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Chapter 1: Introduction

Object recognition is a fundamental problem in computer vision. Recognition is

required by many applications. In particular, in biological research it is required

to automatically detect the species of specimens in images (eg. bird, butterfly).

However, the target objects in images generated by biological research are very

similar to each other. Similarity is in terms of color and texture patterns of the

objects. At the same time, objects within the same classes can be very different,

due to variations in age, gender, posture etc. of objects. We call this problem

fine-grained object recognition. This problem is different from standard object

recognition because it requires higher discriminative power for classifying objects

belonging to very similar classes.

The major challenges include the difficulty of handling occlusions, articulations,

illumination changes and different object locations in images. As shown in figure

1.1, images in different classes may look very similar, and also images in the same

class may look very different due to different posture and appearance. Even people

have a hard time recognizing or discriminating these objects. In this thesis, I

present a novel approach to address this problem.

Our underlying assumption is that, given a test image, there is a limited num-

ber of image patches needed to identify the object. If those patches are similar

enough to patches of training images that belong to a particular class, in terms of
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Figure 1.1: Examples of challenges in fine-grained object recognition. (a):The
images from two different classes, Danaus plexippus and Vanessa cardui. (b): The
images from the same class, Vanessa atalanta. Images in different classes may
look very similar, and also images in the same class may look very different due
to different posture and appearance. Even people have a hard time to recognize
these objects.

both appearance and geometric properties, then we can classify the test image as

belonging to that class. In particular, for every training image, we first hypoth-

esize that the test image belongs to the same class of the training image. Then,

we try to match patches of the test and training images, so that their total cost of

matching is minimized. The target object is identified as the class with smallest

matching cost across all training images.

To combine the appearance and geometric information of image patches si-

multaneously, we weight these two terms by a coefficient. To find this unknown

coefficient, we exhaustively search for its optimal value. Then, we specify the cost

of matching two patches—one from the training image and the other from the test
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image—as the Euclidean distance between their appearance and geometric prop-

erties. Next, we apply the Hungarian algorithm to find the lowest cost match of

test patches with training patches. Since the geometric features are based on the

guess of potential center of object in the test image, we evaluate different candidate

locations of the center. Finally, we perform a voting process over all train images,

and candidate center locations to identify the class of the test image.

For evaluation, we use the Leeds butterfly dataset. This is a challenging bench-

mark dataset, since all the butterfly images are captured in the wild. The butter-

flies are articulated and show various postures. Additionally, the images usually

contain various and complex backgrounds. Our method outperforms all the exist-

ing methods.

We also evaluate our approach on a significantly more challenging Caltech-

UCSD Birds 200 dataset. This dataset is more challenging than the Leeds butterfly

dataset because the birds are assumed various poses, e.g., wings spread-out, wings

folded, zoomed-in bird heads,etc.

The rest of this thesis is organized as follows: Chapter 2 discusses related

work in computer vision and machine learning. Chapter 3 briefly introduces the

workflow of our approach. Chapter 4 describes how to compute the appearance

term, geometric term and weight term for matching image patches. Chapter 5

introduces two possible optimizations to find the best matching, and make our

final prediction for the recognition task. The experiments are presented in Chapter

6, while the conclusion is given in Chapter 7.
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Chapter 2: Related Work

There has been much work in recent years using semilocal patch-based features such

as SIFT [9] and geometric blur [1] for object classification. When the Caltech101

data set [23] was introduced in 2004, the initial result was approximately only 16%

mean recognition across categories. Since then, there has been great improvements

in recognition performance on the 2004 benchmark, with most algorithms making

use of some variant of geometric blur or SIFT [2, 18, 3, 29, 20, 21, 26, 30]. Of

this work, [21],[29] and [20] focused specifically on defining good image-to-image

kernel functions over sets of patch-based features for use with support vector ma-

chines(SVMs). In the first two of the three, the distance function is designed in

advance and does not make use of the training data. In the third, the training

data is used to structure a hierarchy over the feature space, but the class labels

are not used. In [18] the geometric blur descriptor was used with DAG SVMs and

a nearest-neighbor pruning of the training set at test time to yield strong result.

