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A BAYESIAN APPROACH TO TWO-PHASE REGRESSION

1. INTRODUCTION

1.1 Statement of the Problem

The subject of this dissertation is a Bayesian approach to two-

phase regression. In two-phase regression, the dependent variable

is seen as having one regression relationship with the independent

variables over a certain segment of the range of the independent

variables, and a different regression relationship with the independent

variables over a second segment of the range of the independent

variables. In the paper we are principally concerned with the case

where there is one independent variable, both regression relationships

are linear and the slope and intercept parameters of the two regres-

sions are distinct.

Two-phase regression has applications in many fields.

Examples of situations where the model is appropriate appear in the

physical sciences (1), in agriculture (17), and in econometrics (13,

11). One simple-minded example of a two-phase regression problem

arising in agriculture is the relationship of weight gain of cows to the

amount of feed for the cows. If it is assumed that the weight gain per

cow during a certain period is a linear function of the amount of feed

available per cow, a two-phase regression model can be used. The
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regression function has a positive slope until the amount of feed

available reaches a point at which the weight gain per cow slows down.

In other words, after the independent variable, namely the amount of

feed available per cow, has reached a certain point, say x(0), the

slope of the regression function will level off. Two-phase regression

models consist of two line segments defined over two distinct and

adjacent regimes of the independent variable. The first regime of

this example consists of all amounts of feed per cow greater than 0

and less than the value of x(0). The second regime consists of all

quantities of feed per cow that are greater than x(0). The value

x(0) is called the change point of the two-phase regression model,

indicating the value of the independent variable at which the slope

parameter of the regression model changes values, In this example

the main points of interest are estimation of the slope and intercept

parameters of the line segment defined over the first regime, and the

estimation of the change point. Because of the form of this example,

any inference on the parameters of the regression line for the second

regime is probably unnecessary. In most situations however, infer-

ence on this parameter is a significant part of the statistical analysis.

The situation studied in this paper may be more formally stated

as follows: Let Y, the dependent variable, have a regression rela-

tionship with X, the independent variable, where we assume that

X is measured without error. We assume the regression model is



Y = ao + aiX + E , when X< y,

Y 130 + PlX " when X > y

3

E is assumed to be a normally distributed random variable with mean

0 and variance a2.

For this model a0, a
1,

6 6
1'

-y and Cr
2 are all assumed

to be unknown parameters, unless otherwise stated. The parameter

y denotes the change point x(0). y will be used throughout the

remainder of this paper.

In most cases the model should be continuous at the change

point. This restriction insures that the regression line does not have

an abrupt jump as the regimes change. Thus, the restriction

(1. 2)
a0 alY PO

is imposed on the model, making the change point the abscissa of the

join point of the two regression lines. Except where confusion might

arise, y will be referred to as the join point of the two-phase

regression model with the above continuity condition.

In the unrestricted model given by Equation (1. 1), there are six

unknown parameters. When the continuity condition is imposed, five

of these parameters must be estimated; the estimate of the sixth

parameter determined by the other estimates. The major unique

problem involved in working with a two-phase regression model is not
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inference about the two slopes and intercepts, but the inference con-

cerning the location of the change point or join point.

1.2 Previous Approaches

We will now look at some of the approaches to the two-phase

regression model that have been considered in the statistical litera-

ture. The approaches considered are not meant to represent all the

approaches contained in the literature, but do give a good indication of

how the analysis has developed. A look at these approaches will show

the various problems encountered when using the different statistical

techniques, and give some rationale for the Bayesian approach that

will be used in this paper.

Assume the model stated in Equation (1. 1). Denote a sample of

size n from an experiment for which the two-phase regression

model is applicable as n pairs (x.,y.), i = 1, .. ,n, where the

observations are ordered on the x's such that for i less than j

implies that x, is less than or equal to x,, for all values of i
3

and j from 1 to n. Also, assume that there are at least six

pairs of observations in the sample, and that at least five of the

x-values are distinct. If the continuity condition is imposed, the

necessary sizes reduce to five and four, respectively. The above

assumptions are necessary in order to have at least one situation in

which all parameters can be estimated. Let the interval I(i),
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i = 2, , n-2 be defined by

(1.3) I(i) = {x I x. < x < xi+1} .

If one assumes that the change point (or join point) is such that

x. < y < xj+1, then I(j) will be called the interval of interest. If
J

the data comes from a population to which the two-phase regression

model applies, then

n-1
y E = I

I=1

The general restriction on the number of points in each regime is that

if y E I, then there must be at least two distinct sample values of

x less than or equal to y, and at least two distinct sample values

of x greater than y. For the sake of convenience of notation and

without any loss of generality, we assume that if

n-1 n-2
y E I(i), then .y E i)

i=1 1=2

and xl < x2 and xn- I < xn. Given this formulation and set of

assumptions for the two-phase regression model, we will now look at

the development of the statistical methods for the problem.
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1.2.1 Maximum Likelihood Estimation

Quandt (13, 14) was one of the first people to consider the two-

phase regression estimation problem. The model used in his analysis

is somewhat different from that considered in (1. 1), and is also dif-

ferent from most other models which will be discussed. The differ-

ence lies in how the two regimes are defined. Quandt assumed that

some variable not included in the regression model determines the

two regimes. An obvious example is the time or order in which the

observations are taken, where time or order is not the independent

variable in the regression equation. Because of this, his two regimes

are not necessarily continuous functions of X, as is the case in our

model given by (1. 1), and all other models we will consider. Quandt

also allowed the error E to have a different variance in the two

regimes, thus introducing another parameter. Because of his defini-

tion of the two regimes, the continuity condition given by (1.2) makes

no sense in most cases.

Quandt's estimation procedure gives estimates of the two slope

parameters, the two intercept parameters, the two variances, and the

interval between which two observations the change most likely takes

place. The observations are assumed ordered with respect to the out-

side variable defining the two regimes, The method of estimation is

the maximum likelihood method and is based on finding n-3 different
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sets of "conditional" maximum likelihood estimates and then choosing

the best of these sets. The method starts by assuming a certain

interval, say I(j), is the interval in which the true change point

lies. For this situation get the maximum likelihood estimates for the

parameters of the two regression line segments. These estimates are

of the same form as the estimates obtained in simple linear regres-

sion, given that the data in the two regimes is analyzed separately.

With these estimates the likelihood function is evaluated for I(j).

The above operation is carried out for each interval as j ranges

from 2 to n-2. The unconditional estimate of the interval in

which the change occurs is that interval whose "conditional" estimates

yield the largest value of the likelihood function. Call this estimate
A
I. The maximum likelihood estimates for the slopes, intercepts, and

variances are simply the estimates derived when it is assumed that

the interval I contains the true value of the change point. This

procedure must be carried out for all n-3 intervals, since Quandt

demonstrated that the likelihood function taken as a function of the

interval of interest need not be a unimodal function.

Although Quandt's model is different from that given by (1. 1),

many people who assume a model such as (1. 1) use a method similar

to Quandt's to estimate their unknown parameters. If this is done,

the estimates derived can lead to some strange results. For one

thing, the two estimated regression lines need not intersect within the
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interval of interest, thus giving us a positive or negative jump of the

regression function somewhere within this interval. In many cases

this result is very difficult to interpret. However, Quandt's method

applied to (1. 1) is fairly straightforward, and seems to enjoy a certain

amount of popularity.

Sprent (17) and Robison (16) also consider maximum likelihood

methods of estimation for the two-phase regression model. Sprent

was principally concerned with developing tests for many different

hypotheses about the parameters of the model. Among the hypotheses

which he considered are the following: two lines of different slope

meeting at some known point, two parallel lines having different values

for the intercept parameters defined over the two regimes, and the

case where the second line has infinite slope. The error rates of the

tests derived are highly dependent on knowing the interval in which the

change point occurs. The tests will not be discussed further in this

paper.

Robison considered a model more general than that given by

(1.1). He considered polynomial functions of one independent variable

defined over the two regimes. These two polynomial functions need

not necessarily be of the same degree. In his estimation procedure,

Robison derives "conditional" maximum likelihood estimates for each

potential "interval of interest, " similar to Quandt, but after finding

the estimates of the parameters for the two lines, he imposes the
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constraint that the two lines must intersect in the "interval of

interest. " After finding the estimates for each interval, the method

chooses the set of estimates that maximize the likelihood function,

provided the estimate of the joint point falls in the interval being

considered. When using this technique it is possible to have cases

where no admissible estimates of the join point exist, and also there

are cases where multiple estimates of the join point, for a given

interval, exist. In this context, an admissible estimate of the join

point is an estimate that satisfies the condition that the join point lies

within a given interval. Robison gives heuristic techniques to allevi-

ate these problems regarding admissible estimates. Fuller (6),

and Gallant and Fuller (7) have done more recent work where the

functions can be polynomial functions.

1. 2. 2 Hudson's Least Squares Approach

The most systematic approach to the analysis of the general

two-phase regression model is due to Hudson (10). His approach lets

the two functions be functions of any known form of one independent

variable. This discussion will be limited to his treatment of the two-

phase simple linear regression model. In this case the model

assumed is the same as that given by (1. 1) with continuity condition

given by (1.2). The method of estimation used is the method of least

squares. Hudson's technique looks at the possibility of the join point
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lying in each of the possible intervals, and then chooses the interval,

or equivalently the join point, which minimizes the residual sum of

squares. If the errors are normally distributed, the estimates

obtained by this method are the maximum likelihood estimates. The

importance of Hudson's method is not the least squares approach

which he uses, but rather the way in which he finds admissible least

squares estimates.

Let a0., a
1 i

be least squares estimates of the intercept and

slope parameters of a linear regression line based on the first i

points of our data. Let 130i, Rli be the corresponding least squares

estimates for the second straight line segment based on the last n-i

data points. These four estimates are called the naive least squares

estimates based upon the condition that the true join point lies in the

interval I(i). Repeat the above for all i as i ranges from 2

to n-2. Let

^
(1.4) y. A A, =

i li-ali)

For every i where . E I(i), y. is an admissible estimate of the

join point, and one calculates the Res. S.S associated with the set of

parameter estimates

where Yi

A ts,, " 0%.

1a0i, an' po Yi). For every interval

I(i), an admissible estimate for this interval is obtained.

Hudson cites a theorem by McLaren (12) which says that when
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. 1 1(i), the best restricted estimates in a least squares sense are

achieved when the join point is set equal to one of the two end points of

xi or xj+1, usually the endpoint which is closest to the unre-

stricted estimate of y Although we have previously defined I(i)

as a half open interval, the inclusion of the upper end point in this

technique is necessary. Hudson develops techniques so that any end

point is not considered more than once. McLaren's theorem is men-

tioned in other papers, but the conditions in the different papers

necessary for the theorem to apply are not equivalent. It appears that

if the unrestricted estimate of the join point for a given interval is

outside that interval but not too far away from one of the endpoints,

then the results of the theorem will hold. The theorem is used in the

following way. Suppose that for some y, I(j) Proceed by

finding constrained least squares estimates for the two slope and two

intercept parameters for the case where we have the restriction

x. = (a -P )/(Pral)0 0

and then find the estimates for the case where

x. = (a
0

-P0 )/(P
1

-(1
1

)3+1

Whichever of these two sets of restricted estimates yields the small-

est Res. S.S. is the set which will be called the least squares
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estimates for interval I(j), and the endpoint which yields this set of

estimates is our estimate of the join point for I(j). This procedure

is carried out for all intervals that do not have an admissible uncon-

strained estimate of the join point. The "optimal" estimates for the

model are simply the set of admissible estimates, constrained or

unconstrained, that yield the minimum Res. S.S. Hudson describes

an algorithm which yields the best estimates in the least number of

steps. The method outlined above and a more completely developed

method in Hudson's paper is the method by which a two-phase regres-

sion model which is continuous at the join point is usually estimated.

The method of Hudson is very effective for point estimation of

the parameters in a two-phase regression model. However, it is

strictly concerned with point estimation. Hinkley (8, 9) worked on

interval estimation problems and hypothesis testing for the two-phase

regression model. His inference was based on maximum likelihood

estimates for models with normal errors. Relying on the fact that,

except in rare cases, the maximum likelihood estimates of the two

slopes and the join point are asymptotically normally distributed,

Hinkley developed large sample tests and confidence intervals for the

various parameters. Since the results are based on large sample

theory, they are only approximate. In Monte Carlo studies con-

ducted by Hinkley, the distributions of the estimates of the slopes

converged to their theoretical limiting distributions quite quickly,
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while the distribution of the estimates of the join point converged

slowly to normality. Because of this, Hinkley derived an alternate

asymptotic distribution for the estimate of the join point which gives a

better fit to the sampling distribution for moderate sample sizes.

