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The bioavailability of chemical compounds in the marine environment 

fundamentally influences the growth and physiology of microorganisms. Organic and 

inorganic chemicals that are produced by some marine plankton can be consumed by 

other plankton for energy production, growth, or to initiate essential physiological 

processes. Cultures of the diatom Thalassiosira pseudonana, a model phytoplankton 

species, and Pelagibacter ubique, the most abundant heterotrophic bacteria in the 

ocean, were used to study how microbial chemical interactions influence the 

physiology of these two groups of co-occurring marine plankton that have substantial 

roles in the carbon cycle. Specifically, the production and consumption of volatile 

organic compounds (VOCs) were studied in monocultures and co-cultures of these 

plankton. In co-culture, Pelagibacter benefited from a wide variety of VOCs 

produced by T. pseudonana, and heterotrophic consumption of VOCs taxed carbon 

fixation in the diatom by promoting the loss of diffusible VOCs from the primary 

producer. In this interaction, VOCs were shown to be a large fraction (ca. 20%) of 

fixed carbon that is transferred to heterotrophic bacteria, suggesting that VOC cycling 



by phytoplankton and bacteria is a significant component of the global carbon cycle. 

Acetone and isoprene, VOCs with important roles in atmospheric processes, were two 

of the VOCs utilized by Pelagibacter in co-culture. Pelagibacter metabolized acetone 

and isoprene at rates sufficient to explain discrepancies in measured fluxes of these 

compounds between the ocean and atmosphere, demonstrating that heterotrophic 

bacteria have significant control over the emission of VOCs from the ocean. While 

working with these cultures, T. pseudonana was shown to initiate the essential sexual 

reproduction phase of the diatom life cycle in the presence of ammonium. This 

chemical, released by other plankton to maintain elemental homeostasis, is a cue that 

initiates cell size restoration and introduces genetic diversity in centric diatom 

populations. The experiments and results herein give new information about how the 

chemical environment controls physiology in plankton, and that changes in 

physiology can further modify the chemical environment. These processes and 

feedbacks establish a complex network of microbe-mediated chemical interactions 

that have important implications for global biogeochemical processes.  
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 207	
Literature Review 208	

 Microorganisms are dependent on a broad range of different chemicals in their 209	

environment for a wide variety of fundamental biological processes. Other organisms 210	

produce many of the organic and inorganic compounds available in the environment, and 211	

their production is controlled by many factors (Azam and Malfatti, 2007; Falkowski et 212	

al., 2008; Fuhrman et al., 2015). Microbial communities and activities are shaped by 213	

complex networks of interactions that are mediated by direct and indirect chemical 214	

exchange among organisms (Fuhrman et al., 2015; Ponomarova and Patil, 2015). Such 215	

chemical interactions allow microorganisms to acquire energy, synthesize fundamental 216	

biological building blocks needed for growth, directly interact with other cells and 217	

organisms in the environment, or stimulate behaviors and physiological responses that are 218	

important for microbial life cycles. Among the wide variety of biologically important 219	

chemicals, volatile organic compounds (VOCs) are a class of chemicals that are of 220	

increasing interest in marine microbial systems because these chemicals have important 221	

implications in primary production, microbial food webs, chemical signaling, and cell 222	

physiology (Fink, 2007; Bitas et al., 2013; Schmidt et al., 2015; Halsey et al., 2017). 223	

 Volatile organic compounds are low molecular weight organic chemicals that 224	

have high vapor pressures and low boiling temperatures, allowing them to vaporize 225	

easily. These chemicals fall into a variety of broad classes based on their chemical 226	

components and structures, including hydrocarbons, oxygenated volatiles and 227	

halogenated volatiles. Hydrocarbons are linear or branching chains of carbon and 228	

hydrogen that are typically very reduced and non-polar, such as octane or isoprene, and 229	

consequentially tend to be hydrophobic. Oxygenated volatile compounds contain varying 230	
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numbers of oxygen atoms, forming compounds such as organic acids, ketones, esters and 231	

aldehydes. Other VOCs can contain additional elements, such as halogens (Cl, Br, I), 232	

sulfur, nitrogen or phosphorous, and their chemical composition dictates their solubility 233	

in water, volatility and reactivity. VOCs are broadly recognized as solvents that are used 234	

frequently in industrial applications. As a result, VOCs have large anthropogenic 235	

emission sources (Friedrich and Obermeier, 1999). Nevertheless, biogenic sources of 236	

VOCs in the terrestrial and marine environments are substantial and of great interest 237	

because of their contributions to the global carbon cycle, multiple hypothesized and 238	

proven ecological functions, and roles in atmospheric processes (Folkins and Chatfield, 239	

2000; Bitas et al., 2013; Audrain et al., 2015; Brooks and Thornton, 2018; Zuo, 2019). 240	

VOCs are of significant interest because they are important in atmospheric 241	

chemistry. Many VOCs regulate the oxidative capacity of the atmosphere by reacting 242	

with oxidative free radicals in the atmosphere, leading to the production or destruction of 243	

ozone (Moore et al., 1996; Müller and Brasseur, 1999; Folkins and Chatfield, 2000; 244	

Liakakou et al., 2007). Oxidation of compounds like isoprene or dimethylsulfide may 245	

also lead to the formation secondary organic aerosols, which can directly influence light 246	

scattering or form cloud condensation nuclei, leading to cloud formation and further 247	

effects on weather, climate, and the solar radiation budget (Yoch, 2002; Brooks and 248	

Thornton, 2018). As a result, VOC emissions are significant regulators of atmospheric 249	

chemistry and climate, but the contributions of marine biological systems remain unclear.  250	

 Terrestrial plants are a large source of VOC emissions worldwide, with around 251	

760 Tg C emitted each year (Sindelarova et al., 2014). In contrast, VOC emissions from 252	

the ocean are not well understood, but the ocean is thought to be an important source of 253	
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VOCs over marine regions (Guenther et al., 1995). Some VOCs have relatively short 254	

lifetimes in the atmosphere, thus terrestrial VOC sources do not contribute significantly 255	

to the VOC pool over remote marine regions (Kesselmeier and Staudt, 1999; Lewis et al., 256	

2005; Booge et al., 2017).  Therefore, marine sources are needed to explain the presence 257	

of VOCs in ocean regions, and microorganisms are likely important contributors to the 258	

marine VOC pool. A few studies on VOC production by phytoplankton and other 259	

organisms have been carried out in the laboratory and field, yet many questions remain 260	

about the quantity and diversity of VOCs produced by plankton in the ocean, the 261	

biological roles VOCs serve, what variables influence VOC production by plankton, and 262	

the impacts biologically derived VOCs have on atmospheric processes (Sinha et al., 263	

2007; Spracklen et al., 2008; Arnold et al., 2009; Zuo, 2019). This review discusses 264	

VOCs in the context of the marine carbon cycle, and focuses on the influences 265	

phototrophic and heterotrophic plankton have on the production and degradation of 266	

volatiles in the ocean. 267	

 268	

VOCs abundance in the ocean 269	

 270	

 The marine carbon cycle begins with photoautotrophic organisms, including 271	

phytoplankton, macroalgae and marine plants. These organisms take up inorganic carbon 272	

in the form of carbon dioxide, and use photosynthesis to reduce CO2 to organic carbon. 273	

Fixed organic carbon has multiple fates, where it may be respired by the cell back to CO2 274	

for ATP production, used by the organism for growth and biomass production, or 275	

released as dissolved organic carbon (DOC) (Myklestad, 2000; Thornton, 2014). DOC is 276	
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released directly by healthy phytoplankton, at a rate of up to 30% of total carbon fixation, 277	

or through other mechanisms leading to cell death, such as sloppy feeding and viral lysis 278	

(Myklestad, 2000). Once released, DOC becomes a pool of public goods that can be 279	

utilized by other organisms. About 50% of the carbon fixed by phytoplankton is 280	

eventually re-mineralized to carbon dioxide by heterotrophic bacteria (Azam and 281	

Malfatti, 2007), thus highlighting the significance of the DOC pool in the movement of 282	

carbon from primary producers to heterotrophic bacteria. VOCs are a hidden component 283	

of the DOC pool, but the contribution of VOCs to DOC is not known because 284	

measurements of DOC rely on combustion based methods that are unable to accurately 285	

quantify volatile compounds (Bisutti et al., 2004). As a result, bulk measurements of 286	

VOCs in the marine environment are rare (Hauser et al., 2013) and could be a significant 287	

pool of carbon that is unaccounted for in the marine carbon budget.  288	

Three studies have attempted to quantify bulk VOC concentrations in seawater. 289	

Volatile compounds that can diffuse between liquid and gas media are also known as 290	

exchangeable DOC (EDOC). EDOC can be quantified by allowing volatile compounds in 291	

seawater to vaporize and equilibrate with the headspace of a sealed vessel and a pure 292	

water trap; a process dependent on Henry’s Law (Dachs et al., 2005; Ruiz-Halpern et al., 293	

2010). In the northeast Atlantic ocean, the concentrations of total EDOC were measured 294	

to be 30 ± 6 µmol C L-1, representing 30-40% of the total DOC pool in those samples 295	

(Dachs et al., 2005). Another study quantified EDOC in an arctic fjord over the course of 296	

a year, with concentrations ranging from below the detection limit to 133 µmol C L-1 297	

(Ruiz-Halpern et al., 2010). In that study, EDOC concentrations were also about 30% of 298	

total DOC throughout the year, but were as high as 50% of total DOC during winter 299	
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when the fjord was ice covered, which may have limited VOCs emission to the 300	

atmosphere (Ruiz-Halpern et al., 2010). The authors also measured EDOC flux between 301	

the fjord and atmosphere and found that the flux ranged from -22 (water served as a VOC 302	

sink) to +2 (water served as a VOC source) mmol C m2 -1 d-1, suggesting that the biology 303	

of the fjord was partially responsible for this variability. These two studies were the first 304	

to attempt to quantify bulk VOCs in the ocean; however, their methods did not account 305	

for variability in partitioning among different chemicals (Hauser et al., 2013). Using a 306	

similar approach, (Hauser et al., 2013) attempted to improve EDOC measurements in 307	

estuarine water by capturing volatile and semi volatile components of EDOC separately. 308	

Using sorbent tubes to capture volatiles, and water traps to capture semi-volatile 309	

compounds, bulk VOCs were more accurately quantified by better approximating the 310	

Henry’s law constants for each VOC class, which vary significantly (Hauser et al., 2013). 311	

Volatile and semi-volatile components of EDOC were measured to be 131-560 ng C L-1 312	

(0.011 – 0.047 µmol C L-1) and 58-2450 ng C L-1 (0.0048-0.204 µmol C L-1) respectively 313	

(Hauser et al., 2013). Notably, these values are significantly lower than those reported in 314	

the other studies, but no comparisons to total DOC concentrations were made in this 315	

study. 316	

Despite a lack of bulk measurements, it appears that the pool of VOCs present in 317	

the surface ocean represents a sizeable portion of the total dissolved organic carbon 318	

(Dachs et al., 2005; Ruiz-Halpern et al., 2010; Hauser et al., 2013). Most studies have 319	

focused on quantifying a handful of individual VOCs with known roles in atmospheric 320	

chemistry and microbial food webs (Williams et al., 2004; Sinha et al., 2007; Beale et al., 321	

2013; Dixon et al., 2013; Yang et al., 2014). These compounds of interest include 322	



	
	
	

	
	
	

6	

acetone, acetaldehyde, isoprene, methanol, and DMS. Generally, these compounds have 323	

concentrations in seawater in the pico- to nanomolar range, but the net flux of these 324	

compounds between the ocean and atmosphere can vary substantially.  325	

Acetone concentrations range from 2 to 24 nM across ocean provinces (Williams 326	

et al., 2004; Marandino et al., 2005; Beale et al., 2013). The ocean has been observed to 327	

sometimes serve as a sink for acetone, but has more often served as a source to the 328	

atmosphere. Flux rates were dependent on location and conditions, but ranged from -7 to 329	

+8.5 µM m2 d-1, where negative rates indicate a net flux from atmosphere to ocean 330	

(Williams et al., 2004; Sinha et al., 2007; Beale et al., 2013). Extrapolating localized 331	

measurements gave global marine acetone fluxes ranging from -48.0 to 3.1 Tg yr-1 332	

(Marandino et al., 2005; Beale et al., 2013), with the ocean acting as a sink more often at 333	

temperate latitudes than in the tropics, where emission to the atmosphere is dominant 334	

(Beale et al., 2013).  335	

Isoprene, which is the most abundant non-methane volatile in the atmosphere, has 336	

a massive terrestrial source, primarily from plants, on the order of 500 Tg C yr-1 337	

(Hackenberg et al., 2017). By comparison, the ocean has a much smaller, but uncertain, 338	

contribution to the global isoprene budget. The  the ocean is estimated to be an isoprene 339	

source of 0.1 to 11.6 Tg C yr-1 (Sinha et al., 2007; Hackenberg et al., 2017), and isoprene 340	

concentrations in seawater in one study ranged from 0.7 - 900 pM (Alvarez, Daniel A. 341	

Exton, et al., 2009; Hackenberg et al., 2017). Despite low emission rates relative to 342	

terrestrial regions, the short lifetime of isoprene in the atmosphere means that marine 343	

sources are the primary source of isoprene to the atmosphere over remote parts of the 344	

ocean, and important in atmospheric oxidative regulation and the formation of secondary 345	
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organic aerosols in these regions (Andreae and Crutzen, 1997; Liakakou et al., 2007; 346	

Booge et al., 2017).  347	

Dimethyl sulfide is an important aerosol-forming VOC that is emitted from the 348	

ocean and has been studied extensively. DMS is a product of DMSP degradation in 349	

marine biological systems and released to the atmosphere where it participates in the 350	

formation of secondary aerosols (Yoch, 2002). Sulfate aerosols formed from DMS can 351	

directly scatter light, or form cloud condensation nuclei, leading to cloud formation and 352	

increased planetary albedo (Yoch, 2002). Thus, the ocean source of DMS may have 353	

significant impacts on cloud formation and climate. DMS exists at 1.7 nM in seawater 354	

(Williams et al., 2004), and is released from the ocean at  a rate of 2.5 – 167 nmol m-2 d-1 355	

(Williams et al., 2004; Sinha et al., 2007).  356	

Acetonitrile is a VOC often associated with the burning of terrestrial biomass (de 357	

Gouw, 2003). Acetonitrile has a long lifetime in the atmosphere, but concentrations in the 358	

atmosphere over the ocean are very low, suggesting the ocean is a major sink, estimated 359	

to be -11 Tg N yr-1 (Bange and Williams, 2000; de Gouw, 2003). Few studies have 360	

examined acetonitrile concentrations or flux in the marine environment, but one study 361	

measured acetonitrile concentrations of 6.2 nM in seawater, and a net flux to the 362	

atmosphere of 1.6 µmol m-2 d-1 along a transect in the tropical Atlantic ocean, a result 363	

that contradicts the proposed ocean sink hypothesis for acetonitrile (Williams et al., 364	

2004). 365	

Acetaldehyde is another well-studied VOCs in the marine environment. Seawater 366	

concentrations in the temperate North Atlantic have been measured to be 3 – 37nM 367	

(Beale et al., 2013, 2015). Two reports on ocean-atmosphere flux found flux rates of -9 to 368	
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+4 µmol m-2 d-1 (Beale et al., 2013) and 0.58 µmol m-2 d-1  (Sinha et al., 2007), indicating 369	

that the ocean can act as a source or sink for acetaldehyde, depending on location and 370	

conditions.  371	

Methanol is the most abundant oxygenated VOC in the atmosphere (Read et al., 372	

2012), and the ocean is generally a net sink for atmospheric methanol, with air to sea 373	

fluxes of -0.7 µmol m-2 d-1 (Sinha et al., 2007) and -33.7 m-2 d-1 (Williams et al., 2004). 374	

Methanol fluxes of -29 to +19  µmol m-2 d-1 were also reported in the field, where the sea 375	

was a sink in temperate regions of the North Atlantic and a source in the North Atlantic 376	

gyre (Beale et al., 2013). Similarly, methanol concentrations were lower in temperate 377	

regions than in the gyre, with a range of 48 – 361 nM (Beale et al., 2013), or around 118 378	

nM in the tropical Atlantic (Williams et al., 2004). 379	

Halogenated volatile compounds are highly reactive VOCs with marine, terrestrial 380	

and anthropogenic sources. Seawater is supersaturated with certain halogenated VOCs, 381	

such as CHBr3, CH2Br2 and CHI3 due to their production by marine algae (Paul and 382	

Pohnert, 2011). Methyl chloride (CH3Cl) is the most abundant halogenated VOC, with a 383	

concentration of 75-110 pM in seawater, and net flux from sea to air of 0.38 – 0.64 Tg C, 384	

or 0.46 Tg Cl yr-1 (Khalil et al., 1999; Paul and Pohnert, 2011). Halogenated compounds, 385	

especially those containing bromine, are destructive to ozone in the atmosphere, thus 386	

these compounds have significant influence on the oxidative capacity of the atmosphere 387	

and the protective ozone layer (Anbar et al., 1996).  388	

Despite a small collection of specific VOCs, including the ones discussed here, 389	

that have been described to occur in the environment, their source terms (production rates 390	

and the organisms involved) are not known. Furthermore, the production rates, 391	



	
	
	

	
	
	

9	

concentrations and flux of other specific VOCs and the bulk VOC pool are not known. 392	

Many physical variables can influence the behavior of VOCs in the ocean, including 393	

temperature, wind speed, and the concentration gradient between the atmosphere and 394	

water (O’Dowd and de Leeuw, 2007; Spracklen et al., 2008), but biological activities 395	

have also been hypothesized to substantially contribute to the VOC sources and sinks in 396	

the sea (Kesselmeier and Staudt, 1999; Fall and Copley, 2000; Sinha et al., 2007; Halsey 397	

et al., 2017). VOCs may be produced and consumed by marine microorganisms, and 398	

evidence exists for both (Colomb et al., 2008b; Alvarez, Daniel A Exton, et al., 2009; 399	

Dixon et al., 2014; Halsey et al., 2017; Zuo, 2019); however, similar to the VOC source 400	

terms, the biological contributions to VOC production and degradation are not yet well 401	

understood. VOCs may serve many roles in microbial ecosystems, including signaling, 402	

stress responses, energy sources, or in antagonistic interactions (Jüttner et al., 2010; Bitas 403	

et al., 2013; Zuo, 2019). These multiple roles for VOCs make their dynamics complex 404	

and dependent on many variables, where variation in community structure, microbial 405	

physiology, or the physical and chemical environments can influence the release or 406	

uptake of specific chemicals (Srikanta Dani et al., 2017; Ye et al., 2018a; Zuo, 2019). 407	

These factors also may also influence the microbial community structure and the 408	

interactions that occur between organisms, further influencing VOC dynamics.  409	

 410	

Chemical mediation of microbial Interactions 411	

 412	

 In addition to providing carbon and energy sources, phytoplankton may also serve 413	

as a source of vitamins, nutrients or other exudates (Amin et al., 2012; Goecke et al., 414	
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2013; Durham et al., 2019). In turn, bacteria are able to utilize the provisions of 415	

phytoplankton for growth and energy, and are able to produce and release their own 416	

collection of nutrients, vitamins, or other exudates that can be beneficial or antagonistic 417	

to other bacteria or phytoplankton (Mayali and Doucette, 2002; Amin et al., 2012; 418	

Sañudo-Wilhelmy et al., 2014; Bryndan P. Durham et al., 2015). Thus, when considering 419	

entire microbial communities made up of hundreds of different taxa, a complicated 420	

network of microbial interactions is formed. A lot of research has attempted to 421	

understand microbial interactions by using co-cultures at varying degrees of complexity. 422	

Studies employing co-cultures bridge the gap between pure, axenic cultures and whole 423	

community studies by simulating some of the complexities of the actual environment, 424	

leading to a more complete understanding of the whole ecosystem. 425	

One common thread in many of the co-culture studies done to date is that 426	

phytoplankton-bacterial interactions can be very specific. Particular interactions or 427	

associations between microbes are dependent on many factors, including species or strain 428	

differences, nutrient or other chemical conditions, and growth status of the organisms 429	

involved. A major basis for phytoplankton-bacterial interactions is that phytoplankton are 430	

a carbon source for bacteria, and the carbon that is available for bacteria is dependent on 431	

the type of phytoplankton present. Dissolved organic carbon production varies among 432	

different phytoplankton species and physiological status (Myklestad, 2000; Colomb et 433	

al., 2008a; Barofsky et al., 2009; Longnecker et al., 2015). 434	

The availability of compounds produced by individual species is important in 435	

selecting for and recruitment of particular organisms that flourish on certain types of 436	

exudates. Evidence for this is seen in the field where particular bacterial groups are 437	
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typically found together in blooms of certain types of phytoplankton (Grossart et al., 438	

2005; Rooney-Varga et al., 2005; Goecke et al., 2013). Phytoplankton species and 439	

physiological status selected for unique bacterial communities that varied over algal 440	

growth phase; where bacteria like Roseobacter were dominant in the free living fraction, 441	

while Flavobacteria and Sphingobacteria dominated the algae- attached fraction, 442	

particularly during algal stationary phase (Grossart et al., 2005). Distinct bacterial 443	

communities were present in cultures of different, non-axenic diatoms, and the addition 444	

of particular bacterial strains had negative effects on some phytoplankton species and 445	

positive effects on another. This may have been the result of unique metabolic profiles 446	

produced by the specific combination organisms involved that promote positive or 447	

negative interactions (Koedooder et al., 2019). The sensitivity of such interactions to a 448	

particular organism or environmental condition emphasize the complexity of 449	

phytoplankton-bacteria interactions in nature, where many physical or chemical factors, 450	

and diverse community structures can independently or synergistically influence 451	

interaction dynamics between organisms.    452	

Numerous papers have reported bacterial growth enhancement when in co-culture 453	

with phytoplankton, but the interaction can breakdown once conditions change. In co- 454	

cultures of the oligotrophic bacterium SAR11 strain HTCC7211 with several strains of 455	

the abundant cyanobacteria Prochlorococcus, SAR11 growth improved as a result of the 456	

carbon substrates that the cyanobacteria provided, but the benefit provided to SAR11 457	

depended on the strain and growth status of Prochlorococcus in the co-culture (Becker et 458	

al., 2019). In some cases, the interaction with Prochlorococcus became detrimental to 459	

SAR11, such as in co-culture with a particular strain of the cyanobacteria that did not 460	
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meet the sulfur requirements of SAR11, forcing competition for reduced sulfur, or when 461	

Prochlorococcus entered stationary phase and began producing compounds that favored 462	

the growth of other copiotrophic bacteria (Becker et al., 2019). Roseobacter synthesized 463	

the phyto-hormone indole-3-acetic acid when provided tryptophan by the cocolithophore 464	

Emiliana huxlei, which promoted growth of the phytoplankton. This interaction 465	

established a positive feedback loop where E. huxlei stimulated Roseobacter growth and 466	

production of the hormone, further stimulating E. huxlei activity (Segev et al., 2016). 467	

However, this mutualistic interaction became antagonistic once E. huxlei growth ceased, 468	

causing Roseobacter to over produce indole-3-acetic acid which became toxic to E. 469	

huxlei (Segev et al., 2016). 470	

Similarly, changes in the phytoplankton population alter bacterial interactions 471	

with phototrophs and force changes in bacterial physiology. Responses and interactions 472	

with other organisms are often cryptic and sometimes difficult to observe. 473	

Transcriptomics is commonly used to examine cryptic interactions by measuring the gene 474	

expression underlying many physiological mechanisms. In a co-culture of Roseobacter 475	

and the dinoflagellate Alexandrium, the phytoplankton community was altered by the 476	

addition of the diatom Thalassiosira, which quickly became the dominant phytoplankton 477	

in the culture (Landa et al., 2017). The Roseobacter transcriptome changed substantially 478	

in response to the altered phytoplankton community, and included shifts in expression of 479	

genes involved in quorum sensing, and the metabolism and transport of particular 480	

substrates associated with each phytoplankton species, but Roseobacter growth was not 481	

affected (Landa et al., 2017). Similarly, co-cultures of Alteromonas and Prochlorococcus 482	

showed no differences in the growth of the cyanobacteria in co-culture (Biller et al., 483	
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2016; Becker et al., 2019). Nevertheless, gene expression patterns in Prochlorococcus 484	

changed due to the presence of Alteromonas in the co-culture, and suggested a 485	

mutualistic interaction was occurring where Prochlorococcus supplied organic carbon to 486	

