

AN ABSTRACT OF THE DISSERTATION OF

Joseph A. Crop for the degree of Doctor of Philosophy in Electrical and

Computer Engineering presented on May 28, 2014.

Title: Methods to Improve the Reliability and Resiliency

of Near/Sub-Threshold Digital Circuits

Abstract approved:

Patrick Yin Chiang

Energy consumption is one of the primary bottlenecks to both large and small

scale modern compute platforms. Reducing the operating voltage of digital cir­

cuits to voltages where the supply voltage is near or below the threshold of the

transistors has recently gained attention as a method to reduce the energy required

for computations by as much as 6 times. However, when operating at near/sub­

threshold voltages (where the supply voltage is near or below the threshold of

the transistors), imperfections in transistor manufacturing, changes in tempera­

ture, and other difficult-to-predict factors cause wide variations in the timing of

Complementary Metal-Oxide Semiconductor (CMOS) circuits due to an increased

sensitivity at lower voltages. These increased variations result in poor aggregate

performance and cause increased rates of error occurrence in computation.

This work introduces several new methods to improve the reliability of near/sub­

threshold circuits. The first is a design automation technique that is used to aid

in low-voltage digital standard cell synthesis. Second, two circuit-level techniques

are also introduced that aim to improve the reliability and resiliency of digital cir­

cuits by means of completion/error detection. These techniques are shown to im­

prove speed and lower energy consumption at low overheads compared to previous

methods. Most importantly, these circuit-level methods are specifically designed

to operate at low voltages and can themselves tolerate variations and operation

in harsh environments. Finally, a test-chip prototype designed in 65nm-CMOS

demonstrates the practicality and feasibility of a proposed current sensing error

detector.

c©Copyright by Joseph A. Crop

May 28, 2014

All Rights Reserved

Methods to Improve the Reliability and Resiliency

of Near/Sub-Threshold Digital Circuits

by

Joseph A. Crop

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Doctor of Philosophy

Presented May 28, 2014

Commencement June 2014

Doctor of Philosophy dissertation of Joseph A. Crop presented on May 28, 2014.

APPROVED:

Major Professor, representing Electrical and Computer Engineering

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection
of Oregon State University libraries. My signature below authorizes release of my
dissertation to any reader upon request.

Joseph A. Crop, Author

ACKNOWLEDGEMENTS

First of all, I would like to thank my adviser Patrick Chiang for providing me with

the resources and guidance I needed to conduct this research. His non-traditional

views on academia and the VLSI field have given me a valuable perspective I would

not have received otherwise.

I would like to thank all of my collaborators around the world. Including Mat-

tan Erez and Evgeni Krimer from The University of Texas at Austin. Their team

provided valuable architecture modeling an analysis for the later portion of this

research. My collaborators at Fudan University in Shanghai China who graciously

hosted me for a summer: Junyu Wang, Jerry Fu, MengQin Xiao, and Hao Min.

And finally my colleagues at Oregon State University. Namely Robert Pawlowski,

Jacob Postman, Nariman Moezzi-Madani, Jarrod Jackson, and Scott Fairbanks.

Without their supporting contributions to my research this dissertations would not

be a success.

I would like to give a special thanks to my family for their support throughout

my 29-year academic career which has been invaluable. Among them, Amy Kao

and Lauri Shainsky helped edit this dissertation.

This work was funded in part by a grant from the Department of Energy

Early Career Program, the Center for the Design of Analog and Digital Integrated

Circuits (CDADIC), and gifts from Intel Corporation.

TABLE OF CONTENTS

Page

1 Introduction 1

2 Circuit Reliability Challenges in Near-Threshold 3

2.1 Introduction . 3

2.2 Near/Sub-Threshold Operation . 3

2.3 Variations at Near/Sub-Threshold . 5

2.4 Sources of Variation in CMOS circuits 7

2.4.1 Static Variations . 7

2.4.2 Dynamic Variations . 8

2.5 Characteristics of Variations . 8

2.5.1 Random Variations . 8

2.5.2 Systematic Variations . 9

2.6 Soft Errors . 9

2.6.1 Temperature-Induced Soft Errors 9

2.6.2 Voltage-Induced Soft Errors 10

2.6.3 Process Variation-Induced Soft Errors 11

2.6.4 Aging Effects on Soft Errors 12

2.6.5 Radiation-Induced Soft Errors 12

2.7 Hard Errors . 13

2.8 Summary . 13

3 The Current Art in Circuit Reliability 15

3.1 Introduction . 15

3.2 Speculative Speed-Up and Error Detection Techniques 16

3.2.1 Architectural Retiming . 17

3.2.2 Circuit-Level Speculation . 20

3.2.3 Tunable Replica Circuits . 21

3.2.4 Razor Flip-Flops . 22

3.2.5 Transition Detectors . 24

3.3 Error Recovery Techniques . 26

3.3.1 Clock Gating . 26

3.3.2 Counterflow Pipelining . 28

3.3.3 Micro-Rollback . 29

3.3.4 Multiple Issue . 30

TABLE OF CONTENTS (Continued)

Page

3.3.5 Adaptive Scaling Methods 33

3.3.6 Checkpoint-Restart . 34

3.3.7 Summary of Recovery Methods 34

3.4 Higher Level Error-Protection Techniques 35

3.4.1 Architecture Level Error-Protection Techniques 36

3.4.2 Architectural Data Protection 39

3.4.3 Software Level Error-Protection Techniques 40

3.5 Summary Error Detection/Protection of Methods 42

3.6 Error Detection and Recovery in Near/Sub-Threshold 44

3.6.1 Speculative Error Detection in Near/Sub-Threshold 45

3.6.2 Error Recovery Techniques in Near/Sub-Threshold 46

3.6.3 Near/Sub-Threshold Timing Error Detection 47

3.7 Conclusions . 47

4 A Design Automation Methodology Approach	 49

4.1	 Introduction . 49

4.2	 Limitations of Existing Libraries and Design Techniques in Near/Sub-

Threshold . 51

4.2.1 Combinational Logic Failure 52

4.2.2 Sequential Logic Failure . 53

4.2.3 Timing Model Inaccuracy 54

4.2.4 Design Time and Portability 55

4.3 Proposed Near/Sub-Threshold Characterization Method 56

4.3.1 Parse Standard Cell Liberty File 56

4.3.2 Input-to-Output Delay Variation Test 57

4.3.3 Analysis and Cell Removal Decisions 58

4.4 Results . 61

4.4.1 Characteristics of Removed Cells 62

4.4.2 Area Improvement . 62

4.4.3 Delay Improvement . 63

4.4.4 Energy Improvement . 65

4.5 Conclusions . 67

TABLE OF CONTENTS (Continued)

Page

5 Energy Constrained Encryption: A Case Study in Near-Threshold Circuit

Design 68

5.1 Introduction . 68

5.2 Potential Solutions to Near-Threshold Challenges 69

5.2.1 Check and Adapt . 70

5.2.2 Large Guard-Banding . 71

5.2.3 Architectural or Circuit Redesign 71

5.2.4 Near-Threshold-Aware Synthesis Techniques 72

5.3 Case-Study . 73

5.3.1 Hummingbird Encryption Scheme 73

5.3.2 Tested Solutions . 74

5.4 Results . 79

5.4.1 Area Impact . 79

5.4.2 Energy and Power Impact 80

5.4.3 Variation of Each Architecture 81

5.5 Conclusion . 85

6 Asynchronous Circuit Operation 86

6.1 Introduction . 86

6.2 Traditional Asynchronous Techniques and Challenges 87

6.2.1 Asynchronous Logic Elements 87

6.2.2 Hazards . 88

6.3 Asynchronous Micropipelines . 89

6.3.1 Micropipeline Configurations 89

6.3.2 Handshake Mechanisms . 90

6.4 Asynchronous Completion Detection 91

6.4.1 Custom Circuits . 92

6.4.2 Null Convention Logic . 93

6.4.3 Matched Delay Lines . 93

6.4.4 Speculative Completion . 94

6.4.5 Current Sensing Completion Detection 96

6.4.6 Sense-Inverter Based CSCD 97

6.4.7 Activity-Monitoring Completion Detection (AMCD) 99

6.5 Proposed Completion Detection Methods 100

TABLE OF CONTENTS (Continued)

Page

6.5.1 Proposed Transition Aware Completion Detection 100

6.5.2 Proposed Pseudo-Asynchronous CSCD Method 102

6.6 Compared Results . 103

6.7 Conclusions . 106

7 Synchronous Completion Detection 107

7.1 Introduction . 107

7.2 Variation Study . 108

7.3 Proposed Error Detection Methods 110

7.3.1 Transition Detecting . 110

7.3.2 Current Sensing Completion Detection 111

7.4 Results . 116

7.4.1 Razor Results . 117

7.4.2 TACD Results . 117

7.4.3 CSCD Results . 118

7.4.4 Energy, Area and Complexity 119

7.5 Conclusion . 121

8 Current Sensing Completion Detection Test Chip 122

8.1 Introduction . 122

8.2 Previous Work Comparison . 122

8.3 CSCD Test Chip Design . 125

8.3.1 SIMD Pipeline Design . 126

8.3.2 Current Sensor Design . 129

8.3.3 Design for Test Features . 134

8.4 Chip Measurement Results . 136

8.4.1 Sensor Calibration Analysis 137

8.4.2 Droop Plot Measurements 138

8.4.3 Noise Analysis . 140

8.4.4 Power Gate Sizing . 141

8.4.5 Throughput Analysis . 142

8.4.6 Results Summary . 144

8.5 Future Work . 145

TABLE OF CONTENTS (Continued)

Page

8.5.1 Sensor Improvements . 145

8.5.2 System Improvements . 146

8.6 Conclusions . 146

9 Using Current Sensors to Detect Errors in a Radiation Environment 148

9.1 Introduction . 148

9.2 Related Work . 149

9.2.1 Current Sensors . 153

9.3 Current-Sensor SET Error Detector 156

9.3.1 SET Detector Operating Principles 156

9.3.2 Masking and False Alarms 158

9.3.3 Sensor Calibration . 159

9.4 Architecture . 160

9.4.1 SET Detection and Recovery 161

9.4.2 Interaction with Other Protection Mechanisms 163

9.4.3 Calibration Architecture . 164

9.5 Methodology . 164

9.5.1 Current Sensor Evaluation Methodology 164

9.5.2 False Alarm Evaluation Methodology 165

9.6 Results . 167

9.6.1 Single Gate Analysis . 167

9.6.2 4-bit Ripple-Carry Adder . 168

9.6.3 False Alarm Rate Analysis and Performance Impact 172

9.6.4 Implementation Overheads 173

9.7 Conclusions . 176

10 Conclusions 178

10.1 Final Thoughts . 179

10.2 Future Work . 180

Bibliography 180

LIST OF FIGURES

Figure	 Page

2.1	 Impact of supply scaling on static timing analysis worst-case input

on 16-bit multiplier in 45nm SOI. (a) delay; (b) energy/operation . 4

2.2	 Delay variability as supply voltage is scaled to near-threshold for

the adder in Fig. 2.1. 6

2.3	 Delay variation widens as circuits are driven deeper into the sub­
threshold region (Monte-Carlo simulation results from a Multiply-

Accumulate in 45nm CMOS) [3]. 7

3.1	 Architectural Retiming applied to an subtraction unit, the use of a

negative register and regular register simplify to a wire and do not

slow the datapath because the negative register stores a decision

made in the previous pipeline stage. 19

3.2	 An example of a typical circuit-level speculation scheme: a specu­
lator is used to speedup the system based on path activation prob­
abilities from a model. 20

3.3	 A Typical Tunable Replica Circuit (TRC). 21

3.4	 (a) Synthesizable Razor error detector (b) Example timing diagram

of error detection. 22

3.5	 Razor II latch with detection clock generator and transition detector. 24

3.6	 Two versions of modified Razor flip-flops: (a) Transition Detection

with Time Borrowing (TDTB). (b) Double Sampling with Time

Borrowing (DSTB). 25

3.7	 (a) Pipeline modification for Clock Gating error recovery method.
(b) Clock Gating pipeline data path with errors. 27

3.8	 (a) Pipeline modification for Counterflow Pipelining error recovery

method. (b) Counterflow pipeline data path with errors. 28

3.9	 (a) Pipeline modification for Micro-Rollback error recovery method.
(b) Micro-Rollback pipeline data path with errors. 31

3.10 (a) Pipeline modification for Multiple Issue error recovery method.
(b) Multiple Issue pipeline data path with errors. 32

LIST OF FIGURES (Continued)

Figure	 Page

3.11 A systems-level diagram illustrating the feedback process of dynam­
ically adapting circuit performance in the presence of dynamic vari­
ations. 33

3.12 Architecture Level Error-Protection Techniques. (a) Dual Modular

Redundancy (DMR). (b) Triple Modular Redundancy (TMR). (c)

Simplified Redundancy. 37

3.13 Delay variation widens as circuits are driven deeper into the sub­
threshold region (Monte-Carlo simulation results from a Multiply-

Accumulate in 45nm CMOS) [3]. 44

4.1	 Flip-flop (a) contains ratio feedback and does not function properly

at low sub-threshold voltages whereas flip-flop (b) contains tri-state

feedback and does function properly at low sub-threshold voltages. . 54

4.2	 Functional diagram of the method used to determine poor cells and

their removal from the sub-threshold standard cell library. 57

4.3	 Histogram of input-to-output delay variation from near/sub-threshold

to nominal voltage in a low-power 90nm cell library. 59

4.4	 Bar plot of input-to-output delay simulations from near/sub-threshold

to nominal voltage in a low-power 90nm cell library. 60

4.5	 Histograms of FP-ADD delay with and without cells removed from

synthesizer using 1σ culling method running at Vdd=400mV. . . . 64

4.6	 Box-plots of delay without and with cells removed from the synthe­
sizer for both designs. 65

4.7	 Box-plots of energy/computation without and with cells removed

from the synthesizer. 66

5.1	 A systems-level diagram illustrating the feedback process of dynam­
ically adapting circuit performance in the presence of dynamic vari­
ations. 70

5.2	 The Hummingbird cryptographic algorithm. 75

LIST OF FIGURES (Continued)

Figure	 Page

5.3	 Original implementation of the Hummingbird algorithm. 76

5.4	 Area-optimized implementation of the Hummingbird algorithm. . . 77

5.5	 Loop-unrolled implementation of the Hummingbird algorithm. . . . 78

5.6	 Power plot vs. time of test 0 (Shared EK) and test 2 (Speed Opti­
mized). 81

5.7	 Variation Response of four test cases across Monte Carlo. 82

6.1	 Asynchronous Muller-C Element: (a) schematic symbol, (b) Synthesize-

able, hazard-free circuit schematic [89] (c) C-element truth table. . 88

6.2	 A fundamental µ-pipe with 2-phase bundled data control via C-

elements . 89

6.3	 (a) 4-phase and 2-phase bundled data handshaking conventions, (b)

4-phase to 2-phase conversion with the Toggle element, (c) 2-phase

to 4-phase conversion with the merge (XOR) element. 91

6.4	 An asynchronous µ-pipe with completion detection by means of a

matched delay line. 94

6.5	 An asynchronous µ-pipe with completion detection by means of

speculative completion detection. 95

6.6	 A standard combinational block modified for asynchronous opera­
tion by means of current sensing completion detection. 97

6.7	 Basic configuration of sense-inverter based current sensing comple­
tion detection within an adder structure. 98

6.8	 Basic configuration of activity monitoring completion detection within

an adder structure. 99

6.9	 (a) TACD within a µ-pipe stage, (b) Synthesize-able TACD schematic,
(c) Timing diagram of TACD. 101

6.10 Synchronous CSCD method modified for asynchronous operation. . 103

LIST OF FIGURES (Continued)

Figure	 Page

6.11 Simulation of TACD, MDL, and CSCD with average-case operands
into a 16-bit carry-save multiplier. 105

7.1	 Histograms of (a) Monte Carlo chip-to-chip delay of the STA and
(b) delay of changing FIR filter data on a 16-bit adder with error­
detection speeds marked. 108

7.2	 Potential throughput improvement with ideal error detection 109

7.3	 (a) CSCD schematic, (b) CSCD timing diagram. 112

7.4	 (a) Offset calibration of CSCD across 100 Monte Carlo simulations,
(b) Speed of sensor stays relatively fast in NTV regime. 114

7.5	 Power gate sizing has very minimal affect on speed while maintain­
ing a reasonable sensing margin. 115

7.6	 Input referred supply noise before and after calibrating CSCD sen­
sor’s RC noise filter. 116

7.7	 Simulated throughput of TACD. 118

7.8	 Simulated throughput of CSCD . 119

8.1	 Conceptual demonstration of: (a) Razor technique; (b) TRC tech­
nique; (c) Proposed current sensing completion detection technique. 124

8.2	 Block diagram of test chip with sensors connected to SIMD lanes. . 125

8.3	 Detailed architecture of pipeline stages: (a) Instruction Generator;
(b) Register File; (c) Pipelined Array Multiplier (stage 1). 128

8.4	 Schematic of current sensor used in test chip. 130

8.5	 Flow chart of calibration procedure. 133

8.6	 Die micro-photograph of test chip. 135

8.7	 Lab test setup with custom designed test board and automated

software running in LabView CVI. 137

8.8	 Measured comparator offset before and after calibration. 138

LIST OF FIGURES (Continued)

Figure	 Page

8.9	 On-die voltage droop plots captured using the analog sensors as on-

die oscilloscopes, for logic operating at 1.0V and 0.75V. Arrows at

top denote when logic operation has finished. 139

8.10 Simulated supply noise rejection at inputs of comparator after noise

filtering. 140

8.11 Sensing margin impact on noise-induced false positives at 1V supply. 140

8.12 Measured on-die scatter plots of sensing droops before and after

basic calibration of noise filtering. 141

8.13 Power gate sizing for required voltage droop vs. impact on speed

reduction. 142

8.14 Comparison of throughput vs. energy efficiency at various supply

voltages vs. conventional. 143

8.15 Throughput improvement beyond the EDA margin vs. conventional. 143

9.1	 Block diagram of current sensor for SET detection. 154

9.2	 SET strike at a closed NMOS transistor. 155

9.3	 SET strike at closed PMOS transistor. 156

9.4	 SET modeling in SPICE using a current source. 165

9.5	 Minimum current pulse for an SET in an FO1 inverter (red); and a

detectable pulse that is too small to generate an SET (green). . . . 166

9.6	 Single gate response to an SET-generating strike current pulse. . . . 168

9.7	 Single gate response to a low-energy particle strike current pulse.

Top sub-figure is gate output and bottom sub-figure is the current

sensor output. 169

9.8	 Five simulated SET scenarios for a 4-bit adder. Critical path is

highlighted, and the 5 strike scenarios are marked a–e (strike e is to

an inverter within the XOR). 170

LIST OF FIGURES (Continued)

Figure	 Page

9.9	 Adder response to five scenarios of SET-generating strike current

pulses. 171

9.10 Three cycles of adder operation showing Cout and Vsense . Latching

windows in grey, strike current duration within dotted lines. Current

is sensed only within the grey latching window and normal currents

are effectively masked. 172

9.11 True	 and false positive FIT rates (lower and upper part of bars

on left axis) and false-alarm rate (dotted line on right axis) for

ISCAS’89 benchmark circuits. The benchmark names are along the

x-axis. 174

LIST OF TABLES

Table	 Page

2.1	 Classification of variations in digital logic. 14

3.1	 Ability of different detection methods to work in various variation

modes. 18

3.2	 Comparison of Pipeline Recovery Methods. 35

3.3	 Various ECC approaches overheads (based on [52]) 43

3.4	 Comparison of existing errors detection/prediction methods 43

4.1	 Area Comparison of Culled Designs with Unculled Designs 63

4.2	 Leakage energy comparison of culled designs with unculled designs. 66

5.1	 Simulation results for each tested design 84

6.1	 Comparison of different completion detection methods. 104

7.1	 Comparison of error-detection methods. 120

8.1	 Comparison of existing error-detection method with measured test

chip. 123

8.2	 Design summary of test chip. 144

9.1	 Comparison of particle-strike induced error detection mechanisms

for combinational logic. 151

to my family

Chapter 1: Introduction

Computing devices have reached a speed limitation due to a thermal limit

manifested by having too many transistors in a chip. However, new applications

such as wireless sensors and wearable devices have unlocked a new computing

paradigm that doesn’t rely on high speed, high power processing systems. These

computing systems of the future are now energy-constrained by battery or energy

harvesting requirements, usually being small amounts of energy with long lifespans.

One such approach discussed in detail in this dissertation is the method of lowering

the supply voltage of chips into the near-threshold region. In the past decade a

number of researchers have sought to determine viable methods to make near-

threshold computing reliable and achievable. However, a major concern with this

approach is reliability. Ensuring reliable operation at low cost and overhead is

critical in order to achieve near-threshold ubiquity in computing.

The primary goals of this dissertation are to explore, understand, and overcome

the challenges of near-threshold digital logic design. In particular, this disserta­

tion will examine five main research questions: (1) What are the main concerns

with near-threshold circuit reliability? (2) How do environmental factors such as

temperature and radiation manifest as errors in near-threshold systems? (3) Can

2

near-threshold operation of digital circuits be improved with synthesis-level tech­

niques? (4) Can asynchronous methods be employed to provide reliable operation

in near-threshold? (5) Can a system be designed that is reliable and resilient to ev­

ery type of error source in near-threshold? This study makes a major contribution

to the research of near-threshold computing by demonstrating several approaches

that improve the reliability and resiliency of such circuits and systems.

The overall structure of this dissertation takes the form of ten chapters, includ­

ing this introductory chapter. Chapter Two begins by investigating the current

reliability challenges in modern CMOS and how they pertain to near-threshold

operation. The third chapter introduces the the current art in digital circuit re­

liability and discusses current methods aimed at reliability. The fourth and fifth

chapters present a proposed design automation methodology and a case study of

its efficacy. Chapters 6, 7, and 8 introduce asynchronous circuits and how they

can be adapted for use in synchronous digital systems, focusing on current sensing

completion detection. Next an application of these adapted circuits are proposed

for reliability in a radiation environment. Chapter 10 concludes with a brief sum­

mary and critique of the findings and includes a discussion of the implication of

the findings to future research into this area while areas for further research are

identified.

3

Chapter 2: Circuit Reliability Challenges in

Near-Threshold

2.1 Introduction

This chapter’s purpose is to introduce the concept of near-threshold operation and

the circuit reliability challenges associated with it. It begins by discussing the

attraction of near-threshold, focusing on the trade-offs of energy and delay. Next,

a detailed discussion of the sources of variations in modern CMOS are presented.

Each source is classified as it pertains to circuit reliability and the types of errors

they might generate are discussed.

2.2 Near/Sub-Threshold Operation

One of the most popular methods to reduce power consumption is to aggressively

lower the supply voltage into the sub-threshold or near-threshold voltage region.

With near-threshold operation, the supply voltage is lowered to just above the

threshold voltage of the transistors. This has been previously shown to lower

energy by ∼5-10X while decreasing the operating frequency by as much as ∼10X.

4

(a) (b)

Figure 2.1: Impact of supply scaling on static timing analysis worst-case input on
16-bit multiplier in 45nm SOI. (a) delay; (b) energy/operation

In [1] it is shown that this region of operation provides the best energy savings

without introducing significantly long delays, when compared to sub-threshold

operation. To illustrate this point, Fig. 2.1 shows simulated delay and energy for

a 16-bit multiplier as its supply voltage is scaled. It becomes evident that supply

voltage can be scaled down (to about 0.5V in this case) with minimal decrease in

delay while providing a large decrease in energy per operation.

At 0.3V an inflection appears in the energy curve. This point is termed the

optimal energy point and is the point at which the circuit achieves maximum

energy efficiency. This point almost always appears in the sub-threshold region,

meaning the supply voltage is below the threshold voltage of the transistors.

Near/Sub-threshold operation differs from super-threshold mainly because in

sub-threshold the on-current depends exponentially on threshold voltage (Vth) and

Vdd , while in super-threshold this dependence is linear [2]. In [2] it is shown that

5

the variation of the on-current can be given by:

 “ ” 2σVTσIsub = e n·Vth − 1 (2.1)
µIsub

where n is the sub-threshold swing factor (inversely proportional to Vdd), VT is the

thermal voltage, and standard deviation in the threshold voltage (Vth) is propor­

tional to W · L − 1
2 . This means there will be more variation in the sub-threshold

on-current. Therefore, the delay in sub-threshold circuits will decrease dramat­

ically because of the exponential decrease in the speed of the transistors in this

region.

2.3 Variations at Near/Sub-Threshold

Unfortunately, near-threshold operation does come with one major challenge bar­

ring widespread adoption. As can be seen in Fig. 2.2 the variability in delays within

digital circuits exacerbates wildly as supply voltage is lowered. These delays can

vary from chip to chip or even within similar functional units on the same die.

These variations come from many sources discussed next in this section. This, on

top of the other challenges presented in the rest of this chapter make near-threshold

digital logic design much more challenging in practice.

When operating in the near/sub-threshold region, it is important to maximize

operating speed while being aware of the increased delay variation (Fig. 3.13).

Maximizing the speed will also help to limit the leakage energy of the circuit, mak­

6

Figure 2.2: Delay variability as supply voltage is scaled to near-threshold for the
adder in Fig. 2.1.

ing sub-threshold operation an even better alternative over super-threshold oper­

ation with respect to energy consumption. Unfortunately, few methods described

in this review can properly operate in sub-threshold. The circuits themselves are

also susceptible to increased process variation in near/sub-threshold, which can

lead to unreliable operation. These slower speeds lead designers to push sub­

threshold processors to a more parallel approach. For example, in [3] the authors

use multiple execution lanes to regain the throughput lost by the increased delays

of sub-threshold operation.

 0

 5e-09

 1e-08

 1.5e-08

 2e-08

 2.5e-08

 3e-08

 400 450 500 550 600 650

D
el

ay
 [s

]

Vdd [mV]

min

max

avg std

7

Figure 2.3: Delay variation widens as circuits are driven deeper into the sub­
threshold region (Monte-Carlo simulation results from a Multiply-Accumulate in
45nm CMOS) [3].

2.4 Sources of Variation in CMOS circuits

There are many sources of variation that plague CMOS circuits today. These vari­

ations can be lumped into two categories: static and dynamic. Static variations,

primarily process variations [4], do not change over time and typically affect the

worst-case path of each die. Dynamic variations, such as changes in tempera­

ture [5–8], voltage [5–8], and aging [9], change over time and may require in-situ

methods to combat degradation of performance.

2.4.1 Static Variations

Static variations in fabricated dies result in degradation of maximum frequency

and increased power consumption. These variations are more problematic in sub­

100nm technologies and get worse as process nodes get smaller. Due to the local

and global process variation effects in deep sub-micron technologies, the speed of

the transistors can vary dramatically from die-to-die or device-to-device.

8

2.4.2 Dynamic Variations

Dynamic variations are usually categorized by the way they vary over time. Some

sources of variation such as supply voltage fluctuations may vary frequently (on

the order of a few clock cycles) [10] while others such as aging vary over large

periods of time (such as several years) [9]. Because of their dynamic and difficult

to predict nature, it becomes much more challenging to design resilient systems to

combat these variations.

2.5 Characteristics of Variations

It is important to note that different variation sources have different characteristics

that can affect which are used to combat them. The two primary classifications of

variations are random and systematic.

2.5.1 Random Variations

Random variations such as line edge roughness effects, and voltage or random

dopant fluctuations are not predictable and can result in a wide range of unpre­

dictable variations. Furthermore, random variations can be categorized as both

static and dynamic. An example of static random variations is that of random

dopant fluctuations which affects transistor threshold voltage Vth. An example of

dynamic random variations would be voltage fluctuations. For example, we usually

do not know which way the voltage will change, and even if we do know how it will

9

change over time it is hard to say how it will precisely effect a particular circuit.

2.5.2 Systematic Variations

Systematic variations, those due to variations in input operands or photo-lithographic

and etching uncertainties [11] always result in predictable change. These varia­

tions can be easily characterized and modeled as they are well understood and

predictable. For example, it is well known that higher temperatures will result in

slower CMOS performance.

2.6 Soft Errors

Soft Errors are a classification of errors whereby after an error occurs it has the

possibility of not reoccurring. There are many environmental and design factors

that can have an effect on the occurrence of soft errors. This section will list each

of these factors and describe how soft errors can be manifested by them.

2.6.1 Temperature-Induced Soft Errors

Soft errors can be generated when the temperature of a CMOS chip gets too high.

The temperature relationship to transistor threshold voltage and subsequent delay

is well studied [12]. This relationship is shown for clarification in the following

equations:

10

Vth = Vt0 + γ
�

2φf + VSB −

2φf

�
(2.2)

where

γ =

√
2qNA Si

Cox
(2.3)

and

kT NA
φf = ln() (2.4)

q ni

As temperature goes up, (usually due to high switching current from high

processor utilization) transistors will slow down. As they slow, if a critical path

is exercised that has an affected transistor, the latency of that path may result in

a timing soft error. This class of soft errors can be prevented with better cooling

systems. Also, if allowable, the speed or activity of a processor can be reduced to

lower the temperature back down.

