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The rising global trend to reduce dependence on fossil fuels has provided signifi-
cant motivation toward the development of alternative energy conversion methods
and new technologies to improve their efficiency. Recently, oscillating energy har-
vesters have shown promise as highly efficient and scalable turbines, which can be
implemented in areas where traditional energy extraction and conversion are either
unfeasible or cost prohibitive. Although such devices are quickly gaining popular-
ity, there remain a number of hurdles in the understanding of their underlying fluid
dynamics phenomena.

The ability to achieve high efficiency power output from oscillating airfoil energy
harvesters requires exploitation of the complexities of the event of dynamic stall.
During dynamic stall, the oncoming flow separates at the leading edge of the airfoil
to form leading edge vortex (LEV) structures. While it is well known that LEVs
play a significant role in aerodynamic force generation in unsteady animal flight
(e.g. insects and birds), there is still a need to further understand their spatio-
temporal evolution in order to design more effective energy harvesting enhancement
mechanisms.

In this work, we conduct extensive experimental investigations to shed-light



on the flow physics of a heaving and pitching airfoil energy harvester operating
at reduced frequencies of k = fc/U∞ = 0.06-0.18, pitching amplitude of θ0 = 75◦

and heaving amplitude of h0 = 0.6c. The experimental work involves the use
of two-component particle image velocimetry (PIV) measurements conducted in
a wind tunnel facility at Oregon State University. Velocity fields obtained from
the PIV measurements are analyzed qualitatively and quantitatively to provide a
description of the dynamics of LEVs and other flow structures that may be present
during dynamic stall. Due to the difficulties of accurately measuring aerodynamic
forces in highly unsteady flows in wind tunnels, a reduced-order model based on
the vortex-impulse theory is proposed for estimating the aerodynamic loadings
and power output using flow field data. The reduced-order model is shown to be
dominated by two terms that have a clear physical interpretation: (i) the time
rate of change of the impulse of vortical structures and (ii) the Kutta-Joukowski
force which indirectly represents the history effect of vortex shedding in the far
wake. Furthermore, the effects of a bio-inspired flow control mechanism based on
deforming airfoil surfaces on the flow dynamics and energy harvesting performance
are investigated.

The results show that the aerodynamic loadings, and hence power output, are
highly dependent on the formation, growth rate, trajectory and detachment of the
LEV. It is shown that the energy harvesting efficiency increases with increasing
reduced frequency, peaking at 25% when k = 0.14, agreeing very well with pub-
lished numerical results. At this optimal reduced frequency, the time scales of the
LEV evolution and airfoil kinematics are matched, resulting in highly correlated
aerodynamic load generation and airfoil motion. When operating at k > 0.14, it
is shown that the aerodynamic moment and airfoil pitching motion become nega-
tively correlated and as a result, the energy harvesting performance is deteriorated.
Furthermore, by using a deforming airfoil surface at the leading and trailing edges,
the peak energy harvesting efficiency is shown to increase by approximately 17%
and 25% relative to the rigid airfoil, respectively. The performance enhancement
is associated with enhanced aerodynamic forces for both the deforming leading



and trailing edges. In addition, the deforming trailing edge airfoil is shown to
enhance the correlation between the aerodynamic moment and pitching motion at
higher reduced frequencies, resulting in a peak efficiency at k = 0.18 as opposed
to k = 0.14 for the rigid airfoil.
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Chapter 1 Introduction

The unsteady flow physics around objects has been gaining significant attention
within the fluid dynamics community due to its ubiquitous applications in mod-
ern engineering. One example of the unsteady phenomena is observed in the flow
around airfoils when they experience a rapid change in angle of attack. Such flows
are commonly found in the flapping wings of insects and birds (Sane, 2003; Heden-
ström & Johansson, 2015; Chin & Lentink, 2016), micro-air-vehicles (Ellington,
1999; Mueller, 2001; Ansari et al., 2006) and rotating blades of helicopters and
wind/hydro-turbines (Dean, 1959; Seddon & Newman, 2001; Dobrev & Massouh,
2011; Hansen, 2015). The flapping and rotational motion of these systems typi-
cally induces large-scale unsteady flow separation that causes significant deviations
from the well-known static aerodynamic lift curve, in a process known as dynamic
stall. During dynamic stall, flow separates at the leading edge of the airfoil surface
and subsequently rolls into leading edge vortices (LEVs). Polhamus (1971) shows
that LEVs are beneficial to lift generation by producing a region of low pressure
on the suction side of the airfoil, resulting in a strong suction force, as long as they
remain attached to the surface. As LEVs increase in size by entraining more vor-
ticity from the separated shear layer, they eventually grow past the airfoil trailing
edge, which may result in the roll-up of the trailing edge shear layer into trailing
edge vortices (TEVs) (Rival et al., 2014; Widmann & Tropea, 2015). Unlike LEVs,
TEVs are known to generally deteriorate lift production by producing a downwash
velocity on the airfoil, which decreases the effective angle of attack (Li & Wu,
2016). The growth and evolution of LEVs are thereby of primary interest in the
field of unsteady aerodynamics.

The effects described above may occur in diverse fields of applications, however
they are especially predominant in oscillating/flapping airfoil aerodynamics at low
Reynolds numbers (Re = U∞c/ν, where U∞ is the free stream velocity, c is air-
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foil chord length and ν is the kinematics viscosity). Engineering devices based on
oscillating airfoils are typically divided into two groups: (i) thrust producing and
(ii) energy harvesting devices. Despite the similarities between these two modes
of operation, there exist key differences between them. Namely, in thrust produc-
ing devices, oscillating airfoils expend energy into the surrounding fluid to propel
themselves forward as demonstrated by flying and swimming animals. On the
other hand, energy harvesting devices extract energy from oncoming flow to gen-
erate power. The transition between thrust generation and energy extraction was
investigated by Jones et al. (1997) by introducing the feathering parameter, χ, to
distinguish the regime of propulsion from that of energy harvesting. For heaving
and pitching airfoils, the feathering parameter is defined as:

χ =
θ0

arctan(ḣmax/U∞)
(1.0.1)

where θ0 is the pitching amplitude and ḣmax is the maximum heaving velocity. The
heaving and pitching motion is typically modeled as:

h(t) = h0sin(2πft) (1.0.2)

θ(t) = θ0sin(2πft+ Φ) (1.0.3)

where h0 is the heaving amplitude, f is the oscillation frequency , Φ is the phase
shift between heaving and pitching and t is time. The denominator of Eq. 1.0.1
represents the induced angle of attack that the oscillating airfoil sees as a result of
the heaving motion. Based on simple quasi-steady argument, one can show that
χ < 1 is associated with thrust generation, while χ > 1 corresponds to energy
extraction (Kinsey & Dumas, 2008). In words, for an airfoil to extract energy
from the oncoming flow, the amplitude of pitching angle must be greater than the
angle of attack induced by the heaving motion.

It is often possible to identify which regime an oscillating airfoil is operat-
ing in based on its wake characteristics. Energy harvesting devices generate a
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Figure 1.1: (Top) von Kármán vortex street and (bottom) reversed von Kármán
vortex street.

von Kármán-like vortex street that results in a wake with momentum deficit, as
observed in flows over bluff bodies. In fact, it is hypothesized that the energy
extracted by an oscillating airfoil is directly correlated with the energy deficit in
its wake (Zhu, 2011). Conversely, thrust producing airfoils generate a reversed von
Kármán-like vortex street, where vortices interact to induce a wake with momen-
tum surplus. A sketch of the two different regimes of vortex shedding is shown
in Fig. 1.1. Furthermore, the role of LEVs in thrust producing airfoils is well
documented and an extensive literature exists from studies of animals and insects
(Dickinson et al., 1999; Birch et al., 2004; Muijres et al., 2008; Chen et al., 2017).
While the effect of LEVs on lift force production is generally favorable, their forma-
tion and coalescence with TEVs weakens the interactions of the wake vortices and
therefore reduces thrust efficiency (i.e. the wake momentum surplus is reduced)
(Tuncer & Platzer, 2000; Tuncer & Kaya, 2005). However, oscillating airfoil energy
harvesters operate in a different flow regime, and unlike oscillating propulsors, they
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require high amplitude and relatively large time scales of motion. These kinematic
requirements of energy harvesting introduce fundamental fluid dynamics problems
that up to this date, have not been thoroughly explored. Specifically, there is a
need to understand the coupling of LEV and motion kinematic time scales, as well
as the spatio-temporal evolution of the LEV and how to strategically control it in
order to achieve high power output.

The concept of flow energy harvesting using oscillating airfoils was first pro-
posed by McKinney & DeLaurier (1981). With the growing importance of renew-
able energy, the interest in this novel concept has been revived in recent years. In
traditional wind/hydro-turbines, the flow around the blades must remain attached
to the foil surface to achieve high efficiency levels. This is in contrast to oscillating
energy harvesters, where the unsteady flow separation and LEV formation are ex-
ploited to attain high power output and efficiency levels. The instantaneous power
output of an oscillating airfoil is defined as follows:

P = Fyḣ+Mθ̇ (1.0.4)

where Fy is the force perpendicular to the free stream velocity, M is the pitching
moment and θ̇ is the pitching velocity. The power extraction efficiency, η, is defined
as the ratio of the cycle-averaged power extracted (P ) to the total power available
in the oncoming flow passing through the swept area:

η =
P

1/2ρU3
∞SH

(1.0.5)

where S is the airfoil span andH is the overall extent of the airfoil motion with both
heaving and pitching motions considered. Preliminary studies show that oscillating
energy harvesters are capable of extracting energy with efficiencies comparable to
rotary devices, and are slowly approaching the maximum theoretical efficiency of
59.3% (known as the Betz limit) (Kinsey & Dumas, 2008; Zhu, 2011; Xiao & Zhu,
2014). Moreover, there are several prominent features of oscillating energy har-
vesters compared to conventional turbines: (i) they are environmentally friendly
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Figure 1.2: Schematic showing the airfoil trajectory and resulting operating
regimes. The cases shown here correspond to (a) the feathering limit when χ
= 1, (b) the propulsion regime when χ < 1 and (c) the energy harvesting regime
when χ > 1.

in terms of noise generation due to their relatively low tip speed, thus reducing
impact on the flying/swimming animals; (ii) without centrifugal stress associated
with rotating blades, the oscillatory devices are structurally robust and (iii) oscil-
lating devices sweep through a rectangular cross section of the flow, and therefore
the swept area of a single foil can be wide and shallow, allowing large systems to
be installed in shallow water.

The process of power extraction is illustrated in Fig. 1.2. The sinusoidal curve
represents the trajectory of the oscillating airfoil, or the effective flow velocity rel-
ative to the airfoil frame of reference. The free stream flow direction is from left
to right. The variables L and D represent lift and drag forces, respectively, and
R represents the resultant force acting on the airfoil. Figure 1.2a corresponds to
a feathering parameter value of χ = 1, which is known as the feathering limit. In
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this case, the heaving induced angle of attack is equal to the pitching amplitude θ0
and therefore they cancel each other out such that the airfoil is always flapping at
zero effective angle of attack. Neither energy is extracted nor thrust is produced in
this case. Figure 1.2b corresponds to χ < 1. The lift force vector L (and hence the
vertical force Fy) is pointing upward when the airfoil is heaving downward, and
thus according to Eq. 1.0.4, negative power is generated (i.e. energy is transferred
from the airfoil to the surrounding fluid). On the other hand, the airfoil in Fig.
1.2c is operating at χ > 1, where the lift force (and vertical force) vector is point-
ing downward during the downward stroke of the airfoil, and consequently, the
power generated has a positive sign, indicating that energy is transferred from the
surrounding fluid to the airfoil. The vast majority of published studies on oscillat-
ing energy harvesters have utilized numerical computations to perform parametric
investigations and to optimize the overall flow energy harvesting performance (Du-
mas & Kinsey, 2006; Peng & Zhu, 2009; Zhu, 2011; Kinsey & Dumas, 2012; Kim
et al., 2017). It has been shown that energy harvesting efficiency is maximized
when the airfoil is oscillating at pitching amplitudes ranging from 60◦ to 80◦ and
heaving amplitudes of 0.5c-1.0c (Zhu, 2011; Kim et al., 2017). Such large ampli-
tudes of motion are required in order to support leading edge flow separation and
the formation of strong and stable LEVs. Furthermore, Kinsey & Dumas (2008)
have shown that in order for the LEV to form on the top airfoil surface when it is
heaving downward and on the bottom surface when heaving upward, a phase shift
between the heaving and pitching of Φ = 90◦ is required. This ensures that the
lift force generated by the LEV and heaving velocity vectors are aligned positively,
thus yielding energy transfer to the device. The contributions of pitching moment
to power generation, however, cannot be inferred from a similar quasi-steady ar-
gument, as it is highly dependent on the transient trajectory of the LEV along the
airfoil chord. In general, the contributions of aerodynamic moment and pitching
motion have been shown to have negative effects on power output (Kim et al.,
2017).

Of special importance in unsteady aerodynamics is the reduced frequency,



7

which is a parameter used to define the unsteadiness of the problem:

k =
fc

U∞
(1.0.6)

The reduced frequency represents the ratio of the time scales of flow convection
to airfoil motion (k = tflow/tmotion, where tflow = c/U∞ and tmotion = 1/f). At
low reduced frequencies (k < 0.008), the airfoil motion time scale is large relative
to the convective time scale, meaning that quasi-steady state assumptions can be
made. As the reduced frequency increases, the flow dynamics become strongly
dependent on the period of the oscillatory motion, and thus quasi-steady state
assumption can no longer be made. In energy harvesting applications, the reduced
frequency typically ranges from 0.05 to 0.2. When all other parameters are fixed,
the energy harvesting efficiency increases monotonically with k, eventually peaking
at k = 0.12-0.16. After reaching a peak, it begins to decrease sharply when k is
further increased. The peak in efficiency is found to always occur within this
same range of reduced frequencies (Kinsey & Dumas, 2012; Liu et al., 2013; Xie
et al., 2014). It is well understood that the propulsive efficiency of an oscillating
propeller is related to the vortex shedding dynamics in its wake. In general, the
vortex shedding of an oscillating airfoil is associated with two different frequencies:
(i) the airfoil oscillation frequency and (ii) the natural vortex shedding frequency.
The natural vortex shedding frequency is related to the inverse of the time it takes
for a fluid particle to travel from the leading to the trailing edge of the airfoil.
Triantafyllou et al. (1993) found that the maximum propulsive efficiency occurs
when the propeller operates at a frequency that is equal to the natural vortex
shedding frequency. The explanation is that efficiently generated vortex shedding
directly contributes to highly efficient thrust generation. Although Zhu (2011) has
found that the optimal reduced frequency range of k = 0.12-0.16 also results in
the matching of the natural vortex shedding and airfoil oscillation frequencies, it
is still not fully understood how the reduced frequency affects the dynamics of the
LEV, and hence the energy harvesting performance.
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As previously mentioned, the process of LEV generation and shedding plays
a significant role in power generation. Specifically, the timing of LEV formation,
detachment and shedding is critical to maximize the efficiency of power extraction
via changing the local surface pressure distribution (Peng & Zhu, 2009). From
Eq. 1.0.4, it can be seen that there are two main factors influencing the power
output: (i) the magnitude of the force Fy and aerodynamic moment M and (ii)
the correlation between Fy and ḣ as well as between M and θ̇. Several studies
have been conducted in the past that investigate different mechanisms that en-
hance both the peak force as well as the correlation between the force and motion
(Xiao & Zhu, 2014). One prominent mechanism is the use of deforming airfoils.
Previous studies on insect wings as well as fish fins suggest that a certain degree
of deformation near the trailing edge may lead to the generation of higher thrust
and lift forces. This is attributed to the structural resonance, the manipulation of
the LEV generation and the force reorientation associated with the deformations
of the surface (Zhao et al., 2011; Nakata et al., 2011; Nakata & Liu, 2012). Surface
structural deformation can either be passive or controlled. In controlled flexibil-
ity, the deformation of the surface is prescribed whereas the effects of the airfoil
inertia and fluid-structure interactions are neglected. Hoke et al. (2015) used a
2D laminar simulation with prescribed camber deformation to show that thrust
efficiency increases by 16% relative to a purely rigid airfoil. Furthermore, Liu
et al. (2013) computationally modelled two-dimensional oscillating airfoil energy
harvesters with deforming leading and trailing edges. Rather than directly solving
the coupled fluid-structure interaction problem, the camber motion is predeter-
mined based on priori results. Their simulations show that airfoil deformation at
the trailing edge enhances the strength of the LEV, whereas deformation at the
leading edge controls the timing of LEV shedding, and thus the correlation between
the aerodynamic forces and airfoil motion.

Passive surface deformation can be divided into two categories: (i) inertia-
induced deformation and (ii) flow-induced deformation. Flow-induced deforma-
tion can only occur when the airfoil density is comparable with the density of
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the surrounding fluid. Tian et al. (2014) conducted a numerical model based
on immersed-boundary method to study flow energy harvesting by a deforming
airfoil. Their results show an 11.3% increase in energy harvesting efficiency by
applying control to the leading edge segment. However, for passive flow-induced
deformation, no performance enhancement was observed. Totpal et al. (2018) have
conducted an experimental study to investigate the effects of inertia-induced lead-
ing edge deformation at near the airfoil leading edge at 0.04 ≤ k ≤ 0.08. While
their results show that the leading edge deformation reduces the energy harvest-
ing efficiency by 10% relative to a rigid airfoil at k ≈ 0.08, the negative effects
of the deformation were shown to subside as k was increased from k = 0.04 to
0.08. It remains unknown whether at larger reduced frequencies, the effects of
inertia-induced leading edge deformation are beneficial.

In order to fully understand the contribution of LEV evolution to the energy
harvesting process and how to design flow-control mechanisms that enhance the
performance, there is a need to measure the time-resolved aerodynamics forces
and synchronize them with the flow structures. In experimental fluid dynamics,
the total force on a model is typically measured by mounting it on a load cell
instrumented with strain gauges. This approach yields accurate force readings if
care is taken to account for the effects of the mounting device on the measured
loads. However in wind tunnel experiments, this technique is particularly challeng-
ing due to the low density of air compared to the density of airfoil. Totpal (2017)
has shown that direct force measurements are limited in their accuracy since at
higher reduced frequencies (k > 0.08), the inertial forces become quite significant.
Inertial forces grow rapidly with oscillation frequency and they can be an order of
magnitude larger than the aerodynamic forces, thus further reducing the accuracy
of the measurements (Rival et al., 2009). Many researchers recently have applied
the classical control-volume approach to estimate the forces, which is often written
as:

F = − d

dt

∫
CV

ρudV −
∮
S

n · [(u− us)⊗ ρu]dS +

∮
S

n · (−pI + T)dS (1.0.7)
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where u is the velocity vector, n is the unit normal vector pointing out of the fluid,
us is the velocity of the control volume, p is pressure, I is the identity tensor, T is
the viscous stress tensor, CV is control volume and S is the exterior surface of the
control volume. The operation ⊗ indicates tensor product. The first term on the
right-hand side represents the rate of change of momentum in the control volume,
the second term represents the net flux of momentum out of the control volume
and the third term represents the force required to balance the net pressure and
viscous forces on the fluid at the control volume surface. This approach has been
used with great success in some experiments where the flow remains steady. In
this case, the first and third integrals are assumed to be zero, and the momentum
flux is easily measured by a wake survey. However, evaluating Eq. 1.0.7 presents
some challenges for unsteady flow applications, namely, because the pressure field
must be known. The pressure field can be obtained numerically by solving the
pressure Poisson equation given by the divergence of the Navier-Stokes equations.
However if the full three-dimensional velocity field is not known, then the continu-
ity equation is not satisfied. Therefore this technique is often unfeasible, because
obtaining three-dimensional flow field experimentally can be challenging for os-
cillating airfoils at very large amplitudes of motion. In addition, evaluating for
pressure from the Poisson equation using experimental data poses other challenges
in practice due to measurement error accumulation due to the required temporal
and spatial derivatives of the velocity field, as well as measurement uncertainty
in the boundary conditions, especially at the fluid-solid interfaces (Gurka et al.,
1999). Dabiri et al. (2014) have addressed these issues, and they suggested eval-
uating for the pressure by directly integrating the pressure gradient term in the
Navier-Stokes equation rather than using the Poisson equation. Their algorithm
is based on integrating the pressure gradient along eight paths through each point
in the flow field. The starting point of all eight integration paths is located at
the control volume boundary. The median of the pressure value obtained from all
eight integration paths is then used to estimate the pressure at each point in the
field. This can be done because the pressure is a scalar quantity, meaning that
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each independent integration path that arrives at a point in the flow is essentially
an independent estimate of the pressure at that point.

While the approach discussed above is feasible, it is not physically the most
revealing. What appears in various integrands in Eq. 1.0.7 are variables like
velocity and pressure, but the mechanisms leading to their specific distributions
in a flow field are hidden. These mechanisms arrive from the local dynamics
governed by the Navier-Stokes equations, where one sees the spatial and temporal
derivatives of the relevant flow variables. There is thus a clear gap between the
standard momentum integral equation and the local flow dynamics. Wu et al.
(2007b) derived a force equation based on the vortex impulse. The concept of
vortex impulse is discussed in classical texts such as Saffman (1992) and Batchelor
(2000). By acknowledging that the rate of change of fluid impulse is related to the
force acting on the body, the force equation is written as:

F = − 1

N − 1
ρ
d

dt

(∫
∞

x× ω
)
dV +

1

N − 1
ρ
d

dt

∮
SB

x× (n× ρu)dS (1.0.8)

where ω is the vorticity, x is the position vector from some arbitrarily chosen
origin, N = ∇ · x is the dimension of space and SB is the body surface and uB
is the velocity of the moving body. The first term is the vortex impulse, which
essentially represents the momentum induced by a vortical structure with vorticity
ω at position x and the second term represents the inertial force of the virtual fluid
displaced by the moving body. The main advantage of this formulation is that the
pressure field is not needed to calculate the forces. Only the velocity and vorticity
fields are needed, which are easily obtained experimentally. In addition, because
the fluid dynamics of oscillating airfoil energy harvesters is dominated by large-
scale vortices (i.e. LEVs), it is significantly easier to describe the energy harvesting
process in terms of vorticity. The formulation given in Eq. 1.0.8 was derived based
on the assumption that the flow field is irrotational far away from the body surface.
It has been used with success in cases where the fluid domain is very large such
that the irrotational assumption in the far field is valid (Epps, 2010). Noca (1997)
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derived a general expression for instantaneous forces in a finite and arbitrarily
chosen control volume:

F = − ρ

N − 1

d

dt

(∫
CV

x×ω
)
dV +

ρ

N − 1

d

dt

∮
SB

x×(n×ρu)dS+

∮
S

n·λdS (1.0.9)

where the tensor λ is:

λ =
ρ

2
(u · u)I− ρu⊗ u− ρ

N − 1

[
u⊗ (x× ω) + ω ⊗ (x× u)

]
+

1

N − 1

[
x · (∇ ·T)I− x⊗ (∇ ·T)

]
+ T (1.0.10)

The primary advantage of this formulation is the minimal list of assumptions re-
quired for accurate measurement. Noca (1997) showed that this formula is accu-
rate for fully resolved computational results, as well as under-resolved experimental
data. That being said, this formulation contains complicated boundary integral
terms with unclear physical meanings, which makes it difficult to identify mecha-
nisms responsible for efficient energy harvesting process. One of the motivations of
this dissertation is to propose a simplified framework based on the impulse equation
where time-resolved experimental data can be used to estimate the aerodynamic
forces. The derivation of the impulsed-based force and moment equations from
first principles is shown in Appendix A.