Alteromonas, in return for detoxification of reactive oxygen species (Biller et al., 2016). 487	

In a diatom-Roseobacter co-culture, the diatom produced dihydroxypropane-1-sulfonate 488	

(DHPS). Genes involved in the transport and metabolism of DHPS were up-regulated in 489	

Roseobacter when compared to the mono-culture (Durham et al., 2015). Similar genes 490	

were identified in other bacteria, including SAR11 and SAR116, suggesting that a variety 491	

of taxa were able to actively acquire and metabolize this diatom-produced compound. In 492	

return, Roseobacter supported growth of the diatom by providing vitamin B12 in the co- 493	

cultures (Bryndan P Durham et al., 2015). In many of the examples discussed so far, an 494	

exchange of growth promoting compounds occurs. In some cases, the interaction is very 495	

specific to a certain taxa due to the unique metabolic capabilities of the organisms 496	

involved or dependent on other conditions. Any single change in community 497	

composition, growth phase, nutrient availability, or other perturbations may alter the 498	

metabolic production of organisms, thus influencing interaction dynamics.   499	

Phytoplankton-bacterial interactions can be antagonistic. In the dilute, often 500	

resource limited marine environment, competition for resources is fierce, so plankton 501	

have evolved mechanisms to outcompete or inhibit other species directly (Nan et al., 502	

2004; Prince et al., 2008; Boyd et al., 2012; Fuhrman et al., 2015). In one unique 503	

example, a parasitic interaction between phytoplankton and SAR11 (and likely other 504	

methylovorous bacteria) occurs in phosphorous limited environments, like the mid-ocean 505	

gyres. In this interaction, arsenate, an analogue to phosphate, has a high concentration 506	
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relative to phosphate, causing the phytoplankton to accidentally take up toxic arsenate. 507	

To detoxify the arsenate, the phytoplankton methylates then releases the methylated 508	

arsenic species into the environment. Methylovorous bacteria metabolize methylated 509	

arsenic and release toxic inorganic arsenate, perpetuating a cycle where carbon and 510	

energy is siphoned from the phytoplankton in a parasitic way (Giovannoni et al., 2019). 511	

Another study co-cultured Croceibacter atlanticus, a Flavobacterium, with a variety of 512	

different diatom species. Bacteria growing on diatom cell surfaces inhibited diatom cell 513	

division, and resulted in benefits for the bacterium including increased surface area and 514	

greater access to more organic substrates  (Van Tol et al., 2016). 515	

Volatile organic compounds are likely important in phytoplankton-bacterial 516	

interactions. VOCs have not been studied much in the context of marine microbiology, 517	

but are thought to have roles as info chemicals, in stress responses and as carbon 518	

substrates for plankton. A variety of organisms, particularly phytoplankton, produce 519	

VOCs, but their involvement in interactions needs to be examined. In terrestrial 520	

environments, VOCs mediate interactions between soil bacterial communities, soil fungi 521	

and plants, where certain VOCs may have inhibitory effects on competing bacteria and 522	

fungi or act as info chemicals (Bitas et al., 2013; Schmidt et al., 2015). In the ocean, 523	

similar examples are discussed, but there remains a general lack of understanding of the 524	

biological roles of VOCs in the marine environment. The next section of this review 525	

discusses the production and consumption of VOCs by plankton, examples of VOCs that 526	

may serve in roles or interactions, and the impact these biologically important VOCs 527	

have on the broader ecosystem and carbon cycle.  528	

 529	
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VOC Production by phytoplankton and other aquatic organisms 530	

 531	

All organisms produce VOCs in some capacity, but phytoplankton are a primary 532	

source for many VOCs in the ocean. Algal VOC production rates under particular 533	

conditions are rarely quantified and few studies have tested the effects of variable 534	

conditions on VOC production in algae. Light intensity, nutrient limitation, and 535	

community composition, among other factors, may influence VOC production by altering 536	

algal physiology and carbon allocation pathways (Thornton, 2014; Halsey and Jones, 537	

2015). Thus, these variables are likely important factors when considering the impacts of 538	

VOC production or consumption by plankton and the roles they serve in the ecosystem.  539	

Diatoms are a unique group of phytoplankton that often dominate plankton 540	

communities, particularly in temperate and coastal environments, and are major 541	

contributors to primary production (Uitz et al., 2010). The abundance and dominance of 542	

diatoms means they have a large impact on their environment, and this is likely true for 543	

their role in producing VOCs. Diatoms produce a variety of different halomethanes, such 544	

as CH2Br2, CHBr2Cl, CH2I2, CH2ICl, CH3Cl and CH3Br (Moore et al., 1996; Mtolera et 545	

al., 1996; Colomb et al., 2008a; Paul and Pohnert, 2011). Production of these compounds 546	

was light and growth dependent, and only occurred when haloperoxidases were present 547	

(Moore et al., 1996). Halomethanes were produced more at higher light intensities, 548	

suggesting that haloperoxidases may be involved in the quenching of reactive oxygen 549	

species (Moore et al., 1996). Methyl chloride production was associated with diatoms; 550	

however, production continued following cell death, and may have been a result of 551	

degradation of diatom exudate by bacteria or abiotic processes (Tait and Moore, 1995). A 552	
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more recent study also found evidence of halogenated VOC production, particularly 553	

methyl bromide, as well as isoprene (C5H8); however, the effects of particular 554	

environmental conditions on VOC production were not tested (Colomb et al., 2008a).  555	

Isoprene emission by diatoms has been documented in several studies (Mckay et 556	

al., 1996; Halsey et al., 2017), and is estimated to have a global source of 4.8 Tg C y-1 557	

(Srikanta Dani et al., 2017). Other experiments examined the relationship between 558	

photosynthesis and isoprene production in a selection of diatom species. Under increasing 559	

light levels, isoprene emission and non-photochemical quenching (NPQ) were negatively 560	

correlated in low light adapted diatoms, suggesting NPQ was the primary pathway 561	

involved in dissipating excess light energy at higher light levels. The two genera tested, 562	

Chatocerous and Phaeodactulum, showed distinct responses to light and isoprene 563	

production, and increasing CO2 availability reduced isoprene emissions (Srikanta Dani et 564	

al., 2017). This example emphasizes how isoprene production is rooted in primary 565	

production, and is dependent on species-specific responses to changing environmental 566	

conditions. In addition to isoprene, the diatom Skeletonema costatum produced other 567	

hydrocarbons, including ethane, ethane, propane and n-hexane, with isoprene and n- 568	

hexane being produced more during active growth than in stationary phase (Mckay et al., 569	

1996). Experiments on various diatom species identified the production of various 570	

ketones, terpenoids, aldehydes, alcohols, and pyrazines (Cotsaris et al., 1995; Colomb et 571	

al., 2008a; Halsey et al., 2017). Notably, diatoms are only a minor source of DMS 572	

compared to other phytoplankton groups, and isoprene may be produced in favor of DMS 573	

or the precursor DMSP (Keller, 1989; Dani and Loreto, 2017).  574	
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Cyanobacteria are photosynthetic bacteria that live in freshwater and marine 575	

environments. Freshwater cyanobacteria are often implicated as the source of malodor in 576	

drinking water, and a variety of VOCs have been identified that effect water quality 577	

(Milovanović et al., 2015). VOC profiles of three different freshwater cyanobacteria 578	

species identified an abundance of medium length hydrocarbons, and the compound 2- 579	

methylisoborneol was also prevalent (Milovanović et al., 2015). Isoprene was produced 580	

by the abundant cyanobacteria Prochlorococcus, as well as three diverse eukaryotic 581	

algae: Pelagomonas calceolare, Micromonas pusilla, and Emiliana huxlei (Shaw et al., 582	

2003). Isoprene production rates ranged from 1x10-21 to 4x10-19 mol cell-1 d-1 and was 583	

dependent on species, cell size, light intensity, temperature, and viral infection (Shaw et 584	

al., 2003). Similar to diatoms, cyanobacteria were only minor producers of DMS while 585	

dinoflagellates and prymnesiophytes are larger contributors (Keller, 1989).  586	

In addition to phytoplankton, heterotrophic bacteria are also producers of VOCs. 587	

Over 1000 different VOCs produced by bacteria have been characterized, many of which 588	

are involved in cell to cell interactions (Audrain et al., 2015). Heterotrophic bacteria 589	

catabolize DMSP produced by phytoplankton and emit copious amounts of the climate 590	

active volatile DMS (Yoch, 2002; Sun et al., 2016). In soil environments, gram positive 591	

bacteria are common producers of isoprene (Fall and Copley, 2000), while in marine 592	

environments, Vibrio sp. produced acetone while growing in cultures, especially when 593	

supplemented with leucine (Nemecek-Marshall et al., 1995). The full diversity of 594	

organisms and their associated volatile exudates have only just begun to be characterized 595	

in a handful of organisms and focus is typically on only a few VOCs of interest. 596	



	
	
	

	
	
	

18	

Furthermore, the environmental variables that control VOC production, and the roles 597	

VOCs perform for plankton are not well understood. 598	

 599	

Factors controlling microbial VOC production 600	

 601	

In phytoplankton, abiotic factors modify physiology, and many studies have 602	

characterized the influence of light, nutrients, temperature and other variables on the 603	

growth and productivity of plankton (Bucciarelli and Sunda, 2003; Marchetti and Cassar, 604	

2009; Sunda and Huntsman, 2011; Fouilland et al., 2014; Halsey and Jones, 2015; Fisher 605	

and Halsey, 2016; Arandia-Gorostidi et al., 2017; Xu et al., 2017; Ye et al., 2018). Just as 606	

VOC production can vary at the species level, VOC production is sensitive to small 607	

changes in the environment. In cultures of the green alga Dunaliella tertiolecta and 608	

diatom Thalassiosira pseudonana, the production of acetone, acetaldehyde, isoprene and 609	

methanol were strongly dependent on light intensity, with higher production rates 610	

observed at high light levels (Halsey et al., 2017). Further, isoprene production was also 611	

dependent on light intensity in two diatoms, Chatocerous and Phaeodactulum, but 612	

isoprene production peaked at different light intensities for each organism (Srikanta Dani 613	

et al., 2017).  Similarly, the production of halogenated volatile compounds by Eucheuma 614	

denticulatum and a variety of diatoms was enhanced by cells growing under high light 615	

intensity (Moore et al., 1996; Mtolera et al., 1996). Light intensity also explained 616	

isoprene production rates across a diverse set of algae, which included Prochlorococcus, 617	

Pelagomonas, Micromonas, and Emiliana species (Shaw et al., 2003). In the same study, 618	

temperature and cell size were also correlated to isoprene production, while isoprene 619	
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production decreased during phage infection, and grazing by zooplankton had no impact 620	

on production (Shaw et al., 2003).  621	

Few studies have examined the influence of nutrient availability on VOC 622	

production in phytoplankton, but two examples highlight the substantial impact that 623	

nutrient limitation, starvation, or chemical form of nitrogen or phosphorous may affect 624	

VOC production. VOC emission rates were higher under nitrogen limitation, and VOC 625	

profiles changed when different nitrogen sources were utilized by the cyanobacterium 626	

Microcystis flos-aquae (Xu et al., 2017). In a similar study, VOCs produced by 627	

Microcystis aeruginosa varied depending on the phosphorous source available to the 628	

culture, and bulk VOC production was greater under phosphorous limitation and 629	

starvation (Ye et al., 2018b).  630	

In the field, discerning biotic and abiotic ecological variables driving a particular 631	

VOC emission profile are more complicated to understand than those testing pure 632	

cultures in the laboratory. A mesocosm experiment was performed in the Baltic Sea to 633	

examine the influence CO2 concentrations had on the production of volatile compounds 634	

from seawater. Under the highest CO2 concentrations, DMS emission was lower, possibly 635	

as a result of effects on the bacterial community responsible for degrading DMSP to 636	

DMS, and no changes in the production of halogenated VOCs was observed (Webb et al., 637	

2016). In a eutrophic lake, VOC emissions varied over the course of the year as the 638	

plankton community changed seasonally and heterotrophic activity degraded 639	

phytoplankton produced VOCs (Jüttner, 1984). In the ocean, an apparent trade-off exists 640	

in isoprene and DMS emission across latitudes, where isoprene emissions are highest in 641	

the tropics and DMS emission is highest at the poles (Dani and Loreto, 2017). It is 642	
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possible this trend is driven by variability in phytoplankton communities at different 643	

latitudes; however, diatoms from polar climates also produce less isoprene in culture than 644	

their tropical counterparts (Bonsang et al., 2010; Exton et al., 2013). While variation in 645	

VOC production at the species level may be a driver, additional factors not associated 646	

with community composition, such as temperature, may be important in this tradeoff. 647	

Ultimately, VOC production in phytoplankton depends on many environmental variables, 648	

such as light and nutrient availability, temperature, community composition, or latitude, 649	

many of which are co-variables. Unraveling the factors associated with particular VOC 650	

emission behaviors is challenging, but understanding more about the roles VOCs serve 651	

phytoplankton may help to elucidate these responses.  652	

 653	

VOC roles in microbial ecosystems 654	

 655	

 VOCs are ubiquitous in the environment and serve a wide variety of functions for 656	

the organisms that produce them. The diffusivity of VOCs makes them effective 657	

signaling molecules and they can be released by cells in response to stress stimuli to 658	

signal or retaliate against adjacent individuals (Zuo, 2019). In response to grazing by 659	

copepods, the diatom Cocconeis scutellum releases polyunsaturated aldehydes upon 660	

cellular wounding, that inhibited reproduction in copepods (Jüttner et al., 2010). 661	

Similarly, polyunsaturated aldehydes were differentially produced in a selection of 662	

closely related phytoplankton species, and these compounds inhibited copepod egg 663	

development and hatching (Pohnert et al., 2002). In terrestrial plants, releases of VOCs 664	

such as ethylene are able to signal adjacent plants and activate grazer defense 665	
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mechanisms (Kesselmeier and Staudt, 1999). The cyanobacteria Microcystis flos-aquae 666	

released VOCs, including limonene and eucalyptol, under nitrogen limitation that 667	

inhibited the green alga Chlorella, a potential competitor (Xu et al., 2017). Additionally, 668	

some brominated VOCs produced by phytoplankton interfere with bacterial quorum 669	

sensing and attachment mechanisms, preventing colonization by potentially inhibitory or 670	

competitive bacteria (Paul and Pohnert, 2011). This array of examples shows that plants 671	

and phytoplankton use VOCs to defend against grazers and competing organisms.  672	

Communication within a community of organisms via volatile info-chemicals 673	

facilitates the coordination of community scale activities, such as the sexual reproduction 674	

phase of the diatom life cycle. Diatoms must periodically reproduce sexually in order to 675	

restore their cell size, and chemical signaling may allow for synchronization of the life 676	

cycle and onset of the sexual phase to facilitate successful fertilization in a dilute 677	

environment. The pheromones fucoserratene and ectocarpene are volatile terpenoids 678	

produced by diatoms and brown algae that facilitate gamete cell recognition and increase 679	

the likelihood of successful fertilization, while other VOCs initiate other parts of the 680	

diatom sexual phase (Sato et al., 2011; Stonik and Stonik, 2015). Two unidentified 681	

pheromones were involved in the sexual reproduction of the diatom Pseudostaurosira 682	

trainorii. One pheromone induced sexual development in the opposite mating type, while 683	

another helped direct spermatozoa towards oogonia for fertilization (Sato et al., 2011). 684	

Although the authors did not identify the specific pheromones involved, they may be 685	

similar to other terpenoid pheromones shown to be produced by sexually reproducing 686	

brown algae (Stonik and Stonik, 2015).  687	
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VOCs serve important roles in plant stress responses to excess light, temperature 688	

and reactive oxygen species, and may function in similar ways in phytoplankton. 689	

Elevated isoprene emissions in plants exposed to high light and temperatures has been 690	

documented for some time and is hypothesized to provide resistance to reactive oxygen 691	

species (Sharkey and Yeh, 2001). This hypothesis is supported in an experiment that 692	

treated the leaves of isoprene producing plants with fosmidomycin, an inhibitor of the 693	

non-mevalonate isoprenoid synthesis pathway in the chloroplast, and exposing them to 694	

high light and temperature. Leaves where isoprene synthesis was inhibited recovered 695	

from the stressor less than untreated leaves, but inhibited leaves exposed to exogenous 696	

isoprene (including non-isoprene producing plants) showed improved recovery, 697	

highlighting the importance of isoprene in the photo-oxidative stress response of plants 698	

(Sharkey et al., 2001). VOCs such as isoprene are hypothesized to have similar roles in 699	

dealing with oxidative stress in phytoplankton. In a variety of phytoplankton species, 700	

isoprene and monoterpene production increased when cultures were shifted from low to 701	

high light, and from low to high temperatures (Meskhidze et al., 2015). Halogenated 702	

VOCs are also likely to be involved in the dissipation of reactive oxygen species. 703	

Phytoplankton possess different types of haloperoxidase enzymes that destroy reactive 704	

peroxides (Moore et al., 1996). Haloperoxidase activity likely leads to the formation of 705	

halogenated volatile compounds, thus these VOCs may be byproducts that are released as 706	

a result of oxidative stress (Paul and Pohnert, 2011). Other VOCs may be produced as a 707	

result of degradation of other cellular components, such as fatty acids, pigments and other 708	

isoprenoids or other metabolic intermediates (Palmer and Shaw, 2005; Santos et al., 709	

2016), though in many cases, these mechanisms are not well understood (Booge et al., 710	
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2017). In the marine environment, phytoplankton acclimated to certain conditions must 711	

be able to respond rapidly to changing conditions. Cells acclimated to low light would 712	

contain high concentrations of chlorophyll and other pigments. If suddenly exposed to 713	

high light, the cell would be oversaturated and need a way to rapidly dissipate the excess 714	

energy. Rapid degradation of photo-pigments would prevent damage by reducing light 715	

harvesting while also evolving isoprene, which may act as an electron sink to reduce 716	

oxidative stress.  717	

 718	

Biological VOC sinks (heterotrophic consumption) 719	

 720	

VOCs also serve as carbon substrates for marine heterotrophic bacteria that have 721	

evolved mechanisms to acquire and metabolize VOCs. Some studies hypothesize that 722	

degradation of VOCs by heterotrophic bacteria may account for large discrepancies in sea 723	

to atmosphere fluxes of VOCs, but few examples of VOC catabolism exist in aquatic 724	

environments. Field work comparing estimated versus measured flux of isoprene from 725	

the ocean show a 70% overestimation of modeled fluxes compared to measured values, 726	

and including a bacterial VOC consumption rate improved the performance of the model 727	

(Palmer and Shaw, 2005; Booge et al., 2017). In a study examining bacterial 728	

communities, a variety of bacterial taxa were identified in isoprene-enriched estuarine 729	

water, particularly the Actinobacteria Mycobacterium, and Rhodococcus, Bacteriodetes 730	

and some alpha- and beta-proteobacteria (Alvarez, Daniel A Exton, et al., 2009). In these 731	

communities, isoprene production and consumption rates were coupled, but low 732	

concentrations suggested that isoprene was more likely an energy supplement rather than 733	
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a sole carbon source for these taxa (Alvarez, Daniel A Exton, et al., 2009). In estuarine 734	

sediments enriched with 13C labeled isoprene, DNA stable isotope probing also identified 735	

the Actinobacteria Mycobacterium, Rhodococcus, Gordonia, and Microbacterium, and 736	

suggested promiscuous enzyme activities may enable isoprene metabolism in cells 737	

lacking specific isoprene degradation pathways (Johnston et al., 2017). Similar taxa 738	

metabolize isoprene in terrestrial soils, in particular, Rhodococcus (El Khawand et al., 739	

2016; McGenity et al., 2018). A Rhodococcus strain isolated from marine sediments was 740	

characterized for its ability to use isoprene as a growth substrate, and encoded an operon 741	

containing an isoprene monooxygensae gene (van Hylckama Vlieg et al., 2000), though 742	

poly-aromatic dioxygenases can also degrade isoprene (McGenity et al., 2018). Some of 743	

the taxa capable of degrading isoprene can also metabolize other VOCs. A Rhodococcus 744	

strain isolated from wastewater utilized a nitrile hydratase and amidase enzymes to 745	

metabolize acetonitrile (Acharya and Desai, 1999), and this pathway was implicated in 746	

acetonitrile degradation by Natronocella acetinitrilica in an alkaline lake (Sorokin et al., 747	

2007). 748	

 Metabolism of oxygenated volatile compounds by bacteria is supported by bulk 749	

measurements and flux rates of these compounds in the ocean. Methanol degradation was 750	

highest in the oligotrophic gyres where bacterial production measured by 14C-leucine 751	

incorporation was low, and oxidation rates were positively correlated with the abundance 752	

of SAR11 bacteria (Sargeant et al., 2018). Work by the same group compared the 753	

oxidation rates of acetone, acetaldehyde and methanol in coastal waters of the UK over 754	

the course of a year.  Microbial oxidation rates of methanol and acetaldehyde were 1-11 755	

nM h-1 and 5-31 nM h-1 respectively, and heterotrophic metabolism was the primary sink 756	
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for these compounds in seawater (Beale et al., 2015). Microbial oxidation rates of 757	

acetone measured over the course of a year were much lower than acetaldehyde or 758	

methanol at 1-380 pmol h-1 and only explained a fraction of the total losses in seawater, 759	

but acetone oxidation was higher in the winter when more preferred substrates, such as 760	

acetaldehyde, are less abundant (Dixon et al., 2014; Beale et al., 2015). In the surface of 761	

the Sargasso sea where cell concentrations average 5.7x108 cells mL-1 (Morris et al., 762	

2002), microbial oxidation of methanol and formaldehyde were around 228 pmol  L-1 h-1 763	

(Sun et al., 2011). Culturing work with a selection of microbes isolated from the ocean 764	

has also demonstrated VOC utilization. The oligotrophic bacteria SAR11, abundant 765	

throughout the ocean, particularly in oligotrophic regions, utilizes acetaldehyde, 766	

methanol, formaldehyde, and dimethyl sulfide (Sun et al., 2011, 2016; Halsey et al., 767	

2017). HTCC2181 (β-proteobacteria), an organism isolated from the mesopelagic is an 768	

obligate methanol oxidizing bacterium, raising questions about the source of methanol in 769	

the marine environment (Halsey et al., 2012).  770	

While some marine bacteria have been shown to metabolize a variety of oxygenated 771	

VOCs, less is known about the mechanisms and biochemical pathways involved, but we 772	

can look to a few examples from other environments to start to understand the pathways 773	

that might be used by marine bacteria. Gordonia, a genus common in soil, is capable of 774	

acetone degradation, which occurs as a part of a pathway used in the metabolism of 775	

propane (Kotani et al., 2007). In the described pathway, propane is the starting substrate, 776	

then subsequently converted to 2-propanol, acetone, and methyl acetate before ending in 777	

the formation of acetic acid and methanol, and the enzymes in this biochemical pathway 778	

were also capable of reactions with ketones other than acetone (Kotani et al., 2007). This 779	
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is in contrast to other pathways for acetone degradation, which show a conversion of 780	

acetone to acetol, rather than methyl acetate (Kotani et al., 2007). In Corynebacterium, 781	

acetone is converted to acetol, methylglyoxal then pyruvate (Taylor et al., 1980), or may 782	

also result in the formation of acetaldehyde and a C1 compound (Levine and Krampitz, 783	

1952). Despite differences in the proposed biochemical pathways, an acetone 784	

monooxygenase is implicated in the first conversion of acetone, and may be key in the 785	

microbial breakdown of acetone. Understanding VOC metabolic pathways, such as those 786	

for acetone, aids in the search for other microorganisms that have important roles in VOC 787	

cycling. Thus, identifying the organisms involved will lead to a better understanding of 788	

the biologically driven movement of VOCs within the ocean and other environments.   789	

