelihood theory, but give no proofs. For fixed

constants a
1

... a
n

, 0 < a
i

,< 1 we have, from (5.1),

*
y
n
(a

t.
) = n 2 at(y

o
,0)/a8

'

where again tpt(x) = I(az > x) in the

scores. So if conditions are such that the asymptotic likelihood
A*

theory holds, then the finite dimensional distributions of y
n
(u)

converge weakly to N (0 , I
eer

) random vectors (see (4.1)),

under the null hypothesis. Thus if conditions are also such that

the sequence of measures is tight (see Billingsley, 1968), then

-* -*
y
n

converges weakly to a mean 0 Gaussian process y with

Cov(y
*
(a ) , y

*
(a2)] = I6162 =

(n) 1 (n) (
I
(n))-1

I
(n)

1
IY

ule2 elY YY Ye
2
1.

For a
1
<a

2
,

I ((if
n)8 is given by (5.4). From (4.3) and (5.3) we

2

have

n
d.

I
(n)

= )n
-1

[T. (3)]-1 dF.(Y) , (5.5)
e y.

i=1 o

-1 n
= n X -C. (d. )9 7. (d.)/ 9y,i.0 It

- (1-as) .1 [ log T. (y) ] / Dy
j
d c. (y) ,

0
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after an integration by parts. I
(n)

is as given in (4.4). In the
ljYk

uncensored case C.(y) -"7-. 1, and these expressions reduce to the

corresponding expressions for y as given by Pierce and Kopecky

(1979) and Loynes (1980).

^*
We could use other functionals of y

n
than the scores (3.3) to

test the hypothesis (1.2), but likelihood theory could not be used

to find their asymptotic distributions. These asymptotic distribu-

tions would be difficult to find, and the following simple example

-*
shows that in general the covariance of y does depend on the

covariables, the true values of the parameters and the censoring

distributions, so the asymptotic distributions would essentially be

different for every problem.

Suppose T1, ,T
n

are independent with the distribution

function of T. given by 1 - expf-texp(a
0 1

x.
0

+ (3,
1 il

x )1 , where

x
i0

= 1 for all i
'

x = 0 for i= 1, ,n
l'

and x = 1 for

i = n
1
+ 1, ,n (the two sample exponential problem). Also

suppose the data are type I censored at T. Note that since this

is a location family in log Ti , the Pierce-Kopecky result would

hold here if there were no censoring. We will compute

* *
Cov[y (al) , y (a2)] , where al < a2 < 1 -exp{-Texp(xi: 0} for

all

havethatdic[-log(1-a)]

so

for

where x:(3 = xi0 (30 + xi1(31. From this restriction we

/ exp(x:(3) < T for all i and

d

f g(y) Z-

dig
i(y) d Fi(y) = g(y) d Fi(y) , since -C-1.(y) = 1

y < T. Thus from (5.4), making the change of variables

u = F.(y) , we have
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n

I
(n)

= (1-a
1
)(1-a

2
) n

-1
1 (1-u)

-2
du = a

1
(1-a

2
) (5.6)

1
0
2 i=1 o

For this exponential model the hazard function f
i
/F.= exp(x.to , so

qii(y) = 3 log[fi(y) rfi(y)1/asj = xij , j = 0,1 . Thus from (5.5),

for j = 0,1,

n
d.
t

I(11)=(1-adn -1 Lrij H -1x[F.(ydF.(y)
0 0

j i=1 0

n

= (1-a ) [-log(1-a
-1

)] n x. .

ij
i=1

Note that
i11

x
i0

i

/n = 1 and
1

xii/ n=n2/n, where n
2
=n-n

1 '
so==

Also,

I
(n)

= - (1-a ) log (1-a ) 1 , n
2
/n) .

e a

n
LI

(n)
-1= n L x..x. dF.(y)

a . a
k i=1 0

n
1

= n L x.x. b + n-1 1 x..x b
-1 r

lk 0 1J ik 1 '

1
i=1

j l
i=n +1

(5.7)

where b0 = 1 - exp{ -Texp(130)} and bl = 1 - exp{ - Texp(130+ 81) } .

The expression on the left is. 0 unless j = k = 0 , in which case it

is n
1
b
0
/n. The expression on the right is n

2
b
1
/n for any j and

k. Thus

(n) -1
n

13(3.

n2b1



and

-1

= n
as

(n
1 0
b )

-1
-(n

1 0
b )

-1

-(n
1
b
0

)
-1

(n
1
b
0
)
-1

+ (n
2
b

Thus from (5.7) and (5.8),

(
I
(n)

I
(n)

la
as set

-1
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(5.8)

(1-al) (1-a2) log(1-al) log(1-a2) [ni/(nbo) +n2/(nbi)] . (5.9)

If p =
n

nl/n , then from (5.6) and (5.9) ,

Cov[y (al) , y (a2)] = lim I
(n)

n4c0
1
e
2

8

a
1
(1-a

2
) - (1-a

1
)(1-a

2
) log(1-a

1
) log(1-a )[P/b + (1-p)/b

1
]

(5.10)

Clearly this does depend on the parameters, the covariables, and on

the censoring time T. As T -- co (that is, as the probability of

censoring .4 0) , (5.10) approaches

al(1-a2) - (1-a1)(1-a2)log(1-al)log(1-a2)

which can be seen from Loynes' (1980) result to be the covariance of

y(u) for this example when there is no censoring. Since this does

not depend on the covariable
xil

or on the parameters 8, this

confirms the Pierce-Kopecky result for this special case.