That work also linearly combined different types of feature information, though

their combination was parameterized by a single variable tuned by cross-validation.

Fine-grained object recognition demands an approach to discriminate among

highly similar object classes that are often differentiated by only subtle differences

[11]. Traditional image classification approaches, however, often fail to perform

this task satisfactorily [12]. We hypothesize that a key weakness might reside in
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the way features are encoded in most of todays state-of-the-art image classification

systems [38, 29, 14, 19]. Specifically, image patches are often encoded by a uni-

versal dictionary of visual codewords built by clustering a large number of image

patches. Such a procedure, while computationally efficient and effective for generic

object categorization, results in a large loss of finer details that are important for

differentiating fine-grained object classes.

An increasing number of papers have focused on fine-grained object recogni-

tion in recent years [12, 7, 22, 32, 34]. In [7], multiple kernel learning is used

to combine different types of features and serves as a baseline fine-grained recog-

nition algorithm, and human help is used to discover useful attributes. In [38],

a random forest is proposed for fine-grained object recognition that uses differ-

ent depths of the tree to capture dense spatial information. In [22], a multi-cue

combination is used to build discriminative compound words from primitive cues

learned independently from training images. In [37], bagging is used to select dis-

criminative ones from the randomly generated templates. In [10], image regions

are considered as discriminative attributes and CRF is used to learn the attributes

on training set with human in the loop. Pose pooling [39] adapted Poselets [6]

to fine-grained recognition problems and learned different poses from fully anno-

tated data. Though deformable parts model [13] is powerful for object detection, it

might be insufficient to capture the flexibility and variability in fine-grained tasks

considered here [28].

Our approach deviates from the previous approaches in that they focus on

exploiting the sparsity in the feature space [31, 25, 17, 8] or in the over complete
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dictionary [16, 4, 24, 36]. Instead, we employ a different parsimony here: the

combination of appearance and geometric.
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Chapter 3: Overview of Our Approach

Our approach is motivated by findings on human vision. Our algorithm simulates

the gaze behaviour of people. Given an image, a person will not immediately see all

the details. On the contrary, a person will first see only familiar parts of the image

that are consistent geometrically with previously seen objects. The recognition is

performed based on these selected regions.

The basic flow of our object recognition algorithm is shown in Figure 3.1. The

figure depicts the process for one identity-hypothesis. In practice, this flow will

repeat for M times for M training images.

As can been see in Figure 3.1, each training image is uniformly partitioned

into training patches b1, b2, . . . , bQ. Each patch is associated with a descriptor,

shown on the upper left in the Figure 3.1. In the test image, we first extract the

same number of patches p1, p2, . . . , pT . Each patch of test image is compared with

training patches using the appearance properties. The appearance term compares

the similarities of two patches’ by linear regression. The appearance similarities

are then combined with the geometric properties of the image. The latter is defined

by the distance between the object center and coordinate of patches in both our

test and training images. We combine the appearance and geometric terms as

a weighted sum, with α as a weighting parameter. We match the patches using

the Hungarian algorithm. To this end, we generate a cost matrix. Since we have
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Figure 3.1: The pipeline of my proposed algorithm.

two different formulation of the cost matrix, we present two approaches to find

the closest training image. In the following chapter we describe each step of our

approach in further detail.
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Chapter 4: Feature Extraction

This chapter describe the appearance and geometric terms that we use to compute

the cost of matching image patches.

4.1 Appearance Term

In our approach, all the training images and test images are normalized to the

same size. Then, we use the HOG descriptor to describe the training and test

patches. The HOG descriptor is specified in section 4.1.1. For the mth training

image, let bmq denote the HOG of qth vectorized training patch. Assume that

each training image has a total of I neighbor patches. Then, we form a matrix

Bm
q = [b1m,q, b

2
m,q, . . . , b

I
m,q]. B denotes the block collection of patches for training

images that are distributed around q. In this thesis, Bm
q plays a role of linear basis.