 790	

Summary 791	

 792	

VOCs have multiple important roles in microbial food webs, physiological stress 793	

responses, and cell-to-cell interactions. In the atmosphere, VOCs are involved in ozone 794	

formation and degradation, secondary aerosol formation, and atmospheric oxidative 795	

regulation (Moore et al., 1996; Müller and Brasseur, 1999; Folkins and Chatfield, 2000; 796	

Brooks and Thornton, 2018). These chemical interactions have the potential to regulate 797	

weather and climate, thus the processes regulating VOC sea-air flux are of significant 798	

interest. In the context of the global carbon cycle, the volatile fraction of the total carbon 799	

budget is not well defined, but the ocean is thought to have a significant role in the global 800	

cycling of VOCs, serving as either a source or sink depending on the compound and 801	

environment. While physical factors are important in VOC cycle regulation, biological 802	
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processes are often implicated in the production or degradation of VOCs, but only a small 803	

number of examples have begun to answer the questions surrounding contributions of 804	

biology, in particular, microorganisms, in the marine VOC cycle.  Important questions 805	

remain to be answered: What is the bulk mass of volatile compounds in the ocean and 806	

how does it compare to the total DOC pool? How much VOC do primary producers or 807	

other microbes produce? What fraction of primary production is funneled to the 808	

formation of VOCs? What organisms are important in producing or degrading certain 809	

compounds? What are the functions of the VOCs and biochemical pathways involved? 810	

What is the significance of plankton in regulating the movement of VOCs between the 811	

ocean and atmosphere? Studies attempting to answer these questions are necessary to 812	

understand the connections between marine plankton, VOCs and the greater carbon 813	

cycle.  814	

The work presented in this thesis attempts to answer some of these outstanding 815	

questions by using cultures of diatoms and SAR11, two important plankton groups that 816	

have large roles in the marine carbon cycle. In one of the chapters ahead, these cultures 817	

are used as model organisms to understand the movement of VOCs among plankton, their 818	

importance as sources of carbon and energy for heterotrophs, and the fraction of primary 819	

production composed of VOCs. In another chapter, I characterized the metabolism of two 820	

important VOCs, acetone and isoprene, by the most abundant bacteria in the ocean, 821	

Pelagibacter ubique (SAR11), and provide clarity on the role of this organism in the 822	

cycling of these two climate relevant compounds. Finally, the last chapter of this thesis 823	

presents a serendipitous discovery that resulted from the culturing approaches used in the 824	

first chapter. In this chapter, the life cycle of the model centric diatom Thalassiosira 825	
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pseudonana is characterized. While the original study did not focus on VOCs, ammonia, 826	

a volatile signaling molecule, was determined to be an important regulator of the diatom 827	

life cycle. 828	

 829	
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Abstract  1184	

 1185	

Volatile organic compounds (VOCs) produced by phytoplankton are molecules with high 1186	

vapor pressures that can diffuse across cell membranes into the environment, where they 1187	

become public goods. VOCs likely comprise a significant component of the marine 1188	

dissolved organic carbon (DOC) pool utilized by microorganisms, but are often 1189	

overlooked as growth substrates because their diffusivity imposes analytical challenges. 1190	

The roles of VOCs in the growth of the photoautotrophic diatom Thalassiosira 1191	

pseudonana and heterotrophic bacterium Pelagibacter sp. HTCC1062 (SAR11) were 1192	

examined using co-cultures and proton-transfer-reaction time-of-flight mass spectrometry 1193	

(PTR-TOF/MS). VOCs at 82 m/z values were produced in the cultures, and the 1194	

concentrations of 9 of these m/z values changed in co-culture relative to the diatom 1195	

mono-culture. Several of the m/z values were putatively identified and their metabolism 1196	

by HTCC1062 was confirmed by measuring ATP production. Diatom carbon fixation 1197	

rates in co-culture with HTCC1062 were 20.3% higher than the diatom mono-culture. 1198	

Removal of VOCs from the T. pseudonana mono-culture using a hydrocarbon trap 1199	

caused a similar increase in carbon fixation (18.1%). These results show that a wide 1200	

range of VOCs are cycled in the environment and the flux of VOCs from phytoplankton 1201	

to bacterioplankton imposes a large and unexpected tax on phytoplankton photosynthesis.  1202	

 1203	

 1204	

  1205	



	
	
	

	
	
	

39	

Introduction 1206	

 1207	

Photosynthetic diatoms and the heterotrophic bacteria Pelagibacter (SAR11) are 1208	

both highly abundant in the surface ocean and make major contributions to biological 1209	

carbon cycling. Microphytoplankton, a pigment-based classification primarily composed 1210	

of diatoms, are estimated to carry out about 32 % of net primary production in the ocean 1211	

(Uitz et al., 2010). Pelagibacter are estimated to oxidize 6 to 37% of marine gross 1212	

primary production (White et al., 2018). The flow of carbon between these two groups of 1213	

organisms is therefore a potentially significant component of the marine carbon cycle.  1214	

Diatoms produce and release a wide variety of organic compounds that can vary 1215	

depending on the species, growth status, and nutrient environment (Barofsky et al., 1216	

2009).  Low molecular weight and volatile organic carbon compounds (VOCs) have been 1217	

associated with active growth (Colomb et al., 2008a; Buchan et al., 2014), while more 1218	

complex organic molecules are synthesized during senescence (Buchan et al., 2014). 1219	

Production rates of both volatile and non-volatile organic compounds are dependent on 1220	

light intensity (Halsey et al., 2017), nutrient availability (Bromke et al., 2013) and 1221	

specific interactions with other microorganisms (Paul et al., 2012; Longnecker et al., 1222	

2015; Schmidt et al., 2015). VOCs are estimated to comprise 30-40% of the dissolved 1223	

organic carbon (DOC) pool that is the basis of the microbial food web (Dachs et al., 1224	

2005; Ruiz-Halpern et al., 2010; Hauser et al., 2013). 1225	

VOCs have a variety of roles in phytoplankton metabolism and ecology. VOCs 1226	

can be important in signaling or grazing defense (Fink, 2007), support specific synergistic 1227	

or antagonistic interactions with other microorganisms (Amin et al., 2015; Van Tol et al., 1228	
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2016), provide protection from oxidative stress (Dani and Loreto, 2017), or are metabolic 1229	

waste that may include products from overflow primary production (Schmidt et al., 2015; 1230	

Srikanta Dani et al., 2017). In our study, we explore the possibility that some VOCs are 1231	

intermediates or byproducts of metabolism that are uncontrollably lost from cells. Their 1232	

low molecular weight, high vapor pressure, and, in many cases, hydrophobic properties, 1233	

enable VOCs to diffuse across cell membranes (Bjørrisen, 1988; Shaw et al., 2003; 1234	

Halsey et al., 2017). Uncontrollable losses of membrane-permeable organic compounds, 1235	

including VOCs, could be promoted by heterotrophic removal of these compounds from 1236	

the environment, and the loss of carbon by this mechanism is potentially taxing to 1237	

primary producers (Bjørrisen, 1988).   1238	

Pelagibacter (Pelagibacterales) are ubiquitous, free-living heterotrophic 1239	

bacterioplankton that have been shown to metabolize many low molecular weight, labile 1240	

organic compounds, including VOCs (Giovannoni, 2017).  As a result of genomic 1241	

streamlining, Pelagibacter have specific carbon and nutrient requirements (Tripp et al., 1242	

2008; Carini et al., 2012), and have evolved to transport and metabolize a variety of 1243	

phytoplankton-derived low molecular weight carbon compounds, including VOCs, using 1244	

a limited genetic repertoire (Giovannoni et al., 2005). For example, Pelagibacter 1245	

metabolize a variety of methylated and volatile compounds, including methanol, 1246	

dimethylsulfide (DMS), formaldehyde, acetaldehyde, methylamine, and methylated 1247	

arsenic species (Sun et al., 2011, 2016; Halsey et al., 2017; S. Giovannoni et al., 2019). 1248	

The full diversity and quantity of VOCs produced by phytoplankton are unknown, 1249	

but the multiple roles of these compounds in ecology and atmospheric chemistry makes 1250	

understanding their sources and sinks an important goal in marine microbial ecology. 1251	
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Microbial food web research often relies on the high-temperature catalytic oxidation 1252	

method to determine the DOC pool available for heterotrophic consumption.  However, 1253	

this method systematically underestimates the volatile components in DOC (Bisutti et al., 1254	

2004); therefore, quantitative measurements of bulk VOCs in the ocean or in culture are 1255	

rare (Hauser et al., 2013). Attention has primarily been given to a handful of compounds, 1256	

such as dimethyl sulfide (DMS), methanol, and acetone, that are known to be biologically 1257	

cycled and have impacts on the atmosphere and climate (Sinha et al., 2007; Beale et al., 1258	

2013; Dixon et al., 2013). 1259	

To understand the dynamics and impacts of VOC exchange in marine microbial 1260	

food webs, the growth and physiology of the diatom Thalassiosira pseudonana (CCMP 1261	

1335) and free-living heterotrophic bacterium Pelagibacter ubique (HTCC1062) were 1262	

studied in mono-culture and co-culture. Pelagibacter strain HTCC1062 (ecotype 1a.1) 1263	

used in these experiments was originally isolated from Oregon coastal waters and is 1264	

common in temperate and polar regions where diatoms, including T. pseudonana, 1265	

contribute significantly to primary production at some times of the year. Proton-transfer- 1266	

reaction time-of-flight mass spectrometry (PTR-TOF/MS) was used to detect VOCs that 1267	

changed in concentration in the co-culture relative to the diatom mono-culture, revealing 1268	

a wide range of VOCs that are substrates for Pelagibacter metabolism.  Diatom carbon 1269	

fixation rates increased both in the presence of the heterotroph and when VOCs were 1270	

removed from the co-culture with a hydrocarbon trap.  These results indicate that VOCs 1271	

are an important conduit of carbon transfer between diatoms and Pelagibacter cells, and 1272	

that the expense of VOC loss from phytoplankton cells imposes a significant tax on the 1273	

energetics of photosynthetic carbon fixation. 1274	
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 1275	

Experimental procedures 1276	

 1277	

Culture growth  1278	

 1279	

 Axenic stock and experimental cultures of Thalassiosira pseudonana CCMP 1335 1280	

and Pelagibacter ubique HTCC1062 were maintained in f/2 +Si artificial seawater 1281	

medium (Guillard and Ryther, 1962) with the following modifications to support growth 1282	

of HTCC1062: 0.939 mM KCl, 0.802 mM NO3
-, 1.0 mM NH4Cl, 0.05 mM glycine, 0.01 1283	

mM methionine, 0.078 mM pyruvate, 0.84 µM pantothenate, 0.985 µM 4-amino-5- 1284	

hydroxymethyl-2-methylpyrimidine (HMP), 0.3 µM thiamine, 0.002 µM biotin, 0.117 1285	

µM FeCl3 * 6H2O, 0.009 µM MnCl2 4H2O, 0.0008 µM ZnSO4 7H2O, 0.0005 µM CoCl2* 1286	

6H2O, 0.0003 µM Na2MoO4 2H2O, 0.001 µM Na2SeO3, and 0.001 µM NiCl2 * 6H2O 1287	

(Carini et al., 2012, 2014) . Following autoclaving, the growth medium was bubbled with 1288	

0.1µm filter-sterilized carbon dioxide and air for 8 hours and 16 hours respectively prior 1289	

to use. Cultures were grown in 250 ml to 500 ml polycarbonate flasks or bottles at 16oC, 1290	

under 25 µmol photons m-2 s-1 on a 12-hour light-dark cycle, with gentle shaking at 60 1291	

rpm. Starting concentrations were 2x103 cells mL-1 for T. pseudonana or 2x105 cells mL-1 1292	

for HTCC1062 to allow both organisms to reach stationary phase at approximately the 1293	

same time when in co-culture. For all co-cultures, both organisms were added to the 1294	

medium at the same time, with the exception of the experiment where HTCC1062 was 1295	

grown in co-culture without pyruvate, glycine or methionine additions. In this case, 1296	

exponentially growing cultures of T. pseudonana was allowed to grow for 72 h prior to 1297	
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inoculation of HTCC1062. Cell densities of T. pseudonana were monitored with a 1298	

Coulter counter (Beckman Coulter; Brea, CA, USA) while HTCC1062 cells were stained 1299	

with Sybr Green I and counted using a Guava Technologies flow cytometer (Millipore; 1300	

Billerica, MA, USA)). All experiments and measurements were conducted while the cells 1301	

were in exponential growth phase and approximately 3 to 6 hours into the daylight 1302	

portion of the light cycle.  1303	

For VOC removal experiments, 50 mL T. pseudonana mono-cultures were grown 1304	

at 18oC and 25 µmol photons m-2 s-1 on a 12-hour light-dark cycle. These cultures were 1305	

grown in a closed system that re-circulated headspace air at 15-20 mL min-1 using a 1306	

peristaltic pump. The headspace was circulated through a Supelpure HC hydrocarbon trap 1307	

(Millipore-Sigma; St. Louis, MO, USA) that removed VOCs in a loop that flowed back 1308	

directly into the growth medium. Headspace air in the control cultures was re-circulated 1309	

in the same manner, except the carbon trap was omitted, thereby ensuring concentrations 1310	

of CO2, O2, and physical turbulence from bubbling did not vary between treatments. 1311	

Growth media was pre-treated by recirculating headspace air in this system for one week 1312	

prior to the addition of cells, and continued to run as the cultures grew. T. pseudonana 1313	

growth was monitored daily and harvested for carbon fixation and chlorophyll 1314	

measurements after growth for about one week.  1315	

 1316	

Carbon fixation measurements 1317	

 1318	

4 µCi of 14C labeled sodium bicarbonate was added to 9mL sub-samples of T. 1319	

pseudonana mono- or co-cultures that were collected during mid to late exponential 1320	
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phase of growth.  Working in the near-dark, samples were split into two aliquots and 1321	

incubated at 25 µmol photons m-2 s-1, or in the dark, for 20 min before terminating carbon 1322	

uptake by adding 500 µL 1N HCl. Prior to incubation, 50 µL of the 14C-spiked sample 1323	

was combined with 50 µL phenethylamine and 900 µL additional growth medium for 1324	

total activity measurements.  After samples were allowed to vent for 24 h, 1 mL aliquots 1325	

were combined with 5 mL EcoScint liquid scintillation cocktail then measured using a 1326	

scintillation counter (Beckman-Coulter; Brea, CA, USA). pH measurements of each 1327	

culture were also taken as a proxy for CO2 concentrations, with no significant differences 1328	

measured between culture pairs (mean difference  = 0.03, p=0.67, paired t-test; n=6). Cell 1329	

enumerations by Guava flow cytometry indicated no bacterial contamination. One mono- 1330	

and co-culture pair, or +/- VOC trap culture pair, was assayed at a time. These 1331	

experiments were repeated several times, on different days, at the same point in the light 1332	

cycle, using independent pairs of cultures. For each iteration, the treatment condition 1333	

(“co-culture” or “VOC removed”) was compared directly to the associated T. pseudonana 1334	

mono-culture measured at the same time. 1335	

 1336	

Photophysiology 1337	

 1338	

Chlorophyll-a was extracted from cells by collecting 5-10 mL of culture onto 1339	

glass fiber filters, which were then immersed in 5 mL 90% acetone, and stored at -20o C 1340	

for 24 hours. Absorbance from 400 to 800 nm of both extracted chlorophyll and whole 1341	

filtered cells (total absorbance) was measured with a spectrophotometer (Shimadzu; 1342	

Kyoto, Japan). Chlorophyll concentration was calculated according to the methods of 1343	
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(Ritchie, 2006). Total cellular absorbance from 400 to 800 nm was measured 1344	

immediately after filtration and calculated according to (Mitchell and Kieper, 1988). 1345	

Samples for pigment analysis by HPLC were collected by the same filtration method, 1346	

sealed in foil and flash frozen in liquid nitrogen and stored at -80 o C until analysis by the 1347	

Oregon State University HPLC facility using a modified version of the high-performance 1348	

liquid chromatography (HPLC) method of Wright et al., 1991 as described by Bidigare et 1349	

al., 2005. Filters were extracted in 100% acetone for 24 h, at 4°C.  Extracts were 1350	

processed in reverse-phase on a 250 mm C18 column using a Waters separations module 1351	

and photodiode detector array. Empower chromatography software was used for 1352	

integration and pigment quantification.  The instrument was calibrated using chlorophyll- 1353	

a from Anacystis nidulans (Millipore-Sigma; St. Louis, MO, USA) and mixed pigment 1354	

standards were obtained from DHI (Hørsholm, Denmark). Fv/Fm, a measurement of 1355	

photosynthetic efficiency, was performed by diluting 100 µL of culture into 3.5 mL of 1356	

fresh growth medium, then acclimated under dim blue light at 5 µmol photons m-2 s-1 for 1357	

5 minutes followed by an additional minute under complete darkness. Cellular 1358	

fluorescence was then measured using a custom built fast repetition-rate fluorometer 1359	

(Kolber et al., 1998). 1360	

 1361	

ATP assays  1362	

 1363	

200 mL HTCC1062 cultures were harvested by centrifugation in late exponential 1364	

growth phase. Cell pellets were washed and re-suspended three times in modified f/2 +Si 1365	

medium lacking glycine, methionine and pyruvate to remove residual growth substrates. 1366	
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Washed cells were re-suspended to 15 mL in the same f/2 medium and incubated in the 1367	

dark at 16oC overnight. Starved cells were enumerated by flow cytometry, and then split 1368	

into a minimum of three replicate 500 µL cultures in 2mL sterile cryovials for each 1369	

condition being tested. Individual VOCs (1 µM each), pyruvate (1 µM, positive control) 1370	

or water (negative control) were added to the cultures, sealed tightly and incubated in the 1371	

dark for 4 hours. Cellular ATP was measured by adding 20 µL cell suspension to 90 µL 1372	

Promega Bac-Titer Glo reagent (Promega; Madison, WI, USA). Luminescence was 1373	

measured using a luminometer (Tecan; Männedorf, Switzerland), set to 10 ms settle time 1374	

and 1000 ms integration time, following mixing the sample for 5 seconds and incubating 1375	

for 4 minutes at room temperature. Luminescence signal was compared to an ATP 1376	

standard curve to calculate cellular ATP concentrations.  1377	

 1378	

PTR-TOF/MS 1379	

 1380	

PTR-TOF/MS (Ionicon Analytik; Innsbruck, Austria) was utilized to measure 1381	

VOCs in T. pseudonana mono- and co-cultures. Four replicate mono- and co-cultures 1382	

were grown in vented flasks for about 2 weeks, then destructively sampled 4-6 hours into 1383	

the daylight portion of the light cycle while both species were in exponential growth 1384	

phase. T. pseudonana cell densities in mono and co-cultures were equalized across 1385	

replicate cultures by addition of fresh growth medium, which was identical to the 1386	

medium used as the “blank” control [Table 1]. 100 mL of culture was added to a VOC 1387	

stripping chamber maintained at 16oC and 25 µmol photons m-2 s-1, and bubbled through 1388	

a glass frit in the bottom of the chamber with breathing grade air at 50 mL min-1 for 5 1389	
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min to strip VOCs from the growth medium, and repeated for each replicate. This 1390	

apparatus is described in Halsey et al., 2017. Each culture, and a blank fresh growth 1391	

medium control, was measured independently using the same stripping chamber to 1392	

reduce any effects due to variation in chamber construction or bubble production. VOCs 1393	

stripped from the culture into the headspace were measured directly by the PTR-TOF/MS 1394	

via soft/non-fragmenting ionization with H3O+. A mass spectrum ranging from 30-240 1395	

a.m.u was acquired at 5 s intervals over the course of 5 min. Each peak in the mass 1396	

spectrum represents a compound of its molar mass + 1.008 (from the hydrogen ion). 1397	

Because the first 2.5 min of the measurement was used to expel headspace from the 1398	

chamber, only the last 2.5 min of data containing VOCs displaced from the culture 1399	

medium was used in the analysis.  1400	

PTR-TOF/MS data was processed using the program PTR-Viewer (version 1401	

3.2.8.0) (Ionicon Analytik, Innsbruck, Austria). Files were mass calibrated to three 1402	

chemicals known to be present within each mass spectrum (m/z 29.998, 203.943, and 1403	

330.848).  Initially, a mass binning approach was used to bin data at intervals of 0.5 mass 1404	

units, bounded at 0.25 and 0.75 mass units (e.g. the m/z 59 bin ranged from 58.75-60.25). 1405	

The precision of PTR ToF/ MS allows for detection of small variations in mass, and as a 1406	

result, some 0.5 mass unit bins contained multiple peaks generated by different 1407	

compounds. The mass spectra were visually examined for multiple peaks within the same 1408	

mass bin. All instances for which multiple peaks were identified were subsequently 1409	

analyzed using a Gaussian based approach to examine each peak individually. Integrated 1410	

signals for each peak were normalized to primary ion (H3O+) concentrations, and 1411	

concentrations for each mass peak were calculated. Only m/z values that had 1412	
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concentrations in culture greater than two standard deviations above the blank growth 1413	

medium concentration were considered in the downstream analysis. Mean concentrations 1414	

of VOCs derived from mono-culture and co-cultures were then compared using a 1415	

students t-test with a p-value significance cut-off of 0.05 (n=4). Since a t-test was 1416	

performed for 82 different m/z values that had concentrations greater than the blank, 1417	

resulting p-values were corrected for multiple hypothesis testing. The Benjimani- 1418	

Hochberg procedure was applied with a Q-value cutoff ≤ 0.1 to reduce the likelihood of 1419	

false positives.   1420	

 1421	

Results 1422	

 1423	

Culture Growth 1424	

 1425	

In growth medium replete with its known required organic carbon and reduced 1426	

sulfur sources [pyruvate, glycine and methionine; (Tripp et al., 2008; Carini et al., 1427	

2012)], HTCC1062 had a generation time of 45.2 ± 0.9 h in co-culture with T. 1428	

pseudonana and grew faster than the HTCC1062 mono-culture (51.1 ± 1.3 hours; p= 1429	

1.7x10-4, n=5). Both cultures continued growing in exponential phase until nearly 1x108 1430	

cells mL-1. There was no difference in generation times of T. pseudonana grown in 1431	

mono- and co-cultures (42.0 ± 1.5 and 41.6 ± 1.2, p=0.63, n=5) [Fig. 1A, 1B]. The faster 1432	

growth rate of HTCC1062 in co-culture prompted us to ask if the diatom could support 1433	

HTCC1062 growth even when its required growth substrates were not added to the 1434	

medium. In co-culture with no added pyruvate, glycine or methionine, HTCC1062 1435	
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attained a maximum cell density that was four-fold higher (7.9 x 106 cells mL-1) than the 1436	

HTCC1062 mono-culture grown in the absence of pyruvate, glycine and methionine (1.2 1437	

x 106 cells mL-1) [Fig. 1C]. After 528 hours, the HTCC1062 cell density in co-culture 1438	

crashed contemporaneously with T. pseudonana reaching stationary phase (data not 1439	

shown).  1440	

 1441	

Production and consumption of volatile organic compounds (VOCs) in co-culture 1442	

 1443	

We hypothesized that T. pseudonana produces VOCs that can be used as growth 1444	

substrates by HTCC1062. PTR-TOF/MS was used to measure VOCs that had 1445	

accumulated in the culture medium of T. pseudonana grown in mono-culture and in co- 1446	

culture with HTCC1062 after about two weeks of growth. In the mono-culture and co- 1447	

culture, 82 of 238 detected m/z values had concentrations greater than that of the fresh 1448	

growth medium blank, and these m/z values ranged from 33.035 to 231.140 [Table 1]. Of 1449	

these 82 m/z values, 50 m/z values had higher concentrations than the blank in both the 1450	

co-culture and T. pseudonana mono-culture. 16 additional m/z values had concentrations 1451	

that were higher in the T. pseudonana mono-culture, but not the co-culture when 1452	

compared to the blank, while 16 others were higher in the co-culture, but not in the T. 1453	

pseudonana mono-culture when compared to the blank [Table 1].  1454	

Nine m/z values were identified that significantly changed in concentration 1455	

between the T. pseudonana mono-culture and co-culture [Fig. 2A, 2B]. Eight of the nine 1456	

m/z values were lower in  concentration in the co-culture compared to the T. pseudonana 1457	

mono-culture, with m/z 101.096 showing the largest relative decrease in co-culture 1458	
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concentration with a log2 fold-change of -1.24 [Fig. 2B]. Several m/z values that changed 1459	

in concentration in the co-culture compared to the T. pseudonana mono-culture were 1460	

putatively identified in Table 2 on the basis of their mass number and previous reports of 1461	

biogenic production by phytoplankton (Cotsaris et al., 1995; Colomb et al., 2008b; 1462	