34

In this example, with type I censoring, and al and a2 chosen

sothatdit<Tforalliand.t,alltheu.1 that are < a2

correspond to uncensored observations. Thus at al and a2 , the

only difference between y
n

and what we would have had without any

censoring is that the maximum likelihood estimate, yo , is computed

from the censored data. Comparing (5.6), (5.7) and (5.8) with the

corresponding expressions for the uncensored case, which can easily

be computed from Loynes' result, the only difference is in (5.8),

the inverse of the information for the estimation of 6. Thus if

we had computed the covariance in this example as given by Loynes'

result, replacing the expected information for the estimation of the

parameters by its censored version, we would still get the same re-

sult. This agrees with a result of Pettit (1976), generalizing

Durbin's (1973) result on the asymptotic distribution of y
n
(u) in

the identically distributed, uncensored case to type I and type II

censoring. The only difference that Pettit finds between the cen-

sored and uncensored cases is also just in the expected information

for the estimation of the parameters.

Over the range of al and a2 values considered in computing

(5.10), the Kaplan-Meier estimator and the MEDF are identical, so

(5.10) should also give the asymptotic covariance of the Kaplan-Meier

estimator for this example. If this is true, then this example also

confirms the asymptotic dependence of the Kaplan-Meier estimator on

the covariables, the true values of the parameters and the censoring

distribution.
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If the censoring is more general than the type I model used

in this example, the terms 1
8182

and
y

will also involve

-*
the censoring distributions, and expressions for Cov[y (a

1
),y (a

2
)]

become more complex.
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VI. Some Specific Score Tests

V1.1. Chi-Square Tests

Rao and Robson (1974) develop a modification of the classical

x2 test in the uncensored, identically distributed case which does

have a limiting x2 distribution. If 0 = ao < al < < a
m

< 1,

and ipz(x) = I(az_i < x < at) , = 1, , m, then the score

3,e(yo, o)/aet in the uncensored case is simply the number of ui

in the interval [az_l , az) minus the expected number in the inter-

val under the null hypothesis. If the expected information calcula-

tions are carried out for the scores with these tpz functions, then

for the uncensored, identically distributed case the resulting

quadratic score statistic Q
m

is the same as the Rao-Robson test,

provided we take az = V(m+1) .

Using these same 11)z functions in the general setting provides

a way of extending this test to both censored data and regression

problems. With censoring the scores are

n (

at(y
o'
Who = ziI(a

t-1 i
< u < a

t
) (a

t
-a
t-1

)

+ (1-zi)I(az> ui) (at -max{at_i,ui})/(1-u.

which is the number of u. corresponding to failures in the interval

[a
t-1

,a ) plus the part of each censored observation that lies in

the interval [az_1,az) when its mass is spread uniformly over the

interval (u. , 1] minus the expected number of observations in
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the interval [a
t-1'

a
t
). The information calculations are very

similar to (5.4) and (5.5) (the scores there are based on

tpt(x) = I(at > x)) .

It takes a larger value of m to adequately model smooth

alternatives with this test than with the Neyman smooth test (where

(x) = x) . Because of this, when both tests have modelled a

reasonably smooth alternative equally well, so that the values of

the test statistics are roughly the same, the above test will have

a larger number of degrees of freedom than the Neyman smooth test.

Thus the Neyman smooth test will generally be more powerful against

smooth alternatives. We will not discuss the generalization of the

Rao-Robson test further here, but instead move on to a discussion

of the Neyman smooth test.

VI.2. Neyman Smooth Tests

Neyman (1937) proposed a goodness-of-fit test for a completely

specified distribution which focuses power against "smooth" alterna-

tives. Neyman's test is a score test of the type considered here,

using a system of orthogonal polynomials for the 1,bt functions.

Durbin and Knott (1972) noted that the first m components in their

expansion for the Anderson-Darling statistic give the m degree of

freedom Neyman smooth test. Barton (1956) studied the limiting dis-

tribution of Neyman's statistic when the hypothesis is composite.

Thomas and Pierce (1979) used the approach adopted here of modifying

the test statistic to allow for the estimation of parameters, so
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that it still has a limiting x2 distribution. Bargal (1981) con-

sidered extensions to censored data.

Rather than use orthogonal polynomials, it is somewhat simpler

here to take tp = Z=1 , ,m. The value of m is to be

chosen large enough to give a reasonably broad class of alternatives,

but small enough to give good power against reasonably smooth alter-

natives. Thomas and Pierce suggest m = 2 may be best in the com-

posite hypothesis setting. Their limited power studies also suggest

the 2 degree of freedom test for normality may be reasonably com-

petitive with other, possibly more specialized, commonly used tests.

It is slightly simpler here to take U. = T.(T.;Y)= 1 F. (T. ;y)

in defining the alternatives (3.1) (these new Ui are still uniform

on (0,1) under the null hypothesis). The only change made in the

development is that the condition Ti > yi is now equivalent to

U = T.(T.;y) <T.(y. ; y) , so "U > u." in (3.3) needs to be

replaced by "U < Ti(yi ;yo)" , and "U > Fi(y ;y )" in sit(y;y)

in (4.2) and (4.3) needs to be replaced by "U < Ti(y;y)" . Then

from (3.3) the scores for the Neyman smooth test are

n (

r ) --t

i

-1)
3,c(y0,0)/300= F. (y;y ) + (1-z.) F. (y. ;y )/(2+1)-(t+1)lio

i=1
(6.1)

since E[UZ I U< k] = kZ/(t+1) and E[UZ] = (t+.1)
-1

. Also, in

the expected information components (4.2) and (4.3), the terms

sit(y;y) = ipt[fi(y;y)] - Eki,e(U) I U < Fi(y;i)]

= Fi
t,

(y;y)/(Z+1) . (6.2)
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In examining possibilities for estimating Ieely for the

Neyman smooth test, only the exponential model with fi(t;S) =

exp{-t exp(xla)} will be considered in detail here. We use W1 and

W
2

to represent the one and two degree of freedom Neyman smooth

tests for exponentiality (i.e., Qm with m=1,2), regardless of what

estimate of I
eel

1

y
is used. Below we discuss using the observed

information, nonparametric methods, and the expected information

computed under the censoring models discussed in Section IV, for

computing the W1 and W2 tests.