The test patches are denoted as p1, p2, . . . , pT , where t denotes the tth patch of test

image.

A series of linear regressions are performed to capture the similarities of each

test patch to the training patches, as

min
β

∥

∥pt − Bm
q β

m
q

∥

∥ . (4.1)



10

Equation 4.1 is a least squares problem and has a closed-form solution

βm
q = (Bm

q
TBm

q )
−1
Bm

q
Tpt. (4.2)

The regression residuals can be calculated as:

rmt,q =
∥

∥pt −Bm
q β

m
q

∥

∥

2
. (4.3)

The smaller the residual, the larger confidence that the test patch t is similar to the

training patch q in the particular training image m. The whole process is shown

in the Figure 4.1

Now, we can denote this residual value as our appearance term. We normalize

the residual value as

Rm
t,q = 1− exp(

−rt,qm
σ

) ∈ [0, 1] . (4.4)

The residual is based on linear regression. Therefore its computation cost is

low. Also the accuracy is acceptable, as previous work shows that linear regression

based methods can achieve highly discriminative ability [27]. Also, some work in

the literature proved that if the target could be viewed as a convex Lambertian

surface, linear regression is very robust to illumination changes [15, 5].
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Figure 4.1: Using linear regression to measure the residual as our appearance term

4.1.1 HOG Descriptor

Histogram of Oriented Gradients(HOG) is a very popular feature descriptor in

computer vision and image processing for the purpose of object detection. It

counts the occurrences of specific gradient orientation in particular portions of an

image or a video called cells. This method is very similar to that of edge orientation

histograms, scale-invariant feature transform descriptors, and shape contexts, but

differs in that it is computed on a dense grid of uniformly spaced cells and uses

overlapping local contrast normalization for improved accuracy.

The implementation of these descriptors can be achieved by dividing the image

into small connected regions, called cells, and for each cell compiling a histogram

of gradient directions or edge orientations for the pixels within the cell. Each

pixel within the cell gives a weighted vote for an orientation-based histogram. For
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improved accuracy, the local histograms can be contrast-normalized by calculating

a measure of the intensity across a larger region of the image, called a block, and

then using this value to normalize all cells within the block. This normalization

results in better invariance to changes in illumination or shadowing. The HOG

descriptor has a few key advantages over other descriptor methods. Since the HOG

descriptor operates on localized cells, the method upholds invariance to geometric

and photometric transformations, except for object orientation. Such changes

would only appear in larger spatial regions.

4.2 Geometric Term

4.2.1 Object Center

We observe that the appearance term is not enough for object recognition. We

compute the geometric term as the additional cue for our recognition task. In

conventional detection methods, the geometric term is specified in terms of the

object scale or rotation angle of the object. For some recognition tasks, test images

may have arbitrary rotation angles. Then a 4-dimension matrix is required for

estimating the location,scale and angle variations. However, extraction of this

matrix is very difficult for a single 2D image. Therefore, we employ a relatively

concise retrieval strategy, based on the object center, which is depicted in Figure

4.2.

As shown in Figure 4.2, given a training image we can easily obtain its object
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Figure 4.2: The demonstration of object center. (a)For the training images we
retrieve the object center by annotation. (b)For the test images we take every
possible location into consideration

center by annotation. The object center is depicted as the center of the bounding

box. For the test image, we do not know the location of the center of the object.

Therefore, we take every possible location in the test image into consideration. Not

all locations are equally likely to be the object center of test image. We introduce

the weight term in section 4.2.3 to measure the probability of a particular location

to be the object center.

