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ABSTRACT

The momentum flux by orographic gravity waves and the turbulent heat flux in wave-breaking regions are
estimated from aircraft data from ALPEX. The fluxes on 6 March 1982 are controlled by low-level directional
shear of the mean flow and associated critical level with wave stress decreasing toward the critical level. On 25
March 1982 a critical level does not occur and wave stress is approximately constant with height within the
observational domain. The calculation of these fluxes appears to be the first direct comparison between simpie
models of gravity-wave momentum flux and observed atmospheric fluxes.

To develop a simple formulation of gravity wave drag for large-scale models, the gravity-wave stress super-
saturation theory by Lindzen is generalized for the application to vertically varying mean flows. The wave
momentum flux estimated from the generalized model agrees well with the observations for the two ALPEX
days. For the 6 March case, the vertical divergence of wave momentum flux below the critical level is comparable
to the Coriolis term in the momentum equation. The effective height of the surface topography required for the
formulation of the wave momentum flux at the ground surface is estimated from the data and found to agree
with the formulation of Stern and Pierrehumbert.

Wave breaking below the critical level leads to a convectively unstable region 10~20 km wide where well-
organized turbulent-scale convection occurs. The magnitude of the observed upward turbulent heat flux can
be approximated by using the flux gradient relationship in which the mixing length and modified shear are
derived from the generalized wave-stress supersaturation condition. However, the net turbulent heat flux across
the entire width of the mountain waves appears to be small due to cancellation between the upward heat flux
in the convectively unstable region and the downward heat flux at the back of the wave. The spatially averaged
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wave-scale heat flux is also small for the data analyzed here.

1. Introduction

Topographically generated internal gravity waves
can transport significant momentum vertically in the
atmosphere. The nondissipative nature of internal
gravity waves ( Eliassen and Palm 1960) may allow the
wave stress at the ground surface to be transferred far
into the upper atmosphere where the density is small.
Wave stress divergence associated with wave breaking
acts as a drag on the mean flow at the wave breaking
level. The impact of gravity wave drag is known to be
especially important for large-scale motions on time
scales longer than one week over continental areas
during the wintertime (Palmer et al. 1986). Spectral
analyses show that the mesoscale variances are chi-
matologically much larger over mountainous areas
than over flat land surfaces or the ocean, and the ob-
served differences are mostly due to gravity wave ac-
tivity in the atmosphere (Jasperson et al. 1990).

Momentum transfer by gravity waves can be locally
important on smaller time scales above significant to-

Corresponding author address: Dr. Larry J. Mahrt, Oregon State
University, Department of Atmospheric Sciences, Corvallis, OR
97331-2209.

© 1992 American Meteorological Society

pography. Lilly et al. (1982), Brown (1983), and
Hoinka (1985) found that the stress due to gravity-
wave-scale disturbances over mountainous areas
sometimes exceeds several newtons per square meter
in the middle of the troposphere. This value is one or
two orders of magnitude larger than typical turbulent
stresses in the boundary layer. For a summary of the
observed values of the gravity wave stress in previous
studies, see Palmer et al. (1986).

Gravity wave drag is usually parameterized in terms
of solutions to the linear gravity wave equation with
Kelvin-Helmholtz instability or convective instability
as a criterion for wave breaking. The modeling study
of Klemp and Lilly (1978 ) shows that a linearized two-
dimensional model, combined with an adjustment of
local flow with respect to Kelvin-Helmbholtz instability,
can simulate orographic gravity waves and associated
momentum flux reasonably well. Inclusion of gravity
wave drag parameterization has been shown to signif-
icantly improve the simulation of large-scale flow
(Holton 1982; Palmer et al. 1986; McFarlane 1987;
Hunt 1990). However, simple formulations of gravity
wave momentum flux have, to our knowledge, not been
directly compared to observed fluxes. Such compari-
sons must include the computation of the effective
height of surface topography, the effects of nonlinear
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lower boundary conditions (Smith 1977), and the sat-
uration and supersaturation conditions for the gravity
wave stress (Lindzen 1981, 1988). Direct comparison
of a gravity wave drag parameterization with observed
atmospheric fluxes is one of the main goals of this study.
Representation of the wave breaking process in the
frame of linear gravity wave theory plays a central role
in the parameterization of gravity wave drag. Lindzen
(1981) introduces the wave-stress saturation hypothesis
assuming that the maximum amplitude of a gravity
wave is limited by the onset of hydrodynamic insta-
bility. This wave stress saturation condition has been
successfully employed in large-scale modeling studies
(Palmer et al. 1986). However, Smith (1977) and
Lindzen (1988 ) suggest that some degree of convective
instability can be maintained in wave breaking regions
(wave-stress supersaturation hypothesis).
Determination of the wave stress at the ground sur-
face requires the value of the amplitude of the vertical
displacement of a streamline at the ground surface (ef-
fective mountain height), which is usually assumed to
be related to the height of the mountain (or the root-
mean-square variance of subgrid-scale orography for
large-scale models). The vertical displacement of a
streamline at the ground surface also depends on the
flow conditions near the ground surface including the
flow Froude number (Fr) defined as Fr = Nyno/ Up,
where 7, is the height of the surface topography, and
Ny and U, are the buoyancy frequency and mean wind
speed near the ground, respectively (Drazin 1961;
Pierrehumbert and Wyman 1986). The nonlinear
study of Drazin (1961 ) shows that as the Froude num-
ber increases, the flow near a three-dimensional obsta-
cle becomes more two-dimensional; when the Froude
number exceeds unity, the vertical displacement of a
streamline is essentially suppressed. Similar features
are observed in the three-dimensional numerical mod-
eling studies of Smolarkiewicz and Rotunno (1989).

Blocking of the low-level flow upstream from the to-

pography or pooling of cold air in a valley reduces the
effective mountain height. However, such processes are
nonlinear and have no precise theoretical description.
Stern and Pierrehumbert (1988) provide an estimate
of the effective mountain height in terms of a critical
Froude number based on two-dimensional modeling
studies. In this study, we estimate the effective moun-
tain height by fitting the gravity-wave amplitude at the
ground with the observed wave stress below the model-
predicted wave-breaking level.