To illustrate the difficulties with using the observed infor-

mation, it is only necessary to examine the uncensored, identically

distributed case. We generated 200 uncensored samples of size 50

from a unit exponential distribution and computed the observed

information components for W1 and W2. In 70 of the samples,

1

eOly
for W

2
was not positive definite. In 3 of the samples

the variance estimate of the e
1

score, was negative.

In addition, for 13 of the 197 samples where -
elelly

> 0, the

value of the W
1

statistic computed from this quantity was greater

than the x2 critical value for a 1% level test. Similar results

were found for the Neyman smooth test for normality.

The difficulty with the size of the test using the jackknife

and the bootstrap can also be seen in the identically distributed,

uncensored case. Table 1 gives empirical sizes for W1 and W2 ,

using both the bootstrap variance estimate and the expected infor-

mation, based on 500 samples of size 50 generated from a unit

exponential distribution. The bootstrap estimates were determined
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by simulations, with 100 bootstrap replications for each sample.

The binomial standard errors for comparing the empirical sizes to

the nominal levels are given in parentheses after the nominal

levels. In all cases with the bootstrap the empirical sizes are

more than 5.8 standard errors above the nominal level. In all

cases with the expected information the empirical sizes are within

1.9 standard errors of the nominal levels.

Table 1: Empirical Sizes (in %) of the W and W2 Tests Using
the Bootstrap (B) and the Expected Information (EI)

Wl W
2

Nominal
Level S.E. B EI B EI

10% (1.34) 17.8 12.4 21.4 11.2

5% ( .97) 11.0 6.8 15.8 4.8

1% ( .44) 4.8 1.6 6.8 1.4

The bootstrap does a fairly good job of estimating the compo-

nents of I
86Iy

on the average. However, these estimates are

quite variable, and there is a correlation between the variance

estimates and the values of the scores. In particular, the corre-

lation between the 8
1

score and its variance estimate is .639.

Thus samples for which the e
1

score is a large negative quantity

have the smallest bootstrap estimate of its variance, and samples

where the 6
1

score is positive and large have the largest boot-

strap variance estimate. This is reflected in Table 2 where the

average value of the 01 score is given for the samples where the
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bootstrap estimate of variance falls in certain intervals, where the

intervals were chosen so that each group has 100 samples. Thus the

excessively large sizes for W
1

and W
2

using the bootstrap esti-

mate of variance are the result of the excessively small variance

estimate the bootstrap consistently gives for samples with a large

negative value of the 01 score.

Table 2: Average Values of the 0
1

Score for Certain
Ranges of the Bootstrap Variance Estimate

Interval of the Bootstrap Variance

( .3918, .6511]

( .6511, .8203]

( .8203, .9511]

( .9511, 1.202 ]

(1.202 , 2.558 ]

Average Value of the 01 Score

-1.262

.541

- .083

.227

.777

The jackknife gives very similar results here. Empirical

sizes of the W
1

and W
2

tests using the jackknife estimate of

variance (computed by deleting observations one at a time) and the

expected information, based on 300 samples of size 50 generated

from a unit exponential distribution, are given in Table 3, with

standard errors in parentheses after the nominal levels. In all

cases the empirical sizes are within 1.6 standard errors of the

nominal levels when the expected information is used. Using the

jackknife the empirical sizes are more than 2.6 standard errors

larger than the nominal level for the W
1

test, and more than

4.8 standard errors larger for the W
2

test.
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Table 3: Empirical Sizes (in %) of the W1 and W
2
Tests Using

the Jackknife (J) and the Expected Information (EI)

Nominal
W
1

W
2

Level S.E. J El J EI

10% (1.73) 14.67 9.67 18.33 7.33

5% (1.26) 9.0 5.0 12.67 3.67

1% ( .57) 2.67 1.0 5.33 1.33

The expected information is known to perform well in the

uncensored case (see Thomas and Pierce, 1979, and Tables 1 and 3

here). Since censored observations contribute a conditional ex-

pectation term to the scores (3.3), we would guess that, for a

fixed sample size, as the degree of censoring increases the vari-

ability of the scores will decrease. For the Neyman smooth test

for exponentiality in the uncensored case, Ie

1 1

=1/48= .02083 .

If the failures are exponential with rate of and the (homogeneous)

censoring is exponential with rate ac , then

= (1-p
c
) 3/ [4(3-2 p

c
) (2 - pc) 21 ,ie

1 1

where p
c

is the probability of an observation being censored, p =
C

I

C = Xc /(Xf + Ac) . When p
c

= .2 , I
01811y

= .01519 , and

o

when p
c

= .5 , I 1 = .00694 . Thus I 1 does decrease
ul°111(

8
1
8
1
ly

rapidly as the degree of censoring increases, so using the uncen-

sored value of I
01011y

would only be appropriate if there is very

little censoring.
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Table 4 contains the results of simulations to examine the size

of the W
1

and W
2

tests in the identically distributed case,

using the expected information computed under different censoring

models. Binomial standard errors are given in parentheses after the

nominal levels for the first case. The same standard errors can be

used for the other cases. In the simulations a potential censoring

time is generated for each observation. In the "conditional" model

the expected information is computed conditional on all the poten-

tial censoring times. In the "homogeneous exponential" model the

censoring is assumed to be homogeneous with C(v) = exp(- X v) . The

value of A is estimated from the data. Under the "Kaplan-Meier"

model the censoring is assumed to be homogeneous and the censoring

distribution is estimated with the Kaplan-Meier estimator. In the

"totally conditional" model the expected information is computed as

discussed in Section IV.1. Details of the expected information

calculations can be found in Section VI.4.