However, for small samples the distribution deviated severely from

the empirical distribution derived in the Monte Carlo study. One

especially interesting result of his small sample study is that for

small samples the maximum likelihood technique imposes a bias in

(P1 -a1) , thus imposing a bias into the estimate of the join point.

1. 2. 3 Other Estimation Techniques

Another significant contribution is due to Bacon and Watts (1).

Their approach to the problem was based on a Bayesian method of

analysis. The model which they considered is not the same as that

given by Equation (1. 1). Because their principal objective was to

make inference about the transition between the two straight line

segments, they put a parameter of curvature into the model, and were

primarily concerned with estimating this new parameter and the value

of the join point. The introduction of the parameter of curvature

means that the transition from one straight line segment to a second

straight line segment need not be abrupt, but can be the result of a

gentle curve occurring within the interval of change. In some ways

this method is actually looking at a three-phase regression model,
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where the first and third phases are straight line segments, while the

second, connecting phase is of the form of a smooth, continuous

curve. Bacon and Watts assume noninformative priors on all unknown

parameters, and they based their estimates on the model of the joint

marginal posterior distribution of the parameter of curvature and the

join point. The approach to be developed in this paper is also of a

Bayesian nature, but the parameter of curvature is not included.

Much more attention is given to the form of the prior distribution.

Inference on parameters other than the join point is also included in

the analysis.

Some recent approaches to the two-phase regression problem,

or more generally, to the multiple-phase regression problem use

methods of solution not commonly associated with regression prob-

lems. Bellman and Roth (2) use a dynamic programming approach to

arrive at an allocation of points to the different regimes that is opti-

mal in some sense. McGee and Carleton (11) use a cluster analysis

technique to arrive at the optimal allocation of the data points to the

different regimes. In these methods, the regression functions are

assumed linear over the various regimes. Bellman, with Kashef and

Vasudevan (3), has also used dynamic programming to consider the

case where the functions defined within the various intervals are all

cubic polynomials whose values are known at the various endpoints.

All of these papers are primarily pragmatic approaches to the
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problem, and we will not discuss them further in this paper.

1.2.4 Bayesian Approach of This Paper

All of the preceding approaches have their value and, for the

most part, answered the questions which they intended to answer.

Why then is there any need to consider another approach to the two-

phase simple linear regression model when most current papers are

concerned with more complex models? There are two primary rea-

sons for further consideration of this problem, especially with a

Bayesian approach. In the first place despite all of the work which

has been done on the problem, classical statistical methods still have

inferential problems with a two-phase regression model when the

interval in which the join point occurs is unknown. Theoretically, the

Bayesian approach is able to handle this problem much easier. This

can be done by merely introducing another unknown parameter into the

framework of the problem.

However, by far the biggest advantage of the Bayesian approach

is that it takes advantage of prior knowledge of the form of the model

under consideration. As is the case in many Bayesian problems, an

experimenter might be unable to specify prior distributions for all of

the unknown parameters, but it is extremely likely that if he suspects

his model is a two-phase linear model, he does have some belief about

the location of the join point, or the possible values of the slope
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parameters. The Bayesian approach developed in this paper can take

full advantage of this knowledge. The method of Bacon and Watts,

although Bayesian in outlook and original in its approach, uses a

noninformative prior distribution, and hence loses some of the versa-

tility inherent in the Bayesian method of analysis.

In Chapter 2 the Bayesian approach for the two-phase regres-

sion problem with known join point is developed, in Chapter 3 the

Bayesian approach for the situation where the join point is unknown is

studied, and in. Chapter 4 the Bayesian approach for our model with a

vague prior is studied.

1.3 Example

Some people might question the use of regression models which

consist of more than one submodel, insisting that one, slightly more

complicated model gives a better representation of the actual model

which generated the data. At this time we will present an example

consisting of data which, although artificially generated, shows the

advantage of using two-phase regression models. With this example

we will illustrate the usual approach, due to Hudson, by which the

parameters of a two-phase linear regression model are usually

estimated.

The data used in this example was generated from the following

model:
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(1.5) Y= 2.5 + 2X + E , when X < 6. 5,

Y = 12.25 + 5X + E , when X > 6.5.

The errors are assumed to be normally distributed with mean zero

and variance 1. The ten generated observations are

X 1 2 3 4 5 6 7 8 9 10

Y 3.18 6.80 6.73 10.02 13.41 15.57 16.55 16.31 15.03 16.45

The data is plotted in Figure

We will analyze this data as if it has come from one of three

possible models: (I), a simple linear regression function defined over

all possible values of X; (II), a polynomial function defined over all

possible values of X; and, (III), a two-phase linear regression

model with unknown join point.

(I) Simple linear regression model. Our model equation in this

case is

Yi = a
0

+ al Xi + E = 1, , 10,

where E(E.) = 0, and Var(E.) = o-
2. The least squares estimates

of the parameters for this model for the sample data is given in

Figure 2.



(A)

(B)
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least squares fit for linear model
least squares fit for quadratic model

(C) least squares fit for two-phase
linear model

Figure 1. Plot of data points for example 1.4.
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Parameter a0
0

al G
cr

Estimate 3.78 1.49 4.38

Figure 2. Least squares estimates for a simple
linear model.

(II) Polynomial regression model. The model equation is

Yi = a
0

+ al Xi +...+ ak Xi + E., i = 1, '10;

where =E(E.) = 0 and Var(E.) 62. We will consider four poly-

nomial functions, as k ranges from 2 to 5. Table 1.1 contains the

least squares estimates of the parameters for the different degree

polynomials. By studying the last row of the table, we see that the

estimate for the fifth degree polynomial is much smaller than the

estimates of variance for the smaller degree polynomials. However,

using a fifth degree polynomial to explain ten observations is a highly

debatable practice.

(III) Two-phase linear regression model. In this situation the

model equation is

Y.
1

= a
0

+ a
1 1 1
X + E., when X. <

Yi = p
0

+ J31X. + Ei , when X.. >

where the errors have the same requirements as (I) and (II). In the
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analysis we will only consider those values of X that lie in the

closed interval [5, 8] as potential values for the join point, since by

a visual inspection of Figure 1 values in this range are much more

likely than any of the other possible values.. Therefore, we con-

sider I(5), I(6), and I(7), plus, if necessary, the value x = 8.

By studying the entries in Figure 3, we see that the unconstrained

estimates of the join point for I(5) and I(7) are both inadmis-

sible; that is, 4.3 (i/ I(5), and 6.36 I(7). Therefore, to find

admissible estimates for these intervals, we must consider the esti-

mates which are constrained to meet at the end points of each of these

two intervals. However, if we look at the last column of Figure 3, we

see that the Res, S.S. for I(6) is less than the Res. SS. for each

of the other two intervals. For any given interval, the Res. S.S. for

the unconstrained estimates is less than or equal to the Res. S.S.

for the estimates constrained to meet at either of the end points of

that interval. Therefore, the interval which gives us the minimum

Res. SS. in our example is I(6). The estimates are listed in Fig-

ure 4.

How do the various models compare? Model I, with u2 = 4.38

is easily dominated by both Model II and Model III, if we use minimum

residual mean squares as our criterion in choosing a model. These

results are to be expected, since both of the last two models have

additional parameters to take care of the definite non-linearity of the
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Table 1.1. Least squares estimates of parameters for
various degree polynomials.

Parameter
k = Degree of Polynomial

2 3 4 5

a
0

-.987 1.038 5.17 -5.60

a1 3.88 2.083 -3.22 14.54

a2 -.22 .172 2.11 -7.21

a3 -.024 - .29 1.79

a4
.01 -.19

a5 .01

2
Cr 1.47 1.43 1.24 .44

Interval Estimate of join point Res. S.S.
I(5) = [5,6) 4.316 5.275
I(6) = [6,7) 6.433 5.035
I(7) = [7,8) 6. 361 5.688

Figure 3. Estimates of join points and Res. S.S.
for two-phase linear regression.

Parameter a0 Po P1
2

Estimate 6.433 .778 2.43 17.43 -.158 .848

Figure 4. Optimal least squares estimates for a two-phase
regression problem.
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data. By comparing Table 1.1 and Figure 4, we see that the two-

phase regression model fits better than polynomial functions up to and

including the fourth degree. The fifth degree polynomial does have

the smallest residual variance among the models considered, but the

two-phase linear regression model is obviously much easier to

interpret.

This example illustrates some of the possible power of the

two-phase linear regression model. At the end of Chapter 3, we will

again study the data of this example, showing how a problem such as

this can be analyzed by the methods developed in this paper,
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2. A BAYESIAN PROCEDURE FOR THE ANALYSIS OF A TWO-
PHASE LINEAR REGRESSION MODEL: I. JOIN POINT KNOWN

In any problem in which Bayesian inference is used, the

statistician has three parts to consider: the prior distribution of the

unknown parameters; the likelihood function arising from the sample;

and the posterior distribution of the unknown parameters. Since the

posterior distribution depends on the prior distribution and the likeli-

hood function, care should be taken in the development of the appropri-

ate expression of the likelihood function and the choice of the prior

distribution.

One of the most tractable and rich classes of prior distributions

is the conjugate prior distributions. This class of prior distributions

insures that the posterior distribution belongs to the same family as

the prior distribution. This and other properties of conjugate prior

distributions can be found in Raiffa and Schlaffer (15). In many

instances in order to identify the conjugate prior distribution for a

given problem, the likelihood function of the observations must be

expressed in a form different than the form used in classical statisti-

cal analysis. The analysis developed in this paper will use a family

of prior distributions that is conjugate to the likelihood function, and

because of this fact, some attention must be given the development of

the appropriate expression of the likelihood function. In this chapter

the analysis of the two-phase linear regression model where the join
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point is known will be developed. The Bayesian analysis of the more

interesting and practical problem of the unknown join point will be

considered in the following chapter.

2.1 The Likelihood Function

Assume the continuous model given by (1.1) and (1.2), and

assume a sample of size n, (x., y.), = 1, , n, where

x. < x for i < j. Further assume that the known value of the joinm

point Y is contained in the half open interval, I( r), where r is

some integer greater than or equal to 2, less than or equal to n-2,

and

I(r) = {x I xr < x < xt+1}

The two-phase linear regression model for this data can be written as

(2. 1)

where

(2. 2)

Y:n 1=

1

Y2

Yn

Y = E

x 0 0 a

1 x1 0 01
a0

, X: n x 4 = r
0 1 13xr+1

(0:4 x 1 = l

0
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and E is an (n x 1) column vector for which it is assumed

E N (0, 0-21 )n n
Given this structure, the likelihood of the observation, denoted

/(±,o-; X, Y), is proportional to

(2.3) v-11 exp{-(213-2)-1(Y-X±)1(Y-X±)}

with the parameter vector restricted by the condition

51(y)±= 0, where

(2.4) 5I(y) = (1 y -1 -y)

This restriction insures that the regression lines intersect at a point

where the abscissa is equal to y. Identifying a conjugate prior for

this problem is more straightforward if the above condition is con-

tained explicitly in the likelihood function. To show this let A(y)

be a 4 x 3 matrix such that

(2. 5) 5'(y)A(y) = 0' ,

where 0 is a column null vector of size 3 and the column rank of

the matrix A is equal to 3. A depends on the join point -y, but

we will suppress the dependence on y, and denote the matrix as A

except where confusion might arise. Using this matrix, the likelihood
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function denoted by (2.3) with the continuity restriction given by (1.2)

can be reparameterized and written as

6; x, y, A cc exp{-(2cr2 Y-XA0)(Y-XAO)}

where 0 is such that

(2. 6) AO =

By using the above formulation the model now has three unrestricted

parameters (contained in 0). The vector AO satisfies the condi-

tion that the two regression lines intersect at the join point, since

6'(y)t = 6'(y)A8 = 0 .

By letting XA(y) = W the notation can be further simplified, giving

(2.7) f (0, Cr; W, Y) cc a--11exp{-(2cr2)-1(Y-W0)1(Y-W0)} ,

It is obvious that the matrix W is also dependent on y, but W

will be used in place of W(y), except where confusion in notation

might arise.