2.6.2 Voltage-Induced Soft Errors

Voltage-induced soft errors occur similar in nature to temperature-induced soft

errors. There are many ways supply voltage changes (either coming into or within

a CMOS die) can lead to a soft error. One such way could be power supply

imperfections, such as a decoupling capacitor that is too small resulting in ripple

or an unstable supply. Another way could be L(dI/dt) noise from switching within

11

the die resulting in periodic voltage droops. Either way, as the supply voltage is

lowered for any amount of time, transistors can slow down as speed is proportional

to voltage. As they slow, if a critical path is exercised (just like in temperature-

induced errors) the delay of that path may result in a timing soft error. In many

cases, voltage-induced soft errors cannot be directly fixed in-situ. Voltage droops

occurring on die are very difficult to correct. However, in some situations it may

be possible to raise the voltage higher so that if a droop does happen the droop

only goes down to the minimum operating voltage, not below it. This may correct

the error at the cost of higher power and complexity.

2.6.3 Process Variation-Induced Soft Errors

Process variations, such as changes in gate oxide thickness, random dopant fluctua­

tion, device geometry effects, and threshold voltage imperfections [4] are essentially

imperfections in the microchip manufacturing process. As mentioned in the pre­

vious section they are static in nature. It could be argued that process variations

do not lead to soft errors as they are not dynamic. However, for the purposes of

this dissertation it can be understood that these variations can lead to soft errors

in the following way: If a circuit has some amount of process variations applied

to its transistors those transistors have some probability of either being slower or

faster. If the former is true it could be possible that some circuit designed for

100MHz operation can only perform at 90MHz . This is then considered a soft

error because the circuit will continue to operate properly as operating conditions

12

change. For example, a simple decrease in frequency will fix the soft error. Another

option could be to raise the supply voltage in hopes of speeding up the affected

transistors.

2.6.4 Aging Effects on Soft Errors

Aging [9] in CMOS circuits can occur by many mechanisms. The principal effect

is typically measured as a transistor threshold voltage change over the course of

several months to several years. These threshold voltage shifts have a negative

impact on speed. Therefore, aging-induced soft errors, for the sake of this disser­

tation, are considered similar in nature to that of process variation-induced soft

errors. Similar methods can be employed to adapt for these errors such as lowering

frequency or raising voltage.

2.6.5 Radiation-Induced Soft Errors

A single event transient (SET) or upset (SEU) is a physical phenomenon that

occurs when a high-energy particle interacts with the diffusion regions of a MOS

transistor and releases charge, potentially causing a faulty transition in a circuit.

Although memories in current supercomputers (and other large systems) are often

protected against SEUs, logic is often left unprotected. For decades, SETs in logic

were a concern only for systems that operate at high altitudes or for which extreme

reliability is necessary. As process scaling continues, however, the combination of

13

smaller devices, lower supply voltage, and increased integration is projected to

make single event effects, even in combinational logic circuits, a concern at any

system scale [13, 14]. The primary concern with logic SETs is the risk of silent

data corruption (SDC), where the application unknowingly produces an incorrect

result. This is becoming significant, even if the absolute SER (Soft Error Rate) per

processor is low. Therefore, emphasis must be placed on efficient error detection

that eliminates this risk without undue overhead. SETs cannot be corrected for

as easily as any other type of soft error.

2.7 Hard Errors

A hard error is an error that, no matter what environmental or system change the

circuit experiences, always results in an incorrect result [15]. These are typically

a result of process variations but can in some extreme environments be radiation

induced [16]. Hard errors are an important research topic but are not the emphasis

of this dissertation.

2.8 Summary

This chapter introduced and classified the different types of variations in modern

CMOS technologies. A detailed description of each type of variations and its

impact on error generation was presented. Table 2.1 shows an overview of each of

the potential error sources, their properties, and what type of error they result in.

14

This is intended as an easy reference and the summary of this chapter.

Table 2.1: Classification of variations in digital
logic.

Dynamic Static Error Result

R
an

d
om

S
y
st

em
at

ic

R
an

d
om

S
y
st

em
at

ic

S
of

t
E

rr
or

s

H
ar

d
 E

rr
or

s

Temperature , , , ,

Voltage , , , ,

Process , , ,a

Aging , , ,a

Radiation , , ,b

a Marked as soft error sources as they can be corrected
if they are just timing errors.

b In very high radiation environments permanent
failure can occur.

15

Chapter 3: The Current Art in Circuit Reliability

3.1 Introduction

The growing demand for higher speed and more energy-efficient electronics has

forced IC designers to put considerable effort into decreasing the delay and energy

consumption of VLSI systems using different circuit and architectural techniques.

Although the widely-used technique of pipelining is reliable and effective, it is not

flexible and the clock frequency is always limited to the critical path of the system.

Some techniques add more flexibility to the design and bypass the critical path

of the system, increasing performance. Other circuit techniques aim to reduce

the added margins to the clock frequency due to process, voltage, and thermal

variations etc.

This chapter introduces the performance improvement techniques proposed in

prior research. These techniques are termed speculative speedup techniques as

they make a best guess at what improvements can be made to a circuit using only

data given to them at the beginning of each clock cycle such as operands and

temperature.

As a side note, two different classifications of techniques have been discussed

16

in the literature. Speculative [17,18], which on the circuit-level, make a best guess

at what improvements can be made while tolerating errors; and non-speculative

[19, 20], which can be used to improve the reliability of a system without the

concern of having to correct for errors, often by using information directly from

the data path to potentially make corrections to voltage or frequency margining

before errors are detected. However, due to the scope of this dissertation only

speculative methods will be discussed.

In Section 3.3 error-recovery techniques that correct a pipelined instruction’s

operation by either stalling or re-executing it are explained. Next, Section 3.4

talks about higher level error-protection techniques including both architectural

and algorithm-level methods. Finally, Section 3.6 discusses the challenges of dif­

ferent techniques under the extreme process variation effects of sub/near-threshold

operation.

3.2 Speculative Speed-Up and Error Detection Techniques

Speculative methods usually add a small area and power overhead, but due to

their speculative nature they often must confirm their guess and can sometimes

suffer a delay penalty if they speculated incorrectly. In an application where the

speculative circuit is usually correct, speed-up or energy reduction is achieved. All

speculative methods must be paired with some type of error recovery method to

ensure the correct operation of a circuit in the presence of errors. These error

recovery methods are described in Section 3.3.

17

As described in the previous chapter, variations can be classified into four

modes, dynamic/random, dynamic/systematic, static/random, and static/system­

atic. Table 3.1 summarizes the applicability of the error detection techniques

discussed later in this chapter for each of these categories.

3.2.1 Architectural Retiming

Architectural Retiming gets its name because it both reschedules operations in

time and modifies the structure of the circuit to preserve its functionality. It

works by eliminating the latency introduced into a circuit by pipeline registers

using the concept of a negative register (Fig. 3.2.1). A negative register is an

architectural device that contains correct information before the completion of the

logic itself. This can be implemented using pre-computation or prediction [21].

With pre-computation, the negative register is synthesized as a function that pre­

computes the input to the normal pipeline register using signals from previous

pipeline stages. With prediction, the negative register’s output is predicted one

clock cycle before the arrival of its input using a finite state machine. When a

negative register is paired with a normal register the result is architecturally just

a wire and does not slow the critical path (assuming predictions are correct).

Architectural Retiming allows for a circuit to continue computation, rather than

waiting for the end of a clock cycle, when the result of a pipeline stage finishes early.

Pre-computation generates a bypass, an architectural transformation that increases

the circuit performance, but it can only do so if there is enough information in

18

Table 3.1: Ability of different detection methods to work in various
variation modes.

Dynamic Static

R
an

d
om

S
y
st

em
at

ic

R
an

d
om

S
y
st

em
at

ic

Architectural Retiming ,

Circuit-Level Speculationa ,

Tunable Replica Circuitsa , , , ,

Razor Flip-Flops / Transition Detectors , , , ,

Architecture Level Error-Protection Techniques , , b , , b

Architectural Data Protection , , , ,

Software Level Error-Protection Techniques , , c , , c

a These methods are designed for dynamic error detection but still operate under
static error cases.

b Only Simplified Redundancy method can partially handle static variability
induced errors.

c Excluding Instruction Replication Techniques.

19

A

Pre-computation

N
e

gative

R
e

giste
r

N
o

rm
al

R
e

giste
r

Register pair architecturally
reduces to just a wire

B
X>Y ?

0

1

0

1

SU
B

TR
A

C
T

Y

Figure 3.1: Architectural Retiming applied to an subtraction unit, the use of
a negative register and regular register simplify to a wire and do not slow the
datapath because the negative register stores a decision made in the previous
pipeline stage.

the circuit to allow for pre-computing the value one cycle ahead of time. If the

information is not available, the circuit can rely on an oracle to predict the value

instead, these are usually synthesized with some sort of idea of what the logic

will be doing and can be application specific. If a prediction is performed, it is

necessary to verify the predicted value one cycle after the prediction when the

actual value is computed. If the prediction is correct, the system can proceed with

the next prediction. If the prediction was incorrect, the mis-predicted value must

be flushed and the circuit should be restored to the previous state. This results in

at least one cycle latency penalty. The applications of this technique are limited

and the area and power overhead of the pre-computation or the prediction circuit

is high.

20

3.2.2 Circuit-Level Speculation

Circuit-Level Speculation [18] is a method introduced to reduce the critical path

of the circuit using approximation, implementing only a portion of a circuit. The

approximated implementation of the circuit is the most heavily used part of the

original circuit based on simulation results. A redundant full circuit is implemented

and works in parallel to verify the approximated result in the next cycle (Fig. 3.2.2).

Although this method results in a potentially large speed-up, it also requires a

larger area and thus more power consumption. For example, when implementing

a partial adder in the critical path, a complete adder has to work in parallel as

well as an additional adder to compare the results in the next cycle. The energy

overhead of this technique makes it unfeasible for use in low-power applications.

The circuit may also suffer a delay penalty if the approximated result does not

match the complete result.

Original
Architecture

Path
Activation

Probabilities

Speculation
Aware

Synthesis

Speculation
Hardware

Speculator

ALU

result

use ALU result

ALU result

Critical Path
Information

Figure 3.2: An example of a typical circuit-level speculation scheme: a speculator

is used to speedup the system based on path activation probabilities from a model.

21

3.2.3 Tunable Replica Circuits

One method for finding errors due to voltage and frequency changes is the use of

Tunable Replica Circuits (TRCs) [10]. These circuits are composed of a number

of digital cells, such as inverters, NAND, NOR, adders, and metal wires that are

tunable to a given delay time (Fig. 3.3). The replicas are affected by variations in

a similar way to the critical path. Once the replica is tuned to the critical path,

it will replicate the path delay as it changes due to variations. The TRCs can

be used to report the critical path delay using a thermometer code or perform

dynamic error detection.

DFF

D Q

Tuning & calibration bits

DFF

D Q
done/error

more
logic
paths

Figure 3.3: A Typical Tunable Replica Circuit (TRC).

TRCs are able to detect errors without introducing additional components or

time delays to the data path. After being tuned once, the TRCs will mirror

slightly worse than the critical delay path to ensure that any timing violation will

be observed.

TRCs do suffer from a few drawbacks. Because the circuit is only a worst-

case replica, it is possible that they will trigger error responses when there was

not a timing violation in the actual data path. The circuits themselves also take

22

up area and power. Finally, TRCs cannot adapt to unique delay paths, only a

simple worst-case. This can make them hard to calibrate correctly under extreme

variations as the TRC’s timing margin needs to be large enough to guarantee all

errors will be caught correctly. This also limits the speed-up potential while using

TRCs.

3.2.4 Razor Flip-Flops

Razor [22] works by pairing each flip-flop within the data path with a shadow

latch which is controlled by a delayed clock. As shown in Fig. 3.4, after the data

propagates through the shadow latch the output of both of the blocks is XOR’d

together. If the combinational logic meets the setup time of the flip-flop, the

correct data is latched in both the data path flip-flop and the shadow latch and

no error signal is set. Different values in the flip-flop and shadow latch indicates

an erroneous result was propagated, and when an error is detected a logic-high

DFF

D Q

Shadow

Latch

D Q

0

1

clk

data in

delayed clk

error

data out

D2

D2D1

D1

clk

delayed clk

error

data out D0

D0data in

(a) (b)

Figure 3.4: (a) Synthesizable Razor error detector (b) Example timing diagram of
error detection.

23

signal is broadcast to an error recovery circuit as described in Section 3.3. The

possibility exists that the datapath flip-flop could become metastable if setup or

hold-time violations occur. Razor uses extra circuitry to determine if the flip-flop

is metastable. If so, it is treated as an error and appropriately corrected.

Razor II [23] uses a positive level-sensitive latch combined with a transition

detector to perform error detection Fig. 3.5. Errors are detected by monitoring

transitions at the output of the latch during the high clock phase. If a data

transition occurs during the high clock phase, the transition detector uses a series

of inverters combined with transmission gates to generate a series of pulses that

serve as the inputs to a dynamic OR gate. If the data arrives past the setup time

of the latch, the detection clock discharges the output node and an error is flagged.

Replacing the datapath flip-flop from Razor with a level-sensitive latch eliminates

the need for metastability detection circuitry. By removing the master-slave flip-

flop and metastability detector, this version shows improved power and area over

Razor.

When using Razor, it is important to be aware of the trade-offs that exist in

achieving correct utilization of the timing window that enables Razor to properly

detect errors. If a short path exists in the combinational logic and reaches the

error latch before the delayed clock-edge of the computation preceding it, a false

error signal could occur. To correct this, buffers are inserted in the fast paths to

ensure that all paths can still be correctly caught. While this can help to guarantee

a minimum timing constraint (hold time) of the shadow latch is met, it will also

lead to additional area and power.

24

Latch

CLK

D

Q

d0 d1

d2

d3

d0 d1

d2 d3

reset
error

DC-TG Vdd

Transition Detector

Detection Clock Generator

Figure 3.5: Razor II latch with detection clock generator and transition detector.

3.2.5 Transition Detectors

A number of other methods exist that also serve as capable error detection meth­

ods. The transition detector with time-borrowing (TDTB) [7] is similar to Razor II

in that it uses a dynamic gate to sense transitions at the output of a level-sensitive

latch. Shown in Fig. 3.6(a), the TDTB differs from Razor II by using an XOR gate

to generate the detection clock pulse, and the dynamic gate used in the transition

detector uses fewer transistors.

Double sampling with time-borrowing (DSTB) [7] is similar to the previous

circuit but with the transition detection portion replaced with a shadow flip-flop

(Fig. 3.6(b)). Like Razor, the DSTB double samples the input data and compares

the data path latch and shadow flip-flop to generate an error signal. The advan­

tages of DSTB are that it also eliminates the metastability problem with Razor

25

Latch

D Q

clk

data in

error

data out

clk

data in

error

data out

Latch

D Q

Shadow

DFF

D Q

(a) (b)

Figure 3.6: Two versions of modified Razor flip-flops: (a) Transition Detection with
Time Borrowing (TDTB). (b) Double Sampling with Time Borrowing (DSTB).

by having the flip-flop in the error path and retaining the time-borrowing feature

from the transition detector. Clock energy overhead is lower than Razor since the

data path latch is sized smaller than the flip-flop used in Razor. Aside from this,

DSTB retains similar issues to Razor.

The static and dynamic stability checkers are introduced in [24]. In the static

stability checker, the data is again monitored during the high clock phase using a

sequence of logic gates. If the input data transitions at all during the high clock

phase, an error signal is generated. The dynamic stability checker uses a series

of three inverters to discharge a dynamic node in the event of a data transition

during the high clock phase, generating an error signal. In [25] soft error tolerance

is achieved by using a combination of time and hardware redundancy. This results

in less hardware being used, but increases the time needed to check for errors.

26

3.3 Error Recovery Techniques

Once an error has been detected, a method needs to be in place to allow for the

error to be dealt with properly. In a pipeline, later instructions may depend on

the data generated by an earlier, errant instruction. Therefore these methods need

to both assure the error is fixed (either by waiting enough time for the error to

be corrected or re-executing the errant instruction) and make sure the erroneous

instruction does not propagate the error.

Many pipeline error recovery techniques have been explored in the past. The

most researched of these techniques are: Clock Gating [5,22], Counterflow Pipelin­

ing [22], Micro-Rollback [22], and Multiple Issue [6]. The following section discusses

each approach and their advantages and drawbacks.

3.3.1 Clock Gating

Clock Gating is conceptually the simplest technique to implement of all error

recovery methods. Its original purpose was for saving power of unused blocks on

a systems level by not clocking them when they are not used. This technique can

also be adapted to error recovery by pausing all pipeline stages while waiting for

the slow stage to either finish computation or to allow for the instruction to be

re-executed. The pausing action ensures that later instructions do not continue

to their next pipeline stage until the errant instruction is corrected. It is most

commonly paired with Razor flip-flops as it only works if the pipeline can be stalled

before the next clock edge, before the pipeline registers are set to get new data

27

which can be achieved in slow systems. The Clock Gating concept is illustrated in

Fig. 3.7.

IF FF ID FF EX FF MEM FF FF WB

clk

error error error

ST

error

PC

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

IF I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15 I16 I17 I18 I19 I20 I21 I22

ID I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I11 I12 I13 I14 I15 I16 I17 I18 I19 I20 I21

EX I1 I2 I3 I4 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15 I16 I17 I17 I18 I19 I20

MEM I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15 I16 I16 I17 I18 I19

ST I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15 I16 I17 I18

WB I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15 I16 I17

Error in EX of Inst. 4 Error in ID of Inst. 11 Error in 2 stages at once

ST

ST

ST

ST

ST

ST

ST

ST

ST

ST

ST

ST

ST

ST

(b)

Figure 3.7: (a) Pipeline modification for Clock Gating error recovery method. (b)
Clock Gating pipeline data path with errors.

The primary advantage to this method is that it requires very little architec­

tural changes as well as minimal area addition to a design compared with other

methods. However, in order for this method to work properly, a stall signal needs

to propagate to all pipeline stages in a very short amount of time (50% of one clock

cycle when Razor circuits are used). This can be difficult to achieve across large

CMOS dies where pipeline stages are several millimeters apart. Furthermore, this

is completely impractical to implement in complicated microprocessors because it

may take several clock cycles just to propagate the clock signal through a clock

28

IF FF ID FF EX FF MEM FF FF WB
ST

error

FF

error

FF

error

FF

error

FFFlush Control

PC

flushID flushID flushID flushID

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

IF I1 I2 I3 I4 I5 I6 I7 I8 I9 F I5 I6 I7 I8 I9 F I7 I8 I9 I10 I11 I12 I13 I14 F

ID I1 I2 I3 I4 I5 I6 I7 F F F I5 I6 I7 F F F I7 I8 I9 I10 I11 I12 F F

EX I1 I2 I3 I4 I5 F F F F F I5 BB I6 F F F I7 I8 I9 I10 F F F

MEM I1 I2 I3 BB I4 F F F F F I5 BB I6 F F F I7 I8 BB F F F

ST I1 I2 I3 BB I4 F F F F F I5 BB I6 F F F I7 BB BB F F

WB I1 I2 I3 BB I4 F F F F F I5 BB I6 F F F I7 BB BB F

F = Pipeline Flush = NOP Stall

Error in EX of Inst. 4 Error in ID of Inst. 6 Error in 2 stages at once

ST

ST

ST

ST

ST

ST

ST

ST

ST

ST

ST

ST

ST

(b)

Figure 3.8: (a) Pipeline modification for Counterflow Pipelining error recovery
method. (b) Counterflow pipeline data path with errors.

distribution network which cannot be halted in only one cycle.

3.3.2 Counterflow Pipelining

Traditional Counterflow Pipelining is a microarchitecture technique that uses a

bidirectional pipeline, allowing instructions to flow forward and results to flow

backward. This technique made it easier to implement operand forwarding, register

renaming, and most importantly, pipeline flushing [22,26]. In order to modify this

29

technique for error recovery, a traditional pipeline is modified such that only the

flush signals are bi-directional. This concept is depicted in Fig. 3.8. In the event

of an error, flush registers begin to propagate the error signal until it reaches the

flush control unit. At that point the Program Counter (PC) is updated with a

corrected instruction pointer and the pipeline continues operation. Because the

flush registers clear the pipeline in both directions as the error is propagated,

there is no need to do anything other than resume execution after the error has

finished propagating. An illustration the Counterflow Pipeline instruction flow can

be found in Fig. 3.8(b).

This method only requires local information to determine a stall, there is no

global stall signal that needs to be computed and transmitted such as in clock

gating. However, depending on how this method is implemented the area/power

overhead can get quite large. For example, there needs to be several PC values

stored in the Flush control unit or in the flushID registers themselves; this overhead

can get large in a 64-bit CPU with high pipeline depth. Unlike Clock Gating, this

method takes several more cycles to recover from an error as the error propagates

back one stage per cycle and the pipeline needs to be flushed.

3.3.3 Micro-Rollback

Micro-Rollback is a technique that saves a queue of previous instructions and

operands at each pipeline stage [27]. After a successful operation, each stage saves

the results as they are passed to the next stage. If an error is detected, instructions

30

can be restarted at their last known correct state in the pipeline. Once an error

is detected a signal is propagated with the instruction as it continues through

the pipeline. Once the instruction reaches the write-back stage, rollback logic is

activated to stop the instruction from being written and sends a signal to all of

the pipeline stages to roll back and retry the instruction. The Micro-Rollback

architecture is illustrated in Fig. 3.9(a). In its original design, instructions were

simply replayed with the hope of the error being resolved at a later time. This

is not very robust but with small architectural modifications this method can be

redesigned to replay instructions twice or three times to ensure no error is produced

a second time.

Using this technique makes the recovery process several cycles long. However, it

reduces the error propagation/control overhead at each pipeline stage as required

in the previous two techniques, leading to a faster clock speed. Unfortunately

because of the addition of the queues, energy consumption may grow by 15% or

more [22].

3.3.4 Multiple Issue

This method, shown in Fig. 3.10 has the simplest architecture of all the correction

schemes. Similar to Micro-Rollback, errors propagate to the write-back stage, but

instead of rolling back to a specific state, the entire pipeline is flushed and the erro­

neous instruction is replayed multiple times in succession to ensure completion of

the previously failed operation. The amount of replayed instructions can vary de­

31

IF FF ID FF EX FF MEM FF FF WB
ST

PC

Rollback
Control

fifo fifo fifo fifo fifo

error error error error error

FF FF FF FF

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

IF I1 I2 I3 I4 I5 I6 I7 I8 I9 I6 I6 I7 I8 I9 I10 I11 I12 I8 I8 I9 I10 I11 I12 I10 I10

ID I1 I2 I3 I4 I5 I6 I7 I8 I5 I5 I6 I7 I8 I9 I10 I11 I7 I7 I8 I9 I10 I11 I9 I9

EX I1 I2 I3 I4 I5 I6 I7 I4 I4 I5 I6 I7* I8 I9 I10 I6 I6 I7 I8 I9 I10 I8 I8

MEM I1 I2 I3 I4* I5 I6 I3 I3 I4 I5 I6 I7* I8 I9 I5 I5 I6 I7 I8* I9 I7 I7

ST I1 I2 I3 I4* I5 I2 I2 I3 I4 I5 I6 I7* I8 I4 I4 I5 I6 I7* I8* I6 I6

WB I1 I2 I1 I4* I1 I1 I2 I3 I4 I5 I6 I7* I3 I3 I4 I5 I6 I7* I5 I5

Error in EX of Inst. 4 Error in ID of Inst. 7 Error in 2 stages at once

Write-Back Aborted

Rollback

* Indicates instruction flagged with an error

(b)

Figure 3.9: (a) Pipeline modification for Micro-Rollback error recovery method.
(b) Micro-Rollback pipeline data path with errors.

pending on the expected delay of the erroneous stage. For example, in Fig. 3.10(b)

the instruction is replayed three times. This is the most popular method proposed

to be used in systems where corrected data cannot be captured after an execution

cycle (such as in TRCs).

One advantage to this method is that it requires very small overhead in control

32

logic which results in less area and power. There is however a significant delay when

a failed instruction is found as the pipeline has to be flushed and the instruction

replayed three times. Depending on the frequency of errors this may result in a

large average energy overhead per instruction as they take up many more clock

cycles to complete. However, if these errors happen infrequently there is minimal

penalty.

IF FF ID FF EX FF MEM FF FF WB
ST

Flush
Control

PC

error error error error

FF FF FF

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

IF I1 I2 I3 I4 I5 I6 I7 I8 I9 F F F F F F I4 I4 I4 I5 I6 I7 I8 I9 I10 I11

ID I1 I2 I3 I4 I5 I6 I7 I8 I9 F F F F F F I4 I4 I4 I5 I6 I7 I8 I9 I10

EX I1 I2 I3 I4 I4 I5 I6 I7 I8 F F F F F F I4 I4 I4 I5 I6 I7 I8 I9

MEM I1 I2 I3 I4* I5 I6 I7 I8 I9 F F F F F F I4 I4 I4 I5 I6 I7 I8

ST I1 I2 I3 I4* I5 I6 I7 I8 I8 F F F F F F I4 I4 I4 I5 I6 I7

WB I1 I2 I3 I4* I5 I6 I7 I7 I8 F F F F F F I4 I4 I4 I5 I6

Error in EX of Inst. 4 Invalid Instructions Pipeline Flush Replicas Valid Instructions

(b)

Figure 3.10: (a) Pipeline modification for Multiple Issue error recovery method.
(b) Multiple Issue pipeline data path with errors.

33

3.3.5 Adaptive Scaling Methods

Once an error (or errors) has been detected, it may be beneficial to decrease the

clock frequency or increase Vdd to ensure that the frequency of errors decreases

in the future. Adaptive scaling methods such as Dynamic Variation Monitors

(DVM) [28, 29] usually combine some type of error detector such as TRCs or

RAZOR circuits with time-to-digital converters, error counters, or some type of

prediction logic. If it has been determined that errors are occurring too frequently,

different circuit parameters such as Vdd , core frequency, and clock skew are scaled

accordingly. In the case of dynamic Vdd droops, this scaling can happen at a

finer time-granularity. Courser tuning for slower changing variations such as in­

struction/data or temperature dependent delays can also be achieved. Fig. 3.11

illustrates this feedback process on the systems level.

Control Logic

Error
Detector

Error Frequency
Counter

Dynamically Varying Circuit
(temperature, VDD droop, etc.)

Supply Voltage, Clock
Frequency, Clock Skew,

Module Sparing, etc.

Figure 3.11: A systems-level diagram illustrating the feedback process of dynami­
cally adapting circuit performance in the presence of dynamic variations.

34

3.3.6 Checkpoint-Restart

Checkpoint-restart (or checkpoint-rollback) is a common recovery technique that

can be based entirely in software. System state is occasionally preserved in a

checkpoint. When an error is detected, the system state is rolled back to the most

recent checkpoint and execution is restarted. Checkpoint-restart is traditionally

a software technique with high overhead. Because of this its applicability to very

low error rates is limited. Researchers proposed that the hardware structures of

processors that support speculative execution can also be used for low-overhead

checkpoint-restart [30,31]. Even with speculation hardware support, the overhead

is still tens of cycles requiring a fairly low error rate to be effective.

3.3.7 Summary of Recovery Methods

Table 3.2 shows the advantages and disadvantages for each recovery method. It is

clear that certain methods may prove to be better than others depending on the

requirements of the pipeline and other system constraints. As far as complexity

is concerned it is clear that the Multiple Issue method is the highest performer,

as Clock Gating is almost never practical in large systems. However, in a system

where errors are more frequent and max clock speed is a concern, methods such

as Counterflow Pipelining may be more beneficial.

35

Table 3.2: Comparison of Pipeline Recovery Methods.

Area Power Complexity Recovery Timea

Clock Gating High High Impractical 1 cycle

Counterflow Medium Medium Medium 1+(N-1) cycles

Micro-Rollback High High High N cycles

Multiple Issue Low Low Low 2N+2 cycles

a worst-case recovery time (number of cycles after fault before next instruction) where N
= pipeline depth

3.4 Higher Level Error-Protection Techniques

Although this chapter’s main focus is on circuit level techniques, in this section

a survey of mechanisms in architecture and algorithm levels is also presented.

Using these higher level approaches usually will not rely on error protection in

levels beneath. Thus, it will allow achieving error protection while using commod­

ity (non-protected) components. For example, architectural level techniques will

provide error protection while using non-protected circuits, and algorithm level

approaches can offer error protection while operating on commodity hardware.

Some if not all of the approaches described in this section have been initially

designed in the context of system fault tolerance. As such, one of the basic assump­

tions of these approaches is fault randomness and independence. It makes these

approaches suitable to handle random variation, however, limits their effectiveness

in handling systematic variation.

36

3.4.1 Architecture Level Error-Protection Techniques

All architectural error protection approaches rely on some form of replication.

Some techniques are using exact replication and therefore are more generic, while

others provide error protection using simplified duplicated instances.

3.4.1.1 Dual Modular Redundancy

One of the simplest forms of architectural level error-protection is Dual Modu­

lar Redundancy (DMR). The protected module is replicated such that both the

original module and its copy share their input signals (Fig. 3.12(a)). Outputs are

compared and a mismatch indicates an error. In case of an error, the system has

to restore its last verified state and re-execute from that point. While having the

advantage of design simplicity in using exact replication, this approach’s disad­

vantages include high area and power/energy overheads. In addition it requires a

roll-back and replay mechanism to recover in case of an error.

3.4.1.2 Triple Modular Redundancy

Triple Modular Redundancy (TMR) is similar to DMR, but this approach utilizes

two replicated instances in addition to the original module (Fig. 3.12(b)). The

outputs of the three instances are compared and a majority voter mechanism is

used to select the outcome signals. Based on the assumption that only one of the

instances (at most) will fail at any given point, this approach eliminates the need

37

Main Module

Replicated
Module

data in data out

error

Main Module

Replicated
Module

data in

data out

Replicated
Module

V
o

te
r

(a) (b)

Main Module
data in data out

Simplified
Module

f()

f() error

(c)

Figure 3.12: Architecture Level Error-Protection Techniques. (a) Dual Modular
Redundancy (DMR). (b) Triple Modular Redundancy (TMR). (c) Simplified Re­
dundancy.

for a roll-back and replay mechanism used in DMR, allowing instant recovery. One

disadvantage is that it increases the area and power/energy overheads by adding

the third instance of the module as well as increasing the critical path by adding

the voter mechanism.