With the help of the object center, we can focus on the important patches,

and reduce the computation complexity of our algorithm. Also we can check the

consistency of our test patches to the training patches. This will improve the

accuracy of recognition.
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4.2.2 Specification of Geometric Term

For each training image, we can obtain its object center by annotation, as the center

of the bounding box around the object. We denote the object center of training

image m as cm. Since each training image has the same number of patches, they

share the same locations. Then, we can denote the center of each patch as cq. We

compute the vector distance between the patch q and the object center as

d
m
q = cm − cq. (4.5)

Also for the test image we consider candidate object centers. We denote the

candidate object center of the test image as cl. Then we compute the vector

distance between the center of test patches ct, and our guess object center as is

given by

d
l
t = ct − cl. (4.6)

From the Equation 4.5 and Equation 4.6, we can achieve the geometric consistency

of the test patch with the training patch when the following expression is close to

zero

w
m,l
t,q =

∥

∥d
m
q − d

l
t

∥

∥ . (4.7)

w
m,l
t,q is specified as our geometric term. We normalize the geometric consistency

as

W
m,l
t,q = 1− exp(

−wm,l
t,q

σ
) ∈ [0, 1] . (4.8)
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Figure 4.3: Using geometric distance to measure the consistency as the geometrical
term

4.2.3 Weight Term

In Equation 4.7, the geometric term has parameter l which is a candidate object

center in the test image. Not all the locations have the same likelihood to be the

object center. We evaluate the likelihood as

Dm,l = exp(−
‖cm − cl‖

σ
). (4.9)

From Equation 4.9 we can see that the object center of test image is more likely

to be the location that is close to the training image object center than the far

away ones. With this weight term we will have a good constraint to select a good

object center from the candidate. The weight term will apply to our two different

optimize process in Chapter 4.



16

4.3 Combining the Appearance and Geometric Terms

We combine appearance and geometric terms as

Ψm,l
t,q = Rm

t,q + αW
m,l
t,q . (4.10)

In Equation 4.10, T is the combination of our appearance term and geometric

term, and α is a constant. Because we do not know whether appearance term is

more important than geometric term for recognition. We use different α values in

our experiments to achieve the best results.
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Chapter 5: Recognition

This section describes our approach to estimating: 1) The cost of matching between

the patches in the training and test images, 2) The object center in the test image.

The object center is referred to our estimate of the center of the object. Image

patches that are far from the object center are then less likely to belong to the

object. These far away patches are appropriately downweighted in recognition.

5.1 Matching Image Patches

For each training image m ∈ {1, 2, ...M} and each candidate location of the object

center l ∈ {1, 2, ...L}, we compute a Q × T cost matrix Ψm,l. An element of Ψm,l

is denoted as ψm,l
t,q . Given Ψm,l, our goal is to find the legal mapping

f := {(q, t) : q = 1, . . . , Q, t = 1, . . . , T} . (5.1)

Where q denotes patches in the training image m, and t denotes patches in the

test image.

We want to minimize the total cost of matching, defined as:

∑

(q,t)∈f

ψ
m,l
t,q · x(q, t), x(q, t) ∈ {0, 1} . (5.2)
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Where x(q, t) is the indicator of matching with following meaning: x(q, t) = 1

means that patch q in training image matches patch t in the test image and x(q, t) =

0 means they do not match. Equation 5.2 is equivalent to

min
X

tr
(

(Ψl
m)

TX
)

, x(q, t) ∈ {0, 1} . (5.3)

To avoid trivial solutions, we constrain X as
∑

q x(q, t) = 1,
∑

t x(q, t) = 1.

The constraint in Equation 5.3 ensures one-to-one matching, where every patch

q finds a single matching patch t and every patch t finds a single matching patch

q.

To solve this fundamental matching problem, we use the Hungarian algorithm.

The Hungarian algorithm is presented in section 5.1.1. After applying the Hun-

garian algorithm to find the best matching between training patches q and test

patches t, we also get a total cost value of our matches. The smaller the cost

value, the better our matching results.

