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Abstract While much effort has been directed at deter-

mining the spatial scales of adaptation in thermal reaction

norms for growth, it is widely assumed that these reaction

norms have high temporal stability. Water temperatures in

the Gulf of Alaska in 2007 were the coldest on record since

the mid-1970s and we present evidence that the thermal

reaction norm for growth of age-0 Pacific cod (Gadus

macrocephalus) in this cohort differed significantly from

two adjacent cohorts. In addition to exhibiting higher

growth potential at low temperatures, the 2007 cohort had a

higher mean vertebral count, consistent with the wide-

spread thermal effect known as ‘‘Jordan’s Rule.’’ Variation

among cohorts in these physiological and morphological

traits suggests a persistent response to environmental

history (epigenetic effect). Temperature-induced pheno-

typic plasticity in the reaction norm for growth has sig-

nificant implications for using growth rates to evaluate

habitat quality and illustrates the complex responses of

fishes to climate variability.

Introduction

Temperature is a primary driver of all aspects of the

physiology of ectotherms including growth potential. As

such, the relationship between water temperature and

potential growth rate (‘‘temperature-dependence of

growth’’ or ‘‘thermal reaction norm for growth’’) is con-

sidered a critical trait of species and populations and has

been described for multiple life stages for a wide variety of

marine and freshwater fishes. Ultimately, the responses of

populations and communities to climate forcing represent

the cumulative effects of a suite of physiological and

behavioral responses to temperature and its interaction with

other abiotic and biotic aspects of the environment (King

et al. 1999; Rijnsdorp et al. 2009).

It is widely accepted that thermal reaction norms are

evolved to maximize survival and fitness in prevailing

thermal regimes (Huey and Kingsolver 1989; Angilletta

et al. 2002; Salinas and Munch 2012). Over the past dec-

ade, there has been increased research attention devoted to

describing the spatial scale at which thermal reaction

norms are adapted to local climate regimes (Conover et al.

2006). A number of studies have shown local adaptation in

temperature-dependent growth responses in fishes, fre-

quently corresponding to latitudinal clines in temperatures

and growing season length (reviewed by Conover et al.

2010). In addition, efforts to reconstruct historical
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dynamics of harvested species have led researchers to

evaluate the temporal stability of reaction norms of growth

and maturation to temperature over decades (Mollet et al.

2007). However, few studies have specifically evaluated

the temporal stability of reaction norms to temperature

under different climate regimes, and none have tested the

assumption that growth rates measured for one cohort

apply to subsequent cohorts.

Due to the confounding effects of prey availability,

oxygen levels, social interactions, and selective mortality,

it is difficult to resolve thermal reaction norms using field

collections alone. Thermal reaction norms are more

definitively described in the laboratory where other envi-

ronmental factors can be controlled, isolating the influence

of temperature. Homogeneous groups of organisms are

reared across a range of temperatures under unrestricted

foraging conditions. The relative performance in these

treatments describes the thermal reaction norm for growth

for the species, population, or experimental cross of

interest. The resulting growth responses are then applied to

a variety of ecological questions (King et al. 1999; Searcy

et al. 2007; Freitas et al. 2007; Hurst et al. 2010a).

Pacific cod (Gadus macrocephalus) is a widespread

marine species, occurring on continental shelves through-

out the eastern and western North Pacific and Bering Sea.

They are an important component of North Pacific and

Bering Sea fisheries and food webs. Along the West Coast

of the United States, landings of Pacific cod trail only those

of Alaskan walleye pollock (Theragra chalcogramma;

NMFS 2008). However, until recently, detailed informa-

tion about thermal effects on Pacific cod biology was

limited to the egg stage (Alderdice and Forrester 1971).

Thermal effects on the behavior of Pacific cod larvae and

juveniles have been examined by Hurst et al. (2009) and

Davis and Ottmar (2009). Hurst et al. (2010b) described the

interactive effects of temperature and body size on growth

potential of larval and early post-settlement juveniles, and

Laurel et al. (2011) described the interactive effects of

temperature and prey availability on larval growth. How-

ever, none of the studies to date have considered the

potential for variation among cohorts in their responses to

thermal variation.