Jüttner et al., 2010; Dani and Loreto, 2017; Halsey et al., 2017). As a result, we identified 1463	

cyclohexanol, hexanal, cyclopentanol, acetaldehyde, acetonitrile, and acetone as 1464	

compounds that changed significantly (Q ≤ 0.1) in concentration in the co-culture 1465	

compared to the diatom mono-culture [Fig. 2, Table 2]. Dimethyl sulfide (m/z 63.026) 1466	

and isoprene (m/z 69.070), two important VOCs in the marine environment, marginally 1467	

changed in concentration between the mono- and co-cultures [Fig. 2, Table 2]. VOCs at 1468	

m/z 82.958 and 84.940 were also lower in concentration in the co-culture relative to the 1469	

mono-culture. These two m/z values may be halogenated organic compounds, such as 1470	

carbonyl chlorofluoride (m/z 82.958) or dichloromethane (m/z 84.940), which are 1471	

reportedly produced in large quantities by diatoms (Colomb et al., 2008a; Paul and 1472	

Pohnert, 2011),. Halogenated compounds were not expected to be observed when running 1473	

the PTR-TOF/MS in H3O+ mode, but ionization by contaminant O2
+ ions originating 1474	

from the ion source may have allowed for detection of some halogenated compounds. 1475	

One m/z value, 49.011 (methanethiol), was higher in concentration in the co-culture 1476	

compared to the T. pseudonana mono-culture, as might be anticipated since Pelagibacter 1477	

has previously been identified as a methanethiol producer (Sun et al., 2016). There were 1478	

no differences in the concentrations of compounds with m/z values larger than 101.096. 1479	

 1480	

ATP measurements 1481	
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 1482	

A sensitive luciferase-based assay to measure cellular ATP was used to test 1483	

whether HTCC1062 could metabolize the compounds we identified using PTR-TOF/MS. 1484	

VOCs we putatively identified based on molecular mass and previous reports of 1485	

production by phytoplankton (Cotsaris et al., 1995; Colomb et al., 2008b; Jüttner et al., 1486	

2010; Dani and Loreto, 2017; Halsey et al., 2017) were fed to starved HTCC1062 cells. 1487	

Acetone (m/z 59.049), isoprene (m/z 69.070), and two compounds representing m/z 1488	

101.096, hexanal and cyclohexanol, caused increases in cellular ATP content over the no- 1489	

VOC-added control [Table 3]. 2-Hexanone and cis-3-hexen-1-ol, which were also 1490	

candidate compounds representing m/z 101.096, did not result in increases in cellular 1491	

ATP content. Acetonitrile (m/z 42.034) concentrations changed between the mono- and 1492	

co-culture, and toluene appeared as a compound of interest early on in our analysis, but 1493	

increased ATP content could not be confirmed in cells fed either of these compounds 1494	

because of a large standard deviation across replicates in this particular experiment. 1495	

These data confirm that HTCC1062 can utilize a variety of VOCs as energy sources, thus 1496	

the metabolism of these compounds by HTCC1062 may have resulted in their lower 1497	

concentrations measured in the co-cultures. Since many different compounds with a wide 1498	

variety of elemental compositions and structures can have the same mass number, we 1499	

could not screen all of the chemical compounds that could represent each m/z value 1500	

identified in Table 2. Consequentially, we cannot rule out that other VOCs sharing the 1501	

same molecular mass contribute to the observed concentration changes in the PTR- 1502	

TOF/MS m/z values.  1503	

 1504	
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Carbon fixation and photophysiology 1505	

 1506	

Even though the presence of HTCC1062 did not cause a change in the growth rate 1507	

of T. pseudonana when compared to its growth rate in mono-culture [Fig 1B], we 1508	

considered the possibility that other photo-physiological changes may have been 1509	

stimulated by HTCC1062. Fv/Fm experienced a slight drop from 0.62 in mono-culture to 1510	

0.60 in co-culture, but there were no other evident differences in various measurements 1511	

of diatom photo-physiology, including chlorophyll-a, total integrated cellular absorption, 1512	

and measurements of other photo-pigment concentrations between the mono- and co- 1513	

cultures [Table 4].  1514	

Photosynthetic carbon fixation was measured in seven independent pairs of T. 1515	

pseudonana mono- and co-cultures. Carbon fixation varied between iterations of the 1516	

experiment from 0.0249 to 0.0939 pmol C cell-1 h-1. Nevertheless, the average difference 1517	

in carbon fixation between mono- and co-culture pairs was 0.0139 pmol C cell-1 h-1 (p = 1518	

0.05, paired t-test, n = 7), equating to a mean increase of 20.3% in T. pseudonana carbon 1519	

fixation in the co-culture compared to the mono-culture [Fig. 3A]. Accumulation of the 1520	

14C tracer in bacterial biomass through inorganic carbon fixation was ruled out because 1521	

the mean increase in carbon fixation by the diatoms in the co-cultures was 9.51x103 pmol 1522	

C mL culture-1 h-1, but incorporation of the labeled inorganic carbon by HTCC1062 was 1523	

only 1.07x101 pmol C mL culture-1 h-1, about three orders of magnitude less than the 1524	

average difference in carbon fixation between the T. pseudonana mono and co-cultures. 1525	

We hypothesized that metabolism of VOCs by HTCC1062 stimulated the faster 1526	

rate of carbon fixation in T. pseudonana in co-culture relative to the mono-culture. To 1527	
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test this idea, we replaced the biological VOC sink (i.e., HTCC1062) with a physical 1528	

VOC sink – a hydrocarbon trap in a circulating gas loop. When VOCs were continuously 1529	

removed from the T. pseudonana cultures using the hydrocarbon trap, carbon fixation 1530	

increased by an average of 0.0214 pmol cell-1 h-1 (18.1%) compared to normal cultures 1531	

containing VOCs [Fig. 3B, p = 0.08, paired t-test, n=6]. Similar to the growth 1532	

experiments in the presence and absence of HTCC1062, T. pseudonana growth rates 1533	

were unaffected by the presence or absence of VOCs (0.57 ± 0.02 and 0.56 ± 0.04 d-1, 1534	

respectively). 1535	

 1536	

Discussion  1537	

The total VOC pool has attracted attention as a potentially significant component 1538	

of phytoplankton-derived DOC in the marine environment (Myklestad, 2000; Thornton, 1539	

2014), but the magnitude of VOC flux between phytoplankton and bacterioplankton and 1540	

the suite of compounds involved have not been characterized with enough precision and 1541	

detail to draw definitive conclusions. Two studies suggested that 30 to 40% of marine 1542	

DOC is composed of VOCs (Dachs et al., 2005; Ruiz-Halpern et al., 2010), but 1543	

methodological issues confounded those results (Hauser et al., 2013).  There is also 1544	

uncertainty about variation in the contributions of VOCs to the DOC pool across different 1545	

ocean regions and time scales, which are needed to close the carbon budget and define 1546	

the roles of VOCs in marine ecology and their impacts on atmospheric processes 1547	

(O’Dowd and de Leeuw, 2007; Facchini et al., 2008; Spracklen et al., 2008).  1548	

We designed experiments with two taxa that are important carbon cycle 1549	

contributors in productive temperate coastal ocean regions, and studied their VOC- 1550	
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associated interactions with analytical methods that were not confined to known targeted 1551	

VOCs. VOCs known to be produced by diatoms, including, acetone (m/z 59.049), and 1552	

cyclohexanol (m/z 101.096) (Cotsaris et al., 1995; Colomb et al., 2008a; Dani and 1553	

Loreto, 2017; Halsey et al., 2017; Srikanta Dani et al., 2017), were identified and shown 1554	

to be metabolized by the common heterotroph Pelagibacter, which co-occurs in diatom 1555	

habitats. Unexpectedly, consumption of these VOCs by Pelagibacter imposed a 1556	

significant energetic tax on T. pseudonana by decoupling photosynthetic carbon fixation 1557	

from growth. To explain these observations, we postulate that some VOCs used by 1558	

Pelagibacter are volatile metabolic intermediates in phytoplankton biochemical pathways 1559	

that enter a pool of public goods. In this conceptual model, Pelagibacter metabolism of 1560	

these public goods imposes an energetic tax by requiring the diatom to more rapidly fix 1561	

carbon to maintain intracellular pools of volatile metabolites.  1562	

Growth of HTCC1062 in co-culture with T. pseudonana caused VOCs at nine 1563	

different m/z values to change in concentration relative to T. pseudonana mono-cultures. 1564	

Eight of these m/z values decreased in concentration in the co-culture, suggesting that 1565	

metabolism of VOCs by HTCC1062 resulted in their lower observed concentrations in 1566	

co-culture. An alternative interpretation of these data is that, in the co-culture, production 1567	

of these VOCs by T. pseudonana was diminished by the presence of HTCC1062. The 1568	

first explanation is more likely because when VOCs representing several m/z values were 1569	

fed to HTCC1062 in mono-culture, ATP content in the cells increased [Table 3]. 1570	

Additionally, we observed a decrease in the concentrations of m/z 45.033 (acetaldehyde) 1571	

and 63.026 (dimethyl sulfide [DMS]), as well as an increase in the concentration of m/z 1572	

49.011 (methanethiol), findings that are consistent with previous reports showing 1573	
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HTCC1062 metabolism of acetaldehyde and DMS, and formation of methanethiol as a 1574	

waste product of DMSP metabolism (Sun et al., 2016; Halsey et al., 2017). Thus, we can 1575	

add acetone, isoprene, cyclohexanol, and hexanal to the growing list of VOC substrates 1576	

used by Pelagibacter, but the rates and mechanisms of their metabolism remain to be 1577	

determined. Acetonitrile and toluene marginally increased in ATP content; however, 1578	

significant variability in this particular experiment prevented us from confirming 1579	

HTCC1062 metabolism of these compounds by this approach. Significant, yet modest 1580	

increases in cellular ATP content when supplied the VOCs shown in Table 3 indicate that 1581	

certain VOCs can be utilized by HTCC1062, but they do not provide as much ATP as 1582	

pyruvate, a required growth substrate. However, the collective impact of many different 1583	

VOCs utilized simultaneously by HTCC1062 in co-cultures or in the environment could 1584	

additively constitute a significant energy input for cell metabolism. 1585	

Recent work examining bacterial metabolism of VOCs in the marine environment 1586	

has shown that a limited but diverse array of marine heterotrophic bacterioplankton are 1587	

able to harvest VOC compounds and use them to supply elemental quotas or energy (Sun 1588	

et al., 2011; Halsey et al., 2012, 2017; Dixon et al., 2014; Johnston et al., 2017; Sargeant 1589	

et al., 2018). For example, acetone metabolism rates in seawater were positively 1590	

correlated with the abundance of low nucleic acid bacteria, which dominated the 1591	

community and included Rhodobacteriales and SAR11/Pelagibacter (Dixon et al., 2014). 1592	

Similarly, the abundance of SAR11 was correlated with rates of methanol oxidation and 1593	

explained up to 59% of methanol oxidation in oligotrophic environments (Sargeant et al., 1594	

2018). Rhodococcus, Gordonia, and Mycobacterium were enriched in seawater incubated 1595	

with isoprene (Johnston et al., 2017), and the evolutionarily distant methylovore 1596	
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HTCC2181 (Betaproteobacteria) metabolized a variety of VOCs, including methyl 1597	

chloride and methanol (Halsey et al., 2012). Aside from these few examples, the 1598	

microbes responsible for metabolizing VOCs in the ocean and the biochemical pathways 1599	

involved remain relatively unknown. 1600	

T. pseudonana supported growth of Pelagibacter HTCC1062 with no added 1601	

pyruvate, glycine or methionine [Fig 1C], and enhanced HTCC1062 growth rates under 1602	

carbon replete conditions in co-culture [Fig. 1A]. These data show that T. pseudonana 1603	

produced compounds that met the unusual requirements of HTCC1062 for reduced sulfur 1604	

compounds, glycine or glycine precursors, and alanine or alanine precursors (Tripp et al., 1605	

2008; Carini et al., 2012, 2014).  The ubiquitous cyanobacterium, Prochlorococcus, was 1606	

also observed to support growth of a related Pelagibacter strain, HTCC7211, in co- 1607	

culture. Similar to HTCC1062 growing with T. pseudonana, HTCC7211 exhibited 1608	

enhanced growth during the Prochlorococcus exponential phase and a rapid decline in 1609	

cell density when Prochlorococcus reached stationary phase (Becker et al., 2019), 1610	

potentially due to a shift in the types of exometabolites produced as the phytoplankton 1611	

reaches stationary phase (Barofsky et al., 2009; Longnecker et al., 2015). Exometabolite 1612	

production, including VOCs, differs among phytoplankton (Halsey et al., 2017; Landa et 1613	

al., 2017), but in the two examples of phytoplankton co-cultured with Pelagibacter 1614	

reported so far, the phytoplankton exometabolites were sufficient to support growth when 1615	

required growth substrates were omitted from the growth medium, with the exception of 1616	

vitamins such as 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP), which were not 1617	

tested in either study (Becker et al., 2019). The volatile components of DOC produced by 1618	

T. pseudonana were demonstrated to be sources of energy for HTCC1062, as some of the 1619	
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identified VOCs stimulated ATP production by the bacteria, but their contribution to the 1620	

observed growth enhancement of HTCC1062 in co-culture remains uncertain, with the 1621	

exception of acetaldehyde (m/z 45.033), which can be incorporated into HTCC1062 1622	

biomass (Halsey et al., 2017). Experiments examining the metabolism of VOCs by 1623	

HTCC1062 in greater detail are necessary to understand their importance as substrates, 1624	

but studies on the metabolism of other carbon substrates by the SAR11 clade indicate that 1625	

many organic compounds are oxidized for energy, rather than used for growth (Sun et al., 1626	

2011; Halsey et al., 2017; S. J. Giovannoni et al., 2019).  1627	

The propensity of low molecular weight, non-polar, or hydrophobic volatile 1628	

compounds to diffuse through the cell membrane (Bjørrisen, 1988) means that they can 1629	

be uncontrollably lost from cells. For photoautotrophs, this carbon loss can be taxing to 1630	

the energetics of their growth, especially in small cells with low surface area to volume 1631	

ratios, unless a relatively high environmental concentration of VOCs exists to maintain 1632	

equilibrium with the VOCs inside the cell (Bjørrisen, 1988). In principle, the 1633	

consumption of VOCs by heterotrophic organisms would promote the flux of VOC 1634	

metabolites from the phytoplankton cells into the environment. We found support for this 1635	

interpretation in the observation that we could simulate continuous bacterial VOC 1636	

consumption by recirculating the headspace air in T. pseudonana mono-cultures through 1637	

a hydrocarbon trap. Removal of VOCs using this method caused an 18.1% increase in 1638	

carbon fixation compared to cultures containing VOCs, without altering growth [Fig. 1639	

3B]. Comparably, HTCC1062 caused T. pseudonana carbon fixation to increase by 1640	

20.3% in the co-culture [Fig. 3A]. These results suggest that removal of VOCs from the 1641	

culture medium stimulated diffusional efflux of VOCs from T. pseudonana, and the cells 1642	
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responded to this loss of carbon by increasing carbon fixation. This response implies that 1643	

phytoplankton depend on the availability of volatile compounds to maintain metabolic 1644	

efficiency and constant growth rates. A similar phenomenon is shown to occur in 1645	

bacterial cultures producing siderophore public goods under iron limitation, where 1646	

siderophore production by Pseudomonas aeruginosa was higher in the presence of 1647	

cheater cells that steal, but do not synthesize siderophores (Weigert and Kümmerli, 1648	

2017). Thus, VOCs are another example of a public good that can be exploited by the 1649	

broader microbial community at the expense of the VOC producer.  1650	

Phytoplankton are sources of diverse VOC compounds, some of which have been 1651	

identified as by-products or intermediates in biochemical pathways, such as carotenoid 1652	

synthesis (Schmidt et al., 2015). Some VOCs are reported to function as antioxidants in 1653	

higher plants and algae, and protect phytoplankton cells from reactive oxygen species, 1654	

especially in high light conditions (Dani and Loreto, 2017). Although the roles of VOCs 1655	

in metabolism are known in only a few cases, our findings are consistent with the 1656	

interpretation that VOCs are metabolic intermediates and therefore the depletion of the 1657	

VOC pool by physical or biological sinks requires cells to respond by increasing carbon 1658	

fixation rates to make up for the loss flux. Despite there being no difference in T. 1659	

pseudonana growth rates in either of our experiments, VOCs cannot be considered 1660	

“costless public goods” (Pacheco et al., 2019) because of the energetic costs associated 1661	

with increasing carbon fixation to maintain T. pseudonana growth and homeostasis. Such 1662	

cryptic physiological responses are challenging to measure but important for 1663	

understanding the causes of variability in photosynthesis, which remain a major source of 1664	
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error in estimates of global primary production (Cullen, 1990; Behrenfeld and Falkowski, 1665	

1997).  1666	

Elevated carbon fixation was observed in another diatom, Phaeodactulum 1667	

tricornutum. In that study, it was hypothesized that catabolism of diatom-derived carbon 1668	

by attached bacterial communities alleviated CO2 limitation at the diatom cell surface, 1669	

thus stimulating carbon fixation (Samo et al., 2018). However, enhanced carbon fixation 1670	

was heterogeneous in single cell measurements, and was only observed in one of two P. 1671	

tricornutum co-cultures examined (Samo et al., 2018). In another study, increased 1672	

expression of transcripts associated with Photosystem I and chlorophyll synthesis 1673	

occurred in Prochlorococcus when growing in a co-culture with Alteromonas (Biller et 1674	

al., 2016). Such changes may indicate that carbon fixation increased in Prochlorococcus 1675	

in response to the heterotrophic consumption of carbon released by the algae, but carbon 1676	

fixation was not directly measured (Biller et al., 2016).  1677	

 We offer a similar explanation for observed increases in photosynthesis when 1678	

phytoplankton are co-cultured with heterotrophs.  The evidence we provide supports a 1679	

mechanism in which bacterial metabolism of VOCs lowers VOC concentrations in the 1680	

environment, causing an increase in the leakage of VOC metabolites from phytoplankton 1681	

cells.  This scenario assumes that the VOC metabolites in question are not end-products 1682	

that have no further metabolic purpose and would be wasted. Increasing the flux of such 1683	

compounds from cells would force phytoplankton to increase carbon fixation to maintain 1684	

their growth rate. If this interpretation is correct, then bacterial catabolism of diffusible 1685	

public goods couples VOC production and consumption in a VOC cycle that has a 1686	
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feedback mechanism, inducing more photosynthetic production and decreasing the 1687	

efficiency of CO2 conversion into phytoplankton biomass.   1688	

 Our study, which used representatives of two of the most abundant 1689	

microorganisms in the oceans, indicated VOC fluxes that we estimate are about 20% of 1690	

carbon fixation. Rising awareness of VOC cycling has led to speculation about their 1691	

contribution to the overall carbon cycle of the oceans.  Across the entire ocean, gross 1692	

primary production is estimated at 1.55 x 1017 g C y-1 (Marra, 2002; Westberry et al., 1693	

2008). If 20% of carbon fixed in the ocean is released from algae as VOCs, the total 1694	

marine VOC production rate would be 3.10 x 1016 g C y-1. This estimate is subject to 1695	

large uncertainties, and likely depends on many unexplored factors, including growth 1696	

conditions and community composition, but it establishes an approximate magnitude for 1697	

the process we observed. Unexpectedly large fluxes of VOCs from phytoplankton and 1698	

specialization in the oxidation of labile low molecular weight compounds, including 1699	

VOCs, by SAR11 may partially explain how small, simple SAR11 cells capture an 1700	

estimated 6-37% of gross primary production (White et al., 2018).  1701	

Our results suggest that the VOC cycle can be a very significant component of 1702	

carbon transfer from phytoplankton to bacteria.  Further exploration of this topic likely 1703	

will take varied paths, which might include further studies with cultured cells to define 1704	

the metabolic origins, turnover times, and fates of the wide variety of VOCs that are 1705	

being detected in phytoplankton cultures.  Also important will be field studies to measure 1706	

these compounds in the environment, where, in many cases, they have seldom or never 1707	

been reported.  Defining the roles of VOCs will contribute to a better understanding of 1708	

many features of the carbon cycle, for example uncoupling of gross and net carbon 1709	
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fixation, the niches of heterotrophs, like SAR11, some of which paradoxically capture a 1710	

large fraction of production with small genomes, and the variable influence of plankton 1711	

on the atmosphere, where VOCs are engaged in complex chemistry. 1712	

 1713	

Originality Significance Statement:  1714	

This research evaluated the contributions of VOCs to phytoplankton-bacterial 1715	

interactions in the context of the marine microbial carbon cycle. We show that a wide 1716	

variety of VOCs are transferred between a ubiquitous photosynthetic diatom and the 1717	

heterotrophic bacteria Pelagibacter. Our results show for the first time that bacterial 1718	

metabolism of VOCs reduces the efficiency of CO2 conversion into biomass in 1719	

phytoplankton by promoting loss of diffusible VOCs from those cells, and that 1720	

phytoplankton rely on a publicly available pool of VOCs to remain metabolically 1721	

efficient. These findings recognize VOCs as an important pool of public goods in 1722	

microbial ecosystems, and their significant contributions to microbial interactions and the 1723	

marine carbon cycle should not be overlooked.  1724	
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Figures and Tables 1733	

 1734	

 1735	
 1736	

Fig.1: HTCC1062 growth is enhanced by the presence of T. pseudonana. A: HTCC1062 1737	
generation times under carbon-replete conditions were nearly 6 hours faster in co-culture 1738	
(black) with the diatom compared to growth in mono-culture (gray); (p = 1 x 10-4, n=5). 1739	
B: T. pseudonana growth rates were unchanged in the presence of the heterotroph (black 1740	
= co-culture, gray = mono-culture); (p=0.67, n=5). C: In medium lacking pyruvate, 1741	
glycine and methionine, HTCC1062 was added to an exponentially growing T. 1742	
pseudonana culture after 72h (black) and reached a maximum density that was four-fold 1743	
higher than the density reached by cells in mono-culture also lacking pyruvate, glycine 1744	
and methionine (gray) (n=3). Error bars show standard deviations, p-values calculated 1745	
using a student’s t-test. 1746	
  1747	
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 1748	
Fig. 2: HTCC1062 metabolizes a wide range of VOCs. A: Concentrations of VOCs 1749	
(shown along x-axis as m/z, equal to a compound’s un-fragmented mass + 1) that differed 1750	
in concentration in the T. pseudonana-HTCC1062 co-culture (dark bars) relative to the T. 1751	
pseudonana mono-culture (light bars). T. pseudonana cell densities were equal in all 1752	
cultures. B: Log2 fold-change of VOC concentrations in the co-culture relative to the T. 1753	
pseudonana mono-culture for each m/z value. Putative identifications for each m/z are 1754	
provided in Table 2.  1755	
  1756	
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m/z	 Blank	Conc.	
(ppbv)	

TP	Conc.	
(ppbv)		

TP	SD	 CC	Conc.	
(ppbv)	