In the simulations, failure times were generated from the unit

exponential distribution. Homogeneous censoring times were gener-

ated from different Weibull distributions with C(v) = exp(- (v/a)a} .

The values of the Weibull shape parameter used were a = 1, .5, and

2. For each value of the shape parameter values of a were

selected to make the probability of an observation being censored,

p
c

, equal to .2 and .5. In each of the six cases (3 values of

a x 2 values of pc) we generated 1000 samples of size 50. In

each case the 8 statistics (W
1
and W

2
with the expected information
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Table 4: Empirical Sizes (in%) of the W1 and W2 Tests Using the

Expected Information Computed Under Different Censoring

Models

Nominal

Level

Conditional

W
1

W
2

Homogeneous

Exponential

W
1

W2

Kaplan-Meier

W
1

W
2

Totally

Conditional

W
1

W
2

a=1 10%(.95) 9.4 9.0 9.9 8.8 9.8 8.4 6.0* 5.7*

p
c
=.2 5%(.69) 4.2 4.1 4.1 4.3 4.3 4.4 2.7* 2.3*

1%(.31) 1.0 .6 1.0 .7 .9 .8 .3* .3*

a=1 10% 10.5 9.4 9.8 8.9 9.1 8.2 2.0* 2.4*

p
c
=.5 5% 5.1 5.0 4.7 4.7 4.1 4.8 .3* 1.1*

1% 1.0 1.5 .7 1.2 .9 1.1 0* .2*

a=2 10% 11.3 10.7 9.3 7.7* 11.3 9.6 6.2* 5.8*

p
c
=.2 5% 6.5* 5.1 4.8 3.5* 6.1 4.7 3.1* 1.7*

1% 1.3 .8 .5 .5 1.0 .8 .2* .2*

a=2 10% 10.8 11.0 4.5* 4.3* 10.6 9.0 .4* 2.4*

p
c
=.5 5% 6.0 6.1 1.9* 2.2* 5.3 4.6 .1* 1.1*

1% 1.2 1.2 .2* .7 .9 .8 0* .1*

a=.5 10% 7.0* 7.9* 8.2 9.7 7.1* 7.6* 6.5* 6.1*

p
c
=.2 5% 3.9 3.0* 4.6 4.1 3.7 3.3* 3.2* 1.9*

1% .5 .5 .5 .8 .4 .6 .2* .3*

a=.5 10% 9.9 7.7* 15.3* 18.1* 9.6 8.0* 5.3* 4.2*

p =.5
c

5% 4.6 3.9 9.0* 11.4* 4.4 4.0 2.1* 1.8*

1% .6 .8 2.5* 3.2* .8 1.2 .2* .2*

*indicates the empirical size is more than 2 standard errors from

the nominal level.
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computed under 4 different censoring models) were computed from the

same samples.

In all cases the Kaplan-Meier and conditional models performed

well. When the censoring is not exponential (a = .5 or 2) and

p
c

= .5 , use of the homogeneous exponential censoring model can be

quite bad. However, when pc = .2 there seems to be little effect.

The totally conditional model is very conservative. The reason for

this is that it assumes uncensored observations would never be cen-

sored. Consequently, the expected number of censored observations

under this model is substantially less than the actual number of

censored observations in the sample. Since the variance of the

scores decreases as the degree of censoring increases, this means

the totally conditional model consistently overestimates the

variance.

Of all the methods considered in this section for estimating

I
Elely

for the Neyman smooth test for exponentiality, only using

the expected information computed under the conditional and Kaplan-

Meier censoring models has given reliable results in all the cases

considered here. For the other methods, the observed information

fails to even give a positive definite matrix in a substantial

proportion of samples generated under the null hypothesis, the size

of the tests using the jackknife and the bootstrap is considerably

larger than the nominal level, use of the totally conditional model

is overly conservative, and the size of the tests using the homo-

geneous exponential model can be both smaller and larger than the

nominal level, depending on the true censoring. Of the two reliable
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methods, only the Kaplan-Meier model can always be computed, whether

or not all the potential censoring times are known. The simulations

reported in Table 4 were only under homogeneous censoring. How the

Kaplan-Meier model will perform when the censoring is not homogeneous

is not known. It is possible that when all potential censoring

times are known, the conditional model is preferable, since it does

not assume the censoring is homogeneous and it can be slightly easier

to compute.

VI.3. A Note on Random Number Generation

Exponential or Weibull deviates were computed by generating a

stream of uniform pseudo-random numbers and using the obvious prob-

ability integral transforms. To generate randomly censored data,

two separate streams of uniforms were used, one for the censoring

times and one for the failure times. The uniform pseudo-random

number generators used were the congruential generators given in

the first two columns of Table I of Downham and Roberts (1967).

They perform a number of tests for uniformity and randomness and

find that both generators are satisfactory.