The form of the likelihood function can be modified further. In

classical statistics, the sample is frequently reduced to sufficient

statistics, when they exist. There exists a corresponding concept in

Bayesian statistics, A function of the sample Y, say t(Y), is
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sais to be Bayesian sufficient for the vector of parameters 0; if for

any prior distribution on 0, say P(0), the posterior distribution

of 0 given Y, P'(0 /Y), is such that

P'(0 /Y) = p 1(e It(y )).

Raiffa and Schlaiffer (15) show that classical sufficiency and Bayesian

sufficiency are equivalent.

How does this change the likelihood function? 262 times the

exponent of the likelihood function can be expressed as

(2.8)

where

(2.9)

(Y- W0)'(Y -W0) = (y -Ve) + (0 -)'w 'w(e ,

0 -1= WV) .

From (2. 8) by using the factorization theorem for sufficient statistics,

we find that the set of statistics ((Y -WE1)1(Y -Wg),
A. are jointly suf-

ficient for the set of parameters (62, 0) in the classical sense.

Thus, the same set of statistics are Bayesian sufficient, and the like-

lihood function is, without any loss of information, proportional to

(2. 10) -n exp{-(20-2) -1 Y-Wt)(Y-4-(262)-1(0-6)'W'W(0-6)} .

This is the form of the likelihood function that will be principally used

in the development of the Bayesian analysis.
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In order to better understand any inference that is made on the

parameters in the reparameterized model, the relationship between

0 and must be considered. The vector of parameters 0

depends on the matrix A, and to give 0 a representation that is

meaningful, the matrix A should be of a specific form. There are

many possible transformations that satisfy the requirement given by

(2. 5). The matrix A that will be used in this Bayesian analysis is

only one of many possibilities. Let

1
0(2. 11) 1 0

0 1 0

A =
1 0 -Y

1

This matrix satisfies the requirement 61(y)A -= 0' and has rank 3.

If the designated matrix A has column rank less than 3, too many

restrictions are being placed on the original vector of parameters

±, and the resulting parameter space over which the likelihood

function is defined would be much too restrictive. Given the above

matrix A, the following correspondence exists between and

a 0 PO = -01 V03
AO ==>

al
4)2 02 131 4)4 (32 + 03



From this we see that

(2. 12) 0
1

= a0' 02= a1, and 03 =R1 al .
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Thus, the three parameters of interest in the new formulation are the

y-intercept and the slope of the first segment of the regression model,

and the difference between the slopes of the second line segment and

the first line segment. Given that the abscissa of the join point,

namely y, is known, inference about the three parameters in 0

and o-
2, is all that need be considered. The estimate of the inter-

cept for the second line segment depends on the value of y, and the

estimates of 01 and 03. It should be kept in mind that the likeli-

hood function that is used in this analysis is explicitly dependent on

the join point through the matrix W, and any change in the value

of y will change the likelihood function.

2.2 Prior Distribution

In determining the prior distribution for a two-phase regression

model, we first look at the case where the variance is assumed

known, and find the conditional prior distribution for a particular value

of the variance. Then we derive the joint prior distribution for 0

and h. As set forth in the first part of this chapter, the family of

priors used in this analysis is the natural conjugate family for the

likelihood function.
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2.2.1 Prior Distribution, Variance Known

The conjugate prior for the parameter vector 4 in a multiple

regression with uncorrelated normally distributed errors is (Raiffa

and Schlaiffer)

N (t),E (:1))),4 1 1

the multivariate normal distribution with mean vector ki(±), and

-2dispersion matrix h-1E1 (4)), where h = o-

If this prior distribution on the parameters is assumed when

there is no constraint on the parameters, what form does the conju-

gate prior take when the continuity restriction is placed on the param-

eters, and we are working with transformations of original param-

eters? Let p. = Pi, where

(2.13) P =

14 is the 4-dimensional identify matrix, and 5'(-y) is as defined in

(2.4). It follows that the 5-dimensional vector P also has a multi-

va.riate normal distribution, namely,

N5 (k
1
(P),h

-1
1
(P))

where
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1-11(13) = PN- (0, and E1(P) = PZ1(4)Pi

In this formulation,

= (P1P2P3P4p5) = (4)?: O'(Y)0)

Thus, the first four elements of p. are the four elements o

and the fifth element of E is the linear combination of I which

was constrained in the original formulation of the likelihood function.

Consider the conditional distribution of p1p2p3p4/p5. By

using the properties of conditional distributions of normal random

variables it is readily seen that

(2. 14)

where

and

(±/(STY)4) N

µ11)(P)

1

(1) -1 (2)
(P) Z1(P)12Z1 (P)2Z(P5-141 ())'

-1 1

(z 0°11 zi(P)12zi (P) z (On)

, il(12)(p) = P.(p5) ,



(2. 15)
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E
1
(p) =

Z1(P)11 E1(P)12
(4x4) 1 (4x1)

Z1 (P) 21 ;
Z

1
(P) 22

(1x4) 1 (1x1)

Now, from the form of P we know that

SO

Also,

P-
1
( p) = Pp.

1
=

it

14

F1.1(4) =

41(1))

is'(y) 41(4)

(1) (2)
1-1,1 (Ps) = P-1(4)), and P-1 P = 111(4)

(2. 16) E1(P) = P(Z1(4)))1'I
15(V) 1 4

]z (0[1 6(y)]

)6(Y)I4E 1($)14 4 1
(4)

(4x4) (4x1)

6I(Y)Z1(4))I4 51(1()Z1(4)5(V)

(1x4) I (1x1)
L..

E1($) 1 Z
1

(4))5(V)

6,(y)Z1(4)) 1 61(V)Z1(4)6(V)

Now, using the correspondence between (2. 15) and (2. 16), and

the results on the mean vectors, (2. 14) can be written as
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(±/61(N).4)) N [ 1(4))+El(4) 6(Y){5'( Y)E1(4))6(Y)}-1(61(Y)(1)-61(Y)111(4))),

-1 -1
1h {E

1
(4))-E

1
(4))6(N){51("YlE

1
(4))5(N)} 6I(N)Z (OH

Let

(2. 17) H(Y) = Z1 (4)6(N){61(Y)E1(4))6(Y)}-16'(Y)

If we consider the special case in which we are interested, namely

V(v).4) = 0, we get

(2. 18) (i/V(y)(0= 0) - N4[(I-H(y)p.,(4),h-1((i-H(N))E1((1)1]

Equation (2. 18) gives the conjugate distribution of the four

original parameters of a two-phase regression model, namely the two

slopes and intercepts under the restriction that the regression lines

meet at a known join point. However, this is not the distribution with

which we will work. This distribution is a singular 4-dimensional

normal distribution since a restriction has been imposed on a linear

combination of the four original "variables. " Also, the likelihood

function previously developed in (2. 10) was formulated with a trans-

formation of the original parameters. Therefore the distribution

which we desire is the prior distribution for 0 = 13j, where the

distribution of ± is conditioned on 61(-y)43. = 0, and



B =

1 0 0

0 1 0 0

0 -1 0 1

Finding the distribution of the above linear transformation of the

vector conditioned on V(y)(0 = 0 results in the fact that

(2. 19)

where

and

1.1. (0), h
-1

1(0))

(0) = B(I-H(y))111(4) ,

Ei(0) = B(I-H(y))E1(0)13' ,

/1
0 02 =2

04 \(1)4 -4)2/

a0

al
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0 has the same form as the vector of parameters used in the last

formulation of the likelihood function. Following the method by which

the conjugate prior for 0 was derived, we are also assured that the

distribution of 0 is such that the continuity condition is imposed on

the mean vector and dispersion of O. Assuming that the matrix

E
1
(4) is nonsingular, the dispersion matrix El (0) is also non-

singular, and we once again have a nonsingular normal distribution.
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There is a slight possibility Zi(0) will be singular. This situation

will be discussed later.

When there is no possibility of misinterpretation, let

1-L1 =
1
(0) ' and E1 = Z1(0) .

Most of the following work will proceed with this notation. However,

it should be realized that in terms of the original mean vector and

dispersion matrix for our prior distribution, namely ii.,(1) and

Z1(0, there exists the following correspondence;

(2.20) H.
1

= B[(I-Z
1

(c0)6(Y){81(Y)E
1

(4))6(Y)}
-1

EITY)11-11(4))

= B[(I-E1(4))6(N){6Ty)E1(.4))6N)}-151(N)E1(4))]Bi

Using the simplified notation, (2. 19) tells us that the prior density

function of the vector of parameters 0, for a given join point y,

an original mean vector '11W, and dispersion matrix Z1(.4)) is

-1(2.21) f (0/11,y) = (2n)-3/2h3/21Z 1-1/2expf--(0-H.I) E, 1-1-11)}l 1 2 1

At this point some mention should be made of the method used

to find the conjugate prior distribution for the vector of parameters

0. By its very nature, the kernel of the class of conjugate prior

distributions for a certain likelihood function can be written down by
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knowing the form of the likelihood function when it is expressed as a

function of the sufficient statistics. Using the last form of our likeli-

hood function (2. 10) we see that the conjugate prior in a regression

situation with known variance and three unknown parameters is a

trivariate normal distribution. However, in the particular situation

considered in this paper, if we had merely written down a trivariate

normal distribution as our prior, we would have no idea what restric-

tions must be placed on the form of the mean vector and dispersion

matrix of 0. By imposing the necessary restrictions on a 4-

dimensional prior distribution, the restrictions on the prior param-

eters are explicit. This method gives the mean vector and dispersion

matrix for the vector 0, for any arbitrary choice of 111(0 and

E 1(4). Examples of how particular choices of p,,($.) and Ei(:1))

are affected by the various transformations are given in Section 2.4,

in connection with a numerical example.

2.2.2 Prior Distribution, Variance Unknown

In the previous section, the symbol h was introduced, where

h = 2. This parameter will be used in place of the variance. In

Bayesian terminology, h is called the precision of the distribution.

The interpretation of h is reciprocal to the interpretation of 62,

i.e., a small value of h indicates a distribution with large spread,

and a large value of h, similar to a small value of Cr
2, indicates
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a small spread.

Using this new notation, the likelihood function given in (2. 10) is

proportional to

h
n/2

exp{-
2

h
(Y-W0)?(Y-W0) - (0-0)'W'W(0-6)}

2 _

which can also be written as

(2. 22)

where

hn/2 h A 2
exp{- (E-E)V1W(0-/%1 exp{- 2 (n -3)s

s2 = (n-3) -1 (y-wo)'(y--w6)

is the unbiased estimator for o-
2 for a full rank linear model with

three parameters. For the prior conjugate distribution when the

precision, or variance, in unknown, a form of the gamma distribution

will be used as the marginal conjugate prior for h. This density

function bl(h) is

v1 /2 -1 v1/2
(2.23) exp{-hv iv, /2}(v /2)

rs(v
1

/2)

This distribution is related to the gamma by the following corres-

pondence; a = (v1/2), p = (2/v1v1). In using this prior distribu-

tion for h, it is assumed that h is independent of y.
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Since (2. 23) is the marginal prior density function for h,

combining it with the prior distribution of 0 for a fixed h, yields

the joint prior density function of 6 and h. Thus, (2.21) derived

in the previous section is combined with (2. 23) to yield a joint conju-

gate prior density function for 0 and h, denoted gi(0,h),

proportional to

p 1 /2
(2.24) h I 11-1

/2exp{-
2 (8- Ili )1Z

-11(2-
p.1)}

v1 /2 v1 /2
1

X h exp{-hviv1/2}(viv1 /2) [r(v1/2)] 1
.

By comparing the likelihood function given by (2. 22) and the prior

given by (2, 24), the conjugate relationship between the likelihood

function and the prior density function is evident.

In most of the analysis, the new parameters introduced in the

prior distribution given by (2.24), namely p1, v1, and v1, will

have obvious meaning. p1 corresponds to the number of parameters

in 0, namely 3, v
1

is the prior mean of 02, and vl is the

degree of belief in the prior mean of 62. In the cases which call for

vague or noninformative priors, these parameters take on special

values. Bayesian analysis with vague priors is considered in Chapter

4.



39

2.3 Posterior Distribution

In Bayesian analysis the posterior distribution on the unknown

parameters is proportional to the prior distribution of the parameters

multiplied by the likelihood function. As in the discussion on the prior

distributions, the situations of known and unknown precision are con-

sidered separately, with the case of known precision considered first.

2.3.1 Posterior Distribution, Precision Known

Let f
2

(Oh, W(y), Y) be the posterior density for 0, given h,

W(y), and Y . The notation W(y) is used to emphasize the

dependence of the posterior distribution on the value of the join point.

