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CABLE DYNAMIC IN AN OCEAN ENVIRONMENT

1.0 INTRODUCTION

Cable-supported structures become increasingly im-

portant to offshore designers as an increasing number of

structures are constructed in deep ocean waters and in

areas which are subjected to hazardous environmental cond-

itions. A common condition is one in which the structures

are sited near or in a storm-generating area. In this

case, the structures are subjected to irregular and often

nonlinear waves.

Cables are highly nonlinear. The nonlinearities are

due to inherent properties of cable response, such as large

displacement, lack of stiffness in compression, and const-

itutive relations. Other nonlinearities may be introduced

because of position-dependent loads and boundary conditions.

The analysis of the nonlinear behavior of cable-supported

structures under both deterministic and nondeterministic

dynamic loadings is the subject of the present study.

Finite element models will be employed to simulate the

structural responses.
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1.1 Review of Previous Studies

Numerous scientific investigations on cable dynamic

behavior have been undertaken since Brook Taylor (see

Rayleigh, 1945) first introduced the equation of motion

of an uniform taut string. There have been hundreds of

papers on this subject with various kinds of solution

techniques adopted. Those techniques may be categorized

into four general classes: 1) analytical methods; 2) semi-

analytical methods; 3) lumped parameter methods; and 4)

finite element methods.

Analytical methods. Analytical methods refer to

those methods which can be used to obtain a closed-form

solution. In early studies of cable vibration, Daniel

Bernoulli (see Rayleigh, 1945) presented a general solution

in the form of infinite series for the vibration of an

uniform inextensible string supported at both ends. Later,

Lagrange (see Rayleigh, 1945) introduced a discrete model

of a continuous string. A set of linear-differential equa-

tions in terms of generalized coordinates describing the

lateral displacements of lumped masses were derived by a

minimum energy principle. Solutions for these equations

were obtained by assuming the motion is harmonic in time.

Irvine and Caughey (1979) gave an exact solution for both

in-plane and out-of-plane vibrations of a uniform suspended

cable with finite sag ratio. Unlike Bernoulli and Lagrange,
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they include the stretching effect of the cable in the

equation of motion by the linear stress-strain relation-

ship.

General equations governing the three-dimensional

motion of the cable were presented by Cannon and Genin

(1970). Basically the cable is considered to be flexible

and to have its mass continuously distributed along its

length. The equations are highly nonlinear. The closed

form solution is restricted to prediction of small motions

about the equilibrium configuration (Irvine and Caughey,

1974).

Analytical methods may be the most desirable tech-

niques to use since they give an explicit expression for

a cable motion. Unfortunately, the available mathematical

tools are limited to relatively simple problems.

Semi-analytical methods. The term semi-analytical is

used to describe those solution methods which start with

the governing partial differential equations and use a

numerical procedure to obtain solutions. One of the pop-

ular techniques in this class is the method of character-

istic (Reid, 1968; Nath, 1969): the nonlinear partial dif-

ferential equations of cable motions are transformed to a

set of ordinary differential equations which can be inte-

grated numerically.
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An interesting approach to the solution of the

statical equations of underwater cables using a Newton-

Raphson method is reported by Leonard (1978). The non-

linear governing differential equations are solved by

successive solutions of equations linearized about previous

iterates.

Lumped parameter methods (LPM). In the usual math-

ematical development of a lumped parameter model, the con-

tinuum isdiscretized into straight-line elements. The

continuous mass, material properties, force distributions,

and structural constitutive models are summed over the

regions between the midpoints of the elements between the

nodes. A set of nonlinear ordinary differential equations

are derived for each node and are integrated numerically

in time. An application of this method to underwater cable

dynamics may be found in references (Nath and Tresher,

1975) and (Patel, 1974).

A somewhat different application of a lumped mass pa-

rameter approach to the static problem is a technique

called the method of imaginary reactions (Skop and O'Hara,

1970). The technique is similar to the cut structure ap-

proach used in redundant frame analysis. Direct iteration

on selected cable forces or reactions are used to eliminate

errors in corresponding displacement continuity equations.

This method was utilized by Dominguez and Smith (1972) to
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first determine the stable equilibrium configuration of

cable systems and then to evaluate the flexibility matrix

of these systems by applying a unit force at nodal points.

Nodal displacements from the equilibrium configuration were

expressed as the product of the flexibility matrix and the

external forces. The inertial and damping forces in the

dynamic systems were treated as external forces.

Sergev and Iwan (1979) developed an algorithm to

determine the natural frequencies and mode shapes of cables

with attached masses. The equations of motion were derived

for each element between two nodes, and continuity of

displacements and balance of forces at nodes was imposed

to evaluate the unknown coefficients and frequencies. This

technique is equivalent to the shooting technique used for

initial value problems.

Finite element methods (FEM). The basic concept of

the finite element method is that the physical behavior

within and around a typical element is characterized by

the behaviors of its end points, called nodes. The loc-

ations of the nodes are then traced as functions of time

similar to the LPM. A set of nonlinear ordinary differ-

ential equations are derived for each node and are inte-

grated numerically in time.

In general, the elements are assumed to be straight

lines (Webster, 1974). However, more accurate results with
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fewer cable elements were reported by Leonard (1972) when

he used curved elements for which continuity of slope across

nodal points was enforced. Ma (1976) utilized isoparamet-

ric curved elements developed by Coons (1967) in his study

on the effects of slackening (zero tension) or plasticity

under load on cable responses. Lo and Leonard (1978) ex-

tended that work to include hydrodynamic effects.

Based on O'Brien's work (1964, 1967), Peyrot and

Goulis (1978, 1979) developed an algorithm to analyze

three-dimensional elastic cable substructures which were

subjected to gravity, thermal, or wind loads. The algo-

rithm was built around a cable subprogram. From given

loads and given positions of the ends of a cable, the sub-

program determined the complete geometry of the cable, its

end forces and its increment stiffness matrix. The cable

elements were assumed to have a two-dimensional catenary

shape and were connected together to substructure nodes.

The equilibrium configuration of the assembly was approach-

ed by successive iterations which decrease the imbalance

of forces which may exist at each node at the end of the

previous iteration. This technique was extended further

by Peyrot (1980) to include hydrodynamic loads and contact

with the sea floor effects. Jayaraman and Knudson (1981)

improved the method so as to handle concentrated loads and
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to utilize the more efficient Newton-Raphson method for

solving the cable equation of motions.

A computer program called SEADYN (Webster, 1974) has

been developed for analyzing underwater cable structures.

The program utilizes finite element techniques which can

incorporate both linear and nonlinear materials. SEADYN

is currently used as a standard program for investigating

cable motion in an ocean environment. Unfortunately,

SEADYN is not equipped to simulate the motion of cables

made of inelastic or viscoelastic materials.

Numerical techniques for solving a set of nonlinear

ordinary differential equations. Systems of nonlinear

discrete, second-order differential equations are often

encountered in the dynamic analysis of structures. They

are usually solved by an incremental method, an iterative

method, or a combination of both methods. For static

problems in which the time variable is not involved, the

approaches to finding solutions are similar to those used

in dynamic problems. An excellent review of static sol-

ution methods is presented by Tillerson, Stricklin and

Heisler (1974). Webster (1974) outlined a general review

of the applications of the incremental and iterative

methods to both static and dynamic problems.
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The basis of the incremental method for dynamic prob-

lems is the subdivision of the total time into many small

time steps. In each increment, or time step, the nonlin-

ear differential equations are locally linearized and

experessed in terms of incremental displacement (Bathe et

al., 1975). These equations may then be solved by step-by-

step integration (e.g., by the Newmark Beta method). At the

end of each increment the dependent coefficients to be used

in the next increment have to be re-evaluated based on the

new parameters. This procedure is simple to apply and has

been widely used, particularly for elasto-plastic problems

(Ma, 1976). However, unless the time steps are very small

the computed response may deviate appreciably from the

true response, because equilibrium is not satisfied exactly

at any step. The accuracy of the computed response can be

improved by applying equilibrium correction terms (Webster,.

1974).

Two types of iterative procedure are commonly used,

namely Newton-Raphson iteration and successive approxim-

ations. In Newton-Raphson iteration the structural tangent

stiffness matrix is reformed at every iteration, and a dis-

advantage of this procedure is that a large amount of com-

putationaleffortmay be required to form and decompose the

stiffness matrix. In successive approximations the stiff-

ness matrix is kept constant and is formed only once,
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usually in an initial configuration. Successive approxi-

mations will typically converge more slowly than the

Newton-Raphson iteration method, and schemes to accelerate

convergence may be desirable. It is sometimes advanta-

geous to use mixed strategies incorporating a combination

of Newton-Raphson and successive approximations (Tillerson

et al., 1974).

The mixing of the incremental and iterative procedure

is often employed to overcome the drifting tendencies of

the incremental techniques. In this procedure usually the

Newton-Raphson method is used in each increment (Bathe at

al., 1975).

1.2 Thesis Objectives

The basic objective_of this research is to sim-

ulate the nonlinear responses of cables and cable-large

body systems in an ocean environment. The finite element

method is used to model the motion of the cable continuum

and the six degree-of-freedom rigid motion is assumed

for modeling the large body motion. The equilibrium equa-

tions developed from these models are then solved numeric-

ally by either an incremental method or a combination of

incremental and iterative methods. The scope of work which

will fulfill these objectives is as follows:
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(1) development of a mathematical model for

hydrodynamic forces which are represented

by Morrison's equation for forces acting on

the cable line and are derived by a diffrac-

tion theory for large bodies connected with

the cables;

(2) utilization of the wake-oscillator model de-

veloped by Griffin et al. (1975) for the

strumming effects on cable lines;

(3) development of an equilibrium equation for

cables and cable-large body systems for both

elastic and viscoelastic materials;

(4) development of an incremental residual feed-

back method and mixed incremental/iterative

method for application in the solution of

the equations of motion developed in (3) sub-

ject to nonconservative and nonlinear hydro-

dynamic forces;

(5) development of a linearized equation of motion

of the cable-large body systems subjected to

random hydrodynamic loadings;

(6) employment of the mode-superposition technique

to solve (5) in the frequency domain with sub-

sequent transformation to the time domain util-

izing the Fast Fourier Transform (FFT) algorithm;
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(7) development of a computer program based on

models and methods developed in (1) through

(6) ;

(8) validation of the computer program by compar-

ison of example problems with existing data

from previous analytical or experimental

studies.

In Chapter 2, the governing equations of motion for

a cable element are derived by the virtual work principle.

The constitutive equations for both elastic and viscoelas-

tic materials are incorporated in the equations. The

finite element model for the incremental hydrodynamic

forces and the assembly procedure for a six degree-of-free-

dom rigid body connected to cable elements are presented

in Chapter 3. Numerical methods for solving the static

and dynamic equations are given in Chapter 4. In Chapter

5, techniques for stochastic analysis of a cable-large body

system are developed. Example problems are presented in

Chapter 6 to validate the models developed in the previous

chapters. Chapter 7 contains a summary and conclusions of

the present study.

1.3 Significance of Study

The strumming analysis of cables using a wake-

oscillator model, in which the interaction of the cable
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vibration and the vortex is included, is expected to pro-

vide a better means for simulating cable motions. Similar

expectations are anticipated for the inclusion of the

displacement and tension coupling in the cable-large body

system. The finite element model for linear viscoelastic

materials will be useful in the study of the motions of

cables made of nylon, or other synthetic fibers. The

stochastic analysis of the response of the cable-large

body system subject to random wave forces will be useful

for investigating the effects of fatigue on the cable

material and for the statistical prediction of the cable

stress and displacement.
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2.0 DEVELOPMENT OF THE EQUATION OF MOTIONS

Early nonlinear formulations of the equations of

motion for large displacement response of structures were

merely extensions of the existing linear formulations

(Bathe, 1976). This approach was considered because fi-

nite element codes could easily be modified to apply in-

cremental linear analyses with corrections to account for

changes in geometry and in the state of material.

In this chapter, a general formulation for the non-

linear incremental equation of motion of cables is pre-

sented. Cables are assumed to accept only axial stresses

and no assumption is made on the magnitudes of displacement

and strain. The principle of virtual displacement is then

used to describe the motion between two neighboring config-

urations of the cables. The treatment presented here

closely follows those presented by Cescotto et al. (1979).

With regard to subscripts and superscripts, in gener-

al, the following convention is employed: A left super-

script with capital Roman letters denotes the configuration

in which the quantity occurs. A left subscript denotes

the configuration in which the quantity is referred to.

When both configurations are identical, the left subscript

can be omitted.
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A right superscript with Greek symbols denotes nodal

quantities. A right subscript denotes the components of a

vector or second-order tensor. All notations are defined

following their first occurrence.

2.1 Equation of Equilibrium

Basically, two different approaches have been success-

fully used in incremental nonlinear finite element analyses.