In this dissertation, we use wind-tunnel testing and particle image velocime-
try (PIV) measurements to conduct extensive investigations of the fluid dynamics
of oscillating airfoil energy harvesters. While there are numerous computational
fluid dynamics-based studies of oscillating energy harvesters, there is a clear lack
of experimental data that can be used for validation and exploring new physical
phenomena. We are specifically interested in understanding the process of LEV
and TEV formation, LEV spatio-temporal evolution and its detachment, in the
range of reduced frequencies relevant to energy harvesting applications. Despite
the significance of both LEVs and TEVs, their contributions to aerodynamic force
generation and energy harvesting performance are still not fully understood. Con-
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sequently, we propose to use the impulse-based force and moment formulation to
better understand the effects of LEV and TEV in power production. The impulse
approach provides important advantages compared to other traditional approaches
such as direct force measurement and conservation of momentum. Particularly, the
impulse-based equations are linearly dependent on vorticity (Kang et al., 2018),
meaning that the total vortex impulse can be treated as a superposition of impulses
of every individual vortex structure in the flow. This provides the impulse approach
with great utility for describing power output of an airfoil based on the dynamics
of LEV and TEV structures. Upon understanding the role of LEV and TEV in
the energy extraction process, we investigate the effects of using inertia-induced
airfoil deformation at the leading and trailing edges to control the dynamics of
the LEV and TEV in order to enhance the energy harvesting efficiency. The hy-
pothesis is that some degree of deformation at the leading and trailing edges may
alter the formation process of both the LEV and TEV and thus power extraction
performance. To the best of our knowledge, there exist no experimental data that
validate the feasibility of deforming airfoils in the range of reduced frequencies
relevant to optimal energy harvesting efficiency

The rest of the dissertation is structured as follows. In Chapter 2, we inves-
tigate the effects of reduced frequency on the spatio-temporal evolution of the
leading edge vortex. In addition, we provide a simplified version of the impulse-
based force equation that contains terms with clear physical meanings. In Chapter
3, we apply the simplified impulse-based approach to estimate the energy harvest-
ing efficiency, as well as to provide new insight into the role played by the LEV and
TEV in the energy harvesting process. In Chapter 4, we investigate the feasibility
of inertia-based leading and trailing edge deformation in oscillating airfoil energy
harvesters. Finally, conclusions of this dissertation and suggestions for future work
are given in Chapters 5 and 6, respectively. Detailed uncertainty analysis, deriva-
tion of impulse-based equations and a discussion of practical considerations of using
experimental data in force calculation are provided in the appendices.
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Abstract

The vortex dynamics and lift force generated by a sinusoidally heaving and pitching
airfoil during dynamic stall are experimentally investigated for reduced frequen-
cies of k = fc/U∞ = 0.06 − 0.16, pitching amplitude of θ0 = 75◦ and heaving
amplitude of h0/c = 0.6. The lift force is calculated from the velocity fields using
the finite-domain impulse theory. The concept of moment-arm dilemma associ-
ated with the impulse equation is revisited to shed-light on its physical impact on
the calculated forces. It is shown that by selecting an objectively defined origin
of the moment-arm, the impulse force equation can be greatly simplified to two
terms that have a clear physical meaning: (i) the time rate of change of impulse of
vortical structures within the control volume and (ii) Lamb vector that indirectly
captures the contribution of vortical structures outside of the control volume. The
results show that the trend of the lift force is dependent on the formation of the
leading edge vortex, as well as its time rate of change of circulation and chord-wise
advection relative to the airfoil. Additionally, the trailing edge vortex, which is
observed to only form for k ≤ 0.10, is shown to have lift-diminishing effects that
intensifies with increasing reduced frequency. Lastly, the concept of optimal vortex
formation is investigated. The leading edge vortex is shown to attain the optimal
formation number of approximately 4 for k ≤ 0.1, when the scaling is based on the
leading edge shear velocity. For larger values of k the vortex growth is delayed to
later in the cycle and doesn’t reach its optimal value. The result is that the peak
lift force occurs later in the cycle. This has consequences on power production
which relies on correlation of the relative timing of lift force and heaving velocity.

2.1 Introduction

Flow physics of oscillating surfaces has become a very important area of study for a
wide range of applications, such as the development of micro-air vehicles and energy
harvesting devices (Tuncer & Platzer, 2000; Zhu, 2011; Mackowski & Williamson,
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2015; Siala & Liburdy, 2015). A large contribution to the existing knowledge has
come through the studies of flapping flight of insects, birds and bats (Leishman,
1994; Ellington et al., 1996; Ellington, 1999; Madangopal et al., 2005; Platzer
et al., 2008; Hubel et al., 2009). The oscillatory/flapping kinematics of these
natural fliers may exploit several lift-enhancing mechanisms such as dynamic stall
and vortex-wake recapture, among others (Srygley & Thomas, 2002). A common
model of oscillatory flight is the combined heaving and pitching motion of an airfoil
at large angles of attack, in which the formation and shedding of leading edge
vortices (LEVs) exhibit a large impact on the flow behaviour and instantaneous
aerodynamic forces (Hubel & Tropea, 2010; Moriche et al., 2017). Although the
general role of LEVs is well understood; they produce regions of low pressure on
the suction side of the airfoil to generate a large suction force, yet developing
fundamental theories that can predict their effects on the transient aerodynamic
forces remains to be quite challenging to the aerodynamics community.

Classical unsteady theories of aerodynamics, the most prevalent of which are
the models of Wagner (1925) and Theodorsen (1934), have been used extensively
with success in problems related to aeroelasticity and fluttering. However, since
these models are based on potential flow theory, they do not capture the effects
of separated flow and LEVs, thereby limiting their application to small amplitude
kinematics where the boundary-layer remains attached throughout the unsteady
motion. In recent years, more advanced models based on discrete-vortex methods
have been employed to model unsteady flows during dynamic stall (Xia & Mohseni,
2013; Hammer et al., 2014; Liu et al., 2016; Darakananda et al., 2016). In these
methods, potential-flow theory is modified to include discrete point vortices to
represent free vortical structures and shear layers. Typically, the trajectory of
these point vortices is determined by the Kirchhoff velocity (Darakananda et al.,
2016) or Brown-Michael equation (Brown, 1954). However, such models are based
on some ad-hoc criteria for LEV inception and shedding. For example, the LEV
strength must reach an extremum before it is allowed to evolve as a simple point
vortex using the Brown-Michael equation. Furthermore, Ramesh et al. (2014)
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developed the Leading Edge Suction Parameter (LESP), which is equivalent to
the first Fourier coefficient (A0) in unsteady thin airfoil theory, to predict the
onset of LEV formation. This method requires calibration using highly resolved
simulations to determine a critical LESP value, at which the flow begins to separate
from the leading edge. They show that the critical LESP value they determined
is universal for a given airfoil geometry and Reynolds number. Once the LEV is
formed, its evolution is determined using inviscid flow theory. While this method
provides reasonable estimates of aerodynamic force coefficients, it still requires
high-cost simulations to pre-determine the onset of flow separation. In addition,
the exact contribution of LEVs and other free vortices is not explicitly highlighted,
which makes it difficult to develop fundamental theories of vortex dynamics and
their role in aerodynamic force production.

One promising tool for computing the fluid dynamic forces is based on the
concept of hydrodynamic impulse (Lin & Rockwell, 1996; Epps, 2010; Kim et al.,
2013). Originally, the impulse concept was introduced to bypass the integration of
total momentum which is not well defined in an infinite region, since in general the
momentum integral is only conditionally convergent (Lamb, 1932; Lighthill, 1986a;
Saffman, 1992; Batchelor, 2000). The impulse-based force equation for an unsteady
moving body in unbounded, incompressible flow can be written as follows:

F = − ρ

N − 1

d

dt

∫
V∞

(x− x0)×ωdV +
ρ

1−N
d

dt

∮
SB

(x− x0)× (n× u)dS (2.1.1)

where ρ is fluid density, x is the position vector, x0 is the origin location of the
position vector, ω is the vorticity vector, u is the velocity vector, n is the normal
unit vector and N = ∇·x is the dimension of space. The first term is evaluated over
the entire flow field (V∞) and represents the rate of change of flow impulse. The
second term is evaluated over the body surface (SB) and it represents the inertial
force of the fluidic body. One particular constraint with this formulation is that
the entire vorticity field must be captured in the control volume (V∞). Practically,
this limits its use to the early times of impulsively-started flows, where the entire
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vorticity field remains inside the control volume.
The use of impulse theory has also gained popularity in constructing semi-

empirical low-order models. For example Babinsky et al. (2016) and Stevens &
Babinsky (2017) have applied a linearized version of the impulse formulation (Kár-
mán, 1938) to experimental data to model the transient lift force of impulsively
pitching and surging airfoils. They decomposed the rate of change of impulse into
two terms: vortex circulation growth and vortex advection, where both terms are
calculated empirically from experimental data. They show that the total lift force
at the beginning of the motion is primarily dictated by the LEV growth. Once the
LEV stops growing, the LEV advection relative to the trailing edge vortex (TEV)
becomes more dominant. Overall, they obtain reasonable lift force estimates by
assuming that all relevant vorticity is contained within the LEV and TEV. Fur-
thermore, Wang & Eldredge (2013) used the impulse-matching approach (Tchieu &
Leonard, 2011) in conjunction with discrete-vortex methods to model the effects of
LEVs on impulsively started flat plates at various angles of attacks. The impulse-
matching approach is used as an alternative to the Brown-Michael equation in
order to relax the vortex shedding criterion required by the latter method. One
limitation associated with this approach that the authors address is the use of the
Kutta condition to determine the vortex strength as a function of time. They sug-
gest that calculating the vortex strength empirically might improve the accuracy of
their model. Ideally, one may develop universal scaling laws of vortex dynamics for
a wide range of operational parameters that can be used as inputs in such models.
For example, the idea of optimal vortex formation number (Dabiri, 2009) could
potentially serve as a unifying principle in constructing low-order models under
the proper conditions. Onoue & Breuer (2016) investigated the LEV formation
number of pitching airfoils for a wide range of amplitudes, reduced frequencies and
Reynolds numbers. They show that the time-history of LEV circulation growth
collapses on a single curve, where the maximum formation number was found to
approximately equal to 4, agreeing remarkably well with the theory (Gharib et al.,
1998).
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Figure 2.1: Domain of integration for the evaluation of aerodynamic forces on an
airfoil.

Noca (1997) has expanded on the impulse theory and derived the force equation
for arbitrary finite domains using the derivative moment transformation (DMT)
identity (Wu et al., 2007b). The force equation is written as follows:

F = − ρ

N − 1

d

dt

∫
Vf

(x− x0)× ωdV + ρ

∮
S

n ·
(1

2
u2I− u⊗ u

)
dS

+

∮
S

n · λimpdS +
1

N − 1
ρ
d

dt

∮
SB

(x− x0)× (n× u)dS (2.1.2)

where Vf is the fluidic volume, S is the exterior surface of the control volume and
SB is the airfoil surface. The term λimp may be written as follows:

λimp =
ρ

N − 1
ω((x− x0)× u)− ρ

N − 1
[u⊗ ((x− x0)× ω)] + T

+
1

N − 1
[(x− x0) · (∇ ·T)I− (x− x0)⊗ (∇ ·T)] (2.1.3)

where I and T represent the identity and viscous stress tensors, respectively. Un-
steady force evaluation based on the finite-domain impulse theory has attracted
wide attention among the experimental fluid dynamics community, as it is often
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not feasible to directly measure the aerodynamic forces on moving airfoils due to
challenges in separating the inertial contributions (Rival et al., 2009). This is es-
pecially problematic in wind tunnel experiments, where the density of the airfoil
can be orders of magnitude greater than the density of air (Totpal, 2017). Other
force estimation techniques based on the integral momentum approach requires the
evaluation of the pressure field which can be a non-trivial task in experimental fluid
dynamics (Van Oudheusden, 2013). Although many researchers have successfully
computed the pressure field and obtained reasonable force estimates (Liu & Katz,
2006; Charonko et al., 2010; Dabiri et al., 2014; Villegas & Diez, 2014), these meth-
ods provide a global force estimation, where the contributions of the local vortical
structures are hidden. Several authors applied Eq. 2.1.2 , or other forms of it,
to experimental (Noca, 1997; Baik et al., 2011; DeVoria et al., 2014; Siala et al.,
2018) and numerical (Li & Lu, 2012; Mohebbian & Rival, 2012; Kang et al., 2018)
data to calculate the unsteady lift force. The impulse approach offers various dis-
tinct advantages. Firstly, it does not require the evaluation of the pressure field,
which is very practical for experiments based on particle image velocimetry (PIV).
Secondly, the force can be easily decomposed into circulatory (rate of change of
vortex impulse) and non-circulatory (added mass) contributions, which provides
useful insights of the physical mechanisms responsible for force generation. In fact,
this decomposition is similar to that found in Therodorsen’s model (Theodorsen,
1934), except that it also includes the effects of free vortices. Thirdly, and per-
haps most importantly, the impulse-based force equation is linearly dependent on
vorticity, which means that the total impulse in the flow field can be treated as
a superposition of impulses of every individual vortex structure in the flow. Note
that the impulse of each vortex structure, which is ultimately determined by the
motion of the vortex, is dependent on all of the other vorticity in the fluid through
their Biot-Savart influences on the velocity of the vortex. These advantages pro-
vide the impulse approach with great utility for theoretical modeling of unsteady
airfoils exhibiting dynamic stall, as it is easier to describe these flows in terms of
vorticity.
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One particular challenge with Eq. 2.1.2 is that it contains cumbersome bound-
ary integral terms with ambiguous physical meanings, which makes it difficult to
identify the mechanisms responsible for the lift production and to construct low-
order models. Kang et al. (2018) proposed using the minimum-domain impulse
theory, which greatly simplifies Eq. 2.1.2 by dropping many of the surface integral
terms. The requirement for using their theory is that the control volume must
not cut through regions of significant vorticity. They follow the idea of Flood Fill
(Torbert, 2016) to choose a different control volume at each instant in time to find
a critical vorticity threshold under which the minimum domain theory is valid.
While this method is effective, it may be difficult to experimentally pursue, since
one is highly limited by the field of view provided by the PIV imaging system.

In the pursuit of relaxing the criterion of the minimum domain theory of Kang
et al. (2018), we provide in this paper an alternative approach to significantly
reduce the finite-domain, impulse-based force equation. The reduced-order impulse
formulation is then used to provide insight into transient lift force production
mechanisms of a heaving and pitching airfoil at very large amplitudes of motion.
We are specifically interested in operating at relatively low reduced frequencies
associated with flow energy harvesting applications (Zhu, 2011), where there is a
dearth of knowledge concerning the evolution of LEV strength, size and trajectory.
The flow field around the heaving and pitching airfoil is obtained experimentally
using two-component PIV measurements. The results of this work will aid in
constructing low-order models of the aerodynamic forces generated during dynamic
stall for continuously oscillating/flapping airfoils (as opposed to impulsively started
flows).

2.2 Methodology

2.2.1 Experimental setup

Experiments were conducted in a closed-loop wind tunnel (1.37 × 1.52 m) with
turbulence intensities below 2%. The airfoil used in this study was manufactured
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(a) (b)

Figure 2.2: (a) Drawing of the experimental setup illustrating the motion device,
airfoil orientation and optical system and (b) zoomed-in view of the motion device.
Figures are adopted from Totpal (2017).

in-house using fused deposition modeling and has a chord length, thickness and
aspect ratio of 125 mm, 6.25 mm and 2, respectively. The airfoil is a flat plate
and has elliptic leading and trailing edge tips with 5:1 major to minor axis ratio.
Stationary end plates were placed approximately 2 mm away from the side-edges
to suppress the formation of tip vortices and to simulate two dimensional flow
conditions. The airfoil is attached to a motion device using a titanium rod spanning
through the mid-chord of the airfoil. The motion device is used to generate the
heaving and pitching motion of the airfoil according to the following equations:

h(t) = h0cos(2πft) (2.2.1)

θ(t) = θ0cos(2πft+ Φ) (2.2.2)

where h0 is the heaving amplitude, f the oscillation frequency, θ0 the pitching
amplitude, Φ the phase shift between heaving and pitching and t is time. Heav-
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ing was achieved using a scotch-yoke mechanism and the pitching motion used a
combination of a scotch-yoke mechanism and a rack and pinion arrangement. The
motion device was controlled using a LabVIEW program. The airfoil motion was
verified by recording a video of the oscillatory motion, which was then used to
calculate the heaving and pitching motion using an object-tracking software (Tot-
pal, 2017). The root mean square error of the heaving and pitching motion was
found to be less than 1% of the heaving and pitching amplitudes, respectively. The
experimental setup in the wind tunnel and the motion device are sketched in 2.2.

Two-component, phase-locked PIV measurements were collected using a dual-
head Nd:YAG pulsed laser (EverGreen, 145 mJ/pulse, max repetition rate of 15
Hz) operating at the 532 nm wavelength. A light sheet of approximately 1.5 mm
thickness was generated at the mid-span of the airfoil using a LaVision optics mod-
ule. An in-house designed Laskin nozzle atomizer provided the seeding particles
using vegetable oil. Particle images were collected using a CCD camera (Image
Pro, LaVision) with a resolution of 1600 × 1200 pixels. The camera was equipped
with a 50 mm focal length lens and a band-pass filter centered at 532 nm. The
PIV system was configured to obtain a vector field resolution of 1.8 mm (approxi-
mately 70 vectors per chord length). PIV images were processed with DaVis v8.4
software. Particle position displacements were determined using a cross-correlation
method on sequential images. The calculations were conducted on two passes of
interrogation window size of 64 × 64 pixels, followed by two passes of interro-
gation window size of 32 × 32 pixels, where a 50 % over-lap was used. A high
accuracy sub-pixel peak fitting algorithm specific to DaVis® software was used for
the final passes. The time between pulses was set such that an average of 8 pixel
displacement per interrogation window was achieved in the streamwise direction.
Minimum peak validation of 1.2 (ratio of the highest to second highest correlation
peaks) and moving-average validation schemes were used to reject outliers, with a
vector rejection rate of less than 2%.

The phase-locked velocity fields were calculated by averaging one hundred im-
ages at each phase of interest. A total of 116 phases throughout the downstroke
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motion with an equal spacing of ∆t/T = 0.004 (where T is the oscillation period)
were acquired. The PIV system and airfoil motion were synchronized using Lab-
VIEW. The motion device was run for at least 5 minutes prior to collecting PIV
measurements to eliminate any initial transient effects.

The use of Eq. 2.1.2 to calculate the aerodynamic forces requires capturing
the entire flow field surrounding the airfoil. In order to obtain data in the shadow
region caused by the laser illumination, the experiments were repeated at a phase
delay of 180◦ for each phase of interest. The 180◦ out of phase flow fields were
then mirrored and stitched to the rest of the vector field to construct the full
flow field surrounding the airfoil. This can be done because the flow, airfoil shape
and motion are all symmetric. A similar approach was used by Lua et al. (2015).
Additionally, a second camera was used to capture the flow field in the downstream
region. The two cameras were overlapped by 14 vectors and the overlapped region
was smoothed with a 3×3 moving-average filter.

2.2.2 Uncertainty quantification

The particle displacement uncertainty was calculated using the statistical correla-
tion technique developed by Wieneke (2015). Note that this method only estimates
the random errors that are associated with camera noise, particle focus and out-
of-plane motion, among others (Willert & Gharib, 1991), whereas the systematic
errors that are typically influenced by the calibration errors and peak-locking ef-
fects are not taken into account. For calibration, we use the pinhole fitting model,
and the root mean square of the fit is 0.33 pixels. The peak-locking effect was
avoided by using particle image size of approximately 2.1 pixels (estimated from
the peak width of the autocorrelation peak of a typical particle image), which is
greater than the minimum size of 1 pixel (Wieneke, 2015). The particle displace-
ment uncertainty was then propagated to velocity and vorticity calculations using
the technique provided by Sciacchitano & Wieneke (2016). Finally, the uncertainty
was propagated to estimate the uncertainty in the lift force. The maximum and
mean uncertainties of the velocity components, span-wise vorticity and aerody-
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Variable Maximum uncertainty (%) Mean uncertainty (%)
U∞ 0.3 0.2
u 3.5 1.3
v 5.8 2.1
ωz 9.1 4.7
Fy 13.6 8.2

Table 2.1: Maximum and mean uncertainty of free stream velocity, velocity compo-
nents, span-wise vorticity and aerodynamic lift force at k = 0.16. All uncertainties
are reported using a 95% confidence interval.

namic lift force are listed in Table 2.1 as a percentage of their respective maximum
values. We also include uncertainty of free stream velocity measured in the wind
tunnel without the airfoil and motion device. All uncertainties are reported using
a 95% confidence interval.

As pointed out in the previous section, one of the main motivations of this work
is the need for an alternative tool to estimate the transient aerodynamics forces,
since direct force measurement of high amplitude oscillating airfoils operating in
wind tunnels is usually unfeasible. Unsteady aerodynamic flows indicate that the
time scale of airfoil motion is smaller than the time scale of the flow, where the
degree of unsteadiness is often described by the reduced frequency (k = fc/U∞).
The difficulty in measuring transient forces of highly unsteady airfoils is due to
the inertial forces growing rapidly at high oscillation frequencies (proportional to
f 2), whereas the aerodynamic forces grow with U2

∞. In fact, when k > 0.08, the
inertial forces become at least an order-of-magnitude larger than the aerodynamic
forces, and therefore the accuracy of the force measurements becomes unreliable.
For this reason in this study, accurate direct force measurements for k > 0.08 are
not presented.

In Fig. 2.3, the transient lift force coefficient (Cy = 2Fy/ρU
2
∞c) obtained from

the impulse formulation is compared with the results obtained from direct force
measurements during the downstroke motion at k = 0.06 and k = 0.08. Note that
the transient forces are shown only from t/T = 0.02 to t/T = 0.48, as we were
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unable to obtain consistent impulse-based force measurements at these times due
to unreliable curve-fitting of the raw data prior to taking the time derivative of the
impulse term (first term of Eq. (2)). It is shown that the force magnitude and trend
are well captured by the impulse formulation. The largest discrepancy occurs at
the beginning of the downstroke, where the flow remains fully attached to the airfoil
surface. Here, the force generation is dominated by the bound vorticity, which is
not well resolved by the PIV experiments, and as a consequence, the impulse-based
formulation under-predicts the force. Once the flow at the leading edge separates
and forms an LEV, the impulse formulation and direct force measurement are in
excellent agreement. At this point, it is expected that the contribution of surface
vorticity to the lift force becomes negligible (Moriche et al., 2017). The explanation
for this has been provided by Ford & Babinsky (2013), who have shown that the
bound circulation (due to surface vorticity) of unsteady airfoils at large angles of
attack tends toward zero and the LEV circulation is nearly equal and opposite to
the circulation shed from the trailing edge. For the motion kinematics used in this
study, the flow is observed to be attached to the airfoil surface for only a relatively
short period of time, thus providing validity in the use of impulse formation.

2.3 Results

In this section, we present results for reduced frequencies of k = 0.06− 0.16, while
holding the heaving amplitude, pitching amplitude, phase shift and pitching axis
fixed at h0/c = 0.6, θ0 = 75◦, Φ = 90◦ and xp/c = 0 (mid-chord), respectively.
The reduced frequency was varied by changing the free stream velocity, resulting
in Reynolds numbers (Re = U∞c/ν, where ν is the kinematic viscosity) ranging
from 7,216 to 16,889 for k = 0.16 and k = 0.06, respectively. These parameters
have been shown to produce high energy harvesting efficiencies (Zhu, 2011). Due
to the symmetry of the problem, the results are only provided for the downstroke
motion of the airfoil.
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Figure 2.3: Comparison of the transient lift coefficient obtained from the impulse
formulation with the results obtained from direct force measurements at (a) k =
0.06 and (b) k = 0.08; results are given for the half cycle beginning when the foil
is at the top heaving position.

2.3.1 Evolution of vorticity field

Figure 2.4 shows the non-dimensional spanwise vorticity evolution for k = 0.06, 0.10
and 0.14. The flow approaches from the left-hand side and the non-dimensional
time t/T = 0 corresponds to the top heaving position and t/T = 0.5 is the bottom
heaving position. For k = 0.06, the leading edge shear layer on the top surface of
the airfoil is shown to be separated due to the LEV shedding during the upstroke
motion. Once the angle of attack is large enough (in the negative direction), the
shear layer becomes attached to the top surface, while it begins to separate and
roll-up into an LEV on the bottom surface at t/T ≈ 0.10. The shear layer feeds
the LEV with vorticity, which results in the increase of LEV strength and size over
time. By the time the LEV grows past the trailing edge (t/T ≈ 0.26), the trailing
edge shear layer begins to roll-up into a trailing edge vortex (TEV). Eventually,
the LEV and TEV both shed into the wake to form a Karman-like vortex street
(i.e. drag producing wake). For t/T > 0.42, the flow over the airfoil is completely
separated and full stall is attained.
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Figure 2.4: Vorticity field for discrete phases during the downstroke. Top row:
k = 0.06, middle row: k = 0.10 and bottom row: k = 0.14.

Early in the cycle for k = 0.10, it is shown that a coherent positive vortical
structure is shed from the trailing edge. This corresponds to the TEV formed
during the upstroke. Since the convective time scale of the flow for high reduced
frequencies is relatively larger than for lower reduced frequencies, the formation and
advection of flow structures occurs at a slower rate for k = 0.10 when compared to
k = 0.06. The leading edge shear layer separates and rolls into an LEV at t/T ≈
0.18. The TEV begins to form at t/T ≈ 0.42, however its size is significantly
smaller than for k = 0.06. In addition, the TEV is shown to completely roll on
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top of the bottom surface of the airfoil before convecting into the wake.
For k = 0.14, at early times a large negative vortex structure is observed in

the near wake of the airfoil. This is the LEV that was shed during the upstroke.
The convective time scale at this reduced frequency is significantly larger than
the airfoil oscillation time scale, thereby enabling the airfoil at the beginning of
downstroke to capture the LEV from the upstroke. Similarly to k = 0.06 and
0.10, the shear layer from the bottom surface eventually rolls into an LEV (t/T ≈
0.260). Furthermore, it is shown that by the time the LEV approaches the trailing
edge, the airfoil is already at a relatively small geometric angle of attack and so
the trailing edge shear layer is not strong enough to roll-up into a TEV.