In this paper, we describe the thermal reaction norms for

growth of juvenile Pacific cod from three naturally pro-

duced annual cohorts (2006–2008). Although not a part of

the a priori study design, this period included a marked

variation in thermal conditions in the Gulf of Alaska during

the spawning and early developmental period of Pacific

cod: the winter and spring of 2007 were the coldest on

record since the mid-1970s (Janout et al. 2009). In addition,

we describe variation among these cohorts in mean verte-

bral count (a trait known to vary inversely with incubation

temperature in numerous fishes). Together, these results

suggest temperature-induced phenotypic plasticity in the

early life history extends to both physiological and mor-

phological traits. These results have important implications

for evaluating habitat quality in marine ecosystems and

understanding the population responses to climate vari-

ability across a variety of spatial and temporal scales

(Stillman 2003).

Methods

Temperature records

In the Gulf of Alaska, the winter and spring of 2007 were

anomalously cold, being the coldest on record since the

mid-1970s (Janout et al. 2009). Two sets of temperature

records were used to illustrate interannual variation in

water temperatures. Nearshore temperatures in the vicinity

of the fish collection site were obtained from a logging

station at 10.7 m depth in Trident Basin (57.782�N

152.389�W), on the northeast coast of Kodiak Island. In

addition, offshore sea surface temperatures measured at

1 m below the surface were obtained from NOAA’s

National Ocean Buoy Data Center for station 46078 at

Albatross Banks (56.074�N 152.572�W), 65 NM south of

Kodiak Island. Both records provided a continuous record

of hourly temperatures over the study period of January 1,

2006 through December 31, 2008, which were converted to

daily averages for these analyses. Although we do not have

detailed information on the spawning times of Pacific cod

in the central Gulf of Alaska or specific spawning locations

of fish recruiting to Kodiak Island nurseries, general

observations indicate that spawning takes place over rocky

substrates of 20–200 m depth between mid-March and

mid-April (Dunn and Matarese 1987). Average tempera-

tures from 15 March to 15 April were used to characterize

interannual variation in thermal regime during the spawn-

ing period of Pacific cod in this region (Dunn and Matarese

1987).

Growth rate experiments

Age-0 Pacific cod were captured from a Kodiak Island

juvenile nursery (Anton Larsen Bay) in August 2006,

August 2007, and July 2008 using a 36-m beach seine. Fish

were maintained for at least 48 h at the Alaska Fisheries

Science Center (AFSC) Kodiak Laboratory in ambient

seawater prior to shipment to the AFSC Laboratory in

Newport, Oregon. Fish were shipped overnight in insulated

containers filled with seawater and oxygen. Prior to use in

laboratory experiments, fish were maintained in 1-m-

diameter round tanks with flow-through seawater main-

tained at 8–10 �C. During this acclimation period, fish
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were fed thawed krill and a gelatinized combination of

squid, krill, herring, commercial fish food, amino acid

supplements, and vitamins on alternate days.

Each experiment was initiated by assigning fish into size

categories (N = 3) based on visual estimation in order to

minimize the potential for intra-cohort cannibalism fre-

quently observed in larval and juvenile gadids (Folkvord

and Otterå 1993, Sogard and Olla 1994). Three groups of

fish (n = 7–10) were assigned to each temperature treat-

ment (n = 4; 12 tanks total for each cohort). Although size

sorting resulted in significant differences in mean fish size

among the tanks within temperature treatments, these dif-

ferences were minor and the tanks were considered repli-

cates for the analysis of cohort and temperature effects

(Table 1). After establishment of experimental groups,

temperatures were adjusted to treatment temperatures at a

rate of \2 �C d-1; fish were acclimated to the treatment

temperature for 10–14 days prior to measuring growth

rates. The 2006 and 2007 cohorts were tested at 2, 5, 9, and

13 �C, and the 2008 cohort was tested at 2, 5, 8, and 11 �C.

Tank temperatures were checked twice daily and main-

tained within 1 �C of target temperatures (Table 1).

Growth data from the 2008 cohort were included in a

previous paper describing early ontogenetic patterns (Hurst

et al. 2010b).

Experimental tanks for the 2006 and 2007 cohorts were

1 m in diameter and filled to a depth of 55 cm. Experimental

tanks for the 2008 cohort were 66 9 45.7 cm, filled to a

depth of 23.2 cm. The smaller tanks were used to test fish

from the 2008 cohort, which were collected earlier in the

growing season and tested at a smaller size (0.88 ± 0.30 g,

compared to 5.76 ± 1.70 and 1.84 ± 0.68 g in for the 2006

and 2007 cohorts, respectively). The tanks were supplied

with flow-through sea water (except that water in the 11 and

13 �C treatments was partially re-circulated through a

heater). During the experiments, fish were fed thawed krill to

apparent satiation once per day. In addition, a gelatinized

combination of squid, krill, herring, commercial fish food,

amino acid supplements, and vitamins was provided three

times per week. Lights were maintained on a 12:12 h

light:dark photoperiod for all experiments. Tanks were

checked twice daily for mortalities which were removed,

weighed, and measured.

