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1 Introduction

An old, basic problem in physics concerns the description of the orbits traced out by
masses in a two-body system, particularly the case where a planet revolves around
the sun. It is well-known from Kepler’s laws that these orbits are closed and of
elliptical shape. A key property underlying this type of motion is the Newtonian
Law of gravitation which stipulates that the two bodies exert attractive forces on
each other which are proportional to the inverse square of the distance between both
bodies. In this project we investigate some consequences of how the motion would
change if the force is not inversely proportional to the distance squared, but instead
takes a more general functional form that only depends on the distance between the
two bodies.

In 1873, Joseph Louis Francois Bertrand published a remarkable theorem stating
that there are only two types of gravitational laws in which all bounded orbits are
closed, namely under the mentioned Newtonian gravity, and when the force is propor-
tional to the distance between the bodies (Hooke’s Law). In other words, Bertrand
established the astounding fact that we live in a universe governed by one of only 2
possible gravitational laws guaranteeing that all bounded orbits will be closed. While
Bertrand’s Theorem is accepted throughout mathematics and physics, a complete
and exhaustive proof of the theorem does not exist in one piece. We aim to compile
a partial proof of Bertrand’s Theorem.

2 The Two-Body Problem

The two-body problem asks to find the positions of two point masses in space at
any time t that experience forces caused only by each other. The key to solving this
problem is to reduce it into two simpler one-body problems, one corresponding to the
motion of the system’s center of mass and the other corresponding to the displacement
between the two masses.

2.1 Reducing the Problem

Let m1 and m2 denote the point masses of two bodies located at x1(t) and x2(t) at
time t, respectively. According to Newton’s laws of motion, we find that

F12(|x1 − x2|) = m2ẍ2 (2.1)

F21(|x2 − x1|) = m1ẍ1 (2.2)

where Fij is a vector pointing from mj to mi whose magnitude depends only on the
distance between them. We assume that this magnitude is sufficiently smooth for all
positive distances. Because this system is isolated, by Newton’s third law, we find
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Figure 1: A depiction of masses m1 and m2 acting on each other by forces F12 and
F21 at positions x1 and x2, respectively.

that F12 = −F21. By adding these two equations, we find an equation describing the
motion of the center of mass of the two bodies. Let R denote the position of the
center of mass with respect to the origin depicted in Figure 1:

R ≡ m1x1 +m2x2

m1 +m2

(2.3)

Then adding the equations yields:

0 = F12 + F21 = m2ẍ2 +m1ẍ1 = (m1 +m2)R̈

It follows directly that the velocity Ṙ is constant and the position R(t) can be
found for all t using initial conditions of the system:

R(t) = R(0) + Ṙ(0)t

where

R(0) =
m1x1(0) +m2x2(0)

m1 +m2

and

Ṙ(0) =
m1ẋ1(0) +m2ẋ2(0)

m1 +m2

which can be determined from the initial positions and velocities of m1 and m2.
By subtracting these two force equations, we can find an equation of motion for

r, the vector that points from one of the two bodies to the other:

r̈ = ẍ1 − ẍ2 =
F21

m1

− F12

m2

=
( 1

m1

+
1

m2

)
F21
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hence
µr̈ = F21(|r|) (2.4)

where µ = m1m2

m1+m2
is called the reduced mass. This is the reduced problem that can

be interpreted as the motion of a fictitious point mass in a central force field F12(|r|).

The crux of solving the two-body problem lies in finding r(t) using F12(|r|). In-
deed, then R and r can be used to find the positions of the two bodies for future
times with the following formulas:

x1(t) = R(t) +
µ

m1

r(t) (2.5)

x2(t) = R(t)− µ

m2

r(t) (2.6)

2.2 Properties of the Reduced System

2.2.1 Conservation of Angular Momentum

One of the most important consequences of the reduced system is that the solution
r(t) is planar. Let L be the angular momentum of the reduced system defined by

L = r× µdr
dt

where r is the relative position of the mass µ and its linear momentum is defined as
the reduced mass times the velocity. The rate of change of L is:

dL

dt
= ṙ× µṙ + r× µr̈ = ṙ× µṙ + r× F

But because the cross product of two vectors in the same direction is 0, and r and F
are in opposite directions, it follows that dL

dt
= 0. Hence, L is constant and therefore

r and ṙ lie in the plane orthogonal to L. Let the magnitude of the angular momentum
be denoted as l.

2.2.2 Change of Variables and Conservation of Energy

We return to the reduced one-body two-dimensional vector differential equation (2.4)

µr̈ = F21(|r|) = −h(|r|) r

|r|
where µ is the reduced mass and h(|r|) determines the magnitude of the force on
the mass of interest. Because the forces of the system depend only on the distance
between the masses, it is useful to define the one-body system in polar coordinates
〈ρ, θ〉, where
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r = 〈x, y〉 :

{
x = ρ cos(θ)

y = ρ sin(θ)

and

ṙ = 〈ẋ, ẏ〉 :

{
ẋ = ρ̇ cos(θ)− ρθ̇ sin(θ)

ẏ = ρ̇ sin(θ) + ρθ̇ cos(θ)

Note that

ṙ = ρ̇〈cos(θ), sin(θ)〉+ ρθ̇〈− sin(θ), cos(θ)〉

where the velocity is expressed in terms of unit vectors in the ρ and θ directions,
respectively.