A generalized version of TMR is N-Modular Redundancy (NMR) also known

as M of N redundancy. In this configuration, N instances of the module process

the same inputs in parallel, and then use a majority voting scheme where M is the

minimum number of modules required to get a majority count out of N modules.

To summarize, NMR introduces xN power/area overhead and can tolerate at most

N-M modules to fail.

38

3.4.1.3 Simplified Redundancy

To avoid the high overhead of the replicated module introduced in NMR schemes, it

is possible to use a simplified version of the original module instead (Fig. 3.12(c)).

Several techniques based on this approach have been proposed. In [32], the re­

searchers propose using a simple (inorder) core as a checker for a complex control-

intensive superscalar processor. The authors show that using a simple core as

a checker significantly reduces the overhead compared to DMR while providing

reasonable coverage.

A simplified checker approach can be used with arithmetic circuits as well. The

key is to check the arithmetic operation with a similar operation of reduced bit-

width. This is possible by transforming the operands into a reduced space with a

transformation that is preserved under the arithmetical operations (+, -, *, /). A

common transformation used for this purpose is the residue code [33]. The residue

code works by transforming the operands, by calculating the remainder of their

division by a constant A. Thus the outcome of the main arithmetic circuit can be

verified by comparing its transformation (remainder of their division by a constant

A in case of residue code) with the result of the checker circuit (Fig. 3.12(c)).

Although calculating a remainder can be a complicated operation, using 2n-1 as

the constant A allows for calculating the reminder using simple logic and avoiding

the expensive division. Using A=3 will protect from all single bit flip errors, but

might not detect some multiple bit flips. Error coverage can be increased using

larger values of A.

39

Although the residue code is applicable to integer arithmetic only, there are

some approaches to use it for floating point arithmetic by protecting various stages

of floating point computations separately [34]. In addition, other codes can be used

in the context of floating point, like Berger codes [35]. The disadvantage of Berger

codes, however, is their lower coverage.

3.4.2 Architectural Data Protection

The same principles or redundancy can be applied in the context of data trans­

port using, for example, buses or crossbars, or to storage structures. While it is

possible to transport (or store) multiple copies of the same data to provide error

protection, it is also possible to use a simplified (reduced) copy of the original data

for protection purposes.

The simplest approach is known as a parity bit. By storing or transporting an

additional bit whose value is equal to a XOR of all the bits of the data, a single bit

flip error can be detected. This approach introduces very low overhead of a single

additional bit. However, it can detect only a single bit flip and may not detect

multiple bit errors.

While the parity bit approach provides a method for error detection only, the

error-correcting codes (ECC) approach allows for the correction of the detected

error, achieved by increasing the amount of redundant bits. Various approaches are

available in the literature, varying the amount of error coverage and the overhead

(Table 3.3 on Page 43). The decoding and encoding logic for the simple codes

40

shown in Table 3.3 is negligible compared to the overhead of redundant storage

and bandwidth [36].

3.4.3 Software Level Error-Protection Techniques

Maintaining some level of error-protection while using non-protected hardware can

be achieved using software level error-protection techniques. Being applied at the

high level of software, these approaches are the most flexible in terms of the trade-

off between the error coverage and the overhead. However, these techniques are

very limited in the amount of coverage they can provide.

3.4.3.1 Assertion Based Error-Protection

A very efficient way to detect errors in computation is to add assertions and invari­

ant checks based on algorithmic knowledge [37–39]. This approach can be effective

in some cases [40], however, the error coverage that can be achieved in the general

case is relatively low. In addition, assertions often require expert knowledge and

utilize algorithm-specific traits, both of which are not always available.

3.4.3.2 Algorithmic Based Fault Tolerance (ABFT)

Using a modified version of the algorithm that operates on redundancy encoded

data to verify the main result can be used for errors detection. In addition, in

41

specific cases it can also allow for error correction. This approach has relatively

low overhead and potentially can provide high error coverage.

Various algorithms implementing ABFT are available in the literature [41–47].

However, the disadvantage is that this technique should be tailored specifically for

each algorithm, requiring time-consuming algorithm development. Moreover, this

approach is not applicable to an arbitrary program.

3.4.3.3 Arithmetic Codes

Perhaps the simplest example of an arithmetic code is the AN code [33] (also

known as linear residue code, product code, and residue-class code) applicable for

addition (and subtraction) operations on integers. The operands are encoded by

multiplying them by a constant A. Based on the arithmetic properties of addition

(subtraction), the result should also be a multiple of A. Thus, it allows validating

the result, signaling an error if it is not a multiple of A.

3.4.3.4 Instruction Replication Techniques

Instruction replication, which introduces computational redundancy by duplicating

all instructions in software, is arguably the most general software-level technique.

While very general and amenable to automation [48–51], instruction replication has

potentially high performance and energy overheads. Attempts have been made to

minimize this overhead by executing instructions back-to-back in the same func­

42

tional unit. This approach might be sufficient to detect particle-strike type errors

but a different approach is necessary to detect variation-induced errors, such as

executing at different times to detect voltage-variation related errors or on different

functional units to address static variations.

3.5 Summary Error Detection/Protection of Methods

The last two sections contain a rather dense summary of many of the existing

speculative techniques. Table 3.5 was created in order for the reader to attain a

more general understanding of the pros and cons of each method and how they

relate to reliability.

43

Table 3.3: Various ECC approaches overheads (based on [52])

SEC-DED : single bit error
correction, double bit error
detection [53, 54]

SNC-DND : single nibble error
correction, double nibble error
detection [55]

DEC-TED : double bit error
correction, triple bit error de­
tection [56]

Data bits Redundant bits Overhead Redundant bits Overhead Redundant bits Overhead
16
32
64
128

6 38%
7 22%
8 13%
9 7%

12 75%
12 38%
14 22%
16 13%

11 69%
13 41%
15 23%
17 13%

Table 3.4: Comparison of existing errors detection/prediction methods

Reliability Advantages Reliability Challenges

Architectural Retiming Potential Speedup (31%) Works for some logic, not all
Circuit-Level Speculation Potential Speedup (36%-88%) Only adder is considered
Tunable Replica Circuits Ensures proper worst-case performance Many false positives
Razor Flip-Flops / Timing Error Detectors Detection window limited to 2̃0% of clock Potential for hold-time violations on

shadow latch
Architectural Level Error Protection Tech­
niques

Reliable, low design cost Hard to verify in-situ, large over­
head, seldom used

Architectural Data Protection Potentially low overhead, well understood Hard to design for logic
Software Level Techniques Almost no change needed in hardware Can’t trust computer scientists

threshold processors to a more parallel approach. For example, in [3] the authors

use multiple execution lanes to regain the throughput lost by the increased delays

of near/sub-threshold operation.

 0

 5e-09

 1e-08

 1.5e-08

 2e-08

 2.5e-08

 3e-08

 400 450 500 550 600 650

D
el

ay
 [s

]

Vdd [mV]

min

max

avg std

44

3.6 Error Detection and Recovery in Near/Sub-Threshold

When operating in the near/sub-threshold region, it is important to maximize op­

erating speed while being aware of the increased delay variation (Fig. 3.13). Max­

imizing the speed will also help to limit the leakage energy of the circuit, making

near/sub-threshold operation an even better alternative over super-threshold oper­

ation with respect to energy consumption. Unfortunately, few methods described

in this review can properly operate in near/sub-threshold. The circuits themselves

are also susceptible to increased process variation in near/sub-threshold, which can

lead to unreliable operation. These slower speeds lead designers to push near/sub-

Figure 3.13: Delay variation widens as circuits are driven deeper into the sub­
threshold region (Monte-Carlo simulation results from a Multiply-Accumulate in
45nm CMOS) [3].

The following subsections will discuss the viability of the techniques under re­

view to operate in the near/sub-threshold region. This section begins by discussing

45

speculative error detection techniques and continues on with error recovery tech­

niques. Finally, specific techniques that have been designed for the purpose of

near/sub-threshold operation will be discussed.

3.6.1 Speculative Error Detection in Near/Sub-Threshold

One of the biggest hurdles facing designers of near/sub-threshold error detectors

is the uncertainty of the critical path. When designs are synthesized for super-

threshold, accurate timing libraries are used to ensure the critical path is known

and can be tested on-die. With the increased variations of near/sub-threshold the

critical path may actually change as the voltage is lowered. This characteristic of

near/sub-threshold operation makes speculative error detection techniques nearly

impossible to operate efficiently.

First off, in order to use a speculative approach, a circuit must be well charac­

terized. This would have to be done on a chip-by-chip basis as delays can change

wildly from die-to-die. This process, just for a simple 32-bit multiplier, would take

several decades to characterize thoroughly. There may be some promise in using a

re-configurable speculative approach if a circuit could be accurately characterized

on-die.

Non-speculative error-detection methods have the most promise for working

in near/sub-threshold correctly. Methods like Telescopic units require that the

critical path is well known and have the same issue as speculative techniques.

However, more adaptive methods like TRC circuits have potential to operate

46

correctly down to sub-threshold. Moving near/sub-threshold circuits to a more

asynchronous mode of operation probably has the most promise for the variation

tolerance needed in this region of operation. Razor circuits, if designed properly,

can operate in near/sub-threshold. Section 3.6.3 discusses an implementation of a

near/sub-threshold Razor system.

3.6.2 Error Recovery Techniques in Near/Sub-Threshold

One of the most important factors to use when comparing any technique for sub­

threshold operation is the energy overhead required to use it, especially the use of

flip-flops as they consume an ill-proportionate amount of energy in sub-threshold.

When comparing error-detection methods, there are two options that have minimal

energy overheads. The most practical option is Multiple Issue as it has the lowest

energy overhead while being a realistic option for robust error recovery. However,

just as this method has a small energy/cycle overhead it takes many more cy­

cles to complete the recovery process. Depending on the frequency of errors this

method may be completely impractical as the whole pipeline is leaking for 2N+2

clock cycles. In order to determine which error recovery method is truly the best

for near/sub-threshold, two factors must be taken into account and static energy

overhead versus recovery time should be the metric used. The designer should

determine the percentage of errors they expect to tolerate before using this metric

as energy per throughput could change dramatically as the frequency of errors is

changed.

47

3.6.3 Near/Sub-Threshold Timing Error Detection

One idea that exists in [57] is to re-design the Transition Detector with Time-

Borrowing (TDTB) circuit [7]. By carefully sizing the transistors, they limit the

Vth variation and obtain the optimal drive strength ratio of NMOS to PMOS for

low-Vdd operation. They also add extra logic to ensure correct functionality and

use high-voltage threshold (hvt) transistors to reduce leakage as flip-flops are one of

the largest contributors to sub-threshold leakage. This paper also introduces good

method of measuring the effectiveness of an error detection circuit by generating

a graph showing the upper and lower frequency limits that errors can successfully

be detected at each voltage. As research into near/sub-threshold error detection

continues, this will be an important metric to compare error detection methods

against each other.

3.7 Conclusions

Variations of all forms must be dealt with in all time-constrained digital systems

today. This chapter summarized techniques to improve both the variation toler­

ance of these circuits as well as their throughput. Speculative techniques make

a best guess of a circuit’s delay based on known timing to improve throughput

and potentially postulate timing induced errors. Once errors have been detected

properly, error recovery methods are used to either stall or rollback the pipeline

to ensure incorrect instructions are computed correctly. Furthermore, high-level

techniques were explored that can improve robustness without the need for robust

48

circuits.

Robust error detection and recovery can be challenging especially when operat­

ing in the near/sub-threshold region. Many of the techniques summarized in this

review have great potential for robust operation under extremely variable condi­

tions. The most valuable techniques that will continue to be used in highly variable

conditions are: well-designed Razor circuits and recovery methods similar to the

Multiple Issue method, paired with higher-level techniques such as error-correcting

codes. This of course will be combined with complex systems to control and man­

age temperature and voltage fluctuations to reduce future errors due to changing

conditions.

49

Chapter 4: A Design Automation Methodology Approach

4.1 Introduction

Some of the techniques presented in the previous chapter have been deemed poten­

tially viable solutions to combating variations in a near/sub-threshold environment.

However, problems may exist that don’t allow these circuits to operate properly

at lower supply voltages. Digital circuits must first be generated from code by

complex tools before being placed in a design. This process is known as standard

cell synthesis whereby a library of standard cells are used to represent a logical

design from code that the designer writes.

Several problems exist that prevent conventional standard cell libraries, char­

acterized at high supply voltages (0.9V-1.2V), from functioning efficiently in the

near/sub-threshold region (0.2V-0.6V). The most prevalent problem is leakage cur­

rent asymmetry [58], where longer delays or even incorrect logic outputs can arise

due to the summation of multiple leakage paths, creating a leakage current im­

balance. A second issue involves improper ratio inverter feedback in flip-flops and

latches that hinder their ability to switch properly with low supply voltages [58].

These problems can result in either reduced circuit speed or complete logic failure

http:0.2V-0.6V
http:0.9V-1.2V

50

of synthesized logic while running at near/sub-threshold supply levels.

Previous work has dealt with these problems by manually modifying a stan­

dard cell library and replacing cells with new cell topologies [59], and [60], re-

characterizing the library completely [61], or creating a new library altogether [62].

Unfortunately, solving the problem with the above solutions can be inefficient and

time consuming. Currently, designers often do not have the tools needed to alter a

standard cell library in a timely manner, as individual cell schematics and layouts

need to be re-optimized for a particular process. If the RTL synthesis is imple­

mented in another technology, a different custom standard cell library needs to be

recreated again. Finally, functional verification of these new custom cells is diffi­

cult and time consuming, as simulating across multiple process corners, low supply

voltages, and Monte Carlo variations are essential to ensuring design robustness.

In this chapter, a new design methodology is proposed that aims to improve

the functionality and yield of a standard cell library operating in the near/sub­

threshold region. This procedure automatically removes standard cells that exhibit

poor operating characteristics from the RTL synthesizer.

By removing poorly performing cells, this cell-culling methodology improves

several aspects of sub-threshold design:

•	 Improved yield for higher clock rates, as outlier cases decrease under Monte

Carlo simulation.

•	 Improved DVFS (Dynamic Voltage-Frequency Scaling) [63] capability and

robustness, as operation occurs more efficiently over a wider range of supply

51

voltages.

• Area and delay are decreased, resulting in lower energy per computation.

The outline for this chapter is as follows. First, a discussion of the performance

of conventional standard cell libraries in the near/sub-threshold region is presented.

Next, the proposed design automation method that culls under-performing cells is

presented. The chapter will then conclude with simulated results across Monte-

Carlo variations in a 90nm-CMOS technology.

4.2	 Limitations of Existing Libraries and Design Techniques

in Near/Sub-Threshold

Typically, standard cells are designed to operate optimally at their typical oper­

ating supply voltage (i.e. VDD=1.2V), and characterized across process corners

such as slow, typical and fast corners. However, when using the library in the

sub-threshold region (i.e. VDD=380mV), some cells operate poorly when com­

pared to others. One reason for this undesirable operation is because the Ion/Ioff

ratio is degraded [58] as the supply voltage of a cell is lowered. At typical supply

voltages, Ion current dominates Ioff, or leakage current. This ratio ensures that

logic 1 is easily within 10% of the supply voltage and logic 0 is within 10% of the

supply ground, and symmetrical rise and fall times are maintained (if required),

providing optimal input-to-output delay. As the supply voltage is lowered, the

Ion current weakens much more dramatically than the Ioff current. At this point,

http:VDD=1.2V

52

unwanted sub-threshold leakage current begins to dominate and cell performance

is degraded. There are many factors that can exacerbate this degradation such

as transistor sizing [64], transistor stacking [59], and poorly designed cells [59].

The following will describe why and where synthesized digital designs fail. After

a discussion of what causes both combinational and sequential logic to fail, the

importance timing models in the synthesis process as well as concerns surrounding

design time and portability of sub-threshold standard cell redesign are discussed.

4.2.1 Combinational Logic Failure

One of the primary reasons for poor sub-threshold operation of combinational logic

cells is because their use was never intended for a large range of VDD operation.

The optimal PMOS/NMOS width ratio for a super-threshold cell is different than

the optimal ratio for a sub-threshold cell. Research in [64] found that in general,

smaller ratios of around 1.2 are more optimal for sub-threshold operation. Cells

with a large ratio of 3 are often not suited for sub-threshold operation, as rise times

and fall times can be drastically different. Furthermore, these ratios can change

from cell to cell as driving strength is changed to guarantee optimal performance

in the super-threshold region. Unfortunately, this optimal sizing is heavily depen­

dent on process-specific characteristics such as hole mobility, silicon straining, and

varying threshold voltage differences due to different dopant implants which make

operating characteristics different in sub-threshold.

Moreover, there also exists the probability that no appropriate output may be

53

generated for a given input, similar to stuck-at faults. For example, large stacks

of NMOS transistors can provide so much leakage current that a logic 1 (300mV)

in sub-threshold will only output VDD/2 (150mV), which may not be enough to

drive the next cell correctly [64], [59].

4.2.2 Sequential Logic Failure

Flip-flops exhibit their own set of complications. For example, most standard cell

libraries are optimized for speed and area, by using a standard ratio-feedback flip-

flop design consisting of fewer transistors [58]. This ratio flip-flop design results in

possible failure when operated in the deep sub-threshold voltage regime because

the driving strength of the input may not be strong enough to overcome the inverter

feedback. For example, in Fig. 4.1 flip-flop (a) exhibits ratio feedback and therefore

does not function properly across all process corners at its minimum energy voltage.

However, flipflop (b) operates correctly because it utilizes ratio feedback in the form

of clocked tri-state inverters.

In order for a synthesized design that utilizes ratio feedback flip-flops to operate

in sub-threshold, all flip-flops need to be replaced by custom-designed flip-flops

with clocked/enabled feedback. This process can be expensive and time consuming

for a designer. Therefore, a simple solution to this is to utilize synthesized flip-

flops to replace these poor-performing flip-flops in an automated manner. A simple

Verilog netlist of inverters and tri-state inverters can be added to the design to

insure proper flip-flop operation in sub-threshold. The design trade-offs for this

54

Q

Q

D

D

clk clk

clk clk

clk

clk
clk

clk

clk

clk

clkclk

(a)

Q

Q

D

D

clk clk

clk clk

clk

clk
clk

clk

clk

clk

clkclk

(b)

Figure 4.1: Flip-flop (a) contains ratio feedback and does not function properly
at low sub-threshold voltages whereas flip-flop (b) contains tri-state feedback and
does function properly at low sub-threshold voltages.

methodology of flip-flop replacement have not been explored to date.

4.2.3 Timing Model Inaccuracy

Another inherent problem with using standard cell libraries in the sub-threshold

region (and probably the most critical) is uncertainty in the timing models. Each

library has a variety of timing models for its nominal supply voltages, but not

for sub-threshold supply voltages. Typically, an HDL synthesizer/compiler uses

these conventional timing models to optimize the synthesized design and fix the

55

hold violations. When particular standard cells are operated in the sub-threshold

region, their respective timing characteristics may not scale universally with other

cells. While most cells have been shown to exhibit scaled-delays proportional to

the supply voltage, some poorly-designed cells may not scale well with the rest

of the library. Because the HDL compiler has optimized the design based on

predetermined timings at the nominal supply voltage (i.e. 1.2V), using a cell with

disproportionate delay can unknowingly violate setup/hold times when supplied

with a sub-threshold voltage. This leads to longer delays and therefore more energy

consumption due to increased leakage time.

4.2.4 Design Time and Portability

With conventional design practices, improving a library’s ability to operate in sub­

threshold is a very complex process. Typically, the time and manpower needed

to redesign or re-characterize a library is either not available or too expensive.

Furthermore, even if significant time is spent to alter a particular library, the

process must be repeated again for every process library that is used. Various

researchers propose redesigning cells for sub-threshold operation using expensive

and slow tools such as Cadence’s SignalStorm or Prolific’s ProGenesis software.

Unfortunately, two major drawbacks exist to using this technique:

1. A simple automated redesign does not optimize for area, speed, or device

placement; it simply places transistors and wires them together with respect

to a netlist. As a result, these redesigned cells will not be designed to the

56

same caliber as those within commercial standard cell libraries.

2. Designing cells strictly for sub-threshold operation worsens their operating

characteristics in super-threshold (nominal VDD). This can be a hindrance

when using dynamic voltage and frequency scaling [15] where the library

needs to operate at both super- and sub-threshold voltages.

4.3 Proposed Near/Sub-Threshold Characterization Method

A three-step strategy is proposed for determining and eliminating standard cells

that operate poorly in the sub-threshold region. This test measures the transient

delay of each cell output at two different voltages, checking for consistency in the

input-to-output proportional delay ratio between super-threshold versus near/sub­

threshold supply voltages. If a cell’s sub-threshold delay deviates too far from the

nominal supply voltage delay, the synthesized cell will likely ruin a sub-circuit’s

ability to guarantee setup/hold time requirements in sub-threshold operation, as

well as exhibit more energy consumption. Fig. 4.2 illustrates the proposed three-

step process: parsing, testing, and removal. These steps are explained in the

following sub-sections.

4.3.1 Parse Standard Cell Liberty File

Perl routines were written to generate and parse Spice simulations of every possible

input condition for every logic cell, in any standard cell library operating at mul­

57

Standard
Cell

Library
(490 Cells)

Standard
Cell

Library
(490 Cells)

Measure
output delay

at typical
supply voltage

Measure
output delay

at typical
supply voltage

Measure
output delay at
sub-threshold
supply voltage

Measure
output delay at
sub-threshold
supply voltage

Run Spice
simulation on

each cell

Run Spice
simulation on

each cell

cycle through
each possible

input
conditionC

Cycle through
each possible

input
condition

FailFail

Compare
delay
ratio

(Matlab)

Compare
delay
ratio

(Matlab)

AND2X2
XOR4X8
INV1X4

...

Start Next Simulation

PassPass

Figure 4.2: Functional diagram of the method used to determine poor cells and
their removal from the sub-threshold standard cell library.

tiple supply voltages. The Perl script was written to parse a Synopsys standard

cell Liberty file, an industry standard format [65].

All the necessary information for the logic gates is extracted, and a binary

truth-table of input/output pairs is generated for each Spice input stimulus. This

table is then analyzed to determine how to best generate both rising and falling

edges at the output.

4.3.2 Input-to-Output Delay Variation Test

Once the inputs have been determined for each cell, each input condition is then

exercised twice: once at nominal supply and once at sub-threshold supply. The

input-to-output delay is measured for each supply and the difference is saved for

58

comparison. This process takes about 15 seconds per cell on a single core machine.

The two resultant data sets are compared and the delay ratio of typical to sub­

threshold supply voltages is calculated. Each data point is stored again in a table

for later analysis in Matlab.

During the simulations, each input and output is connected to/driven by a

NAND2 gate to guarantee uniformity in driving power. The NAND2 cell itself

doesn’t affect the simulations timing as the data is all normalized and relative for

every cell.

4.3.3 Analysis and Cell Removal Decisions

Once every spice simulation is generated and tabulated, the data is analyzed and

cell removal decisions are made. If the proportional delay of a cell is outside of

the standard deviation of all the other cells, it is marked accordingly and can be

removed. Also, a cell that is unable to generate a valid transition will be marked

for removal.

Figure 4.3 displays the population of cells with a specific delay ratio in a 90nm­

CMOS standard cell library across nine different near/sub-threshold supply volt­

ages. The lower right corner of the figure shows several outlier cells (marked

darkly), which are annotated because they did not generate an output voltage

transition in sub-threshold. In the case of this particular library, the standard

deviation of the delay variation (σ) was approximately 60x for VDD=300mV.

Therefore, if 1σ delay culling is used, cells between 60x and 1000x will be removed.

59

Figure 4.3: Histogram of input-to-output delay variation from near/sub-threshold
to nominal voltage in a low-power 90nm cell library.

If 2σ culling is used, far less cells are removed.

Figure 4.4 illustrates how cells are chosen to be removed based on their relative

delay radio from super- to near/sub-threshold normalized to the NAND2X1 cell

of the library. In this selection of cells it is clear that the CLKINVX12 cell has

the worst performance relative to the rest of the cells. Depending on how tight

the timing constraint is picked to be (1σ to 2σ in this example) different cells

can be removed. In this case, when 1σ culling is used three cells are removed

(CLKINV12X, NAND4X4, XOR2X16) whereas when 2σ culling is used only one

cell is removed (CLKINVX12).

Cells removed based on timing show a strong correlation to poor energy per­

60

1σ threshold 2σ threshold

A
D
D
FX
1
0

A
N
D
2
X
4

A
O
2
1
X
4

B
U
FX
2
0

C
LK
IN
V
X
1
2

IN
V
X
1

M
U
X
4
X
1

N
A
N
D
2
X
1

N
A
N
D
4
X
4

N
O
R
3
X
1

O
R
2
X
8

X
O
R
2
X
1
6

A
D
D
FX
1

N
O
R
2
X
1

O
A
I3
2
X
1

X
N
O
R
2
X
2

O
R
4
X
2N
o

rm
a

liz
e

d
 d

e
la

y
 f
ro

m

s
u

p
e

r-
 t
o

 s
u

b
-t

h
re

s
h

o
ld

Figure 4.4: Bar plot of input-to-output delay simulations from near/sub-threshold
to nominal voltage in a low-power 90nm cell library.

formance. In the case of an inverter, transistor sizing can play an important role

in energy. The sub-threshold leakage equation [66] shows a clear dependence on

transistor width, length, and threshold voltage Vth.

This means that, in the case of a poorly sized inverter, one transistor may leak

more than the other. This results in a slower switching time and higher leakage

current for one transition case (either low-high, or high-low). These mismatched

transition speeds, when averaged together can result in a larger-than-average mean

delay.

61

4.4 Results

Because of its versatility, this design automation methodology can be used to

characterize any standard cell library. This methodology was tested on a 1.2V,

90nm-CMOS LVT standard cell library. For the purposes of this research, two

different sigma values for the delay were tested within this culling process. First,

cells that were outside of a 2σ delay bound were removed. Second, cells that

were outside of a 1σ bound away from the mean delay were removed. In order to

verify the procedure on synthesizable RTL, both a 16-bit Multiply-Add (MADD)

and 32-bit Floating-Point Add (FP-ADD) HDL were synthesized. MADD and

FP-ADD were chosen because of their high level of unique complexity. Three

90nm-CMOS netlists were created for each design: conventional non-culled (490

total cells), 2σ culled (35 cells removed), and 1σ culled (216 cells removed). The

only differences between the three synthesized designs were simple statements in

the compiler stating not to use culled cells in the synthesis process.

This methodology was also applied to a 65nm CMOS technology, with similar

results. For example, the 2σ test with the 65nm library (890 total cells) culled 21

cells, 14 of which were inverters of various sizes. The characteristics of the removed

cells are described as follows. In the rest of this chapter the area, delay and power

improvements by using the proposed culling method are discussed.

62

4.4.1 Characteristics of Removed Cells

Due to the different standard cell structures and topologies there is no set of

characteristics that all failed cells exhibit. However, as was explained in Section

4.2 the reasons can be bad PMOS/NMOS width ratios, large transistor stacking,

and cells designed for super-threshold speed (which often have large widths). For

example, the PMOS/NMOS ratio of the XOR2X16 cell that was tested was 2.8; by

lowering it to 1.2 the cell can pass the 1σ delay test in section IV. Furthermore, this

cell exhibits large transistor stacking resulting in unsymmetrical leakage paths in

sub-threshold. By changing the topology of the cell performance may be increased

further.

By removing cells with poor timing performance, the total energy of a design

can be improved. Cells that exhibit poor timing are much more likely to have

stronger asymmetric leakage currents. A typical sub-threshold design will operate

at its optimal energy point where both dynamic and leakage energy are approxi­

mately equal. By lowering the unwanted leakage current paths, The design will be

able to operate at an even lower optimal energy point as shown later.

4.4.2 Area Improvement

One of the major concerns when culling cells from a library is that in order to

maintain the same speed and functionality, area may need to increase due to the

loss of the culled, high driving strength standard cells or compact cells such as full

adders. Most researchers in the field believe that the extra number of lower drive­

63

strength cells that replace the removed larger drive-strength cells will consume

more area. However, from experimental results, this area increase is not observed

for different synthesized test cases. Area decreased in all designs when cells were

removed from the synthesizer. This area decrease also exhibits a positive effect on

energy consumption. Table 4.1 compares the area of the six designs. For example

the area of the MADD implemented using 1σ threshold culling is10649µm2 vs. the

MADD implemented without the culling technique which consumes 10988µm2 .

Table 4.1: Area Comparison of Culled Designs with Unculled Designs
Netlist Area [µm2] Total Cells in design Cells Removed from Library

MADD normal 10988.07 2251 0
MADD culled 2σ 10785.56 2222 34
MADD culled 1σ 10649.46 2425 216
FP-ADD normal 5434.22 1026 0

FP-ADD culled 2σ 5391.96 1059 34
FP-ADD culled 1σ 4786.08 1346 216

4.4.3 Delay Improvement

For the MADD and FP-ADD examples, the culled designs showed better timing

delay characteristics compared with unculled designs. Because operation in the

sub-threshold regime increases delay sensitivity to process variation, 1000-point

Monte Carlo tests were run to measure the worst-case operand delay for all six

netlists shown in Section 4.1. Figure 4.5 shows an overlay of two histograms: the

normal case and the 1σ culled case of an FP-ADD. Here, the mean delay decreases

for the culled case, with standard deviation improving and fewer outliers present.