Growth rates were estimated by weighing (wet mass MW

to 0.01 g) and measuring (total length LT to 1 mm) all fish

in the experiments three times at 10–21-day intervals

depending on fish size and water temperature. Longer

intervals were used for larger fish and in lower temperature

treatments (Table 1). To minimize stress from repeated

handling of small fish, wet masses for the 2008 cohort were

measured only at the end of the experiment. MW of indi-

vidual fish at earlier sampling points was estimated from

regressions based on measures of fish collected and trans-

ported to the laboratory but not used in this experiment.

In this experiment, the relationship between ln-trans-

formed mass and measurement time was approximately

linear, and specific growth rates (SGR) were determined by

regressing the measurements of ln-mass against measure-

ment date for each fish. Growth rates were not corrected for

variation in initial size among tanks as there was no sig-

nificant relationship between tank mean fish size and tank

mean growth rate (expressed as deviations from combined

and cohort-specific temperature-dependent curves;

r2 \ 0.025; p [ 0.35). In lieu of marking the 7–10 indi-

vidual fish in each tank, we assumed that size rank was

maintained within each replicate tank during the

Table 1 Summary of growth experiments conducted at the Alaska Fisheries Science Center laboratory in Newport, Oregon, with age-0 Pacific

cod (Gadus macrocephalus) collected from the central Gulf of Alaska

Cohort Tank style Experiment

duration, days

Nominal

temperature, �C

Actual temperature,

�C (SD)

R1 mean mass,

g (SD)

R2 mean mass,

g (SD)

R3 mean mass,

g (SD)

2006 1-m diam 64 2 2.3 (0.5) 3.46 (0.21) 4.31 (0.43) 6.79 (0.38)

1-m diam 64 5 4.8 (0.6) 5.05 (0.38) 5.54 (0.38) 7.97 (0.67)

1-m diam 43 9 8.4 (0.3) 4.70 (0.41) 5.73 (0.34) 7.93 (0.48)

1-m diam 43 13 12.4 (0.4) 4.92 (0.19) 5.52 (0.22) 7.23 (0.39)

2007 1-m diam 42 2 2.3 (0.4) 1.47 (0.08) 1.52 (0.11) 2.65 (0.17)

1-m diam 42 5 5.1 (0.4) 1.34 (0.10) 1.89 (0.08) 2.79 (0.18)

1-m diam 30 9 9.1 (0.6) 1.26 (0.16) 1.74 (0.10) 2.59 (0.17)

1-m diam 30 13 13.0 (0.5) 1.18 (0.13) 1.39 (0.12) 2.06 (0.09)

2008 66 9 45.7 cm 17 2 2.4 (0.5) 0.51 (0.02) 0.89 (0.09) 1.06 (0.08)

66 9 45.7 cm 17 5 5.2 (0.7) 0.64 (0.03) 0.84 (0.12) 0.95 (0.07)

66 9 45.7 cm 17 8 8.2 (0.7) 0.68 (0.06) 0.96 (0.15) 1.05 (0.10)

66 9 45.7 cm 17 11 11.2 (0.6) 0.69 (0.04) 1.04 (0.09) 1.16 (0.08)

Replicates (R1, R2, R3) are ordered by increasing mean fish mass at the start of the experiment
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experiment. However, because the individual fish within

each tank cannot be considered independent observations,

for all analyses, we used the mean growth rate observed in

each tank (N = 36) as the level of observation. In general,

fish that died at any point during the experiment were

excluded from calculations determining growth rate for the

tank. However, this would have precluded obtaining any

growth rate estimates for the 13 �C treatment of the 2007

cohort. Therefore, we included data from the first 2 weeks

of the experiment for two of the three replicate tanks where

over half of the fish survived until day 14.

For each cohort, we modeled the temperature-depen-

dence of growth with a second-order polynomial. We used

the mean temperatures measured during the growth interval

in these analyses, rather than the nominal treatment tem-

peratures. To determine the factors that contributed to

growth variation across the three experiments, we exam-

ined models with and without a cohort (C) main effect and

interactions between cohort and the linear (T) and second-

order (T2) temperature terms (van Doorslaer and Stocks

2005) and used AIC to determine which model(s) best

described the data (Burnham and Anderson 2002). The

presence of cohort-specific variation in thermal reaction

norm for growth was indicated by models including cohort

x temperature (linear or second-order) interactions per-

forming better (lower AIC scores) than models without

these interaction terms. The effects identified for inclusion

based on AIC model scores were subsequently evaluated

for statistical significance with traditional F tests.