5.1.1 Hungarian Algorithm

The Hungarian algorithm is a combinatorial optimization algorithm which solves

the assignment problem in polynomial time. The assignment problem consists of

finding a minimun cost matching in a weighted bipartite graph. Here, our goal is

to find an assignment of training block to test patches so that no training block is

assigned more than one test patch and no test patch is assigned to more than one
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training block in such a manner so as to minimize the total cost of completing the

assignment task. The following are the key steps of the Hungarian algorithm:

1. Given a cost value matrix Ψ, from each row of Ψ, find the row minimum,

and subtract it from all elements in that row.

2. From each column of Ψ, find the column minimum, and subtract it from all

elements in that column.

3. Cross out the minimum number of rows and columns in ψ to cover all zero

elements.

4. If all rows of Ψ are crossed out, we are done.

5. Otherwise, find the minimum entry of Ψ that is not crossed out. Subtract

it from all entries of Ψ that are not crossed out. Also, add it to all elements

that are crossed out. Return to step 2 with the new matrix.

6. Solutions are zero elements of Ψ. Go first for the zero element which is unique

in its row and column. Then, delete that row and column from Ψ. Repeat

until you delete all rows or columns from Ψ.

5.2 Finding the Object Center

After solving the Hungarian algorithm for all training images m and candidate

location l, we form a new matrix of the total cost of matching C. Each element

of C is equal Cm,l =
∑

q,t ψ
m,l
q,t · x (q, t), where x(q, t) is solved by the Hungarian
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algorithm. As we mentioned earlier, we need to estimate object center in the test

image and make a final prediction based on this object center. This object center

will be used to downweight the patches in the test image that are far away, since

they are less likely to belong to the target object. In section 4.2.3 we explained that

not all the candidate locations have the same likelihood to be the object center.

We use Dm,l to denote the likelihood that a location l is the object center given

training image m. This was defined in Equation 4.9. our goal is to find the most

possible location of object center. The optimization can be written as

min
l,m

Cm,l + β(− logDm,l). (5.4)

The objective function in Equation 5.4 evaluates the match between test image

and particular training image m when the object center of the test image is l. The

smaller the objective, the more similar our test image to the training image.

The location with the lowest average value in the objective of Equation 5.4 is

our target object center. Once the test image object center is found, we take the

majority vote for the classes those training images belong to.

This optimization approach has high dependency on the correctness of localiz-

ing the object center. As shown in Figure 5.1, it is possible that we fail to localize

the location of object center in the test image. The recognition can be increased if

we improve the estimation of object center in the test image, as explained in the

next section.
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Figure 5.1: (a)A successful localization to object center of test image. (b)A un-
successful example that we localize the object center as the center of butterfly and
flower.

5.3 Finding the Object Center by Weighting

As explained in the previous section, our approach is sensitive to correctness of

localizing the object center. We propose another optimization approach which

relaxes the location of the object center by estimating its expected values. In

other words, each location can be the object center but with different probabilities.

The probability is exactly our previously defined weight term. The optimization

approach based on weighting is described in Figure 5.2.

Given a cost value matrix, we check every candidate location to find the minimal

value in this particular location denoted as clmin. Then localize the training image

m corresponds to the minimal value. After obtaining the training image we perform

voting for a particular class which the training image belongs to. The voting

process is associated with weighted score Wm,l. We can retrieve the weighted

score from the weight term. Finally, we make the prediction based on the score in
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Figure 5.2: The pipeline of finding the object center by weighting

the vote list. The majority vote class will be our choice.