For the nonparametric bootstrap, we need to simulate sampling

from the distribution that places a mass of 1/n on each of the

values 571, ...,yn. To do this we generated a stream of uniform

deviates u, used the transformation i = INT(un +1) , where INT(x)

is the integer part of x, and then took the value of the corres-

ponding observation to be y. .

i
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VI.4. Expected Information Calculations for the Neyman Smooth Test

In this section details are given for computing the expected

information for the Neyman smooth test under the censoring models

examined in Section VI.2, with complete details given for the ex-

ponential and Weibull regression models.

The Kaplan-Meier estimate of the censoring distribution is

1-z.

1(y)= [(n - r.) (n - r. + )] 1
i:yi< y

where r. is the rank of (y. , z.) in the lexicographic ordering

of the sequence (y
1

, z 1) , , (y
n

, zn) . If this estimate does

not become 0 at some point, we do not set it equal to 0 beyond

the largest observation, as is sometimes done, but leave the unas-

signed mass at +00-. Let y
cl

, ,y denote the censoring

times, where n =1(1-z.)is the number of censored observa-
i=1

tions. Also, let AC(y
c

) denote the jump in C(y) at y
ch

and

C(03) the value of C(y) beyond the largest censoring time.

By (4.2)-(4.4), under the Kaplan-Meier censoring model, the

components of the expected information are of the form

i=1

n

i=1

(

g4(y;y) 6(y) d F. (37;Y)

oo

(c°)-Fg.(y;y)dF.(Y;Y)E
o

, which can

nc

/ A dYch)
h=1

be rewritten as

Y
c
h

(y;i)d F. (y; Y)

o

For the Neyman smooth test, using this result together with

(4.2)-(4.4) and (6.2), we have
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(n) n
n I = (e+1)

Jo

F k-be
(y;y) d F. (y;y) -=-C (co)

E)

k 1=1 o

nc 1(4_9ch

/ A ) T" -(Y;1) d F. (Y' Y)

h=1 -11 o

n

= kt[ (k+1) (2.-1-1) , 1 - A C(y ) F.
k+e+1(yc

;y) ,

-1 rvl

i=1( h=1
Ch

C
(

n I
(n)

= t(2+1)
-1 (0.) P (co) + A (Y

c ) P.. (Yc '
) (6.3)

tyj 1= h1( h=1 h

and

nc

n I(n)

n (

(c.3)
Q

+ X A C(y (y s
jik( ch

) Qijk
ch

1j1k 1=1( h=1

where

and

P.. it

(w) = q. (y;y) Tei(y;y) d F.
1 ( ;Y)l

0

q. (y;y) d F. (y;y)
Qijk

0

(6.4)

(6.5)

(6.6)

For the exponential model with T'i(y;y) = exp{ - yexp(xi' )} ,

q..
( ;y) = a

j
log[f

1
(y;y)/Ti(y;y)] / 313. = xl.. . Thus

and

Piit(y) = x..
3.j

[I - exp{ - y(.2+1)exp (x.' ) 11 /(t+1)

Qijk(
)y)= [1- exp{ -yexp(x.' 13 }
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From these results, (6.3), (6.4) and the fact that C (co) +
nc

A C(ych) = 1 , we have
h=1

n
n
cr r

n I
(n)

= ta+1)
-2

2,x., [1- C(y
ch

) exp{-y
ch

(t+l)exp(x!(3)}]
e

j
y

1=1 1J h=1

and

n
nc

)nI(n) = x..x. [1- C(y ) exp.( y exp(x.'$ ] ,

YjYk i=1
ik

h=1 ch
ch

for the components of the expected information, computed under the

Kaplan-Meier censoring model, for the Neyman smooth test for the

exponential distribution.

Formulas for P. and Qijk are also easily found for the

Weibullmodel.Wehaveexp{-a.(y)},wherea.(y) =

[y.exp(x: (3)]a , y.
a.

= f3.
a.

, i= 1, ,p , and = a. Then

f. rf. = a exp(x: 13a) ya-1, so
3. 1.

Thus

and

q. (Y;y)
-1

a (l+log[a.(y)]) j = p+1 .

=1 , , P

P.. (w) = a x.. [1 - exp{ a+1)a.(w)}] / (.e+1) ,

1
i=1, , P

OW) = 0"2 Xij 1C [1 exp{ -a. (w) , j,k= 1 .

Qijk

(6.7)
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From

P.

(6.5)

(w)

and (6.7)

= a-1 [1 + log a. (y)] exp{ - (2+1)a. (Y)[ [d a. ( ) idy] dyYl

= [a(Z+1) ]-1{ [l-log(t+1)][l-exp{-(t+1)ai(w)1]

+r1 [(E-1-1)a.(la) ] 1 ,
1

where rh(x) = (log u)he-u du . Similarly, from (6.6) and (6.7),

()
Q . . = Q.

(w)
. = x

ij
[ 1 - exp - a. (w) }] + x

ij
r
1
[a, (w)] ,

i,p+1,J

= 1 , , P

Finally, from (6.6) and (6.7) we have

Q(w) = a-2 [ l+loga.(y)12 exp{ -a (y)}[da.( V)i dy] dy
i,p+1,p+1

= a-2 {1- exp{ - a. (w)} + 2 r
1
[a. (w)] + r

2
[a. (w)]} .

Using these formulas for P
ijt.

and Qiik in (6.3) and (6.4) gives

the components of the expected information, computed under the

Kaplan-Meier censoring model, for the Neyman smooth test for the

Weibull distribution.