Vertebral counts

Age-0 Pacific cod were captured from two nearshore

nurseries (Anton Larsen Bay and Cook’s Bay) in July and

August 2006, 2007, and 2008. Fish were captured with a

36-m beach seine and held on ice prior to freezing in the

laboratory. The fish used for vertebral counts (N = 81–169

for each cohort) were collected from the same areas at the

same times as those transported to the laboratory for

growth experiments, but were not the same individuals

used in the growth experiments.

For X-ray analysis, fish were thawed and preserved in

95 % ethanol. Fish were X-rayed in groups in a cabinet

X-ray machine (Faxitron MX-20). Plates were exposed for

180 s at 19 kVp. Finished plates were examined under a

dissecting microscope with transmitted light. For each fish,

three independent vertebral counts were made by the same

reader on different days. If a discrepancy existed between

counts, a fourth count was made, and the fish was included

in the data set only if three of the four counts agreed.

Vertebral counts did not include the urostyle. Standard

length (LS) of each fish was measured from X-rays using

digital calipers.

Differences in mean vertebral counts among Pacific cod

cohorts were tested with ANOVA. Preliminary analyses

indicated no effect of month of capture (p = 0.549) or

sampling site (p = 0.747) on mean vertebral count within

cohort.

Results

Temperature records

Water temperatures in the central Gulf of Alaska varied

significantly among the years associated with the examined

cohorts of Pacific cod (Fig. 1). The winter and spring of

2007 were significantly colder than those of 2006 and

2008. For example, over the period 15 March to 15 April,

generally corresponding to the spawning period of Pacific

cod, temperatures recorded at 10 m depth in Trident Basin

averaged 1.71 �C in 2007, compared to 3.73 and 3.38 �C in

2006 and 2008, respectively. This interannual variation in

temperature was not localized to nearshore Kodiak Island

waters: similar patterns among years were seen in the

record of sea surface temperatures at Albatross Banks, 65

NM south of Kodiak Island. Furthermore, longer-term

records of sea surface temperature in the central Gulf of

Alaska (GAK1 mooring) indicated that the winter and

spring of 2007 were the coldest on record since the mid-

1970s (Janout et al. 2009).
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Fig. 1 Temperature records from Kodiak Island, Alaska 2006–2008.

Curves are 3-day running averages of water temperature measured at

10.7 m depth in Trident Basin, northeast coast of Kodiak Island,

Alaska. Boxes indicate approximate times of Pacific cod spawning,

recruitment of juveniles to nearshore nursery grounds, and field

collections for growth rate experiments and vertebral counts
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Cohort growth responses

Pacific cod from the three cohorts displayed significantly

different growth and mortality responses to temperature in

laboratory trials (Fig. 2). Of the three cohorts tested, the

2007 cohort had the highest growth rates at the two lower

temperatures (ANOVA F[2,12] = 7.774, p = 0.007).

However, these higher growth rates did not extend to the

warmer temperatures tested, and the 2007 cohort had low

survival in the highest temperature (13 �C) treatment.

These results contrast the reaction norms observed for fish

from the 2006 and 2008 cohorts. These cohorts had lower

growth rates at 2 �C, but growth rates increased more

rapidly with temperature up to 11–13 �C. In the 2006 and

2008 cohorts, there were no indications of elevated mor-

tality at the highest temperatures tested. Growth rates were

most variable in the 2008 cohort, when fish were tested at

the smallest sizes.

Using AIC for model selection to describe growth rates

confirmed that the temperature-dependence of growth dif-

fered among Pacific cod cohorts. The models that provided

the best fit to the data included an interaction between

cohort and either the linear or second-order temperature

terms (Table 2). The model with a cohort main effect and

interactions with both temperature terms had a lower

residual error but higher AIC score indicating that the

model was over-parameterized, likely due to the colinearity

between temperature and temperature2. All models that did

not include an interaction between cohort and temperature

had higher AIC scores. Overall, the two best models,

accounting together for 76 % of the Akaike weights,

included direct cohort and temperature effects as well as a

cohort–temperature interaction. Additional support for the

model selection results based on AIC is provided by the

fact that all terms included in the best performing models

were statistically significant based on traditional F tests.