The conclusions of the above discussion are as follows. First, the inception
of the LEV is delayed in time for larger reduced frequencies. As the reduced
frequency increases, the time scale of the airfoil motion becomes smaller relative
to the flow time scale. This means that the shear layer takes a longer time to react
to the change of angle of attack when k is larger, thus delaying flow separation.
Second, the growth rate of the LEV decreases with increasing reduced frequency.
This is the result of the decrease of the feeding shear layer velocity at higher
reduced frequencies. This is explained as follows. The shear layer velocity can
be approximated as the vector sum of the local velocity of the leading edge and
the component of the free stream in the direction of the airfoil motion (Onoue &
Breuer, 2016):

USL = U∞sin(θ)− ḣcos(θ)− θ̇c

2
(2.3.1)

where ḣ and θ̇ represent the heaving and angular pitching velocities, respectively.
As the reduced frequency increases (by either decreasing the free stream velocity or
by increasing the oscillation frequency), the shear layer velocity decreases. Lastly,
when k is less than 0.12, the trailing edge shear layer rolls into a TEV. Siala et al.
(2017) have shown that when the LEV reaches the trailing edge, a saddle point is
created downstream of the airfoil trailing edge, which forces the trailing shear layer
to roll-up into a TEV. This phenomena was also reported by Rival et al. (2014)
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and Widmann & Tropea (2015).

2.3.2 Leading edge vortex dynamics

In this section the LEV spatio-temporal dynamics are evaluated which will aid in
understanding the mechanisms responsible for the lift force production. The LEV
circulation and its trajectory are computed based on the vortex identification tech-
nique proposed by Graftieaux et al. (2001). In this method, two scalar functions
Γ1 and Γ2 derived from the velocity vector field, are used to identify the vortex
core location and its boundary, respectively, and are given by:

Γ1(p) =
1

N

N∑
i=1

((xp − xi)× ui) · ẑ
||xp − xi|| · ||ui||

(2.3.2)

Γ2(p) =
1

N

N∑
i=1

((xp − xi)× (ui − up)) · ẑ
||xp − xi|| · ||ui − up||

(2.3.3)

Subscript i denotes any point in the flow field, xp is the position vector, ẑ is the
unit vector in the z direction, N is the total number of points in a subregion and
up is the average velocity evaluated in a sub-region. We evaluate Γ1 and Γ2 at
every point in the flow field using a 3 × 3 sub-region (N = 9). The vortex core
is identified by |Γ1| ≥ 0.9 and the vortex boundary is characterized by |Γ2| ≥
2/π (Graftieaux et al., 2001). Overall, this procedure has been found to provide
reliable and reproducible definitions of vortex structures (Morse & Liburdy, 2009;
Baik et al., 2012; Dunne & McKeon, 2015). The LEV circulation is then calculated
by integrating the vorticity enclosed by the contour |Γ2| = 2/π. To calculate the
LEV trajectory, the measured velocity vector field is rotated and translated at each
instant in time according to the airfoil kinematics given in Eq. 2.2.1 and 2.2.2.
This is is done so that the LEV trajectory is calculated in the frame of reference
of the airfoil. Then, the location of the largest value of Γ1 (on the condition that
it is greater than 0.9) is tracked for the entire time until the LEV begins to leave
the control volume.
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Figure 2.5: (a) Normalized LEV circulation versus t/T , (b) normalized LEV diam-
eter versus t/T , (c) normalized LEV circulation versus tUSL/c and (d) normalized
LEV diameter versus tUSL/c. For clarity, only every other data point is plotted.

In Fig. 2.5a the LEV circulation normalized by the average shear layer velocity
and chord length is plotted versus t/T for all reduced frequencies. In general,
once the LEV is formed, it entrains vorticity from the feeding shear layer and
the circulation grows at a rate proportional to U2

SL (Eldredge & Jones, 2019). It
is worthwhile to mention that this non-dimensionalization of LEV circulation is
analogous to the optimal vortex formation number given by Dabiri (2009). This
concept is based on the argument that for a vortex generator with a given length
scale and feeding shear layer velocity, the maximum possible vortex formation



32

number is approximately equal to 4. Here, the airfoil can be thought of as a vortex
generator with a length scale c and average feeding shear layer velocity USL. It is
shown that for k ≤ 0.10, the maximum circulation is approximately 3.8-4. In this
case, the shear layer feeds the LEV with vorticity until the LEV grows to the size
of airfoil chord length (Fig. 2.5b). At this point, there is flow reversal due to TEV
formation which interacts with the leading edge feeding shear layer. This results
in the separation of the LEV from the shear layer. This mechanism of vortex
detachment is similar to what is observed in flows past bluff-bodies (Widmann &
Tropea, 2015). Conversely, when k ≥ 0.12, the relatively small oscillation time
scales of the airfoil results in the maximum LEV circulation (Fig. 2.5a) and size
(Fig. 2.5b) to be significantly reduced. That is, the LEV begins to form quite
late in the downstroke, and thus the end of downstroke is reached before the LEV
reaches its maximum possible circulation and size. The result is much lower peak
values of the normalized strength of the LEV at higher reduced frequencies.

The normalized LEV circulation and diameter are plotted versus time using the
shear layer-based convective time scale, c/USL in Fig. 2.5c and 2.5d, respectively.
For k ≤ 0.12, the LEV circulation and diameter are shown to collapse to a single
curve and their maximum respective values are attained at tUSL/c ≈ 4, agreeing
remarkably well with the concept of universal vortex formation time (Gharib et al.,
1998). For k ≥ 0.12, both the circulation and diameter also collapse well with the
rest of the data in the early times during the cycle, however as discussed above,
their maximum values are much smaller than for k ≤ 0.10. In addition, there seems
to be no universal vortex formation time for these higher reduced frequency values,
but rather the maximum formation time is seen to decrease with increasing reduced
frequency. Lastly, it may be interesting to note that for all reduced frequencies,
the time of LEV inception occurs at tUSL/c ≈ 1.4. This inception timescale
was also observed by Siala et al. (2017) using the same reduced frequencies but
different pitching and heaving amplitudes. This may suggest that the concept of
optimal vortex formation may serve as a tool to predict the onset and growth
of LEV circulation and size for combined heaving and pitching airfoils, at least
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Figure 2.6: (a) LEV normal trajectory versus t/T , (b) LEV axial trajectory versus
t/T , (c) LEV normal trajectory versus tUSL/c and (d) LEV axial trajectory versus
tUSL/c. For clarity, only every other data point is plotted.

for relatively low reduced frequencies which are greatly influenced by the LEV
dynamics.

In Fig. 2.6a the chord-normal trajectory of the LEV, YLEV /c, is plotted versus
t/T for all reduced frequencies. After LEV formation, the LEV remains very close
to the airfoil surface (YLEV /c = 0) for a very short period of time. Meanwhile,
the LEV is shown to convect along the chord at approximately the same rate for
all reduced frequencies until it approaches the airfoil mid-chord (XLEV /c = 0),
as is shown in Fig. 2.6b. Afterwards, the LEV begins to travel away from the
airfoil surface, while it remains approximately stationary near the mid-chord for
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k ≤ 0.10. For k ≥ 0.12, however, the LEV does not stop convecting in the
streamwise direction, but its rate of advection is slightly reduced. Eventually the
rate of LEV chord-wise advection increases again and it approaches a constant
value while it is being shed into the wake (XLEV /c < −0.5). This is accompanied
by a reduction in the rate of chord-normal trajectory, as shown in Fig. 2.6a. In
fact, for k ≥ 0.08, the LEV is shown to move back towards the airfoil surface. Note
that this reversed motion of the LEV only occurs once the LEV travels beyond the
airfoil mid-chord, XLEV /c = 0. Therefore as the airfoil begins to pitch back up in
clock-wise direction at t/T ≈ 0.25, the latter half of the airfoil moves downwards
and hence it gets closer to the LEV. On the other hand for k = 0.06, the LEV slows
down at t/T ≈ 0.23 and then moves away quite rapidly again at t/T ≈ 0.26. We
believe this is associated with the fact that at k = 0.06, a very large TEV forms
relatively early in the cycle, around which the LEV has to travel, thus pushing it
away from the airfoil surface. It is possible that the LEV at this reduced frequency
eventually moves back towards the airfoil surface after it completely travels around
the TEV, but this cannot be confirmed as the field of view is not large enough to
capture this process.

In Fig. 2.6c and 2.6d, the chord-normal and chord-wise LEV trajectories of the
LEV are plotted versus tUSL/c. It is shown that the chord-normal LEV trajectories
collapse quite well from the inception time up until the reversed motion of LEV.
Furthermore, the chord-wise trajectory is shown to collapse only up to tUSL/c ≈ 2.
Beyond this time, the trajectory becomes highly dependent on the value of the
reduced frequency. The impact of LEV trajectory on the lift force production is
discussed later in the paper.

2.3.3 Application of impulse equation to experimental data

Before presenting force results it is necessary to examine the effects of origin lo-
cation when evaluating the terms. Although the impulse-based force equation is
theoretically independent of the origin location (x0), the presence of errors in the
data can be significantly amplified by the origin location. As mentioned by De-
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Figure 2.7: (a) Contour of the root mean square deviation between the left- and
right-hand side of the sum of Eq. 2.3.4 and 2.3.5, (b) coordinate system and (c)
comparison of the sum of the left-hand side (sold lines) with the sum of the right-
hand side (symbols) of Eq. 2.3.4 and 2.3.5 using the objectively defined origin.
The black, red and blue colors represent k = 0.06, 0.10 and 0.14, respectively.

Voria et al. (2014) and Rival & Van Oudheusden (2017), the error amplification
due to the selection of the origin location selection in the current approach is sim-
ilar to that resulting from the selection of the reference pressure location in the
direct integration of the Navier-Stokes equation. DeVoria et al. (2014) developed
a technique that yields the origin location that mitigates the amplified error. This
technique utilizes the DMT identity to relate the local and convective accelera-
tions (which are used to remove the pressure term, see DeVoria et al. (2014) for
a complete discussion) with other terms that contain only the measured velocity.
The contribution of the viscous stress is not taken into account in this analysis
because its influence on the forces is often negligible (as is shown later). The DMT
(which is valid for any vector) is written here for the two vector quantities that
are associated with the local and convective accelerations, respectively:

(N − 1)

∫
udV =

∫
(x− x0)× ωdV −

∮
S+SB

(x− x0)× n× udS (2.3.4)
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−(N − 1)

∮
S

1

2
(u · u)ndS =

∮
S

(x− x0)× n× [u · ∇u + u× ω]dS (2.3.5)

where the subscript S + SB indicates that the surface integral is performed at the
exterior surface S and the airfoil surface SB. Note that for the local acceleration
condition in Eq. 2.3.4, the velocity time derivative is not used to ensure that the
error associated with the temporal discretization does not propagate in defining
the origin location. The idea here is to determine the origin location x0 that best
satisfies the left-hand side of both equations (which involve only the measured
velocity). Although S ∪ SB, the contributions from SB can be represented by the
added mass which is exactly known and thus can be omitted from this evaluation.
The objective origin is defined as the one that best satisfies the summation of these
equations on a component-wise basis. This is determined as the origin which yields
the smallest root mean square deviation (RMSD) over time between the left- and
right-hand sides of the summation of Eq. 2.3.4 and 2.3.5. The random velocity
errors in the left-hand side leads to negligible error accumulation (DeVoria et al.,
2014). In this study the flow is assumed to be two-dimensional and thus N is set
to 2. Since we are interested in the lift force, the analysis is conducted for the y
component only because the x moment arm plays a much bigger role in the lift
production than the y moment arm (Noca, 1997). Equations 2.3.4 and 2.3.5 are
non-dimensionlized by 1

2
U2
∞Tc and 1

2
U2
∞c, respectively. We calculate the RMSD

for 3600 origins uniformly distributed over the entire measurement plane. Figure
2.7a shows a contour plot of the RMSD (in percentage of the maximum value of
the sum) as a function of the origin location for k = 0.06. Figure 2.7b displays the
coordinate system that is used. As shown, the RMSD is strongly dependent on the
origin of the x-axis, while its dependence on the y-axis is essentially insignificant.
It is shown in Fig. 2.7a that the RMSD is minimized at the downstream boundary
(x0/c = 0) of the control volume (at this location the RMSD varies from 1.2%
of the maximum value to 3.5%, depending on y0). The contour distribution of
the RMSD is found to be essentially identical for all reduced frequencies tested.
Figure 2.7c compares the sum of the left-hand side (solid lines) with the sum of the
right-hand side (symbols) of Eq. 2.3.4 and 2.3.5 for x0/c = 0, showing excellent
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Figure 2.8: (a) A schematic of different control volumes used to test control volume
dependence and (b) time-history of the lift force for various control volumes at
k = 0.06.

agreement.
In addition, an analysis was conducted to investigate the effects of control

volume size on the origin location as well as the calculated transient lift force.
Six control volumes were tested, which are shown in Fig. 2.8a. We varied the
control volume size by adjusting the distance from the airfoil trailing edge to
the downstream boundary (s/c). The largest control volume corresponds to a
distance of 1 chord length from the trailing edge to the downstream boundary,
whereas the smallest control volume corresponds to a distance of 0.25c. The cross-
stream size of the control volume was found to have a negligible influence on the
results. For all control volumes tested, the objective origin was always located at
the downstream boundary with RMSD values below 4 %. Figure 2.8b shows the
effect of control volume size on the calculated lift coefficient (Cy = 2Fy/ρU

2
∞c)

for k = 0.06. It is shown that the transient lift force is significantly altered by
the distance of the downstream boundary to the airfoil trailing edge when s/c <
0.85. As s/c is decreased, the time at which the force begins to deviate from
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the converged force estimate (i.e. when s/c > 0.85) is shifted to earlier times.
For example when s/c = 0.25, the force begins to deviate from the converged
force estimate at t/T ≈ 0.19, whereas for s/c = 0.55, the deviation occurs t/T ≈
0.23. For all reduced frequencies considered in this study, the force deviation
from the converged estimate seems to occur only when the LEV advects outside
of the control volume while it is still growing (i.e. entraining vorticity from the
shear layer). When s/c increases, there is sufficient area for the LEV to reach its
maximum circulation before it begins to advect outside of the control volume. This
effect is quite interesting and will be thoroughly addressed in a future publication.
For the remainder of this paper, we use the largest control volume (s/c = 1) to
conduct the rest of our analysis.

2.3.4 Reduction of the impulse equation

For convenience, the impulse-based force equation for a two dimensional flow is
rewritten:

F =

T1︷ ︸︸ ︷
− ρ

N − 1

d

dt

∫
Vf

(x− x0)× ωdV +

T2︷ ︸︸ ︷
ρ

∮
S

n ·
(1

2
u2I− u⊗ u

)
dS

+

T3︷ ︸︸ ︷∮
S

n · λimpdS+

T4︷ ︸︸ ︷
ρ

N − 1

d

dt

∮
SB

(x− x0)× (n× u)dS (2.3.6)

As was mentioned previously, the impulse force equation contains complex bound-
ary integral terms that account for the finite control volume. The physical inter-
pretation of these terms is not obvious, and therefore it is difficult to isolate the
mechanisms responsible for the lift production. We now show that it is possible
to greatly simplify this formulation through the use of the objectively determined
origin defined in the previous section.

To calculate the transient lift force, the flow impulse (denoted as T1 in Eq.
2.3.6) was fitted to a cubic spline prior to taking the time derivative. The time
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Figure 2.9: Evaluation of the four terms of Eq. 2.3.6 contributing to the lift force
in the impulse equation as well as the total lift force for (a) k = 0.06 and (b) k =
0.14. For clarity, only every other data point is plotted.

derivative was calculated using a central difference scheme with dt = 0.004s. The
results are filtered using an eight-point moving average to remove the high fre-
quency fluctuations related to measurement noise from the force signal. Note that
data in the first and last t/T = 0.01 of the downstroke are omitted due to unreliable
fits. Figure 2.9 shows the total lift coefficient (Cy), as well as the contribution of
each individual term of the impulse equation for k = 0.06 and 0.14. As shown, the
total lift coefficient is dominated by the first two terms, with the first, T1, domi-
nant during the first part of the downstroke, and then a combination of T1 and T2

dominant during the remainder of the downstroke. The third and fourth terms,
T3 and T4, are negligible during the entire cycle. The inertial force of the fluidic
body (T4) is typically negligible for thin airfoils moving in air. The impulse flux
force, T3, is evaluated on the control volume boundaries, and vortical structures
leave the control volume mainly through the downstream boundary. It is apparent
that this term is dependent on the streamwise origin location x0. By choosing an
origin located at the downstream boundary, this term becomes negligible (though
not exactly zero, because some vortices may leave the upper and lower boundaries
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of the control volume). These results are consistent with the suggestion by Noca
(1997) that the impulse flux force contribution leads to the dilemmic dependence
of the impulse force equation on the origin location. By locating the origin at the
downstream boundary the contribution of n·u(x×ω) is significantly reduced. This
justification seems to resonate well with the objective origin definition proposed
by DeVoria et al. (2014).

Based on the above arguments, the force equation can be simplified by retaining
T1 and T2 as follows:

F ≈ −ρ d
dt

∫
(x− x0)× ωdA+ ρ

∮
S

n ·
(1

2
u2I− u⊗ u

)
dS (2.3.7)

The first term is the rate of change of impulse, which represents the force pro-
duced by vortical structures within the control volume. This term consists of the
contributions of the vortex circulation growth and advection to the transient lift
force (Stevens & Babinsky, 2017). Moreover, Saffman (1992) showed that for an
impermeable body, the second term on the right-hand side can be written in terms
of the Lamb vector such as:∮

S

n ·
(1

2
u2I− u⊗ u

)
dS =

∫
u× ωdA (2.3.8)

Note that Saffman (1992) shows that the velocity within a vortex can be written
as u = uv + ue, where uv is the velocity induced by the vortex itself (which can
be calculated using Bio-Savart law) and ue is the external velocity (Kang et al.,
2018). The Lamb vector of the self-induced velocity of the vortex,

∫
uv × ωdV ,

can be shown to equal zero, meaning that the total vortex force exerted by the
vortex on itself is zero. Therefore the only contribution from the Lamb vector is∫

ue ×ωdA. This can be interpreted as follows. The external velocity, which also
includes the induced velocity by other vortical structures either inside or outside
of the control volume, interacts with the vorticity of a specific vortex structure
(e.g. LEV) within the control volume to produce a force on the airfoil. When the
entire vorticity field is contained within the control volume, for example in starting
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flows, then the vortex force can be shown to equal zero. This suggests that the
vortex force term due to vortices outside of the control volume can be thought of
as a history effect of the vortex shedding in the far-wake.

Now that the impulse equation has been reduced to terms with clear physical
meanings, the mechanisms responsible for the transient lift production can be
analyzed. It can be noted that Eq. 2.3.7 is identical to the formulation developed
by Kang et al. (2018) using the minimum-domain theory.

2.3.5 Transient lift force analysis

The transient lift coefficient is plotted in Fig. 2.10 for low and high reduced fre-
quency ranges, k = 0.06 - 0.10 (Fig. 2.10a) and k = 0.12 - 0.16 (Fig. 2.10b). For
the low reduced frequency range, the lift coefficient is shown to contain two peaks.
The magnitude of the secondary peak, which occurs later in the downstroke, is
approximately 50% - 55% of the magnitude of the primary peak. The timing of
both the primary and secondary peaks is delayed, and their magnitudes increase
with increasing reduced frequency. For all reduced frequencies, the lift coefficient
approaches positive values (i.e. opposite direction of lift) by the end of the cycle,
where the magnitude also increases with increasing reduced frequency. The gen-
eration of two lift peaks for heaving and pitching airfoils has been reported in the
literature by several researchers (Deng et al., 2014; Karbasian et al., 2016; Totpal
et al., 2017). Furthermore, the high reduced frequency cases also show that an
additional tertiary lift peak is produced early in the downstroke, whose magni-
tude relative to the primary peak lift increases with increasing reduced frequency.
Similar to the smaller reduced frequency range, the primary and secondary peaks
increase in magnitude and are delayed in time as k increases. It is seen that the
lift coefficients at high reduced frequencies do not approach positive values at the
end of the cycle.

Fig. 2.10c and 2.10d show results using a rescaling of the cycle time that is
based on the leading edge velocity as tUSL/c. Interestingly, the primary force peak
force that occurs near tUSL/c ≈ 1.75, is consistent for all reduced frequencies. Also,
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Figure 2.10: Transient lift coefficient versus t/T for (a) k = 0.06-0.10 and (b) k =
0.12-0.16. Transient lift coefficient versus tUSL/c for (c) k = 0.06-0.10 and (d) k
= 0.12-16.

the value of this convective time scale is slightly after the time at which the LEV
is initiated (see Fig. 2.5c). This seems to imply that the roll-up of the leading
edge shear layer into an LEV is the dominant mechanism of peak lift production.
It also indicates that the leading edge velocity scaling of the time of this peak
is explicitly independent of the reduced frequency since this scaling collapses the
data over this reduced frequency range. For the lower range of reduced frequencies
in Fig. 2.10c the lift coefficient is shown to collapse fairly well up until the local
minimum just after the primary peak is produced. For time tUSL/c > 3.7 the lift
coefficients begin to diverge. This corresponds to the time at which the trailing
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edge shear layer begins to roll-up into a TEV. The results for the larger range of
reduced frequencies in Fig. 2.10d show somewhat different trends. For these cases
the TEV does not form and hence the lift coefficients do not significantly diverge at
later times during the cycle. Also, for the larger reduced frequencies, the influence
of the lagging LEV from the previous cycle near the top heaving position results
in a third minor peak at early times in the cycle. The strength of this minor peak
increases with increases reduced frequency while occurring earlier at the start of
the downstroke. In fact, it is only this early cycle minor peak that distinguishes
the effect of increasing reduced frequencies for the high k values.

To better understand the role of vortical structures, in particular the LEV and
TEV, in lift force production, it is necessary to correlate them with the transient
lift force. Rather than using the vorticity field alone, we use the local integrand of
the impulse and vortex forces of Eq. 2.3.7. For the vortex force, the lamb vector
is used instead of the flux formulation to visualize its local contribution within the
control volume. Figure 2.11 shows the total lift coefficient (Cy) for k = 0.06, as well
as the contributions of the impulse (Cy,I) and vortex (Cy,V ) forces. In addition,
contours of vorticity and the integrand of impulse (Fy,I) and Lamb forces (Fy,V ) for
five snapshots during the downstroke motion are provided. Both force integrands
are normalized by 2c/ρU2

∞. In snapshot (1), the LEV had just been formed, and it
remains compact and quite close to the airfoil surface. The impulse force contour
plot shows that the LEV is primarily producing a negative impulse (in the direction
of lift). The total lift here is dominated by the LEV impulse force. While the LEV
is shown to produce a vortex force, its contribution is approximately cancelled by
the vortex force produced by the trailing edge shear layer, hence Cy,V ≈ 0. Slightly
after peak force production in snapshot (1), the LEV begins to lift-off from the
airfoil surface. As a result, the total lift is reduced from Cy ≈ −1.2 to Cy ≈ −0.5

in snapshot (2). This reduction in force is a consequence of the low pressure zone
generated by the LEV being relatively far away from the airfoil, which reduces
the pressure difference between the upper and lower surfaces. From the impulse
analysis point of view, the LEV begins to produce a positive impulse force (lift-
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Figure 2.11: Synchronization of the transient lift force with the vorticity field and
the local contours of the impulse and vortex forces for k = 0.06.

diminishing) that approximately cancels the negative impulse contribution (lift-
enhancing), such that Cy,I ≈ 0. Additionally, the LEV is also shown to produce
a positive vortex force (lift-diminishing), however, the lift-enhancing effect clearly
dominates. The total lift force at this snapshot is primarily due to the vortex force
of the LEV.

The fact that the LEV produces lift-enhancing as well as lift-diminishing im-
pulse and vortex forces is quite interesting. Contrary to the conventional belief
that LEVs on the suction side only provide lift-enhancing contributions, it is nec-
essary to stress that there is no vortical structure that provides a purely single-sign
contribution to the aerodynamic forces. Wu et al. (2007a) have observed a similar
phenomena for drag force analysis for a flow past a cylinder. They explained that
this observation is consistent with the fact that attached flows over an airfoil pro-
duce boundary layers at the upper and lower surfaces of the airfoil, but only the
sum of the total vorticity in the boundary layer (i.e. net circulation) yields the de-
sired lift. Furthermore, an alternative explanation of the significant lift reduction
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Figure 2.12: Synchronization of the transient lift force with the vorticity field and
the local contours of the impulse and vortex forces for k = 0.14.

at (2) can be understood by decomposing the force impulse into circulation growth
and chord-wise trajectory of the LEV. At this instant in time (t/T ≈ 0.16), the
rate of change of LEV circulation significantly decreases (Fig. 2.5a) and the LEV
chord-wise advection approaches zero (Fig. 2.6b). Consequently, the LEV impulse
force contribution is greatly decreased. The magnitude of the secondary lift peak
in (3) is also shown to be dominated almost entirely by the vortex force produced
by the LEV and its shear layer. The formation of the peak itself, however, is a
result of the impulse force becoming less negative and ultimately going positive
near t/T ≈ 0.25. This is equivalent to the convective time scale of tUSL/c ≈ 3.7,
at which the TEV begins to form. In snapshot (4), the total lift force is shown
to drop to very small values. The LEV here has attained its maximum circula-
tion (see Fig. 2.5a at t/T ≈ 0.30), and thus no longer contributes to the force
impulse. In addition, its advection relative to the TEV is also expected to signif-
icantly drop as it approaches the trailing edge of the airfoil (Stevens & Babinsky,
2017). Meanwhile, the rolled-up TEV begins to generate a net positive impulse
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force (i.e. lift-diminishing), which almost cancels with the vortex force produced
by the leading edge shear layer and TEV. Beyond snapshot (4), the LEV begins
to convect outside of the control volume, which is reflected by the impulse force
going from positive to negative values in snapshot (5). This is accompanied by the
change of the sign of the vortex force from positive to negative. in snapshot (5)
and beyond, the TEV begins to leave the control volume, and the impulse force
decays from negative values to zero, whereas the Lamb force decays from positive
values to zero, hence they cancel each other to result in Cy ≈ 0 by the end of
the downstroke. This equal and opposite trend of the Lamb and impulse forces
indicates that the Lamb vector is indeed picking up the contribution of the LEV
and TEV as they leave the control volume.