The vertical heat flux by breaking gravity waves and
associated turbulence may be locally important.
Asymmetry of the streamlines due to wave steepening
and nonlinear interactions between waves may induce
some net wave heat flux. In addition, wave breaking
and associated turbulence can cause significant local
turbulent heat flux. Earlier parameterizations of wave
drag of Lindzen (1981) and Holton (1982) assume
that the turbulent Prandtl number in the wave breaking
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region will be close to unity, that is, heat and momen-
tum transfer in the wave breaking region are of similar
efficiency. Chao and Schoeberl (1984) suggest that
streamlines will be nearly vertical in the wave breaking
region, in which case the local turbulent heat flux is
near zero. Fritts and Dunkerton (1985) also suggest
small net heat flux across the entire wave due to the
upward turbulent heat flux in the convectively unstable
wave breaking region. From rotating tank experiments,
Delisi and Orlanski ( 1975 ) and Dunkerton (1989) ob-
serve that wave breaking does not cause significant al-
teration of the initial stratification implying small net
turbulent and wave heat flux.

The spatial variations of the turbulent heat flux will
yield important information about the mechanisms of
wave breaking. If wave breaking occurs mainly by Kel-

~ vin-Helmholtz instability, turbulent heat flux in the

wave breaking region is expected to be downward. If
wave breaking occurs by convective instability, the
turbulent heat flux will be locally upward in the wave
breaking region. This phenomenon can offset much of
the downward heat flux due to wave-induced turbu-
lence in the stably stratified regions. The observed tur-
bulent heat flux is studied in section 3 using aircraft
data from ALPEX (the Alpine Experiment). In section
8, we will formulate the upward turbulent heat flux in
terms of wave-modified variables and compare with
the observed turbulent heat flux.

Aircraft data collected on 6 and 25 March 1982 in
ALPEX are analyzed in sections 2 and 3 in order to
study the most important characteristics of the distur~
bances generated by the underlying coastal range. The
analysis will focus on wave momentum fluxes, wave
breaking, and resulting turbulent heat flux in the wave
breaking region. A simple parameterization of the
gravity wave drag is presented in sections 4 and 5 using
the solution to the linear gravity wave equation with
first-order expansion of a nonlinear lower boundary
condition presented in Smith (1977) combined with
a generalization of the wave stress supersaturation
condition of Lindzen (1988). Lindzen’s (1988) theory
of supersaturation is derived for an isothermal atmo-
sphere with constant wind speed. We will generalize
Lindzen’s wave stress supersaturation theory for ap-
plication to vertically varying mean flows by introduc-
ing an equivalent scale height, which replaces the scale
height for an isothermal atmosphere. In section 6, the
vertical profiles of wave momentum flux estimated for
the ALPEX cases are compared with the observed wave
momentum flux. Inference of the effective mountain
height based on model comparisons with the data is
presented in section 7.

2. Observed flow

The NCAR Electra aircraft flew over the coastal
range of northern Yugoslavia on 6 and 25 March 1982
in the northeast-southwest direction, approximately
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parallel to the direction of the low-level wind and per-
pendicular to the coastal range axis. The flights covered
a region approximately 240 km wide, centered at the
coastal ridge, in a layer 2.4~5.7 km above sea level.
This study analyzes five flight legs at 2.4, 2.7, 3.3, 3.8,
and 4.5 km above sea level for 6 March ALPEX and
three flight legs at 3.3, 4.5, and 5.7 km above sea level
for 25 March ALPEX.

The vertical structure of the mean wind, observed
by radiosonde soundings at Zagreb, Yugoslavia, is
quite different between the two days (Figs. la,c). On
6 March, a strong bora flow near the ground surface
leads to significant speed and directional shear. On 25
March, the wind speed increases monotonically in the
vertical without significant change of wind direction
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within the troposphere. Detailed description of the flow
on these two days is presented in Smith (1987) and
Mahrt and Gamage (1987).

The vertical propagation of orographic gravity waves
is influenced by the vertical variation of the wind com-
ponent parallel to the surface wind (McFarlane 1987)
defined as

V(Z)' Vo

1
Vol W

Vp(2) =

where V,(z) is the mean wind component parallel to
the surface wind V,, V(z) is the mean wind at height
z, and V(z)+ V, denotes the scalar product between
the two vectors Vg and V(z). The surface wind directly
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FIG. 1. Vertical profiles of u, v, V,, and 6 from the radiosonde over Zagreb, Yugoslavia, at 1200 LST 6 March 1982 (a,b) and 0900 LST
25 March 1982 (c,d), obtamed by averaging the soundings at 0600 and 1200 LST. Heights are with respect to sea level.
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responsible for the onset of wave motion is somewhat
difficult to define. In this study we use the wind speed
from the upstream radiosonde sounding averaged over
a 200-m-deep layer centered at the ridge top level.

The observed flow over the mountain range appears
to be stationary. On 6 March, V, decreases with in-
creasing height with a critical level for stationary gravity
waves (V, = 0) at 5 km above sea level (Fig. 1b).
Vertical decrease of this wind component can cause
amplification and breaking of gravity waves as dis-
cussed in later sections. In contrast, V, increases with
increasing height and critical layer does not exist within
the observational domain for 25 March (Fig. 1d).

Mainly, the flow on 6 March is investigated where
low-level wave breaking is expected. The horizontal
wind parallel to the direction of the flight, the vertical
wind, and the potential temperature observed at the
3.3-km level on 6 March are presented in Fig. 2 together
with the underlying topography. The most significant
feature of the observed flow is the large-amplitude dis-
turbances on a horizontal scale of a few tens of kilo-
meters accompanied by smaller scale turbulence. The
strongest disturbances are confined to the lowest first
few kilometers above the coastal range.

The larger-scale motions are isolated by bandpass
filtering the raw records with 10- and 80-km cutoff
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Fi1G. 2. Detrended observed u, w, and 6 at the 3.3-km level on 6
March and the topography height. The mean flow is northeasterly
and directed toward the left.
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wavelengths for the lower and upper limits of horizontal
length scales, respectively. The wavelengths were cho-
sen based on inspection of the record, which includes
one major event on the scale of mountain range and
smaller-scale wavelike motions. The computed fluxes
are not sensitive to the exact values of the cutoff wave-
lengths. These bandpass-filtered disturbances will be
loosely called the wave-scale disturbances. Noticeable
peaks of the variance of wave-scale vertical velocity
appear above and immediately downstream from the
ridge (Fig. 3). Growth and breaking of gravity waves
are usually accompanied by significant asymmetry of
the shape of perturbation streamlines and the concen-
trated horizontal gradients of #. Such sharp gradients
appear as boundaries of ramp-like structures and may
indicate the presence of a frontal region associated with
wave steepening. The strongest events in the records
of u and w at the 3.3-km flight level (Fig. 2) are ex-
amples of such a structure.