The functions r
1

and r
2

are derivatives of the incomplete

w -1 -t
gamma function l'(w,a) = to -1 e dt . In particular, rf

l(w)
0

ar(w,1)/30t , and r2(w) = 92 r(w,i)/9 a2. An algorithm for evalua-

ting derivatives of the incomplete gamma function has been given by



Lindstrom (1981). The values for F1(..) and r2(.) can be found

from tables, by noting that r1(oo) = T(1) , where T(a) is the

di-gamma function, and F2(00) = T'(1) + [T(1)]2 , where T'(a) is

the tri-gamma function.

For the conditional model, C.(y) = I(v. < y) where
1

v
1

, , v
n

are the potential censoring times. Then from (4.2)-

(4.4) ,

and

n I
(n) -1 k+Z+11.1.7.._r,

= kt t[(k+1)(+1)(k+t+1)] k 1,
8
t k

ri

i=1

n
n I(n) = 2(2 +1)-

1
X F. (v.)

6 y. ljt
t 3 i=1

n
n I(n) = Q. (v.) ,y.y ijk

k i=1
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where pijt and Qijk are as defined in (6.5) and (6.6). The

formulas for p.. and Qijk given above in the exponential and

Weibull cases are still valid here.

The totally conditional model is the same as the conditional

model, except the potential censoring times for uncensored observa-

tions are taken to be + co.

For the homogeneous exponential censoring model with C(v) =

exp{ - Ay} , the calculations are reasonably simple only for the

exponential distribution. For this case, from (4.2)-(4.4) and the

expressions sit(y;y) = £ exp{-ty exp(xi: 8)}/(t+1) and qij(y;y) =

x.. we have
1J



and

n (n) = [ (k+1) (.e+1) ]
-1

exp (x [ (k+e+1) exp (x S) + Xetak i=1

n (1.1) (.e.+1)
-1 x exp (x 13) [ (Z+1) exp (x $) + ,

tf3j i=1 13

n
n (n)

= x x ik exp (x f3 ) [exp (x + X .

k i=1 1-

52
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VII. Examples

In this section we apply the Neyman smooth test to two data sets

taken from the literature. We will be testing goodness-of-fit in the

exponential model where Ti(t;S) = exP{-texP(xitB)} , and the Wei-

bullmodelwheref.(t;y) = exp{ - [t-exp(x: . The scores for

the Neyman smooth test are given by (6.1). In this section we only

use the expected information computed under the Kaplan-Meier censor-

ing model. Details of the expected information calculations needed

here are given in Section VI.4.

In addition to the tests, we also use graphical methods to

examine lack of fit. For this purpose, in the exponential model, it

is convenient to take for the generalized residuals the random vari-

ables, E. = Ti exp(x.vS) , which are unit exponential with distribu-

tion function F
E
(w) = 1 - e-w when the null hypothesis is true.

Then

and

- log [ 1 - FE (w) ] = w

log{ - log [ 1 - FE(w) ] } = log(w) .

Thus if FE is estimated with the MEDF, F , computed from the

observed residuals e. = y. exp(x.' a) , then a plot of -log[1-F
n
(w)]

against w or log {-log[1-Fn (w)]} against log(w) should lie

roughly on a straight line through the origin with slope 1, when the

null hypothesis is true. Because of the censoring, there will in

general be little information about lack of fit in the right tail,
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so we prefer the second of these plots, since it spreads out the

left side of the distribution. Note that for a Weibull departure

from the exponential model, p[Ei > w] = exp{ -w } , which gives

log( -log p[Ei > w]) = a log(w) , so the plot of log{-log[1-F:(w)]1

against log(w) should lie roughly on a straight line through the

origin with slope a.

For making plots with the Weibull model, we take the residuals

tobeW.=[T. exp(x: 0]°. If we estimate the distribution of

A*
theINT.VdththeMEDFFncornplrtedfrolnthew.=[y.eXP(X:0 ] a

-*
then again a plot of log{ -log[ 1 F

n
M]} against log(w) should

lie roughly on a straight line through the origin with slope 1 when

the null hypothesis is true.

Aitkin and Clayton (1980) also discuss making plots in this

setting. In addition to the plots discussed above, they suggest a

"variance stabilized" plot of sin-111- F
n
(w) against

sin
-1

[exp(-w/2)] .

The first data set, taken from Prentice (1973), consists of

survival times of 137 lung cancer patients of which 9 are censored.

The data have also been discussed by Farewell and Prentice (1977),

Kalbfleisch and Prentice (1980), and Aitkin and Clayton (1980). In

the exponential analysis of Prentice and the Weibull and proportional

hazards analyses of Kalbfleisch and Prentice, only performance status

and tumor type (4 categories) were identified as important regression

variables. Kalbfleisch and Prentice find no evidence against the

exponential model relative to the Weibull model.
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We fit an exponential model with the five parameters (constant

term, performance status, and three for tumor type). Figure 1 is a

plot of log{ - log[1-Fn(w)]} against log(w) at those observed

residuals e. which correspond to uncensored observations. The

points all lie quite close to the line through the origin with slope

1, although there appears to be a slight wave in the plot. The

values of the Neyman smooth tests are W1 = .19 and W2 = 7.94. The

W
2

test has a p-value < .025 , so there is substantial evidence here

for lack of fit. We also fit the Weibull model, with the same co-

variables. The plot from the exponential fit does not suggest that

the Weibull shape parameter is different from 1, and the likelihood

ratio test for the exponential model versus the Weibull model has a

value of .91 with an approximate xi distribution, so there is very

little evidence against the exponential model relative to the Weibull

model. The Neyman smooth tests for the Weibull model are 2.08 for

the 1 degree of freedom test and 7.25 for the 2 degree of freedom

test, so there is also significant evidence against the Weibull model.