By Bayes formula this density is proportional to

I (A /11, W(y), Y) f1(0 /y, h)

where fi(eh,h) is, by (2.21), proportional to

(2. 25) exPl- 2-1-11)11
1

(°-

and / (0/h, W(y), Y) is, by (2. 10) proportional to

exp{-11[(y-weny-we) + (e-twww(e-e\d}

A A
But, since h is assumed known and (Y-W0)?(Y-WO) does not
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involve the vector 0, for the case when precision is known the only

part of the likelihood function which we need to consider in determin-

ing the posterior distribution is

(2.26) expf- (0-)1W1W(0-1)}

Multiplying (2. 25) and (2.26) yields the result that the posterior

density function for 0 is proportional to

expf-
11

A
(0-11.

1
IAr-g)T IW(A -0)1}

Consider the terms multiplied by (-h/2). By rearranging these

terms we get

- A
(2.27) (0-p.

1
rZ

1

1
p.

1
V(0- ) + (0-0)V(0-0)

- - - A
= OT(E

1

1
+WPW)0 - 2(p.

1
TZ

1

1
+0A 11Ar'W) + p.

1
IZ

1

1
p.1+0WIWO .

1This is possible since p.
1
'Z10 and 011VW0 are both scalars,

thus giving

and

-
'E 0 = (p.

1

1

1

A
OIWIWO = (0A 1WIWO)' =

A- -
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Since the prior distribution is conjugate for the likelihood, the

posterior density must be of the same functional form as the prior.

Using this property, we know that f2(0/h,W(y),Y) must be a tri-

variate normal density function with mean vector 112 and dispersion

matrix h -112. With this notation the exponent of the density function

of the trivariate normal, ignoring the multiplier (-h/2),

(2.28) 1912
1

211 12
1

t2
1

112

is

But the terms in (2.27) and (2.28) are both the exponent, ignoring the

multiplier, of the same trivariate normal density function. There-

fore, using the equality of these two sets of terms, we can determine

the values for 112 and E
2

as functions of the prior distribution

and the likelihood function. From these two equations it follows that

0I(E11+WV)0 = 0I(E21)0, for all 0 .

In order for this to be true, it is necessary that

(2.29)

or

1
=

-1
+ ,E

2 Zl

E2 = (E 11 +WV)
-1

Also, the two different forms have the correspondence that
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This yields

or

or

(2. 30)

-1 -1 A
1121Z2-9° 1

+011/CW)0, for all 0 .

1121E2
1

= p.ITE
1

1 A V+ OTW ,

µ2' I =
1

1Z
1

1

+0'W'W)E
2

-1 A
p.2 = E

2
(E1

i1 +W'WO) .

Therefore, the posterior distribution of 0 for known h, is the

trivariate normal with mean given by (2. 30) and dispersion matrix

-h 1E2 = [h(E
1

1 +WV 1
)]

The posterior parameter of most concern in the analysis when the

join point and the precision parameter are assumed known is the mean

vector
112

Equation (2.30) tells us that this parameter vector is a

weighted combination of the prior mean vector p.1 and the vector of

least squares estimates 0, with the weighting factors being

E 2E1
1 and E W respectively.

2.3.2 Posterior Distribution, Precision Unknown

In the situation where the precision parameter h is unknown,

the posterior distribution of 0 becomes somewhat more complicated.
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Bayes' theorem is used in the same way, but the prior distribution

and the likelihood functions are different from those used in the previ-

ous section. The joint posterior density function g2(0,h/W(y), Y) is

proportional to

gi(e,h)/(0,1-1/W(y),Y)

where gi(0,h), given by (2.24) is proportional to

P1/2 hh 1Z l 1-1/2 exp { - 7 (e-py'zi 1
(i)-41)}

vl /2
v, /2-1 exp{-hv

1
v

1
/21(v1 v 1/2) Ertl, /2)]

-1
X h 1

and f (0,h/W(y),Y), given by (2. 22), is proportional to

hn/2exp{--h (0-0A)IWIW(0-Eig 2
exp{(- )(n-3)s 21

.
2

Now, since we are still working with a conjugate prior density func-

tion, we know that the posterior density function must be of the same

form as the prior density function. Because of this, we know that the

posterior density gz(e, h/W(y), Y) is proportional to

(2.31) h
p 2/2

1Z21-1 2expl-
(0-11.

2
)1

-1
E

2
(0-11

2
)1

V2/2 -1
X h exp{-hv2v2 /2} ,
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where p2, Z2, 112, v2, and v2 are the parameters of the posterior

distribution which correspond, respectively, to 131, v1 and
1

the parameters of the prior density function. Using a method

similar to that used in the previous section, the relationships of the

posterior parameters to the prior parameters and the statistics of the

likelihood function can be determined.

As in the case where the precision parameter h is known,

we have

(2.32)

and

Z2 = (ZI +WIW)
-1

,

2

- A
=

2
(Z

1

1
+WIWO)

1

For the three parameters which did not exist in the case where the

precision was assumed known, the following relations hold:

p2 = r(Z21) = 3,

v2 = n + v1 + p1 p2 = n + v1 p1 - 3 7-- n + v1

and

A(2.33) v
2
= Iv

1
v

11
p.

I
+(n-3)s

2
+01WWO-H.

2

1

I12/v1

In using the posterior density function for 0 and h, many

different aspects can be considered. The posterior density function
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given by (2.31) with parameters given by (2.32) and (2.33) contains all

of the present knowledge of the unknown parameters after the prior

belief has been updated by the data resulting from the experiment.

For any given value of h, the posterior density function of 0 is

a trivariate normal. Because of this fact the posterior distribution of

any subset or linear combination of the vector 0 can be easily

obtained and analyzed using multivariate normal theory. The

marginal posterior distribution of h is of the same form as (2.23),

and thus also belongs to the gamma family. In a particular problem

the experimenter might want to consider some or all of the possible

conditional and marginal distributions. At this time we will be content

to merely look at the posterior parameters. In Chapter 4 the various

conditional and marginal distributions will be studied when the join

point is unknown.

Throughout the above sections on posterior density functions,

E
2

1 appears many times. E
2

1 is nonsingular, and thus we are

working with a non-degenerate trivariate normal distribution as our

posterior. In both sections on posterior distributions, the parameter
- 1

E2 is defined as

E21 = E
1

1
+ .

Both E11 and WV are non-negative definite matrices.



46

Therefore, if either of these two matrices is positive definite, it

follows that E2
1 is positive definite and E

2
is positive definite.

-1
Now, in most cases both of the matrices in question, namely E1

and W'W, are non-singular. Suppose the rank of Z11 is less

than 3 (full rank), then the prior distribution is saying that one of

the three unknown parameters in our reparameterized regression

model, namely Or 02, and 03, is a linear combination of the

other two, or that one of the parameters is known. That is, informa-

tion on two of the unknown parameters is all that would be necessary

in the problem. If this situation arises, the analysis of the problem

changes accordingly. The likelihood function in this situation consists

of two unknown parameters (not including the variance, or precision),

and is expressed in an appropriate form. For this case of a prior

having a bivariate normal distribution and a likelihood function with a

design matrix of rank two, the analysis proceeds similar to that

developed for the three parameter case. Since this situation is

actually a separate problem, in this paper we assume that the disper-

sion matrix of the prior distribution is of rank three.

Consideration of the matrix W'W also yields the result that in

all practical situations this matrix is nonsingular. Thus, we will

-assume that E2
1 is always nonsingular, and that the posterior

distribution consists, in whole or part of a non-degenerate trivariate

normal distribution.
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In this chapter we studied the expression of the likelihood func-

tion, the development of the prior distribution, and the parameters of

the resulting posterior distribution when the join point of the two

linear regression segments is known. In addition to knowledge of the

join point, the experimenter must specify values for the following

parameters; El, 131, vl, and vl. When specifying values for

11
1

and E1, the values can be specified for µl(t) and .(c0,

or, if the experimenter has much knowledge of the dependencies that

should exist within the parameters of the vector 0 he can choose

p.1 and Z1 directly. After choosing these parameters and assum-

ing the conjugate priors used here, the posterior density function is

given by (2.31) with parameters defined by (2.32) and (2. 33). This

assumes h is unknown. In order to better illustrate how the

Bayesian approach for known join point works, a detailed numerical

example will now be considered.

2.4 Example

The data in this example comes from Hudson (10). We assume

that the join point occurs at x = 4. The data points are

X 1 2 3 4 5 6

Y 1 2 4 7 3 1
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The data, points are plotted in Figure 5. We will now consider

separately each of the three parts of the Bayesian analysis for this

data: (1), the likelihood function; (2), the prior distribution; and

(3), the posterior distribution. Since the forms of the prior and

posterior distributions have been determined in the previous sections,

we will concern ourselves primarily with the prior and posterior

parameters.

(1) The likelihood function. The two-phase linear model for

the data in matrix notation is

where

and

1

2

3

Y 4
7

t3
1/

W = XA(4) =

1

1

1

1

0
0

Y

0=

1 0
2 0

3 0
4 0

0 1

0 1

= WO

01

02 ,

03

+ E

1 0

0 1

1 0

0 1

,

-4

/1\
2
3

4
5

6

0
0

1

=11=1.

1

1

1

1

1

1

1

2

3

4
5
6

0

0

0
1

2

0
0

0

0
5

6

If we assume that the errors are normally distributed, only three

terms from the likelihood function play a part in determining the
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two-phase linear squares fit
posterior two-phase fit for set III
and E

1
(<13.) = 1014

posterior two-phase fit for set I
and Z1(4) = 1014

Figure 5. Plot of data points for example 2.4.
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posterior parameters. These three terms are 0, WV, and

s
2 = (n-3) -1

(Y-W10)1(Y-WO) In this problem these terms are

(2. 34) 0 = (WV) -1W'Y,

A
0= 1.92

-4.71

s2 =

s
2

=

=

(6-3) -1
(Y-W9)?(Y-WO)

(3) 1(1.39)

.463

and

WV =
21 3

91 17 .

5

2. The prior distribution. Since this is an artificial problem

taken from an outside source, there is no method available to deter-

mine a legitimate prior distribution. For this reason a variety of

different values for the prior parameters will be used.

As mentioned previously, it is necessary to determine either

p.1 and El or p. 1(0 and E
1

(4)). Because of the nature of the

problem, we will start with p.1(0 and Ei(4)). In (2. 20) the

expressions for p., and El are given for any choice of p.,(4)

and Z1(10). In these expressions the only dependency on the join

point is contained in the vector 6'(y). In this example,

61(y) = 6c(4) = (1 4 -1 -4).

Let us first look at the dispersion matrix, Ei(4)). In this

example we will assume the unconstrained prior dispersion matrix
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takes the form

E(4) = (10)kI4, where k = -1,0,1,2,3.

By varying k, we indicate whether the belief in the prior parameter

(4)) is strong or weak. For small values of k, the prior belief

is very strong. In preliminary studies on this problem, values of k

which were less than (-1) gave posterior means nearly identical to

prior means. As k gets larger, the effects of the prior belief

lessens. For k = 3, the effect is negligible.

If El (()) = (10) kI4, then be evaluating (2.20),

(2.35) El = (10)k
.9705 -.1176

.5294

'
.2353

-.0588
.1176

The above dispersion matrix has some characteristics which should

be noted. The parameter 03 has the smallest prior variance of the

three unknown parameters, and 02 is negatively correlated with

the other two parameters.

Let us now consider the prior mean vector For an

arbitrary prior mean vector
1/1(4) (µl 1/2 1/3 114)

E1(0 = (10)k14, (2.20) gives us

with
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(2. 36)
1

2(1+y

or where y = 4,

1

=
1 34

2

PI +113 + Y()/4- 2) + 2yµ1

242 + Y(113-1-1-1) + Y2(i-L2+N-4)

2N(}11-1a3)
2(P4-112)

+ p.3 + 4(p.4-p.2) + 32p.i

2p.2 + 4(p.3-p.1) + 16(p.2+44)

8(N-1-113) + 2(N-4- )

As should be expected, the different values of k have no effect on

p.1 . However, if we were to change the form of El(0, the expres-

sion above for p.i would not be the same.