The turbulence occurring on 6 March is strongly
related to wave-scale motions. The variance of 1-km
high-pass—filtered vertical velocity (Fig. 3) is large at
locations of large wave-scale variance. Turbulence in
the wave breaking regions and associated turbulent heat
flux will be discussed in more detail in section 8. Similar
horizontal variations occur at other flight levels near
and below the critical level on 6 March (not shown).

3. Observed wave momentum flux

The momentum flux due to wave-scale motions on
6 and 25 March for each flight leg is calculated by
averaging the product between the bandpass-filtered
horizontal and vertical velocities as

— 1 X
aw(z) N 2 i(z)Wwi(z) (2)
i=1

N

2 di(z)wi(2), (3)
where () represents the wave-scale (bandpass-filtered )
disturbance, N is the number of points in the averaging
region, and the subscript i denotes the position along
the flight path. The averaging is performed for a 80-
km section of the flight track above the coastal range
where the wave activity is significant. The average mo-
mentum flux is somewhat sensitive to the averaging
length. This sensitivity may indicate sampling problems
as discussed by Lumley and Panofsky (1964), Wyn-
gaard (1972), and Lenschow and Stankov (1986).
However, wave-scale motions and associated momen-
tum fluxes observed in each flight leg appear to be sta-
tionary and confined to a region directly over the
mountain range. Consequently, sampling problems for
the current study are more related to defining the hor-
izontal length scale of the wave activity than obtaining
ensemble averages of random signals.
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FIG. 3. Vertical velocity variances of the 10-80-km bandpass-fil-
tered data (top) and the 1-km high-pass-filtered data (middle) ob-
served on 6 March at the 3.3-km level.

The wave-scale momentum flux vector on the two
days is generally directed in the opposite direction of
the surface wind (Fig. 4a), as expected from linear
gravity waves induced by terrain. Only on 6 March at
higher levels does the direction of wave-scale momen-
tum flux rotate away from this direction and by an
angle of about 45 deg. i

For comparison with the wave momentum flux for-
mulations in section 6, we compute the wave momen-
tum flux M,, as the component of bandpass momentum
flux in the opposite direction of the surface wind V,
as

Vol ° @
where M is the vector of wave-scale momentum flux
(aw, W) calculated from (2-3) and M - V, represents
the scalar product of the flux vector M and the surface
wind V,. This wave momentum flux decreases with
increasing height on 6 March, consistent with the ex-
pected occurrence of wave breaking on this day (Fig.
5, open circles). Without wave breaking, conservation
of wave stress implies that the wave momentum flux
should increase with height due to the decrease of at-
mospheric density with height. The wave momentum
flux is about 2.8 m?s™2 at the 2.4-km level and de-
creases to about 0.5 m? s~2 at the 4,5-km level (Fig.
5). This vertical decrease of the wave momentum flux
implies deceleration of the mean wind component
parallel to the surface wind at a rate of about 9 X 10~*
m s~2, This deceleration rate is comparable to the
magnitude of the Coriolis term. Thus, wave drag ap-

KIM AND MAHRT

739

pears to be important in the evolution of the low-level
flow over the coastal range on this day.

In contrast, the wave momentum flux generally in-
creases with increasing height on 25 March (Fig. 6,
open circles). The magnitude of this increase of wave
momentum flux with height is predicted by conser-
vation of wave stress (section 6).

4. Wave equation

In section 6, we will compare the observed wave
momentum flux with that predicted by formulations
for linear gravity waves and wave breaking. The fol-
lowing two sections will develop these formulations by
combining the nonlinear lower boundary condition of
Smith (1977) with wave stress supersaturation theory
of Lindzen (1988) after generalizing the wave-stress
supersaturation theory for height-dependent mean
flow.

A sinusoidal topography is considered, even though
the actual coastal range is asymmetric with the south-
western slope steeper than the northeastern slope. Pre-
vious studies (Smith 1977; Lilly and Klemp 1979) show
that such asymmetry of the topography increases the
maximum slope of the streamlines. However, we are
concerned with a simple formulation of wave drag to
be used in coarse-resolution numerical models where
the consideration of detailed shape of topography is
not possible.

Although portions of the following derivation are
completely analogous to Smith (1977) or Lindzen

24km
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.3 km
4.4km 27km
N
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33km - 2
57km — » 0.05Pa
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Ridge orientation

HG. 4. Observed wave-scale momentum flux vectors (thin arrows) -
and surface wind V, (thick arrows) for (a) 6 March and (b) 25 March.
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FIG. 5. Observed momentum flux from the 10-80-km bandpass-
filtered variables (open circles) and model-estimated wave momen-
tum flux (lines) on 6 March 1982 with the zero-order (0th) and first-
order (1st) lower boundary conditions and wave-stress saturation
(SS) and supersaturation (SS) conditions.

(1988), they are included here in abbreviated form for
continuity of the derivation. The reader not interested
in the derivation of the wave stress formulation may
advance to section 6. The disturbance field of a stream-
line for a linear, stationary gravity wave in a steady,
incompressible, hydrostatic flow can be expressed by
Long’s equation (Long 1953)

V% + %6 =0, (5)
where V? is a two-dimensional Laplacian operator in
the x — z plane, § = z — z, is the vertical displacement
of the streamline height from its undisturbed upstream
value zp, and / is the Scorer parameter, or vertical
wavenumber, defined as

(6)

Assuming that the horizontal wavelength of the mo-
tion is much larger than the vertical wave length, which
can be justified for the cases considered in this study,
the terms containing second-order derivatives in the
horizontal are neglected, while those containing sec-
ond-order derivatives in the vertical are retained. Then,
expanding the Laplacian operator, (5) can be approx-
imated as

9%
—+ 1% =0.
922 !