We also have

r̈ = 〈ẍ, ÿ〉 :

{
ẍ = ρ̈ cos(θ)− 2ρ̇θ̇ sin(θ)− ρθ̈ sin(θ)− ρ(θ̇)2 cos(θ)

ÿ = ρ̈ sin(θ) + 2ρ̇θ̇ cos(θ) + ρθ̈ cos(θ)− ρ(θ̇)2 sin(θ)

where we denote again the acceleration in terms of unit vectors:

r̈ = (ρ̈− ρ(θ̇)2)〈cos(θ), sin(θ)〉+ (2ρ̇θ̇ + ρθ̈)〈− sin(θ), cos(θ)〉

We then find that equation (2.4) to be

µ
(

(ρ̈− ρ(θ̇)2)〈cos(θ), sin(θ)〉+ (2ρ̇θ̇ + ρθ̈)〈− sin(θ), cos(θ)〉
)

= −h(ρ)〈cos(θ), sin(θ)〉

or the coupled equations {
µ(ρ̈− ρ(θ̇)2) = −h(ρ)

µ(2ρ̇θ̇ + ρθ̈) = 0
(2.7)

Notice that the second equation is equivalent to

µ
1

ρ

d

dt
(ρ2θ̇) = 0

thus ρ2θ̇ = l is constant (notice also that this is equivalent to the conservation of
angular momentum derived in Section 2.2.1). Solving for θ̇, we find

θ̇ =
l

µρ2
(2.8)

Inserting this into equation (2.7), we find
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µ
(
ρ̈− ρ

( l

µρ2

)2)
= µρ̈− l2

µ

1

ρ3
= −h(ρ) (2.9)

We also see from equation (2.8) that θ̇ has fixed sign that depends on the value of
l, the initial momentum. Because every monotone function has a monotone inverse
function, we see that {

θ(t(θ)) = θ

t(θ(t)) = t

so we will use θ as the independent variable instead of t. We will then use the variable
transformation u(θ) = 1

ρ(t(θ))
to redefine equation (2.9) [2, 5]. We see that

du(θ)

dθ
= − 1

ρ2(t(θ))

dρ(t(θ))

dt

dt(θ)

dθ
by Chain Rule

= −µ
l

dρ(t(θ))

dt

and

d2u(θ)

dθ2
= −µ

l

d

dθ

(dρ(t(θ))

dt

)
= −µ

l

d2ρ(t(θ))

dt2
dt

dθ

= −
(µ
l

)2
ρ2(t(θ))

d2ρ(t(θ))

dt2

We then multiply equation (2.9) by − µ
l2
ρ2 to obtain

−µ
2

l2
ρ2ρ̈+

1

ρ
=
µ

l2
ρ2h(ρ)

which we transform into

d2u(θ)

dθ2
+ u(θ) =

µ

l2
1

u2(θ)
h
( 1

u(θ)

)
We let

f(u) =
µ

l2
1

u2(θ)
h
( 1

u(θ)

)
(2.10)

and find that

d2u

dθ2
+ u = f(u) (2.11)
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where f(u) is analogous to potential energy. We then define the (u, v) system of
equations as {

du
dθ

= v
dv
dθ

= −u+ f(u)
(2.12)

From this system we find the total energy of the system is

E =
1

2
(u2 + v2)−

∫
f(u)du (2.13)

where energy E is defined to a constant. We let the constant of integration that arises
from the integral of f(u) be 0, as this constant can be absorbed into E. We see then
that

dE

du
= uv + v(−u+ f(u))− vf(u) = 0

so the total energy is conserved. Solving the energy equation for v, we find

v = ±
√

2
(
E −G(u)

)
(2.14)

where

G(u) =
u2

2
−
∫
f(u)du (2.15)

2.2.3 Phase Portraits of E in the (u, v)-plane

To aid in visualization, we plot phase portraits of E as expressed in (2.13). As we
will prove in Lemma 3.3, it is only power laws of f(u) of the form

f(u) = κu1−c, for some c > 0 and some κ > 0

that are relevant to Bertrand’s Theorem. Hence, we plot level curves of E as given
in (2.13) for f(u) in the above form for c = 0.5, 1, 1.5, 2, 4, and 25 to show some
range of power laws. As we will show in the conclusion of this paper, c = 1 and c = 4
correspond to Newton’s and Hooke’s Laws of gravitation, respectively.

Note that because u is the inverse of distance, solution curves where u becomes
negative do not correspond to physically relevant solutions to the two body problem.
Curves where u approaches 0 correspond to unbounded orbits as the distance between
the bodies becomes infinite. A closed level curve entirely in the region where u > 0
corresponds to an orbit that is bounded in the two-body system, but the closure of
an orbit cannot be determined by observation of the phase portraits. The closure
requirement is explained below.
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Figure 2: Phase portraits of E in the (u, v) plane.

3 Bertrand’s Theorem

3.1 Context

Bertrand’s theorem restricts to cases where the two-body problem has at least some
bounded orbits. For a given bounded orbit, the pericenter and apocenter occur when
the distance between the two bodies is minimal and maximal, respectively. When
the pericenter and apocenter coincide, the orbit is in fact circular. Bounded orbits
of the two body problem correspond to bounded solutions (u(θ), v(θ)) of the (u, v)-
system defined above. But note that the pericenter and apocenter of the bounded
solution in the two-body problem correspond to the maximal and minimal values for
u(θ), respectively since ρ and u are related via u = 1

ρ
. Also note that the two-body

problem has a circular orbit whenever the (u, v) system has a steady state. An orbit
of the two-body system is said to be closed if and only if the corresponding solution
(u(θ), v(θ)) of the (u, v) system is periodic with a period that is equal to a rational
multiple of π.