As the reduced frequency is increased to k = 0.14, the third lift peak is formed
early in the cycle, as shown in snapshot (1) for k = 0.14 in Fig. 2.12. The negative
LEV generated from the previous upstroke is shown to be captured by the airfoil as
it begins heaving/pitching downward. The majority of the impulse force is shown
to be sporadically distributed within the separated flow on the upper surface of
the airfoil. It should be kept in mind that Fy,I is calculated locally and therefore
the noise level due to spatial and temporal derivatives may be high. However the
integrated value (Cy,I) clearly dominates the total lift production. Furthermore,
the small positive vortex force at this instant is shown to be dominated by the
upper-surface shear layer. In snapshot (2), this lift-enhancing effect has subsided
and the upper shear layer begins to re-attach to the airfoil surface. The lift here
is dominated by the impulse force from the nearly-attached boundary layer. How-
ever we anticipate that the accuracy of the force calculation here to be somewhat
hindered by the fact that the PIV measurements do not fully resolve the surface
vorticity. The mechanism responsible for the production of peak force in snapshot
(3) is identical to the mechanism identified for the lower reduced frequency value.
In snapshot (4), it is shown that the secondary peak force is a result of the slight
increase (in the negative direction) of the impulse force Cy,I . Since the LEV is no
longer growing at this instant of time (see Fig. 2.5a), the increase of the impulse



47

force can then be associated with the enhanced chord-wise advection of the LEV
(i.e. the slope of the chord-wise LEV position increases at this instant, as shown
in Fig. 2.6b. Furthermore, a notable difference at this large reduced frequency
case is the lack of TEV formation. As explained in the previous section, the LEV
approaches the trailing edge of the airfoil quite late in the downstroke, where the
angle of attack is not large enough to support the roll-up of the trailing edge shear
layer into a TEV. Consequently, the lift-diminishing effect of the TEV is avoided.

To conclude the above discussion, the lift-enhancing mechanisms for the low
reduced frequency range (k = 0.06−0.10) are all related to the LEV generation, its
growth and its trajectory relative to the airfoil surface. As the reduced frequency
is increased to k = 0.12 − 0.16, the slower convective time scale of the vortical
structures allows the airfoil to capture the influence of the previously shed LEV,
whereas the lift-diminishing effect of the TEV is avoided. It is interesting to
note the optimal vortex formation generated for the low frequency cases does not
correlate with the peak lift. This contradicts the findings of Milano & Gharib
(2005), who show that the peak lift force is produced when the LEV formation
number reaches approximately 4. However, their results are for a flapping wing
(pitching) while translating (not heaving) which does not have the same effect
on the trajectory of the leading edge vortex motion relative to the surface. We
believe that this discrepancy of lift force versus formation number is related to
the fact that the LEV generated in our experiments begins to lift-off from the
airfoil surface much before the optimal formation number is achieved. Therefore
the correlation between the optimal vortex formation number and maximum lift
production is not only dependent on the LEV size and strength, but also on the
LEV trajectory relative to the airfoil. At larger values of k our results show that an
optimal formation number is never reached due to the disconnection of the feeding
shear layer from the leading edge vortex. For energy harvesting applications where
it is important to correlate peak force with peak heaving velocity during the cycle,
the delayed leading edge vortex formation associated with higher k values improves
power production even though the peak formation numbers are lower. Lastly, for all
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reduced frequencies, the impulse force produces the general trend of the transient
lift, whereas the vortex force simply modifies the lift magnitude. The implication
of this is that unlike impulsively moving airfoils where the entire circulatory force
is dominated by the impulse force (Stevens & Babinsky, 2017), the contribution of
the vortex force must be taken into consideration when constructing low-order lift
models of continuously oscillating airfoils.

2.4 Conclusions

In this paper, two dimensional particle image velocimetry measurements were
conducted to investigate the vortex dynamics and lift force production mecha-
nisms of an oscillating airfoil undergoing dynamic stall at reduced frequencies of
k = 0.06− 0.16. The transient lift force was estimated from the velocity fields and
its derivatives using the derivative moment transformation-based impulse force for-
mulation. The moment-arm dilemma associated with the application of the force
impulse equation to experimental data was investigated. It is shown that the ori-
gin location that most effectively reduces the amplified error due to the position
vector was always located at the downstream boundary of the control volume. In
addition, it was found that the calculated lift forces were consistent when the dis-
tance from the airfoil trailing edge to the downstream boundary was equal to and
greater than 0.85c. Upon using the objectively defined origin, the impulse force
equation was shown to reduce to two dominating terms: the rate of change of the
impulse within the control volume and the Lamb vector thereof that picks up the
contribution of vortices outside of the control volume.

For k = 0.06−0.10, the lift force results show that there are two force peaks that
form during the downstroke/upstroke. The primary peak is associated with the
formation of the leading edge vortex and the secondary peak is associated with its
enhanced time rate of circulation growth and chord-wise advection. Even though
the optimal leading edge vortex formation number was attained for these lower
reduced frequencies, it was observed that its timing was not well correlated with
the timing of maximum lift force. In addition, at this low reduced frequency range,
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the trailing vortex sheet was observed to roll-up into a trailing edge vortex. The
trailing edge vortex was shown to produce lift-diminishing effects, whose intensity
increases with increasing reduced frequency. For k = 0.12− 0.16, a third lift peak
was shown to form at the beginning of the downstroke due to a vortex capture-
like effect from the LEV shed during the previous upstroke. No trailing edge
vortex formation was observed at these high reduced frequencies, hence the lift-
diminishing effect is avoided.

The results of this study may be of great importance in developing low-order
models of transient lift forces produced by oscillating airfoils undergoing dynamic
stall. In particular, the overall trend of the lift force was shown to be primar-
ily dependent on the impulse force produced by vortical structures (leading and
trailing edge vortices and their associated shear layers) within the control volume.
However, the Lamb force, which indirectly captures the influence of the far-field
vortical structures may significantly alter the magnitude of lift. The implication
of this is that the influence of vortical structures in the far-field must also be
considered when constructing low-order models.
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Abstract

This study explores the feasibility of using the vortex impulse approach, based
on experimentally generated velocity fields to estimate the energy harvesting per-
formance of a sinusoidally flapping foil. Phase-resolved, two-component particle
image velocimetry measurements are conducted in a low-speed wind tunnel to cap-
ture the flow field surrounding the flapping foil at reduced frequencies of k = fc/U∞

= 0.06 - 0.16, pitching amplitude of θ0 = 75◦ and heaving amplitude of h0/c = 0.6.
The model results show that for the conditions tested, a maximum energy harvest-
ing efficiency of 25% is attained near k = 0.14, agreeing very well with published
numerical and experimental results in both accuracy and general trend. The vor-
tex impulse method identifies key contributions to the transient power production
from both linear and angular momentum effects. The efficiency reduction at larger
values of reduced frequencies is shown to be a result of the reduced power output
from the angular momentum. Further, the impulse formulation is decomposed
into contributions from positive and negative vorticity in the flow and is used to
better understand the fluid dynamic mechanisms responsible for producing a peak
in energy harvesting performance at k = 0.14. At the larger k values, there is a
reduction of the advective time scales of the leading edge vortex (LEV) formation.
Consequently, the LEV that is shed during the previous half cycle interacts with
the foil at the current half cycle resulting in a large negative pitching power due
to the reversed direction of the kinematic motion. This vortex capture process sig-
nificantly decreases the total cycle averaged power output and energy harvesting
efficiency. These results show the link between the kinematic motion and LEV
time scales that affect the overall power production.

3.1 Introduction

The rising global trend to reduce dependence on fossil fuels has provided signifi-
cant motivation toward the development of alternative energy conversion methods
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and new technologies to improve their efficiency. Recently, flapping foil energy
harvesters have been gaining a wider scope of attention as a means of extracting
energy from streams, rivers, tidal flows and wind (Xiao & Zhu, 2014). These de-
vices offer important advantages to the conventional rotary turbines from efficiency,
economic and environmental perspectives (Young et al., 2014). For example, these
systems can use significantly lower free stream velocities, allowing for a wider range
of available resource sites at both large and small scales. Their operation can mit-
igate the occurrence of centrifugal stresses on the foil resulting in less structural
constraints, as well as having reduced noise output and animal interactions Zhu
(2011).

The concept of flow energy harvesting using flapping foils was proposed by
McKinney & DeLaurier (1981). The motion kinematics of the flapping foil, which
is typically modeled as combined sinusoidal heaving and pitching motion at very
large angles of attack, results in flow separation and formation of the leading edge
vortices (LEVs). LEV structures produce regions of low-pressure on the suction
side of the foil and generate a large suction force as long as they remain attached to
the foil surface (Polhamus, 1971). It is widely acknowledged that the LEV provides
a mechanism for the high energy harvesting capabilities of flapping foils (Xiao &
Zhu, 2014). This is in contrast to the traditional wind/hydro-turbines, where the
flow must remain attached to the foil surface to achieve high energy harvesting
efficiency levels.

The vast majority of published studies on flapping foil energy harvesters have
utilized numerical simulations to perform parametric investigations and to optimize
the overall performance (Dumas & Kinsey, 2006; Kinsey & Dumas, 2008; Peng &
Zhu, 2009; Zhu, 2011). The instantaneous power extracted by the flapping foil
from fluid flow is defined as follows:

P = Fyḣ+Mθ̇ (3.1.1)

where Fy is the force in the direction of heaving motion, ḣ is the heaving velocity,
M is the pitching moment and θ̇ is the pitching velocity. It has been shown that
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the rate of energy harvesting is maximized when operating at reduced frequencies
of k = fc/U∞ = 0.10− 0.15 (where f is oscillation frequency, c is foil chord length
and U∞ is free stream velocity), heaving amplitudes of h0/c = 0.5 − 1.0, pitching
amplitudes of θ0 = 70◦ − 90◦ and a phase shift of 90◦ between the heaving and
pitching motions (Kinsey & Dumas, 2008; Zhu, 2011; Kim et al., 2017). Currently,
the majority of research studies on flapping energy harvesters are concerned with
developing mechanisms to further enhance energy extraction capacity. Such mech-
anisms include the use of non-sinusoidal motion and structural flexibility of the
foil (Xiao et al., 2012; Liu et al., 2013; Lu et al., 2014; Siala & Liburdy, 2015).
These mechanisms, as well as others, attempt to control the LEV evolution to
enhance the forces and their timing during the flapping cycle. Major contributions
to understanding the complexities of LEVs have come from animal and insect
flight (Leishman, 1994; Ellington et al., 1996; Madangopal et al., 2005; Platzer
et al., 2008). However, energy harvesting typically occurs at relatively low reduced
frequencies, where there is a dearth of knowledge concerning LEV evolution and
mechanisms responsible for establishing the LEV time scales to compliment the
much slower relative oscillation time scales of energy harvesting. Of particular
interest is application of the optimal vortex formation by Gharib et al. (1998).
Dabiri (2009) has shown that there exists a strong correlation between the opti-
mal vortex formation and thrust produced by swimming animals through vortex
propulsion. However, it remains unknown whether this correlation also applies to
LEV formation and energy harvesting efficiency of flapping foils. In addition to
LEVs, operating at such low reduced frequencies may also trigger the formation
of other large-scale flow structures such as trailing edge vortices (TEVs) (Siala
et al., 2017). To design more effective mechanisms of energy harvesting enhance-
ment, there is a need to investigate the relationship between the dynamics of flow
structures and power production in greater depth.

The relationship between flow structures and power production is typically
studied qualitatively, where the vorticity field is synchronized with the instanta-
neous fluid dynamic force and moment (Xie et al., 2014; Kim et al., 2017). The
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disadvantage of this method is that it does not allow one to quantify the effects
of different flow structures on the total force. In addition, it is often not feasible
to experimentally measure the fluid dynamic forces accurately due to challenges
in separating the inertial contributions from the total measured force (Rival et al.,
2009). This is especially a problem in wind tunnel experiments, where the foil
density can be orders of magnitude greater than the density of air. As a result,
wind tunnel experiments have been focused on very low reduced frequencies in
order to minimize the inertial effects (Totpal et al., 2018). Recently, many authors
began using the concept of vortex impulse to estimate the fluid dynamic forces
from the measured velocity field (Lin & Rockwell, 1996; Kim et al., 2013; Li &
Wu, 2015; Kang et al., 2018; Siala et al., 2018). Originally, this concept was intro-
duced to bypass the integration of total momentum in infinite regions (Lighthill,
1986a; Saffman, 1992; Batchelor, 2000). Estimating the fluid dynamic forces us-
ing the vortex impulse technique offers several advantages. For example, it only
requires the knowledge of the velocity field, where the evaluation of pressure field
is not required. This makes it a very attractive tool for the experimental fluid
dynamics community since inferring the pressure field from velocity data is often
a non-trivial task. In addition, since the impulse equation is linearly dependent on
vorticity, it is possible to quantify the contribution of different vortex structures
to the total force, which is quite advantageous when, for example, the goal is to
design mechanisms that enhance the LEV contribution to force generation and
power output.

The objectives of this paper are: (i) to explore the feasibility of using experi-
mentally generated velocity fields to estimate the energy harvesting performance
and (ii) to better elucidate the mechanisms of power production of flapping foils.
Two-component PIV measurements are conducted to capture the flow field sur-
rounding the flapping foil. The aerodynamic loads and moment are determined
using the finite-domain impulse theory (Noca et al., 1999). While the impulse
theory has been used extensively in estimating the lift and drag forces, to the best
of our knowledge, its application for estimating the pitching moment has not been
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(a) (b)

Figure 3.1: (a) Drawing of the experimental setup illustrating the wind tunnel,
motion device and PIV system and (b) zoomed-in view of the motion device.
Figures are adopted from Totpal (2017).

reported in the literature.
The rest of the paper is organized as follows. In Section 3.2, the details of

experimental methodology are presented. In Section 3.3, the techniques of data
analysis are provided. Section 3.4 presents results of force and moment analysis and
power production. Finally, conclusions and implications of this work are provided
in Section 3.5.

3.2 Methodology

The experimental setup in the wind tunnel and a zoomed-in view of the motion
device are sketched in Fig. 3.1. The foil was fabricated using fused deposition
modeling, and has a chord length, thickness and aspect ratio of 125 mm, 6.25 mm
and 2, respectively. The foil is attached to the motion device using a titanium rod
spanning through the mid-chord of the foil. The motion device is used to generate
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the heaving and pitching motion according to the following equations:

h(t) = h0cos(2πft) (3.2.1)

θ(t) = θ0cos(2πft+ Φ) (3.2.2)

where h0 is the heaving amplitude, θ0 is the pitching amplitude, Φ is phase shift
between heaving and pitching and t is time. In this study, the heaving amplitude,
pitching amplitude and phase shift are fixed at h0/c = 0.6, θ0 = 75◦ and Φ = 90◦,
respectively, whereas the reduced frequency, k, was varied from 0.06 to 0.16 in
increments of 0.02. A sketch of the foil motion is shown in Fig. 3.2a. Furthermore,
the motion kinematics can be integrated into the effective angle of attack, which
is typically defined as follows:

αe = θ(t)− arctan

(
ḣ(t)

U∞

)
(3.2.3)

The effective angle of attack for one cycle is plotted in Fig. 3.2b for k = 0.06−0.16.
Phase-resolved particle image velocimetry measurements were conducted at the

mid-span with a vector resolution of 1.8 mm (approximately 70 vectors per chord
length). End plates were used to mitigate the three-dimensional effects. The
phase-averaged velocity fields were obtained by averaging one hundred images at
each phase of interest. A total of 116 phases during the downstroke motion with
an equal spacing of ∆t/T = 0.004 were acquired. To capture the entire flow field
surrounding the oscillating foil, the experiments were repeated at a phase delay
of 180◦ for each of the 116 phases. The 180◦ out of phase flow fields were then
mirrored and stitched to the rest of the vector field to construct the full flow field
surrounding the foil, as shown in the previous chapter. Uncertainty analysis based
on the statistical-correlation technique developed by Wieneke (2015) yielded an
average uncertainty of 1.3% and 2.1% of the local stream-wise and cross-stream
velocity component, respectively.
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Figure 3.2: (a) Heaving and pitching motion. The foil pitching center is located
at c/2 and d is the total crossflow distance swept by the foil. (b) Effective angle
attack versus time for k = 0.06-0.16

3.3 Data analysis

The total cycle-averaged power coefficient is divided into two components, the
power from heaving motion CP,h and the power from pitching motion CP,θ:

CP = CP,h + CP,θ (3.3.1)

where the cycle-averaged heaving and pitching power coefficients are defined as
follows:

CP,h =
2Fyḣ

ρU3
∞c

(3.3.2)

CP,θ =
2Mz θ̇

ρU3
∞c

(3.3.3)

Furthermore, we define the energy harvesting efficiency, η, as the ratio of power
output to the available fluid power in the swept area of the two dimensional foil.
Similar to the power coefficient, the total efficiency is decomposed into heaving
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and pitching components such as follows:

ηh = CP,h
c

d
(3.3.4)

ηθ = CP,θ
c

d
(3.3.5)

where d is the total crossflow length swept by the foil.
The two-dimensional impulse-based aerodynamic force (Noca et al., 1999) can

be written as follows:

F = −ρ d
dt

∫
A

x× ωdA+ ρ

∫
u× ωdA− ρ

∮
S

n ·
(

[u(x× ω)]
)
dS

+

∮
S

[x · (∇ ·T)I− x(∇ ·T)]dS + FAM (3.3.6)

where x is the position vector, ω is the vorticity vector, u is the velocity vector,
T is the stress tensor, I is the identity tensor and n is the normal vector. The
first term is integrated over the fluidic area A that is bounded by the control
volume surface S and the foil surface, where as the second, third and fourth terms
are integrated over the control volume surface S. Although the equation above
is theoretically independent of the origin location x0, Siala & Liburdy (2019a)
have shown that by choosing an origin located on the downstream boundary of the
control volume, the surface integrals can be shown to have negligible contributions,
and the two-dimensional force equation can be written as follows:

F = −ρ d
dt

∫
x× ωdA+ ρ

∫
u× ωdA+ FAM (3.3.7)

The advantage of this simplified equation is that it contains only three terms with
clear physical meaning. The first term on the right-hand side is referred to as
the impulse force and it is associated with the growth and advection of vortical
structures in the control volume (Stevens & Babinsky, 2017). The second term on
the right-hand side is referred to as the vortex force, which represents the effect
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of vortex structures outside of the control volume on the total force (Kang et al.,
2018; Siala & Liburdy, 2019a). The term FAM is the added-mass force, which
represents the force felt by the oscillating foil as it pushes against the adjacent
fluid. For thin foils submerged in air, the added-mass force is negligible.

The aerodynamic moment equation can be shown to be written as follows:

M = ρ
1

2

d

dt

∫
x2ωdA+ ρ

∫
x× (u× ω)dA− ρ1

2

∮
x2n× (u× ω)dS (3.3.8)

where we refer to the first and second terms on the right-hand side as the impulse
moment and vortex moment, respectively. The third term on the right-hand side
takes into account the contributions of flow structures passing through the bound-
ary (S) of the control volume. Since we are interested in estimating the moment
about the pitching axis of the airfoil, the origin location for the moment equation
was set at the pitching axis (mid-chord). The errors from the velocity fields were
propagated to the force and moment in order to calculate their uncertainty, which
were estimated to be 13.6% and 16.2% of their maximum values, respectively.

One important advantage of the impulse-based force and moment equations is
that they are linearly dependent on vorticity, meaning that total force and moment
impulse can be treated as a superposition of impulses of every individual vortex
structure in the flow. For simplicity, in this study we categorize two different
vortical structures: one with positive sign vorticity, and the other with negative
sign vorticity. We define the heaving power coefficient of the positive vortical
structures noted with “+” as:

CP,h+ =
2Fy+ḣ

ρU3
∞c

(3.3.9)

CP,θ+ =
2Mz+ḣ

ρU3
∞c

(3.3.10)

Similarly, the pitching power coefficient of the negative vortical structures noted
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Figure 3.3: (a) Coefficient of force and heaving velocity and (b) coefficient of
moment and pitching velocity, for k = 0.6, 0.10 and 0.14.

with “-” as:

CP,h− =
2Fy−ḣ

ρU3
∞c

(3.3.11)

CP,θ− =
2Mz−ḣ

ρU3
∞c

(3.3.12)

Upon analyzing the power production using the above decomposition, one can
correlate the vorticity dynamics with the performance more effectively.

3.4 Results

The results of this study determine the overall power production performance based
on both efficiency and power coefficient. Experimentally measured velocity fields
are used to evaluate the unsteady aerodynamic force and moment during the cycle
with results given here for the downstroke motion. The upstroke motion results are
a repetition of the downstroke with associated sign reversal. Velocity data are used
to identify the dominant flow structures as they relate to the power production.
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Figure 3.4: Phase-averaged vorticity field for discrete phases during the down-
stroke. Top row: k = 0.06, middle row: k = 0.10 and bottom row: k = 0.14.

3.4.1 Force and moment estimation

The transient force (Cy = 2Fy/ρU
2
∞c) and moment (Cm = 2Mz/ρU

2
∞c

2) coefficients
are plotted in Fig. 3.3a and 3.3b, respectively, for k = 0.06, 0.10 and 0.14. The
heaving and pitching velocities are also included. The force coefficient experiences
an initial dominant peak followed by a secondary peak. Note that for k = 0.14,
there is also a preliminary smaller peak that occurs early in the cycle at t/T ≈ 0.05.
The timing of the dominant peak events is shown to delay to later times in the
cycle as the reduced frequency increases. Also, increasing the reduced frequency
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increases the magnitude of this peak force. In contrast, increasing the reduced
frequency has minimal influence on the magnitude of the peak moment coefficient,
but it does delay the occurrence of the peak to later times in the cycle. The phase
shift of the force and moment coefficients can be understood by analyzing the
spatio-temporal evolution of vortical structures in the flow.

In Fig. 3.4, we show the evolution of the phase-averaged vorticity and velocity
fields for k = 0.06, 0.10 and 0.14. The flow approaches from the left and the
non-dimensional time t/T = 0 corresponds to the top heaving position. It is quite
obvious that the inception of the LEV is delayed when the reduced frequency
increases. This is associated with the decrease in the foil oscillation time scale
relative to the flow time scale. As a result, the shear layer requires a longer time
to react to the change in the geometric angle of attack as k increases, thereby
delaying separation. The timing of peak force generation coincides with the time
at which the LEV is lifted-off the foil surface, whereas the peak moment occurs
slightly later. The peak moment has negative values, indicating that when the LEV
forms on the bottom surface of the foil, it creates a downward force on upstream
portion of the foil. This induces a counter-clockwise moment about the pitching
axis (mid-chord). The magnitude of moment coefficient begins to decrease once the
LEV advects downstream beyond the foil center. Subsequently, the trailing edge
shear layer rolls-up into a TEV when the LEV approaches the foil trailing edge
when k = 0.06 and 0.10. For k = 0.06, the formation of the TEV (t/T ≈ 0.25)
results in only a slight decrease in the force coefficient, whereas its influence on the
moment coefficient is negligible. This is because the TEV advects downstream into
the wake shortly after it forms, such that its influence on the foil is not significant.
On the other hand for k = 0.1, the TEV is shown to completely roll on the bottom
surface of the foil by the end of the downstroke motion. Consequently, its influence
on the foil is more profound, which is reflected by the rapid decrease in the force
and increase in counter-clock wise moment at t/T ≈ 0.4.

By increasing the reduced frequency to k = 0.14, the advective time scale of
the flow becomes even larger relative to the oscillation time scale. This results in



63

the LEV that is shed during the previous upstroke to remain near the foil trailing
edge as the foil begins its downward motion (t/T ≈ 0.05). The foil takes advantage
of the proximity of this LEV to produce an early small downward force peak, as
is shown in Fig. 3.3a. In addition, as the newly formed LEV approaches the foil
trailing edge at t/T = 0.45, it is observed that the trailing edge vortex sheet does
not roll-up into a large TEV. This is because the LEV approaches the trailing edge
rather late in the cycle when the geometric angle of attack is relatively small. As
a consequence, the trailing edge shear layer does not roll into a large vortex.