(7)
Assuming further that surface topography is the only
source of gravity waves, the radiation boundary con-
dition is applied at the top of the domain. At the bottom
of the domain, a kinematic boundary condition

o(x, n(x)) = n(x) (8)
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is imposed, where 5(x) is the height of the ground to-
pography and &(x, n(x)) is the vertical displacement
of a streamline at the ground level. In (8), the ampli-
tude of terrain-induced gravity waves is assumed equal
to the height of the ground topography.

For simplicity, we assume a monochromatic sinu-
soidal topography with an amplitude 79 defined as

9)

where k is the horizontal wavenumber. In the presence
of vertical shear and vertically varying stratification,
the solution for §(x, z) in (7) with the first-order ap-
proximation of the lower boundary condition (9) and
the WKB approximation can be written as (Smith
1977)

n(x) = no cos(kx),

8(x,z)= k(z)[cos(kx + ¢) + % sin(2kx -+ qS)] R

(10)

where ¢(z) = [* I(z')dz" is the vertical wave phase,
h(z) is the amplitude of the streamline disturbances at
height z, /, is the Scorer parameter at the ground, and
ho is the amplitude of the vertical displacement of the
streamline at the ground assumed equal to the ampli-
tude of the surface topography 7.

The amplitude of the vertical displacement of the
streamline height, 4(z), can be estimated from con-
servation of wave stress (Eliassen and Palm 1960) or
conservation of wave action (Smith 1977) for linear
internal gravity waves. The relationship between the
mean flow profile and the amplitude of streamline dis-
turbances for linear monochromatic gravity waves can
be expressed as (Smith 1977)

o(2)U(2)N(2)k62(z) = const, (11)
6
5 -
E
-
< 4
5
%)
= 3 L
o observed
== 100 m
27 — 120m
""" 150 m

0.0 0.1 0.2

wave momentum flux (m2s-2)

FI1G. 6. Observed momentum flux from 10-80-km bandpass vari-
ables (open circles) and model-estimated wave momentum fluxes
for different effective mountain heights (lines).
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where 82(z) is the mean-square amplitude of the grav-
ity wave at height zand ( ) denotes horizontal averaging
over one wavelength. The mean-square amplitude
82(z) is obtained from (10) as

P (k)
{ [H : ]

Combining (11) and (12), the ratio of the amplitude

of the streamline displacement at height z above the

ground to the amplitude at the ground level, y(z), be-
poUoNo

comes (Smith 1977)
1/2
p(z)U(z)N(z)) > (13

h(z)
vz =12 =

where the subscript 0 denotes the value at the ground
level. Relationship (13) indicates that internal gravity
waves amplify during the vertical propagation due to
decreasing density, wind speed, and stratification’ of
the mean flow with increasing height.

The average stress exerted by a gravity wave, 7,(z),
is calculated by

82(2) =

(12)

1.(2) = — p(2) W (2)
L/2
, p(2)id(x, z)W(x, z)dx, (14)

LJ-r

where L is the horizontal wavelength of the wave, and
t(x, z) and w(x, z) are disturbance horizontal and
vertical components of wind due to wave activity given

as
o
0= U[az}(x, z) (15a)
L
W= U[ax](x, z), (15b)

where U is the mean wind speed and §(x, z) is again
the vertical displacement of the streamline (10). Sub-
stituting # (15a) and w (15b) into (14) and using (12),
the average wave stress for the gravity wave solution
with first-order lower boundary condition becomes

2
Tw(z) ~ -lzfp(z)U(z)N(Z)[hw(Z)lz[l + (—%;io—)] :

(16)

The wave stress at the ground surface is obtained from
(16) by using p, U, and N at the ground level with v
= 1. In (16), the influence of the height of surface
topography enters through the wave amplitude at the
ground surface /4y and through the ratio vy(z). Recalling

! The amplitude of a gravity wave increases with decreasing strat-
ification in the vertical. However, wave steepening increases for a
given value of wave amplitude with increasing stratification with
height as shown by (35-36) in section 5.
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that the above development is based on the conser-
vation of wave stress, (16) becomes invalid at the level
where wave breaking occurs, which is the subject of
the next section.

5. Wave breaking and wave-stress supersaturation

As the amplitude of a gravity wave increases with
height, the flow modified by the wave activity can be-
come locally unstable, thus limiting the maximum
growth of wave amplitude (saturation hypothesis;
Lindzen 1981). The major mechanism of wave break-
ing can be either shear-driven Kelvin~-Helmbholtz in-
stability or convective instability. Thorpe (1973) ob-
served in laboratory experiments that disturbances be-
gin to grow when the gradient Richardson number of
the mean flow decreases below 0.25. Klemp and Lilly
(1978) adjusted the local flow with respect to the Kel-
vin-Helmholtz instability criterion and successfully
approximated the observed wave disturbance. On the
other hand, Smith (1977) and Lindzen (1981) have
argued that the growth rate of perturbations by con-
vective instability is much faster than that by Kelvin-
Helmholtz instability. As a possible result of this faster
growth rate, Delisi and Orlanski (1975) observe well-
defined convection in wave breaking regions in rotating
tank experiments. Pitts and Lyons (1990) also find
convective overturning in numerical simulations of
stratified flow over topography. In the present study,
the convective instability criterion will be used to derive
wave-breaking conditions.

The saturation hypothesis (Lindzen 1981) assumes
that the maximum slope of a wave streamline will be
limited by the onset of convective instability. Param-
eterizations of gravity wave drag by Palmer et al. (1986)
and McFarlane (1987) assume that the amplitude of
a saturated gravity wave is determined by marginal
hydrodynamic stability in wave breaking regions. On
the other hand, Smith (1977) and Lindzen (1988 ) sug-
gest that breaking gravity waves may maintain some
degree of convective instability in the wave breaking
region. )

With supersaturation theory (Lindzen 1988), the
perturbation of a streamline is constrained by the re-
lationship

00

(-——) (z) <1+ 8(2), (17)

0z

where (36/02)max(z) is the maximum value of the
quantity (36/9z)(x, z) at a given level and S(z) is the
degree of supersaturation at level z. When S(z) > 0,
(17) implies reversal of the slope of the streamline so
that some degree of convective instability is maintained
in the wave breaking region. When S(z) = 0, (17)
reduces to the expression for the usual wave-stress sat-
uration condition with respect to the convective insta-
bility.
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Lindzen (1988) estimates the degree of supersatu-
ration S(z) by considering the balance between the
reduction of the wave amplitude due to wave breaking
and the growth of the wave amplitude due to vertical
variation of the mean flow. Lindzen (1988) also as-
sumes a balance between the rate at which the wave
loses its energy to convective instability and the rate
at which the wave motion transports energy into the
wave-breaking region. In the following development,
we generalize the wave-stress supersaturation theory of
Lindzen (1988) to include vertically varying mean
flows for comparison with atmospheric data. Then the
supersaturated wave stress will be estimated for the
wave solution with the first-order lower boundary con-
dition. The cases for the zero-order lower boundary
condition or wave stress saturation condition can be
recovered from this result by neglecting the appropriate
terms in the final result.