ζm =
∑

l

min
m

Dm,l. (5.5)

As shown in Equation 5.5, the total voting score of particular imagem is defined as

the sum of each possible candidate’s vote associates with the weight term. Then

the particular image voting score projects to the class voting score which this

training image belongs to,

ζk =
∑

mk

ζmk ,mk ∈ k. (5.6)

After the project process, we obtain a score list over classes. The final prediction

is achieved by choosing the class with highest score ζk.
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Chapter 6: Experiments and Result

We test our approach on the Leeds butterfly dataset [33] and the Caltech-UCSD

Birds-200-2011 dataset [35]. The Leeds butterfly dataset contains 832 butterfly

images belong to 10 classes, we take 30 images in each class as our training images

and 30 images in each class as our testing images. For the bird dataset, we choose

10 classes from 200 categories and each class has 30 images as our training images

and the other 30 images as our test images.

The object center for a training butterfly is the middle point of the two joints

of the forewings, as shown in Figure 6.1. For the bird dataset shown in Figure 6.2,

the object center for a training bird image is the center of bird’s body. We partition

each training image and test image to 8 ∗ 8 patches. Each patch is described by

HOG descriptor.

All the experiments are conducted in Matlab-R2012b, on a laptop with a

2.6GHz quad-core CPU and 8GB RAM.

Figure 6.1: The training(top) and test(below) butterflies in Leeds butterfly dataset.
All the images are captured in the wild, which makes the task very challenging.
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Figure 6.2: The training(top) and test(below) birds in Caltech-UCSD Birds-200-
2011 dataset. Since the birds are assumed various poses, e.g., wings spread-out,
wings folded, zoomed-in bird heads,etc, it is even hard than the butterfly dataset.

Below, we review our main steps and provide implementation details. First, to

compute the appearance term in Equation 4.4, we merge each training patch its 8

nearest patches, and form a block. The appearance term is the residual value of

linear regression between test patches and training blocks. Second, we consider to

the runtime of our approach. Rather than using every possible pixel as the object

center of our test image, we sample every 16 pixels as a trade-off strategy. Third,

to compute Equation 4.10 we directly delete the test patches that are far away

from our guess location of object center. This strategy updates the Equation 4.10

as

Ψm,l
t′,q = Rm

t′,q + αW
m,l
t′,q . (6.1)

These kind of strategies ensure that our algorithm is efficient and has a good

performance.

We organize our results as follows. First, we show how α affects accuracy.

Second, we show voting confidence for every class. Third, we present the confusion

matrix. Finally, we show some qualitative examples.
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6.1 Butterfly Dataset Result

In Equation 6.1, the importance weight of appearance term and geometric term,

α is unknown. We explore different α values which maximize our accuracy. The

α value is varied as 0, 0.5, 1, 1.2, 2.0. Table 6.1 shows the influence of different α

values on the accuracy.

α=0 α=0.5 α=1 α=1.2 α=2.0
Find the object center 27.12 35.93 40.00 44.08 42.71

By weighting 51.19 56.27 60.00 61.36 49.83

Table 6.1: The influence of different α value to the accuracy of our two optimization
process in butterfly dataset. We set α as 0, 0.5, 1, 1.2, 2. We notice that the overall
accuracy of optimization by weighting is better than the optimization by finding
the object center.

According to the Table 6.1, both optimization process reach highest accuracy

when α = 1.2. The accuracy when α = 0 means that we got the results with-

out considering the geometric term. As can be seem, with the help of geometric

information, we improve our result by 14%.

In order to show the confidence during our recognition process, we illustrate

the vote score for each class in Figure 6.3 and Figure 6.4.

From these confidence figures one may notice that we have enough confidence

to recognize the objects belong to class 1, class 2, class3 and class 8. However, for

class 9 and class 10 the voting score for the true class is even less than other classes

which means we almost fail to recognize the objects in the test images. This trend

can also be seem in the confusion matrix Table 6.2.