3.4.2 Power output

The total instantaneous power coefficient is shown in Fig. 3.5, along with the
heaving and pitching contributions for k = 0.06, 0.10 and 0.14. For k = 0.06, the
total power coefficient (CP ) has three distinct peaks. The first peak is produced
at t/T ≈ 0.12, where both the heaving and pitching motions have a comparable
contribution. At this instant, the LEV has just lifted-off the surface of the foil,
which results in peak force and moment coefficients as shown in Fig. 3.3. The peak
force and moment coefficients both have the same sign as the heaving and pitching
velocities, respectively, resulting in a positive power output. Furthermore, there
is a secondary peak of CP that occurs at t/T ≈ 0.22, due to the heaving power
(CP,h). The timing of the secondary peak in CP,h coincides with the timing of
the secondary force peak in Fig. 3.3. Finally, the third minor peak that occurs
at t/T ≈ 0.38 is associated with only the pitching power (CP,θ). At this time, a
small positive (clock-wise) moment peak is generated that has the same sign as
the pitching velocity (which is undergoing a pitching reversal beyond t/T = 0.25),
thereby producing a positive power output. As k is increased to 0.10, the timing
of primary power peak is delayed to t/T ≈ 0.16, which is a consequence of the
delay in peak force generation with increasing reduced frequency. As shown, the
heaving motion plays a more dominant role in this peak power than the pitching
motion. A key difference between k = 0.10 and k = 0.06 is that the pitching
motion produces considerable negative power in the second half of the downstroke.
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Figure 3.5: Transient power coefficient for (a) k = 0.06, (b) k = 0.10 and (c) k =
0.14.

As discussed above, the TEV for this higher reduced frequency remains in close
proximity to the bottom surface of the foil, which results in a relatively large
negative moment. Therefore, the product of the negative moment and positive
pitching velocity of the foil is negative. Increasing k further to 0.14 the total
power is shown to have negative values at the beginning of the downstroke due
to the pitching contribution. This is a result of the LEV being shed from the
previous upstroke half cycle that is captured by the foil as it begins its downstroke
(see Fig. 3.4). In this case, the clock-wise rotating LEV that is advecting near
the foil trailing edge along the upper surface generates a large positive moment
about the pitching axis, which interacts with counter-clockwise rotating foil to
produce a negative power output. At this higher reduced frequency, the pitching
power has a negligible contribution to the primary power peak, which is generated
at t/T ≈ 0.23. Although the moment coefficient at this time is maximum, the
foil is about to reverse its pitching motion from counter clock-wise to clock-wise
rotation, such that the pitching velocity approaches zero (hence CP,θ ≈ 0). Beyond
t/T ≈ 0.25 the pitching velocity switches sign from negative to positive, whereas
the moment coefficient remains to be negative for a short period beyond this time
and thus the product of the two results in a negative pitching power. Eventually,
the LEV advects pasts the foil mid-chord and a small positive pitching power is
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Figure 3.6: (a) Energy harvesting efficiency and (b) mean power coefficient ver-
sus reduced frequency. The individual contributions of the heaving and pitching
motions are also shown.

produced at t/T > 0.4.
The total, heaving and pitching energy harvesting efficiency are shown in Fig.

3.6a. As shown, the total energy harvesting efficiency (η) increases with increasing
reduced frequency until a maximum of approximately 25% is attained at k = 0.14.
Beyond k = 0.14, the efficiency begins to decrease. The trend and efficiency values
agree very well with other results reported in the literature (Kinsey & Dumas,
2008). For example, Zhu (2011) obtained peak efficiency values of 25% - 30%
at k ≈ 0.14 for a wide range of heaving and pitching amplitudes. Furthermore
for the range of reduced frequencies that we tested, the heaving efficiency (ηh) is
shown to increase with increasing k, but the rate of increase begins to decrease at
k ≥ 0.12. On the other hand, the pitching efficiency (ηθ) contributes positively
to the total energy harvesting efficiency for k < 0.1, which then begins to have
a negative influence for k ≥ 0.1. At k = 0.16, the pitching efficiency becomes
large enough (negatively) such that the total energy harvesting efficiency begins
to drop. This trend was also observed by Kim et al. (2017). The mean total power
coefficient, as well as the heaving and pitching contributions are given in Fig. 3.6b.
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Figure 3.7: (a) Normalized LEV circulation versus time for k = 0.06 − 0.16 and
(b) maximum LEV circulation and energy harvesting efficiency versus reduced
frequency.

The mean power coefficient and energy harvesting efficiency show the same trend,
but they differ by a constant factor of c/d for the parameters studied here. The
effects of changing c/d on the efficiency by altering the maximum pitching angle
are discussed by Totpal et al. (2018).

3.4.3 Optimal leading edge vortex formation

Based on the significant role of the LEV formation, we now investigate the rela-
tionship between the optimal vortex formation and energy harvesting efficiency.
In Fig. 3.7a, the non-dimensional LEV circulation is given as a function of time
for k = 0.06 − 0.16. The circulation is normalized by the chord length and mean
leading edge shear layer velocity. The latter is approximated using the flow veloc-
ity using a frame of reference at the foil leading edge tip (Onoue & Breuer, 2016;
Siala & Liburdy, 2019a). Note that this normalization of the LEV is consistent
with the optimal vortex formation number parameter given by Dabiri (2009). The
LEV circulation is computed based on the vortex identification technique proposed
by Graftieaux et al. (2001). In this method, a scalar function, Γ2, derived from
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the velocity vector field is used to identify the vortex boundary. The circulation
is calculated by integrating the vorticity contained within the LEV boundary de-
fined by Γ2 = 2/π. It is shown in Fig. 3.7 that for k ≤ 0.10, the maximum LEV
circulation falls within 3.8−4.0, which is remarkably close to the universal optimal
vortex formation number (Gharib et al., 1998). At these reduced frequencies the
time scale of LEV growth is relatively small when compared to the oscillation time
scale. This allows the LEV to grow to its maximum possible size (as is determined
by the chord length) and circulation. This is reflected by the formation of the TEV
at these reduced frequencies, which allows the LEV to grow past the trailing edge,
thereby forcing the trailing edge shear layer to roll into a large vortex. When k

is larger than 0.10, the time scale of the LEV growth is slow compared with the
foil oscillation time scale such that the end of a cycle is reached before the LEV
attains its maximum possible size and strength. Shown in Fig. 3.7b is the max-
imum vortex formation number obtained by the LEV and the energy harvesting
efficiency as a function of reduced frequency. Clearly the efficiency increases while
the LEV formation number decreases. But this negative correlation appears to be
driven by the ratio of time scales that influence LEV formation relative to the foil
kinematic time scale. The maximum efficiency occurs at k = 0.14, where the LEV
formation number is approximately equal to 2. Unlike in propulsion applications
where the optimal vortex formation in the near-wake results in the greatest thrust,
flapping energy harvesting systems rely more on the timing of the LEV formation
and detachment. The reduced frequency of k = 0.14 seems to result in the best
match between the LEV flow and foil oscillation time scales.

3.4.4 Contribution of flow structures to power production

To further elucidate the mechanisms responsible for producing the peak in both
the power coefficient and energy harvesting efficiency near k = 0.14, we investigate
the power output using the decomposition proposed in Section 3.3. In Fig. 3.8,
we show the heaving power contribution from the positive, CP,h+ and negative
,CP,h− , vorticity for k = 0.10, 0.14 and 0.16. It is quite evident that for all reduced
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Figure 3.8: Transient heaving power coefficient showing the contributions of posi-
tive and negative vorticity for (a) k = 0.10, (b) k = 0.14 and (b) k = 0.16.
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Figure 3.9: Transient pitching power coefficient showing the contributions of pos-
itive and negative vorticity for (a) k = 0.10, (b) k = 0.14 and (b) k = 0.16.

frequencies, the power production is dominated by the positive vorticity in the flow
(i.e. leading edge vortex and its feeding sheer layer). As discussed previously, the
peak in the heaving power is due to formation of the LEV. Furthermore, the heaving
power from the negative vorticity has a negative global maximum that occurs at
t/T ≈ 0.25. This is coincident with the time at which the heaving velocity is
maximum. Note that the large TEV for k = 0.10 that forms at t/T ≈ 0.45 (see
Fig. 3.4) has a negligible contributions to heaving power production, since the
heaving velocity of the foil at this phase of the cycle is small.
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In Fig. 3.9, the contributions of the positive and negative vorticity to the
pitching power coefficient are presented. As shown, the trend in the total pitching
power is significantly different for k = 0.10 when compared to k = 0.14 and 0.16.
The difference is dominated by the contribution of negative vorticity, CP,θ− . For
k = 0.14 and 0.16, there is a negative pitching power due to negative vorticity
at the beginning of the downstroke. This is a consequence of the LEV from the
upstroke being "caught" by the foil as it begins pitching downward. For k = 0.10,
CP,θ− remains quite small until the TEV formation that occurs towards the end of
the cycle (approaching the bottom heaving position) begins to produce relatively
large negative pitching power. Furthermore, the positive vorticity contribution
also has some distinct differences when comparing k = 0.10 to k = 0.14 and 0.16.
For k = 0.10, there is a peak in CP,θ+ that occurs at t/T ≈ 0.16, which is due
to the counter-clock wise moment produced by the LEV. This peak becomes less
pronounced at the higher k values, since the LEV formation is shifted towards
the mid-stroke, and consequently, the product of moment and pitching velocity is
smaller (pitching velocity is zero at the mid-stroke). The large negative peaks of
CP,θ− for k = 0.14 and 0.16 that occur at t/T ≈ 0.31 and t/T ≈ 0.34, respectively,
are produced by the LEV that is still positioned in the up-stream portion of the
foil. The negative counter clock-wise moment produced by the LEV is multiplied
by the positive pitching velocity of the clock-wise rotating foil, thus producing
negative power.

The cycle averaged power coefficient is shown in Fig. 3.10 for both the heaving
and pitching contributions. Each is decomposed into contributions from positive
and negative vorticty as indicated with the “+" and “-" signs. The negative vortic-
ity contributes negatively to the total heaving power at an approximately constant
value of CP,h− = 0.01 for all reduced frequencies. On the other hand, the posi-
tive vorticity always has a favorable contribution, mainly due to the effects of the
LEV. The mean contributions of the positive and negative vorticity on the pitching
power is shown in Fig. 3.10b. The negative vorticity is primarily responsible for
the significant increase in negative pitching power production. For k ≤ 0.10 this



70

k

C
P,
θ

0.06 0.08 0.1 0.12 0.14 0.16
-0.1

-0.05

0

0.05

0.1

k

C
P,
h

0.06 0.08 0.1 0.12 0.14 0.16
-0.2

0

0.2

0.4

0.6

𝐶",$
𝐶",$%

𝐶",$&

𝐶"'

𝐶",'%

𝐶",'&

(b)(a)

Figure 3.10: Cycle-averaged power contributions of the positive and negative vor-
ticity to the (a) heaving power and (b) pitching power.

negative vorticity is due to the formation of the TEV structure near the end of the
down-stroke. Whereas for k ≥ 0.10 the LEV from the up-stroke is "caught" by the
foil during the start of the downward pitching/heave motion and is the primary
source of the negative pitching power.

3.5 Conclusions

Two dimensional particle image velocimetry experiments were conducted in a low-
speed wind tunnel to investigate the feasibility of estimating the energy harvesting
capabilities of a sinusoidally flapping foil energy harvesters using the impulse the-
ory. The reduced frequency was varied from k = 0.06 to k = 0.16, and the pitching
and heaving amplitudes were set at θ0 = 75◦ and h0/c = 0.6, respectively. These
results help to identify the relative contributions to power production caused by
the dominant flow structures.

The impulse-based aerodynamic force and moment equations were shown to
be consistent with other studies in estimating the power produced by the heaving
and pitching motions, respectively. The maximum energy harvesting efficiency of
approximately 25% was obtained at k = 0.14, agreeing very well with results re-
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ported in the literature for these conditions. The relationship between the concept
of optimal vortex formation number and maximum energy harvesting efficiency
was explored. The results show no established relationship between these two, and
the maximum energy harvesting efficiency obtained at k = 0.14 is shown to be a
result of the optimal match between the LEV and foil oscillation time scales.

In order to better understand the trends of energy harvesting efficiency and
mean power output, the power production due to the force and moment were
decomposed into contributions of positive and negative vorticity in the flow. It
was observed that the contribution of the negative vorticity to the pitching motion
was primarily responsible for the reduction of the harvesting efficiency and power
output for k > 0.14. Specifically, due to the slower advective time scale of the
LEV at higher k values, the clockwise rotating LEV generated during the previous
cycle upstroke motion was shown to be caught by the downstream potion of the
foil as it begins pitching/heaving downward. As a result, a large counter clockwise
(negative) moment is produced, which interacts with the clock-wise rotating foil
to produce a large negative pitching power.

The results of this study show that the impulse-based force calculation pro-
vides a means of investigating the mechanisms of power production of flapping
energy harvesters in greater depth and detail. Future work will focus on further
decomposing the impulse equations into vortex growth and vortex advection com-
ponents. This may be of great importance to guide future studies in developing
more effective kinematic motion in LEV-based energy harvesting systems.
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Abstract

The effects of passive, inertia-induced surface deformation at the leading and trail-
ing edges of an oscillating airfoil energy harvester are investigated experimentally at
reduced frequencies of k = fc/U∞ = 0.10, 0.14 and 0.18. Wind tunnel experiments
are conducted using phase-resolved, two-component particle image velocimetry to
understand the underlying flow physics, as well as to obtain force and pitching mo-
ment estimates using the vortex-impulse theory. Results are obtained for leading
and trailing edge deformation separately. It is shown that both forms of deforma-
tion may alter the leading edge vortex inception and detachment time scales, as
well as the growth rate of the circulation. In addition, surface deformation may also
trigger the generation of secondary vortical structures, and suppress the formation
of trailing edge vortices. The total energy harvesting efficiency is decomposed into
contributions of heaving and pitching motions. Relative to the rigid airfoil, the
deforming leading and trailing edge segments are shown to increase the energy
harvesting efficiency by approximately 17% and 25%, respectively. However, both
the deforming leading and trailing edge airfoils operate most efficiently at k = 0.18,
whereas the peak efficiency of the rigid airfoil occurs at k = 0.14. It is shown that
the deforming leading and trailing edge airfoils enhance the heaving contribution
to the total efficiency at k = 0.18 and the negative contribution of the pitching
motion at high reduced frequencies can be alleviated by using a deforming trailing
edge.

4.1 Introduction

The escalating demand for reducing dependence on fossil fuels has provided signifi-
cant motivation toward the development of alternative and clean energy harvesting
devices. One attractive energy resource is the wind, where typically rotational-
based turbines are used to extract the kinetic energy of the flow. However, these
traditional turbines possess several undesired economical as well as environmen-
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tal impacts (Saidur et al., 2011). An alternative energy harvesting system that
provides several advantages to more conventional rotating-based turbines is the
oscillating airfoil energy harvester. These systems rely on the use of combined
heaving and pitching airfoils to harvest energy at efficiencies ranging from 20%
to 40% (Kinsey & Dumas, 2008; Zhu, 2011; Kinsey & Dumas, 2012; Ma et al.,
2017). While these oscillatory-based devices have certainly been shown to be quite
promising, there is potential for improved efficiency (Young et al., 2014).

The concept of extracting flow energy using oscillating airfoils is inspired by
the unsteady flapping flight of insects and birds (Sane, 2003; Ho et al., 2003; Shyy
et al., 2007; Chin & Lentink, 2016). The flapping/oscillating motion of these
natural fliers induce large-scale unsteady flow separation that causes significant
deviations from the well-known static aerodynamic lift curve, in a process known
as dynamic stall. During dynamic stall, flow separates at the leading edge of the
airfoil surface and subsequently rolls into leading edge vortices (LEVs). Polhamus
(1971) has shown that LEVs are beneficial to lift generation by producing a region
of low pressure on the suction side of the airfoil, resulting in a strong suction
force, as long as the LEV remains attached to the airfoil surface. Unlike rotary
turbines where flow around the blades must be attached to the airfoil surface
to achieve high efficiency, oscillating energy harvesters exploit the unsteady flow
separation and LEV formation to attain high efficiency. Although the role of LEVs
in forward flapping flight efficiency (i.e. thrust producing systems such as birds)
is well documented (Tuncer & Platzer, 2000; Tuncer & Kaya, 2005), their effects
on energy harvesting devices, which tend to operate in different flow regimes, are
yet to be thoroughly explored.

The oscillatory/flapping motion of an airfoil operating in the energy harvesting
regime is typically modeled as combined sinusoidal heaving and pitching motion.
Then, the instantaneous power output of a heaving and pitching airfoil can be
expressed as:

P = Fyḣ+Mz θ̇ (4.1.1)

where Fy is the vertical force (i.e. perpendicular to the free stream flow), Mz is
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the aerodynamic moment about the pitching center of the airfoil, ḣ is the heaving
velocity and θ̇ is the pitching velocity. The vast majority of published studies on
oscillating energy harvesters focused on optimizing the motion kinematics, mostly
using numerical simulations (Dumas & Kinsey, 2006; Kinsey & Dumas, 2008; Zhu,
2011; Ashraf et al., 2011a; Ma et al., 2017) with fewer experimental studies (Kim
et al., 2017; Totpal et al., 2018; Siala & Liburdy, 2019c). These results show that
energy harvesting efficiency is maximized when the airfoil is oscillating at pitching
amplitudes of 60◦-80◦, heaving amplitudes of 0.5c-1.0c (c is airfoil chord length)
and reduced frequencies (k = fc/U∞, where f is oscillation frequency and U∞ is
the free stream velocity) of 0.12-016.

It can be seen from Eq. (1) that there are two main factors influencing the
power output: (i) the magnitude of the force Fy and pitching moment Mz and (ii)
the correlation between Fy and ḣ as well as between Mz and θ̇. Several studies
have been conducted in the past few years that investigate different mechanisms
that enhance both the peak force and moment, as well as the correlation between
the aerodynamic forces and airfoil motion (Ashraf et al., 2011b; Le et al., 2013; Xie
et al., 2014; Lu et al., 2015). One prominent mechanism is the use of structurally
deforming airfoils. Previous studies on insect wings as well as micro-air-vehicles
suggest that deformation near the trailing edge leads to the generation of higher
thrust and lift forces (Miao & Ho, 2006; Zhao et al., 2011; Nakata et al., 2011;
Cleaver et al., 2014). Airfoil surface deformation can either be controlled or pas-
sive. In controlled surface flexibility, the deformation of the surface is prescribed
and the effects of airfoil inertia and the fluid-structure interactions are neglected.
Hoke et al. (2015) used a two-dimensional (2D) laminar simulation with prescribed
camber deformation to show that the energy harvesting efficiency is increased by
15.8% relative to a fully rigid airfoil. When the camber deformation is prescribed
correctly, the timing of LEV formation and hence the correlation between the forces
and airfoil motion is enhanced. Furthermore, Liu et al. (2013) numerically modeled
2D oscillating airfoil energy harvesters with deforming leading and trailing edges.
The motion of the deforming leading and trailing edges was predetermined based
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on a priori structural analysis. They show that airfoils with a deforming trail-
ing edge enhance the strength of the LEV and resultant peak force magnitudes,
whereas deformation at the leading edge controls the timing of LEV formation,
and thus the correlation between the aerodynamic forces and airfoil motion. In-
terestingly, both leading and trailing edge controls shifted the peak efficiency to
higher reduced frequencies compared to a rigid airfoil.

Passive surface deformation can be divided into two categories: (i) inertia-
induced deformation and (ii) flow-induced deformation. Flow-induced deformation
occurs when the airfoil density is comparable with the density of the surrounding
fluid. Tian et al. (2014) conducted a numerical model based on the immersed
boundary method to compare the effects of passive deformation with controlled and
rigid airfoils. Their results show that passive, flow-induced surface deformation at
the leading edge improved the energy harvesting performance by only 1%, whereas
controlled leading edge deformation increased the efficiency by 11.3% compared to
a rigid airfoil. With controlled deformation, the leading edge segment was set to
deform such that it produced a smaller effective angle of attack compared to a rigid
airfoil, which was shown to slow down the formation and detachment of the LEV.
Consequently, the flapping airfoil takes advantage of the LEV presence for a longer
period of time during the oscillation cycle. Conversely, passive deformation of the
leading edge segment was shown to be very small, and as a result, it had minimal
impact on the energy harvesting efficiency. Moreover, Liu et al. (2017) studied
the effects of passive trailing edge segment deformation on the performance. They
determined that with appropriate structure-to-fluid density and natural frequency
of the trailing edge segment, the efficiency is enhanced by 7.24%. The deforming
trailing edge creates a camber that enhances the pressure difference between the
upper and lower surfaces of the airfoil. The influence of inertia-induced deformation
of the leading edge on the performance was investigated experimentally by Totpal
et al. (2018) at reduced frequencies of 0.04-0.08. While their results show that
leading edge deformation reduces the energy harvesting efficiency by 10% relative
to a rigid airfoil at k = 0.08, the negative effects of the deformation were shown to
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subside as k is increased from k = 0.04 to 0.08. It remains unknown whether at
larger reduced frequencies, the effects of inertia-induced leading edge deformation
become beneficial.

In this paper, we conduct wind-tunnel testing and particle image velocimetry
(PIV) measurements to investigate the feasibility of using inertia-induced defor-
mation at the leading and trailing edges of the airfoil in the range of k = 0.10 -
0.18. To the best of our knowledge, there exists no experimental data that validate
the feasibility of using deforming airfoil surface in the range of reduced frequencies
relevant to optimal energy harvesting performance. We are specifically interested
in seeing whether the negative effects of inertia-induced deformation subside, and
even become favorable at the optimal reduced frequency range. Due to the dif-
ficulty of directly measuring the aerodynamic forces in a highly unsteady airfoil
motion in wind tunnels, we use the vortex-impulse theory (Wu et al., 2007b) to es-
timate both the force and moment to calculate power output. We have previously
used the vortex-impulse theory with success to estimate the aerodynamic forces
and energy harvesting performance using velocity data obtained from PIV (Siala &
Liburdy, 2019b,c). Our objective is to first understand the underlying flow physics
associated with deforming surfaces, and then to quantify and compare the power
output and energy harvesting efficiency of the deforming leading and trailing edge
airfoils with a fully rigid one.

The rest of the paper is organized as follows. In section 4.2, the experimental
and data analysis techniques are described. In section 4.3, we compare the effects
of deforming the leading and trailing edges with a fully rigid airfoil on the vorticity
field, LEV evolution and energy harvesting efficiency. In section 4.4, conclusions
and implications of this work are provided.
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(a) (b)

Figure 4.1: (a) Drawing of the experimental setup illustrating the wind tunnel,
motion device and PIV arrangement and (b) zoomed-in view of the motion device.
Figures are adopted from Totpal (2017) .

4.2 Methodology

4.2.1 Experimental techniques

Fig. 4.1 shows the experimental setup in the wind tunnel and a zoomed-in view of
the motion device used to achieve the airfoil motion. The wind tunnel is located at
Oregon State University, and is a closed loop with a test section size of 1.37 m x 1.52
m with turbulence intensities below 2%. In addition, stationary end plates were
placed approximately 2 mm from the airfoil tips to mimic quasi two-dimensional
flow. The motion device consists of a scotch-yoke mechanism to generate the
heaving motion and a combination of scotch-yoke and rack-and-pinion mechanisms
to generate the pitching motion, according to the following:

h = h0cos(2πft) (4.2.1)

θ = θ0cos(2πft+ Φ) (4.2.2)
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where h0 is the heaving amplitude, θ0 is the pitching amplitude and Φ is the phase-
shift between heaving and pitching. The motion device was controlled using a
LabVIEW program. The reduced frequency was varied by changing the free stream
velocity while keeping the oscillation frequency fixed at 1.4 Hz. The Reynolds
numbers (Re = U∞c/ν, where ν is the kinematic viscosity) used in this study are
14189, 10135 and 7883 for k = 0.10, 0.14 and 0.18, respectively. The effect of
Reynolds number at this low range has been found to have minimal impact on the
energy harvesting performance (Xiao & Zhu, 2014).

The airfoil used in this study was manufactured in-house using fused deposition
modeling and has a chord length, thickness and aspect ratio of 125 mm, 6.25 mm
and 2, respectively. The airfoil leading and trailing tips are elliptical with 5:1
major to minor axis ratio. It consists of four acrylonitrile butadiene styrene (ABS)
pieces and a machined titanium that is the three quarters the length of the airfoil
span. The titanium rod provides structural support along the airfoil span to reduce
span-wise flexibility. Two of the ABS pieces are attached to the titanium rod using
pressed inserts to form the main body section of the airfoil. The remaining two
ABS pieces consist of leading edge (LE) and trailing edge (TE) segments, each
with a length of c/3. These segments are configurable to either rigidly attach to
the airfoil main body, or serve as passively-actuated edges mimicking simplified
surface deformation. The passive deformation of the LE/TE was established by
inserting a torsion rod into slots along both the main body and LE/TE, forming
a hinge. The rod was secured at one end of the body and the other end to the
LE/TE, providing a means to allow rotation of the LE/TE. A schematic of the
airfoil and the hinge mechanism is shown in Fig. 4.2. Note that in this study, the
flexible TE and LE configurations are investigated separately.

Two-component PIV measurements were obtained at the airfoil mid-span using
a dual-head Nd:YAG pulsed laser (EverGreen, 145 mJ/pulse, max repetition rate
of 15 Hz). A light sheet of approximately 1.5 mm thickness was generated at
the mid-span of the airfoil using a LaVision optics module. The wind tunnel was
seeded with vegetable oil particles, which were generated using an in-house built
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Figure 4.2: (a) Top view of the airfoil and (b) detailed view of the airfoil LE/TE
hinge mechanism.