CC	SD	 Q-value	 Culture	

33.035	 16.800	 17.878	 0.171	 17.743	 0.199	 0.884	 B	

36.045	 1.611	 1.667	 0.019	 1.634	 0.009	 0.220	 B	

38.040	 12.856	 13.426	 0.027	 13.332	 0.072	 0.308	 B	

41.033	 1.621	 4.764	 0.890	 3.682	 0.865	 0.496	 B	

42.034	 1.821	 2.790	 0.107	 2.491	 0.112	 0.092	 B	

43.021	 3.933	 8.585	 1.191	 8.421	 0.957	 1.027	 B	

43.051	 1.775	 5.029	 0.392	 3.609	 0.429	 0.039	 B	

45.033	 11.463	 17.510	 2.300	 8.930	 2.542	 0.041	 T	

49.011	 3.600	 4.905	 0.836	 10.591	 1.463	 0.032	 C	

54.001	 0.428	 0.460	 0.015	 0.453	 0.016	 1.099	 T	

56.058	 0.253	 0.317	 0.027	 0.289	 0.019	 0.529	 T	

59.049	 8.863	 20.874	 1.372	 16.700	 1.482	 0.076	 B	

60.054	 1.050	 1.857	 0.090	 1.702	 0.078	 0.239	 B	

60.040	 2.559	 6.259	 0.978	 6.328	 0.655	 1.027	 B	

62.035	 0.652	 0.792	 0.039	 0.788	 0.027	 1.013	 B	

63.026	 0.866	 1.513	 0.117	 1.256	 0.052	 0.145	 B	

65.075	 0.439	 0.496	 0.025	 0.483	 0.029	 1.101	 T	

67.055	 0.422	 0.480	 0.028	 0.457	 0.022	 0.760	 T	

69.070	 0.920	 1.550	 0.144	 1.218	 0.137	 0.140	 B	

71.061	 0.439	 0.846	 0.126	 0.837	 0.192	 1.025	 B	

72.052	 0.222	 0.443	 0.131	 0.478	 0.127	 1.059	 C	

73.053	 3.075	 4.478	 0.400	 4.214	 0.416	 0.968	 B	

74.058	 0.620	 0.756	 0.039	 0.705	 0.028	 0.357	 B	

81.067	 0.228	 0.299	 0.028	 0.283	 0.024	 1.005	 B	

82.958	 0.157	 0.332	 0.027	 0.169	 0.010	 0.015	 T	

83.082	 0.380	 0.724	 0.091	 0.559	 0.085	 0.233	 B	

84.084	 0.141	 0.298	 0.072	 0.301	 0.062	 0.993	 B	

84.940	 0.286	 0.374	 0.011	 0.285	 0.004	 0.005	 T	

85.066	 0.265	 0.620	 0.106	 0.585	 0.110	 1.080	 B	

86.062	 0.147	 0.234	 0.039	 0.249	 0.048	 1.167	 B	

87.080	 0.660	 1.387	 0.120	 0.944	 0.101	 0.029	 B	

89.047	 0.180	 0.256	 0.030	 0.255	 0.036	 1.009	 B	

96.011	 0.375	 0.554	 0.051	 0.575	 0.037	 1.119	 B	

98.030	 0.291	 0.331	 0.012	 0.354	 0.051	 0.994	 T	

100.048	 0.239	 0.346	 0.063	 0.367	 0.059	 1.160	 C	

100.946	 0.145	 0.165	 0.004	 0.156	 0.001	 0.166	 B	

101.096	 0.218	 0.728	 0.027	 0.309	 0.031	 0.000	 B	

111.005	 0.201	 0.351	 0.047	 0.342	 0.054	 1.066	 B	

113.093	 0.098	 0.317	 0.087	 0.323	 0.095	 1.037	 B	

119.967	 0.236	 0.243	 0.005	 0.249	 0.003	 0.315	 C	

121.083	 0.207	 0.251	 0.021	 0.297	 0.069	 0.790	 T	
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m/z	 Blank	 TP	Mean		 TP	SD	 CC	Mean	 CC	SD	 Q-value	 T,	C	or	B	

121.985	 0.127	 0.136	 0.004	 0.144	 0.011	 0.780	 T	

123.105	 0.126	 0.188	 0.029	 0.197	 0.029	 1.055	 B	

123.960	 0.211	 0.217	 0.006	 0.220	 0.003	 1.080	 C	

125.978	 0.127	 0.151	 0.011	 0.151	 0.016	 0.999	 T	

127.097	 0.141	 0.417	 0.073	 0.370	 0.067	 0.963	 B	

128.095	 0.085	 0.122	 0.012	 0.118	 0.008	 1.119	 B	

129.115	 0.141	 0.235	 0.024	 0.217	 0.023	 0.874	 B	

130.080	 0.079	 0.099	 0.005	 0.094	 0.008	 0.906	 T	

135.087	 0.123	 0.180	 0.025	 0.168	 0.020	 1.080	 B	

138.036	 0.066	 0.098	 0.012	 0.095	 0.012	 1.074	 B	

140.100	 0.065	 0.089	 0.012	 0.086	 0.011	 1.148	 T	

141.100	 0.078	 0.179	 0.029	 0.150	 0.023	 0.573	 B	

143.133	 0.098	 0.180	 0.027	 0.176	 0.030	 1.042	 B	

143.948	 0.079	 0.091	 0.004	 0.090	 0.005	 1.064	 B	

145.107	 0.062	 0.073	 0.004	 0.071	 0.005	 1.122	 T	

149.037	 0.099	 0.161	 0.027	 0.161	 0.030	 1.001	 B	

151.096	 0.065	 0.152	 0.055	 0.146	 0.040	 1.008	 C	

153.084	 0.066	 1.203	 0.443	 1.028	 0.292	 1.099	 B	

153.256	 0.025	 0.209	 0.081	 0.187	 0.054	 1.114	 B	

155.080	 0.072	 0.233	 0.078	 0.236	 0.070	 0.983	 B	

156.116	 0.046	 0.070	 0.009	 0.069	 0.008	 1.055	 B	

157.131	 0.063	 0.103	 0.016	 0.100	 0.016	 1.045	 B	

167.095	 0.051	 0.093	 0.025	 0.123	 0.025	 0.517	 C	

169.127	 0.052	 0.131	 0.041	 0.126	 0.031	 1.024	 C	

171.133	 0.048	 0.071	 0.009	 0.074	 0.011	 1.097	 B	

177.122	 0.045	 0.068	 0.015	 0.072	 0.013	 1.077	 C	

183.152	 0.039	 0.245	 0.089	 0.127	 0.038	 0.314	 B	

184.159	 0.035	 0.064	 0.014	 0.045	 0.005	 0.314	 T	

185.149	 0.041	 0.086	 0.013	 0.066	 0.010	 0.275	 B	

191.128	 0.041	 0.067	 0.020	 0.068	 0.013	 1.020	 C	

195.163	 0.037	 0.098	 0.032	 0.080	 0.021	 0.945	 C	

197.140	 0.107	 1.077	 0.271	 0.702	 0.171	 0.321	 B	

198.100	 0.047	 0.186	 0.043	 0.134	 0.026	 0.377	 B	

199.153	 0.035	 0.121	 0.037	 0.116	 0.043	 0.993	 T	

210.144	 0.036	 0.094	 0.025	 0.098	 0.026	 1.031	 B	

205.951	 0.052	 0.082	 0.021	 0.088	 0.018	 1.063	 C	

207.032	 0.038	 0.049	 0.009	 0.049	 0.005	 0.998	 C	

209.145	 0.035	 0.168	 0.064	 0.155	 0.042	 1.080	 B	

210.145	 0.032	 0.071	 0.023	 0.075	 0.019	 1.056	 C	

220.191	 0.040	 0.234	 0.160	 0.252	 0.102	 1.021	 C	
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231.140	 0.026	 0.028	 0.004	 0.032	 0.002	 0.527	 C	

 1757	

Table 1: VOCs at 82 different m/z values were produced in the T. pseudonana mono- and 1758	
co-cultures. Of 238 m/z values detected, 82 m/z values had mean concentrations greater 1759	
than 2 standard deviations above the blank measurement made with fresh growth 1760	
medium. Of these 82 m/z values identified, 50 had concentrations higher than the blank 1761	
in both mono-culture and co-culture (B), 16 additional m/z values had concentrations 1762	
higher in the T. pseudonana mono-culture only when compared to the blank (T), while 16 1763	
others were higher than the blank in the co-culture only (C) – refer to “Culture” column. 1764	
Q-value shows the results of the Benjimani-Hochberg statistical test used to compare 1765	
concentrations between the mono- and co-cultures. Rows in bold indicate a Q-value less 1766	
than 0.1. 1767	
  1768	
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 1769	
Table 2: Putative identification of m/z values that differed in concentration in the co- 1770	
culture relative to the T. pseudonana mono-culture. Chemical identifications made based 1771	
on non-fragmented mass number, previous reports of the specific VOC being produced in 1772	
phytoplankton, or metabolism by HTCC1062 determined by ATP assay (see Table 3). 1773	
Compounds listed in italics are untested candidates for each respective m/z and provided 1774	
on the basis of their molecular mass. The log2 fold change (as in Fig. 2B) is the VOC 1775	
concentration in co-culture relative to the VOC concentration in T. pseudonana mono- 1776	
culture. Q-value shows the results of the Benjimani-Hochberg statistical test used to 1777	
compare concentrations between the mono- and co-cultures.  1778	
 1779	

  1780	
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 1781	
Table 3: VOCs were added to starved HTCC1062 (VOC added row) and cellular ATP 1782	
content measured relative to negative controls (No VOC row). Increased cellular ATP 1783	
content shows that the compound can be metabolized by HTCC1062 and supports our 1784	
putative m/z value identification (Table 2). VOCs were supplied to HTCC1062 at 1µM. 1785	
Values are mean zeptograms ATP cell-1 ± SD and p-values were calculated using a 1786	
student’s t-test vs. the negative control values for each experiment (isoprene n = 6, 1787	
acetone and cyclohexanol n = 4, all others n = 3). Pyruvate was used as the positive 1788	
control. Experiments testing different compounds were conducted with independent 1789	
cultures on four different days (separated by vertical lines in table). Within a given 1790	
experiment, all replicates and treatments were prepared with samples of the same culture. 1791	
Due to variability between the days and reagent batches used, variability exists between 1792	
the four experiments, thus comparisons should only be made to the controls for a given 1793	
experiment. 1794	
  1795	
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 1796	
Fig. 3: VOC efflux causes an increase in photosynthetic carbon fixation in T. 1797	
pseudonana. A: T. pseudonana carbon fixation increased an average of 0.0139 pmol C 1798	
cell-1 h-1 ± 0.0139 pmol C cell-1 h-1, (mean ± 95% CI, p = 0.050, paired t-test, n=7) in co- 1799	
culture with HTCC1062 compared to T. pseudonana mono-cultures, a mean increase of 1800	
20.3%. B: Physical removal of VOCs in T. pseudonana mono-cultures using a 1801	
hydrocarbon trap increased carbon fixation by an average of 0.0214± 0.0255 pmol C cell- 1802	
1 h-1, an 18.1% increase on average (mean ± 95% CI, p=0.083, paired t-test, n=6). Points 1803	
in both A and B are measurements for independent pairs of mono- and co-cultures (A) or 1804	
independent pairs of cultures with VOC-present and VOC-removed (B). Dashed line is 1805	
the 1:1 relationship. Points falling above the 1:1 line indicate more carbon was fixed in 1806	
co-culture or in the VOC-removed condition than in the mono-culture or in the VOC- 1807	
present control. Differences (Δ) between carbon fixation for each pair are shown in the 1808	
subplots, where the box shows the mean (value given), and upper and lower quartile 1809	
divisions; whiskers show 95% confidence interval.  1810	
  1811	
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 1812	
Table 4: Measurements of photo-physiological properties in T. pseudonana grown in 1813	
mono-culture or co-culture showed little detectable variation between conditions. Values 1814	
are the average of three biological replicates ± SD.   1815	
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Abstract 2020	

 2021	

 Acetone and isoprene, volatile organic compounds (VOCs) produced by plants 2022	

and phytoplankton, have important roles in atmospheric processes. These compounds 2023	

diffuse between the ocean and atmosphere, with the ocean acting as either a net sink or 2024	

source of these compounds. Large uncertainties exist about the significance of marine 2025	

heterotrophic bacteria as a sink for acetone and isoprene and the control bacteria impose 2026	

on the direction and magnitude of VOC fluxes. In this work, the metabolism of acetone 2027	

and isoprene by a strain of the SAR11 family of α-proteobacteria was investigated, and 2028	

its potential impact on marine acetone and isoprene cycling was studied using global 2029	

ocean metagenomes. Pelagibacter strain HTCC1062 utilized acetone at rates similar to 2030	

those observed in bacterial communities in whole seawater. Acetone could be oxidized to 2031	

CO2 or incorporated into biomass, where it could substitute for glycine, a required growth 2032	

substrate. Homologs of an acetone monooxygenase-encoding gene were identified in the 2033	

HTCC1062 genome and the genomes of a wide variety of other marine taxa, including 2034	

SAR116 and Rhodobacteriaciae. Homologs of this gene were most abundant in 2035	

metagenomes sampled in regions where the ocean is an acetone sink. Pelagibacter, which 2036	

does not have a canonical isoprene degradation pathway, utilized isoprene supplied in 2037	

culture to meet its isoprenoid requirements for growth. Acetone and isoprene metabolism 2038	

by heterotrophic bacteria, including HTCC1062, likely consume substantial fractions of 2039	

the total marine acetone and isoprene budgets, and therefore play key roles in regulating 2040	

the emissions of these important climate active compounds from the ocean into the 2041	

atmosphere. 2042	
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  2043	

Introduction  2044	

 2045	

Acetone (C3H6O) and isoprene (C5H8) are abundant volatile organic compounds 2046	

(VOCs) that are produced by phytoplankton in the ocean (Shaw et al., 2003; Colomb et 2047	

al., 2008; Halsey et al., 2017). Movement of these VOCs across the sea-air interface 2048	

initiates complex chemical reactions that include important climate-relevant processes 2049	

(Hense et al., 2017). Acetone is a major source of ozone in the troposphere (Müller and 2050	

Brasseur, 1999; Folkins and Chatfield, 2000) and is sometimes the dominant non- 2051	

methane VOC in the atmosphere (Singh et al., 1994). Acetone flux between the ocean 2052	

and atmosphere is concentration-dependent and variable in direction and magnitude over 2053	

time and space. Acetone sea-air flux ranges from -7 to +8 Tg yr-1, with the ocean 2054	

typically acting as a sink for acetone in temperate latitudes and a source in the tropics and 2055	

sub-tropics (Sinha et al., 2007; Fischer et al., 2012; Beale et al., 2013; Yang et al., 2014). 2056	

Biological isoprene emissions contribute to about half of the 1000 Tg C global VOC 2057	

budget (Guenther et al., 2012), are involved  in secondary aerosol formation, and impact 2058	

the oxidative capability of the atmosphere (Andreae and Crutzen, 1997; Liakakou et al., 2059	

2007). Marine isoprene emissions are estimated at 0.1-11.6 Tg C y-1 (Palmer and Shaw, 2060	

2005; Sinha et al., 2007; Hackenberg et al., 2017), two to three orders of magnitude 2061	

lower than terrestrial emissions. Discrepancies between measured and modeled flux rates 2062	

suggest that there is a significant unknown sink for isoprene in the ocean (Palmer and 2063	

Shaw, 2005; Booge et al., 2017).  2064	
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Microbial heterotrophic consumption of acetone and isoprene has been 2065	

hypothesized to account for unexplained variability in sea-air flux rates and VOC 2066	

budgets. Monthly variability in acetone oxidation rates in the ocean range from 1-380 2067	

pmol L-1 h-1 (Dixon et al., 2014; Beale et al., 2015). Oxidation rates were highest in the 2068	

winter or when “low nucleic acid” bacteria, a classification that includes the ubiquitous 2069	

clade of α-proteobacteria SAR11, were at their highest cell densities and dominant in the 2070	

community (Dixon et al., 2014). In soil systems, bacterial acetone metabolism occurs 2071	

through a variety of biochemical pathways that are typically initiated by an acetone 2072	

monooxygenase enzyme that converts acetone to acetol or methyl acetate (Levine and 2073	

Krampitz, 1952; Taylor et al., 1980; Kotani et al., 2007). Acetol can be further converted 2074	

to methylglyoxal then to pyruvate (Taylor et al., 1980), to formaldehyde and acetic acid  2075	

(Hartmans and de Bont, 1986), or possibly to formaldehyde and acetaldehyde (Levine 2076	

and Krampitz, 1952), but this latter pathway requires further support (Hausinger, 2007). 2077	

Methyl acetate, the alternative product of the monooxygenase, can be further converted to 2078	

methanol and acetic acid (Kotani et al., 2007).  2079	

Isoprene degrading bacterial communities have been described in estuarine 2080	

surface water and sediments where heterotrophic consumption of isoprene was sufficient 2081	

to prevent isoprene emission into the atmosphere (Alvarez et al., 2009; Johnston et al., 2082	

2017). Microbial isoprene metabolism has best been studied in a pathway that requires 2083	

isoprene monooxygenases (van Hylckama Vlieg et al., 2000), but may alternatively occur 2084	

through promiscuous enzymatic reactions in cells lacking known isoprene degradation 2085	

pathways (Patel et al., 1982; Johnston et al., 2017). Isoprene commonly occurs in both 2086	

soil and marine systems, so it is surprising that other metabolic strategies, such as 2087	
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isoprene incorporation into isoprenoid synthesis pathways, have not been observed. In the 2088	

ocean, biological coupling of acetone and isoprene production by algae (Mckay et al., 2089	

1996; Shaw et al., 2003; Colomb et al., 2008; Bonsang et al., 2010; Halsey et al., 2017) 2090	

to degradation by heterotrophs directly impacts the net fluxes of these VOCs between the 2091	

ocean and atmosphere. Thus, identifying the microbial taxa and metabolisms acting upon 2092	

these VOCs are needed to explain how VOC fluxes are biologically controlled. 2093	

Pelagibacter is a cultured representative of the SAR11 clade of alpha- 2094	

proteobacteria, the most abundant heterotrophic bacterial family in the ocean (Morris et 2095	

al., 2002). Recent reports show that Pelagibacter metabolizes a wide variety of volatile 2096	

and methylated compounds, including acetone (Sun et al., 2011; Halsey et al., 2017; 2097	

Giovannoni et al., 2019, Moore et al., 2019), but evidence for isoprene consumption was 2098	

less certain (Moore et al., 2019). A role for Pelagibacter in controlling sea-air acetone 2099	

fluxes has been suggested (Dixon et al., 2014), but the rates of consumption and 2100	

mechanisms involved were not known. We hypothesized that Pelagibacter is an 2101	

important sink for acetone and isoprene in the ocean. Cultures of Pelagibacter strain 2102	

HTCC1062 were used to study acetone and isoprene metabolism and estimate the 2103	

potential impacts of Pelagibacter and other heterotrophs on the distribution and flux of 2104	

these important VOCs.  2105	

 2106	

Experimental Procedures  2107	

 2108	

Culturing 2109	

 2110	
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For all experiments described, Pelagibacter strain HTCC1062 (SAR11 group 2111	

1a.1) was grown in f/2 artificial seawater medium (Guillard and Ryther, 1962) that was 2112	

modified to support growth of HTCC1062 (Moore et al., 2019). Cultures were 2113	

maintained in exponential growth at 16o C, 25 µE light on a 12 hour light/dark cycle and 2114	

shaken gently. Cultures were grown in sterile, acid-washed polycarbonate flasks or in 10- 2115	

20 mL glass vials treated with a 5% solution of bovine serum albumin for 8 hours, rinsed 2116	

with nanopure water then sterilized. Cell enumerations were conducted by staining 200 2117	

µL samples of culture with Sybr Green I for 1-2 hours then measured using a Guava flow 2118	

cytometer. 2119	

 2120	

Acetone incorporation/oxidation 2121	

 2122	

Incubations of cells with radiolabeled acetone (1,3 14C acetone, American 2123	

Radiolabeled Chemicals, St. Louis, MO) were performed to quantify rates of acetone 2124	

incorporation into biomass and oxidation to CO2 by HTCC1062. 300mL cultures of 2125	

HTCC1062 were grown until late exponential phase. 60mL of the culture was heat killed 2126	

at 55o C for 45 min. Cell enumerations done immediately and two days following heat 2127	

treatment showed no change in cell density compared to cell counts done immediately 2128	

before heat treatment. 1µCi (1µM) acetone was spiked into the live and killed cells, 2129	

activity samples were taken, then 10mL live cells and killed cells were aliquoted into 2130	

20mL BSA treated sterile vials and sealed with Teflon faced butyl stoppers. Partitioning 2131	

of acetone to the headspace of the vial at 16oC was expected to be less than 1%, and was 2132	

therefore negligible. Vials were incubated at 16oC in the dark for 0, 2, 5, 8 and 12 h 2133	
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before the incubations were terminated. For measurements of acetone incorporation into 2134	

biomass, incubations were terminated by adding 1.1 mL of 100% w/v trichloroacetic acid 2135	

using a syringe. For measurements of combined acetone oxidation and incorporation to 2136	

biomass, incubations were terminated by adding 0.5 mL 1 M sodium hydroxide, 0.25 mL 2137	

0.1 M sodium carbonate, and 0.5 mL 1 M barium chloride. Killed cell incubations were 2138	

terminated after 12 hours. Cultures were stored at for 12 hours at 4oC. The contents of 2139	

each vial were filtered through 0.1 µm polycarbonate filters and washed three times with 2140	

100% w/v trichloroacetic acid or 0.2 µm filtered artificial seawater. Filters were 2141	

submerged in Ecoscint scintillation cocktail overnight, sonicated to disrupt the contents 2142	

of the filter, then measured using a scintillation counter (Beckman-Coulter, Brea, CA, 2143	

USA). Acetone oxidation rates were calculated by subtracting the rate of incorporation 2144	

measured from the combined oxidation and incorporation measurement.  2145	

 2146	

Primary growth substrate replacement with acetone 2147	

 2148	

To test whether acetone could substitute for pyruvate or glycine, which are known 2149	

required growth substrates of HTCC1062 (Carini et al., 2012), triplicate 5 mL cultures of 2150	

HTCC1062 were grown in BSA prepared vials (see above) for each of the following 2151	

conditions: negative control, growth medium lacking either pyruvate or glycine; positive 2152	

control, pyruvate (100 µM) and glycine (50 µM) provided; test conditions, pyruvate or 2153	

glycine omitted from the medium with acetone supplied at 0.5, 5, 50, 500, or 5000 µM. 2154	

Cultures were sealed with Teflon-faced butyl septa and incubated at 16o C under gentle 2155	
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shaking with 25 µmol photons m-2 s-1 on a 12h L/D cycle. 200 µL samples were taken 2156	

with a sterile syringe approximately every other day for cell enumerations.  2157	

 2158	

Inactivation of the isoprenoid biosynthetic pathway  2159	

 2160	

To test if HTCC1062 could utilize isoprene to meet its isoprenoid requirements 2161	

for growth, the antibiotic fosmidomycin (Life Technologies, Eugene OR) was added to 2162	

HTCC1062 cultures to block the methyl-erythritol phosphate (MEP) pathway of 2163	

isoprenoid biosynthesis. The minimum inhibitory concentration for fosmidomycin and 2164	

HTCC1062 was determined to be 20µg mL-1 (data not shown). Quadruplicate 5 mL 2165	

cultures of HTCC1062 were grown in sealed, BSA treated glass vials under the following 2166	

conditions: positive control 1, No isoprene or fosmidomycin added; positive control 2, 2167	

isoprene (10µM, Sigma-Aldrich, 99.5% analytical standard) with no fosmidomycin; 2168	

negative control, no isoprene with fosmidomycin added at 50µg mL-1; test condition, 2169	

isoprene (10 µM) and fosmidomycin (50 µg mL-1) added. Using a Henry’s constant of 2170	

1.3x10-4 mol m-3 Pa-1 (Sander, 2015), the initial concentration of the added isoprene in 2171	

the aqueous phase after headspace partitioning was calculated to be 2.01 µM at 160 C. 2172	