This happens when the independent angular variable θ between a consecutive
minimum and maximum of the u-coordinate of the solution is equal to a rational
multiple of π. We shall denote this angle by T . Given two distinct bounded solutions,
it seems reasonable to expect that the values of T will be distinct as well. For each
bounded orbit of the two body problem, the value of T depends on the specifics of the
force field, the masses of the two bodies, and their initial conditions. That is, T will
depend on (u(0), v(0)) as well as the masses m1 and m2. Bertrand’s Theorem is the
remarkable result that says that among all possible force fields, there are exactly two
for for which all bounded solutions are closed, namely the force fields corresponding
to those of Newton and of Hooke [2, 5]. In particular, in these two cases and only
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these two cases, the value of T of every bounded solution of the (u, v) system is a
rational multiple of π, which is independent of the chosen bounded solution.

Although Bertrand’s original paper does not contain a rigorous proof, Arnold’s
book Mathematical methods of mechanical methods [1] lays out a skeleton of a proof
via a sequence of six problems. Arnold only provides short answers for these problems.
Unfortunately, there are several errors in both the statements and solutions of these
problems. Moreover, at least some of the solutions to these problems are far from
trivial. In a recent paper which was published in 2015 for instance, Jovanović provides
the solution for problem 4 in Arnold’s list [4]. We shall include Jovanović’s solution
to this problem in Section 3.2.4. However, we believe that the solution of problem 5
in Arnold’s book is not obvious either. The main result of this thesis is to provide
a partial proof to problem 5. To make this paper more self-contained, we shall also
include rigorous proofs for problems 1 through 4 from Arnold’s list.

3.2 A Partial Proof of Bertrand’s Theorem

3.2.1 Defining the Angle between the Pericenter and Apocenter

Lemma 3.1. The angle T (E) between the pericenter and apocenter of a solution of
the one-body system with total energy E is

T (E) =

∫ umax(E)

umin(E)

du√
2(E −G(u))

where umin(E) < umax(E) are the solutions of the equation G(u) = E.

Proof. From equation (2.14), we see

v =
du

dθ
=

√
2
(
E −G(u)

)
hence

T (E) =

∫ umax(E)

umin(E)

du√
2(E −G(u))

Note that T (E) is independent of the integration constant that arises from the
function G(u) because this constant can be absorbed into the constant E.

3.2.2 Solving for Angle T (E)

In the next result, we obtain a formula for the angle T (E) near a circular orbit.

Lemma 3.2. Assume that G : (0,+∞) → R is a twice continuously differentiable
function such that:
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1. For some u0 > 0, G(u0) = E0

2. G′(u0) = 0

3. G′′(u0) > 0

The angle T for an orbit close to the circle of radius 1
u0

approaches:

lim
E→E0

T (E) = Tcir(E) = lim
E→E0

∫ umax(E)

umin(E)

du√
2(E −G(u))

=
π√

G′′(u0)

where umax(E) > umin(E) are the two positive solutions to

G(u) = E for all E > E0

Note: We know that these are the only two solutions due to the restricted concavity
of G.

Proof. Let G : R → R be twice continuously differentiable and assume that u0 = 0
and E0 = 0 so that we have:

1. G(0) = G′(0) = 0

2. G′′(0) > 0

It suffices to assume that u0 = 0 and E0 = 0 because a trivial variable transfor-
mation can translate these parameters anywhere suitable on the (u, v) plane. First,
we show this for the special case that

G(u) =
G′′(0)

2
u2

where G′′(0) > 0. Note first that for this case,

umin(E) = −

√
2E

G′′(0)

and

umax(E) =

√
2E

G′′(0)

for all E > 0. Thus for all such E > 0, we have
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∫ umax(E)

umin(E)

du√
2(E −G(u))

=

∫ √
2E

G′′(0)

−
√

2E
G′′(0)

du√
2E −G′′(0)u2

=
1√
2E

∫ √
2E

G′′(0)

−
√

2E
G′′(0)

du√
1−

(
u√

2E/G′′(0)

)2
=

1√
G′′(0)

∫ 1

−1

dv√
1− v2

=
π√
G′′(0)

Therefore the Lemma is proven for this particular case. To fully prove this result,
it suffices to show that

lim
E→0+

∫ umax(E)

0

du√
2(E −G(u))

−
∫ √2E/G′′(0)

0

du√
2E −G′′(0)u2

= 0 (3.1)

because a similar result can be obtained for the difference of the integrals between
umin(E) and 0 and −

√
2E/G′′(0) and 0, respectively. By substitutions, we find that

(3.1) is equivalent to

lim
E→0+

∫ 1

0

(
umax(E)√

2E

1√
1−G(umax(E)x)/E

− 1√
G′′(0)

1√
1− x2

)
dx = 0 (3.2)

Denote the integrand of (3.2) by f(x,E). We shall prove (3.2) using the dominated
convergence theorem by showing that:

1. limE→0+ f(x,E) = 0 for all x in (0,1) and

2. There exists a function g(x) defined for x in (0,1) such that
∫ 1

0
g(x)dx is finite

and |f(x,E)| ≤ g(x) for all x in (0,1) and for all sufficiently small E > 0.

To prove item one, we choose Ē > 0 sufficiently small so that G(u) > 0, G′(u) > 0
andG′′(u) ≥ α > 0 for all u ∈ (0, umax(E)) and all E ∈ (0, Ē). BecauseG(umax(E)) =
E, it follows from Taylor’s theorem that

E = G(umax(E)) = G′′(ζ(E))
u2max(E)

2
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for all u ∈ (0, umax(E)) where 0 < ζ(E) < umax(E). Similarly, for all (x,E) in
(0, 1)× (0, Ē), Taylor’s theorem implies that

G(umax(E)x) = G′′(ξ(x,E))
(umax(E)x)2

2

for some 0 < ξ(x,E) < umax(E)x. These two equations imply that for all (x,E) in
(0, 1)× (0, Ē)

umax(E)√
2E

1√
1−G(umax(E)x)/E

=
1√

G′′(ζ(E))

1√
1− G′′(ξ(x,E))

G′′(ζ(E))
x2

→ 1√
G′′(0)

1√
1− x2

as E → 0+

because G is twice continuously differentiable and ζ(E) → 0 and ξ(x,E) → 0 as
E → 0 for all x ∈ (0, 1). This proves item one needed to apply the dominated
convergence theorem.