In the first approach, static and kinematic variables are

referred to the initial undeformed configuration. This

procedure is called Total Lagrangian Description (TLD).

In the second approach, which is generally called Updated

Lagrangian Description (ULD), all static and kinematic

variables are referred to an updated configuration in each

load step.

Basic equations of both formulations may be derived

by means of virtual work or energy principles. The former

will be used here since it is more general and directly

enables one to consider history-dependent constitutive

laws. The incremental forms may be obtained, either by

subtracting the equilibrium equations of two neighboring

configurations and then linearizing the results, or by

expanding the nonlinear equation from the known current

configuration to the next incremental equation. The
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Figure 2.1-1. Successive configurations
of the cable.

latter is more straightforward and easier to employ than the

former; therefore, it will be used in this study.

In the motion of the body--in this case, the cable-

four successive configurations are considered (Figure 2.1-1):

the initial (unstrained, undeformed) configuration CI , the

reference configuration CR , the current updated configur-

ation CC , and the incremented configuration Cs .
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The equilibrium of a body in the incremented config-

uration C may be expressed by means of the stress equa-

tions of equilibrium,

Sa
x

(

7

su-s
a
ij

) +
s
p(

sb .) = 0

i.

(2.1.1)

in which Saij = the Cauchy stress component; p = mass

density; Sb, = body force; Su, = jth component of the

displacement;andx.=ith component of the position

vector.

Let dui be the variations in Suj , assumed consist-

ent with kinematical constraints. Multiplying Equation

(2.1.1)bySuj and integrating over the volume SVol of

the body gives the virtual work expression (Fung, 1965).

3
I a3... SSE.. dSV = S

R
3.]

S
Vol

in which

a
2 6 e.1 . ÷(6.) (6u.)

3 S- u3 S- 1
x. 3 x.
1

and

(2.1.2)

(2.1.3)
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(2.1.4)

in which ST. = surface traction force; SS = total surf-

ace area; and dSa = differential surface area.

Equations (2.1.2) and (2.1.4) cannot be solved di-

rectly because the incremental configuration Cs is

unknown. A solution can be obtained by referring all

variables to a previous equilibrium configuration. For

this purpose, in principle, any one of the already calcu-

lated equilibrium configurations could be used (CR in

Figure 2.1.1). However, the choice lies essentially between

two different descriptions, that is, the Total Lagrangian

Description (TLD) and the Updated Lagrangian Description

(ULD). The following section will present the general La-

grangian description in which the reference configuration

is the arbitrary equilibrium configuration CR . The equa-

tion becomes TLD when CR approaches CI and ULD when

CR approaches CC .

2.1.a General Lagrangian Description

For cables, it is assumed the cable is stressed

only in the direction of the cable axis; the axial stress



is uniform over the cross-sectional area; and the cross-

sectional area remains plane during deformation. Thus,

the cable geometry and kinematic variables can be des-

cribed by one parameter, that is, the arc length. Using

the arc length RD associated with the configuration

C
R

as the independent variable, Equation (2.1.2) may be

transformed into

S
RA R

RI Ra
A (5RE dRs = RR

18

(2.1.a.1)

in which RA = the cross-sectional area; d
R
s = the in-

finitesimal arc length in CR ; Ra = the axial second

Piola-Kirchhoff stress in C but measured in CR; - and

R
E = the axial Green-Lagrange strain in Cs but measured

in CR (Fung, 1965):

2

S
a = S d

R
s

R Q des Sp

S
RE

d
S
s

2

(dRs

(2.1.a.2)

(2.1.a.3)

The curved lengths d s and d
R
s may be expressed

by the sum of the products, of the cartesian coordinate

position; i.e.,
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1/2 1/2 1/2
dSs (dSx.

1
dSxi) =

1
ui) (d

R
x.
1

+
s
ui)

1/2
d
R
s = (d

R
x.
1

d
R
x.1 )

(2.1.a.4)

(2.1.a.5)

Substituting Equations (2.1.a.4) and (2.1.a.5) into Equa-

tions (2.1.a.2) and (2.1.a.3) gives, for incompressible

material:

d
R
x. dsu. dSu. dSu.

SRa
1 1+ 1

)=
S6

(1 +2
R RRds ds d s d s

S
d
R
x. dSu.

dSu. dSu.
1 1 1 1 1

E =
R dR s dRs 2 dRs dRs

(2.1.a.6)

(2.1.a.7)

Further, substituting Equations (2.1.a.6) and (2.1.a.7)

into Equation (2.1.a.1) results in

d
R
x. dSu. dsu.

,Ra S
R

t 1 1 )8( )d
Rs

=
SR

Rd
Ra(

d
R
s d

R
s

(2.1.a.8)

Since the stress R and displacement -u.
1

are unknown,

the following incremental decompositions are used,

S C
Ra Ra

+ Aa + . . (2.1.a.9)
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1

Cx.
Rx.

Cu.
1 1 1

Equation (2.1.a.8) can now be written as

20

(2.1.a.10)

(2.1.a.11)

R C dCx.
dAu. dS .

1
I A (Ru + Al + )6( )d

Rs
= RR (2.1.a.12)

R
D dRs dRs dRs

The unknown quantities in Equation (2.1.a.12) are the in-

crementaldisplacementcomponents,Au.,and stress, Au .

TheincrementalstressisrelatedtoAu.by a constitut-

ive relationship dependent on the material.

2.1.b Total Lagrangian Description (TLD)

In the Total Lagrangian Description (TLD), all the

variables are referred to the undeformed configuration.

The configuration CR now coincides with the configur-

ation C
I

and the Equation (2.1.a.12) becomes

ILIA (Cu+A)(
d7rxi dAu. dsui

cs

I1
)6( )d s = SR

D d
I
s d

I
ses

(2.1.b.1)
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Now, assume that the coordinate x. , and the displacement,

u. , can be represented by the approximation function

x, () = tv ( ) Xl (2.1.b.2)

ui(E) = tPa(E) uci! (2.1.b.3)

in which tpa(E) = the interpolation function of the nat-

ural coordinate E Xa , U
a = the ith components of

position and displacement vectors of the nodal point a

respectively. This type of approximation function in which

both the interpolation functions for the position and the

displacement are identical is associated with the isopar-

ametric element in the finite element method. The position

and the displacement derivative with respect to arc length

may be approximated by

with

dx.
1

= (Pa (0ds Xi

du.

ds
a a
() U.

4)a(0 de(E)
ds

(2.1.b.4)

(2.1.b.5)

(2.1.b.6)
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Substituting Equations (2.1.b.4-6) into Equation (2.1.b.1)

and neglecting products of the incremental quantities,

gives a linearized equation in the form

I a
A
I

C
a (I)

a f3

(E)cP (E)AU.6
S
U. d

I
s

I
D

II
D

IAAcre(C)() a C() X.
a

6S US d
I
s =

C°.(1)(04) (C) X. U. d s
SR - f 13, CaS13 I
I ID

in which

S
R

= - Sa a

I

IAI
PIP

a
(E)tP () U.6

SU. d s +

D

SF
$
(E)6

SU. d
I
s

I
D

(2.1.b.7)

(2.1.b.8)

where the traction and the body forces are included in

I

SF.

Since the virtual displacement 6S US

Equation (2.1.b.7) may be reduced to

is arbitrary,



I C a I
rf iy1(1) (04) () AUa . Id s +

1

IfiTiA6 (Pa(0(1)(3(E)Cedis =
D

S

IR -If IAC64(111s

in which

S-aSR 1Tilp ya
q'

I
D 1

dIs

+ I

D

SF.T a () dI
s

I
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(2.1.b.9)

(2.1.b.10)

Equations (2.1.b.9) and (2.1.b.10) represent a linearized

equation for the incremental displacement alai .

2.1.c Updated Lagrangian Description (ULD)

In the Updated Lagrangian Description, all variables

in Equation (2.1.a.1) are referred to the current config-

uration, Cc ; namely, the updated configuration of the

cable. The equilibrium configuration CR in this case

approaches the deformed configuration CC . By doing so,



we may express Equation (2.1.b.1) as

dCx. dAu. dSu.
C C 1

I A( a+Aa)(- + 1)(5( 1)d
cs

= RC
D dCs dCs dCs c
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(2.1.c.1)

Following a similar procedure to that used in the deriv-

ation for the TLD, Equation (2.1.c.1) may be transformed

to

c
I CA

C
acp

a
WcI) (E) AU a dCs

1

C
CICAA"c'(°4)""Ca.ci-CdCs
D

CA Ca a
(041

C(0 X.
a
dCs

C C
D

in which

S S-a
eR = -CI CA CID 11,(1(011) (0 U. dCs +

CI
F.11,

13

d
C
s

C
D

C

(2.1.c.2)

(2.1.c.3)

The interpolation function e(E) used in Equation (2.1.c.3)

is not the same as the one used in TLD. Later, in the fi-

nite element formulation it will be shown how they differ.
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Equations (2.1.c.2) and (2.1.c.3) are the nonlinear

incremental equations in Cs referenced to the current

configuration Cc . The equilibrium equations in TLD and

ULD are theoretically equivalent because they use the same

balance principle. The choice between the two formulas,

therefore, depends on the ease and efficiency of the form-

ulation. The advantage of using the TLD over ULD is that

the element properties need not be explicitly transformed

to account for updating of the nodal coordinates resulting

from changes in geometry. However, this advantage is

counteracted by requiring to transform the computed true

stress into the pseudo stress used in TLD. In the follow-

ing section we will show that for the pseudo-Hookean mater-

ial, both TLD and ULD will give the same stiffness matrix.

2.2 Stress-Strain Relationship

In this study, two types of materials are considered.

The first is a pseudo-Hookean material in which the stress

is expressed in terms of the tangent modulus and the incre-

mental strain. The second is a linear viscoelastic material

in which the stress is dependent on the time history of the

strain. The standard linear solid model is chosen in this

study because it represents most of the cable materials

used in ocean applications (Bitting, 1979).



2.2.a Pseudo-Hookean Material

The constitutive equation of the pseudo-Hookean

material is represented by

= +
C
E [

dSs - dCs]

d
I
s
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(2.2.a.1)

in which ST = traction force in the incremented config-

uration C
S

, per unit area in the unstrained state C
I '

CT = traction force in the current configuration C ,

per unit area in C
I

; and CE = Young's modulus in the

deformed state CC

The stress and displacement relationship may be ob-

tained by substituting Equations (2.1.a.4), (2.1.a.5) in

which CR approaches CC, and Equations (2.1.b.4), (2.1.b.5)

into Equation (2.2.a.1); i.e.,

with

ST CT CEA
.Y( ) ri( ) C X. AU (2.2.a.2)

(2.2.a.3)



Before applying this relation in both the TLD and ULD

forms of the equations of equilibrium it is necessary to

relate the stress in Equation (2.2.a.2) with the second

Piola-Kirchhoff stress employed in both TLD and ULD

ST IA
=

S
a
SA
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(2.2.a.4)

in TLD, for incompressible material (Fung, 1965).

with

S I dIs 2 S
a IA
I, ,d1s,2

S.cT
(

I
A)

2

IT A = (dSs
d
S
s

SA

IA
- dSs

SA
dIs

(2.2.a.5)

(2.2.a.6)

Substituting Equations (2.2.a.2) and (2.2.a.6) into Equa-

tion (2.2.a.5) gives

CE
I

S
1 C dss

aIA = 7 TI
A (e---) (E)

2
AC d s X

c

(2.2.a.7)
S

(des)
sn

-4) (0 c
Xy. AO (

1 i d c'

The factor X
2 in the second term of the right hand side



of the equation appears because of the transformation of

the interpolation function cpcl() in Equation (2.2.a.2)

for C to the 4)(1(E) in C
I

Recalling that
la

=
la

+ Aa, we may write Equation

(2.1.b.9) as

with

A C_
II 7 cYcl)c4(E)C53(C"13.c'' dis +

D C

IA C C, ,

4)'y ( (I [ A cJ$ (C)V(00(003
ID XC

CaCy nI S
R -X. X. AU.

3
ds=I

1 3

IACT C a I
if A 4) (0(0 (0 X. d s

I I a S-

II
S
F.tp

a
d
I
s

D
I
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(2.2.a.8)

(2.2.a.9)

By an analogous procedure to the derivation of the const-

itutive equation in TLD, Equation (2.2.a.7) can be trans-

formed into



S r

c
aC A=1C TIA+ C

E
I
AX

y n Cyn,ds
'cl)-(E)() (E)

3 3 dCs
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(2.2.a.10)

Substituting Equation (2.2.a.10) into Equation (2.1.c.2)

and recalling that Ca
= C. + pa , one obtained the in-

cremental equation of equilibrium in ULD as

with

CI
IACT(1)a

4)

a a C
(0 (E)AU. d s +

a c3.ccily.E.(011,E.C_a__yun dC
f

I
A[

C
+

c
EA W1(0(1) ( ) ( ) ) X. X. . s =

C
D

3 3

aSR 'licu_4_m a Cx.ciCs
C C

D

S-
I I

, f3 S"
CR cl

A p
A IP

a
(01P (0 U.

a
dCs

D C

S
F.