64

Figure 4.5: Histograms of FP-ADD delay with and without cells removed from
synthesizer using 1σ culling method running at Vdd=400mV.

All culled designs (MADD and FP-ADD) show improved standard deviation

of delay by around 25%. The FP-ADD design showed improved means of approx­

imately 28%. The MADD designs did not exhibit mean improvements nearly as

large, with one netlist showing a negative improvement. However, the worst case

delay with that netlist was improved by 28% and the culled design exhibited a

63% reduction in outliers over the unculled design. Figure 4.6 shows two sets of

box plots. Each set displays the mean and standard deviation of each design. The

mean and standard deviation for each simulation are displayed above each bar.

65

Figure 4.6: Box-plots of delay without and with cells removed from the synthesizer
for both designs.

4.4.4 Energy Improvement

Because cells with larger delay variation have larger/longer unwanted leakage cur­

rents, removing offending cells lowers the overall integrated leakage energy due to

the shorter clock cycle times. One major benefit of this culling methodology is the

improvement of both unwanted leakage energy and overall energy/computation.

All culled designs had lower energy than their unculled counterpart. The stan­

dard deviation improvement for energy/computation of both 1σ, 2σ culled MADD

netlists were greater than 71% over the conventional, unculled case. Figure 4.7

compares the total energy/computation of all six designs which is directly related

to a reduction of cells with unwanted leakage paths.

66

Figure 4.7: Box-plots of energy/computation without and with cells removed from
the synthesizer.

Table 4.2: Leakage energy comparison of culled designs with unculled designs.
Netlist Mean [fJ] (Improvement) Standard Deviation (Improvement)

MADD normal 50.7 37.9
MADD culled 2σ 46.1 (10%) 23.0 (65%)
MADD culled 1σ 47.7 (6%) 24.3 (56%)
FP-ADD normal 94.3 21.2

FP-ADD culled 2σ 68.5 (36%) 17.8 (19%)
FP-ADD culled 1σ 56.0 (68%) 15.4 (38%)

In order to illustrate the potential energy improvement from using this method,

an unculled FP-ADD netlist was simulated at its typical super-threshold voltage

of 1.2V. A total energy/computation of 3.66 pJ was simulated. Comparing this to

the unculled design in sub-threshold, energy/computation of 312 fJ was simulated.

67

This yields an improvement of about 10x as expected with sub-threshold operation.

Comparing the unculled super-threshold energy to the culled energy of 228fJ yields

an energy improvement of over 15x. It is clear that this methodology is extremely

useful for improving sub-threshold energy of synthesized circuits.

4.5 Conclusions

This work describes a reliable, fast, and cost effective way to improve the operation

of any standard-cell synthesized design in sub-threshold. The method described in

this work is completely scalable as logic cells only need to be characterized once

before the synthesis process which enables designs utilizing anywhere from hun­

dreds of thousands to billions of transistors. This method improves timing, area,

and energy dissipated per computation. Using this method allows for better DVFS

response across multiple voltages within the super- and sub-threshold regions. Fi­

nally, by removing many outliers from a design, the worst-case performance can

be improved resulting in better yield across many chips.

Future work includes expanding this methodology to sequential logic and ver­

ifying the operation of a complete synthesized microprocessor/ASIC, and verify­

ing these simulation results with an experimentally measured test-chip prototype.

Furthermore, this work can easily be adapted to test cells under a different set of

constraints. For example, instead of using the mean Monte Carlo delay for each

cell, the cells could be culled based on a worst case delay under Monte Carlo or a

particularly bad process corner.

68

Chapter 5: Energy Constrained Encryption: A Case Study

in Near-Threshold Circuit Design

5.1 Introduction

Encryption is becoming an important part of every-day data transfer. As appli­

cations are pushed to ubiquity and require tremendously low energy consump­

tion, encryption will need to consume an ever-smaller amount. Conventional algo­

rithms [67–69] requiring on the order of hundreds of µW to several mW will not

be able to meet the energy and power budgets of future low-power systems.

For example, a typical Gen2 Radio Frequency Identification (RFID) tag re­

quires its power consumption to be on the order of micro-watts. By lowering the

power consumed by the electronics in the tag, less power is required to use it,

resulting in a longer interrogation distance. There is also a fundamental power

consumption limit where the tag will cease to function which is dependent on

many factors such as tag design, carrier frequency, and antenna design.

The Hummingbird ultra-lightweight cryptography scheme was specifically de­

signed for low-power applications and has the potential for very low power and

low energy operation [70]. Being a combination of both block and stream ciphers,

69

Hummingbird can provide 256-bit security while maintaining a low overhead. Be­

cause of this, traditional RFID tags can be retrofitted with this encryption with

little overhead for the additional security they provide [71]. However, as the typical

Hummingbird implementation does remain within the power budget of a Gen2 tag,

any additional circuitry (such as a sensor or additional computation/processing of

data) will likely put the tag above its power budget. This added complexity then

requires the encryption scheme to consume even less power than has conventionally

been reported.

This chapter presents four different low-power encryption designs in order to

push the limits of the RFID/internet-of-things application space. The designs

are both architectural-level and circuits-level modifications of the state-of-the­

art Hummingbird design [71]. Section 5.2 describes some of the ways the near-

threshold challenges described in Chapter 2 are overcome. Section 5.3 contains a

case study of the four different implementations of the Hummingbird algorithm

highlighting the trade-offs required for each design. Before concluding, Section 5.4

presents the results from the case study.

5.2 Potential Solutions to Near-Threshold Challenges

There have been many solutions proposed to deal with the variation-rich environ­

ment of near/sub-threshold operation. This section discusses some of them as they

pertain to small, low-energy systems.

70

5.2.1 Check and Adapt

One class of methods proposed to combat the highly variable conditions of near-

threshold operation are known as adaptive scaling methods [72]. These methods

usually combine some type of error detector such as Replica Circuits [73] or timing

error detection circuits [22] with some type of prediction logic. If it has determined

that errors are occurring at too frequent, different circuit parameters such as Vdd ,

core frequency, body biasing [72], and clock skew are scaled accordingly. Fig. 5.1

illustrates this feedback process on the systems level.

Control Logic

Error
Detector

Error Frequency
Counter

Dynamically Varying Circuit
(temperature, VDD droop, etc.)

Supply Voltage, Clock
Frequency, Clock Skew,

Module Sparing, etc.

Figure 5.1: A systems-level diagram illustrating the feedback process of dynami­
cally adapting circuit performance in the presence of dynamic variations.

These methods have been shown to improve near-threshold operation in large

systems [73,74]. However, in small, energy constrained systems this type of solution

will most likely have too large of an overhead to be practical.

71

5.2.2 Large Guard-Banding

All digital circuits with any timing constraints require a guard band of some sort.

Engineers typically slow down the clock by some percent to guarantee timing in

the presence of voltage droops, temperature changes, aging, and other variable

factors.

The problem in near-threshold however, this that the guard-bands get much

larger as voltage is lowered due to the exacerbated standard deviation that the

variations exhibit. There could be an 80% increase or more in a guard band

when going from super- to near-threshold voltages, making simple guard-bands

non-ideal.

5.2.3 Architectural or Circuit Redesign

Instead of putting extra circuitry around an already working super-threshold cir­

cuit or adding a large guard-band to confirm near-threshold operation, a more

ideal solution is to redesign either the architecture, circuits, or both for the spe­

cific purpose of operating at near/sub-threshold.

In architectural redesign an architecture already working in super-threshold can

be redesigned to operate better in near-threshold. Some examples of this could

be: designing architectures that intrinsically perform better in a variation-rich

environment, or architectures that can easily adapt to variations on the fly.

In circuit redesign either custom circuits, or improved versions of already ex­

isting circuits are designed for near/sub-threshold operation. One example of full

72

custom near/sub-threshold circuits would be asynchronous circuits [75] (although

these methods often require an architectural redesign as well). An example of

improving a circuit design would be redesigning a flip-flop [76] or digital standard

cell [74] for improved near/sub-threshold operation.

The obvious downside to redesign is the time spent in both the invention and

design process as in near-threshold design it is often not straightforward how to

improve a design.

5.2.4 Near-Threshold-Aware Synthesis Techniques

Another method that has gained popularity over the past several years is near-

threshold-aware synthesis [77,78]. These methods generally fall into two categories:

1. Re-characterize a digital standard cell library and generate new timing in­

formation for the synthesizer to use in determining cell selection and place­

ment [78]. This method is similar to simply re-characterizing a standard cell

library with the advantage of adding variation information to the timing via

Monte Carlo codes.

2. Determine which cells in a library are worthy of near-threshold operation and

remove unworthy cells from the synthesis process [77]. On top of this, this

particular method also correlates the timing of super-threshold operation to

near-threshold operation allowing the synthesis tool to synthesize the circuit

at super-threshold but be used at near-threshold with predictable timing.

This method is presented in Chapter 4.

73

The two methods are similar in that their overall goal is to essentially reduce

the amount of variations the final circuit will experience based on simulating with

Monte Carlo codes. The first method is likely to be more comprehensive at the

impact of the much longer CPU time required to regenerate new timing libraries.

The second method’s strength is in its ability to provide a much similar function

at a much lower cost. However, both methods have the inherent drawback of

requiring large systems in order to have more cells to tune. If the system is too

simple there is likely only one circuit solution and thus no optimization can be

done.

5.3 Case-Study

This section presents designs aimed to understand the abilities and limitations of

the proposed method in Chapter 4. The designs are different implementations of

the low-power Hummingbird algorithm and are presented in the form of a case

study.

5.3.1 Hummingbird Encryption Scheme

The Hummingbird algorithm (Figure 5.2) consists of four 16-bit block ciphers

EK1, EK2, EK3, and EK4, four 16-bit internal state registers RS1, RS2, RS3,

and RS4, and a 16-stage LFSR. For each encryption request the majority of the

computation is taken up by each EK module requiring 4 cycles.

74

The EK modules themselves consist of multiplexing logic that cycles through

the 256-bit key (kn), 64-bits at a time. The 64-bit sub-keys then go though more

transformations including S-Boxes (S1, S2, S3 and S4) which act as lookup tables.

During the fourth cycle of the EK module two S-Boxes are used as can be seen

in the right half of Figure 5.2. This makes the standard encryption process take

16 cycles total to complete an encryption (from input to output) after a 69 cycle

initialization [71].

The sequential structure of the Hummingbird algorithm lends itself as a good

case study for efficient low-power digital design as many encryption algorithms are

similar in nature. Furthermore, this particular algorithm allows for many different

optimizations to be made which will be the primary focus of this paper.

5.3.2 Tested Solutions

Based on the application space described in Section 5.1 three different designs

are studied in their ability to reduce the variation of the Hummingbird algorithm

operating in near-threshold. Two of the designs (1 and 2) are architectural/cir­

cuit redesign solutions and the third (3) uses the near-threshold-aware synthesis

technique presented in chapter 4 to reduce variations. Each design is compared to

the original Hummingbird design operating in near/sub-threshold. These solutions

were tested because they are cheap (in both design time and resources required),

low-overhead, and easily adapted/ported to other applications and process nodes.

75

Figure 5.2: The Hummingbird cryptographic algorithm.

5.3.2.1 Test 0: Hummingbird with Reused EK Module

The first solution tested is the original hummingbird architecture [71]. In this

architecture, in order to maintain a 16-cycle latency for each encryption the EK

module can be reused. Figure 5.3 shows a more in-depth view of how the architec­

ture is implemented. This version of the algorithm basically consists of multiplexers

redirecting signals back through the reused EK module.

76

Figure 5.3: Original implementation of the Hummingbird algorithm.

5.3.2.2 Test 1: Area-Optimized Hummingbird

This version of the architecture was specifically designed to consume as little area

as possible. This is done not only by the EK reuse as done in test 0 but by also

reusing the S-Box within that EK module (Figure 5.4). This requires additional

cycles to complete the encryption at the advantage of requiring less area and less

power as there are fewer transistors used in the implementation.

77

Figure 5.4: Area-optimized implementation of the Hummingbird algorithm.

5.3.2.3 Test 2: Loop-Unrolled Hummingbird

The final architectural redesign test takes the hummingbird architecture and un­

rolls all the looping done in tests 0 and 1 (Figure 5.5). Namely the EK module

and S-Box within are no longer reused making the critical path much longer. This

longer critical path in itself is aimed at reducing variation as longer logic chains

amortize the variation of each element throughout the chain. The longer the chain,

the less variation should be seen [79]. There is an obvious trade-off here in that

this design may execute faster and require less power to operate.

78

Figure 5.5: Loop-unrolled implementation of the Hummingbird algorithm.

5.3.2.4 Test 3: Test 0 with Synthesis Improvement

The final test focuses on the Near-Threshold-Aware Synthesis Technique presented

in Chapter 4. In this test the same Hummingbird implementation as used in test 0

is used but after the automated standard cell culling process has been implemented

on the standard cell library to be used to synthesize the final circuit.

79

5.4 Results

After designing and synthesizing each solution, 100-point Monte Carlo simulations

were used to find the variability of the 12 worst-case paths for each design along

with area, power, and energy.

Because the Hummingbird architecture was originally designed for use in an

RFID tag the tests were carried out as follows. A Gen2 RFID tag operates at a

frequency of 1.28MHz [71]. Therefore, for each implementation simulations were

carried out to determine the lowest possible operating voltage in order to meet the

1.28MHz timing requirement given by the Gen2 requirements. At that voltage,

all measurements, including variation were performed. The voltage found for each

implementation can be seen in Table 5.1 on Page 84.

5.4.1 Area Impact

The area impact of each version is straightforward and is summarized in Table 5.1.

The area-optimized version consumes about 5% less area than the reused EK ver­

sion which is a very modest improvement given the addition of 19 clock cycles

required to complete an encryption makes it 20% slower. The speed-optimized

version is more than 20% larger than the reused EK version, but because it is

now more than 3.5X faster this trade-off pays off from an area versus speed per­

spective. Finally the synthesis improvement version has almost no change in area

consumption over the reused EK version. The area does grow marginally because

the types of cells being culled are often minimum sized, requiring the synthesizer

80

to select some cells that are larger than what were picked before.

5.4.2 Energy and Power Impact

Energy was simulated for each test across the total cycles required to complete one

encryption. Power was extracted from the simulation as an average throughout

the same time. Both numbers are recorded in Table 5.1 for each test. In general,

the power for each test scales with it’s area and the energy scales with cycles.

Furthermore, all tested solutions exhibit over 96% less power than any of the

contrasted previous works also reported in the table. This is due primarily to the

lowering of supply voltage while maintaining the performance requirements of a

Gen2 RFID tag.

Figure 5.6 contrasts the power/energy trade-off for the shared EK and speed

optimized designs. The energy required for the speed optimized version is dra­

matically reduced as the reduction in clock cycles overcomes the increased power

required for the design. In a strictly power-constrained application the speed op­

timized version is not a better candidate over the shared EK version. However,

it’s important to note that future RFID systems will require extra computation in

the form of sensor measurements and calculations which may reduce the amount

of cycles allotted for the encryption which may make it a viable solution.

81

30

20

10

0

40

10 20 30 40 50 60 70

P
o

w
e

r
[µ

 W
]

Time [µ s]

30

20

10

0

40

10 20 30 40 50 60 70

P
o

w
e

r
[µ

 W
]

Time [µ s]

(a) Power simulation of Test 0 (b) Power simulation of Test 2

Figure 5.6: Power plot vs. time of test 0 (Shared EK) and test 2 (Speed Opti­
mized).

5.4.3 Variation of Each Architecture

After compiling the Monte Carlo timing data for each test, the standard deviation

and mean were calculated to be used in the common metric of 3σ/µ which yields

a quantitative measure of variability [79]. A qualitative measure of the variability

of each test can be seen in Figure 5.7.

5.4.3.1 Variability of Test 0

The 3σ/µ variability for this version is the best of the three non-speed optimized

versions at 122% but marginally so that there is not a large difference in the

measure. By looking at the histogram in Figure 5.7(a) the histogram looks much

more heavy-tailed than any of the other plots. This yields the conclusion that the

3σ/µ measure should not be the only metric used to determine variability and that

this version may not give the best yield.

82

(a) Shared EK (b) Area-optimized

(c) Speed-optimized (d) Synthesis improvement

Figure 5.7: Variation Response of four test cases across Monte Carlo.

83

5.4.3.2 Variability of Test 1

The area-optimized version of the architecture has a 3% larger 3σ/µ but as can

be seen in Figure 5.7(b) it’s histogram is a lighter tail than the previous test and

most of the weight has been moved to the front of the distribution.

5.4.3.3 Variability of Test 2

The speed-optimized architecture has the best variability performance both in

terms of 3σ/µ and by a qualitative inspection of Figure 5.7(c). The long paths

in this version of Hummingbird help amortize the variability across many gates

resulting in a smaller deviation as the path is exercised both by different input

vectors and different variations from chip-to-chip.

5.4.3.4 Variability of Test 3

For the most part, the variation of this test doesn’t change much over the original

test because its architecture is already so simple to begin with. As the synthesizer

goes to change the cells after they are culled from the library it finds that there are

very few replacement options that might result in an improvement. The 3σ/µ for

this test is the largest of all the tests and is 11% larger than the original version.

However, this is mostly due to the outliers as the center of mass in Figure 5.7(d)

are much more concentrated at the beginning of the histogram compared to the

original (shared EK) version.

84

Table 5.1: Simulation results for each tested design

Architecture Metric

T
ec

h
n
ol

og
y

 [
n
m

]

A
re

a
[µ

m
 2

]

C
y
cl

es

P
ow

er
 [
µ
W

]

E
n
er

gy
 [
n
J
]

V
D

D

S
p
ee

d

3σ
/µ

 [
%

]

Original Hummingbird [71] 130 14375 85 30.67 NR 1.2V 1.28 MHz N/A

0: Shared EK 90 9904 85 0.29 13.1 370mV 1.28 MHz 122

1: Area Optimized 90 9447 104 0.28 19.3 390mV 1.28 MHz 125

2: Speed Optimized 90 12214 24 1.1 4.6 440mV 1.28 MHz 100

3: Synthesis Improvement 90 9941 85 0.3 13.6 380mV 1.28 MHz 133

256-bit AES [68] 180 43000 ? NR 19 1.2V asynchronous N/A

256-bit AES [67] 180 50377 500 224 NR 1.2V 10 MHz N/A

1024-bit RSA [69] 130 270000 2 15000 NR 1.2V a 13.56 MHz N/A
a Assumed based on technology node.

85

5.5 Conclusion

This chapter introduced four improved Hummingbird light-weight encryption scheme

designs for use in future RFID systems. The designs aim to contrast different de­

sign trade-offs while operating in the near-threshold voltage regime. The designs

reduce power from at least 96% to over 99% the most recently reported humming­

bird I design. The designs add a 30% to 40% increase in the digital base-band

area which is less than most encryption schemes. The shared EK design reduces

hummingbird’s power by over 99% by simply operating the encryption scheme

at a near-threshold voltage of 370mV . The area optimized design reduces hum­

mingbird’s area by 5% at the cost of 22% more cycles as well as exhibiting the

lowest power of all designs. This design is only useful when area is the utmost

concern. The speed optimized design reduces the power by 96% while reducing

the number of cycles required of the algorithm by 72% and is a great candidate

for cycle-constrained RFID systems.

On top of evaluating these trade-offs, the reliability (in the form of timing

variability) of each near-threshold design was tested through Monte Carlo codes.

While some designs did show better timing reliability performance there is no one

design or design style that reliably reduces variation beyond a moderate level.

While some methods [77,78] have shown to reduce variation in large designs (such

as the work in Chapter 4), a small design such as Hummingbird leaves little room

for modifications resulting in less reliable improvements as seen by the synthesis

improvement design reported in this article.

86

Chapter 6: Asynchronous Circuit Operation

6.1 Introduction

Asynchronous logic design has been studied for well over 60 years. Only recently

has this paradigm actually been applied to practical applications [80–86]. Due to

the complex nature of asynchronous circuit design, few techniques have been ac­

cepted by industry as cost-efficient alternatives to traditional synchronous designs.

However, in this highly unpredictable regime of neat/sub-threshold, asynchronous

circuits may become a viable option. At the very least they can give insight into

how to design more reliable circuits in the future.

The following will explore in detail asynchronous techniques that aim to be

competitive to traditional synchronous synthesized techniques used today. The

primary methods explored are ways by which traditional synchronous systems

can easily be modified for asynchronous operation. The most widely researched

method for doing this is known as completion detection within an asynchronous

micropipeline.

This chapter starts with an introduction to the fundamentals of asynchronous

circuit design and a discussion of its challenges are presented. After a review of

87

the asynchronous micropipeline, a comprehensive analysis of existing completion

detection techniques is presented. Finally, two new completion detection methods

are presented and compared.

6.2 Traditional Asynchronous Techniques and Challenges

6.2.1 Asynchronous Logic Elements

One of the most important components of modern asynchronous systems is the

Muller C-Element (also known as the join or rendezvous element) named after its

creator David E. Muller (Figure 6.1a). When its inputs are identical, the output

matches the inputs. Otherwise, the output doesn’t change (Figure 6.1c).

This component is commonly used for handshaking control circuits and is most

often the fundamental building block in delay-insensitive circuits [87]. The C-

element is widely researched and there have been many implementations [88–91].

In [89], a synthesize-able version is described, which is shown in Figure 6.1b.

There are many other asynchronous components aside from the C-element [90,

91]. The Toggle component is often used in asynchronous counters and many

forms of control and arbitration logic. It can also be used to convert between

micropipeline handshake mechanisms. The toggle component symbol is shown in

Figure 6.3b. The Merge component is functionally identical to the discrete logic

XOR and is often used when more than one block needs to communicate to one

output [92]. In Figure 6.3c it is also used to aid in the conversion in micropipeline

88

a
b ca b c

0 0 0

0 1 no change

1 0 no change

1 1 1

(a)

(b)(c)

a
b cC

Figure 6.1: Asynchronous Muller-C Element: (a) schematic symbol, (b)
Synthesize-able, hazard-free circuit schematic [89] (c) C-element truth table.

handshaking mechanisms.

6.2.2 Hazards

In synchronous systems, glitches (0-1-0 or 1-0-1 transitions) in outputs can be tol­

erated as long as they don’t violate setup and hold times. However, many forms of

asynchronous systems require glitch free operation to ensure datapath correctness.

Asynchronous systems call these glitches hazards [93]. Some techniques aim to

filter out hazards (typically with some type of inertial delay [94]). Others stop

them from happening altogether with careful logic design. [89]. Figure 6.1b shows

an example of a common hazard-free C-element logic gate. In this case, extra logic

gates that don’t alter the truth table are used to unsure hazard-free operation.

89

6.3 Asynchronous Micropipelines

The fundamental method for controlling asynchronous circuits is the micropipeline

[88]. Pioneered by Ivan Sutherland in the late 1980’s, the micropipeline (or µ-pipe)

is essentially the delay-insensitive version of a synchronous pipeline. Instead of the

control of the pipeline being based on a global clock signal, registers or latches

between stages are triggered by events from within the stages themselves.

combinational logic
µ-pipe stageDFF

D Q

DFF

D Q

DFF

D Qcombinational logic
µ-pipe stage

req(0)

ack(0)req(in)

data(in)

req(1)

ack(1) ack(out)

data(out)

ack(in)

C C C

delaydelay

Figure 6.2: A fundamental µ-pipe with 2-phase bundled data control via C-
elements

6.3.1 Micropipeline Configurations

The fundamental µ-pipe configuration is shown in Figure 6.2. In this case a two-

phase bundled-data configuration is used to send request (req) and acknowledge

(ack) commands between µ-pipe stages where each µ-pipe latch is controlled by

a network of C-elements. Note that the C-elements need to be initialized to the

correct state on startup. This can either be done with extra reset logic or a signal

can be built into the C-element’s structure.

90

6.3.2 Handshake Mechanisms

After Sutherland’s pioneering work, many different µ-pipe control schemes have

been designed to facilitate different signaling protocols and µ-pipe configurations

[95]. They all rely on two primary signaling conventions illustrated in Figure 6.3a.

6.3.2.1 2-Phase Bundled Data

This convention is the easiest to realize with C-elements. It requires the least

amount of logic and uses a small amount power because every transition (both

rising and falling) is considered an event that latches data into the next µ-pipe

stage.

6.3.2.2 4-Phase Bundled Data

With this convention, only rising edges constitute an event. This means that for

each event the signal line needs to be charged and discharged. Although this con­

sumes more power, it is much easier to produce these signals with most completion

detection methods and is easier to control latches with.

6.3.2.3 Handshake Conversion

In order for 4-phase completion detection methods to communicate with 2-phase

micropipelines, conversion circuits are needed. The asynchronous Toggle element

91

(easily realized for this application as a toggle flip-flop) can easily convert from

4-phase to 2-phase (Figure 6.3b). The simple pulse generator in Figure 6.3c can

generate a 4-phase signal from a 2-phase signal.

ack

req

Cycle 1 Cycle 2

4-phase

2-phase
ack

req

out
(2-phase)in

(4-phase)

(a)

(b)

(c)

in
(2-phase)

out
(4-phase)

Figure 6.3: (a) 4-phase and 2-phase bundled data handshaking conventions, (b)
4-phase to 2-phase conversion with the Toggle element, (c) 2-phase to 4-phase
conversion with the merge (XOR) element.

6.4 Asynchronous Completion Detection

One critical bottleneck to the widespread adoption of asynchronous circuits is

completion detection. Modifying a synchronous pipeline to an asynchronous µ­

pipe intrinsically does not improve performance of the intra-stage logic. In order

to gain the speedups praised by asynchronous logic a scheme must exist to detect

when the logic has completed so that the average-case delay can be exploited.

The following explores the existing methods used to adapt synchronous logic

to asynchronous operation. Comparisons are drawn between these methods and

their advantages and disadvantages are discussed.

92

6.4.1 Custom Circuits

Because of the complexity of asynchronous circuits there are a myriad of ways to

implement the same logic with different types of circuitry. This has led circuit

designers to come up with clever implementations to save area and power as well

as increase the speed of this class of circuits. Some examples of custom circuit

design are presented in previous research [75, 90, 96].

A popular form of custom logic is Differential Cascode Voltage Switch Logic

(DCVSL) [96]. This works by pre-charging all logic gates to a “not done” state

(all outputs: logic 1). Dual-rail signaling [97] is then used to pass signals between

gates and a pull-down network is used to determine the value to be passed to the

next gate. Another example of a full-custom technique is shown in [75]. In this

paper it is shown that the implemented asynchronous circuits can operate reliably

down to 150mV without the need for clocking adjustments.

This type of logic can be very time consuming to design and can result in an

area overhead of over 40% compared to synchronous versions of the same logic [96].

Because every gate usually has to be charged and discharged for every computation,

designers have to be clever in order to find speed-up opportunities by bypassing

unneeded logic when possible in order to counter the larger power for these designs

[75].

93

6.4.2 Null Convention Logic

Null Convention Logic (NCL), along with its many permutations: NCL-X [98],

2NCL, 3NCL [99], is a method by which delay-insensitive circuits can be synthe­

sized via a dual-rail or similar encoding technique [97].

NCL circuits have a wide variety of uses and have been well researched [99–101].

In order to make them synthesize-able, a specific list of 27 NCL gates are defined

that the NCL synthesizer understands [102]. Using a conventional language such

as Verilog/VHDL the synthesizer can take a library of NCL gates and synthesize

a complete asynchronous system [103].

It has been shown that the ability to synthesize NCL designs does decrease

the area footprint over manual NCL designs by around 15% on average. However,

using NCL versus standard synchronous synthesis can result in well over 100%

more area after the synthesizer’s optimizations [101].

6.4.3 Matched Delay Lines

The earliest, and most popular method of converting conventional synchronous

circuits to work with asynchronous micropipelines is a technique known as matched

delay lines (MDL). With this technique, a standard synchronous logic block is

synthesized (multiplier, adder, etc.). The worst case path of that block is then

replicated and placed in the req signal’s path as shown in Figure 6.4. This matched

delay must be slower than the functional block under all physical conditions and

all data input cases (including the setup time of the next stage of the µ-pipe).

94

DFF

D Q

DFF

D Q

Matched Delay LineC C

combinational logic
(Adder, FIR, etc.)

Figure 6.4: An asynchronous µ-pipe with completion detection by means of a
matched delay line.

MDLs are one of the most widely used techniques in micropipelines to date [86,

95, 104–106].They are very easy to design/synthesize, require small area overhead

compared to other asynchronous techniques, and work with any type of logic.

However, the obvious downside is that there is no way to exploit the average-case

performance. The µ-pipe can only run at the speed of it’s slowest stage, just like

a synchronous pipeline. The main advantage to using a MDL over a synchronous

pipeline is the removal of the global clock network.

6.4.4 Speculative Completion

In [107], Steven M. Nowick proposed a speculative approach to improve the per­

formance of MDLs. Instead of having only one worst-case delay line, two or more

delay lines are used: one for worst-case timing and the remaining one(s) for faster

speculative completion. In the case of [108], two extra delay lines are tuned faster

95

to facilitate early completion when a speculator determines a speedup opportunity

is possible. Figure 6.5 shows the architecture of a speculative completion system.

The key feature of this system is the abort detection network. The abort detec­

tion network makes sure the worst-case delay line is used when a speculation is

unverified or is taking too long to compute. The one requirement of the abort

detection network is that it becomes stable before the delay of each fast delay line.