To prove the second item, note that

|f(x,E)| ≤ umax(E)√
2E

1√
1−G(umax(E)x)/E

+
1√
G′′(0)

1√
1− x2

and that the second term is integrable over [0,1], so we focus our attention on the
first term. We claim that there exists β > 0 such that for all (x,E) ∈ (0, 1)× (0, Ē),

umax(E)√
2E

1√
1−G(umax(E)x)/E

≤ β√
x(1− x)

(3.3)

If this is proven, then item two is proven, since∫ 1

0

β√
x(1− x)

dx = 2

∫ 1

0

β√
1− v2

dv = βπ

by the substitution x = v2. To prove (3.3), note that for all (x,E) ∈ (0, 1)× (0, Ē),

umax(E)√
2E

1√
1−G(umax(E)x)/E

=
1√
2

1√
G(umax(E))−G(umax(E)x)

u2max(E)

(3.4)

Because G(u) is strictly convex for u ∈ (0, umax(E)) and E ∈ (0, Ē) we have that

G(umax(E)) > G(umax(E)x) +G′(umax(E)x)(umax(E)− umax(E)x)

for all (x,E) ∈ (0, 1)× (0, Ē). We obtain from this that
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0 <
G′(umax(E)x)(1− x)

umax(E)
<
G(umax(E))−G(umax(E)x)

u2max(E)
for all (x,E) ∈ (0, 1)×(0, Ē)

We insert this result into (3.4) and find that for all (x,E) ∈ (0, 1)× (0, Ē),

umax(E)√
2E

1√
1−G(umax(E)x)/E

<
1√
2

√
umax(E)

G′(umax(E)x)

1√
1− x

=
1√
2

1√
G′′(ν(x,E))

1√
x(1− x)

where 0 < ν(x,E) < umax(E)x by Taylor’s theorem applied to G′(u). Since G′′(u) ≥
α > 0 for all u ∈ (0, umax(E)) and all E ∈ (0, Ē), we set

β =
1√
2α

We have then proved the second item needed to apply the dominated convergence
theorem, so equation (3.2) is proven. We then have the desired result that

lim
E→E0

∫ umax(E)

umin(E)

du√
2(E −G(u))

=
π√

G′′(u0)

3.2.3 Restriction to Power Laws

Here we show that the angle T (E) near circular orbits is independent of the radius
of the orbit only for specific power laws for f(u).

Lemma 3.3. The magnitude of

Tcir =
π√

G′′(u0)

is independent of u0 if in the (u, v) system,

f(u) = κu1−c

where κ and c are positive constants.

Proof. Earlier, we defined G(u) = u2

2
−
∫
f(u)du. Then for π√

G′′(u)
to be constant,

we must have

G′′(u) = 1− f ′(u) = c
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for some c > 0, as assumed in the proof of Lemma 3.2. From that proof, we also have

G′(u) = u− f(u) = 0

so

1− uf
′(u)

f(u)
= c

so

d

du
(ln f(u)) =

1− c
u

= (1− c) d
du

lnu =

{
d
du

(lnu1−c) if c 6= 1

0 if c = 1

By solving for f(u), we find

f(u) = κu1−c

for some κ > 0 and some c > 0.

3.2.4 Angle T (E) for c ≥ 2

The following result was proved recently in [4].

Lemma 3.4. Suppose that f(u) = κu1−c for some κ > 0 and some c ≥ 2. Then

lim
E→∞

T (E) =
π

2

Proof. Let

G(u) =

{
1
2
u2 − κu2−c

2−c for c > 2 and some κ > 0
1
2
u2 − κ ln(u) for c = 2 for some κ > 0

We see that for c ≥ 2 that
lim
u→0+

G(u) =∞

and

lim
u→∞

G(u) =∞

as well as

dG(u)

du
= u− κu1−c = 0 if and only if u = u∗ = κ

1
c

and

14



Figure 3: G(u) for c ≥ 2

d2G(u)

du2
= 1− κ(1− c)u−c > 0 for u > 0

In the integrand of T (E), we make the transformation y = u
umax(E)

and let y1(E) =
umin(E)
umax(E)

. Then

T (E) =

∫ umax(E)

umin(E)

du√
2(E −G(u))

=

∫ 1

y1(E)

dy√
H(y, E)

where

H(y, E) =

{
u2max(E)(1− y2) + 2κ ln(y), if c = 2

1− y2 + 2κ
2−c(umax(E))−c(y2−c − 1), if c > 2

(3.5)

where we have used that G(umax(E)) = E to eliminate the parameter E.1 We note

that ∂H(y,E)
∂y

= 0 only for y = y∗(E) where

y∗(E) =
κ

1
c

umax(E)
∈ (y1(E), 1) (3.6)

and

∂2H(y, E)

∂y2
= −2(1− κ(umax(E))−c(1− c)y−c) < 0

for all y ∈ (y1(E), 1) since κ is positive and c ≥ 2.
We then see that for all E > E0,

1The following steps apply to c > 2. A very similar argument can be used for c = 2 that leads to
the same result.
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Figure 4: H(y, E)