In general, mortality was low in most tanks and treat-

ments over the course of the three experiments. To account

for differences in experimental durations between temper-

ature treatments, daily mortality patterns were converted to

30-day survival fractions for each tank. Over all years and

treatments, 30-day survival averaged 82 %. Mortality rates

in the 13 �C treatment of the 2007 cohort were significantly

higher than those observed in all other treatments (post hoc

LSD test, p \ 0.01; Fig. 3). Half of the fish in the three

replicate tanks died during the first 10 days of the experi-

ment. After day 20, the remaining fish from the three

replicates were pooled into a single tank, and two new

groups of fish were acclimated to 13 �C and reared in the

available experimental tanks. These additional groups

experienced similarly high mortality patterns. The only

other treatment with clustered mortality was the 5 �C

treatment of the 2008 cohort. There was no relationship

between tank mortality rate and estimated growth rates

(based on deviations from cohort-specific and pooled-

cohort growth models).

Given the differences in relative performance at differ-

ent temperatures, we hereafter refer to the 2007 cohort

(highest growth rates at low temperatures and poor survival

at high temperatures) as the ‘‘cold-adapted’’ cohort and the

2006 and 2008 cohorts as ‘‘warm-adapted’’ cohorts.

Vertebral counts

Vertebral counts of age-0 Pacific cod collected from

Kodiak Island, Alaska, ranged from 50 to 56, with counts

of 54 and 55 vertebrae being most common. Mean verte-

bral counts differed significantly among cohorts (Fig. 4;

ANOVA F[2,381] = 6.268, p = 0.002). Post hoc LSD tests

indicated that mean vertebral count was significantly

higher (p \ 0.05) in the 2007 cohort than in the 2006 and

2008 cohorts. Mean vertebral count in the 2006 cohort was

slightly but not significantly higher than in the 2008 cohort

(p = 0.105). There was no significant correlation between

vertebral count and LS within any cohort (r \ 0.15,

p [ 0.20) or when fish were pooled across cohorts (r =

-0.05, p = 0.368).

Discussion

Experiments with juvenile Pacific cod collected from a

single locale over three consecutive cohorts revealed
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Fig. 2 Cohort-specific thermal reaction norms for growth of juvenile

Pacific cod (Gadus macrocephalus) collected from Kodiak Island,

Alaska. Points are mean growth rates (±SE) of the 7–10 fish in each

replicate tank plotted against treatment temperature. Error bars
represent standard errors of growth rates among individuals within

each tank, but analyses are conducted only on tank mean growth rates.

Curves are second-order polynomial fits to growth data for each

cohort: circles and solid line, 2006 cohort; squares and dotted line,

2007 cohort; triangles and dashed line, 2008 cohort
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intercohort variation in the thermal reaction norm for

growth. The cold winter and spring of 2007 appeared to

produce a cohort consisting of fish whose temperature-

dependent growth rates suggest a ‘‘cold-adapted’’ pheno-

type. Although the mechanism responsible for this variation

could not be confirmed, the observed variation in vertebral

counts suggests that a persistent response to thermal history

during early development could be responsible.

Experimental considerations

As there is no way to conduct synoptic experiments testing

for physiological differences among cohorts, the possibility

that these results are due to some unmeasured aspect of the

experimental environment cannot be unequivocally elimi-

nated. However, we believe that these results are robust to

such effects. Every effort was made to maintain standard-

ized experimental protocols across the 3 years of experi-

ments. Fish were captured from the same locations using

the same gear and transported to the laboratory using

similar procedures. In the laboratory, fish were acclimated

in the same tanks and received the same food on the same

schedules. Of the three experiments, applied protocols

diverged most for the 2008 cohort when fish were tested at

a smaller size in smaller tanks. However, these differences

are unlikely to have a significant impact on the overall

Table 2 Results of model selection for temperature effects and cohort interactions on growth rates of juvenile Pacific cod (Gadus macro-
cephalus) collected from Kodiak Island Alaska

Factors included Terms ka RSSb AICc wd

Full model I, C, T, T2, C*T, C*T2 9 2.481 49.809 0.087

Cohort, cohort* linear temp interaction I, C, T, T2, C*T 7 2.568 47.003 0.353

Cohort, cohort* squared temp interaction I, C, T, T2, C*T2 7 2.545 46.688 0.413

Both cohort interactions but no cohort main effect I, T, T2, C*T, C*T2 7 2.727 49.116 0.123

Cohort* squared temp interaction, no cohort main I, T, T2, C*T2 5 3.695 55.746 0.004