Laskin Nozzle. Particle images were collected using a CCD camera (Image Pro,
LaVision) with a resolution of 1600 × 1200 pixels. PIV images were processed
with DaVis v8.4 software. The velocity fields were calculated using two passes
of interrogation window size of 64 × 64 pixels, followed by two more passes of
interrogation window size of 32 × 32 pixels, with an overlap of 50%. The time
between the image pair was set such that an average of 8 pixel displacement per
interrogation window was achieved in the streamwise direction. Velocity vectors
were validated using a minimum correlation peak ratio of 1.2 as well as a moving-
average validation scheme, where each velocity vector was replaced by the average
of its neighbors if the difference between that velocity vector and its neighbors
is greater than two standard deviations of the neighboring vectors. Overall, the
percentage of velocity outliers was found to be approximately 2% of the entire
velocity field. The velocity measurement uncertainty has been estimated using the
correlation statistics technique (Wieneke, 2015). The maximum uncertainty of the
streamwise and cross-stream velocity components were found to be 3.5% and 5.8%
of their respective maximum values. The velocity errors are then propagated to
determine the uncertainty in vorticity and aerodynamic loadings. Detailed analysis
of the propagation method can be found in Appendix B.

A total of 126 phases during the downstroke motion with a sampling time of
∆t/T = 0.004 were acquired. For each phase, one hundred images were acquired
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Figure 4.3: Control volume used for impulse-based force and moment calculation.

to calculate the phase-averaged velocity fields. The PIV system and airfoil motion
were synchronized using LabVIEW. In order to obtain velocity data in the shadow
region caused by the presence of the airfoil, the experiments were repeated at a
phase delay of 180◦ for each phase of interest. The 180◦ out of phase flow fields
were then mirrored and stitched to the rest of the vector field to construct the full
flow field surrounding the airfoil. This can be done because the flow, airfoil shape
and motion are all symmetric. Additionally, a second camera was used to capture
the flow field in the downstream region. The two cameras were overlapped by 14
vectors and the overlapped region was smoothed with a 3×3 moving-average filter.

4.2.2 Vortex-impulse theory: force and moment estimation

As previously mentioned, direct force and moment measurements of highly un-
steady airfoils operating with large amplitudes of motion in wind tunnels are often
not feasible. The difficulty is due to the airfoil inertial forces being in the same
order of magnitude as the aerodynamic forces or larger for reduced frequencies
relevant to energy harvesting applications (Totpal, 2017). Since flow over oscil-
lating airfoils operating in high amplitudes of motion is dominated by large scale
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vortical structures, it is then ideal to describe the aerodynamic loadings based on
the dynamics of these vortical structures. In fact, the vorticity/circulation of these
vortical structures indirectly represent the momentum imparted by the moving
airfoil to the fluid. Wu (1981) and Lighthill (1986b) have independently shown
that forces generated by an airfoil can be obtained by taking the time-derivative
of the vortex impulse, PF, which, in two-dimensional flows, is defined as:

PF =

∫
x× ωdA (4.2.3)

where x is the position vector and A is the area occupied by the fluid. Lighthill
explains that this expression is related to the total impulse (in the classical mechan-
ics sense) required to establish a vorticity field, ω, from rest. For two-dimensional
flows, Siala & Liburdy (2019b) have shown that the total force acting on the airfoil
in a finite control volume can be written as:

F = −ρdPF

dt
+ ρ

∮
S

n ·
(1

2
[u · u]I− uu

)
dS (4.2.4)

where I is the identity tensor, n is the normal vector pointing away from the fluid
and S is the external surface of the control volume. The second term of Eq. 4.2.4
represents the effects of vorticity shed in the far wake on the forces. For suddenly-
accelerated bodies from rest where all the vorticity is captured in the control
volume, this term can be shown to equal zero (Saffman, 1992). The finite-domain
impulse equation originally derived by Noca (1997) contains other additional terms.
However, Siala & Liburdy (2019b) have shown that by selecting an origin location
of the position vector located anywhere along y-axis of the downstream control
volume boundary (see Fig. 4.3), these additional terms that are included in Noca’s
equation become negligible, thus significantly simplifying the force equation to the
expression given in Eq. 4.2.4. This can be done because the force equation is
theoretically independent of the origin location. Experimentally, however, it is
well known that errors in force calculation can be significantly amplified by the
origin location (Noca, 1997). We have determined in our previous study that the
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error associated with the origin location can be significantly reduced by setting the
origin location at the downstream boundary, located at least one chord length from
the trailing edge (Siala & Liburdy, 2019b). For a thorough discussion on practical
considerations of the impulse-based force method, refer to the studies conducted
by DeVoria et al. (2014) and Siala & Liburdy (2019b). Moreover, because the
experiments are conducted in air, the added-mass of the airfoil is determined to be
very small and therefore neglected in Eq. 4.2.4. Validation of the force estimation
based on the impulse method is provided in Siala & Liburdy (2019b).

Similarly, the vortex impulse associated with the aerodynamic moment, PM,
can be defined as:

PM =
1

2

∫
(x · x)ωdA (4.2.5)

The aerodynamic moment can then be shown to be written as (Wu et al., 2007b;
Siala & Liburdy, 2019c):

M = ρ
dPM

dt
+ ρ

∫
x× (u× ω)dA− ρ1

2

∮
(x · x)n× (u× ω)dS (4.2.6)

Since we are interested in the moment about the pitching center of the airfoil,
we fixed the origin location at the pitching axis of the airfoil, which is located at
the mid-chord. The maximum uncertainty of the instantaneous force and moment
were found to be 10.6% and 13.2% of the peak force and moment, respectively.

4.2.3 Pressure calculation from PIV data

In many cases, the mechanisms of force and moment production can be illuminated
by visualizing the pressure field. To do this, we use the algorithm described by
Dabiri et al. (2014) to calculate the pressure field from phase-averaged velocity
data. Briefly, the algorithm is used to perform a direct integration of the pressure
gradient term in the Navier-Stokes equations along eight paths through each point
in the flow field. The starting point of all eight integration paths is located at
the control volume boundary. The median of the pressure value obtained from all
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Figure 4.4: (a) Vorticity field and streamlines and (b) pressure field and streamlines
for k = 0.10 at the mid-downstroke. (c) Wall-normal profile of the vorticity and
pressure through the LEV center. The blue circles represent the vorticity and the
red squares represent the pressure.

eight integration paths is then used to estimate the pressure at each point in the
field. Although the pressure fields obtained using this method are not sufficiently
accurate for force evaluation in our current experimental setup, we present the
pressure fields for qualitative purposes, to provide more insight in interpretation
of the results. The pressure field is qualitatively validated in Fig. 4.4. In Fig.
4.4a and 4.4b, the non-dimensional vorticity and pressure fields, along with the
flow streamlines, are shown for k = 0.10 for the rigid airfoil case. It is shown
that the pressure and vorticity fields are well correlated, with the pressure minima
and maxima being generated in the LEV core and on the upper surface of the
airfoil (stagnation point), respectively. The wall-normal profiles of the vorticity and
pressure are shown in Fig. 4.4c. The wall-normal distance, yn/c, is equal to zero at
the airfoil surface. The profile is drawn through the LEV center, which is detected
by the maximum vorticity value. As expected, the peak vorticity and pressure are
shown to correlate very well. Going away from the surface, the pressure slowly
approaches free stream pressure and the vorticity decays rapidly to ωzc/U∞ = 0
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Figure 4.5: Leading and trailing edge deformation angle relative to the airfoil chord
as a function of time during the downstroke motion. The heaving motion, h, is
also shown for reference. Positive angles indicate that the LE/TE are deformed
counter-clockwise relative to the airfoil main body.

4.3 Results

n this section, we present results for rigid, flexible LE and flexible TE airfoils op-
erating at reduced frequencies, k, of 0.10, 0.14 and 0.18, while holding the heaving
amplitude, pitching amplitude, phase shift and pitching axis fixed at h0/c = 0.6,
θ0 = 75◦, Φ = 90◦ and xp/c = 0 (mid-chord). Due to the symmetry of the problem,
the results are only provided for the downstroke motion of the airfoil.

4.3.1 Leading and trailing edge deformation motion

Before analyzing their effects on the flow physics, it is important to report the
motion of the passive deformation of the leading and trailing edges during the
oscillation cycle. Key parameters that determine the degree of deformation are the
torsion spring natural frequency and the linear density of the LE/TE. The natural
frequency can be defined as fN = 1/2π

√
τ/Im, where τ is the spring constant and

Im is the moment of inertia about the hinge. The torsion spring constant was
calculated by attaching a known mass to the LE/TE while the wing was static.
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Images of the downward deflection were recorded and used to calculate the angle
of deflection, θLE/TE. The torsion spring constant is calculated using τ = T

θLE/TE
,

where T is the torque applied to the LE/TE. Following Liu et al. (2017), the natural
frequency of the deforming LE/TE is non-dimensionalized as f ∗N = fNc/U∞, to
obtain f ∗N of 0.6, 0.85 and 1.1 for k of 0.10, 0.14 and 0.18, respectively. Furthermore,
the linear density of the LE/TE segments, ρl = sρLE/TE (where s is airfoil thickness
and ρLE/TE is the density of the LE/TE) is normalized by the fluid density ρ and
airfoil chord length c to obtain the structure-to-fluid density ratio µ = ρl/cρ. The
structure-to-fluid density used in this study is µ = 27.3, which is significantly
higher than the values of µ = 0.03-0.6 used by Liu et al. (2017). A large value
of the structure-to-fluid density is used in this study to reduce the effects of the
flow on deformation and enhance the magnitude of the inertia-based deformation
of the LE/TE.

In Fig. 4.5, the deformation angle of the leading and trailing edges are shown in
degrees as a function of time during the downstroke motion of the airfoil. Positive
angles indicate that the LE/TE are deflected counter-clockwise relative to the
airfoil main body. It can be seen that there is an approximately 90◦ phase-lag
between the motion of the LE and TE. The peak positive angle of deformation
of the LE occurs approximately during the mid-downstroke, whereas the positive
peak deformation angle of the TE occurs as the airfoil undergoes motion reversal
at the beginning of the downstroke. Measurement of the deformation angle was
conducted with and without free stream flow, and the results were found to be
essentially identical. Since we are varying the reduced frequency by changing
only the free stream velocity while keeping the oscillation frequency fixed, the
deformation angles are the same for k = 0.10-0.18. Furthermore, the geometric
effective angle of attack induced by the deformation of the leading and trailing
edges can be defined as follows:

αe,LE/TE = θ + βLE/TE (4.3.1)

where βLE/TE is the interior angle measured from the lines from the leading edge to



87

𝛽"#

𝛽$#

Flexible TE

Flexible LE

(a) (b)

t/T

A
oA

0.1 0.2 0.3 0.4-80

-60

-40

-20

0 αe,LE
αe,TE
θ

∘

Figure 4.6: (a) Schematic sketch showing the angle β induced by the lead-
ing/trailing edge motion and (b) effective angle of attack induced by the leading
and trailing edge deformation. For reference, the pitching angle, θ, is also shown.

the trailing edge tips and along the chord of the main airfoil body, as shown in Fig.
4.6(a). In Fig. 4.6(b), the angle of attack (AoA) induced by the leading and trailing
edges, as well as the pitching angle are shown during the downstroke. As can be
clearly seen, the deformation of the leading edge enhances the AoA compared to
a rigid airfoil (whose geometric AoA is simply equal to θ), throughout most of
the downstroke. On the other hand, the deforming trailing edge case is shown to
enhance the the AoA up until t/T ≈ 0.3. For t/T > 0.3, the motion of the trailing
edge segment is reversed, resulting in a smaller AoA compared to the rigid airfoil.

4.3.2 Vorticity field characterization

The vorticity field was calculated from velocity using a central difference scheme.
The average uncertainty was found to be approximately 4.7% of the maximum
vorticity. Snapshots of the vorticity field evolution for the rigid, flexible LE and
flexible TE airfoils operating at k = 0.10 are shown in Fig. 4.7. As the airfoil
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Figure 4.7: Non-dimensional vorticity field at k = 0.10 for the rigid (top row), flex-
ible LE (middle row) and flexible TE (bottom row) airfoils during the downstroke
motion.

begins its downstroke motion, the flow on the upper surface of the airfoil is still
not fully attached due to the flow separation that occurred during the upstroke
motion. As time progresses, the flow eventually begins to attach on the upper
surface and separates at the leading edge of the bottom surface to form a counter-
clockwise rotating LEV. At t/T = 0.15, it can be seen that the LEV generated by
the flexible LE and TE airfoils is slightly larger than the LEV of the rigid airfoil.
At t/T = 0.25, the LEV is shown to be lifted-off from the lower airfoil surface for
all three cases, while the trailing edge vorticity continues to shed into the wake.
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The trailing edge vortex sheet sheds in a similar manner for the rigid and flexible
LE cases, whereas for the flexible TE case the vorticity is shown to have a more
pronounced curved trajectory. Furthermore, the LEV size keeps increasing as long
as the leading edge shear layer keeps feeding the LEV with vorticity. Eventually,
the shear layer strength begins to decay and it disconnects from the LEV. At
t/T = 0.35, the shear layer of the flexible TE airfoil begins to roll into discrete
small-scale vortex structures in the from of a Kelvin-Helmholtz-like instability,
whereas for the rigid and flexible LE cases the shear layer vorticity appears to
be confined in a more continuous vortex sheet. As the airfoil approaches the
end of the downstroke at t/T = 0.45, the shear layer is shown to be completely
disconnected from the LEV for both the rigid and flexible TE cases, whereas it
appears to remain loosely connected to the LEV in the flexible LE case. Moreover,
as the LEV convects downstream past the airfoil trailing edge, it causes the trailing
edge shear layer to form into a large distinct trailing edge vortex (TEV). Several
studies have described this process as a bluff-body like vortex shedding, where the
flow from the upper surface of the airfoil and LEV forms a saddle point near the
trailing edge, which forces the trailing shear layer to roll into a TEV (Rival et al.,
2014; Widmann & Tropea, 2015; Siala et al., 2017). On the other hand, the TEV
formation is significantly suppressed by the flexible TE airfoil. At t/T ≈ 0.35,
the trailing edge segment begins to deform clockwise relative to the airfoil main
body (see Fig. 4.5) and it becomes almost parallel with the streamwise flow at
t/T = 0.45. As a result, the flow leaving the trailing edge from the upper surface
tends to be more aligned with the streamwise flow, thus significantly reducing the
velocity gradient near the airfoil trailing edge.

In Fig. 4.8, the vorticity evolution for k = 0.14 for all three cases is shown.
The evolution process of the LEV remains the same as for k = 0.10, with few
noticeable differences as described here. Firstly, as the airfoil downstroke begins,
significant negative vorticity remains in close proximity to the airfoil. This is
associated with the LEV generated from the upstroke motion. With increasing
reduced frequency, the flow convection time scale increases relative to the time
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Figure 4.8: Non-dimensional vorticity and velocity fields at k = 0.14 for rigid (top
row), flexible LE (middle row) and flexible TE (bottom row) airfoils during the
downstroke motion. Note that only every other velocity vector is shown.

scale of airfoil motion, and therefore the airfoil captures the LEV during motion
reversal before the LEV completely convects into the wake. Secondly, the inception
time of the LEV is delayed to later in the cycle at higher reduced frequencies.
Furthermore, at t/T = 0.25, the LEV is shown to remain attached to the airfoil
surface, compared with the earlier detachment for k = 0.10. The LEV generated
by the flexible LE case is also shown to be slightly larger than the LEV of the rigid
and flexible TE case. Compared to k = 0.10, the LEV of the flexible TE case grows
at a slightly slower rate due to the decrease in the deformation angle of the TE
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Figure 4.9: Zoomed-in view of the streamwise velocity contours and streamlines at
k = 0.14 and t/T = 0.45 for (a) rigid, (b) flexible LE and (c) flexible TE airfoils.

at this instant, as shown in Fig. 4.6b. As time progresses, the LEV size remains
fairly constant for the rigid and flexible TE cases at t/T > 0.35, whereas it keeps
growing until t/T = 0.45 for the flexible LE case. As the airfoil approaches the
end of the downstroke, the LEV begins to convect past the airfoil trailing edge,
however no TEV formation is observed. This is because by the time the LEV
approaches the airfoil trailing edge, the angle of attack of the airfoil is quite small,
such that the trailing edge shear layer is not strong enough to roll into a distinct
TEV structure. At k = 0.14, the vortex shedding in the wake switches from 2P to
2S, where the former represents two pairs of vortical structures (LEV and TEV)
shed per oscillation cycle, and the latter represents two single vortices shed per
oscillation cycle (one LEV per half cycle) (Williamson & Roshko, 1988). Lastly at
t/T = 0.45, it can be seen in the flexible TE case that there is a clockwise rotating
vortex entrapped between the airfoil and the LEV. Because the TE segment is
almost aligned with the streamwise flow, the flow from the upper surface of the
airfoil loses a significant amount of its streamwise momentum as it turns around
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Figure 4.10: Estimate of the LEV inception time (normalized by oscillation period)
versus reduced frequency for the rigid, flexible LE and flexible TE airfoils.

the trailing edge. In fact, much of the flow reversal around the trailing edge for
the flexible TE case is caused by flow entrainment of the LEV. The evidence for
this is supported by Fig. 4.9 where the streamwise velocity contours are shown for
the three different cases at t/T = 0.45. As the relatively slow moving flow reversal
travels upstream toward the airfoil leading edge, it eventually interacts with the
separated leading edge shear layer to form a saddle-point. At the saddle point,
the flow traveling upstream from the trailing edge bifurcates and it either gets
entrained by the shear layer or it travels upstream and upward toward the airfoil
surface. Since flow reversal of the flexible TE case has relatively small streamwise
momentum and therefore cannot travel upstream for long, it eventually begins to
roll to form a clockwise rotating secondary vortex.

4.3.3 Inception of the leading edge vortex

We have briefly mentioned above that increasing the reduced frequency delays the
inception/formation of the LEV. The mechanism leading to LEV inception occurs
at the boundary-layer scale, which we cannot resolve using the current experimental
set-up. However we can approximate the time scale of the inception visually, by
noting the time at which a small vorticity bubble begins to form on the airfoil. Fig.
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4.10 shows the approximated LEV inception time scale, tinc (normalized by the
oscillation period), versus reduced frequency for the rigid, flexible LE and flexible
TE airfoils. As can be clearly seen, the inception time seems to be approximately
linearly increasing with k, where the deforming leading and trailing edge airfoils
slightly reduce the inception time of the LEV. This delay in LEV inception is
actually a result of the decrease in vorticity flux at the airfoil surface with increasing
k. The vorticity flux from the airfoil surface is proportional to the shear layer
velocity near the airfoil leading edge, USL (Wong & Rival, 2015). The rate of
vorticity/circulation growth of the LEV can be approximated as (Eldredge & Jones,
2019):

dΓLEV
dt

= −1

2
U2
SL (4.3.2)

where ΓLEV is the LEV circulation. We can approximate the shear layer velocity
as the vector sum of the local velocity of the leading edge and the component of
the free stream velocity in the direction of airfoil motion:

USL ≈ U∞sin(θ)− ḣcos(θ)− θ̇c

2
(4.3.3)

In Fig. 4.11a, the flow velocity at the leading edge normalized by the maximum
airfoil tip velocity is shown for k = 0.10, 0.14 and 0.18. As can be clearly seen, the
shear layer velocity decreases with increasing k. Consequently, the smaller vorticity
flux at higher k values delays the LEV inception time. It is also interesting to point
out that the LEV inception time scale shown in Fig. 4.10 coincides with the time
at which the non-dimensional leading edge velocity is approximately equal to 0.5
for all the reduced frequencies that we test. Furthermore, we can also approximate
the leading edge tip velocity for the flexible LE airfoil, USLFlexible

, as follows:

USLFlexible
≈ U∞sin(θ)− ḣcos(θ)− θ̇c

2
− cα̇LE

3
(4.3.4)

where the additional term, cα̇LE/3, represents the leading edge tip velocity. The
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Figure 4.11: (a) Normalized shear layer velocity at the leading edge for k = 0.10-
0.18. The solid lines represent the velocity of the rigid airfoil and the dashed lines
represent velocity of the flexible LE airfoil. (b) Sketch of the velocity vectors used
to approximate USL

approximate shear layer velocity of the flexible LE airfoil is also shown in Fig. 4.11a
(dashed lines). We can see that the motion of the deforming leading edge segment
slightly increases the shear layer velocity during the first half of the down-stroke.
Interestingly, the timing of the non-dimensional velocity USL/Umax

tip ≈ −0.5 also
coincides with the timing of the LEV inception for the flexible LE. Note that while
the flexible TE has a rigid leading edge, its LEV inception time is also shown to
decrease relative to the rigid airfoil. We believe that this is associated with the
enhanced effective camber provided by the deformed trailing edge, which could
accelerate the flow at the leading edge to yield a larger USL than the rigid airfoil.

The implication of this discussion is that the non-dimensional shear layer ve-
locity can be used to approximate the inception time of the LEV, which may be of
great importance in developing potential flow-based models of oscillating airfoils
undergoing dynamic stall (Ramesh et al., 2014).
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Figure 4.12: Time-history of the non-dimensional LEV circulation for rigid, flexible
LE and flexible TE airfoils at (a) k = 0.10, (b) k = 0.14 and (c) k = 0.18. For
clarity, only every other data point is shown.

4.3.4 Effects of surface deformation on leading edge vortex evolution

It is well known that the circulation generated by airfoils is a manifestation of
the momentum imparted to the flow field and therefore is directly related to the
production of aerodynamic forces. Here, we analyze the role of deforming LE and
TE on the time-history of LEV circulation. To determine the boundaries of LEVs,
we use the γ2 method proposed by Graftieaux et al. (2001), which is given by:

γ2(P ) =
1

SA

∫
M∈SA

[PM× (UM −UP)] · nz
||PM|| · ||UM −UP||

dSA (4.3.5)

where SA is the area of integration, P is any point in the flow field, M is any point
within the integration area, UP is the average velocity within the integration area,
UM is the velocity of pointM in the integration area, PM is the distance between
P and M and nz is the normal vector in the z direction. The vortex boundary
is given by |γ2| = 2/π. The LEV circulation, ΓLEV , can then be computed by
integrating the vorticity enclosed by the contour level of |γ2| = 2/π:

ΓLEV =

∫
|γ2|=2/π

ωzdA (4.3.6)
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where ωz is the spanwise vorticity. As stated previously, it is not possible to
determine the LEV strength as soon as it initiates due to the inability to resolve
the boundary-layer scale with the current experimental setup, and therefore we
only report the circulation once sufficient development occurs for the γ2 method to
capture the LEV. LEVs are then tracked until they begin to convect downstream
outside of the control volume.

The LEV circulation, non-dimensionalized by the free stream velocity and air-
foil chord length, is shown in Fig. 4.12 for k = 0.10, 0.14 and 0.18. As the LEV
forms, it grows in strength as it entrains vorticity from the leading edge shear
layer. Therefore, the shear layer strength is a crucial parameter in determining
the LEV circulation, as well as the rate of circulation growth. It is shown for
k = 0.10 that the LEV of the flexible LE airfoil grows, on average, at a faster
rate than the LEV of the rigid and flexible TE airfoils. This is attributed to the
stronger shear layer generated by the larger camber created by the deforming LE
segment. Furthermore, the LEV keeps increasing in strength until it is detached
from the feeding shear layer. Different mechanisms of LEV detachment in flap-
ping airfoils have been proposed by Widmann & Tropea (2015). In one of the
mechanisms, which they refer to as bluff-body-like vortex detachment, the flow
reversal from TEVs that travels upstream towards the leading edge interacts with
the feeding shear layer to decrease its velocity, such that it no longer keeps up with
the downstream convecting LEV. At k = 0.10, where TEVs do form, the LEV
for both the rigid and flexible LE keeps increasing in strength until it reaches a
maximum value of approximately ΓLEV /cU∞ ≈ 4 at t/T ≈ 0.40. This time ap-
proximately coincides with the formation time of the TEV, which indicates that
bluff-body-like vortex detachment is the mechanism responsible of LEV detach-
ment from its shear layer for the rigid and flexible LE airfoils. On the other hand,
the flexible TE airfoil is shown to peak at t/T ≈ 0.35, at a much lower circulation
value of ΓLEV /cU∞ ≈ 3. Because the flexible TE case suppresses the formation
of the TEV, there must be another mechanism that is responsible for cutting-off
the vorticity supply to the LEV. We suspect that the LEV is detached as a result
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Figure 4.13: Detachment process of the LEV from its feeding shear layer at k =
0.10. (Top) Zoomed-in view of vorticity field shortly prior to LEV detachment and
(bottom) zoomed-in view of vorticity field after LEV detachment.

of the interaction of the boundary layer with the feeding shear layer, in a process
known as the boundary layer eruption (Doligalski et al., 1994; Widmann & Tro-
pea, 2015). In this process, the interaction of the LEV with the airfoil surface
induces an adverse pressure gradient in a local region inside the boundary layer.
As a result, the fluid elements in this region are compressed in the streamwise
direction and consequently, a thin fluid layer is squeezed up from the interior of
the boundary layer that erupts the shear layer, eventually cutting off the vorticity
supply to the LEV. With the current experimental setup, we are unable to resolve
this mechanism since it occurs at the boundary layer scale. However, regardless
of the exact mechanism of LEV detachment, one can anticipate the onset of LEV
detachment by closely examining the behavior of the feeding shear layer. Shortly
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period) versus reduced frequency for the rigid, flexible LE and flexible TE airfoils.

prior to detachment, a Kelvin-Helmholtz-like (KH) instability in the shear layer is
observed, where the shear layer begins to roll into discrete vortical structures and
eventually gets disconnected from the LEV. This process is demonstrated in Fig.
4.13.