This agrees with the results of Farewell and Prentice (1977).

They fit a generalized gamma model and found significant evidence

against both the Weibull and lognormal models. They also found

evidence that the distribution is different for patients who had

received prior therapy than for those with no prior therapy. Fitting

the exponential model (with the same covariables) to just those

patients that have received prior therapy gives W1 = .476 and

W
2
= .480. For just those patients with no prior therapy, the
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results are W
1

= .76 and W
2
= 7.88. Thus the lack of fit does

seem to be concentrated in the no prior therapy group.

To investigate the effect of adding nonsignificant covariables

to the model (using the full data set) we fit the exponential model

with additional covariables representing months from diagnosis, age

in years, receipt of prior therapy, and treatment (standard or test),

giving 9 parameters total. The likelihood ratio test for the 9

parameter model versus the 5 parameter model is 1.6 on 4 degrees of

freedom, so the extra covariables are not at all significant. The

values for the Neyman smooth test for this model are W
1

= .33 and

W
2

= 7.40. To investigate the effect of dropping significant factors,

we fit the 2 parameter exponential model with only performance status.

The likelihood ratio test for the 2 parameter model versus the 5

parameter model is 18.3 on 3 degrees of freedom, so the omitted tumor

type variables are highly significant. The Neyman smooth tests for

this model are W
1

= 2.15 and W
2
= 14.48, so omitting a significant

factor has had a substantial effect on the test.

With only 9 of the 137 observations censored, the censoring has

had little effect on the test. To see what would happen with more

substantial censoring, we generated independent observations from an

exponential distribution with scale parameter 120, to use as censor-

ing times for the 128 uncensored observations. This gave a total of

69 censored observations. For the altered data, some of the addi-

tional factors were of marginal significance, so we used the 9 para-

meter model for testing goodness-of-fit. The values of the Neyman

smooth test were W
1

= .68 and W
2
= 11.87 . As can be seen in
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Figure 2, the model does not appear to fit any better with this addi-

tional censoring. The increase in the value of W2 with the extra

censoring is surprising, since the censoring mechanism employed was

both independent and noninformative.

The second example is taken from Glasser (1967). The data are

days survived after surgery for 131 lung cancer patients, with 66

of the observations censored. Two of the times are 0. These were

replaced by the value .1 to facilitate the analysis. The patients

are in two groups: group one patients have "low" vital capacity/

predicted vital capacity ratios and group two patients have "high"

ratios. The age of the patients is also given. In the fit of the

exponential model, both age and group are significant. The plot of

log{ log[ 1- F: (w)]} against log(w) for this model, given in

Figure 3, seems to indicate substantial lack of fit. The values of

the Neyman smooth test for this model were Wi = 4.91 and W2 = 5.02.

The p-value for W1 is approximately .03, so the Neyman smooth test

does give significant evidence of lack of fit.

Examination of Figure 3 indicates that a Weibull model may fit

better. This is confirmed in Figure 4 where the plot of

log{ - log[ 1- F* n(w)]1 versus log(w) from the fit of the Weibull

model with the same covariables is given. The values of the Neyman

smooth test for the Weibull model were .78 for the 1 degree of

freedom test and 3.19 for the 2 degree of freedom test.

The disturbing fact about this example is that the likelihood

ratio test for the exponential model versus the Weibull model is

12.9 on 1 degree of freedom. In the uncensored, identically
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distributed case Kopecky and Pierce (1979) give the local asymptotic

relative efficiency of W
1

relative to the efficient score test for

the Weibull departure from the exponential as .876, so it is surpris-

ing that here there should be such a large discrepancy between the

Neyman smooth test and the likelihood ratio test. Also, based on

Figure 2 and Figure 3, the exponential model does not appear to fit

better here than in the version of the previous example with the

extra censoring, yet W2 there is more significant than either W1

or W
2

here, and in both examples the proportion of censored obser-

vations is roughly .5 . It could be that the effect of the censoring

on the power of the Neyman smooth test depends in a complex way on

the type of departure and the type of censoring.
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VIII. Summary and Conclusions

In this paper our concern has been with testing the underlying

distribution in parametric regression models. We have been particu-

larly interested in the complications arising from the presence of

censoring in the data. In Section I we presented an alternative to

the Kaplan-Meier estimator for estimating the distribution from cen-

*
sored data. This estimate, H

n,
defined in equation (1.4), was

shown to be a natural modification of the ordinary empirical distri-

bution function to allow for the presence of censored data. We

proposed that test statistics be based on functionals of the form

1 A*
(u)dy

n
(u) . These functionals were shown to have a

Jo

natural interpretation as the difference between the expectation of

-*
ip under the distribution H

n
and the expectation of 1p under the

null hypothesis distribution. It was shown in Section III that these

functionals are also efficient scores from the parametric alterna-

tives (3.1). This connection with efficient scores was seen not

only to give further motivation for the proposed statistics, but

also to provide the asymptotic distributions of the statistics.

In Section V this connection with the scores was exploited to

give a heuristic derivation of the asymptotic distribution of the

*
stochastic process yn(u) . Using this result it was shown that

even for location-scale regression models, the asymptotic distribu-

tion depends on the covariables, the true values of the parameters,

and the censoring distributions. This makes most other possibilities

for goodness-of-fit tests unattractive, since they involve statistics
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whose asymptotic distributions are difficult to find, and these dis-

tributions are essentially different for every problem.