Cultures were grown for several weeks and sampled once to twice per week for cell 2173	

enumerations.  2174	

 2175	

Gene identification, phylogenetic distribution and environmental abundance 2176	

 2177	
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The acetone monooxygenase and other genes involved in the acetone metabolic 2178	

pathway previously described in Gordonia sp. TY-5 by Kotani et al., 2007 were used in 2179	

an initial search for genes associated with acetone metabolism in HTCC1062. BlastP was 2180	

used to search the HTCC1062 and 19 other Pelagibacter genomes for the published 2181	

acetone monooxygenase. An acetone monooxygenase was identified (SAR11_0845) and 2182	

the functional annotation of the identified gene was validated further by predicting and 2183	

comparing three-dimensional protein structures to the Protein Data Bank using the 2184	

program I-TASSER (Yang and Zhang, 2015). Additionally, the SAR11_0845 sequence 2185	

was used in a BlastP search of the nr protein databases to identify similar sequences in 2186	

other taxa. These sequences, two validated sequences of phenylacetone (Q47PU3) and 2187	

cyclohexanone (P12015) monooxygenases from Swissprot, and the protein sequence 2188	

from Gordonia sp. TY-5 (A1IHE6) were used to construct a phylogenetic tree comparing 2189	

the relationship of these genes across taxa using the NGphylogeny web service (Lemoine 2190	

et al., 2019). Amino acid sequences were aligned using MAFFT, the alignment was 2191	

curated with Noisy and a maximum-likelihood phylogenetic tree was constructed with 2192	

PhyML using 100 bootstrap iterations and default settings for all programs (Dress et al., 2193	

2008; Guindon et al., 2010; Katoh and Standley, 2013). iTOL was used to visualize the 2194	

output tree (Letunic and Bork, 2019), which was re-rooted by the branch representing the 2195	

Gordonia sp. TY-5 acetone monooxygenase (Kotani et al., 2007).   2196	

Identification of an acetone monooxygenase, a key enzyme in acetone 2197	

metabolism, in the genome of HTCC1062 allowed us to search for homologs of this gene 2198	

in the environment. Homologs of the HTCC1062 acetone monooxygenase 2199	

(SAR11_0845) were searched for in the TARA Oceans metagenome using the Ocean 2200	
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Gene Atlas web tool (Villar et al., 2018). Using this tool with default settings and an 2201	

expect threshold of 1 x 10-60, the relative abundance of homologs was plotted as a 2202	

function of latitude to make comparisons of gene abundance with acetone concentrations 2203	

and flux measurements across major ocean regions. Gene abundance was calculated by 2204	

dividing the read coverage of the homologs identified by the read coverage of all genes in 2205	

the dataset (Villar et al., 2018). Homologs identified in the TARA Oceans metagenome 2206	

were aligned using MAFFT and a maximum-likelihood phylogenetic tree was 2207	

constructed using iqtree (Nguyen et al., 2015) to assess the taxonomic diversity of the 2208	

homologs identified in the metagenomes.  2209	

 2210	

Results and Discussion 2211	

 2212	

Acetone metabolism in HTCC1062 2213	

 2214	

Radiolabeled 1,3 14C acetone was used to measure rates of acetone utilization by 2215	

HTCC1062. Cells growing in medium replete with pyruvate and glycine metabolized 2216	

acetone at a rate of 101 pmol acetone 1010 cell-1 h-1. Acetone was oxidized to CO2 at a 2217	

rate of 89.7 pmol acetone 1010 cell-1 h-1 (P = 0.002), but incorporation into biomass was 2218	

not significantly different from zero at 11.7 pmol acetone 1010 cell-1 h-1 (P = 0.33) (Fig. 2219	

1). However, unusually low values of “incorporation” samples taken at 8 hours suggested 2220	

there may have been a problem during processing of those samples. Overlooking this 2221	

time-point would result in a higher rate of acetone incorporation of 17.2 pmol acetone 2222	

1010 cell-1 h-1 and P-value of 0.008, raising the possibility that a low amount of acetone 2223	
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was incorporated to biomass, but this remains uncertain. Note that the acetone used in 2224	

these experiments was radiolabeled on two carbon atoms, therefore if only one of the two 2225	

radioactive carbons was oxidized or incorporated by the cell, then the rates measured 2226	

would be two-fold underestimates. 2227	

Uncertainty about the ability of HTCC1062 to incorporate acetone into biomass 2228	

prompted us to test whether HTCC1062 could utilize acetone to replace the known 2229	

required growth substrates glycine and pyruvate (Carini et al., 2012). Surprisingly, 2230	

acetone could partially replace glycine as a primary growth substrate when supplied at 2231	

500 and 5000 µM. Cells growing without glycine or acetone (negative control) reached a 2232	

maximum density of 3.57 x 106 cells mL-1, but cells supplied acetone at 500 or 5000 µM 2233	

in the absence of glycine grew approximately two generations more than the negative 2234	

control (p = 0.01, 0.002 respectively, students t-test, n=3) (Fig. 2A). Cells supplied 2235	

acetone at 0.5, 5 or 50 µM in the absence of glycine did not reach higher maximum cell 2236	

densities than the negative control (p= 0.07, 0.06, 0.13 respectively, students t-test, n = 3) 2237	

(Fig. 2A).  Providing acetone to pyruvate-limited cultures did not result in cell densities 2238	

greater than the negative controls, thus acetone was not able to replace pyruvate as a 2239	

growth substrate at any of the concentrations used (Fig. 2B).  2240	

 2241	

Genetics and mechanism 2242	

 2243	

The surprising finding that acetone could be used not only as an energy source, 2244	

but also as a replacement for glycine prompted us to examine the metabolic mechanisms 2245	

involved in acetone metabolism in HTCC1062. A gene encoding a putative acetone 2246	
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monooxygenase (SAR11_0845) was identified in the translated genome sequence of 2247	

HTCC1062. The translated sequence is 32% identical and 53% similar to the amino acid 2248	

sequence of the acetone monooxygenase described in Gordonia sp. TY-5 (Kotani et al., 2249	

2007) across a coverage of 99%. Use of the program ITASSER to compare the predicted 2250	

3D structure of the SAR11_0845 protein also showed that this gene was similar to 2251	

acetone, cyclohexanone or phenylacetone monooxygenases, enzymes that can have high 2252	

activities on a variety of ketones (Kotani et al., 2007). Acetone monooxygenase catalyzes 2253	

the conversion of acetone to acetol or methyl acetate (Levine and Krampitz, 1952; Taylor 2254	

et al., 1980; Kotani et al., 2007) while cyclohexanone monooxygenase oxidizes 2255	

cyclohexanone to ε-caprolactone (Donoghue and Trudgill, 1975). A BlastP search of 2256	

SAR11_0845 in the non-redundant protein database returned many matches to other 2257	

annotated cyclohexanone monooxygenases in a diversity of taxa, most of which were 2258	

around 50% similar and had a coverage of around 98%. Of particular interest were hits in 2259	

the SAR116 clade, and Rhodobaceriaciae, the family that includes Roseobacter. Like 2260	

Pelagibacter, these bacterial taxa are highly abundant and of significant importance in 2261	

marine epipelagic microbial communities (González and Moran, 1997; Rappé and 2262	

Giovannoni, 2003; Morris et al., 2012). The topology of the tree suggests a close 2263	

relationship between the SAR11 and SAR116 monooxygenases, suggesting the 2264	

possibility that this gene has been horizontally transferred amongst these co-occurring, 2265	

but evolutionary distinct organisms. Interestingly, Blast searches of SAR11_0845 only 2266	

returned hits in 3 of 20 different SAR11 genomes examined, suggesting that the putative 2267	

acetone monooxygenase is not well conserved in the SAR11 family. However, this result 2268	

could also be attributed to the fact that many of these genome sequences are incomplete. 2269	
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Further work to understand the distribution of the putative acetone monooxygenase in the 2270	

SAR11 family is on going.    2271	

SAR11, and other bacteria with streamlined genomes, have evolved mechanisms 2272	

to metabolize a wide variety of compounds using a limited genetic repertoire 2273	

(Giovannoni, Tripp, et al., 2005) It is possible that the putative acetone monooxygenase 2274	

identified in the Pelagibacter genome serves multiple functions. The most similar 2275	

matches to this protein sequence are annotated as cyclohexanone monooxygenase, and 2276	

the predicted 3D structure of this protein product was also most similar to cyclohexanone 2277	

monooxygenase (Fig. 3). Further, the acetone monooxygenase described in Gordonia sp. 2278	

TY-5 was highly active on a variety of ketones, especially cyclic ketones such as 2279	

cyclohexanone (Kotani et al., 2007). In a co-culture with the diatom Thalassiosira 2280	

pseudonana, HTCC1062 was able to metabolize cyclohexanol produced by the diatom 2281	

(Moore et al., 2019). Cyclohexanol could be oxidized to cyclohexanone by a 2282	

dehydrogenase, and then further oxidized to ε-caprolactam by the monooxygenase 2283	

(Donoghue and Trudgill, 1975).  Downstream conversions may lead to the formation of 2284	

adipate that is used in beta-oxidation pathways (Donoghue and Trudgill, 1975). This 2285	

raises the possibility that the monooxygenase identified could also be active on 2286	

cyclohexanone or other ketones, and may explain why HTCC1062 incorporated acetone 2287	

at a low rate and required such a high concentration for growth. Nevertheless, 2288	

HTCC1062 is capable of metabolizing acetone and may have an important role in the 2289	

turnover of this compound in marine environments. 2290	

  Acetone metabolism by HTCC1062 suggests that Pelagibacter has the potential 2291	

to limit acetone emissions from the surface ocean. In the epipelagic zone of the Sargasso 2292	
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Sea where phytoplankton are a source of acetone (Cotsaris et al., 1995; Halsey et al., 2293	

2017; Moore et al., 2019), Pelagibacter abundance averaged 2 x 108 cells L-1 (Morris et 2294	

al., 2002). Using this value, we estimate that Pelagibacter populations in seawater can 2295	

consume acetone up to 2-4 pmol acetone L-1 h-1. This value is on the low end of acetone 2296	

oxidation rates measured in seawater off the coast of the UK, which ranged from 1-42 2297	

pmol L-1 h-1, and were highest when “low nucleic acid” bacteria, a classification that 2298	

includes Pelagibacter, were most abundant (Dixon et al., 2014). However, given the 2299	

finding that the putative acetone monooxygenase may not be well conserved across the 2300	

SAR11 family, other taxa may also contribute to acetone degradation and help explain 2301	

higher acetone oxidation rates in seawater. Homologs of the SAR11_0845 acetone 2302	

monooxygenase were identified in other abundant marine bacteria like SAR116 and 2303	

Rhodobacteriaciae (Fig. 3), thus these bacteria are also likely to contribute significantly 2304	

to acetone degradation in the surface ocean.   2305	

Organisms encoding acetone monooxygenases like HTCC1062 may be 2306	

collectively important in limiting acetone emissions to the atmosphere by coupling 2307	

heterotrophic degradation to production by phytoplankton (Sinha et al., 2007; Fischer et 2308	

al., 2012; Beale et al., 2013; Yang et al., 2014). The average net flux of acetone across 2309	

the entire ocean is near zero, but the ocean is sometimes a sink for acetone, particularly in 2310	

temperate latitudes (Sinha et al., 2007; Fischer et al., 2012; Beale et al., 2013; Yang et 2311	

al., 2014). We used the Ocean Gene Atlas web-tool (Villar et al., 2018) to query the 2312	

TARA Oceans metagenome and compare the abundance of the HTCC1062 acetone 2313	

monooxygenase (SAR11_0845) homologs throughout the ocean. Homologs of 2314	

SAR11_0845 in the TARA Oceans metagenomes were found in a diversity of taxa, and 2315	
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therefore, the search was not restricted to only Pelagibacter or its close relatives (Fig. 4). 2316	

The abundance of SAR11_0845 homologs, relative to total gene abundance, varied by 2317	

nearly three orders of magnitude, ranging from 1.05 x 10-7 to 6.29 x 10-5, and was 2318	

generally more abundant in temperate latitudes compared to tropical and sub-tropical 2319	

regions (Fig. 5). This latitudinal variation in gene abundance follows a pattern similar to 2320	

acetone concentration and flux rates measured in the Atlantic Ocean (Beale et al., 2013; 2321	

Yang et al., 2014).  2322	

Along a transect between 490 N and 390 S in the Atlantic ocean, acetone 2323	

concentrations and flux across latitudes were highly dependent on temperature (Beale et 2324	

al., 2013; Yang et al., 2014). Nevertheless, acetone flux was also negatively correlated 2325	

with bacterial leucine uptake rates, suggesting bacterial metabolism was at least partially 2326	

responsible for trends in acetone flux (Beale et al., 2013; Yang et al., 2014). In temperate 2327	

regions, the primary habitat of HTCC1062, relatively high occurrences of acetone 2328	

monooxygenase homologs suggested that microbial communities in these regions possess 2329	

the metabolic capacity required for acetone metabolism, and that they are important 2330	

drivers of net oceanic acetone flux. In contrast, subtropical gyre regions are a net source 2331	

of acetone to the atmosphere, where acetone monooxygenase abundances are lower, thus 2332	

acetone metabolic pathways may not be as prevalent in these microbial communities. 2333	

Higher ocean temperatures in subtropical gyres compared to temperate or equatorial 2334	

upwelling regions promotes acetone emission to the atmosphere by decreasing the 2335	

Henry’s Law partitioning rate (Cw/Ca) (Sinha et al., 2007), thus reducing the availability 2336	

of acetone as a substrate for biological metabolism in warm marine waters. 2337	

  2338	
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Isoprene metabolism 2339	

 2340	

Previously, we found that isoprene stimulated ATP production in HTCC1062 2341	

(Moore et al., 2019). Isoprene could not support growth of HTCC1062 in the absence of 2342	

pyruvate or glycine (data not shown). We then asked whether isoprene could meet the 2343	

isoprenoid requirements of HTCC1062 .Fosmidomycin is an antibiotic that competitively 2344	

inhibits the 1-deoxy-D-xylulose 5-phosphate reductoisomerase (dxr) at the second step of 2345	

the MEP isoprenoid synthesis pathway (Fig. 6). Growth of HTCC1062 was sensitive to 2346	

50 µg mL-1 fosmidomycin. Addition of 10 µM isoprene (2 µM in aqueous phase, see 2347	

Methods) recovered growth of HTCC1062 in the presence of fosmidomycin (Fig. 7). 2348	

These results show that HTCC1062 was able to utilize isoprene directly to bypass the 2349	

isoprenoid biosynthetic pathway blocked by fosmidomycin.  2350	

 Isoprene monooxygenase is a key enzyme in known isoprene metabolic pathways 2351	

(van Hylckama Vlieg et al., 2000; Johnston et al., 2017), but protein sequences of 2352	

previously described isoprene monooxygenases in Rhodococcus did not match to any 2353	

sequences in the HTCC1062 genome. Our data suggests that HTCC1062 does not encode 2354	

canonical isoprene degradation pathways, but rather, another biochemical mechanism 2355	

allows isoprene to be used directly to meet isoprenoid requirements. In this model, 2356	

isoprene or another unknown intermediate may be phosphorylated to form the isoprenoid 2357	

subunits isopentenyl pyrophosphate and dimethylallyl pyrophosphate, though no 2358	

enzymes capable of such a conversion have been described. 2359	

 In HTCC1062, isoprenoids are primarily used for biosynthesis of electron 2360	

carriers, including ubiquinone; poryphrin based compounds, or pigments such as retinal, 2361	
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which is a key component of proteorhodopsin. Cells typically rely on small pools of 2362	

electron carriers, so the demand for isoprenoids in HTCC1062 is likely small, but critical, 2363	

ensuring maintenance of the isoprenoid biosynthesis pathway in the genome despite 2364	

evolutionary streamlining (Giovannoni et al., 2005). For organisms like Pelagibacter, 2365	

bypassing energy-expensive pathways like isoprenoid synthesis, which uses 1 ATP, 1 2366	

CTP and 1 NADPH for every isoprenoid subunit molecule produced (Zhao et al., 2013), 2367	

could improve growth efficiency in these cells. However, phosphorylation of isoprene 2368	

would likely require ATP as a source of pyrophosphate, and thus reduce some of this 2369	

energy savings. We attempted to measure isoprene metabolic rates in HTCC1062 using 2370	

PTR-ToF/MS, but we were unable to directly quantify isoprene consumption by 2371	

Pelagibacter. Nevertheless, we estimated the potential magnitude of isoprene demand in 2372	

Pelagibacter cells based on intracellular quantities of proteorhodopsin. Four isoprene (5 2373	

C) molecules are required for biosynthesis of each retinal molecule (20 C) in 2374	

proteorhodopsin. There are about 10,000 proteorhodopsin per SAR11 cell (Giovannoni, 2375	

et al., 2005), thus a single Pelagibacter cell would require 40,000 isoprene molecules. 2376	

Given a standing stock of 2.4 x 1028 Pelagibacter cells worldwide, and a turnover rate of 2377	

0.3 d-1 (White et al., 2018), the maximum potential Pelagibacter contribution to global 2378	

marine isoprene uptake is 11.9 Tg y-1. This value is remarkably similar in magnitude to 2379	

the entire marine isoprene budget of 0.1-11.6 Tg C y-1 (Palmer and Shaw, 2005; Sinha et 2380	

al., 2007; Hackenberg et al., 2017), but is likely underestimated because it does not 2381	

consider other isoprenoid demands, such as quinones or poryphrin compounds also 2382	

needed by the cell. This estimate using proteorhodopsin as an example demonstrates the 2383	

scale of isoprene turnover by bacterial communities in the ocean, but also does not 2384	
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include the input of other taxa or metabolic strategies. Nevertheless, our data suggest that 2385	

use of isoprene by Pelagibacter and other heterotrophic bacteria that do not encode 2386	

canonical isoprene degradation pathways creates a substantial sink for isoprene in the 2387	

ocean. This bacterial activity helps explain discrepancies in predicted versus measured 2388	

isoprene flux rates that imply a bacterial sink for isoprene in the ocean and shows that 2389	

marine heterotrophic bacteria are important in controlling the emissions of this significant 2390	

climate active chemical from the ocean.   2391	

 Here, we report that Pelagibacter strain HTCC1062 (SAR11),, can metabolize 2392	

acetone and isoprene, two highly abundant VOCs with important roles in atmospheric 2393	

chemistry. The data presented here give new evidence for how heterotrophic bacteria 2394	

help regulate marine VOC emissions to the atmosphere. Nevertheless, our understanding 2395	

of the microbial communities and biochemistry involved in VOC metabolism remains 2396	

inadequate, thus future research that elucidates the contributions of other microbes to the 2397	

production and degradation of VOCs is needed to understand the flux of these 2398	

compounds in the ocean and atmosphere.  2399	
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Figures and Tables  2402	
 2403	
 2404	
 2405	
 2406	

 2407	
 2408	
 2409	
Fig. 1: HTCC1062 oxidizes acetone to CO2 and incorporates acetone into biomass. 14C 2410	
acetone was oxidized (triangles) at a rate of 89.7 pmol acetone 1010 cell-1 h-1 (P = 0.002) 2411	
and incorporated (circles) at 11.7 pmol acetone 1010 cell-1 h-1 (P = 0.33) over a 12 hour 2412	
incubation period. Lines are linear regressions of oxidized (green) and TCA-insoluble 2413	
radioactive acetone carbon incorporated to biomass (blue), which were used to calculate 2414	
the rates shown. Points are averages of treatments minus the average of killed samples; 2415	
error bars indicate the standard deviations for each time point. “Incorporation” samples 2416	
taken at 8 hours appear to deviate significantly from other time-points, raising the 2417	
possibility of errors introduced during sample collection and processing. Removal of this 2418	
time-point results in a P-value of 0.008 and a higher rate of incorporation of 17.2 pmol 2419	
acetone 1010 cell-1 h-1, leaving the possibility of slow, but significant rates of acetone 2420	
incorporation to biomass. 2421	
 2422	
 2423	

2424	
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  2425	

 2426	
 2427	
 2428	
Fig. 2: Acetone replaced glycine as a required growth substrate at 500, and 5,000 µM, but 2429	
did not replace pyruvate at any concentration. A: HTCC1062 generations of growth 2430	
above the maximum cell yields of cultures grown without glycine (negative control, [N]). 2431	
Positive controls [P] had both pyruvate and glycine supplied. Acetone was added at 2432	
concentrations ranging from 0.5 to 5000 µM, glycine was added at 50 µM to the positive 2433	
control (red/P). Acetone supplied at 500 and 5000 µM under glycine limitation caused 2434	
significant growth over the control (P = 0.01 and 0.002 respectively, students t-test, n=3). 2435	
B: Same as A, except pyruvate was omitted from the media instead of glycine. For all 2436	
experimental conditions, bars indicate the mean of the three independent biological 2437	
replicates shown as points. Individual experiments testing different concentrations of 2438	
acetone are separated by the dotted line in each plot, and should be compared to the 2439	
adjacent N (negative) and P (positive) controls.  2440	
 2441	
 2442	
 2443	
 2444	

2445	



	
	
	

	
	
	

95	

  2446	
 2447	

 2448	
 2449	
Fig. 3: Maximum likelihood phylogenetic tree showing the relationship of the putative 2450	
SAR11 acetone monooxygenase (SAR11_0845) and the 100 most similar protein 2451	
sequences in the nr protein database identified by BlastP. Tree was constructed using 100 2452	
bootstrap iterations and re-rooted by the previously described acetone monooxygenase of 2453	
Gordonia strain TY-5 (green). Other validated cyclohexanone and phenylacetone 2454	
monooxygenases from Swissprot are also included (green). Notably, putative acetone 2455	
monooxygenases are found in important marine bacteria including SAR11 (red), SAR116 2456	
(blue) and Rhodobacteriaciae, the taxonomic family of the common marine bacteria 2457	
Roseobacter; however, the exact taxonomic classification shown is not specific.   2458	
 2459	
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 2460	
 2461	
Fig. 4: Phylogenetic tree of sequences in the TARA Oceans metagenome sequences that 2462	
were identified to be homologs of the putative acetone monooxygnease SAR11_0845. 2463	
Homologs are distributed across a diverse variety of taxa, but are frequent in 2464	
Proteobacteria. The tree was constructed with around 1100 gene sequences from the 2465	
TARA Oceans metagenome with an expect score cutoff of ≤ 1x10-60.   2466	
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 2467	
 2468	
Fig. 5: Acetone monooxygenase gene abundance, normalized to total gene abundance, in 2469	
the TARA Oceans metagenome is higher at temperate latitudes than in tropical and sub- 2470	
tropical regions. Color shadings indicate where the ocean was a sink (blue), source 2471	
(orange), or approximately net zero flux (green) for acetone during the Atlantic 2472	
Meridional Transect (Beale et al., 2013).  2473	
 2474	
  2475	
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 2476	
 2477	
 2478	

  2479	
Fig. 6: 10µM isoprene partially rescued growth of HTCC1062 in the presence of the 2480	
isoprenoid synthesis pathway inhibitor fosmidomycin. HTCC1062 growth was inhibited 2481	
entirely by fosmidomycin in the absence of isoprene (blue). Addition of isoprene to 2482	
cultures treated with fosmidomycin caused a nearly 10-fold increase in the final cell 2483	
density (violet), but they did not grow as effectively as positive controls without 2484	
fosmidomycin (red & green). Bars indicate mean final cell density of four biological 2485	
replicates; individual replicates are shown as points.  2486	
 2487	
 2488	
  2489	
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 2490	
 2491	
 2492	
 2493	
Fig. 7: Simplified view of the methyl erythritol phosphate (MEP) isoprenoid synthesis 2494	
pathway HTCC1062 utilizes to produce the isoprenoid precursors isopentyl 2495	
pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) from pyruvate and 2496	
glyceraldehyde-3-phosphate (G-3-P). The second enzyme of this pathway, dxr, is 2497	
competitively inhibited by the antibiotic fosmidomycin (shown in bold/underline). 2498	
Supplying isoprene rescued growth of HTCC1062 when this pathway was blocked with 2499	
fosmidomycin. The dashed line indicates a hypothetical reaction that would allow 2500	
HTCC1062 to utilize isoprene as a precursor for IPP and DMAPP. No enzyme has been 2501	
shown to catalyze such a reaction.  2502	
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Abstract 2693	