The net percentage change of the mean-square am-
plitude of the wave due to wave breaking in a given
layer, F(a), can be obtained as a function of the half
width of the wave breaking region a analogous to Lind-
zen [1988; his Eq. (13)]

F(a) = f(a)g(a). (18)

In (18) the reduction factor f{ «) is defined as the ratio
of the mean-square amplitude with wave breaking to
that without wave breaking. The amplification factor
g(a) dénotes the increase of the mean-square ampli-
tude across the layer due to the height dependence of
the mean flow in the layer in the absence of wave
breaking.

Assuming complete flattening? of the streamline by
the action of wave breaking alone, Lindzen [1988; his
Eq. (8)] estimates the reduction factor f(«) for a sinu-
soidal wave to be

Sfla) =

7 —a+ 0.5 sin(2)
- .

as —
62(z+ D) _ y¥(z+ D)
82(2) y3(z)

gla) = (20)

where 82 and v again are the mean-square amplitude

(12) and the normalized amplitude ( 13) of the gravity
wave, respectively.

2 The streamlines in the wave breaking regions will not be com-
pletely flat. Dunkerton (1989) assumes linear slope, while Lindzen
(1988) does not introduce any particular shape of the streamline.
However, the amplification factor g(«) in (18) is equivalent to as-
suming nonzero slope of the streamline when computing the mean-
square amplitude.

3In Lindzen (1988), the amplification factor [his Eq. (12)] is
calculated for the amplitude, while the flattening f(«) [or the re-
duction factor; his Eq. (9)] is calculated for the mean-square am-
plitude. Hence, the current derivation is more consistent.

JOURNAL OF THE ATMOSPHERIC SCIENCES

(19)

The amplification factor® g(a) for the convectively-
unstable layer of depth D is obtained from (12)-(13)
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The amplification factor g( ) depends on the vertical
variations of the atmospheric density, mean wind
speed, and stratification. To make an analogy to the
isothermal atmosphere with constant wind speed where
g(a) depends only on the vertical variation of the at-
mospheric density, an equivalent scale height H, de-
fined from local variation of the mean flow, is intro-
duced. The amplification factor (20) can then be re-
written in terms of an equivalent scale height as
DIH (21)
The argument of the exponent in (21) is in terms of
D/H instead of D/2H, which appeared in Lindzen

gla)y=-e

(1988), because the growth of the mean-square am-

plitude is of concern here. Accordingly, a height-de-
pendent equivalent scale height H can be determined
from (20) and (21) as

D
B G+ D1

(22)

For the case of an isothermal atmosphere with constant
wind speed, expression (22) for the equivalent scale
height reduces to the usual definition of the scale height
for an isothermal atmosphere (R7/g). If y*(z + D)
< v%(z), H becomes negative in which case wave
breaking does not occur and wave stress is conserved.
Using the equivalent scale height (22), we can now
follow the general procedure presented by Lindzen
(1988).

The depth of the convectively unstable region D can
be estimated from the shape of the streamline distur-
bance §(x, z) and the half-width of the wave breaking
region a. Then the depth D is the difference of the
height of the streamline 6(x, z) between the points
where kx + ¢ = 3n/2 —aandkx + ¢ = 37/2 + a,
respectively. Neglecting the first-order term in the
expression for §(x, z) in (10), this depth D then sim-
plifies to

D=~ uh(z)[cos(% T+ a) - cos(% T — a:)]

= 2uh(z) sina, - (23)
where A(z) is again the amplitude of the streamline
disturbance at z and u is a positive constant less than
unity, which accounts for the reduction of the vertical
propagation of the wave by convection as proposed by
Lindzen (1988). Using the normalized wave amplitude
(13), the depth of the convectively unstable region D
in (23) can be rewritten as

D = 2uh(z) sina = 2uhyy(z) sina. (24)
The constant p is estimated by equating the convective
time scale with the time scale for the vertical propa-
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gation of the wave energy across the convectively un-
stable layer (Lindzen 1988) as

NU(VE_IE)‘”H (\611)”21

" (25)

T N\6xrH) hyy \3 L) hnl’

Assume that the wave breaking occurs in a region
that is narrow compared to the horizontal wavelength
(a < 7) and that the depth of the convectively unstable
layer is small compared to the equivalent scale height
(D < H). Then the net percentage change of the mean-
square amplitude F(«) and the depth of convectively
unstable layer D can be approximated by expanding
sine, cosa, and €2/# in (19), (24), and (21) in terms
of small values of @ and D/H in which case

2 D D 2
F(a)~(l 37ra)(l+H)~l+ ~ o,

3
D = 2uhyy sina ~ 2ph0'y(z)(a - %) . (27)
At an equilibrium state, the reduction factor f(«)
balances the amplification factor g(e«) for the mean-
square amplitude in the wave breaking region so that

F(a)y =1, (28)

where o, denotes the half-width of the wave breaking
region at the equilibrium state. This equilibrium half-
width ¢, can then be estimated from (26)-(28) as

o = 6uhyy 12
¢ \phoy +2H/x) °

where p is given by (25)._
Now (38/9z)max [0or 4 in Lindzen (1988)] for a

breaking wave can be obtained from the geometric ar-
gument of Lindzen (1988; see his Fig. 1) as

[ 1
dz) .. cosa.’
Expanding cos «, for small a, in (30) and substituting

u from (25) into (29), an approximate expression for
(80/032)max is obtained:

(9_6) .3 (x/D(V2H/3L)'?
02 )me  2(x/D(H/32L)'? + H

The degree of supersaturation, S(z) = (36/02 )max
— 1, is then obtained from (31) as

Sz <> (x/D(V2H/3L)'"?
2(x/I)(H/3V2L)'* + H'
The first term in the denominator on the right-hand
side of (32), which is absent in Lindzen’s result, comes
from the new expression for the depth of the convec-

tively unstable region D in (23). This term is thought
to be smaller than the equivalent scale height H. When

(29)

(30)

(31)

(32)
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this term is neglected, the degree of supersaturation
estimated in the present study is simply a factor of
V2 larger than that estimated by Lindzen (1988). This
difference is due to the revised estimate of the ampli-
fication factor g(«) in (21).