Cohort* temp interaction, no cohort main I, T, T2, C*T 5 3.856 57.233 0.002

Cohort term, but no interactions I, C, T, T2 5 3.698 55.772 0.004

Null model—no cohort or interaction terms I, T, T2 3 3.880 53.452 0.014

The table shows all 8 tested models. Growth was modeled as a second-order function of temperature with single intercept (I), cohort-specific

intercepts (C), and interactions between cohort and the linear (T), and second-order (T2) temperature terms
a k is number of parameters
b RSS residual sum of squared deviations from model
c AIC Akaike information criteria
d w Akaike model weight (normalized relative likelihood)
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Fig. 3 Survival rates of juvenile Pacific cod (Gadus macrocephalus)

in laboratory experiments examining thermal effects on growth

potential. Due to differing experimental periods among cohorts,

survival rates are presented as estimated fraction surviving 30 days of

experimental rearing. Points are mean 30-day survival rates (±SD) in

each treatment plotted against treatment temperature; circles, 2006

cohort; squares, 2007 cohort; triangles, 2008 cohort
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Fig. 4 Mean vertebral counts (±1 SE) of age-0 Pacific cod (Gadus
macrocephalus) collected from Kodiak Island, Alaska, from three

naturally produced cohorts
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conclusions of cohort-specific variation in thermal reaction

norms as the 2008 cohort was intermediate in growth

response to temperature. Artifacts such as unobserved

stress would be expected to impact all temperature treat-

ments in parallel rather than inducing significant cohort x

temperature interactions.

Vertebral counts of fishes have long been applied as a

diagnostic character to delineate populations, with varia-

tion due, at least in part, to environmental influences

(Ihssen et al. 1981). Numerous studies have demonstrated

phenotypic plasticity in response to temperature variation

in early development with lower temperatures resulting in

higher mean vertebral counts (Fowler 1970; Lindsey 1988).

While phenotypic plasticity in vertebral count has not been

experimentally confirmed in Pacific cod, it has been dem-

onstrated in the closely related Atlantic cod (Gadus mor-

hua; Løken and Pedersen 1996), and the present data

strongly suggest that it occurs in Pacific cod: mean verte-

bral count in the 2007 cohort of Pacific cod was signifi-

cantly higher than in the other cohorts, consistent with the

expected response to low temperature (Lindsey 1988).

Although the mean vertebral counts differed by less than 1

between cohorts, this difference was statistically significant

and similar in magnitude to the differences observed

among cohorts of Atlantic cod (Brander 1979; Swain et al.

2001). The observed variation in mean vertebral count

demonstrates that fish in the three cohorts contained

intrinsic phenotypic differences. Further, the phenotypic

covariance in multiple traits with links to the environment

suggests a common environmental influence (Travis et al.

1999).

Causes of variation

It is important to note that the variation in thermal reaction

norms for growth was documented in fish sampled from

naturally produced cohorts. Laboratory experimentation

testing fish across a range of temperatures was required to

describe the reaction norm of a cohort, but the differences

observed among cohorts were not experimentally gener-

ated (as in Salinas and Munch 2012). Further, the variation

observed among Pacific cod cohorts differs from the types

of maternal and incubation effects on embryonic and larval

development commonly described in fishes (Green 2008;

Burt et al. 2011). While such responses can have persistent

effects, influencing later life stages, they generally apply

equally across environments (but see Green and McCor-

mick 2005, Janhunen et al. 2010). From a statistical view,

they induce variation in elevation of the thermal reaction

norms for growth, not change the shape of the reaction

norm as indicated by the significant cohort by temperature

interactions observed here. The variation in thermal reac-

tion norms for growth among cohorts results from one of

the two general mechanisms: phenotypic plasticity or

genetic variation (Hutchings et al. 2007). The available

evidence supports the former, but unequivocally differen-

tiating between the two general mechanisms would require

multi-generational laboratory experiments and a more

detailed understanding of patterns of genetic variation in

this species.

In addition to direct effects on development and growth

rates, environmental exposure in the early life stages can

induce irreversible changes in morphology and physiology,

sometimes referred to as ‘‘non-genetic adaptations.’’