+
C

C

A
I ( dCs
D C

(2.2.a.11)

(2.2.a.12)

Equation (2.2.a.8) and Equation ( 2.2.a.11) will result in

identical forms when
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(pa( (in TLD) = Ac (1)(1W(in ULD) (2.2.a.13)

which will subsequently be shown to be true later in the

finite element model.

2.2.b Linear-Viscoelastic Material

For viscoelastic materials, the constitutive relations

involve, generally, stress rates and strain rates. In

particular, for linear-viscoelastic materials, it is pos-

sible to represent their behavior by a model made up of

springs and dashpots. Therefore, the stress-strain rel-

ationships for linear viscoelastic materials (Fung, 1965)

is

N
d
n N in

a e(t) + E a e(t)=b a(t) + b u(t)
o

n=1 dtn n o
n=1 dt

n n

do
in which

dt

(2.2.b.1)

= the nth derivative with respect to time,

t ; a
o

, . a
n

and b
o

. . b
n

= real-valued

constants.

In this study, a three-parameter standard linear solid

model which is employed by the NOAA (National Oceanic and

Atmospheric Administration) Data Buoy Model (see Bitting,

1979) is utilized to represent viscoelastic materials

which are frequently used in the ocean environment. The
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stress-strain equation of this model is given by Equation

(2.2.b.1) when only the first and lower derivative terms

are retained, i.e.,

t) e(a(K
o
E(t) + T(K

o
+K

1
)

ddt
a(t) + T

ddt t)
(2.2.b.2)

A mechanical analog of this three-parameter model is shown

in Figure (2.2.b-1). The spring constant, Ko , represents

quasi-static behavior of the cable. The energy dissipation

mechanism is represented by the dashpot, having damping

constant N , and the spring, having spring constant K1 .

The characteristic time T appearing in Equation (2.2.b.2)

is the ratio of damping N to spring constant K1 .

C.

a

Figure 2.2.b-1. Three-parameter standard
linear solid model.
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The incremental form of the constitutive equation may

be obtained from Equation (2.2.b.2) by approximating the

quantities de (t)

dt

respectively; i.e.,

and da (t)

dt
with

Ae

At

Da = [K
0
e(t) - a(t)] + (K

0
+ K

1
)Ae

and
La

At

(2.2.b.3)

in which e(t) = the known current strain; a(t) = the

known current stress; and the incremental strain, Ac ,

may be expressed in terms of the incremental displacement

by

or

1 (d
S 2
s) (d

C
)

2

AE

Ae

2

(dIs) 2

dCsC
s

I2 dCx. dAu
i1

dis !dCs dCs
( )

dAu.
1

dAu1.

2
d
C
s dCs

L._

(2.2.b.4)

(2.2.b.5)

Substituting Equations (2.1.b.4), (2.1.b.5), and (2.2.a.3)

into Equation (2.2.b.5) and neglecting the product of the

incremental quantities gives the linearized approximation

of the incremental strain equation,

2 y
AE = Xel) ()(Pri(E) C)0( (2.2.b.6)
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Substitution of Equation (2.2.b.6) into Equation (2.2.b.3)

yields

C- At C,Y nAa = (K c
c a) + (K +K )X 2

cD(E)(1) (E) X. AU. (2.2.b.7)OI 0 1 C I a.

The accuracy of Equation (2.2.b.7) increases when quant-

ities
Lt._

and Au are small. A typical commercial visco-

elastic material has the characteristic time, T = 5 seconds.

Therefore, for At « 5 seconds and for small incremental

displacement, Equation (2.2.b.7) approximates the exact

stress-strain relationship given by Equation (2.2.b.2).

By similar procedure to the derivation of the equil-

ibrium equation of the pseudo-Hookean material, we may

I C.__ Csf
A a (I) (04) () AU. d +

C
D

I

IA [
c_

+ X
2

(K +K H (Da (C) (E q)n(E)
CD C o 1

Ca Cy C S -
sX1 . X. AU. d = R-

I

3

At
f
IA(Ko

lc
- a) 01)

a
(E)

C X.
a

d
C
s

C
D

I
IA Ca (pa (E) c)(E) C

X dCs
CD

(2.2.b.8)



34

write the universal equation of equilibrium (applicable

both to TLD and ULD) of the viscoelastic material as

in which the external force
S

iR is given by Equation

(2.2.a.12). The second term of the right hand side of

the Equation (2.2.b.8) represents a delay in the response

of the cable.
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3.0 FINITE ELEMENT MODEL

The fundamental concept of the finite element method

is that the physical behavior within and around a typical

element is characterized by the behaviors of its end

points, called nodes. The displacement of the cable at

any point and time is approximated sectionally by a piece-

wise continuous function which has an exact value at a

nodal point. In this study, isoparametric finite elements

are employed to model any quantities such as displacements,

positions, hydrodynamic forces, etc., in the cable continu-

um. Because of its simplicity, the two-noded straight ele-

ment is used to investigate the cable response to the hydro-

dynamic forces (deterministic and nondeterministic). The

introduction of a higher-order element can be easily imple-

mented. For more details on finite element modeling, one

may refer to references (Zienkiewicz, 1979), (Cook, 1973),

and (Desai, 1972).

3.1 Two-noded Straight Cable Element

Consider a straight element PQ (see Figure 3.1.1)

with element length L . It has two nodes (node 1 and 2)

located at the ends of the element. The interpolating

functions which appear in Section 2.1.b may be represented



by

and

with

Figure 3.1-1. Straight cable element.

Tl(F,) = 1 -

412 (E) =

(1)1(E) = 1,
IL

(I)

2()
= 1,

= ZI
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(3.1.1.a)

(3.1.1.b)

(3.1.2.a)

(3.1.2.b)

(3.1.3)

in which 2, = the location of a point in the cable meas-

ured from node 1.
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Now, let the cable length in the undeformed configur-

ation, CI , be donoted by
I
L and in the deformed con-

figuration, Cc , by CL . The derivative shape functions

in C
I

and C
c

may be obtained from Equations (3.12.a b);

in C :

1 1
= /

L

402() = 1/1,

in CC:
(I)

1
(E) = 1/CL

(P

2 ()= 1/C

(3.1.4.a)

(3.1.4.b)

(3.1.5.a)

(3.1.5.b)

The relationship between the derivative shape functions in

C
I

and C may then, in general, be expressed as

with

e(0 (in CI) = X e(0 (in Cc) ; a = 1,2 (3.1.6)

CL,
AC = /IL

(3.1.7)

as pointed out previously in Section 2.2.a.

The finite element form of the governing equations of

motion may be obtained by substituting the shape functions
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given by Equations (3.l.l.a,b) and (3.1.2.a,b) into either

TLD or ULD form of the equations of equilibrium, which for

the pseudo-Hookean material are given by Equations (2.2.a.8,

9) and (2.2.a.11,12)

(IAC [KL] +
I
A
c7+cEX

C
)[KNL]){AU} =

(3.1.8.a)
IAI

p
[M] {U} + {F} -

I
A
C
U[K ]{x}

xc

and for the viscoelastic material are given by Equation

(2.2.b.8),

-(IACc3[K
L

(IACcy
X
2
(K
o
+K

1
))[K ]) {AU} =

(3.1.8.b)
IAI

p
(K
o
C -

[M] {U} + {F}
IA (fit c-C6) ] {X}

xc

in which [KL] = the linear stiffness matrix due to initial

stress,

[iy

[I]3x3
-[I13x3

-[I]3x3 [I]

(3.1.9)

[K
NL

] = the nonlinear stiffness matrix due to cable dis-

tortions



with

[NI] 1(cL)3

[C
11]

3x3
[C12]

3x3

[C21]
3x3

[C22]
3x3
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(3.1.10)

11 22 C 1C
X -
1 C 1C 2 C 2C 1 C 2C 2C.. = C.. = X ( X. X. + X. X.) + X. X.1J 13 1 J 1 3 1 3 1 3

12 21 11C.. = C.. = - C.
1J 1J 13

[M] = the mass matrix

[M] = CL

(3.1.11)

(3.1.12)

{F} = equivalent nodal forces; and {X} = nodal positions.

Equation (3.1.8.a) and (3.1.8.b) are equilibrium eq-

uations for each individual element. The global equations

which represent the governing equations for the entire

cable-body system are obtained from the equations of indiv-

idual element by assembly process. Rules and procedures of
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the assembly process are given in references (Zienkewicz,

1979) , (Bathe, 1976) , and (Desai, 1972) .

3.2 Hydrodynamic Forces

Hydrodynamic loadings on a cable element may be group-

ed into three types of forces: 1) drag forces; 2) inertial

forces; and 3) lift forces. Drag forces are due to skin

friction and form drag (or pressure drag). Skin friction

is a drag force which is solely caused by a fluid* viscos-

ity. Form drag results from the formation of vortices or

eddies and from separation of flow behind the cable element

(see Hoerner, 1960). Consequently, the drag forces may be

decomposed into a drag tangent to the cable element and a

drag perpendicular to the cable element (in the plane

formed by the cable element and the relative fluid veloc-

ity vector). The drag along the cable element is equal to

the skin friction of a flat plate having the same surface

area as that of the cable element. The drag perpendicular

to the cable element consists of both frictional drag and

form drag. For the accelerating fluid, the combination of

the drag force and inertia force, both perpendicular to the

cable element, is given by Morison's equation (Morison et

al., 1950) in which the drag and inertial coefficients are

usually taken as functions of Reynold's number. Lift forces

are the oscillating transverse forces (perpendicular to the
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plane formed by the cable element and the relative fluid

velocity vector) which results from vortex shedding. The

lock-in condition is assumed to take place as the shedding

frequency approaches a cable material frequency.

3.2.a Morison's Equation

Morison's equation, first introduced by Morison et al.

(1950), is a semiempirical formulation for the in-line force

in an accelerating fluid and has,, in particular, been ex-

tensively applied to oscillatory flows. It is based on the

important assumption that the total in-line wave forces may

be obtained by adding two component forces, each of which

may be determined separately; that is, drag force and in-

ertial force which may be expressed by

irD2

FN1. C
D
p
f 2

V
N

V . + Cmpf avi (3.2.a.1)

in which FNi = ith component of hydrodynamic force per-

pendicular to cable element; V
N

= magnitude of normal

fluid velocity; VNi = ith component of normal fluid vel-

ocity; aNi = ith component of normal fluid acceleration;

p
f
= fluid mass density; D = structure diameter; C

D
=

normal drag coefficient; and CM = inertial force coeffic-

ient.
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Equation (3.2.a.1) was originally derived for a sta-

tionary structure. When the structure is nonstationary

Equation (3.2.a.1) may be modified to include the inter-

action between fluid and structure; i.e.,

2

= CDPf T VNR VNRi +
Pf

T-- [CmaNi (3.2.a.2)

-(Cm-1) UNii

in which VNR = magnitude of normal relative fluid veloc-

ity; VNRi = ith component of normal relative fluid veloc-

ity defined by

VNRi . V - UNiNi (3.2.a.3)

where UNi , UNi = ith component of the normal structural

velocity and acceleration.

Skin drag along the cable length is defined by

FT1 T
p Tr V V .

f 2 TR TR].
(3.2.a.4)

in which FTi = ith component of hydrodynamic force tan-

gent to cable element; C
T

= tangential drag coefficient;

VTR = magnitude of the relative tangential fluid velocity;

and VTRi = ith component of the relative tangential fluid

velocity which is defined by



. := VTi 1:r

vTR1 Ti Ti
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(3.2.a.5)

where VTi , UT = fluid velocity and cable velocity in

the tangent direction respectively. The quadratic term

and the dependence of FNi and FTi on the position and

orientation of the cable element contribute to nonlinear-

ities in the cable equations of motion. The expression

for these hydrodynamic forces at nodal point and at time

t + At may be obtained by Taylor expansion; i.e.,

F.
1

.
FN1t+At

FDNi Ti
t

+ F

"I" F 1Ti
t+At

t +Lit

=

B
D

+ {7NR
"

-- VmRi VNRj + BDVNR (5ii

t

"2 13TVT11 IVIIR)eiej} "17. At )3 i

+ B C (s.. -8 0.) a. - B
I
(CM-1)(6.. 0.0.)1 m 1 3 133 3 1 3 3

+ S.. AU.
13 3

in which

B = 1 p
CDD 2 f D 2

1BT = f Pf CT 7D

TrD
2

(3.2.a.6)

(3.2.a.7)
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FDNi ith component of drag force perpendicular to cable

element; ei = ith direction cosine of the cable at node

a ; S.. = the incremental stiffness due to the change of
13

position and orientation and which may be considered neg-

ligible compared to the other; and 6. is defined by
13

6.. = 1 for i = j
13

0 i j (3.2.a.8)

The hydrodynamic force anywhere along the cable ele-

ment may be expressed in terms of the force at nodes on

the element. However, when consistent forces (consistent

with the constraint on the virtual displacement imposed on

nodal points and along the cable element) is employed, the

drag damping and the added mass matrix will become non-

symmetric. To avoid this problem, one may integrate the

force distribution along the cable and lump it at the cor-

responding nodal points. For example, assume that the

hydrodynamic force is linearly distributed along the cable;

i.e.,

= ItiaW F. ; a = 1,2FN1 Na.
(3.2.a.9)

in which 41a(E) = the straight element shape function given



by Equations (3.1.1.a,b). The lumped force may be ex-

pressed as

1/2

1
L I T

a

N(E)Fa
i

dE
0

1

F.
2

= L I Ta(E) F a
Ni

dE
1 1/2
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(3.2.a.10.a)

(3.2.a.10.b)

inwhichF.1 ,F.2 = ith component of lumped hydrodynamic

forces at node 1 and 2, respectively.