The three sets of values for 11,(4) which we consider are

1(4)) (10
-2

)
-2

0 -1

(I) 1-1.1(4)) = (13) (II)
1

(III)

-2

The first and second set of values were "rough guesses" made after

looking at a plot of the data. The third set was chosen after observing

the estimates derived by the least squares technique. These three

sets of parameters yielded the following values for p.,, which will

be denoted in any following discussion and in the tables as set I,

set II, and set III.
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(2. 37) I II HI
.029 -1.15
1.12 , µ = 1.41 ,

1
= 2.0

1-3.24 -2.. 82 -4.0

The other prior parameters are pi., v1, and v1. In this

problem p1 = 3. For vl and vl we will consider various pos-

sible values when we look at the posterior parameters.

(3) Posterior distribution. In the posterior distribution when

h is unknown, there are five parameters to consider. These are

112, E2, p2, v2, and v2 Two of these parameters are easily

obtained. They are p2 = 3, and v2 = 6 + v1.

Let us first consider the posterior dispersion matrix, E2.

Since we are considering five different values for k, there are five

different expressions for the posterior dispersion matrix. These

expressions do not depend on p.i, so they hold true for the three

sets of values of p. 1.
The results are found in Table 2.1. The

-1matrix (WIW) is also presented to show the convergence of E2

to (WIW)
-1 as k gets large. The determinants of these matrices

are also presented. The terms in the posterior dispersion matrix

are closest to zero for the cases where k is smallest. As k

increases and the degree of belief in the prior decreases, the terms

of the posterior matrix become larger in absolute value until the case

where k = 3, at which point the posterior dispersion matrix is
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nearly identical to (W'W)-1, the dispersion matrix of the least

squares estimates. The determinant of the posterior dispersion

matrix is always less than or equal to the determinant of (W'W)-1.

Table 2.1. Values of the posterior dispersion matrix
E

2
when E1(4) = (10)kI

4
.

k = -1

k = 0

k = 1

k = 2

k = 3

(W'W
-1

.0869 -.0217 .0217
.0148 -.0069 .0000046

.0137

.5339 -. 1488 .1460
.0542 -.0512 .0003

.0939

1.173 -.3543 .4490
.1280 -.1893 .0037

.4580

1.413 -.4539 .6845
1743 -.3137 .0078

.8337

1.452 -.4716 .7311
.1831 -.3390 .0086

.9115

1.456 -.4736 .7368 1(WV) 11
.1842 -.3421 = .0087

.9210

Probably the most important posterior parameter in our exam-

ple is the posterior mean vector for 0, namely In addition to
44

the sufficient statistics of the likelihood function, by (2.32) it depends

on , 11, and E2. The results for the various sets of p.1 and
gF

the five possible sets of El are contained in Table 2.2. For the



55

Table 2.2. Posterior values of 1.1.2

Prior
Set for

111

Prior
Z(()) = (10)k14

Param. Mean k = -1 k = 0 k = 1 k =2 k -= 3

I

II

III

0
1

.029 .023 -.278 -.889 -1.28 -1.36

02 1.12 1.29 1.42 1.68 1.88 1.92

0
3

-3.24 -3.25 -3.40 -3.99 -4.58 -4.70

01

02

03

- 1.15 -1.06 -.810 -.854 -1.26 -1.36

1.41 1.48 1.46 1.60 1.86 1.91

- 2.82 -2.82 -2.91 -3.64 -4.50 -4.68

0
1

-1.00 -1.06

02 2.00 1.77

0
3

-4.00 -4.01

-1.06

1.73

-4.06

-1.16

1.80

-4.33

-1.33

1.90

-4.64

- 1.36

1.92

- 4.70
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case where k = 3, the posterior means are very close for the three

different sets of They are also very close to the least squares

estimates given by (2. 34). As would be expected, the posterior means

do not change much where set III is the prior mean for pl. This

prior was chosen after observing the least squares estimates. Read-

ing across the table for any of the three choices of la, as k goes

from (-1) to 3, the value of the posterior mean for each parameter

changes from a value very close to the prior mean to a value very

close to the least squares estimate of that parameter. In some ways,

this example answers the argument against being able to give adequate

priors. By letting the prior dispersion matrix get large, the effect

of the prior mean becomes negligible. However, the prior distribu-

tion does let you enter any significant prior knowledge into the model.

The last posterior parameter to consider is v2, which is a

posterior estimate of u
2. By (2.33) it depends on the prior mean

vector, the prior dispersion matrix, the prior parameter v1, and

the prior parameter v1. It also depends on e, WV, p.2, and

E2
1

. The least squares estimate of cr
2 is .463. In our study we

looked at the posterior parameter v2 when v
1

takes on the values

.25, .5, and 1.0. With each of these three values, we considered

five possible values for v1, the degree of belief in v
1

; namely

1, 3, 6, 12, and 30. The values 1 and 3 indicate weak belief in

the prior, the value 6 is giving the prior and likelihood equal weight,
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and 12 and 30 are values where the prior belief is much stronger

than the likelihood. As mentioned above, v
2

p.depends on and

Zi, thus yielding 15 values for each combination of µl and El.

Since the only effect of changing Zi is a decreasing of the values as

k increases, we will only show the cases where Z1(4) = I4, and

1
(4) = 100 I4' The results are presented in Table 2.3. Values of

v2 are also included.

By studying the results in the table, it is obvious that the

posterior distribution corresponding to set III as µl has the small-

est posterior values for v2. In Chapter 3 we will show that the

variance of any posterior distribution on 0, whether marginal or

conditional, depends only on v2, v2, and E2. In any situation

where vl (and thus v2), v1, and E2 are chosen, the smallest

of the three values for v2 comes from Table 2.3c.

Therefore, if we were to compare our three choices for

the posterior distribution corresponding to set III would be preferred.

Much time has been spent on this example, and much time will

be spent on the example in the following chapter. It is felt that only

through these detailed examples can many of the ramifications of this

Bayesian approach be seen. Some criticism might be made of the fact

that so many possible values of the various prior parameters were

used. This approach was taken to illustrate how change in the various

prior parameters changes the posterior parameters. The Bayesian
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analysis of a realistic problem might not proceed in this manner, but

it is hoped that the example illustrates the multitude of results that

can come from one set of data, depending on prior knowledge of the

situation.

Table 2.3. Posterior values for v2.

1(4)) =I E1(4) = 10014
1

112
.25 .50 1.0 .25 .50 1.0

) Posterior values for v2 for p.
1

= set I.

7 1 .549 .585 .656 .265 .301 .372
9 3 .482 .566 .732 .262 .345 .512

12 6 .424 .549 .799 .259 .384 .634
18 12 .366 .533 .866 .256 .422 .756
36 30 .308 .516 .933 .253 .461 .878

b) Posterior values for v2 for µl = set II

7 1 .950 .986 1.06 .307 .343 .414
9 3 .794 .878 1.04 .294 .378 .544

12 6 .658 .783 1.03 .283 .408 .658
18 12 .522 .689 1.02 .272 .439 .772
36 30 .386 .594 1.01 .261 .469 .886

c) Posterior values for v2 for µl = set III

7 1 .339 .374 .446 .244 .280 .351
9 3 .319 .402 .569 .245 .328 .495

12 6 .302 .427 .677 .246 .371 .621
18 12 .284 ,451 .784 .248 .414 .748
36 30 .267 .476 .892 .249 .457 .874
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3. A BAYESIAN PROCEDURE FOR THE ANALYSIS OF A
TWO-PHASE REGRESSION MODEL:

II. JOIN POINT UNKNOWN

The analysis in the previous chapter assumed that the join point

was known. However, in most situations, the join point is not known,

and one of the principal objectives of the analysis is to make inference

on the unknown value of the join point. The format of this chapter is

similar to that of the previous chapter. In most of the following dis-

cussion we assume that the precision is unknown. The case where the

precision is known is merely a special case of the more general situa-

tion, and will be only briefly considered.

3.1 The Likelihood Function

Returning to the original model of the two-phase linear regres-

sion problem, we have

1 x
1

E(Y) = X±,

0

where

x2 0 0

X= 1 xr 0 0 and ±_
PO

0 0 1 xr+1

P1

0 0 1 xn

if we assume that xr < y < xr+1. As is obvious from the form of the
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above design matrix X, in order to explicitly write out the model,

we must know between which two x-observations the join point occurs.

Because of this, for the situation where the join point is not known we

will use conditional likelihood functions; that is, we will have k

likelihood functions where each function is conditioned on the join

point y being equal to a certain value, c., i = 1, , k. In doing

this we are assuming that y can occur at one of only a finite num-

ber of different values of the independent variable x. The conditional

likelihood functions are designated by / h/W(ci), Y), i = 1, ...,k,

where

(3. 1)

W(c.) = XA(c.).
1 1

W(c.) =

1

1

1

1

x.

xi +1

xn

0

0

. - C .
1+1 1

x -c.n

[,if c. E x.,x.
+1

),

The possible values at which the join point can occur in a given prob-

lem can be uncountable. However, if the prior distribution for y

is continuous, problems result in formulating the likelihood function

as a function of the sufficient statistics, because W is a function of

the exact value of the join point and the sufficient statistics depend on

W. The method of analysis depends on the information of the sample
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being represented by sufficient statistics, so that this information can

be combined with the parameters of the conjugate prior distribution.

In order to alleviate this problem, the possible values of the join

point are "discretized, " giving us only a finite number of different

join points. Using this approach some information is lost, but this

loss can be minimized by suitable choices of the values c.,

i = 1, ,k, where k is the number of different values at which

we are assuming the join point can occur. None of the following

analysis depends on any assumptions on the possible values of the join

point, other than the restriction that there are only a finite number of

different values. More than one value of c may be placed in a given

interval, and every possible interval need not contain a possible value

of a join point. By placing more than one value in the intervals which

are most likely to contain the join point, the amount of information

lost by "discretizing" is reduced.

Except in situations where confusion might result we will use

the notation W. in place of W(c.). The least squares estimates of

the vector 0 for y = c., is 0., where

A
0. = (IAT:W.)

-1WY
1 1 1

Using this notation the conditional likelihood for .y = c., namely

. (0, h /W(c.), Y), is proportional to



62

, A(3.2) hn/2 exp{-
2

(Y-W.0A
h)'(Y-W 0) - (0-0 ) i

W W
i
(0-0.)}1 2

Sometimes for convenience of notation, we will use s. , where

2 -1s. = (n-2) (Y- W.O.)'(Y -W.O.)

If this is done, the likelihood function is proportional to

(3.3) h3/2exp{- [ -3 s. +(0-0.)1W!W.(0-0.)112 A

1

3.2 Joint Prior Distribution

We assume that the abscissa of the join point, namely y, can

occur at only a finite number of points on the real line. For this rea-

son the prior distribution for -y takes the form of a discrete proba-

bility function.

Let the marginal prior belief that the join point y occurs at

the value c. be designated by

P(y=ci), i = 1, . . . , k.

For any particular value of y, say c., the joint prior belief on

all the unknown parameters is the product of the prior belief that the

join point equals c. and the conditional prior distribution on the

other parameters, given that the join point occurs at c.. Thus, the
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joint prior belief for 0, h, y = ci, is

gli(0,hiy=cdP(y=ci), i = 1, , k.

We assume that gii(0,h/y=ci)

gi(0,h)

has the same functional form as

given by (2.24). Whereas gi(0,h) is the prior distribu-

tion when y is known, gli(0,11/y=ci) is the prior distribution

when we assume y = c.. The only difference in the two functions is

that the value of c. now appears wherever y previously

appeared. This holds true for the k different functions,

gii(e,11/Y=cd Therefore, g
11
.(0,h/y=c.) is proportional to

-1/2hPli/2 -1(3.4)
I

exp { - (9-En) E (A-En)}

v1i/2 vii/2-1
X

(viivii/2) exp{-hvliv ./2}[r(vii/Z)]1 .

In the above function the only parameters that are explicitly

dependent on the value of c. are Eli and Zii1 . In order that no

generality is lost, assume that p
11

, v and v 1i
may take on

different values for each of the possible values of the join point, This

formulation imposes no particular restrictions on the values that

these three parameters may assume, except that they must all be

non-negative. The formulation does impose restrictions on the

parameters Eli and Eli. By the method used in Chapter 2 to find



and El for a known join point, it is easy to show that

(3.5) Ali = B(I-H(ci)).K1(4)) ,

and

where

Eli = B(I-H(c1 .))E (OW ,
1

H(c.I. ) = E1(0)b(ci)[b1( (06(ci )]-161(ci)--

E'(c.) = (1 c. -1 -c.) ,
1 1 1
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and B is given by (2. 18). Thus, the prior knowledge, or belief,

for the unknown join point and the vector 0 and parameter h is

contained in the marginal probabilities P(y=ci), and the k sets

of parameters (plc vu, vii, Eli, Eli), i = 1, ,k, where the val-

ues of some of the parameters might be constant for different values

of the

3. 3 Joint Posterior Distribution

Since we are assuming y has a discrete distribution, the

joint posterior distribution will consist of k parts, one for each

possible value of y for which we give a prior probability. Denote

the ith part of the posterior distribution as

Xg2i (0,h/W(c ) Y)P(y=c./ ,Y ), 1, ...,k,



where g2i(0,h/W(ci), Y) is proportional to

1.(0,h/W(c.),Y)g
11
.(0,h/y=c.)