H(y, E) ≥ H(y∗(E), E)−H(y1(E), E)

y∗(E)− y1(E)
(y − y1(E)) +H(y1(E), E) for y ∈ (y1(E), y∗(E))

H(y, E) ≥ H(y∗(E), E)−H(1, E)

y∗(E)− 1
(y − 1) +H(1, E), for y ∈ (y∗(E), 1)

and H(y1, E) = H(1, E) = 0 imply

1√
H(y, E)

<

√
y∗(E)− y1(E)

H(y∗(E), E)

1√
y − y1(E)

(3.7)

for y ∈ (y1(E), y∗(E)) and

1√
H(y, E)

<

√
1− y∗(E)

H(y∗(E), E)

1√
1− y

(3.8)

for y ∈ (y∗(E), 1). Note also that since c ≥ 2, equation (3.5) implies that H(y, E) <
1− y2 for all y ∈ (y1(E), 1), and thus that

1√
1− y2

<
1√

H(y, E)
(3.9)

for all y ∈ (y1(E), 1).
The properties of G(u) imply that umin(E) → 0 and umax(E) → ∞ as E → ∞,

therefore, we see that as E →∞ that y1(E)→ 0, y∗(E)→ 0, and H(y∗(E), E)→ 1
as E →∞.

Note, first, importantly that as E →∞,∫ 1

y1(E)

dy√
1− y2

→ π

2

16



It is then sufficient to show that as E →∞,∣∣∣∣∣
∫ 1

y1(E)

dy√
H(y, E)

−
∫ 1

y1(E)

dy√
1− y2

∣∣∣∣∣→ 0

We split up the integral to find the inequality

∣∣∣∣∣
∫ 1

y1(E)

dy√
H(y, E)

−
∫ 1

y1(E)

dy√
1− y2

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ 1

y∗(E)

dy√
H(y, E)

−
∫ 1

y∗(E)

dy√
1− y2

∣∣∣∣∣
+

∫ y∗(E)

y1(E)

dy√
H(y, E)

+

∫ y∗(E)

y1(E)

dy√
1− y2

(3.10)

We claim that the last two terms converge to 0 as E →∞. Indeed, by (3.10) and
as y1(E), y∗(E)→ 0 and H(y∗(E), E)→ 1 as E →∞, we see that

∫ y∗(E)

y1(E)

dy√
H(y, E)

≤
∫ y∗(E)

y1(E)

√
1− y∗(E)

H(y∗(E), E)

dy√
1− y

=

√
1− y∗(E)

H(y∗(E), E)

(
− 2
√

1− y
)∣∣∣y=y∗(E)

y=y1(E)
→ 0 as E →∞

as well as ∫ y∗(E)

y1(E)

dy√
1− y2

= arcsin(y)
∣∣∣y=y∗(E)

y=y1(E)
→ 0 as E → 0

For the remaining two terms, we see that

17



∣∣∣∣∣
∫ 1

y∗(E)

dy√
H(y, E)

−
∫ 1

y∗(E)

dy√
1− y2

∣∣∣∣∣ =

∫ 1

y∗(E)

√
1− y2 −

√
H(y, E)√

H(y, E)
√

1− y2
dy

=

∫ 1

y∗(E)

1− y2 −H(y, E)√
H(y, E)

√
1− y2(

√
H(y, E) +

√
1− y2)

dy

=
2κ

c− 2
(umax(E))−c

∫ 1

y∗(E)

y2−c − 1√
H(y, E)

√
1− y2(

√
H(y, E) +

√
1− y2)

dy

≤ 2κ

c− 2
(umax(E))−c

∫ 1

y∗(E)

y2−c − 1

H(y, E)3/2
dy by (3.9)

≤ 2κ

c− 2
(umax(E))−c

(
1− y∗(E)

H(y∗(E), E)

)3/2 ∫ 1

y∗(E)

y2−c − 1

1− y
1√

1− y
dy by (3.8)

Note that in the previous line, the factor

2κ

c− 2

(
1− y∗

H(y∗(E), E)

)3/2

→ 2κ

c− 2
as E →∞

Moreover, since y2−c − 1 < y2−c ≤ (y∗(E))2−c for y ≥ y∗(E) and by the equality

umax(E)y∗(E) = κ
1
c , from (3.6)

it follows that the remaining factors in (3.8) can be expressed as follows, where we
break up the integral from y∗(E) to 1

2
and 1

2
to 1 (this is possible for sufficiently large

E since y∗(E)→ 0 as E →∞).

(umax(E))−c
∫ 1

y∗(E)

y2−c − 1

1− y
1√

1− y
dy

= (umax(E))−c
∫ 1

1/2

y2−c − 1

1− y
dy√
1− y

+ (umax(E))−c
∫ 1/2

y∗(E)

y2−c − 1

1− y
dy√
1− y

≤ (umax(E))−c
∫ 1

1/2

y2−c − 1

1− y
dy√
1− y

+ (umax(E))−c
∫ 1/2

y∗(E)

(y∗(E))2−c

(1− y)3/2
dy

= (umax(E))−c
∫ 1

1/2

y2−c − 1

1− y
dy√
1− y

+ κ
2−c
c (umax(E))−2

∫ 1/2

y∗(E)

dy

(1− y)3/2

We will show that both these terms tend to 0 as E →∞. Starting with the second
term, we see that:

18



κ
2−c
c (umax(E))−2

∫ 1/2

y∗(E)

dy

(1− y)3/2

≤ κ
2−c
c (umax(E))−2

∫ 1/2

0

dy

(1− y)3/2

= κ
2−c
c (umax(E))−2

(
2
√

2− 1
)
→ 0 as E →∞

Second, we see that the first factor in the first term, namely the function

y → y2−c − 1

1− y
is bounded over y ∈ [1/2, 1], because the singularity at y = 1 is removable by
L’Hôpital’s rule:

lim
y→1

y2−c − 1

1− y
= c− 2

Let M > 0 be an upper bound for the function y → (y2−c − 1)/(1− y). Then

(umax(E))−c
∫ 1

1/2

y2−c − 1

1− y
dy√
1− y

< (umax(E))−c
∫ 1

1/2

M√
1− y

dy

= (umax(E))−c(M
√

2)→ 0 as E → 0

Thus the first term in the right hand side of (3.10) tends to 0 and so

lim
E→∞

T (E) =
π

2

3.2.5 Angle T (E) for 1 ≤ c < 2

We start with a relevant integral that can be computed with basic calculus tools:

Lemma 3.5. For all c > 0, holds that∫ 1

0

dy√
y2−c − y2

=
π

c

Proof. We first make the variable substitution x = yc/2 and find
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∫ 1

0

dy√
y2−c − y2

=

∫ 1

0

y
c
2

y
√

1− yc
dy

=
2

c

∫ 1

0

yx

xy
√

1− x2
dx =

2

c
arcsin(x)

∣∣∣1
0

=
π

c

The next result is the main result of this thesis.

Lemma 3.6. Suppose that f(u) = κu1−c for some κ > 0 and 1 ≤ c < 2. Then

lim
E→0−

T (E) =
π

c

Proof. First, notice that for 1 ≤ c < 2, the profile of

G(u) =
1

2
u2 − κ u

2−c

2− c
is significantly changed (Figure 5). We see that the limits of G(u) have changed:

lim
u→0+

G(u) = 0

lim
u→∞

G(u) =∞

But we see that the properties of the derivatives of G hold as they did in the proof
of Lemma 3.4:

dG(u)

du
= u− κ1−c = 0 if and only if u = u∗ = κ

1
c

and

d2G(u)

du2
= 1− κ(1− c)u−c > 0 for u > 0

Note yet again that umin(E) and umax(E) are the two solutions of the equation
G(u) = E that exist for E0 < E < 0, where E0 = G(u∗). Moreover, umin(E) → 0

and umax(E)→
(

2κ
2−c

)1/c
as E → 0−.

We must show that for all 1 ≤ c < 2 that

lim
E→0−

T (E) = lim
E→0−

∫ umax(E)

umin(E)

du√
2(E −G(u))

= lim
E→0−

∫ 1

y1(E)

dy√
H(y, E)

=
π

c
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Figure 5: G(u) for 1 ≤ c < 2

where we have made the variable transformation y = u/umax(E) and where y1(E) =
umin(E)/umax(E) and

H(y, E) = 1− y2 +
2κ

2− c
(umax(E))−c(y2−c − 1)

just as in the proof of Lemma 3.4. For future reference, note that

∂H(y, E)

∂y
= 0 only for y = y∗(E)

where

y∗(E) =
κ1/c

umax(E)
∈ (y1(E), 1)

and thus that

y∗(E)→
(2− c

2

)1/c
as E → 0−

Moreover, H(y, E) is still concave because

∂2H(y, E)

∂y2
= −2(1−κ(umax(E))−c(1−c)y−c) < 0 for all E0 < E < 0 and y1(E) ≤ y ≤ 1
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By Lemma 3.5, we must therefore prove that for all 1 ≤ c < 2 holds that

lim
E→0−

∫ 1

y1(E)

dy√
H(y, E)

=

∫ 1

0

dy√
y2−c − y2

= lim
E→0−

∫ 1

y1(E)

dy√
y2−c − y2

since y1(E) is continuous and y1(E)→ 0 as E → 0−. To achieve this, we shall prove
that ∣∣∣∣ ∫ 1

y1(E)

dy√
H(y, E)

−
∫ 1

y1(E)

dy√
y2−c − y2

∣∣∣∣→ 0 as E → 0−

We claim the if 1 ≤ c < 2, then

H(y, E) ≤ y2−c − y2 for all E0 < E < 0 and all y1(E) ≤ y ≤ 1

Indeed, note that umax(E) → ( 2k
2−c)

1/c from below as E → 0− (that is, umax(E)

increases to its limit). Consequently, 2k
2−c(umax(E))−c → 1 from above. Our claim

then follows from subtracting the following two equalities:

y2−c − y2 = 1− y2 + (y2−c − 1)

H(y, E) = 1− y2 +
2k

2− c
(umax(E))−c(y2−c − 1)

Figure 6: Profile of H(y, E) and y2−c − y2

Breaking up the integrals from y1(E) to y∗(E) and from y∗(E) to 1 yields
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∣∣∣∣ ∫ 1

y1(E)

dy√
H(y, E)

−
∫ 1

y1(E)

dy√
y2−c − y2

∣∣∣∣ ≤ ∣∣∣∣ ∫ y∗(E)

y1(E)

dy√
H(y, E)

−
∫ y∗(E)

y1(E)

dy√
y2−c − y2

∣∣∣∣
+

∣∣∣∣ ∫ 1

y∗(E)

dy√
H(y, E)

−
∫ 1

y∗(E)

dy√
y2−c − y2

∣∣∣∣
For y ∈ (y∗(E), 1), we see

H(y, E) ≥ H(y∗(E), E)

1− y∗(E)
(1− y)

by the concavity of H(y, E), and thus as H(y, E) ≤ y2−c − y2, we find that

0 ≤
∫ 1

y∗(E)

dy√
H(y, E)

−
∫ 1

y∗(E)

dy√
y2−c − y2

=

∫ 1

y∗(E)