3.2.b Lift Force

Lift forces are the periodic transverse forces on the

cable generated by vortices as they alternately shed from

each side of the cable. For a simple case when the fluid

flow is steady and the structure is stationary, the fre-

quency of the oscillation of these forces is proportional

to the fluid velocity and is equivalent to the shedding

frequency. For unsteady flow such as for ocean waves,

this frequency is assumed to take a form similar to that

of steady flow with variable velocity (Vaicaitis, 1976).

For a nonstationary structure the oscillating frequency is

no longer equal to the shedding frequency: resonance will

take place which in turn alters the response frequency.

This resonance (lock-in or synchronization) phenomena
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was pointed out by Bishop and Hassan (1964) in their ex-

periment with a rigid cylinder oscillating vertically in

steady, uniform horizontal flow. Later, Hartlen and Cur-

rie (1970) and Griffin et al. (1975) developed a wake-

oscillator model for predicting the lift coefficient as

a function of time. Iwan and Blevin (1974) derived the

lift force on a cylinder by use of the momentum equation

with a so-called "hidden parameter" introduced into the

equation: the result is very much similar to the wake-

oscillator model.

In this study the first model is employed and the

resonance is assumed to occur such that the dominant

structural response frequency is the structural natural

frequency having a value closest to the shedding fre-

quency,which is assumed to be constant for steady flow

and variable for unsteady flow. Because the strumming

(the motion due to lift forces) frequency is much higher

than the response frequency due to the fluid drag and in-

ertial force and because the transverse displacement is

much smaller than the inline motions, the transverse

motion may be treated independently. The transverse mo-

tion is assumed to fluctuate about the inline motion. Due

to this transverse fluctuation, the wake behind the cable

will magnify which may cause the form drag to increase

(Skop and Griffin, 1977). Consequently, the strumming may
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be evaluated by using the mode-superposition technique in

which the mode shapes and natural frequencies of the struc-

ture, are recomputed every time step or every several steps

of incremental response (Morris, 1977).

The computational steps which will be employed here

may be summarized as follows:

(1) set the time increment, 6t, which is used in

the strumming analysis, note that At is the

time increment used in the inline motion analy-

sis;

(2) determine relative fluid velocities and shedding

frequencies;

(3) form mass and stiffness matrix;

(4) compute natural frequencies and mode shapes;

(5) compute lift force coefficients by wake-

oscillator model;

(6) compute lift forces;

(7) compute modal equations;

(8) compute the transverse displacements and

velocities by mode-superposition technique;

(9) increment the time t = t
1

+ St in which t
1

is the time that the mass, stiffness, shedding

frequency and other quantities are evaluated;

(10) repeat steps (5) through (9) when t < t2 (in

which t2 = t1 + At), otherwise proceed to the



next step; and

(11) assign t1 to t2 and repeat steps (2) through

(10) .

The lift force per unit length acting on the nodal

point may be expressed as

1

FLi
p DC E 6 V VLi 2 f L ikt k NR NRt
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(3.2.b.1)

in which FLi = ith component of lift force; CL = per-

iodic lift force coefficient; VNRi = ith component of

the normal relative fluid velocity given by Equation

(3.2.a.3); and the permutation symbol Eim, is defined

by

e. = 0 ; for two indices equal

= 1 ; for even permutation (3.2.b.2)

= - 1 ; for odd permutation

The periodic lift coefficient is assumed to be represented

by a wake oscillation model and may be expressed by (Grif-

fin et al., 1975)

2CL + w2 C
L

- (C
LO

-C
L

(e
L
/us

s
)

2
]

s

(3.2.b.3)
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in which dots denotes partial derivatives with respect to

time; w
s
= the Strouhal (shedding) frequency defined by

ws = 2
Tr
ST V NR/D (3.2.b.4)

where S
T
= Strouhal number; C

LO
= constant lift force

coefficient amplitude for fixed structure;
CITL

the

transverse cable velocity magnitude; and G , H , and

7 = empirical parameters defined by

logio G = 0.25 - 0.21 SG

where

log
10

(hS
G

) = 0.24 + 0.66S
G

7 = 4G SG/h

S
G

= 21TS
2

k
s

1/2
k

S
= 47T11 _ 45 (v/w

) /DP D s

(3.2.b.6)

in which m = structural mass + added mass per unit length;

v = fluid viscosity; h = dummy variable; and =
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damping ratio. For cables the added mass is independent of

the transverse displacement amplitude (up to vibration amp-

litude of a full cable diameter), mode shape and wave length

but slightly dependent on the Reynolds number (Ramberg, 1975).

The uncoupled equation of motion of mode n may be

written as (Clough and Penzien, 1975)

Z
n

+ 2C
n

wnZn + wn2 Zn = fn (t) (3.2.b.7)

in which w
n

= natural frequency of the structure; C
n

damping ratio which is defined by

12pcD 1/2
En (v/wn)

and the forcing function fn(t) is defined by

¢ F.
ni

f
n
(t) =

¢ M. ¢
ni ij nj

; n = 1,2,3,. .

i,j = 1,2,3,

(3.2.b.8)

. . NMOD
NDOF

(3.2.b.9)

where the underlined indices indicate that the summation

rule is not applied; Fi(t) = ith component force in the

global equation; ¢ni = nth mode shape of the ith compon-

ent in the global equation; and M..
ij

= the element of mass

matrix in the global equation. The transverse displacement



51

and velocity may then by obtained by the following relation-

ship

rf = Z
Ti ni n

u = .

Ti nl n

(3.2.b.10.a)

(3.2.b.10.b)

in which UTi = ith component of transverse displacement

in the global equation. By assigning the value of the

global transverse velocities, U
Ti

's
'

to the correspond-

ing nodal points, the nodal velocity of the strumming be-

comes determined which can be used to compute the value

of lift force coefficient by Equation (3.2.b.3). The new

lift force coefficient is then used to calculate the new

strumming kinematics. For a relatively small in-plane mo-

tion (plane formed by relative fluid velocity and the cable)

themodeshape,c1)ni,and natural frequency, wn , may be

evaluated only once.

3.2.c Wave Forces on Large Bodies

The Morison's equation presented in Section 3.2.a is

valid when the motion of the fluid particle is not sign-

ificantly affected by the presence of the structure. This

may be assumed to be the case if the equivalent diameter

of the structure is small compared to the incident wave
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length (e.g., D/L = 0.02). For large objects, the scat-

tering of the waves by the structure should be included in

force calculations and a diffraction wave theory should be

used. Furthermore, when the body moves, waves are produced

and energy is radiated in the wave system. Consequently,

for a free floating body, the flow field consists of inci-

dent waves (incoming waves), scattered waves due to the

presence of the structure, and radiated waves due to struct

ural motions. The velocity potential, for linear wave the-

ory, may then be written in the form (Newman, 1977)

(y,t) = (y7) + 4)s (y) + (/7)leiwt

j = 1,2,3,4,5,6 (3.2.c.1)

in which *I = spatial velocity potential of the incident

wave; = spatial velocity potential of the scattered

wave; jth component of the body-displacement ampli-

tude;
7
= velocity potential of the radiated wave with

unit amplitude; j = subscript which represents the trans-

lation motion (surge, heave, sway) when j = 1,2,3, and

rotation motion (roll, yaw, pitch) when j = 4,5,6; w =

angular incident wave frequency; and y = position vector

in y coordinate system. The coordinate system for this

problem is shown in Figure 3.2.c-1.
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Figure 3.2.c-1. Definition sketch of body motions
in six degrees-of-freedom.
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Velocity potentials 4)

I
,

s
, and , individually,

satisfy the Laplace Equation

v
2

ip = 0 ; t = I, s, 1, 2, 3, 4, 5, 6

with free surface and radiation conditions,

34) 2
w

0

(3.2.c.2)

(3.2.c.3)

(3.2.c.4)

(3.2.c.5)

at y2 = 0

Y2

34)2,

= 0 at y2 = -d
a

Y2

34)

Lim R1/2 (-717 ik = 0
R+00

where g = gravitational acceleration; R = 4/1q. + ;

d = water depth; and k = wave number. The body surface

condition is given by

34'S

an an
(3.2.c.6)

= v.n. j = 1,2,3,4,5,6
1 an 1 2_

(3.2.c.7)

in which underlined indices denote that the summation con-

ventionisnotapplied;v.] = jth component of the body-



velocityamplitude;and,=.jth component (j- < 3) ofnj

unit normal vector, positive outward. For j > 3

n4 = y2n3 - y
3
n
2

n5 = y3n1 - y2n3

n6 = y3n2 - y2n1
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(3.2.c.8)

The problem defined by Equation (3.2.c.6) is generally

known as the wave diffraction problem while the problem

defined by Equation (3.2.c.7) is known as the wave radi-

ation problem. The diffraction problem is to define the

scattering potential, 11)5 , which is identical to finding

the flow field equation around the fixed structure. How-

ever, it will be seen later that Ips is often not needed

explicitly since it is possible to express the wave forces

directly in terms of tp. .

For small amplitude waves (small wave slope), the body

displacement is sinusoidal in time with the same frequency

as the incident waves,

yt) .eiwt j = 1,2,3,4,5,6 (3.2.c.9)

The velocity of the body may then be written as



v.- (t) = ve iwt iwt
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(3.2.c.10)

in which i = . Substituting Equation (3.2.c.10) into

Equation (3.2.c.7), one obtains

an
iwn.

3
(3.2.c.11)

The oscillatory force and moment acting on the body

can be obtained by substituting Equation (3.2.c.1) into the

linearized Bernoulli equation in which the fluid pressure

on the body surface is given by

Bcp

P Pf(TE g172)

P = + 1LS + E3 4.3 )iwei
wt

Pfg172
(3.2.c.12)

The force and moment can then be determined by integrating

the fluid pressure over the wetted surface, Sw (Newman,

1977); i.e.,

Ft = - p,[f n()(4),+Ilis) dS] iwe
iwt

Sw

Pf[; nzyidS] iweiwt

pfg I nzy2 dS t,j = 1,2,3,4,5,6 (3.2.c.13)
bw



57

in which F = force for 2 = 1,2,3, and moment for 9, =

4, 5, 6. The first term in Equation (3.2.c.13) represents

the wave forces on the fixed body, the second term is the

wave forces caused by the motion of the body, and the last

term is the restoring force resulting from the hydrostatic

pressure on the body. Applying these forces onto the body,

we may write the equation of motion of the body as

[i V ) dS] iweiwtBij j
Kczj n

2 I
+

SSw

-A f
[f
s

n
z

dS]iweiwt - pfg
S

I

w

nzy2 dS + F

w
3 3

2,j = 1,2,3,4,5,6 (3.2.14)

in which mBj = body mass for 2,j = 1,2,3, ; the second

moment for 9,j = 4,5,6, and zero otherwise; K
C9.j

stiffness due to cable; and F = external forces other

than hydrodynamic forces.