We can also write

(3. 6) P(y=ci/X,Y)g2j(0,h/W(ci),Y)

ii(0,h/W(ci),Y)gli(0,h4=ci)P(Nr-ci)

where

T' =

T

i(0, h/W(ci), Y)gii(e, h/N=cdP(Nr-ci)dOdh
H

i-,- 1
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and H and A denote the domain of positive probability for

and 0, respectively.

In order to more explicitly state the posterior density functions

for h and 0, and the posterior probability function for y, we

need to determine the value of T'. From previous developments we

know that the numerator of (3. 6) is proportional to

h
2

n/2 exp{- [(n-3)s1 +(0-6.)'W.IWI(0-61 .)1}
1

p
1

/2
X

1 /2Eiji exp{- -211 (e-.Kii)IZ1i (2.-.en)}

v11/2-1 vli/2 -1
X h exp{-hv /2}(v iv /2) [12(vii/2)] P(Y=c )



The above function can be arranged so that it equals

1 /2 (n+pli)/2 -1
(3.7) I Z1i I h exp{- (8 -E2i)}

vli /2-1 v
1 i -X h exp{-hv , v /2}(v .v /2)

/2
1[1-(v /2)] P(N=c.)2i 2i 11 li

where

,,-1(3. 8)

and

-1 -1
WE2i+ !W. ,

v
21

n + v1i + pli p2i

1 -1 2 A
v = v

12i v 2i liv li+EliZ er":1\e'
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Assuming pii = 3 for all i, we get p2i = 3 and v2i = n + v1i.

Let the quantity in (3.7) equal A.. Then

where

SAide Bi ,
IS

/2B. = (27)3 1 E li 1

1- /21
z2i1

1/2
h

2-1
exp{-hv .v

Zi
/2}

v1i/2
X (viivii12)[-Tcvlii2ep(N=



Now, let

where

hgB. d = c. ,

vli/2-1/2IZ 1 2 .v /2) r(v /2)P(y=c.)

2i /2
ilvli/2)(v2iv2i/4)

Using the fact that

we get

(3.9) T' = (2

i=1

i=1

67

111/2 1i12
(v1ini/2) E(v2i/2)P(y=c.)

v2i/2
r(v /2)(v2iv2i/2)

In much of the future use of this term, the multiplier (2703
/2 will

cancel out. For this reason we define T = (2Tr)
-3 /2T' and will use

the constant T throughout.

Using the results obtained above, the joint posterior distribu-

tion consists of k parts, each part being of the form of (3.7)

divided by (3.9). These distributions have parameters defined by

(3. 8).
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3.4 Marginal and Conditional Posterior Distributions

In analysis of the posterior distributions, we are not really

interested in the joint posterior distributions. The information which

is most straightforward is contained in the marginal posterior proba-

bilities concerned with the location of the join point, and the condi-

tional or any possible

value of y for which we stated a prior probability, we can deter-

mine the conditional posterior density for 8 and h for that

particular value of y, and also determine the marginal posterior

probability that the join point actually occurs at that point.

g 2i(0,h/W(c.),Y) indicates the posterior density function of 0 and

h, given y = c.. Although the conditioning on y = c. is not

explicit, it is contained in the matrix W( c.). We use the notation

XP(y=c. ,Y) for the marginal posterior probability that y.= c .

This posterior probability is not dependent on W(ci), so the

dependency on the design matrix is shown by using X instead.

3.4, 1 Marginal Posterior Probabilities of the Join Point y

The marginal posterior probability that the unknown join point

y equals c., namely P(y=-ci/X,Y), is, by integrating the joint

posterior distribution over the domain of 0 and h, equal to
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(3. 10) P(y=ci /X, Y)

ff
H

g 2i(0,h/W(c.),Y)P(y=c./X,Y)dOdh

1/2 1/2
vli12

1E2i1(v
11
.v li /2) F(v

2i
/2)p .

v
2i

/2
F(v ./2)(v .v /2) IT

li 21 2i

Assume the prior information on the parameter h is the same for

the k different possible join points. The same prior information

on h for the k different cases is equivalent to vli = v
1

and

v1. = v1, for i = 1, ...,k. In this case (3. 10) reduces to

I zli I
-1 /21Z v /2

1 /2n /(v v /2)z
(3. 11) P(y=ci Y

I-1i 2 Zi

1 -1/21Z I 1/213lj 2j lj 2 2j
i=1

In most situations the posterior probabilities for the various possible

values of the join point are given by either (3. 10) or (3. 11).

3.4.2 Conditional Distribution of 0 and h for a Fixed Value of y

Since we know the form of P(y=ci/X,Y) for any c., we can

get g2i(0,h/W(ci),Y) by factoring the marginal probability out of

the joint posterior distribution at that c.. The joint posterior dis -

tribution is given by (3. 7) divided by (3. 9). Factoring out the
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marginal posterior probability that y = ci we find

(3. 12) g2i(0,h/W(ci),Y)

-3/ /2 1- /2 -1
= (2-n-) 2h3 1Z 2i exp { - 2 (2-E2i)Z2i (0 -.E2i)}

v2i /2- 1 v
2i

/2
X h exp{v2i

.v
2i

/2}(v
21

.v
2i

/2) [r (v
2i

/2)]

This density function is the joint posterior density function for 0 and

h, conditioned on the fact that -y = ci. There are k of these

posterior density functions, one for each possible value of y. But

g2i(6, h/w( .), Y) itself can be factored into different conditional and

marginal density functions. We know that the density function can be

written in either of the two following forms.

(3. 13) g 2i(0,h/W(c.),Y) = f
21
.(0/h,W(c.),Y)b

21
.(h/W . Y)

(3. 14) g2i(0,h/W(ci),Y) = m2i(O/W(ci),Y)q2i(h/O,W(ci),Y) .

First consider (3. 13). In this expression the joint posterior density

function, conditioned on a possible value of the join point, is factored

into the conditional density function of 0 given h, and the

marginal posterior density function of h. This is called a marginal

distribution even though both the conditional and marginal distributions

are also conditioned on the value c.. By integrating 0 out of



(3. 12), we get

v2i/2-1 v
2i

/2
h exp{-hvzi v2i/2}(v 2i

v /2)
(3. 15) b2i (h/W . ,Y) =

F(v
2i

/2)
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which is similar in form to the marginal prior distribution assumed

for h when y is known. The density function of that distribution

is given by (2. 23). If we factor the above expression out of (3. 12),

the remainder is the conditional density function of 0, given

and y = ci. This is

(3. 16) f2j(0 /h, W(ci), Y) = 2
-3 /21E2i

1-1

/2exP{-
(A-E2irI2i (2-E2i)}

This density function is the density function of a trivariate normal

distribution with mean vector E2i, and dispersion matrix hlE2i.

For the special case where the precision is assumed known, there

obviously is no marginal distribution for h, but the posterior

density of 0 for a given y = c is merely that given by (3. 16) for

the known value of h.

Using (3. 14) the joint posterior density function is factored into

a conditional distribution of h given 0, and a marginal posterior

distribution for 0. As with the other functions, there are k sets

of these posterior functions. By integrating the joint posterior density

function over the domain of h, we get



(3. 17)

(3. 18) =

m25. (-0/W(ci),Y)

11 /2-3 /21z2i1 -1/2(v
2iv

2i
/2)2i 1

11-2 (v
Zi

+3))

1 -1
2i+3)/2

r(v2i/2){2(2-EzirZ2i 2i) +v2iv2ip

v2i/2
(Tr)

-3 /21
2i
- 1

/v21 . I v
21

17(() .+3)/2)

(v .+3)/2
-1

r(v2i/2)[(°--E2i)1Z2i/v (9---E2i)+v2i]
21

2i
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This density function is the density function of a multivariate Studnet's

-t distribution as originally defined by Dunnett and Sobel (5). The

mean vector of this distribution is Eli and the dispersion matrix is

equal to

(3. 19) v2i
.( v2i-2 ) .21 21

By factoring (3. 17) out of the joint posterior density function, we find

(3. 20) qzi(h /0, W(ci), Y

where

and

v3i/2-1 v 3i/2
h .v3i /2) exp{ -hv3iv3i /2}

r(v
31
./2)

v3i = v2i + 3,

V 7 [ (0-L1 )1E .1(0-E .)+11-sV"..]3i v
3i

21 21 GI, 41
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This density is also the same form as the prior given by (2. 23). This

result illustrates one of the reasons why the conjugate prior distribu-

tions are used in this analysis. The form of the density function has

remained unchanged from prior belief to posterior belief, allowing

easy interpretation of the change in belief which the likelihood function

has caused. The change in the values of the parameters is all that

need be considered.

3.5 Analysis of the Posterior Distribution

The main purpose in regression analysis is to increase the

information about the unknown parameters of the underlying model.

In the Bayesian approach being used here, all of the information about

these parameters is contained in the posterior distributions. In the

preceding section the posterior distributions are expressed in many

alternate forms. This allows a person to choose that form which is

most applicable to the situation under study. However, at this time

we will look more closely at those parts of the posterior distribution

that are of primary importance in most situations. The posterior

distributions which we will examine more closely are the marginal

posterior probabilities of the join point, and the marginal posterior

distribution of 0. This last distribution is actually dependent on the

value of y, but we call it a marginal distribution since it will not

depend on h.



3.5.1 Marginal Posterior Probabilities of the Join Point

Assume that vli = vl and v1.1. = vl' for i = 1, k.

Then, by (3. 11), the posterior probability that y = c.

to

-v2 /2
(3. 20) E

-1/2 1/2P(y=c.)(v
v /2)

I li I IE 2i 1 2 2i
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is proportional

i = 1, ...,k.

In the methods based on least squares, the estimate of the join point

is that estimate of y belonging to the set of estimates which yields

the smallest value of SSE. If normally distributed errors are

assumed, maximum likelihood yields estimates that also minimize

SSE. Using the Bayesian approach an experimenter would say the

most likely value for the join point, or the "best posterior estimate,"

is that value of c. which has the largest marginal posterior proba-
1

bility. How does this compare to the least squares approach? In

(3. 20) there are five parameters, two which are solely functions of the

,priordistribution, namely Eli and P(yr--c.) and three which depend

on both the prior distribution and the likelihood. One of these three,

v2, depends on the likelihood function only through the sample size.

By our assumption this parameter is also the same for all of the pos-

sible values of the join point. The other two parameters rely heavily

on values calculated from the sample, namely 0. and s2. These

sample estimates of the parameters change for the various join points.
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The parameter v2i corresponds to a posterior estimate of v2,

assuming ci is the actual join point. It is not an unbiased estimate.

It is the term, though, which most closely corresponds to SSE term

used in least squares as a criterion. Considering (3. 20), we see that,

all other four parameters being equal, if one possible join point yields

a value for v2 that is smaller than the value of v
2

for a second

possible join point, then the posterior probability for the first join

point will be larger. In this sense there is some relationship between

the least squares criterion and the marginal posterior probabilities.

Very seldom for any two possible join points will all parameters

with the exception of v
2

be the same. In most cases I Elil and

come into play. These determinants are the generalizedZ2i1

variance of the prior and posterior conditional distributions on 0,

respectively. Box and Draper (4) discuss the properties of the gen-

eralized variance. We will not go into the properties here, since in

all examples considered, the product of the determinants used in

(3. 20) is relatively stable for reasonable changes in the join point.

In the example considered below, this property will be illustrated.

P(y=ci), the prior belief that y = ci, also plays a role in the

determination of the posterior marginal probabilities. Depending on

the prior knowledge of the situation, this parameter may be very

important. It should be brought out that as the sample size increases,

the term v becomes increasingly dominant, and thus a criterion
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based on the largest posterior probability will approach the least

squares criterion in the limit. However, for intermediate sample

sizes the posterior probabilities take much more into account.

The above discussion is not meant to indicate that the possible

join point with the largest posterior marginal probability should be

chosen, and all of the other possible join points ignored. The infor-

mation on the join points should be used with the posterior distribu-

tions on 0 to give the experimenter a good idea about the most

likely models for the problem under study.