The networks are highly dependent on the logic they are speculating and can be

difficult to design [108].

DFF

D Q

DFF

D Q

Fast Delay

Medium Delay

Worst-Case Delay 1

0
1

0

Abort Logic 1

Abort Logic 2

C C

combinational logic
(Adder, FIR, etc.)

Figure 6.5: An asynchronous µ-pipe with completion detection by means of spec­
ulative completion detection.

Just like the simple MDL technique this version of completion detection is

easy to synthesize using traditional techniques and works with 2-phase signaling.

Unlike a simple MDL, this technique actually allows for a speedup to be achieved,

providing an opportunity for average-case performance. The unfortunate downside

96

to speculative methods like this are that they are very architecture dependent. This

method may work for a Brent-Kung adder with the proper modifications, but not

a simple ripple-carry adder.

6.4.5 Current Sensing Completion Detection

Current Sensing Completion Detection (CSCD) [109–116] consists of an analog

sensor that senses the current going through a group of combinational logic via

a resistor or power gate transistor as shown in Figure 7.3. As a system starts to

compute on new data, its current consumption increases. After the current con­

sumption abates to a steady state, the computation can be considered completed

and an asynchronous req signal is generated to send to the next µ-pipe stage.

Multiple sensors can be combined in large systems to ease the requirements of

sensitivity. This could be anywhere from a sensor on each µ-pipe stage [116] to a

sensor on each custom-designed standard cell [112].

The advantages of this class of completion detection circuitry are: (1) a rela­

tively low overhead compared to other methods such as NCL; and (2) the speed-up

achieved, as there is finer speedup granularity as compared to speculative meth­

ods [115]. The complexity of the analog current sensor can discourage digital

designers as they are difficult to combine with traditional digital synthesis. Addi­

tionally, if the current sensor restricts the current flow to the combinational logic

the result will be a slower computation than one without the sensor.

97

DFF

D Q

DFF

D Q

Vdd

Current
Sensor

C C

combinational logic
(Adder, FIR, etc.)

Figure 6.6: A standard combinational block modified for asynchronous operation
by means of current sensing completion detection.

6.4.6 Sense-Inverter Based CSCD

In [117], a method is proposed that mitigates the concern that a supply voltage

droop (as in CSCD) can have negative effects on logic speed if not designed care­

fully. Sense-inverter based CSCD is functionally similar to CSCD in the way that

the current sensor is designed. However, in this method the current sensor is not

placed in series with the logic’s power supply.

Inverters are strategically placed at critical points within a synchronous circuit.

In the case of a large adder, they are connected to the carry out pin of every full

adder. These “sense-inverters” are then connected to a separate power supply

that is in series with the current sensor (Figure 6.7). As the carry pins toggle,

the inverters pass current through the current sensor. Completion is considered

when the current consumption of the sense-inverters abates which is dictated by

the cessation of switching activity on all carry signals.

98

The two clear advantages to this method are: (a) removing the current sensor

from the datapath supply guarantees no speed penalty due to virtual power supply

droop. However, it should be noted that the addition of this circuitry adds a

small amount of capacitance to each node that may affect performance. (b) The

constraints of the current sensor can be relaxed as more input dynamic range can

be achieved because the droop can be larger on the sense-inverter’s supply.

Full
Adder 0

Full
Adder 1

Full
Adder 2

Current
Sensor

Vdd1Vdd1Vdd1

carry carry carry

req

Vdd2 Vdd2 Vdd2

Figure 6.7: Basic configuration of sense-inverter based current sensing completion
detection within an adder structure.

In order to make sure this method will work correctly, the sense-inverters need

to be placed frequently enough within the datapath such that there will never be

an accidental lapse in switching activity to the sense-inverters. This fact along

with the more complicated design constraints and the coupling with an analog

current sensor make this method less attractive due to its complexity.

99

6.4.7 Activity-Monitoring Completion Detection (AMCD)

Similar to sense-inverter based CSCD, this method monitors the switching activity

within a combinational logic circuit to detect completion. In this case, a circuit

known as an activity monitor (AM) (Figure 6.8), detects transitions on nodes

within the logic. In the case of [118], the nodes chosen were again carry signals

from selected full adders within a multiplier.

Full
Adder 0

Full
Adder 1

Full
Adder 2

VddVddVdd

carry carry carry

R

Activity Monitor Activity Monitor Activity Monitor

req

Vdd

Figure 6.8: Basic configuration of activity monitoring completion detection within
an adder structure.

Once a transition is detected (either rising or falling) the AM pulls a common

req node low. A correctly sized pull-up resistor then pulls the signal high once the

switching has finished. Depending on the expected frequency of switching activity,

a capacitor may need to be added to the req node to ensure a false positive is

avoided.

AMCD’s largest advantage is that it removes a voltage droop from the logic

path. This method is more challenging to implement as it uses both custom digital

cells as well as analog circuits. It may also be difficult to size the pull-up resistor

100

correctly for each logic circuit with different switching activity factors.

6.5 Proposed Completion Detection Methods

All of the completion detection methods described above have their advantages and

disadvantages. Most methods balance the trade-offs of: complexity, area/power,

speed, design time, and robustness. The following proposed completion detection

methods are designed to explore these trade-offs in a quantitative manner.

6.5.1 Proposed Transition Aware Completion Detection

The primary goal of this method is to provide a fine-grained completion detector

that can be easily incorporated into synchronous circuit synthesis at low cost. The

completion detection method, known as Transition Aware Completion Detection

(TACD), is similar in concept to AMCD because it monitors switching activity to

determine when a computation has completed. Instead of connecting activity mon­

itors to precise internal nodes of a circuit, only the outputs to be latched need to

be monitored. The system-level diagram of this method is shown in Figure 6.9(a).

TACD is comprised of a variable-delay inverter chain with a single XNOR

gate per output wire (termed Transition Detectors (TDs)), as illustrated in Fig­

ure 6.9(b). The output of each XNOR is NANDed globally to produce an error/

done signal for each pipeline stage. As switching activity is present for each output,

the XNORs will transition low for the duration of the inverters’ delay, indicating

101

DFF

D Q

DFF

D Q
TDCD

req

C C

combinational logic
(Adder, FIR, etc.)

(a)

in[0]

reqin[1]

in[n-1]

...

TD

in[0]

in[1]

TD[0]

TD[1]

error

clock

(b) (c)

Figure 6.9: (a) TACD within a µ-pipe stage, (b) Synthesize-able TACD schematic,
(c) Timing diagram of TACD.

that operation has not completed. The timing diagram for this operation can be

seen in Figure 6.9(c). Note that the inverter delays need to be calibrated, depend­

ing on the amount of switching activity – not for a single output but for all the

outputs combined (i.e. just long enough until another output toggles). The total

inverter delay is summarized in Equation 6.1:

102

dinv = dNAND tree + Δtoggle max + dmargin (6.1)

where dNAND tree is the worst-case delay of the NAND tree, Δtoggle max is the

worst-case delay time between any two output transitions, and dmargin is an added

margin to account for dynamic variations.

The synthesizer can be used to determine the optimal value for dinv. In the case

of this work, since the adder implemented was a simple carry-lookahead architec­

ture, it is easily determined that Δtoggle max results in the longest carry propagation

path. In the presence of a synthesized circuit that generates glitches, the equation

becomes slightly more complicated in that any given Δtoggle must be less than the

time between either another glitch or a legitimate output toggle. Glitches can be

removed in some cases by adding a prime implicant. However, this requirement

may be hard to ensure with more complicated logic.

In order to improve the performance of TACD, TDs can be added at strategic

points within the logic. In the case of a CLA adder, a TD can be connected to the

carry-out of each lookahead unit. This allows each inverter delay to be smaller,

requiring less area for each TD. Even though there are more TDs, the total area

increase is minimal for relatively complex digital logic blocks.

6.5.2 Proposed Pseudo-Asynchronous CSCD Method

In order to draw comparisons with other completion detection methods, a syn­

chronous CSCD scheme has been modified for asynchronous operation. This

103

method consists of a clocked analog comparator measuring the voltage droop across

a large PMOS header transistor. It has been modified for asynchronous operation

via a feedback of two NAND gates. The schematic of this is shown in Figure 6.10.

Once a conversion finishes, the comparator effectively generates its own clock and

continues to clock itself until the current consumption goes below its calibrated

offset. The comparator is restarted with the µ-pipe stage’s req signal controlling

the reset input. This feature allows the sensor to save energy while not switching

when no comparison needs to be performed.

req

reset

Logic

Vdd Offset Calibration[0:9]

clk

Figure 6.10: Synchronous CSCD method modified for asynchronous operation.

6.6 Compared Results

The two completion detection methods above, along with a simple matched de­

lay line (MDL) are designed, simulated, and compared in an IBM 90nm CMOS

process. Each method was used to detect the completion of a synthesized 16-bit

carry-save multiplier and asynchronous control signals were emulated to ensure the

methods would generate correct µ-pipe communication signals. Table 6.1 shows

104

Table 6.1: Comparison of different completion detection methods.
Worst Average Best

TACD Delay 1.6ns 1.1ns 0.36ns
TACD Energy (TDs) 1.074pJ 0.762pJ 0.012pJ
TACD Energy (AND) 0.118pJ 0.074pJ 0.013pJ
TACD Multiplier Energy 1.812pJ 2.124pJ 0.018pJ
TACD Energy Overhead 39% 28% 57%
TACD Total EDP 4.8zJs 3.2zJs 0.015zJs

MDL Delay 1.4ns 1.4ns 1.4ns
MDL Energy 0.119pJ 0.119pJ 0.119pJ
MDL Multiplier Energy 1.74pJ 2.11pJ 0.023pJ
MDL Energy Overhead 6% 5% 83%
MDL Total EDP 2.6zJs 3.1zJs 0.2zJs

CSCD Delay 1.8ns 1.84ns 0.18ns
CSCD Energy 0.117pJ 0.138pJ 0.009pJ
CSCD Multiplier Energy 1.15pJ 1.41pJ 0.0095pJ
CSCD Energy Overhead 9.2% 8.9% 1.5%
CSCD Total EDP 2.3zJs 2.8zJs 0.003zJs

TACD Area Overhead
MDL Area Overhead
CSCD Area Overhead

853µm2 (16%)
191µm2 (4.1%)
816µm2 (15.5%)

the simulated delay, energy and area of each method. Three cases were tested:

(1) Worst-case multiply vectors from the synthesizer, (2) Average-case multiply

vectors generated randomly, (3) Best-case multiply vectors in the form of 0-times-0

to 1-times-1.

TACD performs well when tuned correctly. The effective delays of this method

are lower than the other methods tested on average. However, because the inverter

delays have to be tuned so large to unsure no hazards there is a delay in the final

req output (Figure 6.11).

105

The MDL performs as expected. When fixing the delay just above the worst-

case at 1.4ns the MDL clearly has downsides when the delay is fast.

Most of the CSCD’s area is due to the large offset-calibration circuitry required

to ensure correct operation. One down side of this method is the requirement of

the droop on the virtual supply. In the case of a 16-bit multiplier, the droop has

to be quite large in order to ensure that all droops are properly detected, both

small and large. This large droop has a negative affect on delay as shown in the

bottom half of Figure 6.11. It also results in the deceptively low energy of this

implementation. Furthermore, it can be seen that the sensing voltage takes several

MDL (req)

TDCD (req)

CSCD (req)

CSCD Sense Voltage

start

0xAD231400

0xAD231400

0x34DAF751

0x34DAF751

MULT OUT

MULT OUT (CSCD)

Figure 6.11: Simulation of TACD, MDL, and CSCD with average-case operands
into a 16-bit carry-save multiplier.

106

hundred picoseconds to settle even after the output finishes toggling, making the

req signal slower than the worst-case delay. Pairing CSCD and MDL could solve

this problem. Future work needs to be done to determine the sensor granularity

and how many sensors need to be used.

In the last row of each section of Table 6.1 the Energy Delay Product (EDP)

calculations show that as the delay of the multiplier approaches its average case,

CSCD outperforms both TACD and MDL. However, in the configuration pre­

sented, CSCD provides almost no speedup opportunities which make TACD a

better candidate when throughput is important. Furthermore, it should be noted

that the synthesize-ability and ease of integration of TACD make it a much more

promising candidate for future asynchronous systems.

6.7 Conclusions

This chapter presented comparisons of all the relevant asynchronous completion de­

tection methods to date. Along with these, two new completion detection methods

have been compared: TACD, and a pseudo-asynchronous version of CSCD. Simu­

lations have shown that with the addition of generic completion detection circuits

to an asynchronous micropipeline, it is very difficult to get an energy reduction

compared to traditional synchronous circuits aside from the removal of the global

clock network. In that light, for asynchronous circuits to be successful, designers

must be willing to design completion detection schemes that are architecture aware

in order to make the most of asynchronous operation.

107

Chapter 7: Synchronous Completion Detection

7.1 Introduction

Asynchronous circuits clearly have a large value in systems where delays are unpre­

dictable. However, their design complexity still makes them unattractive to most

of the design community. In order to make synchronous circuits just as reliable as

asynchronous circuits it could be possible to combine the best of both worlds.

In this chapter, two ideas for ensuring timing-resilient synchronous circuit op­

eration at a lower supply voltage are proposed based on the methods proposed

in Chapter 6. First, a study on the characteristics of timing variations in near-

threshold are presented. Next, a discussion of conventional methods for circuit-

level timing error detection, and their limitations in the near/sub-threshold do­

main will be discussed. Then, two asynchronous methods adapted to synchronous

pipelines will be presented, illustrating their effectiveness in the near-threshold

voltage regime. Finally, an experimental simulation setup will be presented and

discussed, comparing the results with previous works and illustrating the potential

throughput advantages of the proposed designs.

108

5 10 15 20 25 30 35
0

10

20

30

40

Adder Delay (ns)

#
 o

f
O

cc
u

rr
en

ce
s

Chosen Monte
Carlo Case

5 10 15 20 25 30 35
0

50

100

150

Adder Delay (ns)

#
 o

f
O

cc
u

rr
en

ce
s

W
o

rs
t-

ca
se

 S
TA

R
az

o
r

TA
C

D

C
SC

D

(a) (b)

Figure 7.1: Histograms of (a) Monte Carlo chip-to-chip delay of the STA and (b)
delay of changing FIR filter data on a 16-bit adder with error-detection speeds
marked.

7.2 Variation Study

In order to explore the effects of process variations in the NTV regime, a 16-bit

Carry-Lookahead (CLA) adder was synthesized in a 90nm CMOS process. Fig­

ure 7.1(a) shows the histogram of a 500-point Monte-Carlo simulation of the CLA

adder, where the inputs are the worst-case static timing analysis (STA) vectors de­

termined by the synthesizer. The figure shows a large standard deviation in delay

while operating at a near-threshold voltage of 0.5V. On top of process variation-

induced timing uncertainty, is input vector variation. Figure 7.1(b) shows the

simulated delays of the same adder at one particular Monte-Carlo case, where the

input vectors are supplied from the outputs of a FIR filter. Further, these vector-to­

vector timing variations worsen as the circuits operate deeper in the near-threshold

regime.

Figure 7.2 shows the potential speedup that can be ideally achieved with the

ability to detect all timing errors. For this simulation, the worst-performing Monte

109

 20 40 60 80 100 120
 20

 40

 60

 80

 100

Clock Frequency (MHz)

T
h

ro
u

gh
p

u
t

(M
IP

S)

 20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

Er
ro

r
R

a
teSTA

(Worst-Case)

Ideal
(200%)

RAZOR
(20%)

Figure 7.2: Potential throughput improvement with ideal error detection

Carlo case from the 500 simulated was chosen, resulting in a worst-case clock speed

of 32MHz (as opposed to a best-case speed of 166MHz). Next, 1000 add-vectors

from a low-pass FIR filter using electroencephalography (EEG) data were extracted

from a Matlab simulation, and then simulated with a 16-bit carry-lookahead adder

operating in near-threshold. Using either the micro-rollback or counterflow pipeline

error-recovery methods [119], assuming that an ideal error detection method exists

(one that can perfectly detect all errors at any clock speed), the potential speedup

can be as much as 200%.

These HSPICE simulation results suggest that circuits operating in the near-

threshold regime cannot afford to be margined for the worst-case while still ensur­

ing error-free operation with predictable yield, in regards to both throughput and

energy-efficiency.

110

7.3 Proposed Error Detection Methods

The following section introduces two completion-based error detection techniques

that can improve throughput beyond the limitations of conventional Razor circuits.

The first, Transition Aware Completion Detection (TACD), is a fully synthesiz­

able method similar to Razor circuits. The second, known as Current Sensing

Completion Detection (CSCD), is an analog approach that uses a current sensor

to monitor the supply droop to detect errors. Both methods were introduced for

asynchronous operation in Chapter 6.

7.3.1 Transition Detecting

Conventional Razor circuits detect errors due to output changes after the clock

edge. The proposed TACD method detects errors based not on output value

correctness but on output value transitions, and not after computation completion

but during the computation. A detailed description of TACD is presented in

Section 6.5.1.

7.3.1.1 Detector Resiliency

Because the TACD error-detector will be used in the same highly-variable near-

threshold environment as the combinational logic, it must be designed for error-

free operation. Because the detector uses only simple logic parts, it can be easily

tuned for near-threshold operation, and the detector as a whole can continue to

111

operate in the presence of variations. dinv can be determined using simple delay

tests, and can therefore be easily tuned using off-line calibration after post-silicon

fabrication. For example, off-line delay-path tuning was previously proposed with

tunable replica circuits (TRCs) [73].

7.3.2 Current Sensing Completion Detection

CSCD [116] consists of an analog sensor that senses the current through a group of

combinational logic via a resistor or power-gate transistor. When a system begins

to compute on new input vectors, the logic’s current consumption increases. When

this current consumption abates to a steady state, the computation has completed.

While these types of circuits have been evaluated for asynchronous operation (such

as the design presented in Section 6.5.2), they have not been applied specifically

to synchronous systems operating in near-threshold where timing variations are a

critical concern.

The proposed CSCD method consists of a clocked, offset-programmable, dy­

namic sense-amplifier that measures the voltage droop across a large PMOS power-

gate transistor (Figure 7.3(a)). As power gates are becoming ubiquitous in modern

digital designs [120], they do not contribute to the area overhead for this work.

Because the current consumption only needs to be measured at the clock edge,

there is no need to use a continuously-monitoring sensor, like that in asynchronous

versions of CSCD [116]. Figure 7.3(b) shows a sample SPICE waveform of the

virtual supply droop and resulting error detection at the clock edge.

112

clk

Logic

P
ip

e
lin

e
 R

e
gi

st
e

r

error

P
ip

e
lin

e
 R

e
gi

st
e

r

VDD

VSENSE

3µ cal<0:127>

n<0:5>

n<6:13>

Noise Filter

M=128

M=2

M=6

M=8

done

(a)

Adder Out

Clock

Error

45 50 55 60
0.35

0.4

0.45
Supply Droop

Time (ns)

Adder Out

Clock

Error

45 50 55 60
0.35

0.4

0.45
Supply Droop

Time (ns)

0.5

Sensing
Threshold

(b)

Figure 7.3: (a) CSCD schematic, (b) CSCD timing diagram.

113

7.3.2.1 Sensor Resiliency

The CSCD sensor will operate in conditions that are more harsh than typical

super-threshold operation. These conditions include process variations, slow NTV

operation, temperature variations, small virtual supply droops (affecting minimum

input sensitivity), and supply noise.

In order to combat the exacerbated process variations that occur in the NTV

regime, a well-known offset calibration scheme in the form of current steering is

chosen [121], as shown in Figure 7.3(a). A current-steering DAC along with a

simple one-time calibration procedure is used to set the residual offset below 5mV

under most extreme variations, including near-threshold operation. To perform

the calibration, one tail of the sense-amplifier is chosen and the calibration bits of

the current DAC are incremented once for each calibration cycle. Once the sensor

reports the error signal the calibration is subtracted to set the sensor threshold just

below the settling voltage of the supply. This calibration scheme can be extended

to combat slow-changing variations like temperature by performing live in-situ

calibrations periodically.

Figure 7.4(a) shows a histogram of the calibrated offset using 8-bits of cali­

bration of the CSCD sensor. Only 2 of the 100 cases have large offsets above

5mV. Larger offsets can be compensated for by increasing the dynamic range of

the reference currents into the quantizer.

The CSCD sensor must make a quantization before a new set of data is clocked

into the pipeline stage. This is analogous to the min-path race condition problem

114

that exists for Razor-based systems. Figure 7.4(b) shows a plot of the sensor

conversion speed relative to flip-flop D-Q delay across 100 Monte Carlo points.

The majority of cases result in faster conversion speed than the D-Q delay. If

timing is a concern, small delay buffers can be added between the sensor and the

flip-flop clocks.

0 10 20 30 40 50
0

20

40

60

80

8-bit Calibrated Sensor Offset (mV)

#
 o

f
O

cc
u

rr
en

ce
s 2% Offset Above

5mV Across
Monte-Carlo

-2 -1 0 1 2 3
0

5

10

15

20

Required Sensor Margin Before Flip Flop Clock (ns)

M
o

n
te

 C
ar

lo
 O

cc
u

rr
e

n
ce

s

Flip Flop Faster Than SensorSensor Faster Than Flip Flop

 1 FO4 delay
 2% of clock

-3

(a) (b)

Figure 7.4: (a) Offset calibration of CSCD across 100 Monte Carlo simulations,
(b) Speed of sensor stays relatively fast in NTV regime.

One important concern with all CSCD methods is sensing margin. The voltage

droop on the virtual supply needs to be large enough to allow the detection of

computational errors, but small enough to mitigate a negative impact on perfor­

mance, due to the large voltage drop on the virtual supply. Figure 7.5 plots both

logic speed and sensing margin versus power gate size. It can be seen that this

voltage drop can be quite large (˜40mV) without negatively impacting speed. For

this work, a 100µm power gate was chosen not only for its droop and speed charac­

teristics, but also due to its smaller impact on area, compared with a larger power

gate that provides a minimal speed improvement. The power-gating transistor is

parallelized and digitally controlled (30 parallel header-PMOS transistors), thus

115

0 50 100 150 200 250 300
0.5

1

1.5

2

2.5

3

3.5

Power Gate Size (m)

A
d

d
e

r
D

e
la

y
(n

s)

0 50 100 150 200 250 300
20

30

40

50

60

70

80

Se
n

si
n

g
M

a
rg

in
 (

m
V

)46mV droop with
100um power gate

(minimal speed loss)

Figure 7.5: Power gate sizing has very minimal affect on speed while maintaining
a reasonable sensing margin.

allowing for programmable amounts of voltage droop across process skews. It is

also important to note that this method is strictly limited to supply voltages above

or near the near-threshold operating point, as it will only work when the switching

current is discernible from the leakage current. This limits this sensor to process

nodes with lower leakage and possibly higher operating voltages than the optimal

near-threshold voltage.

Another major concern for this type of circuit is noise. Measuring a small

voltage drop across a header transistor can be extremely difficult, especially with

supply noise and other sources of noise. Hence, a proposed differential configu­

ration of the sensor can cancel common-mode noise at the inputs, assuming both

inputs experience the same noise filtering. In order to make sure the two dif­

ferential inputs are correctly correlated with any power-supply noise, a replica

RC-matching circuit was designed. Shown in Figure 7.3(a), the circuit consists

116

0.4

0.6

V
D

D
 (

V
)

-0.2
-0.1

0
0.1

U
n

fi
lt

er
e

d

45 50 55 60
-0.2
-0.1

0
0.1

Time (ns)

Fi
lt

e
re

d

Figure 7.6: Input referred supply noise before and after calibrating CSCD sensor’s
RC noise filter.

of digitally-controlled resistors and capacitors that can be tuned post fabrication

to match the RC characteristics of the power gate and logic. Simulations show a

successful power-supply noise reduction of 20x (from 200mVpp to under 5mVpp)

at the differential inputs after proper digital calibration (Figure 7.6).

7.4 Results

In order to quantify the robustness of the two near-threshold error detection meth­

ods, simulations were performed at a near-threshold voltage of 500mV, comparing

Razor, TACD, and CSCD. Using the worst-case static variations utilized in sec­

tion 7.2, HSPICE simulations were carried out on all three error-detection methods.

The simulations were designed to find the fastest clock speed at which an error

could be detected. Hence, the 16-bit CLA adder was simulated across Monte Carlo

process variations, on 1000 input vectors extracted from the EEG FIR filter. To

117

ensure simulation coherency between the three different error-detection methods,

the outputs and current consumption of the adder were first extracted and then

used as input stimuli for separate simulations of each error detector. Each error-

detection method was simulated to find its optimal operating speed, given the

simulated delays of the 1000 vectors.

7.4.1 Razor Results

In the case of Razor, the fastest clock speed can only increase 20% faster than the

STA, whereas TACD and CSCD can be clocked much faster. For Razor, given

the limited input data simulated, no errors were generated because all delays were

20% faster than the worst case. This implies that Razor does yield a throughput

of 20%, but it is clear that it could benefit from an even faster clock speed. Hence,

the choice of these 1000 input vectors may not have stressed the worst-case logic

delays, which sets the delay of the Razor clock, and therefore the best possible

clock speedup.

7.4.2 TACD Results

Because TACD essentially lengthens the datapath by adding inverter delays be­

fore the error signal, its throughput exceeds Razor only marginally. Figure 7.7

shows the simulated throughput using TACD. Because of the finite delay of the

TDs, many residual error signals are flagged, resulting in a 29% improvement in

118

throughput with TACD, after considering the error rollback delay overhead. Note

that TACD does not require a min/max logic delay guarantee within 20%, as re­

quired with Razor, but does require an initial off-line calibration procedure for

calibrating the inverter buffer delays.

20 25 30 35 40 45 50
20

25

30

35

40

45

Clock Frequency (MHz)

T
h

ro
u

gh
p

u
t

(M
IP

S)

20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

Er
ro

r
R

a
te

TACD:
29% Throughput

Improvement

Figure 7.7: Simulated throughput of TACD.

7.4.3 CSCD Results

Simulated throughput for CSCD in the near-threshold regime shows significant

improvements over both Razor and TACD. Since CSCD does not add any delays

to the datapath, its throughput nearly triples Razor’s average performance im­

provement (56%). As shown in Figure 7.8, the throughput saturates due to errors

generated by the finite settling time of the virtual supply droop and small delay

increase associated with the droop, as seen in Figure 7.5.

119

20 25 30 35 40 45 50 55 60
20

30

40

50

60

Clock Frequency (MHz)

T
h

ro
u

gh
p

u
t

(M
IP

S)

20 25 30 35 40 45 50 55 60
0

0.025

0.05

0.075

0.1

Er
ro

r
R

a
te

CSCD:
56% Throughput

Improvement

Figure 7.8: Simulated throughput of CSCD

7.4.4 Energy, Area and Complexity

Along with the throughput improvements, Table 6.1 compares the energy and

area overheads of the error-detection methods. Error recovery methods [119] are

neglected because their overhead is independent of the detection method used. At

976.5fJ , Razor’s energy consumption is dominated by the energy of the shadow

latch. The minimum-delay buffer insertion contributes 21% to the overall energy

increase.

Exhibiting a significantly less area footprint to Razor (mainly due to the large

overhead of Razor’s inserted min-delay buffers), TACD consumes energy similar

to Razor.

CSCD, with a capacitance equivalent to one large logic gate, consumes the

least amount of energy. Furthermore, because it is clocked only once per cycle,

CSCD’s dynamic contribution to the energy is much smaller than the other two

methods. However, it does require more area than TACD, due to the large offset

and calibration process required to ensure correct near-threshold operation.

120

Table 7.1: Comparison of error-detection methods.
No Detection Razor TACD CSCD

Average
Energy

192.5fJ /comp 976.5fJ /comp 910.3fJ /comp 195.9fJ /comp

Throughput
(% Increase)

32MIPS (0%) 38.4MIPS (20%) 41.2MIPS (29%) 49.9MIPS (56%)

Area 15495µm2 24080µm2 15796µm2 16005µm2

Complexity NA Medium Medium High
Near-
Threshold
Variation
Adaptability

None None Tunable TDs Robust
Calibration

One other key factor contrasting all three of these designs is complexity. First,

it has not been proven that the minimum-delay buffer insertion required for Ra­

zor’s operation will scale correctly for near-threshold operation. Therefore, al­

though any synthesizable form of Razor may be relatively simple to implement,

Razor circuits are difficult to guarantee error-free operation across instances of ex­

treme variations. TACD, being fully synthesizable, is easy to implement with logic.

However, improving its performance using architecture-dependent techniques and

post-fabrication tuning of the transition detectors increases TACD’s implementa­

tion complexity. This is especially true for ensuring glitch-free operation of the

error signal across process corners. CSCD, exhibiting the best throughput im­

provements, is also the most complex to implement. Designing and adding the

analog sensor to a digital circuit will be challenging, such as the post-fabrication

calibration required for proper operation across process and supply voltage varia­

tions.

121

7.5 Conclusion

This chapter introduces two new approaches to circuit-level timing error detection.

Transition-Aware Completion Detection (TACD) observes the activity of the out­

puts of the combinational logic using an XNOR gate and a variable-delay inverter

chain, which is calibrated based upon the amount of switching activity that exists

in the logic. The technique of Current-Sensing Completion Detection (CSCD) to

the near-threshold domain was also introduced. CSCD consists of a current sensor

that bases its completion/error signal on the current consumption profile of com­

binational logic across a power gate. These methods were compared to the well

known Razor error-detection technique operating in near-threshold. Comprehen­

sive HSPICE simulations show that both TACD and CSCD outperform Razor in

throughput, area, and energy and they also provide a good basis for future work

in near-threshold error detection.