Substituting Equation (3.2.c.11) for nz in Equa-

tion (3.2.14), one obtains

m
132,j

+ f
2,

+ (K +K ) eiwt+ P
3 CRj Rtj '

7
j
= C

(3.2.c.15)

in which KRzi = hydrostatic stiffness coefficient; fzj is

defined by



f . pf I dS
ZD an 3

Sw

and C = exciting force coefficient defined by

C
Dcl)i

iwPf f an ((ycPs) dS
Sw
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(3.2.c.16)

(3.2.c.17)

which, by Green's theorem and Equation (3.2.c.11), can be

expressed as

as
z

as
I

cz iwpf I ((pi dS
Sw

(3.2.c.18)

The coefficients, fij , are complex as a result of the

free surface where energy is consumed to accelerate

the fluid as well as to generate waves. The real part of

fzi is proportional to the body acceleration while the

imaginary part is proportional to the body velocity,

f
2m

aZj
+ iwc

Zj Zj (3.2.c.19)

where mati = added mass coefficient proportional to the

body acceleration; and czi = radiating damping-coefficient

proportional to the body velocity and associated with a net

outward flux of energy in the radiated wave. Substituting

Equation (3.2.c.19) into Equation (3.2.c.15) yields



( + m . Z . + c .t. + ( K Z.
mBkj ak3 3 Z3 3

+ K
112,3 3

=

Ck eitat + F
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(3.2.c.20)

Expressions for mBzj and KRzj are given by Wehausen

(1971) and Newman (1977). Added mass coefficient mazj ,

and radiation damping coefficient, czj , for the two-

dimensional problem have been computed by W. D. Kim

(1965) for elliptical sections, C. H. Kim (1965) for var-

ious ship-like sections, and by Hudspeth (1979) for a

floating circular disc. The exciting force coefficient,

Cz , for a cylindrical shape structure was presented by

Black (1969) and for an axisymmetric body by Garrison

(1977) and by Hudspeth (1979). For bodies of arbitrary ge-

ometry, mazj , czj , and Cz may be evaluated by means

of the wave source distribution method in which the source

potential per unit strength is represented by a Green's

function. The expression for the Green's function which

satisfies the boundary value problem defined by Equations

(3.2.c.2-4) is given by Wehausen and Laitone (1960). The

source strength is determined from the requirement that the

normal velocity of the fluid-particle on the body surface

be equal to the normal body velocity which is stated in

Equations (3.2.c.6,7).
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Another method which has found increasing use in

treating many wave diffraction problems is the finite el-

ement method. The application of this method may be found

in references (Bettes and Zienkiewicz, 1978) (Bai, 1977).

In this thesis, no attempt is made to evaluate the quant-

ities mazj , czj , and Cz . The body is assumed to be

an element unit to which cables are attached. Therefore,

the Equation (3.2.c.20) may be assembled with the cable

element equation of the motion to obtain the global equa-

tion of motion.

3.3 Modified Form of the Equation of Motion Due
to the Existence of Large Bodies

For a mooring problem, a system of mooring lines is

attached to one or several bodies at arbitrary locations

on the body surfaces. Each rigid body is considered as a

separate element having six degrees of freedom. Transform-

ation is required for the equations of the cable elements

adjacent to the rigid body. For example, let a rigid body

1, in Figure (3.3-1) be connected with a cable element 2-3

at point 2. The six degree-of-freedom equation of motion

of the body is given by Equation (3.2.c.20) and may be

written in matrix form as

[MB] {} + [C
B
] {44} + [KB] {} = fF

B 1 (3.3.1)



X3

Figure 3.3-1. Definition sketch.

in which [M
B

] = body mass + added mass matrix; [C
B

] =

radiation damping matrix; [KB] = cable stiffness + re-

storing force coefficient matrix; and FB = hydrodynamic

force vector calculated by a diffraction method + other

external forces. The cable equation of motion given by

Equation (3.1.8.a) or Equation (3.1.8.b) may be expressed

in matrix form by

61

X
l'

Y
1

[M
] {U} t+At + [Cc ] t {At}

[1(c t{AU} = {AF (3.3.2)
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in which [Mc] = structural mass + added mass of the cable

[C
c

] = incremental drag damping matrix; [K
c

] = incremental

cable stiffness matrix; and F
c

= hydrodynamic forces and

external forces.

Before proceeding to the assembly procedure for these

two elements (rigid body and cable element), it is neces-

sary to transform Equation (3.3.1) from the Y coordin-

ate system used in the rigid body equation to the X coord-

inate system used in the cable equation; i.e.,

B l{;i} + B1{fr} + [17B ] {n} = {FB}

or in incremental form

ERB l{1}t+At + B l{Aj-} + [KB 1{A-} = {AFB}

in which

[M
B

] = [T]T[M
B
][T]

= [T]T[CB] [r]

[KB] = [T]T[KB][T]

{FB} = [TIT {F
B

}

"i'13/= {FB} [;]{}t [KB] 175}t

(3.3.3.a)

(3.3.3.b)

(3.3.4.a)

(3.3.4.b)

(3.3.4.c)

(3.3.4.d)

(3.3.4.e)
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where [T] = coordinate transformation matrix given by

OM.

1 0 0

0 0 -1 [0]

0 1 0 (3.3.5)
OM.

[T] =
1 0 0

[0] 0 0 -1

0 1 0

/1

and n = body displacement in the X system.

The attachment point 2 shown in Figure (3.3.1) has

six degrees of freedom which are dependent on the motion

of the nodal point 1. The motion at node 2 (slave to node

1) may be related to the motion at node 1 by the following

equation.

U
21 1

U
22 2

U23 3

[A1] (3.3.6)

8
4

02
5

8
3 node 2

6
node 1
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in which the first subscript of U. denotes the node
13

and the second subscript denotes component; [Al] = trans-

formation given by

[A
1

]

[I]

[0] 3x3

(3.3.7.a)

with

[R]

11.1M

=

0

X
23

-X
13

X
12

-X
22

X
13

-X
23

0

X21- X11

X
22

-X
12

X
11

-X
21

0

(3.3.7.b)

If we substitute the translation expression of node 2 in

terms of displacements T of node 1 into Equation (3.3.2),

we find the following relationship

[D4
c ] {u} t+At

+ [C
c
] {Au} + [K

c
] {Au} = {AF

c
}

in which

{AU} = [A2]
{u3 3x1

(3.3.8)

(3.3.9.a)



where

[A21

[R]3x3

[0] 3x3
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(3.3.9.b)

Premultiplying Equation (3.3.8) by the transpose of the

transformation matrix, [A2] gives

[mc] {ult+At+ [c],61, [1'c]
{°5, (3.3.10)

which can be readily assembled with the rigid body equa-

tion of motion to get the global equation of motion of the

cable-large body system. If there are more than one at-

tachment points, the same procedures can also be applied

with the rigid body equation assembled with only one of

any adjacent cable elements.
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4.0 SOLUTION PROCEDURES

Procedures for solution of nonlinear problems in

structural analysis can be classified as following: 1)

iterative procedures; 2) incremental (step by step) pro-

cedures; and 3) combination of incremental and iterative

procedures. Iterative procedures include the successive

approximation and the Newton-Raphson method. The

incremental procedures include the purely step-by-step

loading method and the residual feedback method. These

procedures have been reivewed and discussed by Stricklin

et al. (1975) for static problems and by Webster (1974)

for both static and dynamic problems. The residual feed-

back method with the introduction of artificial damping

(viscous relaxation) has proven to be an effective method

for predicting the static configuration of the geometric-

ally nonlinear cable (Webster, 1980), and the incremental

iterative technique is effective for evaluating the cable

response due to dynamic loads (Lo, 1981). Therefore, those

methods and their applications to the dynamic response of

cable systems in the fluid domain will be considered in

this chapter.
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4.1 Solution Methods for the Static Equations

One of the primary interests in finding the static

configuration of the cable system is to provide a stable

starting configuration for a dynamic problem. The dynamic

response is generally considered as a disturbance from

the static configuration.

Consider a set of incremental equations given by Equa-

tion (2.2.a.11) whose global form may be written in matrix

form, for the increments {AU} of displacement as

[K]
n

{AU} = {AF
e

} (4.1.1)

for purely incremental equations, in which {AFe} = incre-

ment in external applied forces; and

[K] {AU}{AU} = {F
e

} - {F.}
n+1

(4.1.2)

for the residual feedback method, in which {Fe} = external

applied forces; {Fi} = internal force in the cables due to

previous loads; and the subscript n refers to the nth

increment. The displacement at the (n+l)th increment is

{U}n+1 = {U} n
+ {AU} (4.1.3)
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Equation (4.1.1) is simple to apply. However, unless the

load steps are very small, the solution may drift from the

true response because equilibrium is not satisfied exactly

at any step. The accuracy of the solution can be improved

by applying the equilibrium corrections as expressed by

Equation (4.1.2). Here, the incremental load is represented

by the difference between the load during the (n+l)th incre-

ment and the internal load accumulated to the nth increment-

al load.

The computational steps involved in the use of Equa-

tions (4.1.1,2) are

1) divide load in N increments,

2) form incremental stiffness,

3) compute internal load vector {Fi} for residual

feedback method, otherwise proceed to the next

step,

4) form incremental load vector {AF
e

} for purely

incremental method, and {Fe}
{Fi

}n for
n+1

residual feedback method,

5) compute incremental displacement vector AU ,

6) compute displacement vector {U} according to

Equation (4.1.3)

7) calculate new cable stress,

8) repeat steps 2) through 7) until the Nth of increment

load has been applied.
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The residual feedback method is equivalent to the

Newton-Raphson method when the total load is applied in a

single increment instead of in multiple increments. The

computation ends when the residual load

{R} n1 1{F e} - {F.} 1 < TOL (Tolerance) (4.1.4)
n+1

in which the subscript n , in this case, ,is the number of

iterations. To reduce the amount of computational effort,

the displacement-dependent stiffness matrix may be held

constant for several steps depending on the degree of the

nonlinearity involved.

If the initial tension of the cable is low relative

to the applied load, the stiffness [K] becomes too small

to sustain the load. The solution will diverge, and will

lead to an incorrect response. This problem may be over-

come by introducing artificial damping into the structure

(Webster, 1980). This approach is known as the "viscous

relaxation method." In general, the damping constants are

lumped at nodal points and their values are adjusted intu-

itively based on the value of the diagonal stiffness and

the residual force {R}
n

given by Equation (4.1.4). For

example, for a suspended cable with a point load in the

middle, the damping constants may be reduced as time in-

creases. This will be shown subsequently in an example

problem.
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Introducing damping forces to Equation (4.1.2) and

replacing subscript n by time t and (n+1) by t+At ,

one obtains

[c] t
{U}t+At [K]

t
{AU} = {R} t+At (4.1.5)

in which [C]t = artificial damping; and {R}t+At = resid-

ual force at time t+At . The velocity f 1
-6 t+At may be

expressed by

AU{U}t+At
At

(4.1.6)

Substituting Equation (4.1.8) into Equation (4.1.7) leads

to

[K
eq

]

t
{.AU} = {R} t+At

in which

[Keci]t = [C] + [K]

(4.1.7)

(4.1.8)

The structure is stiffened and the solutions, initially,

do not give the correct displacement. The solutions will

converge to the true static displacements as t increases;

this is because the velocities decrease as t increases

and the damping force is proportional to the velocity.
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The computational steps are similar to that for the

residual feedback method except that adjustment of the

damping constant is recommended to accelerate the converg-

ence.

4.2 Solution Methods for the Dynamic Equations

The global form of the incremental dynamic equations

derived in Chapter 3 may be written in matrix form as:

im3IiJ1t+At EKit{mi} {Fe}
{F.}

t+At
-

t
(4.2.1)

in which [M] = structural mass; [Kit = nonlinear stiff-

ness matrix evaluated at time t ; {F
e

} = external
t+At

forceatt+At;and{F.} = internal force evaluated at
t

time t . The external force {Fe} may be decomposed into

conservative and nonconservative terms; i.e.;

{F
e

} = {F
ec

} + {F
enc

} (4.2.2)

The nonconservative force, in this case, is the hydrodyn-

amic force whose magnitude and direction are dependent on

the cable kinematics and orientations. The expression for

this force is given in Section (3.2.a) by Equation (3.2.a.6)

and its global form may be written as



{F
enc

}

t+At EMa3{6}t+At [C]t"6/

EC3t{6}t 1FeH/
t+At
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(4.2.3)

in which [Ma] = added mass matrix; [C]
t

= incremental

drag damping evaluated at time t ; and {Fe}
t+At

known force defined as

{F
eH

}

t+At [MI] 1a/t+At
C]

t
{V}

t+At

is the

(4.2.4)

where [MI] = inertial force matrix; a = fluid particle

acceleration; and V = fluid particle velocity. Substitut-

ing Equations (4.2.3,4) into Equation (4.2.1) and rearrang-

ing slightly yields

[m
T ]inl t+At + [c] t

{Au} + [K]t {AU} =

{FeH +
{Fer} - F. }

t+At t +Lt

in which

[MT] [M] [Ma]

{F iH }
= {F.1 } + [C]

t
{6}t

(4.2.5)

(4.2.6.a)

(4.2.6.b)
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Various explicit and implicit, single and multistep

integration operators have been used to solve equations of

motion for linear equations, and the stability and accur-

acy of these operators, have been investigated (Newmark,

1950; Webster, 1974). For example, Newmark's 8-y-8 op-

erator and Wilson's 8 operator (Bathe, 1976) are used

extensively in linear dynamic analysis. In nonlinear an-

alysis, the stability limits of these operators may no

longer be valid. The accuracy of the response in nonlinear

analysis will depend on the type of the nonlinearity, the

solution scheme, the nature of the iterative process, etc.