Among the most widely recognized of these in fishes are

temperature-dependent sex determination, which has been

documented in a number of coastal marine fishes (Conover

1984; Ospina-Álvarez and Piferrer 2008), and the effect of

temperature on muscle fiber development (Martell and

Kieffer 2007; Johnston et al. 2009). In addition, exposure

to a specific environment during early development can

produce persistent, but potentially reversible, physiological

adjustments usually referred to as ‘‘acclimation’’ or

‘‘acclimatization’’ (McNab 2002). The effect of tempera-

ture variation during the larval stage on temperature tol-

erance in juveniles (Travis et al. 1999; Schaefer and Ryan

2006) is an example of this phenomenon. In both reversible

and irreversible cases, these effects represent a form of

phenotypic plasticity resulting from changes in gene

expression (Schulte 2004; Kingsolver et al. 2004). In the

current example, exposure to low temperatures in the egg

and/or larval stages could have triggered a specific

expression of the gene complex optimizing physiological

performance at low temperatures with the trade-off of

reduced performance at high temperatures (Munch and

Conover 2003; Schulte 2004) as reflected in the variable

thermal reaction norms.

If these patterns represent a form of developmental

phenotypic plasticity, further work will be required to

determine whether the response is induced during incuba-

tion following fertilization or prior to fertilization during

oocyte development (‘‘transgenerational plasticity’’).

Transgenerational plasticity (Youngson and Whitelaw

2008) is a specific type of maternal effect in which the

environment experienced by the parents (not the parents’

genotype) determines the phenotype expressed by their

offspring. To date, most studies of maternal effects in

fishes have not explicitly differentiated the genetic/envi-

ronmental influences on offspring characteristics (Burt

et al. 2011). Although thermal transgenerational plasticity

has only rarely been documented in fishes (but see Bashey

2006, Salinas and Munch 2012), it is fairly common in

plants and some invertebrates, where it has been shown to

influence population dynamics (Plaistow and Benton

2009). Importantly, the thermal environment experienced

by the parents has been shown to influence vertebral counts
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in some species (Dentry and Lindsey 1978, Swain and

Lindsey 1986). Further, recent experimental evidence

confirms the presence of thermal transgenerational plas-

ticity in a marine fish producing similar responses in

reaction norms for growth as those observed among cohorts

of Pacific cod (Salinas and Munch 2012).

Alternatively, if there are genetic differences behind the

thermal responses and vertebral count variation of the

cohorts, they could be the result of unrecognized fine-scale

genetic variation in the spawning population (Swain and

Frank 2000). Pacific cod recruiting to Kodiak Island

embayments could be the progeny of parents with different

genetically determined responses to temperature variation.

In such a case, interannual variation in larval transport

pathways could impact the genetic makeup of the cohort

recruiting to a specific location (Weingartner et al. 2009).

The available data on neutral genetic markers in Pacific

cod indicate a much larger spatial scale of genetic variation

(Cunningham et al. 2009), but there are currently no data

on patterns of variation in the genes linked to key physi-

ological processes. Interannual differences in genotype of a

recruiting cohort could also be the result of a selective

event occurring between spawning and recruitment to the

nursery area. In cold years, the cohort would be dominated

by individuals that are genetically predetermined to exhibit

strong performance at low temperatures. Unfortunately,

evaluating these potential genetic factors would require a

level of detailed information on both neutral genetic

markers and trait genes not available for this species.

‘‘Cold-adapted’’ and ‘‘warm-adapted’’ cohorts

For Gulf of Alaska Pacific cod, the data presented here

suggest that environmental conditions during the egg or

larval stage influence at least two aspects of phenotype,

resulting in the production of cohorts of fish with ‘‘cold-

adapted’’ or ‘‘warm-adapted’’ phenotypes. A ‘‘cold-adap-

ted’’ cohort is one with higher mean vertebral counts,

higher growth performance at low temperatures, and lower

growth performance at high temperatures than a ‘‘warm-

adapted’’ cohort, and vice versa.

Temperature variation in the environment includes a

significant temporal auto-correlation. Due to the nature of

large-scale climate and weather patterns, a cold winter is

likely to be followed by colder than average spring and

summer conditions. Hurst et al. (2010a) demonstrated this

temporal autocorrelation in Kodiak Island embayments and

explored the implications for assessing growth perfor-

mance of juvenile northern rock sole (Lepidopsetta

polyxystra). Given this temporal autocorrelation in the

environment, the selective advantage of phenotypic plas-

ticity in thermal reaction norm for growth is readily

apparent. Individuals from a ‘‘cold-adapted’’ cohort

produced in a cold spawning season would have higher

growth rates at the anticipated lower temperatures in the

subsequent growing season. Conversely, a warm spawning

season would produce a ‘‘warm-adapted’’ cohort that

would be able to take advantage of the growth opportuni-

ties of a subsequent warm growing season. Variation in

body size generated early in life can persist in the popu-

lation with subsequent implications for size-dependent

mortality (Imsland et al. 2007). Similar evolutionary

arguments have been made to explain the widespread

variation in vertebral count in response to incubation

temperature (McDowall 2008). The effect of vertebral

count on survival has been demonstrated in both laboratory

and field studies (Swain and Lindsey 1984, van der Veer

et al. 2000). They suggested that higher vertebral counts

result in greater body flexibility and improved swimming

performance of larvae and small juvenile fish in low-tem-

perature waters with higher viscosity, enhancing predator

escape behavior.