122

Chapter 8: Current Sensing Completion Detection Test

Chip

8.1 Introduction

The CSCD design described in Chapter 7 is a very promising solution for robust

and reliable near-threshold error detection. In order to prove it’s effectiveness a

test microchip was designed in a commodity 65nm CMOS process. This chapter

describes the chip design and measurement results as supply voltage is scaled. After

a brief discussion of previous work, the rest of this chapter goes on to describe the

test chip in detail. The design is thoroughly analyzed, measurement results are

shown, proving the effectiveness of a real implementation of CSCD, and conclusions

are drawn.

8.2 Previous Work Comparison

In order to better illustrate the potential benefits of CSCD, Fig. 8.1 shows the

overheads associated with Razor, TRC, and CSCD. Table 8.1 then draws a quali­

tative comparison of the three designs. The Razor technique (Fig. 8.1(a)) has three

123

Table 8.1: Comparison of existing error-detection method with measured test chip.

Razor [5] TRC [73] This Work

Detection Method Shadow Latch Delay Line Current Sensing
Area Overhead 6.9% (with 17% coverage) 2.2% 1-2% / sensor
Detection Window 1̃3-20% 100% 100%
Speedup Potential 13-20% None Not Limited
Main Design Challenge Hold Time Delay Matching Noise, Sensing Margin
Primary Limitation Detection Window False Positives False Positives
Low Voltage Operation Large Buffer Overhead Max Path Calibration Droop Calibration

main components that need to be designed for it to work properly: min buffer in­

sertion, razor flip flops, and an OR-tree. As discussed in Chapter 3, the min-buffer

can be difficult to design for when attempting to make all paths delays to be as

matched as possible. This is especially true when operating at low voltages. All of

the overheads associated with Razor expand with data width. TRC (Fig. 8.1(b))

does have a distinct advantage over Razor in that the overhead is small but the

delay line can only replicate the worst-case delay. Meaning, even if a computa­

tion finishes faster than the max path the TRC will still flag an error. CSCD’s

overhead complexity (Fig. 8.1(c)) is similar to TRC, yet with the detection ability

of Razor. The only overhead required per group of logic is a single sensor. This

completely eliminates the requirement for strict timing constraints and precision

digital design (i.e. no min-path buffer insertion). It also allows for an unlimited

timing speculation window since the delay of any path can be detection, not just

the worst cast.

124

FA

FA

FA

HA

HA

HAFA

FA FA HA

RFF
D Q

Err

RFF
D Q

Err

RFF
D Q

Err

RFF
D Q

Err

Buffer Insertion

OR Tree

Global
error

Additional design
overhead

Digital Sensor: Razor

(a)

FA

FA

FA

HA

HA

HAFA

FA FA HA

DFF
D Q

Global error

DFF
D Q

DFF
D Q

DFF
D Q

Tunable Replica Circuit
DFF
D Q

Digital Sensor: TRC

FA

FA

FA

HA

HA

HAFA

FA FA HA

DFF
D Q

Global error

DFF
D Q

DFF
D Q

DFF
D Q

Analog Sensor

Power
gate

(b) (c)

Figure 8.1: Conceptual demonstration of: (a) Razor technique; (b) TRC technique;
(c) Proposed current sensing completion detection technique.

125

8.3 CSCD Test Chip Design

The test chip was designed using a mixed-signal design flow in 65nm CMOS. Two

SIMD cores [122] were custom designed using an all-digital design flow identical to

what would be seen in industry. The cores were written in Verilog, synthesized in

Design Vision, and place and route was performed in SOC Encounter. The Cores

consist of a 5-stage pipeline with power gates connected between the supply rail

and the virtual supply of each stage. Fig. 8.2 shows a basic block diagram of each

core.

Instruction
Generator
Register

File
Multiply
(stage 1)

Add

Write
Back

SIMD Lane

P
o

w
e

r G
ate

s

28
 C

u
rren

t Sen
so

rs

P
o

w
er G

ates

14
 C

u
rren

t Sen
so

rs

Multiply
(stage 2)

Instruction
Generator
Register

File
Multiply
(stage 1)

Add

Write
Back

SIMD Lane

Multiply
(stage 2)

Figure 8.2: Block diagram of test chip with sensors connected to SIMD lanes.

126

8.3.1 SIMD Pipeline Design

8.3.1.1 Instruction Generator

The first instruction fetch stage (typical to modern pipeline design) has been re­

placed by an Instruction Generator (IG) stage. This stage is used to test the later

stages by generating a predetermined set of instructions that exercise a worst-case

use profile of the pipeline. As shown in Fig. 8.3(a) this stage consists of a linear

feedback shift register (LFSR), counter, and instruction generation logic. After

being reset, the LFSR starts generating 16-bit pseudo-random numbers. The in­

struction logic takes these numbers and generates an instruction that it knows will

compute without any memory access hazards. It also ensures that all Register File

(RF) words are written to by the 31st clock cycle. Once the counter reaches 32

the instruction logic starts to generate instructions that incorporate hazard-free

memory read operations.

8.3.1.2 Register File

The RF stage is a flip-flop based synthesized 32-byte register file that is capable of

single-port read and single-port write simultaneously (Fig. 8.3(b)). Each word is 32

bits long with 8 total words. One address decoder is used for reading, eliminating

the need for clocking during a read operation. A write address decoder simply

controls a clock gate for each word. The current sensors for the 28-sensor version

of the pipeline have one sensor per logic word. The 14-sensor version has one

127

sensor per two logic words. Multiplexer and decoder logic is divided evenly among

the sensors for each version.

8.3.1.3 Multiplier

The 16-bit multiplier in this design is a simple array multiplier with 16 stages.

The pipeline is split up into two stages with 8 array-stages in each. Fig. 8.3(c)

illustrates the current sensor breakdown for the multiplier. As can be seen, for 28

sensors each 16-bit slice has its own sensor. For 14 sensors, every two slices have

their own sensor. The multiplier is partitioned such that an equal worst-case delay

for each stage is maintained.

8.3.1.4 Adder

The next stage of the pipeline is a 32-bit adder that can either add the result of

the multiplication with a constant or a word from memory. The adder consists

of a simple ripple-carry topology. For the 28-sensor pipeline two sensors are used

on the adder, evenly divided in half through the critical path. For the 14-sensor

version only one sensor is used for the whole adder.

128

=+
DFF

D Q

1
32

R

next inst.

LFSR 16 Instruction
Logic

+
Scan Chain

Data
word

Data
word

Data
word

addr_rd

data_out

clkdata_in

addr_wr

(a) (b)

+0
B[0]
A[0]

+0
B[1]
A[0]

+

A[1]

+

+

0
B[2]
A[0]

0
B[3]
A[0]

B[0]

+

A[1]
B[1]

+

A[1]
B[2]

+

A[1]
B[3]

+

A[2]
B[0]

+

A[2]
B[1]

+

A[2]
B[2]

+

A[2]
B[3]

+

A[2]
B[0]

+

A[2]
B[1]

+

A[2]
B[2]

+

A[2]
B[3]

14-sensor supply partitions

28-sensor supply partitions

Y[0]

Y[1]

Y[2]

Y[3]

(c)

Figure 8.3: Detailed architecture of pipeline stages: (a) Instruction Generator; (b)
Register File; (c) Pipelined Array Multiplier (stage 1).

129

8.3.1.5 Write Back

The final stage of the pipeline contains no logic and therefor has no sensors. The

write back (WB) stage passes the result of the adder either back through the adder,

multiplier, or RF to be written. The logic associated with each of these operations

is contained in its respective stage.

8.3.2 Current Sensor Design

The current sensor in this chip is designed similar to the sensor described in Section

7.3.2. Some modifications have been made to improve operation in the 65nm

process it was designed in, as well as the addition of testing features. Namely: a

test input mux, noise replica filter modifications, power gate sizing changes, and

the addition of a ’mincal’ transistor.

The offset-calibrated quantizer shown in Fig. 7.3(a) is the same as what is used

in this chip except there are 8 offset calibration bits instead of 9. It was found

through simulation that 8 bits were more than what was needed to ensure that

the offset could be calibrated passed 0mV . As can be seen in Fig. 8.4 a test mux

was added to enable analog test voltages to be used to characterize and calibrate

the sensors off-line. These muxes can also take the analog VSENSE voltages from

a single sensor to off chip, in order to verify the effects of power gate sizing on the

virtual supply.

It was found through simulation that the component of the noise replica filter

described in Section 7.3.2 that had the most impact on noise rejection was bits

130

G
[0

]

50x

G
[1

]

100x

G
[3

]

G
[2

]

G
[4

]

800x400x200x

G
[0

]

1x

G
[1

]

2x

G
[3

]

G
[2

]

G
[4

]

16x8x4x

mincal

VSENSE

Digital Logic

testn

testp

test

mux

error

VFILTER
offset

8

VDD

noise

replica

filter

tunable

power

gate
clkSENSOR

dataIN

Digital Logic
dataOUT

clkCPUclkCPU

VDD

Noise
cal

Sensor

Tunable
power gate

VSENSE clkSENSOR

error

Figure 8.4: Schematic of current sensor used in test chip.

131

n < 0 : 5 >. The capacitance’s contribution to common mode noise rejection was

minimal. Removing it from the design had almost no negative impact and made

tuning much easier. As can be seen in Fig. 8.4, a 5-bit noise replica circuit was

chosen for two reasons. First, reducing the number of bits from 14 to 5, reduces

the requirements on the calibration circuitry complexity. Secondly, 5 bits is the

same amount of tuning range as the power gate, potentially allowing for the replica

filter and power gate to share the same calibration bits/circuitry to further reduce

design complexity.

Based on simulations in 65nm with the SIMD design that was to be placed on

the chip, the power gate sizing requirements were refined. A 5-bit binary weighted

power gate was determined to have more than enough tuning range to allow for

a suitable sensing margin across all process corners. The same power gate was

used for each sensor. This set the minimum and maximum requirements for the

amount of logic each sensor could protect which is part of the reason overheads of

14- and 28-sensor configurations were chosen. If a custom power gate was designed

for each pipeline stage, instead of for each sensor the design could be optimized

further. The primary limitation of the current power gate configuration is the LSB,

or minimum size which, as will be described in Section 8.4, limits the minimum

supply voltage the droop can still be detected with.

Another addition to this sensor design is the ’mincal’ transistor. This transis­

tor is designed to have very low leakage and little response to process variations

(via long channel length and up-sizing). When activated, the transistor pulls the

worst-case (smallest) amount of current that a single logic gate would pull when

132

switching. This allows for the sensor’s threshold to be calibrated to the virtual

supply voltage at that state. This dramatically simplifies calibration requirements

for each sensor and reduces overall calibration time.

8.3.2.1 Sensor Calibration Procedure

The current sensor and test chip were designed with sensor calibration in mind.

Great effort was put into ensuring that calibration could be carried out as efficiently

as possible with simple and limited hardware overhead. Fig. 8.5 shows a flow chart

of the proposed calibration procedure for this sensor design. The procedure is

generally divided into two steps: offset cancellation and power gate sizing.

The first step is to maximize the power gate size to ensure the inputs to the

sensor are as close to each other as possible (minimizing any leakage-induced droop

in the VSENSE node). The sensor is then clocked to determine its initial offset

without any current steering enabled. Depending on the sensor result, current

steering will be enabled on either the non-inverting side (Cal) or inverting side

(Cal b). Once this is done, the sensor will be clocked a maximum of 8 more times,

one for each binary bit of the DAC. Because the DAC is binary weighted and not
thermometer weighted the calibration time is dramatically cut down to O log(n)
instead of O n complexity. Once the sensor has enough offset calibration to switch

it’s value the offset is subtracted to make sure the sensor’s steady state is such that

it is reporting no error.

Next, the power gate must be sized properly to detect the current of a single

133

Begin Clock Sensor

Enable mincal

Sensor
Output

Changed

Enable Cal_b

Error
Detected

Yes

Enable Cal

No

Clock Sensor

Increase
Calibration

Clock Sensor

No

Decrease
Calibration

Yes

Sensor
Output

Changed

Increase
Calibration

No

Clock Sensor

Yes

Shrink Power
Gate

Error
Detected

No

Max Power
Gate Size

Disable mincal

Yes

Done

Figure 8.5: Flow chart of calibration procedure.

134

logic gate switching. Just as the offset was tuned with the DAC, the power gate

too only requires O log(n) complexity as it is binary weighted. The ’mincal’

transistor is enabled, the sensor is clocked, and the power gate is tuned smaller.

Once the power gate gets small enough to trip the sensor with the current draw of

the ’mincal’ transistor, calibration is done and ’mincal’ is disabled.

8.3.3 Design for Test Features

The chip (Fig. 8.6) has many features allowing for easy testing of the pipelines and

current sensors. These features were specifically designed to allow for easy testing

and debugging while not impeding the operation of any of the critical circuits.

A current bias generation circuit was designed to allow a programmable current

to be sent to each individual sensor’s current-steering DAC. Two analog input pads

can be used to put any arbitrary analog voltage into the test inputs of each sensor.

All sensors share the same two reference voltages. This can also be used to pass

an analog voltage from one of the sensor’s inputs off chip.

A dual-clock scan chain is used to take digital data in and out of the chip. This

can control every calibration bit of every sensor on the chip. It can also control

clock gates that enable/disable any single sensor. Output data from the sensors

can be taken out of the chip as well. Every pipeline register in the SIMD cores can

be loaded and/or scanned out independent of the sensors.

Finally, a triple modular redundant (TMR) error counter and locator unit

with a high-speed replica pipeline can be used for more advanced testing. The

135

Figure 8.6: Die micro-photograph of test chip.

136

high-speed replica pipeline is identical to the two SIMD cores but designed to be

operated at a higher voltage, guaranteeing faster operation. The output of each

pipeline stage of each pipeline and the output of each current sensor is connected

to the TMR block. If one of the SIMD lanes has an error relative to the replica core

the TMR block will check to make sure the corresponding current sensor flags the

error. The TMR block can track up to 8 errors per pipeline stage before needing

to be scanned out.

8.4 Chip Measurement Results

In order to measure the operation of the current sensing test chip, a custom PCB

was designed as well as a fully-automated software test platform (Fig. 8.7). The

PCB was designed with several individually controllable low-noise, low-dropout

voltage regulators. This allows for any supply voltage of the chip to be tuned from

1.2V down to a sub-threshold voltage of 0.2V. The PCB is also equipped with a

dual-output 16-bit voltage DAC connected to the two analog sensor test inputs.

All low-speed digital I/O signals go through level shifting before connecting with

a USB controlled Ni-DAQ controller. Two 50-ohm high-speed clock signals are

terminated next to the chip which are driven by an off-chip clock generator with

programmable frequency, duty-cycle and skew.

137

Figure 8.7: Lab test setup with custom designed test board and automated software
running in LabView CVI.

8.4.1 Sensor Calibration Analysis

Not only is it critical that the sensor’s offset be calibrated below the noise floor

of its inputs but it must also be able to be tuned within several millivolts of the

desired sensing margin. In order to ensure this critical part of the sensor works

properly in this test chip the offset calibration was over-designed. The sensor was

originally designed with 9 bits of calibration. The LSB was too small to work

effectively across process variations so the number of effective bits were dropped

to 8.

At 1V, 8 bits of calibration yields sub-1mV calibration steps which is more

than what is required. As shown in Fig. 8.8 the worst-case offset for all 42 sensors

138

-200

0

200

750mV 1V
S

e
n

so
r

o
ff

se
t

[m
V

]

750mV 1V

Before cal After cal

Figure 8.8: Measured comparator offset before and after calibration.

on the chip was less than +/-175 mV . By increasing bias current and achieving

more than 1mV steps only 6 bits are required for proper tuning.

At 0.75V supply operation, the offset per sensor does go up, requiring one more

bit of calibration. This makes the total required at 0.75V to be 7 bits, still lower

than the available 8. As can be seen in Fig. 8.8 the offset of all sensors on the chip

can be calibrated beyond the required offset with at most 7 bits.

8.4.2 Droop Plot Measurements

The sensors themselves can be used as on-die oscilloscopes to measure virtual sup­

ply droop in-situ. Because of their high precision, with sub-1mV voltage accuracy

and sub-1ps timing accuracy from an off-chip source a great deal of information

can be gathered. Fig. 8.9 shows four captured on-die voltage droop profiles, us­

ing the sensors as on-die oscilloscopes. In this particular computation (and many

others), the adder is the critical path. Not only does this measurement prove that

139

0 500 1000 1500
-40

-30

-20

-10

0

10

Time [ps]

V
SE

N
S

E
Su

p
p

ly
 D

ro
o

p
 [

m
V

]

Adder @ 1V

Adder @ 0.75V

RF Write @ 1V

RF Read @ 1V

Maximum Logic Delay

Figure 8.9: On-die voltage droop plots captured using the analog sensors as on-die
oscilloscopes, for logic operating at 1.0V and 0.75V. Arrows at top denote when
logic operation has finished.

the sensors are working, but it can also be used to determine hot-spots in compu­

tations and ensure designs are being partitioned correctly in the place-and-route

phase. In this case it can be seen that better partitioning could be done to better

balance the register file current consumption per sensor relative to the adder.

140

0 5 10 15 20 25 30
-60

-50

-40

-30

-20

-10

0

Power Gate Size [binary code]

Si
m

u
la

te
d

 C
M

R
R

 [
d

B
]

Static Value
Best Calibration

Figure 8.10: Simulated supply noise re­
jection at inputs of comparator after
noise filtering.

0 1 2 3 4 5 6
0

20

40

60

80

100

Sensing Margin [mV]

N
o

is
e

 In
d

u
ce

d
Fa

ls
e

 P
o

si
ti

ve
s

[%
]

Figure 8.11: Sensing margin impact on
noise-induced false positives at 1V sup­
ply.

8.4.3 Noise Analysis

Noise rejection can dramatically degrade the sensor performance, and is one of the

limiting factors for robust analog-based error detection. In order to reject asym­

metric supply noise on the sensor inputs, a small replica power gate is connected

between the main digital supply and the non-inverting input of the comparator.

This digitally-tunable replica power gate improves input noise rejection by 25dB

over an analog sensor with no replica (Fig. 8.10).

The experimental measurements in Fig. 8.12 show that the noise floor can be

improved to less than 7mV for a 1V supply, relaxing the requirements for the power

gate size. The probability of a noise-induced false positive is therefore directly

related to the power gate size and sensing margin set by the comparator. This

probability of noise-induced false positives is shown in Fig. 8.11. The probability

of a false positive does increase quickly. As the sensing margin decreases it is also

important to note that it has no affect on false negatives. In most systems a small

141

6mV12mV

Before Calibration After Calibration

Figure 8.12: Measured on-die scatter plots of sensing droops before and after basic
calibration of noise filtering.

amount of false positives can be tolerated but more often than not, false negatives

can have catastrophic consequences.

8.4.4 Power Gate Sizing

Smaller power gate sizes increase the voltage droop margin while slightly penalizing

the speed (Fig. 8.13). For a 1V supply, the power gate size requirement results

in a 0.03% speed reduction. At 0.75V the power gate is programmed smaller due

to less dynamic current, resulting in a 0.3% speed reduction. The chip could not

be measured for VDD < 0.75V since the minimum power gate size was too large,

reducing the voltage droop amplitude below the sensor sensitivity. However, the

sensors functioned properly below 0.55V.

142

0 5 10 15 20 25 30
0

0.1

0.2

0.3

Power Gate Size [binary code]Sp
e

e
d

 R
ed

u
ct

io
n

 [
%

]

1V Supply

750mV Supply

Required Power
Gate Size at 1V

Required Power
Gate Size at 750mV

Figure 8.13: Power gate sizing for required voltage droop vs. impact on speed
reduction.

8.4.5 Throughput Analysis

Fig. 8.14 shows the throughput and energy improvement of a SIMD lane using

current sensing, compared with simulation models of TRC and Razor. It is clear

that all three designs allow for a speedup beyond the margin set by the electronic

design automation (EDA) tool. From this graph it appears that there is little

difference between the three sensing methods as far as energy and throughout.

To better understand the comparative performance of each error detection tech­

nique throughput improvement (in percent) should be examined. Fig. 8.15 shows

the throughput increase in percent above the EDA margin for all three designs.

The CSCD method performs similar to Razor at 1V and outperforms both meth­

ods at 750mV. With an even smaller power gate size, the proposed CSCD is further

expected to outperform when VDD < 0.75V, since the widely varying delays are

difficult to predict with the conventional methods.

143

0 200 400 600 800

0.8

1

1.2

1.4

1.6

Throughput (MIPS)

En
e

rg
y/

O
p

e
ra

ti
o

n
 [

n
J]

Sensor
TRC [2] Model
RAZOR [1] Model
EDA Margin

1V

750mV
Simulated

550mV

Figure 8.14: Comparison of throughput vs. energy efficiency at various supply
voltages vs. conventional.

1V 750mV 550mV Simulated
0

10

20

30

40

50

Th
ro

u
gh

p
u

t
Im

p
ro

ve
m

e
n

t
[%

]

TRC [2] Model

RAZOR [1] Model

This Work

Figure 8.15: Throughput improvement beyond the EDA margin vs. conventional.

144

By inspection of Fig. 8.14 a slight decrease in energy/operation can be seen

as throughput is improved at each voltage. This improvement is greater than

2% on average, because the complexity of the logic in the lanes being tested is not

complex enough to overcome the larger percentage of flip-flop energy in the design.

In larger designs a larger energy improvement is expected.

8.4.6 Results Summary

Table 8.2 shows a summary of the area and power measurement results for the

test-chip presented in this chapter. As discussed in Section 8.4.4, because the

sensors did not work below 0.75V due to the power gate size settings, only 1V and

0.75V are reported.

Table 8.2: Design summary of test chip.
1V Supply 0.75V Supply

Technology 65nm CMOS
Die Area 1mm x 1mm
Transistor Count 48k/Lane, 100/Sensor, 343k/Chip
Area Overhead / Sensor 1.4% (8-bit cal), 0.6% (6-bit cal)
Sensor Area Overhead / Lane 19-39% (8-bit cal), 8-17% (6-bit cal)
Power / Lane 9.34 mW 4.95 mW
Power / Sensor 169 µW (225 fJ) 45 µW (69.2 fJ)

145

8.5 Future Work

This successful test chip design has proven that it is possible to implement current

sensing at a high level of integration. It has also shown that there are possibilities

for improvement to both the sensor design and system design to make CSCD more

attractive.

8.5.1 Sensor Improvements

As mentioned in Section 8.4.1 the number of calibration bits were larger than

needed and the LSB provided more granularity than what was required. In future

sensor versions, the calibration DAC could be redesigned to have a similar dynamic

range with fewer bits, dramatically reducing the area overhead.

In order to target the lower operating voltages of near-threshold, the dynamic

range of the power gate sizing needs to be redesigned. As discussed in Section 8.4.4

the tune-able range of the power gate worked well at 1V and on down to 0.75V.

However, in order push the supply voltage lower, the LSB of the power gate needs

to be smaller to have a large enough sensing margin. Furthermore, it would be

worth while to investigate non-linear power gate tuning as the response reported

in Fig. 8.13 is clearly non-linear at smaller sizes.

146

8.5.2 System Improvements

For this chip, 14 sensors per core and 28 sensors per core are conservatively utilized,

making the area/power overheads quite large (˜25%). If a system can be designed

that guarantees timing errors only happen at the N closest gates to the flip-flop,

some sensors can be removed. For example, imagine a data-path that contains 10

FO4 delays (or a chain of 10 inverters for explanation simplicity). If a maximum

speedup of 20% is desired only the last two inverters need to be sensed. The

overhead of this technique will scale smaller as longer chains are used.

On top of sensing only the end of logic chains, it may be possible to carefully

design a system where it is only necessary to sense N critical paths. This would

further reduce the overhead of this method and would be dependent on the max­

imum speedup desired. Accumulating these methods into a less comprehensive

approach the overhead can be reduced to < 2%, as less sensors are required to

ensure proper operation.

8.6 Conclusions

In this chapter, an analog-based technique to detect timing errors in digital circuits

operating at low supply voltages were presented. The test chip design and mea­

surement results have shown that this method excels over existing digital methods

due to the absence of a detection window and the ability to detect delays faster

than the worst case, improving timing speculation and therefore performance. The

sensors themselves are highly calibrateable allowing for the reliability concern to be

147

pushed to the sensors and out of the digital circuits they are protecting. A 65nm­

CMOS test-chip is measured at 1.0V-0.75V, showing improvements in throughput

and energy efficiency over traditional margining by 25% and 2%, respectively, with

area/power overheads comparable to conventional digital detectors.

148

Chapter 9: Using Current Sensors to Detect Errors in a

Radiation Environment

9.1 Introduction

In this chapter a universal SET (Single Event Transient) detection approach based

on the CSCD sensors demonstrated in Section 8.3.2 is analyzed. This detector is

complete in that it detects all possible SETs, and efficient because it leverages

standard components that are compatible with current manufacturing processes.

This detector relies on the realization that for any CMOS transition that occurs

(erroneous or otherwise), current must flow through that affected circuit. If an

SET occurs and changes the output of a circuit, transient current must be flowing

at the same time when the circuit is expected to be stable (i.e. at the end of

the clock period). The CSCD sensor is specifically designed for logic SETs and

complements techniques for protecting memories and latches. The downside of this

detector is that while SDC is eliminated, false alarms are introduced. This chapter

includes a detailed discussion of the potential for false alarms and their impact

on both processor and system performance. To the best of my knowledge, this is

the first time that current sensing for SET detection within logic is described and

149

evaluated in detail, although it has been mentioned briefly in some prior work.

The rest of the chapter is organized as follows. First, the related work is dis­

cussed in Section 9.2. Then, the proposed detector is described in detail and a dis­

cussion is made on various considerations of its design and of potential false alarm

in Section 9.3. After describing the detector, its incorporation in a processor is

presented in Section 9.4. Section 9.5 then explains the evaluation methodology and

results are presented in Section 9.6. The chapter is then concluded in Section 9.7.

9.2 Related Work

Previous approaches for detecting SETs in general combinational circuits have been

based on some form of replication. Table 9.2 summarizes conventional techniques

and compares them to the proposed approach. The most common and general

approach is to replicate the entire circuit, as in standard Dual- and Triple Modular

Redundancy (DMR or TMR) [123]. Alternatively, in specific cases of well-defined

combinational logic circuits such as ALUs, only a simplified version of the circuit

is added as a form of reduced replication. One well-known example of this tech­

nique is the use of arithmetic codes for error detection [124]. Arithmetic coding

is limited to ALUs only and requires careful design and use. Another form of

partial replication is parity prediction [125–127], which can be used with arbitrary

circuits. However, the overhead of general parity prediction can be close to that of

DMR [125,127], and it is often selectively applied to mostly protect latches rather

than logic, in which case overhead can be reduced but the potential for undetected

150

errors exists [126,128,129]. All replication techniques are costly in terms of energy

and area, especially full replication.

An alternative group of approaches replicates in time rather than in space.

Examples include running the same program, instruction, or operation multiple

times [130–133]. Because SETs are rare events caused by random particle strikes,

repeating computation on the same hardware can be used to provide redundancy.

While this eliminates the requirement for redundant hardware, time replication

negatively impacts performance and efficiency. Furthermore, if care is not taken

to sufficiently separate the multiple execution instances in time, a long duration of

error events resulting from a high-energy particle strike cannot not be detected.

151

Table 9.1: Comparison of particle-strike induced error detection mechanisms for
combinational logic.

DMR
(space)

DMR
(time)

Coding Razor BICS This work

Universal? Y Y N Y Y Y
False negatives? N Na Yb Y N N
False positives? N N Y N Yc Y
Area overhead estimate 100% 50 − 100% 5 − 40% ∼ 20% 15 − 30% ∼ 10%
Energy overhead
estimate

100% 50 − 100% 5 − 40% ∼ 20% 1% < 5%

Evaluated for logic? Y Y Y Y N Y
Easy to integrate? Y N N N Nd Y
Main limitation Overhead False Neg­

atives,
complexity

ALU only,
complexity

Overhead,
min-delay,
false nega­
tives

Latchup
renders
inoperable

False posi­
tives

aOnly if re-execution is delayed

bCan trade-off completeness with overhead.

cNot mentioned or evaluated.

dLatchup concerns.

152

A different approach for SET detection in combinational logic uses timing-

speculation circuits, such as Razor [134], which was previously shown to provide

some detection capability of particle strike induced errors [135]. The Razor flip-

flop, which replicates the storage element, is used to compare the value latched by a

pipeline register with the output of the previous logic stage slightly shifted in time

with a small delay after it was clocked. A difference between these two registers

indicates that an error has occurred. Unfortunately, for this technique to operate

correctly, strict timing constraints are placed on the delays of the combinational

logic, such as the bounding of the min-path delay and the maximum detection

window, thereby increasing the area/energy overhead [136]. Furthermore, similar

to temporal re-execution, this Razor technique may not be able to detect errors

caused by extremely energetic particle strikes. Razor circuits work very well to

detect timing related errors but may not operate correctly in the presence of SETs.

The Razor circuit’s ability to properly detect all SETs is dependent on both the

operating frequency of the system as well as the length of the particle strike. For

example if an SET occurs before the shadow latch and continues through the end

of the clock cycle there is a small probability that Razor will not detect the error

resulting in a false negative. A similar approach to using Razor is possible with

some hardened latch designs, which also rely on two storage elements to achieve

robustness [137].