Having estimated the degree of supersaturation, we
proceed to calculate the corresponding supersaturated
wave stress. From the wave solution with first-order
lower boundary condition ( 10), the quantity 36/9z be-
comes

R (x, 2) = h(2)I(z)
9z

X [—sin(kx +¢)+ ﬁ;—lgcos(ka + ¢)] . (33)

Expressing the wave amplitude 4(z) in terms of the
normalized wave amplitude (13), (33) becomes (Smith
1977)

o
) (X, Z) = holo‘Y'
zZ

X [—sin(kx + ¢) + -h—;é cos(2kx + ¢)] , (34)

where v’ represents the vertical variation of the mean
flow defined as

,_2D)z) _ (N(Z))m(U(Z))—yZ(P(Z))—”2
= I No Up Po '

(35)

For the wave solution with zero-order lower boundary
condition, the second term in the square bracket of
(34) is omitted.

The maximum value of d6/dz at height z occurs
where sin(kx + ¢) = —1 and is obtained from (34) as

(éé) (z) = holov’(z)[l - ‘hilg cosqb] . (36)
0z ) o 2

Relationships (35)-(36) imply that for a given wave
amplitude, (36/0z)max increases as p and U decrease
with height and A increases with height. Using (36),
the wave-breaking condition (17) can be expressed in
terms of the vertical profile of the mean flow and the
surface wave amplitude as

holoy’(z)[l — %—IQ cosgb] <1+ 8(z). (37)

If the inequality (37) is satisfied for an arbitrary model
layer, the wave stress is conserved and the wave am-
plitude A(z) varies across the layer according to (13).
If the inequality (37) is not satisfied, then wave break-
ing occurs and the incident wave stress (16 ) at the bot-
tom of the layer is reduced to the supersaturated value
at the top of the layer.
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The supersaturated wave stress can be obtained from
(16) as

2
Tw(z) =~ % kp(Z)U(Z)N(z)[hm'y(z)]Z[l " (h":;]‘)) ] ’

(38)

where 4,, is the surface wave amplitude resulting from
imposing the supersaturation condition corresponding
to equality in (37) so that

-
kmlo'y'(z)[l - —Elgcos d)] =14+ 8(z). (39)
Solving (39) for the positive real value of h,,.ly, h,, is
obtained as
h = LES
loy

[ 1/29
m = 1 1—(1~———~—2(1‘,,-S)cos¢)
locose | 5 ]

cos¢p =0 (40a)

cos¢p <0 (40b)

1T 2(1+8) 127
m—locos¢_l+(1 ~ cos¢) J

cos¢ > 0. (40c)

A real solution for 4,/ from (39) exists only for cos¢
< 4'/2(1 + §). When cos¢ > v'/2(1 + ), the con-
tribution from the first-order lower boundary condition
suppresses the wave steepening enough to prevent wave
breaking, and wave stress is conserved. Solutions for
the zero-order lower boundary condition are also given
by (40a).

In model calculations, the wave stress is computed
from layer to layer beginning at the ground surface.
When wave breaking does not occur, the wave stress
is constant across the layer. When wave breaking oc-
curs, the supersaturated wave stress is computed from
(38) with the appropriate value of A,, from (40a—c).
To replace the supersaturation condition with the sat-
uration condition, S in (40a—c) is set to zero. Dropping
the second term in the square brackets of (38) and
using (40a) for h,,, the supersaturated wave stress for
zero-order lower boundary condition is recovered. Fi-
nally, the deceleration of the mean-flow component
parallel to the low-level wind is obtained as

U\ _1dmw
at ), p 9z °

The wave momentum flux profiles computed from this
model for 6 and 25 March ALPEX are compared with
the observed wave momentum flux in the next section.

(41)

6. Modeled wave momentum flux for ALPEX

The wave momentum fluxes are now calculated
from the wave momentum flux models with zero- and
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first-order lower boundary conditions and wave stress
saturation and supersaturation conditions as described
in the previous section. The parallel wind component
and potential temperature profiles observed on 6 and
25 March in ALPEX (Figs. 1b,d) are used as the up-
stream conditions for model calculations. Based on the
peak of the variance spectra of the Haar transform of
V, (Gamage 1990; Mahrt 1991), the horizontal wave-
length is taken as 60 km, which agrees with the ap-
proximate width of the ridge. For the computation of
the surface stress, the mountain height 5, in (9) is es-
timated in terms of an effective mountain height taken
as 500 and 120 m for 6 and 25 March, respectively, as
will be discussed in the next section.

For 6 March, the modeled wave momentum flux
decreases with height below the critical level as a result
of wave breaking (Fig. 5). This decrease with height is
also observed from the actual aircraft data (Fig. 5).
However, the magnitude of the observed momentum
flux increases substantially as the record is shortened
to include only the inner region of strongest fluxes.
Therefore, the observations cannot be used to discrim-
inate between the flux magnitudes of the different
models. The direct observational evidence of wave-in-
duced convection shown in section 8 will be stronger
support for the hypothesis of wave-stress supersatura-
tion. The divergence of the modeled wave momentum
flux corresponds to mean flow deceleration in the layer
between 2.5 to 5 km at a rate of 10~ m s™2. Acting
alone, this estimated wave-stress divergence would de-
celerate an inflow of 20 m s ™! by approximately 3m s~
over the 60-km-wide region.

On 6 March, the model predicts the maximum de-
gree of supersaturation to be 18% at 3 km above sea
level (Fig. 7). The wave momentum flux estimated
with the supersaturation condition is about 35% larger
than that estimated with the wave-stress saturation
condition at the 3-km level (Fig. 5). For 25 March,
wave breaking is not predicted by any combination of
lower boundary conditions and wave-breaking con-
ditions. The calculated wave momentum flux increases
with increasing height for all models, in agreement with
observations (Fig. 6, solid line).