In the following, we present some qualitative to illustrate how our optimization
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Figure 6.3: Vote score for each class by finding the object center optimization
process in butterfly dataset

Figure 6.4: Vote score for each class by finding the object center by weighting in
butterfly dataset

works, we present a successful recognition process in Figure 6.5. The dark color

in the cost value matrix of Figure 6.5 means low value. First, we localize a object

center in the test image by Equation 5.4. As the color map of cost value matrix

shows, most of lowest cost values are located in our guess location No.36. The

location No.36 is exactly the closest guess location to the the middle point of the

two joints of the forewings. Now we focus on the fixed object center and check
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30 0 0 0 0 0 0 0 0 0
2 25 2 0 0 0 0 1 0 0
1 3 26 0 0 0 0 0 0 0
2 0 4 16 3 2 0 3 0 0
1 0 5 0 13 2 0 6 3 0
2 0 2 2 3 17 0 3 0 1
8 0 4 1 0 0 17 0 0 0
1 0 0 0 0 1 0 23 0 0
7 0 1 2 3 6 0 4 7 0
1 1 1 6 4 1 0 8 0 7

Table 6.2: Confusion matrix when set α = 1.2 and finding the object center by
weighting in butterfly dataset. This confusion matrix return the total accuracy of
our recognition task as 61.36%

the value in this particular location. We can see that, in the color map of cost

value matrix in location No.36, the low values are more likely to appear in the

training image region belongs to class-1. This observation leads us to make the

final classification that our test image is from class-1.

In Table 6.3 we show the recognition accuracies of human recognition and some

state of the art method. According to the table, our approach achieves the highest

recognition rates, among all the computer-based algorithms. The accuracy of our

approach is merely 10% lower than the best result of human recognition.



28

Figure 6.5: The demonstration of our optimization process by finding the object
center. Dark color means low value. Localize the object center by the cost value
matrix, make classification based on the cost value of a fixed location.

Accuracy

Human (native English Speakers) 72.0

Human (nonnative English Speakers) 51.0

Leeds(Learned templates) 54.4

Bag-of-Features(SVM + l2-norm) 29.6

Bag-of-Features(SVM + l1-norm) 44.7

Our approach 61.4

Table 6.3: The accuracies of butterfly recognition.
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6.2 Bird Dataset Result

For the bird dataset we reach a highest accuracy with α = 1.2. The confusion

matrix is shown in Table 6.4.

25 0 1 1 0 2 0 0 1 0

9 4 1 6 0 3 4 0 1 2

2 1 9 5 1 1 1 2 2 6

3 0 2 12 1 2 7 0 2 1

3 0 4 9 4 2 1 1 3 3

1 1 6 2 1 11 3 0 4 1

2 2 4 4 2 6 6 1 1 2

2 0 2 5 2 4 3 2 3 2

14 0 5 6 2 2 0 1 0 0

1 0 3 10 3 2 3 0 4 4

Table 6.4: Confusion matrix when set α = 1.2 and finding the object center by

weighting. This confusion matrix return the total accuracy of our recognition task

as 26.10%

In the following, we illustrate one of our qualitative result in Figure 6.6.

For the bird dataset, there is still no published results for comparison.
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Figure 6.6: The demonstration of our optimization process by finding the object
center. Dark color means low value. Localize the object center by the cost value
matrix, make classification based on the cost value of a fixed location.
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Chapter 7: Conclusion

In this thesis, we present a novel approach to object recognition. In particular, we

addressed the fine-grained recognition problem, where each object class has large

variations, and there are only small differences between the classes. Our approach

is based on the estimation of distance between patches in the test image and a given

labeled set of training images. The distance is specified in terms of appearance

and geometric properties of the object. As a critical step, we estimate the center

of the object called the object center. The concept of object center makes our

approach similar to the gaze behaviour of people. We use weighting to improve

the localization accuracy of object center. At the same time, we use object center

sampling, and elimination of irrelevant patches. This makes our approach scalable

and easy to perform without losing information. The experiments on the butterfly

dataset and bird dataset demonstrate the superiority of our proposed approach.

From our experiment results, our approach can not handle the large variation

in the scale problem very well. This is because our distance function does not

account for changes in size of objects. In our future work, we will take the scale

of objects into consideration. This is likely to improve our current results.
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