153

9.2.1 Current Sensors

Current sensing completion/transition detection was introduced as a technique to

design self-timed asynchronous logic circuits [138] by monitoring the current that

flows through the supply to the on-chip logic. After the current profile of the on-

chip logic has settled, the current dissipation will converge towards a steady-state

leakage current, signifying that computation has finished. The idea of completion

detection is similar to our SET detector, although the motivation and analysis

is vastly different. Unfortunately, the mechanism presented in [138] is relatively

complicated and is not amenable to CMOS integration.

Current sensing has been previously evaluated as a mechanism for detecting

SETs in on-chip SRAM [139–141]. For these Built-In Current Sensors (BICS), an

analog current sensor is placed between the bulk node of each transistor and its

respective supply. BICS have been shown to work well for detecting SEUs (Single

Event Upsets) in SRAM. Neto et al. [140] mentions briefly that BICS can be used

to detect logic SETs, but unfortunately, because the sensor is connected to the

bulk contact, there is a high possibility for latchup [142]. Latchup is an event

that can occur in any CMOS process, where a resistance is formed between the

power supply of a transistor and its bulk contact. In the case of BICS, resistors

are deliberately connected between the power supply and the base of parasitic

transistors in the design. An SET current pulse is likely to cause a latchup in

this design, causing the BICS circuit to remain in this self-sustaining latchup state

with a low resistance path between Vdd and GND. This Vdd -GND short will likely

154

CMOS

logic

power
gate

error

CMOS
logic

power

gate

error

VsenseVsense

in out

cfg<0:13>

A

B

Error

Di Di

Di Di

cc<0:9>cc<0:9>

cal<0:9>

cin

+

- noise

filter

sens.

amp

DACcurr.mirror

clk

(a) Sensor, logic, and power gate. (b) Sensor components.

Figure 9.1: Block diagram of current sensor for SET detection.

lower the supply voltage of the rest of the connected logic causing every circuit

connected to that supply to fail. Once latchup has occurred, the only way to

remove it is to completely shutdown power. Latchup in the BICS configuration is

highly likely to occur when an SET occurs, significantly degrading the effectiveness

of this technique.

An alternative, single-supply current sensor design, which does not suffer from

the problems mentioned above, was proposed in Chapter 8. This design is simpler

than the previous approaches described above and utilizes a common power-gate

sleep transistor as the voltage sensor (Fig. 9.1). This single-supply approach does

not add any resistances between the bulk contact and supply, and is therefore

not vulnerable to latchup. Further, the digital-assisted design, which consists

of a sense-amplifier based comparator with a current-steering digital to analog

converter (DAC) for offset calibration, is very power efficient and is designed for

155

modern CMOS VLSI process technology. For a 1.2V supply voltage in 90nm

CMOS, the sensor requires 54fJ /comparison and can complete a detection in less

than 100ps . The sensor is implemented with roughly 100 transistors for a robust

and tunable design. This all-digital design scales well with technology, and we

expect it to match the scaling of combinational logic circuits when scaling to smaller

technology nodes, such as 22nm and 14nm.

This technique correctly detects SETs because the current is sensed only at

the clock edge. At that instant, no dynamic current should be flowing and the

outputs should be stable, unless there is an undesired current induced by an SET.

While some prior publications allude to the possibility of using current sensing to

detect SETs, to the best of my knowledge, I provide the first detailed description

and evaluation. Further, unlike previous work using current-based SET detection,

this Chapter provides a detailed discussion of false alarms and their implication,

which is a critical tradeoff in the overall system design and use.

0 0 11 0

S

�

0 0 1 1 0

S

(a) Stage 1 : strike and flip (b) Stage 2 : revert

Figure 9.2: SET strike at a closed NMOS transistor.

156

9.3 Current-Sensor SET Error Detector

9.3.1 SET Detector Operating Principles

Figs. 9.2–9.3 depict the particle strike scenarios for NMOS and PMOS transistors,

respectively. For simplicity, without any loss of generality, a circuit consisting of

two chained inverters is used, with the first inverter being struck. The first stage,

in response to a particle strike, exhibits a large transient current flow from the

generation of electron-hole pairs, which are then collected by the source and drain.

If the current is large enough, it triggers a transition in the second inverter and

potentially an SET. The second stage of the circuit reverts to steady state after the

current pulse dissipates, and the correct inputs are the re-propagated. Note that

for an SET to occur, the pulse must propagate to and be latched by the output

flip-flop of the combinational logic circuit. Pulses that do not generate an SET are

�
1 0 1 1 0

S

1 0 11 0

S

(a) Stage 1 : strike and flip (b) Stage 2 : revert

Figure 9.3: SET strike at closed PMOS transistor.

157

masked [143].

As shown in Figs. 9.2–9.3, there are two reasons for current to flow: the col­

lected electrons and holes freed by the strike (solid red arrows); and the charge/dis­

charge of the affected load gate as it first flips and then reverts (dashed blue ar­

rows). For a NMOS strike, the SET current flows from Vdd and from the internal

node capacitor to ground through the struck transistor. Electrons freed by the

strike move towards Vdd and pass through the power gate by which the sensor can

detect the current. As the internal node capacitor discharges, the load gate opens

and additional current flows from Vdd until this “flipped” state stabilizes. In the

revert stage, current is drawn from Vdd to bring the internal node back to a logical

’1’.

In the strike stage for a PMOS transistor, current flows from Vdd , similar to

the NMOS strike. This current flows both through the NMOS of the struck gate

to ground and also charges the internal node capacitor until the state is “flipped”

from a ’0’ to a ’1’. However, unlike an NMOS strike, current does not flow through

the load gate in the strike stage of a PMOS. Hence, the revert phase is essentially

identical to an NMOS strike. Note that detecting this current is sufficient to

indicate a potential SET, eliminating the need for a second current sensor on the

Vss line [138]. This insight leads to the adoption of a single-supply current sensor

shown in Fig. 9.1. Because only one sensor is needed for a group of logic, and

because it is only clocked once per cycle, it is an excellent candidate for SET

detection and provides both efficiency and high coverage.

158

9.3.2 Masking and False Alarms

Not all SETs lead to an error that impacts the current computation. This proposed

detector may wrongly identify such masked SETs as actual errors, causing a false

alarm. Note that the proposed detector does not exhibit any false negatives and

triggers on any possible SET.

There are five mechanisms by which an SET can be masked and therefore lead

to a false alarm:

Electrical Masking. As the strike current pulse propagates through the cir­

cuit, it is attenuated by each affected transistor because of the electrical character­

istics of the transistors (transistors with larger drive currents attenuate the pulse

more), such that it does not cause an erroneous transition at the output. With

any current detector, SETs that are masked by this mechanism may trigger a false

alarm because current still flows through the gate transistor and sensor.

Temporal Masking. Because latches have a finite latching window near the

end of a cycle, many SETs may already revert to the correct circuit state before

being latched or not have time to propagate to the output before the latching

window closes. Any current-sensing detector monitors the current at any point in

the circuit within the latching window, indicating a potential SET and triggering

an alarm. There are two reasons why a false alarm due to temporal masking may

occur: (1) a transistor is in the strike stage of an SET and current is flowing as a

direct result of the freed charge being collected; or (2) a transistor is in the revert

stage and current is drawn to re-stabilize the circuit.

159

Logical Masking. Some SETs are masked because the output of the circuit

does not depend on the internal value that was flipped. With this detector, even

an SET that is logically masked may trigger a notification. Because temporal

masking depends on the duration of the revert stage, logical masking does reduce

the false alarm rate.

Architectural Masking. Modern processors often process instructions that

never commit their values and use circuits that only impact performance rather

than correctness. With an SET detector, it is up to the architecture to continue

masking detected SETs, such as deferring taking action on a detected error until

the instruction that it impacted is retired.

Application Masking. Some erroneous values can either be ignored or toler­

ated at the application level, which then decides whether to mask a detected error

or not.

9.3.3 Sensor Calibration

The sensor must be sensitive enough to detect the small currents resulting from

a particle strike. Achieving this sensitivity in the presence of aging, process, and

temperature variations requires that the sensors be calibrated with respect to the

static circuit currents. Thus, the sensor operates by tuning once at startup using

a simple binary search offset calibration. For an eight-bit calibration, the sensor

requires 9 clock cycles to calibrate. In order to provide robustness across varying

temperatures, the sensor must be periodically recalibrated. A 5 degree C change

160

in temperature will change the sensor’s offset by 1mV , or approximately one cal­

ibration. Based on [144] the temperature is not expected to change more than 1

degree per minute, thus requiring a worst case recalibration interval of 5 minutes

per sensor. Calibrating the sensor requires multiple iterations. A small number of

iterations is typically sufficient because the drift is small over the period of time

between recalibrations. Circuit simulations at 90nm indicate that each calibration

iteration consumes roughly 450fJ , including the energy of the calibration circuitry

and sensor. While re-calibration is expected to complete within 10 cycles, initial

calibration on startup may take > 100 iterations. Even this startup calibration,

however, will complete within 100ns per sensor, assuming a 1GHz clock. The

architectural aspects of recalibration and its overheads are discussed in the next

section.

9.4 Architecture

The proposed SET detector can be applied to any CMOS combinational logic block

and is an especially good fit within the pipeline of a modern out-of-order (OOO)

processor. The mechanism is also an exceptionally good fit for complementing

the error protection mechanisms of highly-reliable processors, such as the IBM

Power 7 [129] or the Fujitsu SPARC64 [145]. To recap the key advantages of

our technique, the detector protects any combinational logic with low overhead

and detects the errors as they are being latched, such that the pipeline can be

immediately stalled without propagating erroneous values. Alternative techniques

161

require redundant operations or logic to detect errors, and thus introduce delays

while this mechanism operates very quickly.

9.4.1 SET Detection and Recovery

In the context of an OOO (out of Order) processor, the microarchitecture main­

tains its architecturally visible state separately from the in-flight state of instruc­

tions that are still in the pipeline. This provides a straightforward mechanism

for isolating detected faults and errors. As long as the errors are detected before

an in-flight instruction is committed to architectural state, the pipeline can be

stalled and flushed, which reverts its state to a correct and consistent program-

visible one. In essence, because this detector works within the pipeline, a detected

SET immediately stalls the pipeline and initiates this flush-based recovery. No

potentially-erroneous result is committed, and the pipeline restarts execution from

the oldest correctly-committed instruction.

The approach above treats any potential SET as an actual error and ignores

the possibility of architectural masking. An alternative approach is to locate the

instruction, or instructions, that were impacted by the SET and poison them by

marking them as potentially invalid. The commit stage of the pipeline will then

be responsible for the pipeline flush. In this way, SETs that impact speculative

instructions on an incorrectly predicted control path will not trigger an unneces­

sary flush. Given the expected rate of potential SETs, no significant difference in

performance between these two approaches is anticipated. The impact of recovery

162

events, including those that follow false alarms, are evaluated in Section 9.6.3.

While the datapath and many control structures can be recovered with a

pipeline flush, some components of the core and the processor cannot be pro­

tected in this way. Errors detected in the overall pipeline control, such as the

commit unit itself for example, may not be recovered with a flush. Still, with our

detector, such errors can be prevented from committing values to memory or I/O,

and higher-level recovery, such as system-level checkpoint-restart [146], can restore

execution state.

In this analysis, it is assumed that all combinational logic will be protected

with the detector. Error signals will be aggregated within logically-connected

components, e.g., a pipeline stage or a functional unit, to report errors. This

follows a similar approach to that adopted by high-reliability architecture [128,

129]. We evaluate the impact on area and power of this full protection of logic.

Overheads can be reduced by limiting protection in some cases. For example, some

structures, such as a branch predictor, are used only to improve performance. An

SET in the branch predictor is practically harmless because, at worse, it will

lead to a temporary increase in branch misprediction rate and a transient dip in

performance. It is also possible to leave some small structures unprotected and

rely on the fact that the probability of a strike is low.

163

9.4.2 Interaction with Other Protection Mechanisms

SETs may impact all structures in the processor, not just combinational logic.

In fact, SRAM arrays and latches are more vulnerable and must be protected as

well for logic protection to make a difference. Large arrays are best protected

with error checking and correcting (ECC) codes. Latches can be protected with

parity-prediction [125–127], in which redundant logic is introduced to compute a

parity bit, which is then latched along with the output of the pipeline stage. When

the latches are read, a parity test is performed and a parity mismatch indicates

an error. Note that this technique partially protects the logic as well. However,

the cost of parity prediction is significant, and may equal that of DMR [125, 127].

The coverage of combinational logic SETs with parity prediction, may also be

incomplete, especially when techniques are applied to reduce the overhead of the

technique [126].

Another possibility for protecting latches is to used hardened latch designs [147–

149]. Hardened latches significantly reduce the likelihood of an SET in a latch and

can be simply applied by changing the cell library. While this is an appealing

design methodology, it lacks the ability of parity prediction to partially protect

logic. The combination of hardened latches and our detector offers a complete

solution. In this way, each structure is protected with a separable mechanism,

simplifying design and reducing the chance of undetected errors. We discuss the

direct power and area overheads of the SET detectors in Section 9.6.4.

164

9.4.3 Calibration Architecture

A calibration circuit for a single sensor is roughly equivalent in area to the sensor.

Calibration is only performed periodically, every several seconds, and therefore

calibration circuits can be shared between multiple circuits. The area of the cali­

bration unit is expected to grow roughly at O N where N is the number of sensors

per calibration unit. Given this scaling, this design calls for a calibration circuit

for every 1024 sensors, yielding a very low area overhead while still providing large

calibration parallelism to keep recalibration fast and minimize wiring.

9.5 Methodology

9.5.1 Current Sensor Evaluation Methodology

After designing and testing the analog sensor for an IBM 90nm CMOS process,

extensive spice simulations were conducted in HSPICE to evaluate it for detecting

SETs. When simulating a circuit, particle strikes can be modeled by introducing a

current source in parallel to the affected transistor between the transistor’s source

and drain (Fig. 9.4) to simulate the strike current pulse. The current pulse itself

represents the physical behavior of the strike. Several models have been proposed

for the pulse, including the popular single and double exponential pulse mod­

els [150, 151]. Because there is disagreement in the community about which pulse

model to use and also uncertainty about the best values to use for the parameters

of the models, a methodology has been developed specifically for evaluating the

165

0 0 11 0

S

1 0 1

S

(a) SET strike at NMOS (b) SET strike at PMOS

Figure 9.4: SET modeling in SPICE using a current source.

detector.

Instead of modeling the pulse based on characteristics of a strike, the single

and double exponential models are approximated with a trapezoidal pulse with an

empirically determined minimum pulse width that can cause an SET in a single

FO1 inverter. If the detector correctly triggers when this minimum pulse is injected

then it is guaranteed to detect any possible SET. Fig. 9.5 depicts this minimum

pulse (in solid red) and also a much smaller pulse that does not cause an SET but

can still trigger detection (in dashed green).

9.5.2 False Alarm Evaluation Methodology

To evaluate the false alarm rate for this detector, the SET rate estimation tool

BFIT [152] was modified, for which the source code is readily accessible. BFIT

accounts for all three circuit-level masking mechanisms: electrical, temporal, and

166

 0

 100

 200

 300

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

I[
µ

A
]

time[ns]

Figure 9.5: Minimum current pulse for an SET in an FO1 inverter (red); and a
detectable pulse that is too small to generate an SET (green).

logical. The tool models the SET-related properties of the 45nm Nangate standard-

cell library [153]. The model represents the impact of a particle strike as a function

of the strike magnitude (collected charge), the time within the cycle that the strike

occurred at, and the location of the cell within the input circuit. Unmodified

BFIT was used to estimate the true SER (Soft Error Rate) for the set of ISCAS’89

benchmarks [154] included with the BFIT distribution.

To estimate the false-alarm rate, BFIT was modified to account for the in­

teractions of the different masking effects and the current sensor as discussed in

Section 9.3.2. To model the impact of reduced electrical masking, BFIT’s model

was extended to also count low-energy particle strikes as “SETs”, when they occur

near the end of a cycle. Specifically, a linear relation between strike time and

strike magnitude was used to conservatively approximate the additional detector

notifications. Also, the pulse-impact duration modeled in BFIT was extended by

the duration of the revert stage to model the decreased temporal masking.

167

9.6 Results

In this section, simulation results are presented while evaluating the proposed tech­

nique using the methodology described in Section 9.5. The discussion is broken

into five subsections, focusing on the behavior of the detector with a single gate,

detecting SETs in a small circuit, such as a 4-bit adder, analyzing the noise char­

acteristics, evaluating the false alarm rate and the performance impact of recovery,

and estimating the implementation overheads.

For each circuit-level simulation that evaluates the detector, a plot of Vsense ,

which represents the potential difference sensed at the power gate (Fig. 9.1) is

shown. The Vsense trigger threshold is set to 1.195V (horizontal dotted line); a

sensed value lower than the threshold indicates a potential SET. In addition, all

the plots in this section contain vertical dotted lines that mark the beginning and

the end of the current pulse (Fig. 9.5).

9.6.1 Single Gate Analysis

Fig. 9.6 shows the simulation results for the simplest logic building blocks – single

gates. Each simulation is performed on a chain of 2 gates (2 INVs, 2 NANDs, or 2

NORs) such that the first gate is experiencing a particle strike and the second gate

is serving as the first gate’s load. The simulation shows that sampling Vsense at any

point of time while the strike current persists will correctly identify the erroneous

transition.

Fig. 9.7 shows the output and Vsense signals for an inverter in case of a low­

168

V
s
e

n
s
e
[V

]

time[ns]

1

1.1

1.2

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

o
u
tp

u
t[
V

]

INV
NAND

NOR-1.2

 0

 1.2

V
s
e

n
s
e
[V

]

time[ns]

1

1.1

1.2

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

o
u
tp

u
t[
V

] INV
NAND

NOR

 0

 1.2

 2.4

(a) Single gate - NMOS strike (b) Single gate - PMOS strike

Figure 9.6: Single gate response to an SET-generating strike current pulse.

energy particle strike that generates a short pulse with a peak of only 80µA. This

current is not enough to flip the output of the first gate, but is large enough to

trigger the detector (the current sensor drops below its threshold). In order to

avoid potential false negative detections—SETs that are not detected can silently

corrupt data—the detector is over-sensitive and exhibits false positive detections,

or false alarms as discussed in Section 9.3.2.

9.6.2 4-bit Ripple-Carry Adder

To evaluate a more complex circuit, particle strikes were simulated within a 4-bit

ripple-carry adder. In each simulation, the inputs to the adder were held steady

and a single particle strike, minimum current pulse was introduced to a single

transistor. We repeated the experiment five times, introducing the SET to five

169

V
s
e
n
s
e
[V

]

time[ns]

1

1.1

1.2

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

o
u
tp

u
t[
V

]

NMOS
PMOS

 0

 0.4

 0.8

 1.2

Figure 9.7: Single gate response to a low-energy particle strike current pulse. Top
sub-figure is gate output and bottom sub-figure is the current sensor output.

distinct locations within the adder Fig. 9.8.

Fig. 9.9 shows the results for the five experiments, showing that any potential

SET is detected. The top graph in each of the subfigures shows the strike current

pulse, the middle graph shows the affected adder output, and the bottom graph

shows the sensor output (Vsense). In all experiments, the SET propagated to the

output and in all experiments the detector correctly indicates an error (Vsense lower

than the threshold).

Fig. 9.10 shows the simulated adder Cout output and the sensor responses to

a strike current over several cycles of operation. The figure demonstrates both the

effectiveness of the detector as well as temporal latching. The clock is shown at

the top of the figure and latching windows are indicated with grey boxes. In the

170

Figure 9.8: Five simulated SET scenarios for a 4-bit adder. Critical path is high­
lighted, and the 5 strike scenarios are marked a–e (strike e is to an inverter within
the XOR).

first cycle, the inputs are held constant and no strike occurs. At time t = 1ns , the

inputs are changed and both the output and sensor react and stabilize before the

next latching window. The inputs are changed again at t = 2ns and this is shortly

followed by a strike current at t = 2.1ns (the current pulse duration is indicated by

the dotted lines). The pulse dissipates well before the next cycle and is temporally

masked and correctly not detected. The inputs are changed again at t = 3ns and

another strike pulse is introduced at t = 3.7ns . This pulse leads to an SET as the

output is still flipped while being latched. The detector correctly identifies this

SET as Vsense is clearly below the threshold at the clock edge (t = 4ns). Again, it is

important to note that the sensor only operates at the clock edge when the outputs

should be stable and no current should be flowing (marked in grey in Fig. 9.10).

As explained in Section 9.3, the sensor is fast enough to detect an error before it

is propagated even if its operation is controlled by the same clock as the latch.

171

V
s
e
n
s
e
[V

]

time[ns]

 1.1

 1.2

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

o
u

tp
u

t[
V

]

 0

 1.2

g
a

te
 o

u
t[

V
]

-1.2

 0

 1.2

V
s
e
n
s
e
[V

]

time[ns]

 1.1

 1.2

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

o
u

tp
u

t[
V

]

 0

 1.2

g
a

te
 o

u
t[

V
]

-1.2

 0

 1.2

(a) (b)

V
s
e
n
s
e
[V

]

time[ns]

 1.1

 1.2

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

o
u

tp
u

t[
V

]

 0

 1.2

g
a

te
 o

u
t[

V
]

-1.2

 0

 1.2

(c)

V
s
e
n
s
e
[V

]

time[ns]

 1.1

 1.2

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

o
u

tp
u

t[
V

]

 0

 1.2

g
a

te
 o

u
t[

V
]

-1.2

 0

 1.2

V
s
e
n
s
e
[V

]

time[ns]

 1.1

 1.2

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

o
u

tp
u

t[
V

]

 0

 1.2

g
a

te
 o

u
t[

V
]

-1.2

 0

 1.2

(d) (e)

Figure 9.9: Adder response to five scenarios of SET-generating strike current
pulses.

172

1.2

0 1 2 3 4 5
V

s
e

n
s
e
[V

]

time[ns]

0

1.2

o
u

tp
u

t[
V

]
c
lk

Figure 9.10: Three cycles of adder operation showing Cout and Vsense . Latching
windows in grey, strike current duration within dotted lines. Current is sensed
only within the grey latching window and normal currents are effectively masked.

9.6.3 False Alarm Rate Analysis and Performance Impact

While it has been shown that the proposed current sensor exhibits no false-negatives

and triggers on all errors, this completeness comes at a cost of false alarms. We

follow the methodology described in Section 9.5.2 and present results for the BFIT-

supplied ISCAS’89 benchmark circuits in Fig. 9.11. The figure shows results for

the seven circuits with both a 1GHz and a 2GHz clock frequency. Each bar rep­

resents the total detector notification rate (in units of FIT on the left axis, where

1 FIT is equal to 1 SET every 109 hours of operation. The lower part of each bar

(shown in red) is the true unmasked SER, or true positive rate (TP) whereas the

top part (shown in green) is the rate of false positives (FP). The figure also shows

the false alarm rate (FAR) for each circuit (dotted line against the right axis),

which is commonly defined as FAR = FP .
FP+TP

Three interesting observations about the results can be made. First, the false-

alarm rate is fairly high at 87 − 99% at both 1GHz and 2GHz operation. Second,

173

even with this fairly high rate, the absolute frequency of notifications are still ex­

tremely low at no more than 10FIT. Even for larger circuits (e.g., entire processors)

it is expected that SERs in logic will not exceed 105 FIT, or roughly one error per

year. Even at a false-alarm rate of 99%, this conservatively implies at most 2 false

alarms per week per processor. Because a large fraction of all combinational logic

circuits are within the OOO cores, a large fraction of false alarms and SER events

lies within the cores as well. As explained in Section 9.4, such events can generally

be isolated within the speculative state of the OOO core and recovered with a

pipeline flush. A flush has a small overhead, which is measured in ns . Thus, two

recovery events per week have zero impact on performance.

Even when projecting to a large system and assuming software must step to

handle recovery, the expected performance overhead is still low. For example,

considering a large-scale HPC machine, recent work has shown that even very

high error rates can be tolerated without limiting scalability [155, 156]. Further

more, it is possible for each processor to be recovered independently, and then

even if the two events per week require relatively long recovery time, expected

performance is barely impacted.

9.6.4 Implementation Overheads

Sensor Area and Power Overheads. In order to obtain the required sensi­

tivity to detect SETs, the ratio of the dynamic-to-leakage current (or Ion/Ioff)

of the combinational logic must be as small as possible. If high-leakage, faster

174

0

0.5

1

1.5

2

s5378

s9234

s13207

s15850

s35932

s38417

s38584

s5378

s9234

s13207

s15850

s35932

s38417

s38584

0.8

0.9

1

F
IT

F
A

R
=

F
P

/T
P

freq=2GHzfreq=1GHz

TP
FP FAR

4
.8
3

5
.0
9

7
.8
7

1
0
.2

Figure 9.11: True and false positive FIT rates (lower and upper part of bars on
left axis) and false-alarm rate (dotted line on right axis) for ISCAS’89 benchmark
circuits. The benchmark names are along the x-axis.

transistors are used, such as those in low-Vth (LVT) cell libraries, more sensors

must be employed for the same logic block. For example, HSPICE simulations in

90nm-CMOS show that a single sensor, which is composed of 100 transistors, can

sense a maximum of approximately 200 LVT combinational logic transistors. Even

this high overhead is still better than the generic protection techniques that rely

on replication (see Section 9.2).

The efficiency of the detector can be improved by increasing the number of

logic transistors it protects. This can be done without sacrificing accuracy in two

ways. The first is by requiring a slightly lower operating frequency to enable the

sensor to stabilize without the activity of the combinational logic transistor pulling

the virtual supply too low. The second technique is to use transistors with better

175

Ion/Ioff ratios, such as those with high-Vth (HVT) or those that use Fin-FET and

other non-planar devices [157].

With these two techniques, estimates indicate that a single 100-transistor sensor

will be able to handle a combinational logic block of 1000 transistors while only

increasing delay negligibly. With this sensor configuration, the power overhead

of the sensors is less than 5%, when compared with the actual combinational

logic. Each sensor requires only 500nW to operate, but is able to protect 1000

combinational logic transistors. Therefore, only 106 detectors are needed to protect

the roughly 109 or so logic transistors in modern processors. While the processor

logic consumes > 10W or more, the detectors only require 0.5W. Area increase is

estimated to be directly proportional to the number of transistors.

Calibration Overheads. With 1, 024 sensors sharing a single calibration unit,

the entire set can be calibrated within roughly 1ms . Such a short delay is not

noticeable at boot time and provides ample scheduling freedom when considering

the fact that recalibration need only occur every 5 seconds. Thus, calibration does

not impact performance. With respect to power consumption, each recalibration

is expected to complete in 10 or so iterations, with each iteration consuming 450fJ

per iteration. Assuming a recalibration every 5s, this corresponds to a per-sensor

recalibration current of 450fA, which is negligible when compared to the overall

power of the sensor at 500nW .

176

9.7 Conclusions

This chapter describes, evaluates, and discusses a new solution to detecting particle

strike induced single-event upsets in combinational logic. By directly monitoring

for currents that must flow if an SET occurs using a current sensor, the detector

eliminates the need for high-overhead redundant logic while exhibiting complete

detection coverage for any arbitrary combinational logic circuit. The sensor is cou­

pled with a power-gating sleep transistor, such that this technique can be readily

integrated with common design flows. Utilizing the sleep transistor as part of the

detector also reduces its overhead, and the detector requires approximately only

500nW to operate (per logic block). The interactions between this technique and

error masking mechanisms are analyzed and the expected false alarm rate for the

detector is evaluated. While the false alarm rate is significant, its impact on actual

processor behavior is minimal, because recovery events are still expected to be rare

(< 2 times per week) and efficient recovery mechanisms are available.

The detector does increase die area and power consumption of combinational

logic, but does so to a lesser degree than prior approaches for error detection.

While the area of combinational logic blocks increases by about 10%, power con­

sumption increase is less than 5%. The relatively high false alarm rate is thus the

main downside of the proposed approach. However, the orders of magnitude im­

provement in power overhead combined with entirely eliminating the risk of silent

data corruption from combinational logic is a favorable trade-off. With appropri­

ate support from the architecture and relying on software resilience in rare cases,

177

the impact of the increased false alarms has a much smaller impact on overall per­

formance and efficiency than with replication-based detection mechanisms. The

calibration procedure may also have an impact on large parallel applications as

was discussed at the end of the chapter.

178

Chapter 10: Conclusions

Near/Sub-threshold circuit designers are challenged with the task of making cir­

cuits reliable in the presence of variations beyond traditional requirements. The

methods presented in this dissertation provide a large step forward in making

near/sub-threshold digital circuit operation a viable operating point in the near

future.

In Chapter 4 a design automation methodology was presented that aimed to

lower the impact of variations on synthesized digital circuits. It was shown that

large designs can benefit from a synthesis-based approach that removes nonper­

forming logic gates from the synthesizer as opposed to redesigning the entire li­

brary. A case study was carried out on this methodology in Chapter 5 where it was

shown that a methodology such as this works best on large designs while requiring

minimal design time.

Chapter 6 introduced two circuit-level methods for detecting errors in near/sub­

threshold (TACD and CSCD) which were used to improve asynchronous micropipeline

techniques. These methods where then adapted successfully for synchronous oper­

ation in Chapter 7 which gave them more value to modern microprocessors. CSCD,

being of specific interest due to it’s large speedup capabilities was demonstrated

179

in a 65nm test-chip in Chapter 8. The test-chip performed well and was shown to

outperform the most recently proposed methods at near-threshold voltages.

The CSCD design was shown to have a wide range of uses, as it was shown

in Chapter 9 to not only work with circuits that experience high levels of varia­

tions but also detect errors from radiation events. An in-depth analysis was done

to show that even though the sensors generated a high number of false positive

errors the relative performance impact was negligible. This opens the door for re­

liable radiation-tolerant digital logic as smaller process nodes make this a growing

concern.