(
2κ
2−c(umax(E))−c − 1

)
(1− y2−c)dy√

H(y, E)
√
y2−c − y2

(√
H(y, E) +

√
y2−c − y2

)
≤
( 2κ

2− c
(umax(E))−c − 1

)∫ 1

y∗(E)

1− y2−c

(H(y, E))
3
2

dy

≤
( 2κ

2− c
(umax(E))−c − 1

)( 1− y∗(E)

H(y∗(E), E)

) 3
2

∫ 1

y∗(E)

1− y2−c

(1− y)
3
2

dy

=
( 2κ

2− c
(umax(E))−c − 1

)( 1− y∗(E)

H(y∗(E), E)

) 3
2

∫ 1

y∗(E)

1− y2−c

1− y
dy√
1− y

We see that the function y → (1− y2−c)/(1− y) in the integrand is bounded since

lim
y→1

1− y2−c

1− y
= lim

y→1

−(2− c)y1−c

−1
= 2− c

and also that ∫ 1

y∗(E)

dy√
1− y

= 2
√

1− y∗(E)

and
(

1−y∗(E)
H(y∗(E),E)

) 3
2

have finite limits as E → 0−, but because 2κ
2−c(umax(E))−c → 1 as

E → 0−, there follows that∣∣∣∣ ∫ 1

y∗(E)

dy√
H(y, E)

−
∫ 1

y∗(E)

dy√
y2−c − y2

∣∣∣∣→ 0 as E → 0−
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We see that the concavity of H implies that

H(y, E) ≥ H(y∗(E), E)

y∗(E)− y1(E)
(y − y1(E)) for all E0 < E < 0 and y1(E) ≤ y ≤ y∗(E)

and similarly that the concavity of the map y → f ∗(y) = y2−c − y2 on [0, 1] implies
that

f ∗(y) ≥ f ∗(y∗(E))− f ∗(y1(E))

y∗(E)− y1(E)
(y − y1(E)) + f ∗(y1(E))

We then find that

0 ≤
∫ y∗(E)

y1(E)

dy√
H(y, E)

−
∫ y∗(E)

y1(E)

dy√
y2−c − y2

=

∫ y∗(E)

y1(E)

(
2κ
2−c(umax(E))−c − 1

)
(1− y2−c)√

H(y, E)
√
y2−c − y2

(√
H(y, E) +

√
y2−c − y2

)dy
≤
( 2κ

2− c
(umax(E))−c − 1

)∫ y∗(E)

y1(E)

dy√
H(y, E)(y2−c − y2)

≤
2κ
2−c(umax(E))−c − 1√

H(y∗(E),E)
y∗(E)−y1(E)

(
f∗(y∗(E))−f∗(y1(E))

y∗(E)−y1(E)

)
∗
∫ y∗(E)

y1(E)

dy√
y − y1(E)

(
(y − y1(E)) + f∗(y1(E))

f∗(y∗(E))−f∗(y1(E))
(y∗(E)− y1(E))

)
Let

α(E) =
f ∗(y1(E))

f ∗(y∗(E))− f ∗(y1(E))
(y∗(E)− y1(E))

a positive continuous function that approaches 0 as E → 0−. We see then that the
integral evaluates to
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∫ y∗(E)

y1(E)

dy√
y − y1(E)(y − y1(E) + α(E))

=

∫ y∗(E)−y1(E)

0

dx√
x(x+ α(E))

=

∫ √y∗(E)−y1(E)

0

2du

u2 + α(E)

=
2√
α(E)

∫ √
y∗(E)−y1(E)

α(E)

0

dv

v2 + 1

=
2√
α(E)

arctan

(√
y∗(E)− y1(E)

α(E)

)

through a series of variable changes: x = y − y1(E), u =
√
x, and v = u√

α(E)
. By

definition, H(y1(E), E) = 0, for all E0 < E < 0, hence

2κ

2− c
(umax(E))−c − 1 =

2κ

2− c
(umax(E))−c(y1(E))2−c − (y1(E))2

Let √
H(y∗(E), E)

y∗(E)− y1(E)

(f ∗(y∗(E))− f ∗(y1(E))

y∗(E)− y1(E)

)
= β(E)

which is a bounded positive continuous function that converges to a positive value β∗

as E → 0−. So together we have

2κ
2−c(umax(E))−c − 1√

H(y∗(E),E)
y∗(E)−y1(E)

(
f∗(y∗(E))−f∗(y1(E))

y∗(E)−y1(E)

)( 2√
α(E)

)
arctan

(√
y∗(E)− y1(E)

α(E)

)

=
2

β(E)

2κ
2−c(umax(E))−c(y1(E))2−c − (y1(E))2√

(y1(E))2−c − (y1(E))2
arctan

(√
y∗(E)− y1(E)

α(E)

)

=
2

β(E)

(y1(E))2−c
(

2κ
2−c(umax(E))−c − (y1(E))c

)
(y1(E))

2−c
2

√
1− (y1(E))c

arctan

(√
y∗(E)− y1(E)

α(E)

)

=
2

β(E)

(y1(E))
2−c
2

(
2κ
2−c(umax(E))−c − (y1(E))c

)
√

1− (y1(E))c
arctan

(√
y∗(E)− y1(E)

α(E)

)

Because 1 ≤ c < 2 and since umax(E) →
(

2κ
2−c

)1/c
> 0, y1(E) → 0, y∗(E) →
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(
2−c
2

)1/c
> 0, α(E)→ 0, and β(E)→ β∗ > 0 as E → 0−, we find that

lim
E→0

2

β(E)

(y1(E))
2−c
2

(
2κ
2−c(umax(E))−c − (y1(E))c

)
√

1− (y1(E))c
arctan

(√
y∗(E)− y1(E)

α(E)

)
= 0

and therefore

lim
E→0

∣∣∣∣ ∫ 1

y1(E)

dy√
H(y, E)

−
∫ 1

y1(E)

dy√
y2−c − y2

∣∣∣∣ = 0

hence also

lim
E→0

T (E) =
π

c

4 Conclusion

We establish first that for two specific power laws for f(u), the angle T (E) is, in fact,
independent of the value of E.