5- -
E
=< 4t 71
-] .
20
& ]
= 3f/
2-- i e B ]
0 5 10 15

degree of supersaturation (%)

FIG. 7 The degree of supersaturation estimated for 6 March.
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Although neglected in this study, the steeper lee side
of the coastal range is expected to enhance wave steep-
ening and reduce the wave stress at the wave breaking
levels (Smith 1977; Lilly and Klemp 1979). However,
assessment of such influences from the data seems ten-
uous within the suspected accuracy of the fluxes.

As an additional complication, wave reflection at
the critical level or wave breaking level can cause a
high-drag state (Peltier and Clark 1979), which inter-
feres with the waves below the wave breaking level.
The difference of the wave phase between the ground
surface and the first wave breaking level estimated for
6 March corresponds to the low-drag state. However,
the continuous occurrence of wave breaking between
2.5 km and 5 km on this day makes it difficult to find
the exact level of wave reflection, if one exists.

7. Effective mountain height

Calculation of the wave stress at the ground level
requires estimation of the effective mountain height.
The actual displacement of the streamline near the
ground surface is influenced by terrain-induced dis-
turbances such as the blocking of low-level flow (Klemp
and Lilly 1978; Pierrchumbert and Wyman 1986), the
development of turbulent boundary layer (Pitts and
Lyons 1990), and the formation of stagnant cold-air
pools in topographic depressions. To take into account
these effects, Palmer et al. (1986) limit the value of
wave amplitude at the ground level to 400 m or less.

Based on two-dimensional model results, Stern and
Pierrehumbert ( 1988 ) propose the effective mountain
height 7, to be

. U
e = mm[no, c]—vf] , (42)

where 19 in this equation denotes the actual amplitude
of the surface topography and c is a constant estimated
to be 0.4-0.8 in their study.

We estimate the effective mountain height 5, by
equating the model-estimated wave stress at ground
level with the observed wave stress below the model-
estimated wave breaking level, since wave stress is con-
served below this level. Effective mountain heights of
500 m and 120 m appear to yield the best agreement
between the observed and model-estimated fluxes for
6 and 25 March, respectively, although uncertainties
in the observed values are large. Examples of the es-
timated wave momentum flux with various effective
mountain heights are shown in Fig. 6 for 25 March.
On this day the observed flux profile is simple and the
model predicts no wave breaking. Using the above val-
ues of 7, and substituting the observed upstream wind
and stratification into (42), the coefficient ¢ in (42) is
predicted to be, perhaps coincidentally, 0.32 for both
days.
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FIG. 8. A schematic diagram of the isentropes (after Smith 1987)

and the regions of downward (shaded with lines) and upward (shaded
with dots) turbulent heat flux observed on 6 March.

8. Upward turbulent heat flux in the
wave breaking region

Comparison of the wave momentum flux estimated
from the linear gravity wave models in the previous
section suggests that the difference between the wave
momentum flux predicted by wave-stress saturation
and supersaturation conditions can be locally signifi-
cant. However, direct observational verification of
wave-stress supersaturation in the atmosphere has not
been previously established.

One indication of wave-stress supersaturation and
convective instability is upward turbulent heat flux.
Turbulent heat fluxes calculated for each flight level
on 6 March show a well-defined region of upward tur-
bulent heat flux over the upstream edge of the coastal
range (Fig. 8) located approximately where maximum
wave steepening is expected.* The width of the upward
turbulent heat flux region is approximately 10~20 km,
depending on the altitude.

The occurrence of convectively driven turbulence
can be seen from the horizontal variations of vertical
velocity and potential temperature in the composite of
eddy structures sampled from the upward heat flux
region (Fig. 9). The 800-m-wide samples are centered
at the positive peaks of the Haar wavelet transform of
vertical velocity, which is used to detect concentrated
eddy-scale gradients (Mahrt 1991). The selected sam-
ples represent about 80% of the total record length in
the upward heat flux region, so that most of the record
is represented. Similar structures with a factor of 2-3
smaller amplitudes occurred at the 3.7- and 4.4-km
levels. In the composited structure, temperature and
vertical velocity are almost exactly in phase (Fig. 9),

4 The upward turbulent heat flux shown in Fig. 10 occurs approx-
imately in the cloud-free region reported by Smith (1987) and is thus
not due to latent heating.
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which corresponds to well-organized convection and
efficient upward heat flux. This convection is consistent
with wave-stress supersaturation with respect to con-
vective instability.

The estimated magnitude of turbulent heat flux gen-
erally decreases with height and varies with the cutoff
wavelength for the high-pass filter. The upward heat
flux at the 3.3-km level reaches a maximum for a 1-
km filter cutoff wavelength (Fig. 11). Therefore, mo-
tions smaller than 1 km are regarded as turbulence-
scale disturbances. The vertical profile of the heat flux
calculated from 500-m high-pass—filtered variables is
also presented for comparison (Fig. 10).

We now attempt to formulate the upward turbulent
heat flux in the wave-breaking region using a flux-gra-
dient relationship and the wave-stress supersaturation
condition. The purpose of this formulation is to doc-
ument the plausibility of the wave-stress supersatura-
tion condition for wave breaking rather than to provide
a practical tool for modeling.

The upward turbulent heat flux in a wave breaking
region will be estimated by assuming a relationship
between the turbulent flux and the local wave-modified
gradient of the mean flow so that

— 90

w'é K 3’
where K is the eddy diffusivity for heat and 6 is the
total potential temperature modified by wave activity.
When the wave stress is supersaturated, 0/9z in the
wave breaking region is estimated by

)
2 (2) s

(43)

2z~ 5 5 % 4

where 0 is the mean potential temperature (not mod-
tfied by wave activity) and S is the degree of supersat-
uration given by (32). In (44), nonzero supersaturation
(positive S) corresponds to convective instability. With
stronger stratification, wave breaking leads to greater
convective instability.

10 | {02
0.5 ] 01
le\ [=~]
E o0 {00 &
N Z
05 | {-01
10} 10z

0 200 400 600 800
meters

F1G. 9. The composite of w (dashed line) and 6 (solid line) from
sampled events in the upward turbulent heat flux region at the 3.3-
km level on 6 March.
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F1G. 10. The upward turbulent heat flux from high-pass-filtered
variables with cutoff wavelengths at 500 m (cross) and 1 km (open
circles) on 6 March and the model-predicted flux profiles (51).