By increasing the reduced frequency to k = 0.14 (shown in Fig. 4.12b), the
LEV circulation for the flexible TE and rigid airfoils follow the same trend, where
they both peak at ΓLEV /cU∞ ≈ 2 at t/T ≈ 0.30. On the other hand, the flexible
LE airfoil is shown to increase the LEV circulation until t/T ≈ 0.45, with a
maximum circulation of ΓLEV /cU∞ ≈ 3. We believe that this is again related to
the enhanced shear layer strength of the flexible LE airfoil. Future studies that
include high-resolution investigation of the shear layer velocity will be conducted to
better understand the shear-layer enhancement process. Finally in Fig. 4.12c, the
LEV circulation is shown for k = 0.18. For all three cases, the time-history of LEV
circulation is shown to follow a similar trend to k = 0.14 (except for the flexible
LE case), where surface deformation has no effect on the circulation. For all cases,
the LEV reaches a peak value of approximately ΓLEV /cU∞ ≈ 2 at t/T ≈ 0.325.
For completeness, the time scale of LEV detachment from its feeding shear layer is
plotted in Fig. 4.14 as a function of the reduced frequency. The detachment time
scale, tdet, is defined as the time at which the LEV circulation becomes constant.
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Figure 4.15: Vertical force and pitching moment coefficients for (a,b) k = 0.10 and
(c,d) k = 0.14. The dotted line represents the heaving and pitching velocities.

4.3.5 Impulse-based force and moment evaluation

The vertical component of force coefficient (Cy = 2Fy/ρU
2
∞c) and spanwise moment

coefficient (Cm = 2Mz/ρU
2
∞c

2) are shown in Fig. 4.15 for k = 0.10 and 0.14. The
heaving and pitching velocities of the airfoil are also shown. For k = 0.10, the
flexible LE and TE airfoils are shown to increase the peak force by 14.7% and
12.7% relative to the rigid airfoil, respectively. The peak moment coefficient occurs
slightly after the peak forces are produced. After its formation, the LEV remains
near the upstream portion of the airfoil, which results in generating a negative,
counter-clockwise pitching moment. The peak moment coefficient does not seem to
be greatly influenced by the airfoil deformation. The force and moment coefficients
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Figure 4.16: Zoomed-in view of the pressure contour and streamlines at k = 0.10
showing an attached and detached LEV from the airfoil surface.

then begin to decrease as a result of the LEV lifting-off from the airfoil surface.
Even though the LEV strength and size are actually increasing during this phase,
its influence on the force and moment subsides as the low pressure region that it
creates moves away from the airfoil surface. To illustrate this effect, the pressure
field is provided in Fig. 4.16 for the rigid airfoil.

Furthermore, at approximately the mid-downstroke, the flexible TE airfoil is
shown to produce the largest force, followed by the flexible LE and then the rigid
airfoils. After reaching a local minima, both the force and moment coefficients
begin to slightly increase. Siala & Liburdy (2019b) have previously shown that
this increase in the forces is associated with the advection of the LEV along the
airfoil chord. Shortly after the secondary peak, the force coefficient for the rigid
and flexible TE drops rapidly, eventually switching sign at t/T ≈ 0.40 (negative
lift). On the other hand, the drop in lift force is shown to delay to t/T ≈ 0.42

for the flexible TE airfoil. This is because the flexible TE airfoil suppresses the
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Figure 4.17: Zoomed-in view of the pressure distribution and streamlines for k =
0.10 at t/T = 0.45 for (a) rigid, (b) flexible LE and (c) flexible TE airfoils.

formation of TEV, thereby delaying its negative effects on the force coefficient.
Moreover, the moment coefficients for the rigid and flexible LE airfoils approach
Cm ≈ 0 towards the end of the cycle, whereas for the flexible TE case, the moment
coefficient remains relatively large and negative. Again, this is a result of the large
TEV forming and rolling on the lower surface of the trailing edge for the rigid
and flexible LE case. The pressure distribution for all three cases at t/T = 0.45

is shown in Fig. 4.17. For the rigid and flexible LE airfoils, the low pressure
region created by the rolled TEV seems to be well balanced by the low pressure
region on the upper surface of the airfoil, thus creating a relatively small pressure
differential across the two surfaces. Conversely, the low pressure region on the top
surface of the flexible TE airfoil is much lower than the pressure on the bottom
surface. Since the low pressure region is concentrated in the downstream half of
the airfoil, a negative counter-clockwise moment is generated.

As k is increased to 0.14, it can be seen that the peak force coefficient is delayed
to slightly before mid-downstroke for all three cases. Similar to k = 0.10, the peak
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Figure 4.18: Pressure distribution and streamlines for k = 0.14 at t/T = 0.45 for
(a) rigid, (b) flexible LE and (c) flexible TE airfoils.

force is shown to be enhanced by the surface deformation, with the flexible TE
airfoil generating a slightly larger peak than the flexible LE airfoil. At this reduced
frequency, the magnitude of peak force plays a much larger role in power generation
than for k = 0.10, since its timing is well correlated with the timing of maximum
heaving velocity. Furthermore, the effect of airfoil deformation remains minimal
and less obvious on the peak moment coefficient. It can be anticipated that the
magnitude of peak moment does not play an important role in power generation,
since at this k value, it occurs when the pitching velocity is quite small. Toward
the end of the downstroke, it can be seen that the flexible TE case generates a large
negative moment relative to the rigid and flexible LE cases. This can be explained
by examining the pressure distribution around the airfoil in Fig. 4.18. As a result
of the secondary vortex that forms by the flexible TE airfoil near the leading edge,
a low pressure zone is created that results in a negative counter-clockwise moment
about the pitching axis. This low pressure region is not produced by the rigid and
flexible LE airfoils.
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Figure 4.19: Power coefficient of the rigid, flexible LE and flexible TE airfoils for
(a) k = 0.10, (b) k = 0.14 and (c) k = 0.18.

4.3.6 Energy harvesting performance

In Fig. 4.19, we report the instantaneous power coefficient of the rigid, flexible
LE and flexible TE airfoils for k = 0.10, 0.14 and 0.18. The power coefficient is
defined as:

CP =
P

1/2ρU3
∞c

(4.3.7)

where P is given in Eq. 4.1.1. At k = 0.10, the effect of leading/trailing edge
deformation on power output is shown to be insignificant. For all cases, the power
output has a positive sign throughout the majority of the downstroke, and becomes
negative when t/T > 0.4. As k is increased to 0.14 and 0.18, the airfoil deformation
begins to have a more pronounced effect. Early in the downstroke, the power
output for all cases is shown to be negative, because the moment coefficient and
pitching velocity have a negative correlation. Significantly enhanced peak powers
are generated for all cases compared to k = 0.10, with the flexible TE and LE
airfoils producing a slightly higher maximum power than the rigid airfoil.

The energy harvesting efficiency is defined as the ratio of mean power output
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Figure 4.20: (a) Total energy harvesting efficiency, (b)heaving contribution and
(c) pitching contribution versus reduced frequency.

to the available fluid power in the swept area of the airfoil:

η =
P

1/2ρU3
∞d

(4.3.8)

where P is the cycle-averaged power and d is the total crossflow distance swept by
the airfoil. In addition, the energy harvesting efficiency can be decomposed into
contributions of heaving and pitching motions as follows:

ηh =
Fyḣ

1/2ρU3
∞d

(4.3.9)

ηθ =
Mz θ̇

1/2ρU3
∞d

(4.3.10)

The total energy harvesting efficiency, and the contributions of the heaving and
pitching motions are shown in Fig. 4.20 as a function of reduced frequency. Note
that two additional points are included for the rigid airfoil at k = 0.12 and k = 0.16

from a previous study (Siala & Liburdy, 2019c). At k = 0.10, it is shown in
Fig. 4.20(a) that airfoil deformation at the leading and trailing edges slightly
decrease the total energy harvesting efficiency compared to the rigid airfoil. The
rigid airfoil produces power at an efficiency of 13.5%, whereas the flexible LE and
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TE operate at η = 12.9% and η = 12.4%, respectively. While the contribution
of heaving motion of the flexible TE airfoil is larger than the rigid and flexible
TE airfoils, its pitching contribution is slightly more negative, as shown in Fig.
4.20(b) and 4.20(c), respectively. This is consistent with the results obtained by
Totpal et al. (2018), who have shown that at low reduced frequencies, surface
deformation decreases the energy harvesting efficiency. As k is increased to 0.14,
the total energy harvesting efficiency for the rigid and flexible LE airfoils increase
up to η = 25.1% and 25.9%, whereas the efficiency of the flexible TE airfoil is
increased to only η = 16.5%. The slow rate of increase in η with increasing k of
the flexible TE is a result of the large negative pitching efficiency that it produces,
as shown in Fig. 4.20(c). This is a result of the secondary vortex that is formed by
the flexible TE airfoil, which generates a relatively large negative moment while
it has a large positive pitching velocity. When k is increased to 0.18, the total
efficiency for the rigid airfoil begins to slowly decrease. Although the heaving
contribution increases when k is increased, the negative pitching contribution is
increased from ηθ = −2.6% to ηθ = −6.5%. This trend of negative increase in
pitching contributions at high reduced frequencies has been reported by multiple
authors in the literature (Kim et al., 2017; Liu et al., 2017). Furthermore, the
flexible LE airfoil is shown to have a greater heaving contribution when compared
to the rigid, while its pitching contribution is more negative than the rigid airfoil.
On the other hand, the negative contribution of the pitching motion of flexible TE
airfoil is shown to drop from ηθ = −8.1% to ηθ = −4.9% at k = 0.14 and k = 0.18,
respectively, which results in a greater overall efficiency at k = 0.18 compared to
the flexible LE airfoil. The shift to higher reduced frequency for peak efficiency
for both flexible LE and TE compared to the rigid airfoil has also been observed
by Liu et al. (2013).

4.4 Conclusions

The effects of inertia-induced deformation of the leading and trailing edges of the
airfoil on the flow physics and power extraction performance of an oscillating energy
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harvester were experimentally studied using wind tunnel testing. Two-dimensional
particle image velocimetry measurements were conducted at reduced frequencies
of k = 0.10, 0.14 and 0.18, with pitching and heaving amplitudes fixed at θ0 = 75◦

and h0 = 0.6c, respectively. The velocity data from the particle image velocimetry
measurements were used to analyze the dynamics of the leading edge vortex, as
well as to calculate force and pitching moment using the vortex-impulse theory.

The results show that the evolution of the leading edge vortex is altered by
using a deforming airfoil surface. The timing of the leading edge vortex inception
was shown to be slightly shifted to earlier times during the oscillation cycle, thereby
slightly shifting the force peaks to earlier times relative to the rigid airfoil. The
deforming leading edge directly influences the initiation of the leading edge vortex
by altering the flow conditions at the airfoil leading edge tip. On the other hand,
the deforming trailing edge is believed to increase the effective camber of the airfoil,
which also alters the flow at the leading edge. It is argued that for both cases,
the vorticity flux from the leading edge is increased as a result of the enhanced
flow at the leading edge of the airfoil. In addition, it was shown that the inception
time of the leading edge vortex for both the rigid and flexible leading edge airfoils
coincides with the time at which the non-dimensional shear layer velocity reaches
a value of approximately 0.5. Furthermore, the time-history of the leading edge
vortex was analyzed. The results show that deformation at the leading edge of the
airfoil enhances the growth rate and maximum strength of the LEV at k = 0.10 and
k = 0.14 compared to the rigid and flexible trailing edge airfoils, while for k = 0.18,
the LEV circulation for all three cases is essentially identical. For both the flexible
leading edge and rigid airfoils, the trailing edge shear layer was observed to roll-up
into a large trailing edge vortex at k = 0.10, which is responsible for cutting-off the
vorticity supply from the shear layer to the leading edge vortex, in a mechanism
known in the literature as bluff-body vortex detachment. Conversely, the motion
of the flexible trailing edge suppresses the formation of the trailing edge vortex,
and the leading edge vortex is believed to be detached from its shear layer via the
boundary layer eruption mechanism. When k > 0.10, none of the airfoils generate
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a trailing edge vortex, and the boundary layer eruption mechanism is proposed to
be responsible for cutting off the vorticity supply to the leading edge vortex.

The instantaneous power output and energy harvesting efficiency of the de-
forming leading and trailing edge airfoils were compared with the rigid airfoil. At
k = 0.10, no performance enhancement was observed by the flexible leading and
trailing edge airfoils compared to the rigid airfoil. However, they are shown to
be more effective at k = 0.18, where the energy harvesting efficiency was shown
to increase to 30% and 28%, respectively, compared to the 24% efficiency of the
rigid airfoil. The rigid airfoil efficiency is shown to peak at k = 0.14, whereas both
deforming airfoils peak at k = 0.18, agreeing quite well with results reported in
the literature.

The results of this study experimentally validate the feasibility of using de-
forming airfoil surface to enhance the performance of oscillating energy harvesters.
Future work will be conducted at larger reduced frequencies to determine the op-
timal operating reduced frequency of the flexible leading and trailing edge airfoils.
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Chapter 5 Conclusions

This work focused on experimental investigations of the unsteady aerodynamics
of a heaving and pitching airfoil operating in the energy harvesting regime. Two-
dimensional particle image velocimetry (PIV) measurements were conducted in a
recirculating wind tunnel at reduced frequencies of 0.06 - 0.18 with pitching and
heaving amplitudes fixed at θ0 = 75◦ and h0 = 0.6c, respectively. The velocity
field data obtained from PIV was used to thoroughly study the flow physics qual-
itatively as well as quantitatively. A reduced-order model was developed from the
vortex-impulse theory that can effectively estimate the aerodynamic loadings and
hence energy harvesting performance of the oscillating airfoil using flow field data
obtained from PIV. In addition, the feasibility of using inertia-induced surface
deformation as a mechanism of energy harvesting enhancement was explored.

In Chapter 2, a reduced form of the vortex-impulse equation is developed and
used to better understand force production mechanisms of an airfoil undergoing
deep dynamic stall. It is shown that the finite-domain impulse-based force equa-
tion can be significantly simplified by selecting the origin location of the position
vector to be located anywhere along downstream control volume boundary. By
doing so, several complex surface integral terms are shown to become negligible
and the impulse-based force equation is reduced to only two terms with a clear
physical meaning: (i) the time rate of change of the impulse and (ii) the Lamb
vector/Kutta Joukowski force that indirectly captures the effect of vortices in the
far wake. The force estimate obtained from the model is validated against direct
force measurement at low reduced frequencies. The results show that for k = 0.06
- 0.10, the time-history of the force contains two force peaks that form during the
downstroke/upstroke motion of the airfoil. The primary peak is shown to be associ-
ated with the formation of the leading edge vortex (LEV) and its detachment from
the airfoil surface and the secondary peak is generated as a result of its enhanced
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chord-wise advection. As the reduced frequency is increased to k ≥ 0.12, the time
scale of airfoil motion decreases relative to the advective time scale, which allows
the airfoil to capture the LEV that was shed in the previous cycle as it begins its
downstroke/upstroke. Consequently, a third peak in the force is produced at these
higher k values at the beginning of each stroke. Furthermore, it is demonstrated
that when k ≤ 0.10, the LEV grows quite rapidly and its maximum size scales with
the airfoil chord length. As it grows past the airfoil trailing edge, the trailing edge
shear layer is shown to roll-up into a large trailing edge vortex (TEV), resulting
in a rapid drop in the aerodynamic force. The flow reversal from the TEV toward
the airfoil leading edge cuts-off the vorticity supply from the leading edge shear
layer to the LEV, resulting in a vortex shedding behaviour akin to bluff-bodies.
On the other hand when k ≥ 0.12, the relative rapid motion of the airfoil limits
the growth of the LEV and consequently the end of the stroke is reached before
the LEV approaches the airfoil trailing edge. As a result, the TEV formation is
suppressed and the vortex detachment of the LEV from its shear layer is argued
to be a result of the eruption of the boundary layer.

In Chapter 3, the energy harvesting performance is investigated. In order
to calculate the power output and energy harvesting efficiency, the aerodynamic
moment equation based on the vortex-impulse theory is derived. The maximum
energy harvesting efficiency of approximately 25% is obtained at k = 0.14, agreeing
very well with published numerical results. The relationship between the concept
of optimal vortex formation number and maximum energy harvesting efficiency
is then explored. The results show no established relationship between the two,
and the maximum energy harvesting efficiency obtained at k = 0.14 is shown to
be a result of the optimal match between the time scales of the LEV and airfoil
oscillation. Furthermore, in order to better understand the effects of vortex struc-
tures on the energy harvesting performance, the power equation is decomposed
into contributions of positive and negative vorticity (where the positive vorticity
is associated with the counter-clockwise rotating LEV during the downstroke). It
is demonstrated that the contribution of the negative vorticity to the aerodynamic
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moment was primarily responsible for the reduction of the energy harvesting effi-
ciency and power output for k > 0.14. Specifically, due to the larger advective time
scale of the LEV at higher k values, the negative vorticity of the LEV generated
during the upstroke is shown to be caught by the downstream portion of the airfoil
as it begins its downstroke. As a result, a large counter-clockwise (negative) mo-
ment is produced, which interacts with the clock-wise rotating airfoil to produce a
large negative power.

In Chapter 4, the effects of inertia-induced deformation of the leading and trail-
ing edges of the airfoil on the flow dynamics and energy harvesting performance
are investigated. The passive deformation of the leading/trailing edges was es-
tablished by inserting a rod into slots along both the main airfoil body and the
leading/trailing edge segments, forming a hinge. The rod was secured at one end
on the body and the other end to the leading/trailing edge, providing a means
to allow deformation of the leading/trailing edge. The results show that the LEV
inception, growth and detachment are all affected by using a deforming airfoil
surface. The deforming leading edge airfoil directly influences the feeding shear
layer and consequently the evolution of the LEV is altered. On the other hand, the
deforming trailing edge introduces a camber that indirectly influences the flow con-
ditions at the leading edge. Both forms of deformation are shown to increase the
maximum energy harvesting efficiency at higher reduced frequencies. Relative to
the rigid airfoil, the deforming leading and trailing edges increased the maximum
efficiency by 17% and 25%, respectively. The performance enhancement is shown
to be a result of increased effective angle of attack induced by the deforming sur-
faces. In addition, both forms of deformation are shown to operate most efficiently
at k = 0.18 as opposed to k = 0.14 for the rigid airfoil. For the deforming lead-
ing edge, the performance enhancement is shown to be associated with enhanced
heaving contribution, while the trailing edge deformation is shown to alleviate the
negative pitching moment at k = 0.18, resulting in greater efficiency than the rigid
airfoil.
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Chapter 6 Implications and Future Work

The results presented in this dissertation can be of great importance in developing
theoretical models of transient force production of oscillating airfoils undergoing
deep dynamic stall. While there is an extensive amount of studies conducted that
attempt to model the unsteady forces based on discrete vortex models (Ramesh
et al., 2014; Darakananda et al., 2016; Prier, 2018; Wang & Eldredge, 2013) and
classical unsteady thin airfoil theory (Brunton & Rowley, 2010; Li & Wu, 2015),
various ad-hoc criteria and assumptions for the LEV inception time and detach-
ment are used that limit their use to only specific cases. We believe that some of
these assumptions can be relaxed by some aspects that we have learned from this
research.

Firstly, the inception/initiation of the LEV can potentially be determined based
on solely the airfoil kinematics and free stream flow. Currently, the most widely
used initiation criterion is based on the Leading Edge Suction Parameter (LESP)
developed by Ramesh et al. (2014). The LESP is equivalent to the first Fourier
coefficient A0 in unsteady thin airfoil theory. Briefly, Ramesh et al. (2014) show
that there exists a critical LESP value that is universal for a given airfoil geom-
etry and Reynolds number which dictates the time at which the LEV formation
is initiated. While this method is indeed effective, it requires high resolution sim-
ulations to pre-determine the onset of flow separation, because the critical LESP
value is achieved when an unstable wall friction coefficient along the airfoil chord
length is detected. Most PIV-based experiments cannot fully resolve the near wall
boundary-layer due to laser reflection off the surface. We have shown in Chapter 4
that there seems to be a critical non-dimensional value of the shear layer velocity
(approximated from the flow conditions at the leading edge tip of the airfoil), where
the flow separation begins to occur. This can potentially be used to determine the
onset of LEV initiation. That being said, there certainly needs to be more work
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done in validating this concept using various airfoil kinematics and flow conditions.
In addition, the shear layer must be resolved in order to accurately measure its
velocity.

Secondly, we have shown that the time evolution of the LEV collapses on a
single curve for a range of reduced frequencies when the LEV circulation and time
are normalized by the chord length and shear layer velocity. This suggests that this
scaling method may potentially serve as a tool to predict the evolution of LEVs for
a wide range of reduced frequencies. However, more work is needed to verify this
for a wider range of airfoil kinematics. Furthermore, the collapse of the circulation
is only truly universal (for the kinematics conditions we tested) when the LEV
detachment occurs as a result of TEV formation (i.e. bluff-body detachment). We
have shown that when boundary-layer eruption occurs at k ≥ 0.12, the LEV stops
growing and no longer follows the curve of the lower reduced frequency range. We
believe that it is possible to obtain a criterion that determines when boundary-layer
eruption occurs. By acknowledging that the boundary-layer eruption mechanism
occurs as a result of the increased streamwise pressure gradient near the airfoil
surface (due to the interaction of the LEV with the surface), then it may be
possible to determine a critical pressure gradient at which boundary-layer eruption
occurs. The critical non-dimensional pressure gradient may potentially be obtained
as follows. Near the airfoil surface, the pressure gradient can be written as:

dp

dx
= ν

∂2u

∂y2
(6.0.1)

By scaling the velocity as u ∼ ΓLEV /(2πR), diffusive length scale as y ∼ Ly − R
(where R is the LEV radius and Ly the normal distance from the LEV center to
the airfoil surface) and the pressure gradient as dp/dx ∼ ρU2

SL/c, the dimensionless
pressure gradient becomes:

dp∗

dx∗
=
T̂max
ReSL

c2

πκ(Ly −R)2
(6.0.2)
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where T̂max = (ΓLEV /cUSL)max is the maximum circulation at the instant of LEV
detachment from its shear layer, ReSL is the Reynolds number based on the shear
layer velocity and κ = 2R/c. Equation 6.0.2 may identify a transition crite-
rion based on LEV formation and growth that results in a critical value of the
non-dimensional pressure gradient. It is also revealed in this criterion that large
chord lengths, c, increase the dimensionless pressure gradient and thereby trigger
boundary-layer eruption. This is consistent with the findings of Widmann & Tro-
pea (2015). In addition, this critical value of non-dimensional pressure gradient
provides a means to examine relative parameters of LEV growth on the detach-
ment process. For instance, the interpretation of the parameter T̂max/ReSL is that
as the shear layer Reynolds number increases relative to the strength of the LEV
(which if strong, viscous effects near the surface become critical), the shear layer
is able to feed vorticity to the LEV at a relatively fast rate, such that the LEV
will grow to the trailing edge, resulting in bluff-body detachment.

Lastly, we have shown in shown in Chapter 2 that the aerodynamic forces
are dominated by the rate of change of vortex impulse and the Lamb vector that
represents the contributions of the shed vortical structures in the far wake. The
model, however, is only valid under the following conditions:

• For vertical/lift force calculation, the origin location of the position vector
must be placed along the downstream boundary.

• The control volume is large enough in the cross-stream direction such that
the majority of vorticity leaves the control volume through the downstream
boundary.

• The downstream boundary of the control volume must be located at least 1
chord length away from the airfoil trailing edge.

• Significant amount of flow separation is present.

The first condition is thoroughly discussed in Chapter 2 for vertical/lift force calcu-
lation. However, for drag calculation, which we do not consider in this dissertation,
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another objective origin location that minimizes the amplified error due to the po-
sition vector may be required. Furthermore, the second condition is required so
that all the impulse flux terms in the original impulse equation (Noca, 1997) are
only computed at the downstream boundary (which will go to zero if the origin
location is placed at the downstream boundary). The reasoning of the third condi-
tion is currently not clear. However, we speculate that the control volume should
be large enough such that the LEV remains inside the control volume while it is
growing in size and strength. If an LEV leaves the control while it is still growing,
then it may be possible that the Lamb vector force does not pick up the contribu-
tions of rate of change of circulation on the force. It was demonstrated in Chapter
2 that the force calculations begin to converge as the downstream boundary of
the control volume approaches a value of one chord length away from the airfoil
trailing edge. Finally, the fourth condition is required because the vorticity must
be well resolved in order for the impulse-based calculations to be accurate. When
the flow is fully-attached such that all the vorticity is confined in the boundary-
layer (which is not easy to capture using PIV), the impulse-based approach will
yield inaccurate results. While there are studies in the literature that prove that
surface vorticity plays a negligible role in force production of an airfoil undergoing
deep dynamic stall (Moriche et al., 2017), there are times during the beginning of
oscillation cycle (albeit a small percentage of the total time) where the flow seems
to be fully-attached. Our direct force measurements at k = 0.06 an 0.08 show that
the impulse-based force evaluation under-predicts the force when the flow is fully
attached. However, calculating the mean forces, power output and energy har-
vesting efficiency using the impulse-based model and direct force measurements
essentially yields similar results. That being said, it is encouraged to determine
a method to either better resolve the surface vorticity or directly calculate the
bound circulation contribution to the forces. The former can be done by using a
transparent airfoil to limit laser reflection off the surface such that the flow near
the wall can be better resolved. Directly measuring the bound vorticity, however,
is not a trivial task and is currently under extensive research (Corkery et al., 2019).
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Appendix A Derivation of the impulse-based force and moment
equations

In this section, we will show a step-by-step derivation of the impulse-based force
and moment equations. Both equations are derived based on the standard conser-
vation of momentum and conservation of angular momentum equations, combined
with various vector calculus identities. Throughout the derivation, we assume that
the flow is incompressible, the body surface is impermeable and the control volume
is stationary.