Implications

To the best of our knowledge, the variation among cohorts

from the same location in thermal reaction norms for

growth observed for juvenile Pacific cod has not been

described for any other fish species. The lack of recognition

of such variation likely stems from a general belief that

physiological traits in a population are static, at least over

time scales less than several generations. Once a temper-

ature-dependent growth function is described for a partic-

ular population, it is typically assumed that the thermal

reaction norm for growth is a static trait of the population.

Therefore, there is as yet little opportunity to evaluate

whether variation in reaction norms for growth is wide-

spread among coastal marine fishes. However, recognition

of persistent effects of early life history environmental

conditions (Imsland et al. 2006; Mollet et al. 2007) and the

documentation of thermal transgenerational plasticity in

growth (Salinas and Munch 2012) suggest that the effect on

growth rates may not be unusual.

The occurrence of inter-cohort variation in thermal

reaction norms for growth has several significant implica-

tions for studies of growth variation, regardless of the

specific mechanism generating the variation. First, it is

possible that this variation could be mistaken for another

source of variation. For example, studies of local adapta-

tion in thermal reaction norm are frequently conducted by

capturing naturally produced organisms for subsequent

rearing in ‘‘common garden’’ experiments (Dutil et al.

2008; Harrald et al. 2010). Apparent differences between

populations could be due to independent (non-synchro-

nized) environmental variation arising in each of the tested

source populations. To minimize this risk, it is important
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for common garden experiments to use organisms reared in

a common environment, preferably for a complete gener-

ation prior to experimentation (Conover et al. 2010;

Harrald et al. 2010). While this may not be practicable for

long-lived marine species, at a minimum, the parents from

all tested populations should be reared at the same tem-

peratures to eliminate potential pre-fertilization environ-

mental effects (Wijekoon et al. 2009).

A second implication of these results affects the use of

laboratory-determined growth rates to evaluate habitat

quality and determine factors regulating growth in the field.

In these applications, observed growth rates in the field are

compared to maximum growth potential at the tempera-

tures encountered in the field (Zijlstra et al. 1982; Rako-

cinski et al. 2006; Hurst et al. 2010a). If growth rates are

near the maximum predicted, it is assumed that tempera-

tures limit further increases in growth (Folkvord 2005;

Hurst and Abookire 2006). Conversely, if growth rates are

significantly below the predicted maximum, it is frequently

assumed that growth is limited by prey availability

(Clemmesen et al. 2003) or the presence of some other

limiting factor (Buckley et al. 2006; Ryer and Hurst 2008).

The results presented here suggest that in some cases, these

analyses could be confounded by variation in thermal

reaction norms for growth among cohorts which could bias

estimates of growth potential.

Conclusion

Thermal variation has a significant influence on the growth

dynamics of fishes and other ectotherms and is assumed to

be a primary mechanism by which climate variation is

translated into variation in population productivity. How-

ever, expressed growth rates are influenced by a variety of

environmental factors including prey availability, habitat

type, social interactions, and predation threat. Growth has

also been shown to be a function of an individual’s growth

(Ali et al. 2003), nutritional (Imsland et al. 2006), and

thermal history (Nicieza and Metcalfe 1997; Hurst et al.

2005). The variation in thermal reaction norms described

here for juvenile Pacific cod may be a common life history

adaptation for organisms living in variable environments.

Early life stage growth rates have a marked influence on

the survival and recruitment of fishes because of the size-

dependent patterns of mortality (Sogard 1997). Water

temperature is frequently considered to be a primary driver

of this early growth variation. However, there are many

examples where growth rates were not directly related to

ambient temperature variation or growth variation was less

than expected based on temperature variation (Power and

Attrill 2007; Gunnarsson et al. 2010). Variation in the

thermal reaction norm for growth could buffer the effects

of interannual variation in temperature on growth rates of

juvenile organisms. Further understanding of the range of

physiological responses to temperature variation will

improve our understanding of population and community

dynamics under potential future environments.
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