3.5.2 The Posterior Distribution of 0, Given y = ci

As previously determined, the marginal posterior distribution of

0 for y = c., is a multivariate Student's-t distribution. The

density is given by (3. 18). As in the case of a multivariate normal

distribution, all of the information is contained in the mean vector and

the dispersion matrix. If we again assume

vector is

vli = vl, the mean

and the dispersion matrix is equal to (3. 19).

situation the vector

In any

will be of principal interest. This vector

contains the posterior means of the three parameters 01' 02, 03,

or, in terms of the original model, a0, al' p
1
- al. This vector

should be considered for all situations where the posterior probability

of the join point is large. It can indicate many things concerning the

model for the data which we are studying. One example is the case
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where the posterior mean of 03 is approximately zero. This gives

a good indication that the underlying model might actually be just one

straight line segment.

As is the case for multivariate normal distributions, the

marginal distribution of any subset of variables having a multivariate-t

distribution also has a multivariate (or univariate) Student's -t dis-

tribution. Using this fact we can look at the marginal posterior dis-

tribution of any of the three parameters. Recently, several papers

have appeared in which tables of the percentage points of the

trivariate-t distribution have appeared. One especially good table is

that given by Trout and Chow (18). Using these tables regions can be

found where the posterior probability content for the three unknown

values in 0 is, say 95 percent. There also exists tables for the

bivariate case.

3. 6 Example

The data for this example is the same data as that studied in

Section 1.3. The observations are given at the first part of that sec-

tion, and a plot of the data is given in Figure I. In Chapter 1 we

showed that the two-phase linear regression line yielded a good fit

when compared to other possible models. A least squares approach

was used to fit the model. In this example, we will analyze the same

data using the Bayesian approach which we have developed.
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As in example 2.4, we will start the analysis with the likelihood

function, then consider the prior distribution, and lastly, consider the

posterior distribution. However, before considering any of the three

parts of Bayesian analysis, some attention must be given to

ndiscretizing" the parameter y. For this example five potential join

points are considered. There are increments of equal size between

the possible values, two which occur at x-observations, and three

which occur in three distinct intervals. The values considered are:

5. 5, 6. 0, 6.5, 7. 0, 7. 5. The theory imposes no restriction on the

spacing of possible values of y, and a much larger or smaller

number of possible join points can be considered in a given problem.

It is felt that these five points will adequately illustrate all pertinent

concepts.

(1) The likelihood function. Since there are five potential join

points, there are five different likelihood functions. Denote

XW. A(c.), i = 1,...,5. We let i = 1 indicate the possible join

point 5.5, i = 2 indicate the possible join point 6.0, and so forth.

Let us look at W1.



W
1

= XA(5.5) =

1 01 0

1 2 0 0
1 3 0 0
1 4 0 0

1 5 0 0
0 0 1 6
0 0 1 7

0 0 1 8

0 0 1 9

0 0 1 10

1 0 0

0 1 0

1 0 -5.5
0 1 1

iforms for W., = 2,...,5 are similar,

last column change from one potential join point
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1 0

1 2 0

1 3 0

1 4 0

1 5 0
1 6 .5
1 7 1.5
1 8 2.5
1 9 3.5
1 10 4.5

but the elements in the

to another. From

W. we get the more important matrix W.'W. and its inverse.

an example consider these matrices for i = 1.

1
W

1
=

10 55 12.5
385 110

41.5
, and (W1

1
W

1
)
-1

=

As

.917 -.217 .300
.062 -.100

.200

For W!W. the upper corner 2 x 2 main submatrix is the same

for all values of the join point. However, the bottom row and the last

column depend on the value of the join point. We will not show the

other four matrices and their inverses because of the similarity to

those given below.

The other information obtained from the likelihood function

which we use in the posterior distribution is contained in

the SSE.

0 , and

These values are given in Figure 6. It should be pointed out

here that the SSE for .y = 6. 5 is within .02 of SSE for the optimal

least squares estimate found in example 1.3. The above information,
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together with the matrices WiVi and their inverses contain all the

information in the data.

Estimate
Potential Join Point

y = 5.5 y = 6.0 y= 6.5 y= 7.0 y= 7.5
A
0 0.26 0.59 0.82 1.28 1.58

2.67 2.51 2.41 2.24 2.14
-2.34 -2.39 -2.61 -2.68 -3.01

SSE 7.64 5.65 5.05 6.41 8.51

Figure 6. Estimates based on likelihood function.

(2) The prior distribution. As mentioned in Section 1.3, the

data in this example was generated from a specific model. We will

use this information in our prior, varying the degree of belief which

we have in this knowledge. Therefore,

(3.21) N-1 =

2.5
2

(2.25
.5

and

Using these values we will derive the various constrained prior

parameters.

First consider E
1"

As in example 2.4 we start by assuming

an unconstrained prior dispersion matrix, E 1(0 = (10)kI
4,

k = -1,0,1,2,3. Therefore there are five possible constrained prior

dispersion matrices for each possible value of the join point. By



varying k, we vary our belief in the prior vector 1-1.1(0. By

(3. 5)

Eli = B(I-E
1
(.0)6(c.)-(6'(c.)E

1
(05(c.)} -1 6?(c.)Z

1
((0)B' ,or.
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where Z1(0 is the unconstrained prior dispersion matrix and Eli

is the constrained prior dispersion when -y = ci. Table 3.1 gives the

values of ZIA., i = 1, ..., 5 for the case when El(0 = I4. All of

the other prior dispersion matrices can be obtained by multiplying

these matrices by an appropriate power of ten.

Table 3.1. Constrained prior dispersion matrices for vari-
ous possible join points when El(4) = I.

5.5
.984

. 986

-.088
.516

081

.176
-.032
.064

. 162
= 6.0 .513 -.027

.054

.988 -.075 .150
-y = 6.5 .512 -.023

.046

.990 -.070 .140
y = 7.0 .510 -.020

.040

.991 -.065 .131
y= 7.5 .509 -.017

.035
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For each of the five possible join points, we also have to deter-

mine the constrained prior mean vector for 0, namely kir Since

we assumed El(0) = (10)k
I
4

, for the formula for the constrained

prior mean vector is given by (2.36). We use the unconstrained prior

mean vector given by (3.21). The values obtained for the constrained

prior mean vectors are given in Figure 7.

= 5.5 y = 6.0

2.13
(-1.76

2.51
2.06

11.62

.y = 6.5 y = 7.0 -y = 7.5

2.50 2.49
2.00

(1.50
1.95

(-1.39
(1.90
-1.30

Figure 7. Prior constrained mean vector for 0

at the five possible join points.

For all possible join points, we let v1 = 1 and let v1

range over the values 1, 10, and 50. For the prior beliefs in the

various join points, namely P(y=c.), we assume they are all equal

and P(y=ci) = i = 1, ... 5.

(3) The posterior distribution. In analyzing the posterior dis-

tribution we will concentrate on the posterior parameter vectors

E2i, and the posterior marginal probabilities of the various possible

join points. The other parameters will now be briefly mentioned.

The posterior parameter v
2i

= 10 + v
1,

where v1 = 1,10,50.

Therefore, is one of three values, 11, 20, or 60. The
2i
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posterior dispersion matrices Eli were calculated for all possible

combinations of join points and prior dispersion matrices. However,

for any given prior dispersion matrix, these posterior dispersion

matrices proved to be fairly similar and will not be discussed further.

In given situations these matrices are necessary if the analysis is to

include study of the probability content of a region, or if the posterior

distributions of a subset of the vector A is to be studied. The

posterior parameter v2.
also will not be explicitly studied. Its

2.

major importance lies in its contribution to the marginal posterior

probabilities of the join point.

Let us now consider the posterior marginal probabilities of the

join point. These probabilities are given in Table 3.2. The formula

for the posterior probability is given by (3. 11). In this example the

prior probability was assumed to be the same for each of the five pos-

sible join points. The product I En'
-1/21E2i1 1/2 proved to be of

negligible effect in this example in determining the posterior proba-

bility. Its value was relatively stable for changing values of the join

point when the prior dispersion matrix was held constant. Figure 8

gives the values of this product for the case when Ei(4)) = (10)114.

Therefore, the major influence in the posterior marginal probabilities

of the join point comes from the term v2i.
However it does not

correspond directly to SSE, which, by Figure 6, would pick y = 6.5.
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Table 3.2. Posterior probabilities for location of join
point, "y

Join
Point

Value of Prior Dispersion Matrix, ZOO

(10)-11 I 10I (10)21 (10)
3

I

a) y1 = 1 (v2 = 11)

y = 5.5 . 116 . 171 . 150 . 081 . 068
y = 6.0 .424 . 490 . 470 . 323 . 284
y = 6.5 . 324 . 254 . 304 . 446 . 466
y = 7.0 . 114 . 071 . 067 . 129 . 151
y = 7.5 . 022 . 014 . 009 . 021 . 031

b) v1 = 10 (v2 = 20)

y = 5.5 . 114 . 175 . 165 . 100 . 087
y = 6.0 .435 .485 .441 . 315 . 285
y = 6.5 . 327 . 260 . 308 . 407 . 416
y = 7.0 . 107 . 070 . 076 . 150 . 171
y = 7.5 . 017 . 010 . 010 . 028 . 041

c) v1 = 50 60)(v2

y = 5.5 . 110 . 178 . 172 . 113 . 098
y = 6. 0 . 448 . 484 .427 . 313 . 280
y = 6.5 . 332 . 263 . 311 . 380 . 388
y = 7.0 . 098 . 068 . 082 . 160 . 184
y = 7.5 . 012 . 007 . 008 . 034 . 050

= 5.5 y = 6.0 y = 6.5 y = 7.0 -y = 7.5

.2039 .2035 .2031 .2026 .2021

Figure 8. Calculated values for I li I

-1/2
I 2i I

1/2

when
1

1/2) = (10) 1I
4

.
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In analyzing the posterior probabilities for the various possible

join points, y = 6.0 and y = 6.5 are the points which deserve the

most consideration. In nearly all cases these two points account for

more than 70% of the posterior probability. For the situations where

the belief in the prior mean is moderate to very strong, y = 6.0 has

the highest posterior probability. In the two cases where the prior is

weak, the posterior probability is greatest for y = 6. 5. Both of

these results hold for the three values of v1. The question might be

raised why y = 6. 5 is not preferred in all cases, since that is the

value for the model which generated the data. However, the least

squares estimate for the slope of the second line when constrained to

join at 6. 5 is approximately ( -. 5), while the slope is (.5) for the

actual model. This large difference comes about because of the huge

deviations of some of the generated observations near the join point.

However, these results do show that at y = 6.0 the prior constrained

mean vector most closely agrees with the constrained least squares

estimates, when compared with the results at the other join points.

The other set of posterior parameters are E2i. The values of

these posterior mean vectors are given in Table 3.3. We will not

discuss the different ways to analyze these means, because much

depends on the purpose of the analysis. However, some things should

be noted. As in example 2.4, as the determinant of the dispersion

matrix increases, the posterior mean vector ranges from values close
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to the prior constrained mean vector to values close to the constrained

least squares estimates. This occurs as k increases. In this

example, also, the posterior mean vectors at y = 6.0 and

y = 6.5 are the only ones that need be considered. The posterior

probabilities indicate that the other three cases are not very likely.

Table 3.3. Posterior mean vectors of 0 for the five pos-
sible join points and five different prior
dispersion matrices.

Join
Point

Prior Dispersion Matrix, E1(4)

(10)-11 I 10I (10)21 (10) 3
I

y .-- 5.5 2.302 1.376 0.503 0.294 0.269

2.218 2.402 2.602 2.659 2.666

-1.801 -1.974 -2.234 -2.330 -2.342

y = 6.0 2.327 1.612 0.865 0.629 0.597
2.089 2.232 2.422 2.498 2.508

-1.655 -1.827 -2.185 -2.362 -2.388

= 6.5 2.368 1.876 1.219 0.883 0.828
1.988 2.088 2.275 2.391 2.411

-1.529 -1.689 -2.183 -2.543 -2.604

y = 7.0 2.417 2.168 1.711 1.355 1.287
1.898 1.949 2.090 2.216 2.240

-1.410 -1.534 -2.059 -2.570 -2.670

y = 7. 5 2.478 2.450 2.162 1.711 1.593

1.830 1.840 1.941 2.096 2.136

-1.310 -1.395 -1.942 -2.764 -2.978
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4. BAYESIAN ANALYSIS OF TWO-PHASE REGRESSION
WITH VAGUE PRIOR KNOWLEDGE

One of the primary criticisms of Bayesian inference in general,

and the method developed in the two preceding chapters in particular,

is the necessity of formulating the prior distribution for the problem.