Lemma 4.1. Suppose that

T (E) =

∫ umax(E)

umin(E)

du√
2(E −G(u))

, where G(u) =
1

2
u2 − κ u

2−c

2− c

for some κ > 0 and some c > 0, but c 6= 2. Let umin(E) < umax(E) be the two
solutions to the equation G(u) = E, for those values of E for which these exist.

Let E0 = G(u0) where u0 = κ1/c is the unique, positive value of u where G′(u) = 0.
Then

1. If c = 1, then T (E) = π, for all E0 < E < 0.

2. If c = 4, then T (E) = π/2, for all E > E0.

In particular, in both these cases, T (E) is independent of E.

Proof. 1. Assume that c = 1. Then

umin(E) =
√

2

(
κ−

√
E +

(√
2κ

2

)2
)

, and umax(E) =
√

2

(
κ+

√
E +

(√
2κ

2

)2
)
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for all E > E0, and then by completing the square in G(u) = u2/2− κu, we find that

T (E) =

∫ umax(E)

umin(E)

du√
2
(
E +

(√
2κ
2

)2 − (u−√2κ√
2

)2) , for all E > E0

and by the substitution

v =
u−
√

2κ
√

2
√
E +

(√
2κ
2

)2
T (E) simplifies to

T (E) =

∫ 1

−1

dv√
1− v2

= π, for all E > E0

which is independent of the value E.

2. Assume that c = 4. Then

umin(E) =

√
2(E +

√
κ)−

√
2(E −

√
κ)

2
, and umax(E) =

√
2(E +

√
κ) +

√
2(E −

√
κ)

2

for all E0 < E < 0, so we find that

T (E) =

∫ umax(E)

umin(E)

udu√
2Eu2 − u4 − κ

, for all E0 < E < 0

By completing the square of the polynomial in the denominator, this leads to

T (E) =

∫ umax(E)

umin(E)

udu√
(E2 − κ)− (u2 − E)2

, for all E0 < E < 0

Then the substitution

v =
u2 − E√
E2 − κ

yields that

T (E) =
1

2

∫ 1

−1

dv√
1− v2

=
π

2

which is independent of the value E.

To conclude, we show why the previous results (almost) imply Bertrand’s Theo-
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rem.
First, Lemma 3.3 shows that the only gravitational fields having a circular orbit,

and such that Tcir is independent of the radius ρ0 = 1/u0, are those for which the
corresponding function f(u) in the (u, v)-system is a specific power law f(u) = κu1−c,
for some κ > 0 and some c > 0. In this case, we find that

Tcir = lim
E→E−0

T (E) =
π√
c

Moreover, the theory of ODE’s implies that for these specific power laws f(u),
the function T (E) is a continuous function of E, as long as E belongs to the interval
where T (E) is well-defined (this is for E0 < E < 0 in case 1 ≤ c < 2, and for E > E0

in case c ≥ 2). Bertrand’s Theorem identifies exactly those power laws f(u) = κu1−c

for which the function T (E) is a constant that equals a rational multiple of π.

� When assuming that c ≥ 2, it follows from Lemma 3.4 that limE→∞ T (E) = π/2.
In this case, constancy of the function T (E) implies that there must hold that

lim
E→E−0

T (E) = lim
E→∞

T (E)

or equivalently, that

π√
c

=
π

2

Solving this equation for c yields that c = 4. Recall from equation (2.10) that

f(u) =
µ

l2
1

u2(θ)
h
( 1

u(θ)

)
Solving for h(ρ), we find

h(ρ) =
κl2

µ
ρ

hence

µr̈ = −h(ρ)ρ̂ = −κl
2

µ
ρρ̂

where ρ̂ = r
|r| . This is precisely of the form of Hooke’s Law of Gravitation.

Lemma 4.1 above then implies that in this case T (E) is indeed a constant
function, and equals π/2.
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� When assuming that 1 ≤ c < 2, it follows from Lemma 3.6 that limE→0− T (E) =
π/c. In this case, constancy of the function T (E) implies that there must hold
that

lim
E→E−0

T (E) = lim
E→0−

T (E)

or equivalently, that

π√
c

=
π

c

Solving this equation for c yields that c = 1. From (2.10), we again have that

f(u) =
µ

l2
1

u2(θ)
h
( 1

u(θ)

)
Solving for h(ρ), we find

h(ρ) =
κl2

µ
ρ−2

hence

µr̈ = −h(ρ)ρ̂ = −κl
2

µ
ρ−2ρ̂

which is precisely of the form of Newton’s Law of Gravitation. Lemma 4.1 above
then implies that in this case T (E) is indeed a constant function, and equals π.

Remark: We have mentioned earlier that these results almost imply Bertrand’s
Theorem. This is because we have not yet proved that the conclusion of Lemma 3.6,
which is that

lim
E→0−

T (E) =
π

c

remains valid for power laws f(u) = ku1−c where 0 < c < 1.
Provided that this can indeed be proved, Bertrand’s Theorem will follow because

we shall be able to conclude that if 0 < c < 2 (and not just when 1 ≤ c < 2), the
constancy of T (E) would force c = 1 as shown in the second item above.
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