However, for cable structures, numerical experiments re-

ported by several investigators (Webster, 1974, and Lo,

1981) have shown that the single step-implicit Newmark's

a-y-6 method with a = 1/4, y = 1/2, and S = 0 has

given satisfactory results. Therefore, this method will

be employed in this thesis.

The velocity and the acceleration at time t+Gt are

related to the incremental displacement, velocity, and

acceleration at time t ,

t+At = {GU} {11}
t

4{U}
t+At

4

2 {AU} TE {u}t
(At)

(4.2.7.a)

(4.2.7.h)
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These equations are equivalent to assuming a constant av-

erage acceleration and have been shown to be an uncondit-

ionally stable method for linear analysis.

Substitution of Equations (4.2.7.a,b) into Equation

(4.2.5) with slight rearrangement yields the static-equiv-

alent equation

[Keff] {AU} = {Feff }

t+At
(4.2.8)

in which the effective stiffness, [Keff]
, is defined by

[Keff] = ----T [MT] + [C] + [K]
tt (At)

and the effective force, {Feu } by

{F
eff } = {FeH } + {F } - {F. }

t+At t+At ec t+At 1H

+
(-4[MT] ] + 2[C]

t
{At

} + [mT] {u}t

(4.2.9.a)

(4.2.9.b)

The computational steps involved in the use of Equa-

tion (4.2.5) may be ordered as follows:

1) Compute the stable static equilibrium con-

figuration by methods given in Section 4.1;

2) Specify time step, At and convergence tol-

erance, TOL ;



3) Form element stiffness, [Kit and structural

mass, [M] ;

4) Form element added mass, [Ma] and incremental

drag damping, [C]t ;

5) Form total mass [MT] -

'

6) Calculate the internal force,
{F. FiH

conservative force, {F
ec

} , and hydro-

dynamic force, {F
eH

}

t+At

7) Assemble the element stiffness, mass, and damping

matrices into the global form;

8) The same as 7) for force;

9) Compute effective shiftness,[Keff] according to

Equation (4.2.9.a);

10) Compute effective force, {Feff} according to

Equation (4.2.9.b);

11) Solve for AU from Equation (4.2.8);

12) Compute the state of motion at time t+At by

Equations (4.1.3), (4.2.7.a) and (4.2.7.b). If

no iterations in this time step, repeat steps 3

through 11 for the next time step, otherwise

proceed as follows;

13) Compute the effective residual force

{Reff}n+1 +1 n= {Feff
}n

T I t+Att+At
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(4.2.10)



in which n denotes the iteration step and

{F
eff i}

n+1
s given by Equation (4.2.9.b) with

t+At

new hydrodynamic force, {Fem} and internal

force, {FiH} .

14) Solve Su as

n+1
fcsul = [K

eff
]

t
{R
eff }

n+1

15) Compute new incremental displacement as

{AU}
n+1

= {AU}
n

+ {SUl
n+1

76

(4.2.11)

16) Compute new incremental velocity and acceler-

ation by Equations (4.2.7.a, b).

17) Check the convergence

if {R 1
n+1

eff < TOL iteration ends,

if not, repeat steps 13 through 16.

These computational steps were incorporated in a

computational algorithm in the computer implementation.
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5.0 DYNAMIC RESPONSE OF A CABLE-LARGE

BODY SYSTEM DUE TO RANDOM WAVE LOADINGS

The assumptions made in the stochastic analysis of a

cable-large body system subjected to random wave loadings

are that displacements of the system from the static equil-

ibrium configuration are small enough such that the cable

stiffness is not affected significantly by changes in cable

positions, and that the nonlinear fluid drag force can be

linearized. It is further assumed that the waves are small

amplitude waves whose random realization is distributed ac-

cording to the Gaussian distribution. Thus, the system is

linear: the superposition method may be employed to deter-

mine the cable response. Furthermore, as a consequence of

the linearity and Gaussian waves assumption, the cable re-

sponse may also be assumed to be a Gaussian process (Lin,

1965).

The approach taken in this study is first to deter-

mine the static configuration where all of the nonlinear

effects are included, and then to determine the dynamic

response by mode-superposition techniques in the frequency

domain. The nonlinear fluid drag is linearized by a method

of statistical linearization (Borgman, 1972). The coupled

modal fluid damping is decoupled by a method presented by

Foss (1958). The time series of the cable response is then
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computed by taking the inverse Fourier transform of the

cable frequency response.

The general global incremental equation of motion of

a cable system is expressed by

[M
G

] {U} + [C
G
] {u} + [K

G
] {U} = {FDG

} + {F
DI

}
(5.1)

in which [MG] = structural + added mass coefficient matrix;

[C
G

] = linearized fluid drag coefficient matrix; [KG ] =

incremental stiffness coefficient matrix; {U} = displace-

ment measured relative to the static equilibrium position;

{FDG } = linearized drag force; and {FIG} = inertial force.

All of the coefficients and forces in Equation (5.1) de-

pend on the positions and tensions in the state reached

under static loadings. These coefficients are obtained

by methods discussed in the previous chapters. The ex-

ternal forces are linearly dependent on the wave kinematics;

that is, on the fluid particle velocities and accelerations.

Therefore, before any attempt is made to model the stoch-

astic wave forces, it is necessary to consider simulation

models and techniques for generating a random wave real-

ization.

5.1 Ocean Waves Model and Simulations

A mathematical model for ocean wave simulation was

first introduced by Borgman (1969) and was later extended



79

to weakly nonlinear and slightly nonGaussian second-order

waves utilizing a Fast Fourier Transform (FFT) algorithm

by Hudspeth (1974) and Sharma (1979). Since there is a

similarity in the statistical properties of the represent-

ation of the noise current (Rice, 1944, pp.328-330) to

that of random waves, it is appropriate to express linear

random sea waves at a fixed location in discrete form by

N-1
n(nAt) = E Am cos [(mAw)(nAt)-0 ]

m=0
(5.1.1)

in which n and m are positive integers such that

At = not
nT

L
2N

2Trm

m = mow =
L

(5.1.2.a)

(5.1.2.b)

where T
L

= the period of n(t) , which in this case is

the record length; 2N = number of discrete points; and

Om = random phase angle which is uniformly distributed

over the range (-IT ,-FIT). Wave amplitude Am is either

deterministic or nondeterministic. Deterministic Am can

be computed by

A = [0.5 S
nn

(w
m
)Awl

1/2
in

and nondeterministic Am by

(5.1.3.a)



1/2 1/2
Am = [0.25 S (wm) Au) (am +13m)
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(5.1.3.b)

in which S (w
m

) = wave power spectral density evaluated

at frequency wm ; and am , $m = independent random

variables which are normally distributed with zero mean

and unit variance. When Equation (5.1.3.a) is used in

Equation (5.1.1), the model is called deterministic spect-

ral amplitude (DSA), whereas if Equation (5.1.3.b) is used,

then the model is called nondeterministic spectral ampli-

tude (NSA). Tuah and Hudspeth (1981) have used these two

models to simulate both linear and slightly nonlinear

second-order random wave realizations by utilizing the FFT

algorithm. The complex representation of Equation (5.1.1)

may be written as

N
n(nAt) = E Am exp [i(mAw)(nAt)]

m=-N

in which

Am = Am exp iem

(5.1.4)

(5.1.5)

The simulation procedures of the wave realization are as

follows:

1) Generate the real amplitude Am by either

Equation (5.1.3.a) or Equation (5.1.3.b),

2) Generate a sequence of uniformly distributed

random phase 01, 02, . . , ON ,



81

3) Compute the complex amplitude Am according

to Equation (5.1.5),

4) Compute random waves realization by taking the

inverse FFT of Am 's .

5.2 Wave Force Model and Simulation

The wave forces on the cable line are modeled by

Morison's equation for the normal components and by the

flat plate friction formula for the tangential component.

The combination of these components evaluated at nodal

point a may be written as follows

(a) - [B -(B(BDL -BDT)
(a)

F . JU
zH3 DL 3Z DL DT 3

in which

+ [B
DL

(5.
3Z

- (B
DL

-B
DT

)0. (a)
0

2,

(a) IV
z

) 7,- B
I
(CM-1)[d. -e.

(a)
11.)2,

(a)
3Z 3Z

(+ B
I
CM

(a)
(6. 0. 0

a) )a (a)

3t 3

B
DL

B
DT

1/2
2

= (-7-) CD PfD av
NR NR

= (270 1/2
CT Pf0 al7 V

TR TR

where aVNRVNR
aV
TR

V
TR

(5.2.1)

(5.2.2.a)

(5.2.2.b)

= standard deviation of the
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normal and tangential relative velocity; and other vari-

ables are given in Section 3.2. Details on the lineariz-

ation procedure of the quadratic drag force are given by

Borgman (1972). The fluid particle velocity was assumed to

be Gaussian and coefficients BDL
and B

DT
were obtained

by a statistical linearization technique.

The standard deviations av v and a
'

can be
NR NR VTRTR

determined by the following relationship:

GV 2
2

V N= E f[VNR - E(VNR = E(V
2

R
2

)-(E(VNR )] (5.2.3.a)
NR NR

= E {[VTR- E(VTR ) ]
2

} = E(V
2

GVTRVTR
VTR )]

2
(5.2.3.b)

in which the operator E() denotes the statistical expect-

ation and is defined by

E ( ) = I ( )p d ( ) (5.2.4)

with p() = probability density function of (). Means

E(VNR ) and E(VTR
) are both zero when the sea waves are a

zero mean Gaussian process which is the case in this study.

Therefore, substitution of the expression for VNR and

V
TR

in terms of fluid and cable kinematics yields

2
= E (V . . ) +E (C.T .j ) 2E (V .I:1 . )

GV
NR

VNR 3 3 3 3 3 3

2

GVTR
VTR

(5.2.5.a)
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2
a = 0.0 {E(V.V ) + E(6 Jj) 2 E(V.IJ )1 (5.2.5.b)

VTRVTR z J 3 J

Thedirectioncosines,O.'s, are assumed to be constant

and equal to the values at the static equilibrium posi-

tions, the cable velocities U.'s are unknown. An iter-

ation process is required in order to obtain values of

standard deviations a
VNRVNR ' Gv

TR
VTR which are required

to linearize the drag term which in turn will be used to

deteminedisplacements,U.'sandvelocities,6.1g .

The iteration is continued until a desired degree of ac-

curacy is achieved.

Substitution of Equation (5.2.1) into the element

equations of motion and separation of the structural and

hydrodynamic kinematics results in

[MT ] {U} + [C] uj} + [K] {U} = [BD] V} + [B (5.2.6)

in which [BD] = linearized drag coefficient matrix and

[B
I

] = inertial coefficient matrix. The global form of

this equation is given by Equation (5.1) with

{F DG
} = [BDG] {V}

{FIG} = [B
IG

]{a}

(5.2.7.a)

(5.2.7.b)

where [BDG] = global linearized drag coefficient matrix

and [B
IG

] = global inertial coefficient matrix. The



expression for the random fluid particle velocities are

given by (Wheeler, 1969)

N
V.(nAt) = E HV (m) Am exp[i(mAw)(nAt)]

m=-N 3

j = 1, 2, 3 (5.2.8)

and for the fluid particle accelerations by

N
a.(nAt) = E Ha (m) Am exp[i(mAw)(nAt)]

m=-N 3

j = 1, 2, 3 (5.2.9)

in which Am is the complex wave amplitude given by

Equation (5.1.4) and the complex transfer functions Hv

and H
a.

are determined from
7

Hv
(m)

gkini cosh[km(h-x3)]

(mew) cosh kmh
exp i(kml x1+km2x 2

)

J
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gkmo cosh[km(h-x3)]

(5.2.10.a)

Hv
2

(m) - i(kmlx1+km2x2)TT(mow
cosh km

h exp

gkm sinh[km(h-x,)]
(5.2.10.b)

HV3 (m) = - i i(kmlxi+km x2)exp
(mow ) cosh kmh

(5.2.10.c)

Ha. (m) = i (maw) Hv (m) j=1,2,3 (5.2.10.d)

J J
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where the wave number km satisfies the dispersion equa-

tion

and

(mAw)
2
= gkm tanh kmh

k
ml

= km cos y

k
m2

= km sin y

k-m = -km

(5.2.11)

with h = water depth and y = incident wave direction.

The randomness of these wave kinematics is represented by

the complex amplitude, Am , which is associated with a

discrete frequency mtw . Consequently, the simulation of

the random wave forces on the cable line is equivalent to

generating the random amplitude Am which has been dis-

cussed in Section 5.1. The complex amplitudes of the wave

kinematics may then be obtained by multiplying Am by

transfer functions given by Equations (5.2.10.a-d). Force

spectra on large bodies in a mooring system may be included

in Equation (5.2.6) by the procedure presented in Section

3.3. Added mass and radiation damping are assumed to be

constant over the whole range of frequencies. The constant

added mass and radiation damping may be determined accord-

ing to formulas given by Pierson (1956).
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5.3 Mode-Superposition Solution Technique

This technique has been discussed in Section 3.2, and

its application in the stochastic response analysis of a

cable system is to transform a set of coupled linear equa-

tions of motion into a set of uncoupled equations from

which modal frequency response can be calculated. The

cable displacement is expressed as a sum of the modal com-

ponents over all the natural frequencies; i.e.,

{U} = [WU (5.3.1)

in which kpl = modal shape matrix and {Z} = modal re-

sponse vector.