The reproductive strategy of diatoms includes asexual and sexual phases, but in many 2694	

species, including the model centric diatom Thalassiosira pseudonana, sexual 2695	

reproduction has never been observed. Furthermore, the environmental factors that 2696	

trigger sexual reproduction in diatoms are not understood. Although genome sequences 2697	

of a few diatoms are available, little is known about the molecular basis for sexual 2698	

reproduction. Here we show that ammonium reliably induces the key sexual 2699	

morphologies, including oogonia, auxospores, and spermatogonia, in two strains of T. 2700	

pseudonana, T. weissflogii, and Cyclotella cryptica. RNA sequencing revealed 1,274 2701	

genes whose expression patterns changed when T. pseudonana was induced into sexual 2702	

reproduction by ammonium. Some of the induced genes are linked to meiosis or encode 2703	

flagellar structures of heterokont and cryptophyte algae. The identification of ammonium 2704	

as an environmental trigger suggests an unexpected link between diatom bloom dynamics 2705	

and strategies for enhancing population genetic diversity. 2706	
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Introduction 2707	

 Diatoms are protists that form massive annual spring and fall blooms in aquatic 2708	

environments and are estimated to be responsible for about half of photosynthesis in the 2709	

global oceans (Nelson et al., 1995). This predictable annual bloom dynamic fuels higher 2710	

trophic levels and initiates delivery of carbon into the deep ocean biome. Diatoms have 2711	

complex life history strategies that are presumed to have contributed to their rapid genetic 2712	

diversification into ~200,000 species (Mann, 1999) that are distributed between the two 2713	

major diatom groups: centrics and pennates (Simonsen, 1979). A defining characteristic 2714	

of all diatoms is their restrictive and bipartite silica cell wall that causes them to 2715	

progressively shrink during asexual cell division. At a critically small cell size and under 2716	

certain conditions, auxosporulation restitutes cell size and prevents clonal death (Drebes, 2717	

1977; Lewis, 1984; Chepurnov et al., 2004). The entire lifecycles of only a few diatoms 2718	

have been described and rarely have sexual events been captured in the environment 2719	

(Jewson, 1992; Koester et al., 2008; Holtermann et al., 2010).  2720	

 So far, all centric diatoms appear to share the process of oogamous sexual 2721	

reproduction (Fig 1). The average cell size of a population of asexually dividing diatoms 2722	

decreases as a result of differential thecae inheritance. At a critically small size, cells 2723	

become eligible to differentiate into male and female cells. Meiosis in the male 2724	

spermatogonangium produces multinucleate spermatogonia that divide into individual 2725	

haploid spermatocytes. Meiosis in the female oogonia produces a single functional 2726	

haploid nucleus that is fertilized by a flagellated spermatocyte through an opening in the 2727	

oogonia thecae. Fertilized oogonia expand into a large auxospore where new, large thecae 2728	

are formed for the new, enlarged initial cell. Auxosporulation can also occur asexually, 2729	
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but it is considered an ancillary pathway for cell size restitution in diatom species that 2730	

have a sexual path for reproduction (Chepurnov et al., 2004). 2731	

The environmental factors that trigger formation of sexual cells and sexual 2732	

reproduction in centric diatoms are not well understood (Chepurnov et al., 2008; Von 2733	

Dassow and Montresor, 2011), but sexualization appears to be strongly associated with 2734	

conditions causing synchronous sexuality in cells experiencing growth stress (Edlund and 2735	

Stoermer, 1997). Besides the size threshold requirement, previous observations indicate 2736	

that sexualization is possible when active growth has ceased, causing cell cycle arrest 2737	

(Armbrust et al., 1990; Huysman et al., 2014) and cell densities are sufficient to permit 2738	

successful fertilization of the oogonia by the spermatocyte (Assmy et al., 2006). Light 2739	

interruption with an extended dark period (Armbrust et al., 1990), changing salinities, and 2740	

nutrient shifts (Godhe et al., 2014), have sometimes been successful in inducing sexual 2741	

reproduction, probably by causing cell cycle arrest. Recently, pheromones produced by 2742	

the pennate diatom, Seminavis robusta, have been identified that cause cell cycle arrest 2743	

and induce the sexual pathway (Moeys et al., 2016). However, we are aware of no 2744	

method that reliably causes induction of all of the sexual stages of centric diatoms shown 2745	

in figure 1. 2746	

The ecological importance of diatoms, combined with their potential uses in 2747	

materials chemistry, drug delivery, biosensing (Kroth, 2007; Ezzati et al., 2011), and 2748	

bioenergy (Hildebrand et al., 2012; d'Ippolito et al., 2015), prompted genome sequencing 2749	

of T. pseudonana CCMP1335 (a ‘centric’ diatom collected from the North Atlantic 2750	

Ocean) and Phaeodactulum tricornutum (a ‘pennate’ diatom), which have become model 2751	

organisms for experimental studies (Armbrust et al., 2004; Bowler et al., 2008).  2752	
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However, sexual morphologies have never been observed in either of these species or in 2753	

the vast majority of diatoms (Chepurnov et al., 2008). The inability to reliably control the 2754	

sexual cycle in centric diatoms has severely hindered studies to understand the silica 2755	

deposition process, as well as the genetic regulation, ecology, and evolution of sex (Apt 2756	

et al., 1996; Chepurnov et al., 2008; Chepurnov et al., 2011). Both of the model diatoms 2757	

were thought to have repurposed their extant genetic toolkits and lost the need and ability 2758	

for a sexual lifestyle (Chepurnov et al., 2008; Von Dassow and Montresor, 2011; Patil et 2759	

al., 2015). 2760	

Here we show that two strains of T. pseudonana and two other centric species, T. 2761	

weisflogii and Cyclotella cryptica, can be reliably induced into the sexual reproductive 2762	

pathway when cells are below the critical size threshold and exposed to ammonium 2763	

during the stationary phase of growth. Ammonium induced oogonia, auxospore, and 2764	

spermatocyte formation in each of these species. Induction of sexuality was further 2765	

supported by RNA sequencing (RNAseq) which revealed 1,274 genes whose expression 2766	

patterns changed when T. pseudonana became sexualized by ammonium. Meiosis genes 2767	

and genes associated with flagellar structures of heterokont and cryptophyte algae were 2768	

differentially expressed in ammonium-induced cells compared to nitrate grown cells. We 2769	

anticipate that this discovery will open opportunities to study the evolution of diatom 2770	

lifecycles and facilitate expansion of diatom breeding to explore functional genetics for 2771	

molecular ecology, nanotechnology and biofuels applications. 2772	

 2773	

 2774	

Results and discussion 2775	
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Ammonium triggers sexual morphologies 2776	

 We observed T. pseudonana CCMP1335 cell morphologies consistent with sexual 2777	

reproduction when cells were propagated in artificial seawater medium supplemented 2778	

with ammonium. The proportion of cells that differentiated into sexual cell types was 2779	

dependent on ammonium concentration, with up to 39% of the population identified as 2780	

oogonia or auxospores in cultures supplemented with 800 µM NH4Cl (Fig 2A). Oogonia 2781	

and auxospores were first observed at the onset of stationary phase and reached 2782	

maximum population proportions in late stationary phase (Fig 2A). Ammonium also 2783	

induced oogonia and auxospore production in T. pseudonana CCMP1015 (collected from 2784	

the North Pacific Ocean), T. weissflogii, and Cyclotella cryptica (S1 Fig). A few oogonia 2785	

and auxospores were observed in nitrate grown cultures with no added ammonium (Fig 2786	

2A and S1). However, with the exception of nitrate grown C. cryptica cultures, which 2787	

generated oogonia and auxospores constituting 11% of the total population, oogonia and 2788	

auxospores were only a small percentage of the total population in nitrate-grown T. 2789	

pseudonana and T. weissflogii. Even though auxospores can have diameters 3-4 times 2790	

that of asexual cells, such small population proportions do not lead to discernable shifts 2791	

in cell size distributions obtained by particle size analysis (e.g., Coulter counter, a 2792	

commonly used method to assess population size). We initially observed auxospores 2793	

when performing visual inspections using a light microscope of our cultures that were 2794	

growing in ammonium. For the data reported here, oogonia and auxospores were 2795	

quantified by manually counting the cell types using a hemocytometer. We suspect that 2796	

reliance on laboratory instruments such as particle counters and flow cytometers in place 2797	

of microscopic analysis is one reason that sexual morphologies in these well-studied 2798	
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diatom species have gone undetected until now. Laboratory stock cultures are typically 2799	

maintained in media with low concentrations of nitrogen, especially when ammonium is 2800	

supplied as the nitrogen source because it has been considered to be toxic to diatoms in 2801	

high concentrations (Yoshiyama and Sharp, 2006). Therefore, it may not be surprising 2802	

that sexual cells have gone un-noticed due to the low rates of sexual induction in the 2803	

presence of low ammonium concentrations (Fig. 2A).  2804	

Cells differentiated into oogonia and auxospores regardless of whether 2805	

ammonium was supplied at inoculation or at the onset of stationary phase (Fig. 1B). 2806	

Thus, it appears that stationary phase and ammonium availability are key factors that 2807	

trigger formation of sexual cells in centric diatoms. Resource depletion can arrest the cell 2808	

cycle (Huysman et al., 2014), and the presence of ammonium at the onset of stationary 2809	

phase appears to activate the sexual cycle. Auxospore formation was observed in 2810	

Cyclotella meneghiniana during stationary phase (Hoops and Floyd, 1979), and other 2811	

protists initiate sex under stress in response to nutrient depletion or oxidative DNA 2812	

damage (Bernstein and Bernstein, 2010). Ammonium can inhibit photosynthesis 2813	

(Yoshiyama and Sharp, 2006); however, diatoms, including T. pseudonana, can 2814	

acclimate to millimolar ammonium concentrations (Collos and Harrison, 2014). It is 2815	

possible that high ammonium concentrations intensify the stress condition required for 2816	

the sexual pathway. Nevertheless, ammonium consistently caused formation of ten-fold 2817	

more sexualized cells than the same concentrations of nitrate (Fig 2 and S1).  2818	

Our results showing that ammonium induced formation of sexual cells in several 2819	

centric diatom species suggests that it may serve as a key environmental factor regulating 2820	

the sexual lifecycle across centric diatoms. Ammonium is typically present in very low 2821	
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concentrations in aquatic ecosystems. However, ammonium reached 12.6 mM in a 2822	

eutrophic lake where the centric diatom, Aulacoseira subarctica, was observed 2823	

undergoing sexual reproduction (Jewson, 1992). Clearly, ammonium was not the growth- 2824	

limiting nutrient under those conditions or in our laboratory cultures (Fig 2). Pseudo- 2825	

nitzschia auxospore formation was positively correlated with ammonium, which was 2826	

measured to be 14 µM during a major bloom event off the coast of Washington 2827	

(Holtermann et al., 2010). Thus, the formation of sexual cells appears to be triggered by 2828	

the presence of ammonium while at least one other growth factor becomes limiting, such 2829	

as light (discussed below), phosphorous, silica (Holtermann et al., 2010), vitamins, or 2830	

trace elements. 2831	

Cell differentiation in T. pseudonana was induced irrespective of growth rate in 2832	

exponential phase, light intensity, or light regime. However, the growth parameters did 2833	

affect the proportion of differentiated cells. Oogonia and auxospores were only 0.5% of 2834	

the population when grown under very low light (5 µE) with 200 µM NH4Cl and 2835	

increased to 39% when grown under moderate light (100 µE) and 800 µM NH4Cl (Table 2836	

1). The proportions of oogonia and auxospores increased with light up to moderate 2837	

intensities (70-100 µE) but decreased at high (220 µE) intensities (Table 1), suggesting 2838	

that photon flux has an important role in meeting the energetic demands of sexual 2839	

reproduction. Other work showed sexualization was more prevalent at light <50 µE 2840	

(Mouget et al., 2009) or with the addition of a dark period (Vaulot and Chisholm, 1987; 2841	

Armbrust et al., 1990; Mills and Kaczmarska, 2006). Likely, the optimum light intensity 2842	

or need for a dark period to precede sexual induction (Gillard et al., 2008) is species- 2843	

specific and linked to adaptive life histories (Chepurnov et al., 2004).  2844	
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Visualization of sexual morphologies 2845	

Confocal, light, and scanning electron microscopy were used to document the cell 2846	

morphologies at various stages in the life history cycle of T. pseudonana (Fig 3 and S2). 2847	

Oogonia were elongated relative to asexually growing vegetative cells and exhibited a 2848	

bent morphology and swelling of the plasma membrane at the junction of the hypotheca 2849	

and epitheca (Figs 3B, 3C and S2B-D). In oogonia, cellular contents became localized to 2850	

the ends of the cell resulting in an apparent empty space near the area of membrane 2851	

swelling where fertilization likely occurs (Chepurnov et al., 2004).  2852	

T. pseudonana spermatogonium harbored at least eight nuclei (Fig 3D), 2853	

suggesting that a depauperating mitosis preceded meiosis (Von Dassow and Montresor, 2854	

2011; Kaczmarska et al., 2013). Sperm released were very small, about 1 µm, and 2855	

flagellated (Figs 3E and S2E, S2F), but they often became entangled with other cells and 2856	

debris (French III and Hargraves, 1985; Jewson, 1992; Idei et al., 2012). Sperm cells 2857	

attached to oogonia at the junction of the thecae for fertilization (Figs 3F, 3G and S2I, 2858	

S2J) as shown in T. punctigera (Chepurnov et al., 2006). Also similar to T. punctigera, 2859	

flagella were not visible at that stage, possibly because flagella are abandoned upon 2860	

attachment to the oogonia (French III and Hargraves, 1985).    2861	

 Oogonia developed into auxospores and these conspicuous cell morphologies 2862	

were always observed in cultures induced by ammonium. Auxospores were larger than 2863	

vegetative cells and oogonia, ranging from about 6 to 20 µm in diameter, with most being 2864	

10-15 µm in diameter (Figs 3H, 3I and S2G, S2H, S2L). Auxospores were spherical, with 2865	

most of the cellular contents localized to one side (Fig 3H, 3I and S2G, S2H, S2L) and 2866	

sometimes showing slight distention where the mother valve was shed (Fig 3I), as 2867	
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described in Stephanodiscus niagarae (Edlund and Stoermer, 1991). Thecae remained 2868	

attached in some cases, especially on smaller cells. Oogonia, auxospores, and 2869	

spermatogonia in the other species studied displayed similar morphologies to those 2870	

observed in T. pseudonana and other centric diatoms (Figs 3L-O, S2M-P and 4A) (Hoops 2871	

and Floyd, 1979; Chepurnov et al., 2006; Mills and Kaczmarska, 2006; Von Dassow and 2872	

Montresor, 2011; Idei et al., 2012; Kaczmarska et al., 2013; Shirokawa and Shimada, 2873	

2013; Godhe et al., 2014; Idei et al., 2015).  2874	

Changes in DNA content in T. pseudonana cells induced into sexuality by 2875	

ammonium were observed using flow cytometry-based analysis. Fluorescence-activated 2876	

cell sorting (FACS) analysis showed that as the culture progressed from exponential into 2877	

stationary growth phases, the diploid population (Fig 4B) expanded to include DNA 2878	

fluorescence intensities that were consistent with the presence of spermatogonangia and 2879	

spermatogonia containing multiple gametes (Fig 4C). In late stationary phase, a new 2880	

population was observed that had DNA fluorescence signals consistent with haploid 2881	

sperm cells with little to no chlorophyll (Armbrust et al., 1990) (Fig 4D).  2882	

Cell size restitution via auxosporulation produced progeny cells that were 2883	

considerably larger than the parent cells from nitrate stock cultures. To induce a high 2884	

proportion of the eligible cells into the sexual pathway we repeatedly propagated cultures 2885	

in 800 µM ammonium with inoculum of 25%. This strategy raises the ratio between the 2886	

exposure of cells to ammonium in stationary phase and the total number of cell divisions. 2887	

Our findings can be explained by assuming that cells in nitrate stock cultures are already 2888	

at or below the critical size threshold for induction into sexuality, but with each passage 2889	

through growth and stationary phases in batch culture, only a fraction of the eligible cells 2890	
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are induced into the sexual cycle.  The average cell diameters of the resulting cultures 2891	

were larger relative to stock cultures maintained in nitrate (Fig 4E and S3). The T. 2892	

pseudonana initial cells were 7-12 µm, the largest size reported for this species (Figs 3J, 2893	

3K, S2K). Presuming that cell size reduction during vegetative growth occurs in T. 2894	

pseudonana, this process of cell size reduction and cell size restitution via ammonium 2895	

induction have opposing influences on the average size of populations. These processes 2896	

confound the ability to observe the impacts of sexual induction without experimental 2897	

designs that maximize the percentage of the population induced into the sexual pathway 2898	

and minimize the number of vegetative replications between episodes of induction.  2899	

We identified oogonia, male gametes, auxospores, and initial cells in cultures of 2900	

the model centric diatom, T. pseudonana providing new evidence for sexuality in this 2901	

species that was previously assumed to be asexual (Chepurnov et al., 2008). Although 2902	

cell enlargement through asexual/apomictic mechanisms has been recorded in other 2903	

species (Gallagher, 1983; Nagai et al., 1995; Sabbe, 2004), the presence of all sexual cell 2904	

types, and the expression of meiotic genes (discussed below), suggest apomixis is not the 2905	

mechanism being used by T. pseudonana for cell enlargement. Furthermore, apomixis 2906	

typically occurs in species that also undergo sexual reproduction (Chepurnov et al., 2907	

2004).  Only spermatogenesis had previously been reported in T. weissflogii (Armbrust et 2908	

al., 1990; Armbrust, 1999), but we have now also documented induction of oogonia and 2909	

auxospores by ammonium and subsequent formation of initial cells in this species. A 2910	

major challenge in visualizing the morphological characteristics of these species is their 2911	

smaller cell sizes compared to other species for which morphological details have been 2912	

documented. Now that we have determined a reliable method for inducing the sexual 2913	
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morphologies, future studies will dissect additional details associated with the sexual 2914	

pathways in these, and perhaps other species inducible by ammonium, to determine their 2915	

variation from other centric diatoms. For example, the presence of auxospore scales, 2916	

precise timing of fertilization and meiotic activity, repeated auxosporulation, and 2917	

polyspermy events (e.g., (Chepurnov et al., 2006)). The case of T. pseudonana also 2918	

presents interesting questions about whether this species has retained the ability to reduce 2919	

in cell size. It appears that T. pseudonana has the capacity to avoid clonal death by 2920	

maintaining a relatively constant cell size (3-9 µM) (Round, 1972; Hildebrand et al., 2921	

2006; Hildebrand et al., 2007). Our experiments show that cells in this size range are 2922	

inducible into the sexual pathway. Nevertheless, the question remains whether the 2923	

progeny of induced small cells of T. pseudonana are capable of cell size reduction.   2924	

 2925	

Gene expression analysis of ammonium induced sexual morphologies 2926	

We used RNAseq to identify genes that were differentially expressed in 2927	

conditions that triggered cell differentiation into sexual morphologies. We compared the 2928	

transcriptomes of T. pseudonana harvested in exponential (EXP), stationary (STA), and 2929	

late stationary phases (L-STA). Cells were grown in 100 µM NaNO3 or, to capture a 2930	

dose-dependent change in gene expression, either 100 or 800 µM NH4Cl (S4 Fig). We 2931	

identified genes that were significantly differentially expressed in multiple pairwise 2932	

comparisons of growth phases and nitrogen sources (S1-S11 Tables). Next, we examined 2933	

the statistical interactions of pairwise condition comparisons to identify genes with 2934	

significantly greater or lesser magnitude changes in expression between growth stages in 2935	

the presence of ammonium relative to 100 µM NaNO3 (Fig 5A and S5). 2936	
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This conservative approach yielded a total of 1,274 genes in the four analyses of 2937	

statistical interactions (S12-S15 Tables). A total of 89 of the genes have an annotated 2938	

function (Fig. 5A;S16 Table). The set of 89 genes includes four meiotic genes (mcm2, 2939	

mcm8, mcm9, and mlh1, Fig 4B and S6) that were also up-regulated in pennate diatoms 2940	

during sexual reproduction (Patil et al., 2015). The Mcm family of DNA helicases 2941	

function in DNA replication, with mcm8, mcm9, and mlh1 having roles in double 2942	

stranded break repair (Baker et al., 1996; Lutzmann et al., 2012; Park et al., 2013). Mcm8 2943	

was one of the four genes related to meiosis that were upregulated in the pennate diatom, 2944	

Seminavis robusta during treatment with a sex-inducing pheromone (Moeys et al., 2016). 2945	

Eight genes in our list are homologous to yeast genes involved in meiosis (Butler et al., 2946	

2009) (Fig 5B,S17 Table), including genes that regulate the meiotic anaphase promoting 2947	

complex (cdc16, cdc23, ama1) (Zachariae et al., 1998; Cooper et al., 2000) and rad54, a 2948	

motor protein that regulates branch migration of Holliday junctions during homologous 2949	

recombination (Mazin et al., 2010). Expression of genes encoding other RAD proteins 2950	

(rad50 and rad 51) increased in pennate diatoms induced into meiosis (Patil et al., 2015; 2951	

Moeys et al., 2016). 2952	

Of three ‘sexually induced genes’ that were up-regulated in T. weissflogii at the 2953	

initiation of gametogenesis (Armbrust, 1999) and associated with sperm flagella 2954	

mastigonemes (Honda et al., 2007), one, sig3, was significantly up-regulated in stationary 2955	

phase compared to exponential phase (Fig 5B). In addition, a gene encoding an 2956	

intraflagellar transport protein (IFT88) was also up-regulated in ammonium induced cells 2957	

during stationary phase (Fig. 5B). An IFT system is required for flagellar assembly 2958	

(Rosenbaum and Witman, 2002) and five genes encoding IFT particle proteins, including 2959	
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IFT88, and a kinesin-associated protein involved in anterograde transport were found in 2960	

the T. pseudonana genome (Merchant et al., 2007). The genes encoding Sig3 and IFT88 2961	

are unique to flagellar structures, and their differential expression in ammonium induced 2962	

T. pseudonana compared to the nitrate-grown control treatments provide additional 2963	

evidence that ammonium induced spermatogenesis in this species.  2964	

The MYB factor and bZIP families of proteins are transcriptional regulators that 2965	

control a variety of cell processes including stress responses, development, and 2966	

differentiation in plants (Ambawat et al., 2013). Expression of two genes having the 2967	

characteristic R2R3 MYB DNA binding domains common in plants, myb24 and myb16, 2968	

was generally lower in ammonium induced cultures compared to the nitrate grown 2969	

controls (Fig 5B). In Arabidopsis thaliana, hormonal activation of myb24 is required for 2970	

stamen development and male fertility (Cheng et al., 2009). Whether myb24, myb16, and 2971	

bzip2 play roles in regulating gamete development or sex differentiation in diatoms 2972	

remains to be determined.   2973	

The 1,274 genes provide new avenues to understand the evolution of sexuality in 2974	

the Heterokont eukaryotic lineage. Diatoms emerged ~ 200 Mya, about 800 My after a 2975	

eukaryotic heterotroph engulfed a red alga in the secondary endosymbiosis event that 2976	

gave rise to the SAR eukaryotic supergroup (Archibald, 2009). Of 171 diatom genes of 2977	

red algal origin (Archibald, 2009), 17 were identified as differentially expressed in 2978	

conditions that induced sexual reproduction (S18 Table). None of these genes are 2979	

annotated in the T. pseudonana genome, but in red algae they are predicted to function in 2980	

transport and plastid-targeted processes (Bowler et al., 2008).  2981	

 2982	
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Conclusions 2983	

That some of the most well studied centric diatoms were never observed 2984	

undergoing sexual reproduction was a mystery. Possibly even more elusive was the 2985	

ability to reliably control or induce the sexual pathway of centric diatoms in the 2986	

laboratory (Chepurnov et al., 2008) despite a myriad of efforts that ranged from sweet- 2987	

talk to torture. Factors that have limited progress in this field center on the problem that 2988	

even under ‘favorable environmental conditions’ that result in the sexual lifecycle, only a 2989	

fraction of cells undergo sexual reproduction (Fig 2). Thus, capturing the sexual event 2990	

requires near constant visual observation because (a) only cells that have become 2991	

sufficiently small and reach the critical size threshold can undergo sexual reproduction 2992	

(Geitler, 1932), (b) only a fraction of those size-eligible cells may undergo sexual 2993	

reproduction (Jewson, 1992; Assmy et al., 2006; Mouget et al., 2009; Godhe et al., 2014), 2994	

(c) there has been a lack of understanding about what constitutes conditions that are 2995	