The eddy diffusivity in the wave breaking region may
be approximated as

dv

dz

where [, is the turbulent length scale for heat transfer
and V is the wind speed modified by wave activity. In
the wave breaking region, the turbulent length scale /,,
is presumably restricted by the depth of the wave
breaking region D given by (27).

To estimate the wind shear in the wave breaking
region, we estimate the minimum wind speed #, due
to the maximum modification of the flow by gravity

waves as
Ue = U[l—(-a—ﬁ) ]=—SU,
az max

where U is the unmodified mean wind speed in the
direction of the surface wind. Then the maximum dif-

K~12 (45)

(46)
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FI1G. 11. The turbulent heat flux for different high-pass filter lengths
in the upward turbulent heat flux region at the 3.3-km level on 6
March.
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ference of the wave-modified wind speed AV across a
depth comparable to the amplitude of the wave
streamline displacement is approximated as

AV ~U=—u=(1+S)U. (47)

The corresponding shear of the wave-modified flow in
the wave breaking region can be obtained from (47)
as

avl AV _(1+8U
dz Nh(z)—_ h(z)

where A(z) is, again, the amplitude of the vertical dis-
placement of the streamline. We have assumed that
the background mean shear is small compared to the
wave-induced shear.

Assuming the mixing length to be proportional to
the depth of wave breaking region and using the esti-
mated wind shear (48), the eddy diffusivity in the wave
breaking region may be approximated as

(1+8SU
hz) °

where Ck is a constant with expected magnitude less
or equal to 1. From (25), (27), and (29), D? can be
estimated to be

H 172 U 3
2 o el el
o =a(z) K(F)
where a = (2%%/3)'? ~ 0.97.
Finally, the turbulent heat flux in the wave breaking
region can be estimated from (43)-(44) and (49)-

(50), together with the degree of supersaturation S
from (32) to be

; (48)

K = CxD? (49)

(50)

i , (1+ 85U 40
w8 ~ CxgD -—————h(z) e (51)
Using Cx = 1, the model-estimated upward turbulent
heat flux decreases with increasing altitude similar to
the observed fluxes (Fig. 10). The decrease of upward
turbulent heat flux with height results mostly from the
decrease of the depth of convection D with height. The
comparison between model results and the observa-
tions also suggests that the constant Cxin (51)is order
of unity. - )

A wide region of downward turbulent heat flux oc-
curs at the back of the wave immediately downstream
from the narrower region of upward turbulent heat
flux (Fig. 8). The upward and downward heat flux
approximately cancel each other when averaging over
the entire record. The wave-scale heat flux is also small
when averaged over the entire record at different levels.
As a result, the total wave and turbulent heat flux and
its influence on the mean stratification appear to be
small for this day. Similar results are obtained by Delisi
and Orlanski (1975) and Dunkerton (1989) from ro-
tating tank experiments. In addition, the turbulent
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momentum flux is one or two orders of magnitude
smaller than the wave momentum flux. Thus, the
transport of momentum by gravity waves appears to
be the primary vertical transport mechanism for the
two flow cases studied here.

9. Conclusions

We have studied two distinctly different atmospheric
flows over the coastal range of northern Yugoslavia
with aircraft measurements collected during ALPEX.
On 6 March, steepening and breaking of orographic
gravity waves occur, and the wave momentum flux
decreases with increasing height below the critical level.
Deceleration of the wind component parallel to the
surface wind due to this wave-stress divergence appears
to be about 9 X 10™* m s72, a value comparable to the
magnitude of the Coriolis term in the momentum
equations. On 25 March, low-level wave breaking does
not occur and the wave momentum flux increases with

“ height. On both days, the region of wave activity is 60—

70 km wide, coinciding with the width of the underlying
coastal range.

The wave momentum flux estimated from the linear
gravity wave model agrees with the observed wave mo-
mentum flux on both days. The wave momentum flux
with the first-order lower boundary condition is 20%—
30% smaller than that with zero-order lower boundary
condition. The generalized wave-stress supersaturation
condition predicts 20%-40% more wave stress on 6
March compared to application of the wave-stress sat-
uration condition. However, the difference between
these models may not be significant compared to un-
certainties of the flux computed from observations and
uncertainties in model-input variables. The estimated
effective mountain heights from the observations agree
with the formulation suggested by Stern and Pierre-
humbert (1988). ’

The region of observed upward turbulent heat flux
on 6 March, 10-20 km wide, contains well-defined
convective eddies on the turbulent scale. These eddies
provide evidence for wave-stress supersaturation with
respect to convective instability. The vertical profile of
the observed upward turbulent heat flux can be ap-
proximated by a flux gradient relationship based on
the mixing length and vertical shear derived from the
generalized supersaturation theory. However, the net
turbulent heat flux over the entire flight path appears
to be small due to cancellation between the upward
flux in the convectively unstable region and downward
heat flux at the back of the wave. Therefore, the tur-
bulent heat flux may not significantly influence the
mean stratification at the wave-breaking level in agree-
ment with the studies of Delisi and Orlanski (1975),
Fritts and Dunkerton (1985), and Dunkerton (1989).
The spatially averaged transport of heat by wave-scale
motions and transport of momentum by turbulence
also appear to be small compared to suspected sampling



748

problems. Therefore, vertical transport of momentum
by gravity waves is the principal mechanism of vertical
transport for both of the flow regimes studied here.

We neglected three-dimensionality of the ground
topography, which could lead to overestimation of the
wave momentum flux (Blumen and McGregor 1976).
Nappo and Chimonas (1992) found that wave stress
over an idealized three-dimensional topography is
about half of that over two-dimensional topography
with the same amplitude and width. However, the de-
tailed influence of the three-dimensionality will depend
upon the ratio between the along-ridge and cross-ridge
length scales ( Pierrehumbert and Wyman 1986). Ap-
plication of the wave momentum flux formulation to
numerical models must also recognize that subgrid-
scale topography generally includes mountains with a
variety of effective mountain heights and horizontal
scales that vary according to the geographical location
and grid size. Application of the gravity-wave momen-
tum flux formulation to numerical models also requires
compatibility with the formulation of the planetary-
boundary layer (Pitts and Lyons 1990). Such appli-
cation may include generation of critical levels in the
stable boundary layer (Nappo and Chimonas 1991),
which prevents propagation of gravity waves out of the
boundary layer.
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