Substitution of Equation (5.3.2) and Equations (5.2.7.

a,b) into Equation (5.1) leads to

[MG] WZ1 + + [KG][fl{Z} =

[131)(3] {V} [BIG] fa}

Premultiply Equation (5.3.2) by ((dr to get

+ [Cu]{2} + [K]{Z} =

[BDG
]{V} +

IG

(5.3.2)

(5.3.3)



in which

[DI] = ppiTritiGi [a)]

[Cu] = [cp]T[cG] [p]
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= diagonal generalized mass matrix
(NEQ X NMOD)

= full damping matrix (NEQ X NMOD)

[K] =

[B
DG

]

[BIG]

[cO]T [KG][4)]

[fl

T
[BDG]

[fl [BIG]

= diagonal generalized stiffness
matrix (NEQ X NMOD)

matrix size (NMOD X NEQ)

matrix size (NMOD X NEQ)

where NEQ = number of equations and NMOD = number of

modes.

The damping matrix [Cu] is coupled between natural

modes. An uncoupled damping matrix may be obtained by a

method introduced by Foss (1958).

Equation (5.3.3) may be written as

[C ]{4} + [K

in which

]{q} = Q (5.3.4)

[01 [M]

[C q] = (5.3.5)

[M] [Cu]
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[K q] =

-[14]

[0]

[0]

(5.3.6)

[K]

{q} =

{2}1{2}

(5.3.7)

{0}

{Q} = (5.3.8.a)

{F}

with

{F} = [BDG ]{V} + [E
IG

] {a} (5.3.8.b)

The homogeneous solution of Equation (5.3.4) may be obtained

by assuming

{q} = {0}eRt

This gives

[C ] {o} + [K ] {el = {0}

(5.3.9)

(5.3.10)



The nontrivial solution exists when

n[c ] + [K q] = {0}
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(5.3.11)

which is an eigenvalue problem. The eigenvector {e}.
3

associatedwitheigenvalueSLis orthogonal with respect

to [C q] and [K q] ; i.e.,

and

{0}.[C = c .6.
q qj 32,

{0}.[K = k .8.
3 q q3 3z

To obtain the uncoupled equation let

2NMOD
{q} = E {e}n r

n
(t)

n=1

(5.3.12)

(5.3.13)

(5.3.14)

Substitute Equation (5.3.14) into Equation (5.3.4) and

premultiply by {',)}, to get

= (t)
ql ql

(5.3.15)

in which c
qj

and k
qj

are given by Equations (5.3.12,13)

and



R
j
(t) = fel {Q}

90

(5.3.16)

Considering Equations (5.3.7) and (5.3.9), we may write

the eigenvector {0j as

fel j= 1,2,...,2NMOD (5.3.17)

The expressions for cqj , kqj , and Rj(t) may be re-

duced by substituting Equations (5.3.5), (5.3.6), (5.3.8.a),

and (5.3.17) into Equations (5.3.12), (5.3.13), and

(5.3.16); i.e.,

T
C . + {0.[c (5.3.18)
c13 3 3 3 u 3

2 T
k 2.1[0. [14] (X). + {0[R] {0. (5.3.19)
c13 3 3 3

T
R. (t) = {x},(F} (5.3.20)

Substitute Equation (5.3.8.b) into Equation (5.3.20) to

get

R.3 (t) =B.DR3tVt +B.IR3t a (5.3.21)

j=1,2,...,NMOD

t=1,2,...,NEQ



in which B
DR3

. is the ith element of the matrix
2,

T
{BDR}j = {x }j[BDG]

and B
IR3

. is the kth element of the matrix
9,

T
{B }. = {x}.[B ]IR 3 3 IG
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(5.3.21)

(5.3.23)

Substituting expressions for Vz and az given by

Equations (5.2.8.a-c) and (5.2.9.a-c) into Equation (5.3.21)

gives the Fourier series representation for force R.
3
(t) ;

N
R.(t) = E HR (m) Amexp(iwmt)m=-N 3

in which the force transfer function is given by

1-112j (m) BDRjellik(m) BIRjtHai(m)

and angular frequency wm by

wm = mAw

(5.3.24)

(5.3.25)

(5.3.26)
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The solution of Equation (5.3.15) with forcing func-

tion given by Equation (5.3.24) may be expressed as

N
r.(t) = E H

r3
.(m)Am mexp(iwmt)m=-N

(5.3.27)

in which the response transfer function is given by

(HRi m)
H . (m)
r3 occii iw c

m q3

where i =

(5.3.28)

The cable displacement may be computed according to

U
z
(t) = 0 x

n3
.r.(t)

Zn 3

n=1,2,...,NMOD

j=1,2,...,2NMOD

(5.3.29)

in which xnj 0isthe nth element of eigenvector {.

The Fast Fourier Transform (FFT) algorithm may be utilized

to get the discrete time series of cable displacement U3 . .

The computational steps for the stochastic response

analysis may be summarized as follows:
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(1) Form mass and stiffness matrix.

(2) Compute natural frequencies and mode shapes.

(3) Generate random complex wave amplitude as

indicated in Section 5.1.

(4) Compute the fluid particle velocity and accel-

eration complex amplitude as indicated in Section

5.2.

(5) Compute the initial standard deviations

and aVTRVTR according to EquationsaV
NRVNR

(5.2.5.a,b) by assuming the cable velocities

equal to zero.

(6) Compute fluid drag damping, drag forces, and

inertial forces according to Equation (5.2.1).

(7) Form matrices [C q] and [K q] according to

Equations (5.3.5,6).

(8) Compute eigenvalues Stn's and eigenvectors

{0}
n
's.

(9) Compute Cq by Kqj , and Rj(t) by Equations

(5.3.18), (5.3.19), and (5.3.20), respectively.

(10)ComputethecomPlexamplitudeofr.(t )

(11) Transform the complex amplitudes obtained in

step (10) to the nodal response amplitudes by

Equation (5.3.13).

(12) Compute the new standard deviations aV VNR NR
and aVTRVTR
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(13) Check whether the new values of a V and
NR NR

are unchanged relative to their previousaVTRVTR

values; if so, continue to the next step, other-

wise, repeat steps (6) through (13).

(14) Take the inverse FFT of the nodal response

amplitudes to get the time series of the

stochastic nodal response.
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6.0 PROBLEM EXAMPLE

The validation of the proposed mathematical model

for both static and dynamic responses of cable and cable-

large body systems in an ocean environment will be dem-

onstrated here by seven examples. Examples 1 and 2 are

to demonstrate the ability of the residual feedback and

viscous relaxation models to determine the static response

of a strong geometrically nonlinear cable. Example 3 is

used to verify the viscoelastic material model of cable

response with a time history due to a static load. Ex-

ample 4 is used to test the accuracy of the time integra-

tion scheme employed. The two-dimensional dynamic response

of a cable-large body system to both deterministic and non-

deterministic wave loadings is investigated in Example 5.

A wake-oscillator model for cable strumming in an uniform

flow is tested in Example 6. The last example considered

is the three-dimension dynamic response of a three-leg

single mooring subjected to a deterministic wave loading

in which cable strumming effects are included.

6.1 Example 1: Point Load on a Horizontal String

This problem was used by Webster (1974) to demonstrate

three static solution methods: a purely linear increment
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method, a residual feedback method, and a modified Newton-

Raphson method. In this example, the viscous relaxation

method will be employed. Results are compared to an ana-

lytic solution.

The cable is fixed at both ends (Figure 6.1.1) and a

point load is applied at the middle of the cable. The

cable is linearly elastic and has the following properties:

Young's modulus ,

Initial area

Initial stress

E = 10,000,000 psf

A0 = 0.1 ft2.

ao = 500 psf

The initial configuration of the cable is unstable because

it has no vertical stiffness. The parameters used in the

viscous relaxation technique are:

Initial artificial
damping constant C

0
= 100,000

'

Tolerance , TOL = 0.001

Decrement factor u = 0.5

In this example the following formula is used for determ-

ining the artificial damping at time t

C(t) = uC(t-At) (6.1.1)

in which At = time increment (1 second in this example).

This parameter combination is not necessarily the optimum

combination. One of the guidances to determine the initial
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value when the ratio of the applied load to the stiffness

is large. As geometric stiffness is developed the damping

constant is reduced at a rate dependent, again, on the

ratio of the applied load to the cable stiffness.

Webster (1974) used 100 load steps in a purely in-

cremental solution scheme and used 55 iterations in a

modified Newton-Raphson method. In this example, 44 iter-

ations were required (2.01 seconds CPU execution time on a

Cyber 170/720). The stiffness matrix was updated every

10 steps... Results are displayed in Figure 6.1-1 where

close agreement to the analytic solution is shown.

6.2 Example 2: Static Response of a Suspended Cable

The static deflection of a suspended cable which is

submerged in sea water and having a large cable length and

span ratio is investigated in this example. Two catenary

segments of length 500 feet and 1000 feet, respectively,span

between coordinate (0,0) and (1200', 500') (see Figure

6.2-1). In addition to cable weight and fluid pressure, a

buoyant load of 900 pounds is attached at the junction of

the two segments.

The viscous relaxation technique is used to solve the

problem. The assumed initial configuration is a straight

line stretched from the position (0,0) to the position

(1417', 500'). The cable weight, fluid pressure and
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motions of the right support to its fixed position are ap-

plied in 20 increment steps. The cable, fluid, and load

data are listed below

Cable length , L = 1500 ft

Initial cross-sectional
area , AO = 0.0218 ft2

Initial stress , ao = 0.5 psf

Young's modulus E = 8,120,000 psf

Cable mass density p = 3.35 slugs/ft 3

Fluid mass density , pf = 2.0 slugs/ft3

Concentrated load , P = 900 lbs.

Tolerance , TOL = 0.001

Number of elements , NOE = 6

The combination of parameters used for viscous relaxation

computation is the same as for Example 1. When the cable

elements become slack (due to potential compression states),

the modulus E for the slack element is set to a very

small value in the neighborhood of zero and stiffness ma-

trix is recomputed. Otherwise, the stiffness matrix is

updated for every 10 steps. The solution converged after

100 iterations and required 40 seconds CPU execution time

on Cyber 170/720. The results are compared in Figure 6.2-1

with the exact solution computed from the catenary equation

in which the cable is assumed inextensible
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6.3 Example 3: Point Load at the Lower
End of Hanging Cable

This example is used to show the history of the re-

sponse of a viscoelastic cable subjected to a static load.

The numerical results computed by the residual feedback

method and the purely incremental method were compared to

the exact solution. The material properties and

the initial geometry along with the loading history is

illustrated in Figure 6.3-1. The exact and numerical re-

sults for the strain are tabulated in Table 6.3.1. The

exact solution is obtained by solving the viscoelastic

constitutive equation given in Section 2.2.b by Equation

(2.2.b.2) in which the stress function is assumed a given

quantity. The cable continues to stretch after the load

remains constant. The final strain is equal to the elastic

strain with modulus K
0

and, theoretically, it is reached

at time approaching infinity. It can be seen from Table

6.3-1 that the solution obtained by the purely incremental

method is drifting from the exact solution as time increases.

The residual method, which is shown in the third column, cor-

rects this drifting tendency and improved the solution.



TABLE 6.3-1

STRAIN COMPARISON OF NUMERICAL SOLUTIONS
WITH THE EXACT SOLUTION

Time
(sec)

Strain c(t)

Exact
Residual
Feedback

Purely
Increment

(1) (2) (3) (4)

0.0 0.0 0.0 0.0

0.2 0.0194 0.0188 0.0198

0.4 0.0386 0.0377 0.0390

0.6 0.0584 0.0572 0.0585

0.8 0.0788 0.0774 0.0783

1.0 0.0999 0.0982 0.0985

1.2 0.1022 0.1019 0.1014

1.4 0.1053 0.1051 0.1044

1.6 0.1084 0.1083 0.1073

1.8 0.1115 0.1114 0.1102

2.0 0.1148 0.1145 0.1130

2.5 0.1229 0.1228 0.1201

3.0 0.1306 0.1305 0.1270

60. 0.6066

0.7692
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K0 = 13000 psi

K
1
= 37000 psi

= 5.0 sec.

P

72 in

_2.