‘favorable’ for triggering diatom sex (Chepurnov et al., 2004; Holtermann et al., 2010), 2996	

and (d) morphological changes indicative of sex may not be recognized by untrained 2997	

scientists (Mann, 1988).  2998	

Our results provide strong evidence that T. pseudonana is a sexual organism, 2999	

expressing the major morphologies associated with the sexual pathway that result in 3000	

enlarged initial cells. Furthermore, the sexual pathway was reliably induced in T. 3001	

pseudonana, and two other centric diatom species by exposure of size-eligible cells to 3002	

ammonium. Ammonium triggered formation of sexual cells in a dose-dependent manner 3003	

and significant changes in expression of genes involved in meiosis, spermatocyte 3004	

flagellar structures and assembly, and sex differentiation. RNAseq analysis revealed 3005	
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many more genes with unknown functions that were expressed under conditions of sexual 3006	

differentiation. Other genes involved in sex are likely to have been missed by our 3007	

analysis because their changes in expression were masked by the mixed population of 3008	

asexual and sexual cells, or they were not captured in the coarse time-resolution of 3009	

sampling used in this study. Nevertheless, our discoveries resolve two persistent 3010	

mysteries that have plagued diatom researchers. Furthermore, the RNAseq data provide a 3011	

subset of genes that can be used to study the molecular ecology of diatoms. 3012	

The ecology of centric diatom sexual reproduction that can be inferred from our 3013	

findings appears best described as synchronous sexuality (Edlund and Stoermer, 1997) 3014	

triggered by ammonium in cells experiencing growth stress. Asexual cell cycle arrest 3015	

appears to be prerequisite to activation of the diatom sexual life cycle (Hoops and Floyd, 3016	

1979; Armbrust et al., 1990; Bernstein and Bernstein, 2010; Huysman et al., 2014).  In 3017	

the environment, diatoms bloom following elevated nutrient concentrations driven by 3018	

vertical mixing, coastal upwelling, or river inputs and the bloom reaches its peak biomass 3019	

when essential nutrients are depleted. Within a week, the bulk of a bloom can be 3020	

consumed by heterotrophic protists (Tillmann, 2004) that excrete ammonium to maintain 3021	

homeostatic elemental composition (Sterner and Elser, 2002). We propose that 3022	

ammonium released by grazers at bloom climax may be a principal ecological trigger for 3023	

sexual morphologies in centric diatoms. Synchronization of sexuality at the onset of 3024	

resource depletion (stationary phase) increases the chances for successful fertilization 3025	

because cell density is at its maximum (Edlund and Stoermer, 1997). Environmental 3026	

concentrations of ammonium in the environment rarely reach the concentrations used in 3027	

this study to demonstrate the dose response effect on sexuality. Other methods that have 3028	
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sometimes successfully triggered sexual reproduction in other species are similarly 3029	

unusual compared to environmental conditions. For example, the magnitude of the 3030	

salinity shifts used to induce sexual reproduction in Skeletonema marioni in the 3031	

laboratory do not occur in the Baltic sea (Godhe et al., 2014). Nevertheless, pulses of 3032	

ammonium, shifts in salinity, and other environmental fluctuations do occur in aquatic 3033	

ecosystems, and provided the other conditions for sexuality are met (e.g., cell size 3034	

threshold, stress, population density), are likely to induce sexuality in at least a small 3035	

fraction of a population. The presence of ammonium and the onset of stationary phase 3036	

also point to involvement of another growth factor whose depletion triggers sexual 3037	

reproduction. The specific collection of factors that lead to sexual reproduction in 3038	

diatoms in the environment is not yet known and neither is whether ammonium is a direct 3039	

or indirect trigger of sexuality (Lewis, 1984). Nevertheless, this work suggests an 3040	

intriguing ecological role for ammonium in the mechanisms underlying sexuality in 3041	

centric diatoms and will certainly be a valuable tool to control sexuality in the laboratory.   3042	

The identification of ammonium as a reliable inducer of sexuality in T. 3043	

pseudonana and other centric diatoms has the potential to shift perspectives on diatom 3044	

ecology, open avenues for the experimental investigation of diatom reproductive 3045	

mechanisms, and provide tools for genetic manipulation of centric diatoms that have not 3046	

heretofore been available. Diatom blooms have a global impact but the factors that 3047	

control these blooms and their demise are complex and a consensus has not been reached 3048	

about these processes. Our evidence suggests that induction of sexuality may play a vital 3049	

role in diatom bloom conclusion and the production of genetic diversity that seeds future 3050	

blooms (Chen and Rynearson, 2016). Our analysis suggests an involvement of genes of 3051	
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red-algal origin, providing new lines of evolutionary enquiry. Interest in diatoms for 3052	

biotechnological applications is high due to their uses in biofuels, materials chemistry 3053	

and medicine. Our work will likely propel this exploration by enabling improved 3054	

breeding and genetic modification to control and understand unique diatom traits. 3055	

 3056	

Experimental Procedures 3057	

 Stock cultures of T. pseudonana (CCMP1335) were maintained in f/2 medium 3058	

(Guillard, 1975) with 200 µM NaNO3 under continuous sub-saturating light at 18°C. 3059	

Sexual cells were quantified in triplicate cultures of T. pseudonana (CCMP1335 and 3060	

CCMP1015), T. weissflogii (CCMP1336) and C. cryptica (CCMP332) (all obtained from 3061	

NCMA) grown in f/2 amended with NaNO3 or NH4Cl and grown at 18oC under 50 µE 3062	

continuous light, or under variable light intensities/cycles as shown in Table 1. Cell 3063	

populations were quantified using a Coulter counter (Beckman-Coulter, Indianapolis, 3064	

Indiana). Oogonia and auxospores were counted using a hemocytometer.  3065	

 We found that a modified f/2 medium yielded better cell images using light and 3066	

confocal microscopy. This medium contained 0.939 mM KCl, 0.802 mM NO3
-, 1 mM 3067	

NH4Cl, 0.05 mM glycine, 0.01 mM methionine, 0.078 mM pyruvate, 0.84 µM 3068	

pantothenate, 0.985 µM 4-amino-5-hydroxymethyl-2-methylpyrimidine, 0.3 µM 3069	

thiamine, 0.002 µM biotin, 0.117 µM FeCl3*6H2O, 0.009 µM MnCl2*4H2O, 0.0008 µM 3070	

ZnSO4*7H2O, 0.0005 µM CoCl2*6H2O, 0.0003 µM Na2MoO4*2H2O, 0.001 µM 3071	

Na2SeO3, and 0.001 µM NiCl2*6H2O, and sparged with filter-sterilized carbon dioxide 3072	

and air for 8 hours and overnight respectively. To view DNA, 1 ml live samples were 3073	

stained with 5 µl 1.62 µM Hoescht 33342 (0.2 µm filtered) for 10 min.  For scanning 3074	
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electron microscopy (SEM), 1 ml samples were diluted 1:3 with sterile f/2 and syringe 3075	

filtered onto 13 mm 0.2 µm polycarbonate filters using a Swinnex filter unit. The filter 3076	

was washed with 4 ml f/2 containing 0.5% gluteraldehyde and left submerged for at least 3077	

24 hours, followed by a series of 4 ml washes: 0.2 µm filtered 80%, 60%, 40%, 20% and 3078	

0% f/2, followed by 20%, 40%, 60% 80% and 100% ethanol, before critical point drying. 3079	

SEM imaging was done at the Oregon State University Electron Microscope facility. 3080	

 For flow cytometry 1 ml culture samples were fixed with 1 µl gluteraldehyde 3081	

(50%) and stained with 10 µl Sybr green mix (1:25 dilution Sybr green in 0.01M Tris- 3082	

EDTA, pH 8.0) for 30 min. Samples were run on a FACScan flow cytometer (Becton 3083	

Dickinson, Franklin Lakes, New Jersey). Settings were FL1=582 and FL3=450 for 3084	

unstained cells and FL1=450 and FL3=450 for stained cells. 3085	

For RNAseq analysis, 1.61x108 – 1.10x109 cells from triplicate independent 3086	

cultures were filtered onto 0.8 µm 47 mm polycarbonate filters during exponential, 3087	

stationary and late stationary phases and flash frozen in liquid nitrogen. RNA was 3088	

extracted using a Qiagen RNeasy midi kit according to modified manufacturer’s 3089	

instructions (Dyhrman et al., 2012). Silica beads (0.5 mm) were added to the cells and 3090	

lysis buffer and vortexed until homogeneous before being filtered through Qiashredder 3091	

columns to remove large particles. Eluted RNA was subjected to off column RNase free 3092	

DNase I treatment and secondary purification according to manufacturer’s 3093	

recommendations. Total RNA was prepared and sequenced as a 150 bp single end library 3094	

on an Illumina HiSeq 3000 at the Center for Genome Research and Biocomputing at 3095	

Oregon State University. Sequencing data/interaction analyses were conducted using the 3096	

Ballgown pipeline (Pertea et al., 2016). Sequencing reads were trimmed to remove 3097	
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sequencing adapters using BBDuk v. with the parameters " ktrim=r k=23 mink=9 hdist=1 3098	

minlength=100 tpe tbo" (Bushnell, 2016). Reads aligned to the T. pseudonana reference 3099	

genome (NCBI accession GCA_000149405.2) using HISAT2 v. 2.0.4 with the 3100	

parameters " --min-intronlen 20 --max-intronlen 1500 --rna-strandness F --dta-cufflinks" 3101	

(Kim et al., 2015). Transcripts were assembled for each dataset and merged using 3102	

Stringtie v 1.2.4 (Pertea et al., 2015). Pairwise differential expression analyses for genes 3103	

were performed using the “stattest” function in Ballgown version 2.2.0 (Frazee et al., 3104	

2015). Interaction effects were tested by comparing the models with (timepoint + 3105	

treatment + timepoint * treatment) and without (timepoint + treatment) the interaction 3106	

term using the custom model option in the “stattest” function. 3107	

For construction of the phylogenetic tree, 18s rRNA sequences were obtained 3108	

from the Silva database and aligned using Muscle v3.8.31 (default settings) (Edgar, 3109	

2004). A genome editor (BioEdit) was used to manually trim off overhanging sequence. 3110	

The tree was built using RAxML-HPC v8.0.26 using the GTRCAT model, “-f a” option, 3111	

and 1000 bootstrap replicates (Stamatakis, 2006). A visual representation was created 3112	

using the TreeDyn (Chevenet et al., 2006) tool through LIRMM (phylogeny.fr) (Dereeper 3113	

et al., 2008).  3114	

All RNAseq data have been deposited to NCBI under BioProject ID 3115	

PRJNA391000. 3116	
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 3123	

Fig 1. The life cycle of a centric diatom. The average cell size of a population of 3124	
asexually dividing diatoms decreases as a result of differential thecae inheritance. At a 3125	
critically small size, cells can initiate sexual reproduction and differentiate into male and 3126	
female cells. Meiosis in the male spermatogonangium produces multinucleate 3127	
spermatogonia that divide into individual haploid spermatocytes. Meiosis in the female 3128	
oogonia produces a single functional haploid nucleus that is fertilized by a flagellated 3129	
spermatocyte through an opening in the oogonia thecae. Fertilized oogonia expand into a 3130	
large auxospore where new, large thecae are formed for the new initial cell. 3131	
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 3132	
Fig 2. Ammonium induces sexual morphologies in T. pseudonana CCMP1335. (A) 3133	
Proportion of sexual cells (oogonia and auxospores) relative to the total population in 3134	
cultures of T. pseudonana grown in the presence of NH4Cl or NaNO3; n=3 independent 3135	
cultures, average of 300 cells counted per replicate. Oogonia and auxospores were only 3136	
observed beginning in stationary phase, data are mean values, error bars are s.d.. Inset: 3137	
corresponding growth curve linking the onset of stationary phase with first appearance of 3138	
sexual cells on day six. (B) Sexual cells were observed in cultures with NH4Cl present at 3139	
inoculation (blue hatched and solid blue bars) or following NH4Cl addition at the onset of 3140	
stationary phase (yellow bars). Legend shows concentration of nitrogen source provided 3141	
at inoculation and concentration of nitrogen source added at the time of the second 3142	
dosing. Two control treatments were supplied 200 µM nitrogen source at inoculation 3143	
only. Inset: corresponding growth curve showing the onset stationary phase and timing of 3144	
2nd nitrogen addition; n=3 independent cultures, average of 281 cells counted per 3145	
replicate, data are mean values, error bars are s.d. 3146	
 3147	
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 3148	

 3149	

Table 1. Effects of growth parameters on induction of sexual reproduction in T. 3150	
pseudonana CCMP1335, T. weissflogii and C. cryptica. Oogonia and auxospores always 3151	
appeared in stationary phase. The percentage of the total population (at least 300 cells 3152	
counted per replicate) differentiated into oogonia or auxospores when grown in nitrate or 3153	
ammonium is shown for the day they were at their maximum number; data are mean 3154	
values ± s.d., biological replicates n=3. 3155	
  3156	
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 3157	

 3158	

Fig 3. The life cycle stages of T. pseudonana (A-K), T. weissflogii (L) and C. cryptica 3159	
(M-O) imaged using scanning electron microscopy (SEM), light (LM), and confocal 3160	
microscopy (CFM). A: Two vegetative cells (LM, CCMP1335). B: Oogonium displaying 3161	
separation of thecae (arrowhead) and putative pycnotic nucleus indicated by the arrow 3162	
(CFM, CCMP1015). C: Oogonium sharply bending at the thecae junction. Arrowhead 3163	
indicates protrusion of the plasma membrane (CFM, CCMP1335). Oogonia images are 3164	
representative of 38 total images.  D: Spermatogonium containing multiple spermatocytes 3165	
seen as individual red (DNA stained) clusters (CFM, CCMP1335); representative of 8 3166	
images. E: Motile spermatocytes (in red, arrow) with moving flagella (arrowheads, CFM, 3167	
CCMP1335, representative of 10 images). F-G: SEM images of spermatocytes 3168	
(arrowhead) attached to early oogonia (SEM, CCMP1335, representative of 20 images). 3169	
H,I: Auxospores; representative of 60 images in CCMP1015 (H, LM) and CCMP1335 (I, 3170	
CFM) showing bulging where mother valve was attached (arrowhead). Two nuclei are 3171	
visible in red following non-cytokinetic mitosis. J: Small parental cell (arrow) with initial 3172	
cells produced by sexual reproduction to the left (partial valve view) and right (girdle 3173	
view) indicated by the arrowheads (SEM, CCMP1335). K: 7 x 12 µm initial cell (LM); j 3174	
and k representative of 12 images of CCMP1335. L: T. weissflogii auxospore (LM); 3175	
representative of 12 similar images. M: C. cryptica spermatogonium (upper left) and 3176	
vegetative cell (lower right). CFM shows stained DNA (red, arrow) and multiple nuclei 3177	
in the spermatogonium. Arrowheads indicate chlorophyll autofluorescence (green). 3178	
Oogonium (N, representative of 6 images) and auxospore (O, representative of 4 similar 3179	
images) of C. cryptica (LM). Confocal microscopy images (b-e, i, m) show chlorophyll 3180	
autofluorescence (green) and Hoescht 33342 stained DNA (red). Scale bars: A: 5 µm; B- 3181	
E: 5 µm; F: 2 µm; G: 1 µm; H-O: 10 µm. 3182	
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 3183	

 3184	

Fig 4. Evidence for meiosis and initial cells. A: 18s rRNA phylogeny of diatoms 3185	
including pennates (pink rectangle), centrics (blue rectangle). Highlighted in red are the 3186	
four strains induced into sexual reproduction in this study.  Species for which some 3187	
evidence already exists for sexual reproduction are starred [9, 13, 16, 28, 33, 38]. B-D: 3188	
Changes in DNA and chlorophyll fluorescence in exponential (EXP), stationary (STA) 3189	
and late stationary (L-STA) growth phases of T. pseudonana induced by ammonium; 3190	
30,000 events recorded, representative of two biological replicates. E: Coulter Counter 3191	
distributions of cell diameter for T. pseudonana cultures in exponential phase of growth 3192	
and maintained in NaNO3 (red) and after six successive 25% transfers to medium with 3193	
ammonium (blue).  Each new culture was allowed to remain in stationary phase for three 3194	
days before the next 25% transfer was made. Single replicates of cultures with cell 3195	
densities of 2.4 x 106 ml-1 (NaNO3) and 2.3 x 106 ml-1 (ammonium). Dashed lines are the 3196	
mode for each peak.   3197	
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 3198	

Fig 5. Transcriptomic evidence for sexual reproduction in T. pseudonana. A: Heat map of 3199	
89 genes having annotated functions that were differentially expressed during 3200	
differentiation and sexual reproduction in T. pseudonana CCMP1335. Color indicates 3201	
normalized expression value (FPKM) for each nitrogen treatment (control = 100 µM 3202	
NO3

-; 100NH4 = 100 µM NH4
+; 800NH4 = 800 µM NH4

+) and growth phase (EXP, 3203	
STA, L-STA). B: FPKM values of select genes across growth phases for each nitrogen 3204	
treatment. 3205	
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Supporting Information 

 

 

S1 Fig. Ammonium induces sexual morphologies in T. weissflogii (A) and C. cryptica 
(B). Proportion of sexual cells (oogonia and auxospores) relative to the total population in 
cultures supplemented with NH4Cl or NaNO3. An average of 120 and 107 cells were 
counted per replicate of T. weissflogii and C. cryptica, respectively, throughout the 
growth curve, but oogonia and auxospores were only observed beginning in stationary 
phase; independent cultures n=3, data are mean values, error bars are s.d.. Inset: 
corresponding growth curve linking the onset of stationary phase with first appearance of 
sexual cells on day 10 (A) and 17 (B). 
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S2 Fig. The different life stages in T. pseudonana (A-L), T. weissflogii (M,N) and C. 
cryptica (O,P). A: SEM of vegetative cells (CCMP1335). B-D: SEM (B) and CFM 
images of CCMP1335 oogonia, displaying separation of the thecae and expansion of the 
membrane. E: CFM image of flagellated spermatocytes with stained DNA (arrowheads), 
F, G. Epifluorescence (F) and LM images of the same view. In F, an active, flagellated 
spermatocyte (arrowhead) possibly associated with an auxospore surface is revealed by 
lateral light from fluorescence of DNA (blue) and chlorophyll (red). H,L: Auxospores of 
CCMP1015 and CCMP1335 respectively (CFM). I,J: Individual spermatocytes attached 
to oogonia (SEM). K: Initial cells of T. pseudonana CCMP1335 (LM). M,N: T. 
weissflogii vegetative cells (M; LM) and auxospore (N; LM). O,P: C. cryptica oogonia 
(O; LM) and auxospores (P; LM). CFM images (C-E, H, L) show fluorescence of DNA 
in red and chlorophyll in green.  
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S3 Fig. Coulter Counter distributions of cell diameter for T. weissflogii (A) and C. 
cryptica (B) cultures in exponential phases of growth and maintained in NaNO3 (red) and 
after two successive 25% transfers to media with ammonium (blue), each new culture 
was allowed to remain in stationary phase for three days before the next 25% transfer was 
made. Single replicates. Dashed lines are the mode for each peak. Cell densities in (A) 
are 2.2 x 105 ml-1 (NaNO3) and 3.3 x 105 ml-1 (ammonium) and (B) are 1.6 x 106 ml-1 
(NaNO3) and 2.2 x 106 ml-1 (ammonium). 
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S4 Fig. T. pseudonana CCMP1335 growth and collection for RNAseq analysis. Three 
independent cultures of each nitrogen treatment were harvested 3, 5, and 8 days after 
inoculation (down arrows) in exponential (EXP), stationary (STA) and late stationary 
phases (L-STA). The 100uM NH4

+ STA treatment did not yield sufficient RNA for 
analysis. 
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S5 Fig. Interaction analysis workflow of RNAseq data. Growth phase A vs. B is EXP vs. 
STA, EXP vs. L-STA, or STA vs. L-STA, respectively. Δexp is the magnitude of change 
in gene expression between growth phases for the different nitrogen treatments. 
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S6 Fig. Expression values (FPKM) of 15 selected genes across the three growth phases 
for each nitrogen treatment. 
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Conclusion  

 

 The marine chemical environment has a substantial influence on microbial 

physiology and behavior. The studies reported here examined how the production and 

metabolism of chemicals in the marine environment can trigger changes in the 

physiology and life cycle of two important groups of marine plankton. Photoautotrophs, 

like the diatom Thalassiosira pseudonana, devote a significant portion of primary 

production to produce volatile organic compounds that serve as intermediates in 

biochemical pathways, metabolic waste of overflow, and chemical signals. Significant 

release of VOCs into the environment through passive diffusion supplies a pool of 

volatile public goods that are an important source of carbon and energy for heterotrophic 

bacteria. VOC production could promote growth of particular bacteria or archaea that can 

metabolize these ubiquitous chemicals, leading to changes in microbial communities and 

the interactions that occur. Pelagibacter, the most abundant bacteria in the ocean, is able 

to metabolize a wide variety of volatile organic compounds. VOC metabolism by 

heterotrophs like Pelagibacter taxes primary production by stimulating efflux of VOCs 

from phytoplankton that rely on VOCs as intermediates in metabolism. This effect has 

major implications for carbon cycling and is important in controlling the emission of 

phytoplankton produced VOCs to the atmosphere, where VOCs have important roles in 

atmospheric chemistry. However, the microorganisms and biochemistry involved in the 

heterotrophic metabolism of VOCs has barely been studied.  

 The discovery that Pelagibacter is capable of metabolizing a wide variety of 

VOCs prompted questions about the impact Pelagibacter has on ocean-atmospheric 

fluxes of acetone and isoprene, two VOCs that have significant impacts on atmospheric 



145	

	

processes, and how cells were utilizing these compounds. The Pelagibacter genome 

encodes an acetone monooxygenase that facilitates acetone metabolism, allowing the cell 

to oxidize and grow on acetone. This gene was also found in other important marine taxa, 

and its distribution in the environment may help explain trends of acetone flux in the 

ocean. Additionally, Pelagibacter was able to directly utilize isoprene to meet isoprenoid 

demands, a process that has the potential to occur in other cells. These findings show that 

Pelagibacter, and possibly other marine bacteria, are a major factor in controlling acetone 

and isoprene emissions from the ocean. 

 Future studies that clarify the significance of biological VOC sources and sinks 

are needed to understand the greater significance of VOCs in biological systems, the 

carbon cycle, and climate. More specifically, understanding how VOC production rates 

vary across many species and under a variety of growth conditions will lead to improved 

estimates of the gross biological production of these compounds in the ocean and the 

significance of VOCs as a conduit of carbon and energy in the microbial carbon cycle. 

Further, the field would be benefitted by studies that identify taxa and biochemistries 

involved in VOC metabolism, and quantifying VOC uptake by heterotrophic bacteria, 

measurements that will provide clarity on the scale of proposed biological VOC sinks. 

Information gathered from studies on biological VOC sources and sinks that are 

combined with broad scale measurements or predictions of microbial community 

composition and metabolic potential will facilitate improvements in VOC flux models by 

more accurately summarizing the large scale contributions of living organisms to VOC 

emissions in marine environments. Additionally, a greater understanding of how abiotic 
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factors modify phytoplankton physiology are needed to improve predictions of 

phytoplankton impacts on chemical cycles at a global scale. 

A variety of factors, including nutrient and light availability, growth stage, and 

stressors, such as oxidative stress or grazing, induce changes in phytoplankton 

physiology that also lead to changes in VOC production. Physiological responses to 

chemical triggers that are controlled by other microbes are important adaptations that 

allow phytoplankton to survive challenges posed by their environment or life strategy. In 

diatoms, stress induced by excess ammonium was an important factor that controlled the 

induction of the essential sexual reproductive phase of the life cycle that facilitates 

survival of cell lineages and introduces genetic diversity in populations. While the 

chemical status of an environment may control physiology, changes in physiology can 

also control the chemical environment, establishing a highly complex, cyclic feedback of 

interactions amongst the microbial community, where any one perturbation can cause a 

cascade of effects. The studies presented here begin to unravel the complexities of 

chemically mediated interactions between marine plankton, and they also show that 

chemically-driven interactions can have major influences over global biogeochemical 

processes.  
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