A.1 Impulse-based force equation

Consider the follow form of the conservation of momentum equation for a finite,
stationary control volume (CV ), bounded by an exterior surface S, as shown in
Fig. A.1:

F = −ρ d
dt

∫
CV

udV −
∮
S

n · (ρu⊗ u)dS +

∮
S

n · (−pI + T)dS (A.1.1)

The first term can be written in terms of the vorticity using the derivative-moment
transformation (DMT) identity (Wu et al., 2007b):∫

CV

udV =
1

N − 1

∫
CV

x× (∇× u)dV − 1

N − 1

∮
S

x× (n× u)dS

− 1

N − 1

∮
SB

x× (n× u)dS (A.1.2)

where SB represents the surface of the body located within the control volume
CV . By recognizing that ω = ∇× u, Eq. A.1.2 can be re-written as follows:
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Figure A.1: Control volume used to derive impulse-based equations.

∫
CV

udV =
1

N − 1

∫
CV

x× ωdV − 1

N − 1

∮
S

x× (n× u)dS

− 1

N − 1

∮
SB

x× (n× u)dS (A.1.3)

The first term of Eq. A.1.1 can be replaced by Eq. A.1.3 to yield the following:

F = − ρ

N − 1

d

dt

∫
CV

x× ωdV +
ρ

N − 1

d

dt

∮
S

x× (n× u)dS

+
ρ

N − 1

d

dt

∮
SB

x× (n× u)dS −
∮
S

n · (ρu⊗ u)dS +

∮
S

n · (−pI + T)dS

(A.1.4)

The time derivative of the second term can be taken inside the integral:

ρ

N − 1

d

dt

∮
S

x× (n× u)dS =
1

N − 1

∮
S

x×
(
n× ρ∂u

∂t

)
dS (A.1.5)
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The time derivative of the velocity in Eq. A.1.5 can be evaluated through the use
of the Navier-Stokes equations:

ρ
∂u
∂t

= −∇p− ρu · ∇u +∇ ·T (A.1.6)

In addition, another useful vector identity can be used to manipulate the convective
acceleration term (u · ∇u) is:

u · ∇u = ∇
(1

2
u · u

)
− u× ω (A.1.7)

Now insert Eq. A.1.7 into Eq. A.1.6:

ρ
∂u
∂t

= −∇p− ρ∇
(1

2
u · u

)
+ ρu× ω +∇ ·T (A.1.8)

Equation A.1.8 can now be inserted in Eq. A.1.5 to yield the following:

1

N − 1

∮
S

x×
(
n× ρ∂u

∂t

)
dS =

1

N − 1

∮
S

x×
(
n× [−∇(p+

ρ

2
u · u)

+ ρu× ω +∇ ·T]
)
dS (A.1.9)

The integral that involves the pressure can be transformed using another useful
identity provided by (Noca, 1997), which he refers to as the pressure identity:∮

S

x×
(
n× [−∇(p+

ρ

2
u · u)]

)
dS = (N − 1)

∮
S

n · (p+
ρ

2
u · u)IdS (A.1.10)

Now, insert Eq. A.1.10 back into Eq. A.1.9:

1

N − 1

∮
S

x×
(
n× ρ∂u

∂t

)
dS =

∮
S

n · (p+
ρ

2
u · u)IdS

+
1

N − 1

∮
S

x×
(
n× [ρu× ω +∇ ·T]

)
dS (A.1.11)
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The last term of Eq. A.1.11 is separated as follows:

1

N − 1

∮
S

x×
(
n× [ρu× ω +∇ ·T]

)
dS =

1

N − 1

∮
S

x×
(
n× [ρu× ω]

)
dS

+
1

N − 1

∮
S

x×
(
n×∇ ·T

)
dS (A.1.12)

The first term on the right hand side is now re-written as:

ρ

∮
S

x×
(
n× [ρu× ω]

)
dS = ρ

∮
S

[n · ω ⊗ (x× u)− n · u⊗ (x× ω)]dS (A.1.13)

Similarly, the second term on the right hand side of Eq. A.1.12 is re-written as:∮
S

x×
(
n×∇ ·T

)
dS =

∮
S

[n · (x · ∇ ·T)I− (x · n)∇ ·T]dS (A.1.14)

Now, Eq. A.1.13 and Eq. A.1.14 are inserted into Eq. A.1.11:

1

N − 1

∮
S

x×
(
n× ρ∂u

∂t

)
dS =

∮
S

n · (p+
ρ

2
u · u)IdS

+
ρ

N − 1

[ ∮
S

[n · ω ⊗ (x× u)− n · u⊗ (x× ω)]dS +

∮
S

[n · (x · ∇ ·T)I

− (x · n)∇ ·T]dS
]

(A.1.15)

We can obtain the final impulse-based force equation by inserting Eq. A.1.15 into
Eq. A.1.4, where the pressure terms will cancel out:

F = − ρ

N − 1

d

dt

∫
CV

x × ωdV +
ρ

N − 1

d

dt

∮
SB

x × (n × u)dS +

∮
S

n · λdS

(A.1.16)
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where the tensor λ is:

λ =
ρ

2
(u · u)I− ρu⊗ u− ρ

N − 1

[
u⊗ (x× ω) + ω ⊗ (x× u)

]
+

1

N − 1

[
x · (∇ ·T)I− x⊗ (∇ ·T)

]
+ T (A.1.17)

Note that N represents the number of dimensions of space (i.e. for 2D flows, N = 2

and for 3D flows, N = 3). The derivation of the more general impulse-based force
equation that does not assume stationary control volume and impermeable airfoil
surface is provided by Noca (1997).

A.2 Impulse-based moment equation

The conservation equation of angular momentum for a finite, stationary control
volume bounded by an exterior surface S can be written as follows:

M = −ρ d
dt

∫
CV

x× udV −
∮
S

x× [n · (ρu⊗ u)]dS +

∮
S

x× [n · (−pI + T)]dS

(A.2.1)

Similar to the the force equation, the goal is to transform the first term of Eq.
A.2.1 into a term that contains the vorticity using the DMT identity (Wu et al.,
2007b):∫
CV

x×udV = −1

2

∫
CV

(x ·x)ωdV +
1

2

∮
S

(x ·x)(n×u)dS+
1

2

∮
SB

(x ·x)(n×u)dS

(A.2.2)
Next insert Eq. A.2.2 into Eq. A.2.1:

M =
ρ

2

d

dt

∫
CV

(x · x)ωdV − ρ

2

d

dt

∮
S

(x · x)(n× u)dS +
ρ

2

d

dt

∮
SB

(x · x)(n× u)dS

−
∮
S

x× [n · (ρu⊗ u)]dS +

∮
S

x× [n · (−pI + T)]dS (A.2.3)
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Using the Navier-Stokes equation (Eq. A.1.6), the second term can be re-written
in the following form:

1

2

∮
S

(x ·x)
(
n× ρ∂u

∂t

)
dS =

1

2

∮
S

(x ·x)
(
n× [−∇(p+

ρ

2
u ·u) + ρu×ω+∇ ·T]

)
dS

(A.2.4)
The integral that contains the pressure can be transformed to the following form:

1

2

∮
S

(x · x)
(
n× [−∇(p− ρ

2
u · u)]

)
dS =

∮
S

x× n · (−p− ρ

2
u · u)IdS (A.2.5)

By inserting Eq. A.2.5 into Eq. A.2.4, and then into Eq. A.2.3 to get the following
moment equation:

M =
ρ

2

d

dt

∫
CV

(x · x)ωdV − 1

2

∮
S

(x · x)
(
n× [ρu× ω +∇ ·T]

)
dS

+
ρ

2

d

dt

∮
SB

(x · x)(n× u)dS +

∮
S

x× n · (p+
ρ

2
u · u)IdS

−
∮
S

x× [n · (ρu⊗ u)]dS +

∮
S

x× [n · (−pI + T)]dS (A.2.6)

Note that the pressure terms can now be cancelled. Eq. A.2.6 is now re-arranged
as follows:

M =
ρ

2

d

dt

∫
CV

(x·x)ωdV −ρ
2

∮
S

(x·x)
(
n×(u×ω)

)
dS−1

2

∮
S

(x·x)
(
n×(∇·T)

)
dS

+

∮
S

x× (n ·T)dS+
ρ

2

d

dt

∮
SB

(x ·x)(n×u)dS+ρ

∮
S

x×n ·
[(1

2
u ·u

)
I−u⊗u

]
dS

(A.2.7)

Saffman (1992) has shown that the next to the last term can be written in terms
of the lamb vector (u× ω):

ρ

∮
S

x× n ·
[(1

2
u · u

)
I− u⊗ u

]
dS = ρ

∫
CV

x× (u× ω)dV (A.2.8)
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Next, we combine the viscous and shear stress terms together:

τ =

∮
S

x× (n ·T)dS − 1

2

∮
S

(x · x)
(
n× (∇ ·T)

)
dS (A.2.9)

Finally, the impulse-based moment equation can be written by combining Eq.
A.2.9 and Eq. A.2.8 with Eq. A.2.7:

M =
ρ

2

d

dt

∫
CV

(x · x)ωdV + ρ

∫
CV

x× (u×ω)dV − ρ

2

∮
S

(x · x)
(
n× (u×ω)

)
dS

+
ρ

2

d

dt

∮
SB

(x · x)(n× u)dS + τ (A.2.10)

Note that the second to last term represents the effect on the body motion on the
aerodynamic moment.
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Appendix B Uncertainty analysis

B.1 PIV uncertainty

The errors in determining the exact location of seed particle images taken using PIV
may have a large impact on the calculated velocity vectors. Raffel et al. (2018) have
shown that these errors arise from multiple sources, such as seeding density, particle
image diameter, out-of-plane particle motion, background noise and large flow
gradients. In this dissertation, we follow the correlation statistics method provided
by Wieneke (2015) to estimate the uncertainty in velocity measurements. The idea
of this method is to utilize the differences between the cross-correlation function
that is obtained experimentally with the one that would be obtained under ideal
situations (i.e. with no experimental errors). In an idealized situation of an exact
particle position measurement, the particle images captured by the PIV camera
match perfectly with each other, producing a symmetric correlation peak. However
in real measurements, the paired images do not exactly match, and the disparity is
reflected in a non-symmetric correlation peak. The position displacement vectors
can then be derived from a statistical analysis of how each pixel contributes to the
cross-correlation peak shape. The algorithm for this technique is implemented in
DaVIS v8.4, and the details are provided by Wieneke (2015).

B.1.1 Characterization of the wind tunnel free stream flow

A typical profile of the free stream velocity in the wind tunnel is shown in Fig.
B.1a. The maximum velocity uncertainty for all cases tested is approximately 0.3%
of the free stream velocity. In Fig. B.1b, a contour plot of the turbulence intensity
is provided, showing a maximum intensity of approximately 1%, with the majority
of field of view having an intensity less than 0.5% of the free stream velocity. The
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Figure B.1: (a) Typical velocity profile of the free stream flow in the wind tunnel
and (b) contour plot of the turbulence intensity of the free stream flow.

turbulence intensity (TI) of a two-dimensional flow is calculated as follows:

TI =

√
1
2
(u′2 + v′2)

U∞
× 100 (B.1.1)

where u′ and v′ are the root-mean-square of the axial and normal velocity com-
ponents, respectively. The velocity fluctuations are calculated using the classical
Reynolds decomposition, where 500 time-resolved images (captured at a sampling
frequency of 15 Hz) are used to calculate the mean flow.

B.1.2 Velocity field uncertainty

The velocity uncertainty is calculated using DaVIS v8.4. In Fig. B.2, we show
a contour plot of the normalized velocity magnitude and its corresponding uncer-
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Figure B.2: (a) Normalized velocity magnitude and (b) corresponding uncertainty
map.

tainty (δ|u|) map. The velocity magnitude is defined as follows:

|u| =
√
u2 + v2 (B.1.2)

The largest estimated uncertainty in the velocity magnitude was found to be ap-
proximately 2.3% of the free stream velocity.

B.1.3 Vorticity field uncertainty

Here, we show how the measurement uncertainty in velocity can be propagated
to the spanwise vorticity. The uncertainty propagated to any function F can be
calculated as follows:

δF =

√∑
J

( ∂F
∂LJ

δLJ

)2
(B.1.3)
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Figure B.3: (a) Normalized vorticity field showing LEV formation and trailing
edge vorticity shedding and (b) corresponding uncertainty map.

where LJ is a set of variables on which the function F is dependent and δLJ

represents the uncertainty of these variables. The vorticity is calculated from
velocity using a central difference scheme:

ωz =
1

2h
(vi+1,j − vi−1,j − ui,j+1 + ui,j−1) (B.1.4)

where h is the grid-spacing which is the same in both directions of the domain. By
combining Eq. B.1.3 and Eq. B.1.4, it can be shown that the uncertainty in the
spanwise vorticity can written as:

δωz =
1

2h

√
δv2i+1,j + (−δvi−1,j)2 + (−δui,j+1)2 + δu2i,j−1 (B.1.5)

where δu and δv represent the uncertainty in the axial and normal velocity com-
ponents, respectively. A typical vorticity field showing the LEV formation and
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Figure B.4: Normalized average uncertainty of the axial and normal velocities as
a function of sampling size.

trailing edge vorticity shedding and its corresponding uncertainty map are shown
in Fig. B.3a and Fig. B.3b, respectively. The maximum observed vorticity uncer-
tainty is approximately 9% of the maximum vorticity. Note that the discretization
error due to spatial resolution of the central difference scheme is in the order of h2.
In this study, the dimensionless grid spacing h∗ = h/c is in the order of O(10−2),
such that h∗2 will be in the order of O(10−4). Because this is significantly smaller
than the velocity uncertainty, the discretization error has been omitted in the
calculation of vorticity uncertainty.

B.1.4 Effect of sampling size on the uncertainty

The effect of number of PIV images that is used for phase-averaging at each phase
of interest on the velocity uncertainty and LEV vorticity is reported in this section.
Fig. B4 shows the average calculated uncertainty of the axial and normal velocities
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Figure B.5: Flow field calculated using (a) 10 images, (b) 50 images and (c) 100
images.

(normalized by the free stream velocity) in a typical velocity field as a function of
the sampling size. As shown, the uncertainty decreases with increasing sampling
size, and becomes approximately constant at a sampling size of 75. The maximum
uncertainty in the axial and normal velocities observed in all experiments are 3.5%
and 5.8% of the free stream velocity, respectively.

In Fig. B5, we show the variation in LEV vorticity for sampling sizes of 10,
50 and 100. It is quite clear that the velocity fields calculated using 50 and 100
phase-averaged images produce a more coherent LEV than the velocity field cal-
culated using 10 images. Qualitatively, it is shown that when the sampling size is
increased from 50 to 100 images, the LEV does not significantly change. Finally,
it is important to quantify the effect of sampling size on LEV circulation and its
uncertainty. The LEV circulation is calculated as follows:

ΓLEV =
∑
j

ωzjdAj (B.1.6)
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Figure B.6: (a) Normalized LEV circulation versus sampling size and (b) uncer-
tainty in LEV circulation versus sampling size.

where dA is the differential area (dA = h2) and the sum over the index j includes
every data point in the two-dimensional vorticity field. Note that the summation is
performed only within the LEV boundaries, as detected by the Γ2 method described
in Chapter 2. Using Eq. B.1.3, the uncertainty in LEV circulation can be written
as follows:

δΓLEV = h2
√∑

j

δω2
zj

(B.1.7)

The dependency of the normalized LEV circulation (the LEV shown in Fig. B.5)
on the sampling size is shown in Fig. B.6a. As the sampling size increases the
LEV circulation decreases, and it becomes approximately constant at a sampling
size of 75. The reduction in circulation with increasing sampling size is a result
of the vorticity field becoming smoother as the sampling size increases (i.e. the
velocity gradients become smoother). Figure B.6b shows the uncertainty of LEV
circulation with varying sampling size. As expected, the uncertainty decreases
as the sampling size increases. While these uncertainties are specific to the LEV
shown in Fig. B.5, a similar trend is observed for different experimental conditions
at different phases during the oscillation cycle. The maximum uncertainty of LEV
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circulation was determined to be approximately 6.7% of the circulation value.

B.2 Uncertainty in force and moment estimation

In this section, the analysis of uncertainty propagation from the velocity and vor-
ticity fields to the lift force and aerodynamics moment is provided. The simplified
force equation (see Chapter 2) is re-written here for convenience:

Fy = −ρ d
dt

∫
CV

xωzdA+ ρ

∫
CV

uωzdA (B.2.1)

and the simplified aerodynamic moment equation (see Chapter 3) is:

Mz =
ρ

2

d

dt

∫
CV

(x2 + y2)ωzdA+ ρ

∫
CV

(yvωz − xuωz)dA

− ρ

2

∮
S

(x2 + y2)(nyvωz − nxuωz)dS (B.2.2)

First, we will look at the uncertainty of the rate of change of the impulse force
(FI,y) and impulse moment (MI,z). These are the first terms of equations B.2.1
and B.2.2, respectively. The time derivatives were calculated using a central dif-
ference scheme, with a temporal discretization error in the order of O(10−5) and
therefore its effect on the force and moment can be assumed to be negligible. In
addition, the truncation error from the area integral can be shown using a two-
dimensional taylor-series expansion to be in the order of O(10−8) and therefore
it is also negligible. The uncertainty of both these terms can then be written as
follows:

δFI,y =
ρh2

2∆t

√∑
j

x2jδω
2
z,j (B.2.3)

δMI,z =
ρh2

2∆t

√∑
j

(x2j + y2j )
2δω2

z,j (B.2.4)
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The uncertainty in the contribution of the Lamb vector to the force (FL,y, second
term of Eq. B.2.1) and moment (ML,z, second term of Eq. B.2.2) is:

δFL,y = ρh2
√∑

j

ω2
z,jδu

2
j +

∑
j

u2jδω
2
z,j (B.2.5)

δML,z = ρh2
√∑

j

y2jω
2
z,jδv

2
j +

∑
j

y2ju
2
jδω

2
z,j +

∑
j

x2jω
2
z,jδu

2
j +

∑
j

x2ju
2
jδω

2
z,j

(B.2.6)
Finally, the uncertainty in Lamb vector contribution to the surface integral (ML,S,z,
last term of Eq. B.2.2) is:

δML,S,z =
hρ

2

√∑
m

(x2m + y2m)2v2mδω
2
z,m +

∑
m

(x2m + y2m)2ω2
z,mδv

2
m

+
∑
n

(x2n + y2n)2u2nδω
2
z,n +

∑
n

(x2n + y2n)2ω2
z,nδu

2
n (B.2.7)

where m and n correspond to the summation along the x and y directions, re-
spectively. The total uncertainty in the force and moment can then be written
as:

δFy =
√
δF 2

I,y + δF 2
L,y (B.2.8)

δMz =
√
δM2

I,z + δM2
L,z + δM2

L,S,z (B.2.9)

B.3 Uncertainty in power output

The power output of an oscillating airfoil is written as:

P = Fyḣ+Mz θ̇ (B.3.1)
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The uncertainty in power output can be written as:

δP =
√
F 2
y δḣ

2 + ḣ2δF 2
y +M2

z δθ̇
2 + θ̇δM2

z (B.3.2)

The uncertainty of the heaving and pitching velocities were found to be in the
order of ±10−3 m/s and ±10−3 rad/s (Totpal, 2017).
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Appendix C Full velocity field construction

(a) (b)

Figure C.1: (a) Velocity field obtained by a single camera and (b) velocity field
obtained by two cameras.

The use of the impulse-based force and moment equations requires the knowledge
of the velocity field that surrounds the entire airfoil. The airfoil kinematics used
in this study are based on relatively large amplitudes of motion, such that a single
PIV camera is not sufficient to capture the entire flow field. A sample velocity
field captured by a single PIV camera is shown in Fig. C.1a. To resolve this issue,
a second camera was used to capture the lower half of the downstroke motion
of the airfoil. Figure C.1b shows the field of view (FOV) captured by both PIV
cameras (one FOV is colored by a blue rectangle and the other is colored by a red
rectangle). Note that there is an overlap of 22 vectors between the two FOVs. The
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Figure C.2: Stitched upstream and wake FOVs.

overlapped region was smoothed using a 3x3 moving averaging filter. Fine-tuning
the location of the cameras was performed using the calibration wizard in DaVIS
v8.4.

The FOV shown in Fig. C.1b is still not sufficient, as the near wake is barely
captured. DeVoria et al. (2014) have shown that to minimize the errors in impulse-
based force estimation, the downstream boundary of the control volume should be
located approximately 1 chord length downstream of the airfoil trailing edge. Since
we only had two cameras to work with, the PIV cameras were moved downstream
to a marked location, and all the experiments were repeated. The upstream and
wake FOVs were then stitched together, and the result is shown in Fig. C.2.

Finally, in order to obtain velocity measurements in the shadow region (which is
caused by the airfoil blocking the PIV laser sheet), the experiments were repeated
at a phase delay of 180◦ for each phase of interest. The 180◦ out of phase velocity
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(a) (b) (c)

Figure C.3: (a) Velocity field with the shadow region, (b) 180◦ out of phase velocity
field and (c) full velocity field.

fields were then mirrored and stitched to the rest of the velocity field to construct
the full flow field surrounding the airfoil. This process is shown in Fig C.3.

One obvious concern with the full velocity field construction is the precision
of the stitching process. If not carefully treated, the stitching process may result
in noisy data due to the artificially increased velocity gradients in the overlapped
region. An example of a noisy vorticity field is shown in Fig C.4a, where the
vorticity was calculated after stitching the velocity fields. It can be seen that there
is considerable noise in the vorticity, especially within the LEV where different FOV
regions are overlapped. The noise levels in vorticity can be significantly decreased
by calculating the vorticity of each FOV individually, and then stitch the vorticity
fields together. This will ensure that the large velocity gradients caused by the
stitching of the velocity fields do not contribute to vorticity calculation. The result
is shown in Fig. C.4b.
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(a) (b)

Figure C.4: (a) Vorticity field calculated after velocity field stitching and (b) vor-
ticity field calculated prior to velocity field stitching.
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Appendix D Impulse-based force equations: time-derivative of the
force and moment impulse
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Figure D.1: An example of the raw (a) impulse force and (b) impulse moment
versus time.

Using the impulse-based force and moment equations requires evaluating the time
derivative of the vortex impulse:

FI,z = −ρ d
dt

∫
CV

xωzdA = −ρdIF,y
dt

(D.0.1)

MI,z = ρ
d

dt

∫
CV

(x2 + y2)ωzdA = ρ
dIM,z

dt
(D.0.2)

Prior to taking the time-derivative, it is important to ensure that the data are
continuous and smooth. Examples of the raw data for IF,y and IM,z versus time
are shown in Fig. D.1. One way to ensure the smoothness of the data is to fit
it with a smoothing spline. A smoothing spline can be formed by a piece-wise
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Figure D.2: Optimal spline fit applied to (a) impulse force and (b) impulse moment.

polynomial of degree n with n − 1 continuous derivatives at each break point. In
this work, a cubic (n = 3) is used. We follow the method developed by Epps
et al. (2010) to determine the optimal spline fit. Essentially, the optimal spline
fit is the one that follows the data as closely as possible without being affected
by the roughness due to the noise in the data. We can characterize the error of a
particular spline, s(t), as follows:

E =
N∑
i=1

|ỹ(ti)− s(ti)|2∆t (D.0.3)

where ỹ is the data to be fitted. The cubic spline roughness is defined as:

R =

∫ tN

t1

∣∣∣d2s
dt2

∣∣∣2dt (D.0.4)

Then, the optimal spline can be determined by minimizing the following quantity:

J = pE + (1− p)R (D.0.5)

where p is the smoothing parameter which varies from 0 to 1, and it controls the



139

amount of smoothing applied to the spline. The value of p must be chosen a priori.
If p = 1 is chosen, then minimizing the value of J requires minimizing the error
E. On the other hand if p = 0 is chosen, then minimizing J requires minimizing
the roughness R. The approach of the method developed by Epps et al. (2010) is
to choose an error tolerance, E, and find the spline with the least roughness R.
In this work, we chose an error tolerance of 1e−5. The objective then becomes to
vary the spline parameters such as the number of break points and smoothness.
An example of the optimal spline for the raw data shown in Fig. D.1 is provided
in Fig. D.2.
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