In the analysis which was developed in the preceding chapters, the

general form of the prior distribution is known, but up to 5 param-

eters for this distribution must be specified. Although the examples

in the previous chapters show that weak prior knowledge can be con-

sidered by varying El and vl, there is another alternative to

this method. This alternative method is the use of "vague priors."

These priors are not distributions in the proper sense, but are func-

tions that have come to represent situations in which the experimenter

desires the posterior distribution on a parameter to be strictly a

function of the information contained in the sample. In this chapter,

we will first show the forms of the "vague priors" which we will

assume for the various parameters, and then develop the posterior

distributions for the various cases.

4. 1 Vague Priors on the Parameters

In this section we consider vague priors for h (or o-
2), for

the vector of parameters 0, and for the location of the join point,
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4. 1. 1 Vague Prior on h

In the prior distribution, for h, the two parameters which

must be stipulated are vl and vl. The parameter v
1

is a

prior estimate of Cr while the parameter v
1

indicates the

degree of belief which we have in the value of v
1.

For this reason,

a logical convention for situations where there is vague prior knowl-

edge is to set v1 = 0. When using this restriction the marginal

distribution of h is proportional to h-1, and

Pli/2 -1 -1
(4. 1) g (0,11/N=c ) h lexp{-121- (0-.E1.)1Z . (0-E .) h .

1 11

In most situations if a vague prior is assumed for an unknown param-

eter at one join point, a vague prior will be assumed for all join

points.

4. 1.2 Vague Prior on 0

In the case where there is vague prior knowledge on 0, an

obvious result is that the variance of the prior mean vector is very

large. As was evident in the examples of the previous two chapters,

by letting E (:1)) or equivalently El, get very large, we reduce

the effect of the prior distribution of A on the posterior distribution

of 8. Therefore, for a vague prior on 0, we assume Zl is
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infinitely large, or equivalently, E11 = 0, and pli 0. Resulting

from this, the prior density function gii(0,h/y=ci) is proportional

to

-v
1 i

/2- l
(4. 2) h exp{-hv .v, . /2} .

4. 1.3 Vague Prior on 0 and h

In this case v E
11 li

1 and

and we use the convention that

(4. 3)

phi
are all set equal to zero,

gli(0'h/Y=ci) cc h-1

4. 1.4 Vague Prior on y

If we assume that the join point can occur at k different

values, we assign the probability k-1 for each of the possible

values.

In many cases vague prior knowledge on y means not only

that we are unsure about the prior probabilities of the various possible

join points, but also that we are unsure about the values which y

can assume. In a situation such as this, one can proceed in the fol-

lowing way. Find the best least squares estimate of the join point for

each interval by one of the classical methods such as Hudson's. For

each of these estimates, the experimenter assumes the same prior
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probability of the join point, and proceeds with the Bayesian analysis

as if these values were his prior idea about the location of the join

point. If there are also vague priors on h and 0, we are as

no prior information and letting the sample wholly determine the

posterior distributions.

4.2 Posterior Distributions When Using Vague Priors

Throughout this section and the previous section, h is

assumed unknown. The situation where h is known is merely a

particular case of the problem considered here, and the results for

that case are obvious. In this section the posterior distributions are

given for the various vague priors previously stated. For all of

those priors, the same form of the posterior distribution results.

That is, in all cases the joint posterior distribution is equal to (3. 6),

or

-1
( X4.4)P(-c. ,Y)(27)

-3/21E2i
I

-1/2h3/2expf-
(0-E. )1E (0-E )}

2 2i 2i 21.

v2i/2-1 121
X h expl-hv2i.v2i/21(v2iv2i/2) 2i [r(v /2)] -

2i

where P(y=ci/X,Y) is given by (3. 10). However the values of the

parameters of this posterior distribution for the various cases of

vague priors are different, and primary consideration will be given to

the expression of these parameters in the different cases. In all
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situations of vague prior knowledge, the expression of the likelihood

used in Chapter 3, namely (3. 3), remains the same.

The posterior distributions for the case where a vague prior is

placed on y will not be considered separately. In these cases,

P(y=ci) = k, for all i, and this term simply falls out of P(y=ci/X,Y).

4.2.1 Posterior Distribution for a Value Prior on h

By combining the expression in (4. 1) with the likelihood function

given by (3. 3), we get a joint posterior distribution whose density

function is given by (4.4), where the parameters are defined as

follows:

-1 -1
(4. 5) = Ali 1 1

and

P3i 3, V =
Zi

n

1 2

1 1 1
,

1
0

- 1
V = 1(n-3)s +0!W!W..+E kz}i .2i v2i

The vague prior on h has no effect on the posterior parameters

Z2i , Ezi, and pai. These parameters are wholly concerned with the

posterior distribution of 0. However, the parameters v
2i

and

v
2i

have changed from the form given by (3. 8), the parameters

resulting when a proper prior is used. The posterior probability of

the join point is still given by (3. 11) with the parameters defined in
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(4. 5) being used in the formula.

4.2.2 Posterior Distribution When Assuming a Vague Prior on 0

Combine the expression given by (4. 2) with the likelihood func-

tion and we get the same posterior distribution form as that given by

(4.4), with the posterior parameters defined as follows:

(4. 6)

and

-1
Z2i W!W.,

P21

A

Zi

v
2i

n + v - 3,li

v2i = [(n-3)s. +0.1/VW. .
1
+v .v -El

1 1 li 2i 2i 2i.1
Zi

1 , 2- L(n-3)si+vlivii]
2i

In this situation all of the posterior parameters with the exception of

P2i
have been significantly effected by the vague prior. The two

parameters primarily concerned with 0, namely E2i1 and Eli'

are functions of the sample alone. The posterior estimate of 62

is now merely a weighted linear combination of the prior estimate and

the least squares estimate, with the weights being proportional to the

prior degree of belief, and the degrees of freedom for error based on

the sample. P(N=ci/X,Y) is given by (3. 10), but the parameters

used in that formula are now those defined by (4. 6).
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4. 2.3 Posterior Distribution When Assuming a Vague Prior on
0 and h

By combining h-1 and P(y=ci) with the likelihood function,

we again get a posterior distribution that has the form given by (4.4),

where the posterior parameters are defined in the following way:

- 1 A
(4. 7)

Ari' .E2i 2i'

and

rp2i = (W.V.) = 3, v
Zi

= n - 3,

2vzi = [(n-3 = s.2
1V.

2i

All of the posterior parameters are functions only of the sample, and

and v2i
correspond to the least squares estimates of 0 and

2
o- respectively.

In this case where there is no prior knowledge on any of the

parameters except the join point, the posterior estimates of the join

point is important to study. By inserting the parameters defined in

(4.7) into (3. 11), we get

(4. 8) XP(y=c./ ,Y) =

lArW.1
-1/2 ((n-3)s.2 )

-(n-3)/2P(y=c.)
1.

W-!W-I
-1/2((n-3)s2.) (n-3)/2P N=c.)}

J J
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If it is assumed that the prior probability on all possible join points is

the same, the posterior probability that the join points equals c. is

proportional to

I W:W. I
-1/2((n-3)s2

)
-(n-3)/2

1 1

As a criterion to choose the most likely join point, the above form is

very close to Hudson's approach which solely uses the minimizing of

2
s.

1
as a criterion. For our Bayesian posterior with vague priors on

all unknown parameters, a function of s. is multiplied by the gen-

eralized variance raised to the (-1/2) power. However, as in

example 3.6 the generalized variance is usually relatively stable over

any interval which we would consider. Therefore, the Bayesian

approach is very similar to the least squares approach for the situa-

tion where vague priors are assumed.

If this vague prior approach is considered for example 3.6, the

posterior probabilities of the five possible join points are

= 6.0 y = 6.5 y = 7.0 y = 7.5

.088 .250 .400 .182 .080

If these points are ordered according to highest probability, the order

is the same as if they are ordered according to smallest SSE.
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5. SUMMARY AND CONCLUSIONS

In this investigation the two-phase linear regression model has

been considered using a Bayesian approach. The method presented

differs from previous methods in its ability to insert prior knowledge

concerning the parameters of the underlying model into the analysis.

In Chapter 2 the Bayesian approach was developed for the

situation where the join point is known. It was shown that if a con-

tinuity condition is imposed on the model, the likelihood function

should be redefined in order to explicitly contain the condition within

the function. The model starts out with four parameters, excluding

the variance and join point. In order to impose the condition, only

three parameters can be explicitly used. There are many ways to do

this. The transformation used in this investigation resulted in the

intercept and slope parameters of the first line segment, and the dif-

ference between the slope of the second line segment and the slope of

the first line segment as the three parameters considered.

The natural conjugate prior distribution was assumed. Using a

conjugate prior places the principal emphasis on the determination of

the posterior parameters, since the form of the posterior distribution

will be the same as the form of the prior distribution. A method was

developed to find the constrained prior mean vector and dispersion

matrix for any pair of unconstrained mean vector and dispersion
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matrix. When the variance term is unknown, there are essentially

four sets of prior parameters to determine. Two of these sets, En

and vli, are prior estimates of the unknown parameters of the

model, while the other two sets, namely En and v , indicate

the degree of belief in the other prior estimates. The posterior dis-

tribution was derived, and the correspondence of the posterior param-

eters to functions of the sample and prior parameter was developed.

Chapter 3 considered the case where the join point is unknown.

The methodology developed in Chapter 2 was extended to the situation

where the join point assumes one of a finite number of points. The

restriction of finiteness is made in order to summarize the data in

sufficient statistics, and thus be able to continue to use a natural

conjugate prior. Posterior distribution was developed, and the

expression of the posterior marginal probability of the possible join

points is shown. This posterior seems to be more complex than the

ordinary criterion used in a two-phase linear regression, namely SSE.

In Chapter 4, the Bayesian approach for the case of vague prior

knowledge was developed. The results correspond closely to the

results obtained by a least squares approach.

In trying to analyze the results of the Bayesian approach, both

positive and negative aspects can be considered. Let us first consider

the negative aspects. In a situation where there is not prior informa-

tion on any of the unknown parameters, very little information is
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gained which is not available by the least squares approach. Also, if

some prior information does exist, much more time must be spent in

the analysis than in the least squares method. A more serious nega-

tive aspect from a theoretical point of view might be the "discretizing"

of the possible values of the join point. However, in the example

considered, this "discretizing" resulted in at least one value which

was close, in a least squares sense, to the optimal classical estimate.

The positive aspects of the Bayesian approach are well worth

considering. First, this approach gives a systematic method to con-

sider different possible join points. The "discretizing" factor can be

used to good advantage if more than one possible join point in a given

interval is to be considered. Even with vague priors, the posterior

information is in a form which is easy to interpret. Second, if any

prior knowledge on any of the parameters exists, the Bayesian

approach makes use of this knowledge, and through the parameter

v2i measures the agreement between the prior belief and the results

of the sample. The use of a two-phase linear regression model on a

set of data usually implies at least some prior conception or knowledge

about the unknown parameters. None of the other methods in the

literature are able to handle this knowledge within their framework.

Even the approach of Bacon and Watts (1), though Bayesian in nature,

can not handle prior knowledge. Their analysis assumes a vague

prior, and in its present form cannot handle a proper prior
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distribution. The third positive aspect is the degree of versatility

that the prior parameters, especially the prior dispersion matrix,

permits the experimenter to have. As was seen by the examples in

Section 2.4 and Section 3.6, varying this parameter can result in a

posterior mean vector nearly identical to the prior mean vector, or a

posterior mean vector nearly identical to the vector of least squares

estimates.

Although there are many other positive aspects, let us consider

only one additional feature. This feature is the amount of information

obtained. Although some people might prefer the results to be in a

concise form, the two-phase linear regression model with unknown

join point is a complex situation and not easy to analyze. The

Bayesian approach yields a great deal of information in a form that is

easy to analyze even from a frequentist standpoint. Through the use

of the prior distributions many different situations can be considered,

and various prior constraints can be imposed on the model.

In summary, it is felt that this approach is a reasonable alterna-

tive to the approaches already being used. It allows questions to be

considered through the use of the prior distribution which could not be

considered previously, and it gives a viable approach to a compli-

cated problem.
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