The main difficulty with the class of tests proposed here is

how to estimate the asymptotic variance for the quadratic score

statistic Q
m

. A general discussion of the possibilities was given

in Section IV. In Section VI we gave detailed consideration to these

possibilities for the Neyman smooth test for exponentiality. The

simulation results there suggest that the only one of the methods

considered that can always be computed and is reliable under homo-

geneous random censorship is to use the expected information computed

under the Kaplan-Meier censoring model. How this performs when the

censoring is not homogeneous is not known. In the special case where

potential censoring times are known for all observations, it may be

better to use the expected information computed under the condi-

tional model, since this approach does not assume the censoring is

homogeneous, and the results in Table 4 suggest the two methods are

equally effective when the censoring is homogeneous.

In Section VII we have applied the Neyman smooth test to two data

sets taken from the literature. The results indicate that the Neyman

smooth test using the Kaplan-Meier censoring model can be a useful

diagnostic tool. However, the second example raises some questions

about the power of the test with heavy censoring. Further work

investigating how different types of censoring effect the power of

the test against various departures seems to be indicated.
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Appendix

In this appendix we establish the claim made in Section I that

functionals of yn have "no local power" against omitting covari-

ables from the model in the location-scale case. The following

notation is used for the parameters: v = (a,y) ,
n

= (a
n o

) and

vo = (0,y0) , where y = ((3,a) . For 1 < i < n, we assume T.
in

are independent with continuous distribution functions Fin (t;v) =

G([t-x:f3-w:cj/a)anddensitiesfin(t;v) , where x. and
1 1

w. are vectors of known constants. We assume the X portion of
1

the regression model contains a constant term. The null hypothesis

is a = 0. We are interested in the asymptotic distribution of the

process yn(u) , defined in Section I, under the sequence of alter-

natives H
n
(X) : a = a

n
= A/AT. The true value of the nuisance

parameter y is denoted by yo . We use the result of Loynes (1980).

If his conditions Al, A2, A4, A5, A7 and A9 are satisfied, then

under the sequence of alternatives, yn(u) converges weakly to a

Gaussian process y(u) with

and

E[y(u)] = f[tp (u)]'I
YY

1 I
Ya

[tp

a
(u)]'1A , 0 < u < 1 ,

Cov[y(u1) , y(u2)] = min(ul,u2) - ulu2 - [Ipy(u1)]
,

Iyy
-1

tpy(u2) ,

0 < u
1 '

u
2

1 ,

where



LI =limn
-1

L Ei [D log f. (T. ;v ) /8y] [3 log f. (T. ;v

YY ri-*°3 i=1
in in n in in n

n
r

I
ot ri.iy=l%n

-1
2. E [a in

logf (T. ;v)/ay][Dlogf (T. ;.0/3a]l
in in in

i=1

(u) = -n
-1

[B Fin (Fin
71

(u;v
n
);v)/ay]

i=1

and

=
n

-1 r -1
4,a(u) = -n L

in
(F. (u);v

n
);v)/3a]

in
i=1 v = v
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n

V = Vol ,

We show the distribution of y(u) does not depend on X , so

that the distribution is the same under the sequence of alternatives

as under the null hypothesis. First we show [11) (u)11I
YY

1
I
Ya

= [tp
a
(u)]1

so that E[y(u)] E 0.

As discussed by Pierce and Kopecky (1979), the location-scale

regression model can always be reparametrized so that in the infor-

mation matrix I
vv

, the components I
aa

and I
aa

are zero. For

such a reparametrization (still using the same symbols for the new

parameters), let

and

iuu [ (E.) / g(E.) ]

iaa = E [ g'(Ei) / g(Ei)
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where E. --- G and g (t) = d G (t) /dt . Note that i and i are1
1-11-1 aa

intrinsic constants of the distribution G and do not depend on v .

n n
Then I

(n)
= a-2 n-1 1 x..x. i and I

(n)=
a-2 n-1 / i ,

13
j

13 i 3.k 141 aa aak i=1 i=1

SO

I
(n)

= a-2
YY

( -1
n

n n
X' X i 0

111.1

GO'

(A.1)

where Xn = [x
1

, ... , xn] ' . Similarly, with Wn = [w
1

, ... , w
n

]1 ,

we have

I
(n)

= a-2
Yct

n-1 X ' W i
n n ilt-t

0

Now towF
i

-

n
1
(u;vn) = a G

-1
(u) + xi' + w.J' a , D Fin ( ;v)/DS =

i
n

--

a t
1
x.. g (ei ) and 3 Fin( ;v) /8a = a-1 ei

3.

g(e.) , where
ij

. =e

1
[t x.1'13- w.1 ' cc] / a . Thus

n-1 X
n
' in d(u)

(n)(u)
= a-1 ,

Y h(u) d(u)

(A.2)

where d(u) = g[h(u)] , h(u) = G-1(u) , and
in

is an n-dimensional

vector of ones. Similarly,

(
span) (u) = Wn In d(u) / (nu) .
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(n)1,,-1
=

mj(n)(n)],[i(n)] -1 i(n)1
yy ya n-r. Y YY Ya

= lim [d(u) 1' X (X'X )
-1
X'W /(na)]nnnn nn

= lim d(u) ln'W
n
/(na)

n-

= [IPa(u)]'

The next to last equality is due to the fact that X(X' X)-1X' l

= 1
n

, since X
n

(Xn' Xn
)

1
X n is the orthogonal projection on the

span of the columns of Xn, and in is in this span because the

regression model is assumed to contain a constant term.

Thus E[y(u)] EEO. Clearly from (A.1) and (A.2), the term

(u
1
)3' I

-1

Y
(u

2
) in the covariance function of y(u) does not

YY

depend on A either. Thus the claim is established.