P (lbs)

100,000

1.0

t (sec)

Figure 6.3-1. Quasi-static problem for a linear viscoelastic material.
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6.4 Example 4: Point Mass on a Horizontal String

This example is used to compare the dynamic responses

for cables comprised of elastic and linear viscoelastic

materials. A lumped mass of 5 slugs/ft3 is placed at

midspand of a 20-foot string which is fixed at both ends.

The mass is initially displaced two feet and suddenly re-

leased. The material properties of the cable are given in

Example 1 for the elastic material and in Example 3 for the

viscoelastic material. The residual feedback method is em-

ployed in the numerical calculation. The time increment is

0.001 sec. and the stiffness is updated at every 10 steps.

The typical dynamic response and stress variation of

the model using two elements and lumped mass are shown in

Figure 6.4-1 and Figure 6.4-2, respectively. The exact

response for the elastic material, obtained by integrating

the exact equation derived from the geometry of the system,

coincides with the numerical results. The period of re-

sponse for the elastic material is 0.65 seconds while for

the viscoelastic material the period increases as the ampli-

tude dampens. The phase lag between the elastic response

and the viscoelastic response becomes more pronounced and

the stress in viscoelastic cable decreases as time increases.

A slack condition occurs in the viscoelastic model after a

few cycles and its duration increases as the number of cycles
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increases. These phenomena arise due to the inherent nat-

ure of the viscoelastic material, wherein the energy is

dissipated and the modulus is reduced to its quasi-static

modulus, K (see Bitting, 1978).
0
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6.5 Example 5: Two-Dimensional One-Leg
Single Point Mooring

This example is used to demonstrate both the determ-

inistic and nondeterministic dynamic analysis procedure for

a hydrodynamically loaded cable body system. The example

involves a single linearly elastic cable attached to a

floating disc at the water surface. The static loads on

the system are a wind load of 100 pounds, the buoyant force,

and the cable weight. The cable is initially stretched

from the bottom of the ocean to the position (300, 2.5) as

shown in Figure 6.5-1. The static deflection is determined

by the viscous relaxation method with a parameter combin-

ation similar to that given in Example 2. The cable and

fluid properties and the problem definition sketch are

given in Figure 6.5-1.

Deterministic response. A ten-foot wave with three-

second period is applied to the system. The forces and

hydrodynamic coefficients on the disc in this problem are

those which are computed by Hudspeth (1980). The surge

motion for the buoy is given in Figure 6.5-2 for the three-

element cable and Figure 6.5,3 for the eight-element cable.

To avoid the high frequency initial fluctuation of the

system responses, the wave amplitude is assumed to be zero

initially and approaches five feet as time increases. This

amplitude may be represented by 5exp(-0.005/t). The
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solid line is the displacement computed by the incremental/

iterative method with 0.02 second time increment and the

dashed line is the displacement computed by the residual

feedback method with 0.005 second time increment. The

stiffness matrix is recomputed at every five steps. The

residual feedback method gives false results and the sol-

ution is diverging. This is because of the small resist-

ance to horizontal motion of the cable so that the increm-

ental displacement is no longer small. The incremental/

iterative method gives better results because the solution

is obtained by iteration until equilibrium during each in-

crement is achieved. The computational execution time with

the convergence tolerance 0.01 for both methods is almost

the same (400 second CPU execution time on the Cyber 170/

720).

The response period is slightly longer than the wave

period. The surge for the eight-element model of the cable

is slightly larger than for the three-element model. This

larger value occurs because the wave forces are lumped at

nodal points. The fluid particle velocity and acceleration

decay exponentially with depth. Therefore the wave force

on the top element is much higher than on the lower element.

The top element for the eight-element model of the cable is

shorter than the three-element model. Consequently, the
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force on the eight-element model is concentrated nearer to

the disc than on the three-element model.

The high frequency fluctuation in the heave motion

occurs because of the sudden release of the disc when the

cable slackens.

Nondeterministic response. The Pierson-Moskowitz

spectrum shown in Figure 6.5-6 is employed to simulate the

wave realization from which wave forces are calculated by

Morison's equation (Morison et al., 1950) for cable segments

and by diffraction theory for the disc buoy. The values

for the energy content, m0 , which is equivalent to the

area under the spectral curve, and the spectral peak, w

are the values obtained from the Hurricane Carla wave

record (Hudspeth, 1974); that is, m0 = 28 ft2 and wp =

0.5 rad/sec. The solid line in Figure 6.5.6 represents

the expected spectrum which can be obtained by the Determ-

inistic Spectral Amplitude (DSA) simulation method while

the broken line represents the sample spectrum which can

be obtained by the Nondeterministic Spectral Amplitude (NSA)

simulation method (refer to Section 5.1). In this example,

the DSA method is employed. The spectrum is discretized by

200 discrete frequencies with an 0.0245 rad/sec. increment.

The simulation time length is 256 seconds with a 0.25 second

increment, equivalent to 1024 discretized time points.
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The frequency-dependent coefficients of the wave

forces acting on the disc which were computed by Hudspeth

(1980) are interpolated to obtain the force spectrum on

the disc. The cable is divided into three elements and

the mass and stiffness matrix of the system are computed

at the static configuration state. Six natural frequencies

and six mode shapes are calculated by the subspace iter-

ation method (Bathe, 1976). These mode shape vectors are

used to transform the global equation of motion which in-

cludes the fluid drag damping to modal equations which then

decoupled by a method introduced by Foss (1958). The lin-

earized drag force coefficients are obtained after eight

iterations with 0.01 convergence tolerance and after 193

second CPU execution time on the Cyber 170/720.

The typical spectral responses of the disc are shown

in Figures 6.5-7,8,9. Several peaks in the spectral curve

for surge indicate resonance at the natural frequencies.

The spectral shape for the heave is almost identical with

the wave surface spectral shape. This indicates that the

disc is responding to the wave exciting forces with motion

similar to that of the wave surface. An interesting behav-

ior of the pitch motion can be seen in Figure 6.5-9 where

the spectral response peaks at a frequency 03 = 4.6 rad/sec.

equal to the natural frequency where the modal shape is

predominantly pitch. Even if resonance is anticipated to
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occur, the magnitude of the response is predicted as larger

than would be expected in that the amplitude at that freq-

uency is insignificant. The explanation for this abnormal-

ity may be that the linearized drag coefficient, which is

a function of the wave amplitude, is very small so that

the motion is practically undamped and therefore contributes

significantly to the response magnification.

The random time responses of the disc are shown in

Figure 6.5-10 for surge, Figure 6.5-11 for heave, and Fig-

ure 6.5-12 for pitch. The erratic motion of the pitch is

caused by the unexpectedly large significance of the high

frequency pitch response predicted, as previously indicated.
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6.6 Example 6: Transversal Displacement of a
Horizontal String in a Steady Uniform Flow

This example is used to validate the model for cable

strumming prediction. Experiments for this kind of prob-

lem were conducted by Ramberg, et al. (1980). The cable

and fluid properties are given as follows:

Cable diameter , D = 0.05 feet

Cable length , L = 14.37 feet

Number of elements , NOE = 4

Time increment , Gt = 0.001 seconds

Initial stress ao = 33100 psf

Cable mass density P = 7.78 slugs/ft

Young's modulus , E = 8,113,100 psf

Fluid velocity , V = 0.695 fps

Fluid mass density pf = 2.0 slugs/ft3

Kinematic viscosity v = 0.0000113 ft 2
/sec.

Stationary lift coef-
ficient CLO 0.2

3

The cable is divided into four elements. The static

displacement of the cable due to the cable weight and fluid

drag force is determined by the viscous relaxation method.

The transverse vibration is then computed by the mode

superposition technique. The Strouhal frequency and the
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fundamental structural frequency are 15.73 rad/sec and

14.6 rad/sec, respectively.

The lift coefficient, CL , computed by the wake-

oscillator model, is shown in Figure 6.6-1. The value of

C
L

is larger than the value of the stationary lift coef-

ficient, C
LO

, and is maximum at t = 2.0 seconds, the

same time at which the transverse displacement is also

maximum. The beat seen in the transverse displacement

shown in Figure 6.6-2 occurs because of the lock-in as-

sumption: the structural response frequency is the nat-

ural frequency whose value is near the lift force frequency.

The maximum displacement obtained in this example is

0.016 feet which is equal to the experimental value report-

ed by Ramberg, et al. (1980).
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6.7 Example 7: Three-Dimensional Responses
of a Three-Leg Single Point Mooring

In this example, three-dimensional responses of a

three-leg single point mooring to both inline and trans-

verse wave forces are investigated. The descriptions of

the problem are given in Figures 6.7-1,2. Each leg is

modeled with three straight elements. The initial config-

uration for the determiniation of the static configuration

is an unstretched straight line as shown by dashed line in

Figure 6.7-1. The cable, fluid, and wave data are the

same as for Example 5. The incremental/iterative method

with a time increment of 0.005 seconds is employed to

compute the response due to inline force and the mode-

superposition and Runge-Kutta integration methods with a

time increment of 0.001 seconds were employed to treat the

transverse force. This example requires 20 minutes of

CPU time on the Cyber 170/720 for prediction of six minutes

of real time response.

The time history of responses of the disc are shown

in Figure 6.7-3 for surge and in Figure 6.7-4 for heave.

The disc moves slowly in the wave direction until the in-

ternal force in the cable balances the external force. At

that time the disc remains still and then reverses direc-

tion when the wave force reduces. Because the stiffness

in the opposite direction to the wave propagation is very



130

small, as can be seen from the time variation of the stress

shown in Figure 6.7_5 where the stress in element 7 reduces

drastically, the disc moves as a free body. The heave

motion behaves similarly to the surge motion in which a

suddent reversal of motions occurs at the same time as the

cable slackens.

Figure 6.7-6 shows the time variations of the unsteady

lift coefficient: the solid line represents the lift co-

efficient for a nonstationary structure omputed by a wake-

oscillator model (Ramberg et al., 1975) and the dashed line

represents the lift coefficient for a stationary structure.

The period of oscillation of the stationary lift force is

smaller than the nonstationary lift force. This is because

the tendency of the nonstationary lift frequency to remain

constant when the Strouhal frequency is in the vicinity of

a structural natural frequency.

The disc response due to the transverse force is pre-

dominantly sway motion and is shown in Figure 6.7.7. Since

the strumming frequency is much higher than the wave fre-

quency, the response shows a long period (slowly varying)

motion which can be identified with the wave frequency and

a short period motion which is shown by a high frequency

fluctuation about the long period motion. Again, the low

frequency sway motion changes its direction suddenly as

the cable slackens.
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7.0 CONCLUSIONS

In this study a numerical simulation method for the

predicition of nonlinear response of cable systems and

cable-large body systems is presented. Two types of mat-

erial, piecewise linear elastic and linear viscoelastic

material, are investigated. The finite element technique

is used to model the cable line and the six-degrees-of-

freedom rigid motions of large bodies. Cable strumming is

modeled by a wake-oscillator model and the lock-in cond-

ition is assumed to occur in the transverse vibration.

The residual feedback method and the incrementally iter-

ative technique are used to solve the equation of motions.

The viscous relaxation method is employed to obtain the

static configuration of the highly geometrically nonlinear

cable structure. Newmark's integration method is utilized

to compute dynamic responses.

The deterministic response of cable-large body systems

due to monochromatic waves is simulated numerically by solv-

ing the linearized incremental equation. The residual feed-

back method has been compared with the incremental/iterative

method. For the single point mooring, it was found that

the incremental/iterative solution procedure provides a

better result than the residual feedback method. The
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residual feedback method requires a very small time incre-

ent in order for the solution to converge to the true

results.

The nondeterministic response of cable-large body

systems due to random waves is simulated in the frequency

domain: the system is assumed to vibrate about its static

configuration.

The decoupling technique proposed by Foss (1958) is

found to be a very effective tool in the computation of

the stochastic response due to the random waves. This is

particularly true when the wave energies are concentrated

in the low frequencies.

The cable strumming response in which the lift coef-

ficient is obtained by the wake-oscillator model is calc-

ulated numerically by the mode-superposition technique.

For a horizontal cable immersed in a steady uniform flow,

the results obtained agree with reported experimental re-

sults.

The validity of the fluid force model and the capa-

bility of the computer program developed in this study to

handle three-dimensional problems has been demonstrated.

A smaller time increment than is necessary for the two-

dimensional problem is needed for obtaining a stable so-

lution of a three-dimensional problem. Again the

incremental/iterative method has proved itself to be an
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effective technique for solving nonlinear dynamic equa-

tions with nonconservative fluid forces. The small motion

assumption for the strumming motion was verified. Sub-

harmonic response (high frequency motion about the low

frequency motion) was observed with a subharmonic fre-

quency equal to the lift coefficient frequency. A slowly

varying response with frequency equal to the wave fre-

quency is noticeable in the results. It was beyond the

scope of this work to include the effect of strumming

displacement on the inline fluid drag force, as indicated

by Skop et al. (1977). This type of problem is left for

future study.
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