10.1 Final Thoughts

While energy efficiency will always be a major concern in the microprocessor in­

dustry, it is unknown exactly how it will evolve over the next ten years. With that

being said, energy-efficient digital circuits have become a commodity in nearly ev­

ery market segment, making it uncertain if reliability is of true concern for many

applications. Smart-phone crashes and WiFi dis-connectivity plague society but

don’t seem to bother us as much as we might expect. However, of the applications

that do need to reliably be energy-efficient (space applications, mission-critical

servers, etc.), 99.999% perfection is expected.

In my opinion, all near/sub-threshold digital circuits of the future will be de­

rived from asynchronous counterparts. Resiliency problems in general are often

solved with asynchronous solutions today as is much of the work in this disserta­

180

tion. Often times designers do not necessarily realize that their designs are derived

from asynchronous ideologies. I believe that taking a step back and identifying how

a problem can be solved in an asynchronous manner can give valuable insight into

what the best synchronous or pseudo-synchronous solution could be.

10.2 Future Work

Although this work presents viable methods for near/sub-threshold circuit re­

siliency, more work needs to be done before there can be widespread adoption

of these methods. In the case of the proposed CSCD method it is necessary to

have a well-understood, streamlined design that can be easily ported to future

process nodes. This portability needs to come in the form of design tool integra­

tion and a solid foundation of trade-off analysis such as power, area, and detection

capability.

In order to enable widespread adoption, CSCD needs further research. The

design presented in this dissertation would value greatly from improvements to

its circuit design. The designs presented in this dissertation were over-designed

as a proof of concept. Much more work can be done to simplify the designs,

improving the dynamic range while reducing the number of calibration bits required

for correct operation – at the same time, lowing the area and power overheads. To

that end, the overhead of shared calibration circuitry would benefit if it were to

be reduced with further research.

181

Bibliography

[1] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge,
“Near-threshold computing: reclaiming moores law through energy efficient
integrated circuits,” Proceedings of the IEEE, vol. 98, no. 2, pp. 253–266,
2010.

[2] J. Kwong and A. Chandrakasan, “Variation-driven device sizing for minimum
energy sub-threshold circuits,” in Low Power Electronics and Design, 2006.
ISLPED’06. Proceedings of the 2006 International Symposium on, Oct. 2006,
pp. 8–13.

[3] E. Krimer,	 R. Pawlowski, M. Erez, and P. Chiang, “Synctium: a near-
threshold stream processor for energy-constrained parallel applications,”
Computer Architecture Letters, vol. 9, no. 1, pp. 21–24, Jan. 2010.

[4] J. Lorenz, E. Bär, T. Clees, P. Evanschitzky, R. Jancke, C. Kampen,
U. Paschen, C. Salzig, and S. Selberherr, “Hierarchical simulation of pro­
cess variations and their impact on circuits and systems: results,” Electron
Devices, IEEE Transactions on, pp. 1–8, 2011.

[5] D. Bull, S. Das, K. Shivshankar, G. Dasika, K. Flautner, and D. Blaauw,
“A power-efficient 32b arm isa processor using timing-error detection and
correction for transient-error tolerance and adaptation to pvt variation,” in
Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010
IEEE International, Feb 2010, pp. 284–285.

[6] K. Bowman, J. Tschanz, S. Lu, P. Aseron, M. Khellah, A. Raychowdhury,
B. Geuskens, C. Tokunaga, C. Wilkerson, T. Karnik, and V. De, “A 45 nm
resilient microprocessor core for dynamic variation tolerance,” Solid-State
Circuits, IEEE Journal of, vol. 46, no. 1, pp. 194–208, January 2011.

[7] K. Bowman, J. Tschanz, N. S. Kim, J. Lee, C. Wilkerson, S.-L. Lu, T. Karnik,
and V. De, “Energy-efficient and metastability-immune timing-error detec­
tion and recovery circuits for dynamic variation tolerance,” in Integrated
Circuit Design and Technology and Tutorial, 2008. ICICDT 2008. IEEE In­
ternational Conference on, June 2008, pp. 155–158.

182

[8] K. Bowman, J. Tschanz, C. Wilkerson, S.-L. Lu, T. Karnik, V. De, and
S. Borkar, “Circuit techniques for dynamic variation tolerance,” in Design
Automation Conference, 2009. DAC ’09. 46th ACM/IEEE, Jul 2009, pp.
4–7.

[9] E. Mintarno, J. Skaf, R. Zheng, J. Velamala, Y. Cao, S. Boyd, R. Dutton,
and S. Mitra, “Self-tuning for maximized lifetime energy-efficiency in the
presence of circuit aging,” Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, vol. 30, no. 5, pp. 760–773, May 2011.

[10] J. Tschanz, K. Bowman, S. Walstra, M. Agostinelli, T. Karnik, and V. De,
“Tunable replica circuits and adaptive voltage-frequency techniques for dy­
namic voltage, temperature, and aging variation tolerance,” in VLSI Cir­
cuits, 2009 Symposium on, June 2009, pp. 112–113.

[11] K. Agarwal and S. Nassif, “Characterizing process variation in nanometer
cmos,” in Design Automation Conference, 2007. DAC ’07. 44th ACM/IEEE,
June 2007, pp. 396 –399.

[12] A.	 Sedra and K. Smith, Microelectronic circuits, ser. Oxf Ser Elec
Series. Oxford University Press, Incorporated, 2010. [Online]. Available:
http://books.google.com/books?id=wDQJQQAACAAJ

[13] S. Borkar,	 T. Karnik, and V. De, “Design and reliability challenges in
nanometer technologies,” in Proceedings of the 41st annual Design Automa­
tion Conference. ACM, 2004, pp. 75–75.

[14] J. Benedetto, P. Eaton, D. Mavis, M. Gadlage, and T. Turflinger, “Digital
single event transient trends with technology node scaling,” Nuclear Science,
IEEE Transactions on, vol. 53, no. 6, pp. 3462–3465, 2006.

[15] Y. Li, E. Cheng, S. Makar, and S. Mitra, “Self-repair of uncore components
in robust system-on-chips: An opensparc t2 case study,” in Test Conference
(ITC), 2013 IEEE International, Sept 2013, pp. 1–10.

[16] A. Johnston, G. Swift, and D. Shaw, “Impact of	 cmos scaling on single-
event hard errors in space systems,” in Low Power Electronics, 1995., IEEE
Symposium on, Oct 1995, pp. 88–89.

http://books.google.com/books?id=wDQJQQAACAAJ

183

[17] S. Nowick, “Design of a low-latency asynchronous adder using speculative
completion,” Computers and Digital Techniques, IEE Proceedings -, vol. 143,
no. 5, pp. 301–307, September 1996.

[18] T. Liu and S.-L. Lu, “Performance improvement with circuit-level specu­
lation,” in Microarchitecture, 2000. MICRO-33. Proceedings. 33rd Annual
IEEE/ACM International Symposium on, 2000, pp. 348–355.

[19] L. Benini, E. Macii, M. Poncino, and G. De Micheli, “Telescopic units:	 a
new paradigm for performance optimization of vlsi designs,” Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 17,
no. 3, pp. 220–232, March 1998.

[20] Y.-S. Su, D.-C. Wang, S.-C. Chang, and M. Marek-Sadowska, “An efficient
mechanism for performance optimization of variable-latency designs,” in De­
sign Automation Conference, 2007. DAC ’07. 44th ACM/IEEE, June 2007,
pp. 976–981.

[21] S. Hassoun	 and C. Ebeling, “Architectural retiming: pipelining latency-
constrained circuits,” in Design Automation Conference Proceedings 1996,
33rd, June 1996, pp. 708–713.

[22] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. Kim, and
K. Flautner, “Razor: circuit-level correction of timing errors for low-power
operation,” IEEE MICRO, pp. 10–20, 2004.

[23] S. Das, C. Tokunaga, S. Pant, W. Ma, S. Kalaiselvan, K. Lai, D. Bull, and
D. Blaauw, “Razor II: In situ error detection and correction for PVT and
SER tolerance,” Solid-State Circuits, IEEE Journal of, vol. 46, no. 1, pp.
32–48, January 2010.

[24] P.	 Franco and E. McCluskey, “On-line delay testing of digital circuits,” in
VLSI Test Symposium, 1994. Proceedings., 12th IEEE, Apr 1994, pp. 167–
173.

[25] M.	 Nicolaidis, “Time redundancy based soft-error tolerance to rescue
nanometer technologies,” in VLSI Test Symposium, 1999. Proceedings. 17th
IEEE, 1999, pp. 86–94.

[26] R. Sproull, I. Sutherland, and C. Molnar, “The counterflow pipeline processor
architecture,” Design Test of Computers, IEEE, vol. 11, no. 3, p. 48, 1994.

184

[27] Y.	 Tamir and M. Tremblay, “High-performance fault-tolerant vlsi systems
using micro rollback,” Computers, IEEE Transactions on, vol. 39, no. 4, pp.
548–554, Apr 1990.

[28] A. Drake, R. Senger, H. Singh, G. Carpenter, and N. James, “Dynamic mea­
surement of critical-path timing,” in Integrated Circuit Design and Technol­
ogy and Tutorial, 2008. ICICDT 2008. IEEE International Conference on,
June 2008, pp. 249 –252.

[29] K. Bowman, C. Tokunaga, J. Tschanz, A. Raychowdhury, M. Khellah,
B. Geuskens, S.-L. Lu, P. Aseron, T. Karnik, and V. De, “Dynamic vari­
ation monitor for measuring the impact of voltage droops on microprocessor
clock frequency,” in Custom Integrated Circuits Conference (CICC), 2010
IEEE, September 2010, pp. 1–4.

[30] D. Sorin, M. Martin, M. Hill, and D. Wood, “Fast checkpoint/recovery to
support kilo-instruction speculation and hardware fault tolerance,” Dept. of
Computer Sciences Technical Report CS-TR-2000-1420, 2000.

[31] M. Prvulovic, Z. Zhang, and J. Torrellas, “Revive: cost-effective architec­
tural support for rollback recovery in shared-memory multiprocessors,” in
Computer Architecture, 2002. Proceedings. 29th Annual International Sym­
posium on. IEEE, 2002, pp. 111–122.

[32] T. Austin, “Diva: a reliable substrate for deep submicron microarchitecture
design,” in Microarchitecture, 1999. MICRO-32. Proceedings. 32nd Annual
International Symposium on, 1999, pp. 196–207.

[33] T. R. N. Rao, Error coding for arithmetic processors. Orlando, FL, USA:
Academic Press, Inc., 1974.

[34] J.-C.	 Lo, “Reliable floating-point arithmetic algorithms for error-coded
operands,” Computers, IEEE Transactions on, vol. 43, no. 4, pp. 400–412,
Apr 1994.

[35] J.-C. Lo, S. Thanawastien, and T. Rao, “Concurrent error detection in arith­
metic and logical operations using berger codes,” in Computer Arithmetic,
1989., Proceedings of 9th Symposium on, September 1989, pp. 233–240.

185

[36] D. Strukov, “The area and latency tradeoffs of binary bit-parallel bch de­
coders for prospective nanoelectronic memories,” in Proc. Asilomar Conf.
Signals Systems and Computers, Oct 2006.

[37] D. M. Andrews, “Using executable assertions for testing and fault tolerance,”
in 9th Fault-Tolerance Computing Symposium, 1979.

[38] A. Mahmood, D. J. Lu, and E. J. McCluskey, “Concurrent fault detection
using a watchdog processor and assertions,” in 1983 International Test Con­
ference, Oct 1983, pp. 622–628.

[39] M. Z. Rela, H. Madiera, and J. G. Silva, “Experimental evaluation of the fail-
silent behavior in programs with consistency checks,” in FTCS’96: Proceed­
ings of the Twenty-Sixth Annual International Symposium on Fault-Tolerant
Computing, 1996, p. 394.

[40] J. M. Wozniak, A. Striegel, D. Salyers, and J. A. Izaguirre, “Gipse: Stream­
lining the management of simulation on the grid,” in ANSS’05: Proceedings
of the 38th Annual Symposium on Simulation, 2005, pp. 130–137.

[41] V.	 Balasubramanian and P. Banerjee, “Compiler-assisted synthesis of
algorithm-based checking in multiprocessors,” Computers, IEEE Transac­
tions on, vol. 39, no. 4, pp. 436–446, Apr 1990.

[42] A.	 Al-Yamani, N. Oh, and E. McCluskey, “Performance evaluation of
checksum-based abft,” in Defect and Fault Tolerance in VLSI Systems, 2001.
Proceedings. 2001 IEEE International Symposium on, 2001, pp. 461–466.

[43] K.-H. Huang and J. Abraham, “Algorithm-based fault tolerance for matrix
operations,” Computers, IEEE Transactions on, vol. C-33, no. 6, pp. 518–
528, June 1984.

[44] P. Banerjee, J. Rahmeh, C. Stunkel, V. Nair, K. Roy, V. Balasubramanian,
and J. Abraham, “Algorithm-based fault tolerance on a hypercube multipro­
cessor,” Computers, IEEE Transactions on, vol. 39, no. 9, pp. 1132–1145,
September 1990.

[45] A. Reddy and P. Banerjee, “Algorithm-based fault detection for signal pro­
cessing applications,” Computers, IEEE Transactions on, vol. 39, no. 10, pp.
1304–1308, Oct 1990.

186

[46] J.-Y. Jou and J. Abraham, “Fault-tolerant fft networks,” Computers, IEEE
Transactions on, vol. 37, no. 5, pp. 548–561, May 1988.

[47] A. Mishra and P. Banerjee, “An algorithm-based error detection scheme for
the multigrid method,” Computers, IEEE Transactions on, vol. 52, no. 9,
pp. 1089–1099, Sept. 2003.

[48] J. Wensley,	 M. Green, K. Levitt, and R. Shostak, “The design, analysis,
and verification of the sift fault tolerant system,” in Proceedings of the 2nd
international conference on Software engineering. IEEE Computer Society
Press, 1976, pp. 458–469.

[49] B. Nicolescu, R. Velazco, M. Sonza-Reorda, M. Rebaudengo, and M. Vi­
olante, “A software fault tolerance method for safety-critical systems: Effec­
tiveness and drawbacks,” in Integrated Circuits and Systems Design, 2002.
Proceedings. 15th Symposium on. IEEE, 2002, pp. 101–106.

[50] N. Oh, S. Mitra, and E. McCluskey, “Ed4i: Error detection by diverse data
and duplicated instructions,” IEEE TRANSACTIONS ON COMPUTERS,
vol. 51, no. 2, 2002.

[51] G. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. August, “Swift:
Software implemented fault tolerance,” in Proceedings of the international
symposium on Code generation and optimization. IEEE Computer Society,
2005, pp. 243–254.

[52] C. Slayman, “Cache and memory error detection, correction, and reduction
techniques for terrestrial servers and workstations,” Device and Materials
Reliability, IEEE Transactions on, vol. 5, no. 3, pp. 397–404, September
2005.

[53] R. Hamming, “Error correcting and	 error detecting dodes,” Bell System
Technical Journal, vol. 29, pp. 147–160, Apr 1950.

[54] M. Hsiao, “A class of optimal minimum odd-weight-column sec-ded codes,”
IBM Journal of Research and Development, vol. 29, pp. 147–160, Apr 1950.

[55] C. Chen and M. Hsiao, “Error-correcting codes for semiconductor memory
applications: A state-of-the-art review,” IBM Journal of Research and De­
velopment, vol. 28, no. 2, pp. 124–134, March 1984.

187

[56] S. Lin and D. J. C. Jr., Error control coding: fundamentals and applications.
Englewood Cliffs, NJ, USA: Prentice-Hall, Inc., 1983.

[57] M. Turnquist, E. Laulainen, J. Makipaa, M. Pulkkinen, and L. Koskinen,
“Measurement of a timing error detection latch capable of sub-threshold
operation,” in NORCHIP, 2009, Nov. 2009, pp. 1–4.

[58] A. Wang, B. H. Calhoun, and A. P. Chandrakasan, Sub-threshold design for
ultra low-power systems, ser. Integrated Circuits and Systems. Springer,
2006.

[59] A.	 Wang and A. Chandrakasan, “A 180mv fft processor using subthresh­
old circuit techniques,” in Solid-State Circuits Conference, 2004. Digest of
Technical Papers. ISSCC. 2004 IEEE International, 2004, pp. 292–529 Vol.1.

[60] S. C. Jocke, J. Bolus, S. Wooters, A. Jurik, A. Weaver, T. Blalock, and
B. Calhoun, “A 2.6-uw sub-threshold mixed-signal ecg soc,” in VLSI Cir­
cuits, 2009 Symposium on, June 2009, pp. 60–61.

[61] B. Zhai, L. Nazhandali, J. Olson, A. Reeves, M. Minuth, R. Helfand, S. Pant,
D. Blaauw, and T. Austin, “A 2.60pj/inst subthreshold sensor processor
for optimal energy efficiency,” in VLSI Circuits, 2006. Digest of Technical
Papers. 2006 Symposium on, 2006, pp. 154–155.

[62] C. Piguet, J.-M. Masgonty, S. Cserveny, C. Arm, and P. D. Pfister, “Low­
power low-voltage library cells and memories,” in Electronics, Circuits and
Systems, 2001. ICECS 2001. The 8th IEEE International Conference on,
vol. 3, 2001, pp. 1521–1524 vol.3.

[63] W. Cheng and B. Baas, “Dynamic voltage and frequency scaling circuits with
two supply voltages,” in Circuits and Systems, 2008. ISCAS 2008. IEEE
International Symposium on, May 2008, pp. 1236–1239.

[64] J. Kwong and A. Chandrakasan, “Variation-driven device sizing for minimum
energy sub-threshold circuits,” in Low Power Electronics and Design, 2006.
ISLPED’06. Proceedings of the 2006 International Symposium on, 2006, pp.
8–13.

[65] S.	 Inc., “Complete liberty documentation version 2008.09,” Aug 2009.
[Online]. Available: http://www.opensourceliberty.org/resources ccs.html

http://www.opensourceliberty.org/resources_ccs.html

188

[66] S. Hanson, M. Seok, D. Sylvester, and D. Blaauw, “Nanometer device scaling
in subthreshold circuits,” in Design Automation Conference, 2007. DAC ’07.
44th ACM/IEEE, 2007, pp. 700–705.

[67] T. Sharma and R. Thilagavathy, “Performance analysis of advanced encryp­
tion standard for low power and area applications,” in Information Commu­
nication Technologies (ICT), 2013 IEEE Conference on, 2013, pp. 967–972.

[68] B. Yu, X. Li, N. Zhang, and Y. Sun, “A low cost, low power aes asic with
high dpa resisting ability,” in Solid-State Circuits Conference, 2009. A-SSCC
2009. IEEE Asian, 2009, pp. 285–288.

[69] D. Wang, Y. Ding, J. Zhang, J. Hu, and H. Tan, “Area-efficient and ultra­
low-power architecture of rsa processor for rfid,” Electronics Letters, vol. 48,
no. 19, pp. 1185–1187, 2012.

[70] D. Engels, X. Fan, G. Gong, H. Hu, and E. M. Smith, “Ultra-lightweight
cryptography for low-cost rfid tags: Hummingbird algorithm and protocol,”
2009.

[71] M. Xiao, X. Shen, J. Wang, and J. Crop, “Design of a uhf rfid tag baseband
with the hummingbird cryptographic engine,” in ASIC (ASICON), 2011
IEEE 9th International Conference on, 2011, pp. 800–803.

[72] J. Tschanz, N. S. Kim, S. Dighe, J. Howard, G. Ruhl, S. Vanga, S. Narendra,
Y. Hoskote, H. Wilson, C. Lam, M. Shuman, C. Tokunaga, D. Somasekhar,
S. Tang, D. Finan, T. Karnik, N. Borkar, N. Kurd, and V. De, “Adaptive fre­
quency and biasing techniques for tolerance to dynamic temperature-voltage
variations and aging,” in Solid-State Circuits Conference, 2007. ISSCC 2007.
Digest of Technical Papers. IEEE International, Feb 2007, pp. 292–604.

[73] K. Bowman et. al., “A 45 nm resilient microprocessor core for dynamic vari­
ation tolerance,” Solid-State Circuits, IEEE Journal of, vol. 46, no. 1, pp.
194 –208, January 2011.

[74] S. Hsu, A. Agarwal, M. Anders, S. Mathew, H. Kaul, F. Sheikh, and R. Kr­
ishnamurthy, “A 280mv-to-1.1v 256b reconfigurable simd vector permutation
engine with 2-dimensional shuffle in 22nm cmos,” in Solid-State Circuits Con­
ference Digest of Technical Papers (ISSCC), 2012 IEEE International, 2012,
pp. 178–180.

http:280mv-to-1.1v

189

[75] J. Crop, S. Fairbanks, R. Pawlowski, and P. Chiang, “150mV sub-threshold
asynchronous multiplier for low-power sensor applications,” VLSI Design
Automation and Test (VLSI-DAT), 2010 International Symposium on, pp.
254–257, 2010.

[76] S. Jain, S. Khare, S. Yada, V. Ambili, P. Salihundam, S. Ramani,
S. Muthukumar, M. Srinivasan, A. Kumar, S. Gb, R. Ramanarayanan, V. Er­
raguntla, J. Howard, S. Vangal, S. Dighe, G. Ruhl, P. Aseron, H. Wilson,
N. Borkar, V. De, and S. Borkar, “A 280mv-to-1.2v wide-operating-range
ia-32 processor in 32nm cmos,” in Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), 2012 IEEE International, 2012, pp. 66–68.

[77] J. Crop, R. Pawlowski, N. Moezzi-Madani, J. Jackson, and P. Chaing, “De­
sign automation methodology for improving the variability of synthesized
digital circuits operating in the sub/near-threshold regime,” in Green Com­
puting Conference and Workshops (IGCC), 2011 International, 2011, pp.
1–6.

[78] R. Rithe, S. Chou, J. Gu, A. Wang, S. Datla, G. Gammie, D. Buss, and
A. Chandrakasan, “Cell library characterization at low voltage using non­
linear operating point analysis of local variations,” in VLSI Design (VLSI
Design), 2011 24th International Conference on, 2011, pp. 112–117.

[79] B. Zhai, S. Hanson, D. Blaauw, and D. Sylvester, “Analysis and mitigation
of variability in subthreshold design,” in Low Power Electronics and Design,
2005. ISLPED ’05. Proceedings of the 2005 International Symposium on,
2005, pp. 20–25.

[80] E. Brunvand, S. Nowick, and K. Yun, “Practical advances in asynchronous
design,” in Computer Design: VLSI in Computers and Processors, 1997.
ICCD ’97, 1997, pp. 662–668.

[81] T. Werner	 and V. Akella, “Asynchronous processor survey,” Computer,
vol. 30, no. 11, pp. 67–77, 1997.

[82] O. Garnica, J. Lanchares, and R. Hermida, “Fine-grain asynchronous cir­
cuits for low-power high performance DSP implementations,” 2000 IEEE
Workshop on SiGNAL PROCESSING SYSTEMS. SiPS 2000. Design and
Implementation (Cat. No.00TH8528), pp. 519–528, 2000.

http:280mv-to-1.2v

190

[83] Y. Li, Z.-y. Wang, and K. Dai, “A low-power application specific instruction
set processor using asynchronous function units,” 7th IEEE International
Conference on Computer and Information Technology (CIT 2007), pp. 817–
822, Oct. 2007.

[84] M.-c. Chang and D.-s. Shiau, “Design of	 an asynchronous pipelined pro­
cessor,” 2008 International Conference on Communications, Circuits and
Systems, pp. 1093–1096, May 2008.

[85] O. Akgun, J. Rodrigues, and J. Sparsø, “Minimum-energy sub-threshold
self-timed circuits: design methodology and a case study,” in 2010 IEEE
Symposium on Asynchronous Circuits and Systems. IEEE, 2010, pp. 41–51.

[86] M. Singh, J.	 a. Tierno, A. Rylyakov, S. Rylov, and S. M. Nowick, “An
adaptively pipelined mixed synchronous-asynchronous digital FIR filter chip
operating at 1.3 Gigahertz,” IEEE Transactions on Very Large Scale Inte­
gration (VLSI) Systems, vol. 18, no. 7, pp. 1043–1056, Jul. 2010.

[87] C. J. Myers, Asynchronous circuit design. Wiley, 2001.

[88] I.	 E. Sutherland, “Micropipelines,” Communications of the ACM, vol. 32,
no. 6, pp. 720–738, 1989.

[89] C. Pham-Quoc and A.-V. Dinh-Duc, “Hazard-free muller gates for imple­
menting asynchronous circuits on Xilinx FPGA,” 2010 Fifth IEEE Interna­
tional Symposium on Electronic Design, Test & Applications, pp. 289–292,
2010.

[90] S. Hauck,	 “Asynchronous design methodologies: an overview,” Proceedings
of the IEEE, vol. 83, no. 1, pp. 69–93, 1995.

[91] G. Birtwistle and A. Davis, Asynchronous digital circuit design. Springer,
1995.

[92] J. Sparsøand S. Furber, Eds., Principles of asynchronous circuit design: A
systems perspective. Kluwer Academic, Boston, 2001.

[93] S. Unger, “Asynchronous sequential switching circuits with unrestricted in­
put changes,” IEEE Transactions on Computers, vol. C-20, no. 12, pp. 1437–
1444, Dec. 1971.

191

[94] M. Servit, “Hazard correction in asynchronous sequential circuits using iner­
tial delay elements,” IEEE Transactions on Systems, Man, and Cybernetics,
May 1973.

[95] K.-L. Chang, B.-H. Gwee, and Y. Zheng, “A performance comparison on
asynchronous matched-delay templates,” 2009 IEEE International Sympo­
sium on Circuits and Systems, pp. 1008–1011, May 2009.

[96] M. Renaudin, “The design of fast asynchronous adder structures and their
implementation using D.C.V.S. Logic,” Circuits and Systems, 1994. ISCAS,
pp. 7–10, 1994.

[97] A.	 Martin, “Asynchronous datapaths and the design of an asynchronous
adder,” Formal Methods in System Design, pp. 119–137, 1991.

[98] D. Sokolov, “Automated synthesis of asynchronous circuits using direct map­
ping for control and data path,” Ph.D. dissertation, University of Newcastle
upon Tyne, 2005.

[99] K. Fant and S. Brandt, “NULL Convention Logic:	 a complete and con­
sistent logic for asynchronous digital circuit synthesis,” in Proceedings of
International Conference on Application Specific Systems, Architectures and
Processors: ASAP ’96. IEEE Computer Soc. Press, 1996, pp. 261–273.

[100] N. Lotze, M. Ortmanns, and Y. Manoli, “A study on self-timed asynchronous
subthreshold logic,” in Computer Design, 2007. ICCD 2007. 25th Interna­
tional Conference on. IEEE, Oct. 2007, pp. 533–540.

[101] M. Ligthart, K. Fant, R. Smith,	 a. Taubin, and a. Kondratyev, “Asyn­
chronous design using commercial HDL synthesis tools,” Proceedings Sixth
International Symposium on Advanced Research in Asynchronous Circuits
and Systems (ASYNC 2000) (Cat. No. PR00586), pp. 114–125, 2000.

[102] S. C. Smith and W. K. Al-Assadi, “Teaching asynchronous digital design in
the undergraduate computer engineering curriculum,” 2007 IEEE Region 5
Technical Conference, pp. 363–369, Apr. 2007.

[103] B. Reese, “Unified NULL Convention Logic Environment (uncle).” [Online].
Available: https://sites.google.com/site/asynctools/

https://sites.google.com/site/asynctools/

192

[104]	 a. Branover, R. Kol, and R. Ginosar, “Asynchronous design by conversion:
converting synchronous circuits into asynchronous ones,” Proceedings Design,
Automation and Test in Europe Conference and Exhibition, pp. 870–875,
2004.

[105] J. Cortadella, a. Kondratyev, L. Lavagno, and C. Sotiriou, “Desynchroniza­
tion: dynthesis of asynchronous circuits From synchronous specifications,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 25, no. 10, pp. 1904–1921, Oct. 2006.

[106] M. Marshall and G. Russell, “A low power information redundant concurrent
error detecting asynchronous processor,” 10th Euromicro Conference on Dig­
ital System Design Architectures, Methods and Tools (DSD 2007), no. Dsd,
pp. 649–656, Aug. 2007.

[107] S. Nowick,	 “Design of a low-latency asynchronous adder using speculative
completion,” Asynchronous Architecture, vol. 43, no. 5, pp. 301–307, Feb.
1996.

[108] S. Nowick, K. Yun, and P.	 Beerel, “Speculative completion for the design
of high-performance asynchronous dynamic adders,” in Asynchronous, pp.
210–223, 1997.

[109] M. E. Dean, D. L. Dill, and M. Horowitz, “Self-timed logic using Current-
Sensing Completion Detection (CSCD),” in Computer Design: VLSI in
Computers and Processors, 1991. ICCD ’91, vol. 7, no. 1-2, Feb. 1991, pp.
187–191.

[110] O. Izosimov, I. Shagurin, and V. Tsylyov, “Physical approach to CMOS
module self-timing,” Electronics Letters, vol. 26, no. 22, pp. 835–836, 1990.

[111] E. Grass and S. Jones, “Asynchronous circuits based on multiple localised
current-sensing completion detection,” in Asynchronous Design Methodolo­
gies, 1995. Proceedings., Second Working Conference on, no. Cl. IEEE,
1995, pp. 170–177.

[112] M. J. Gamble, “A novel current-sensing completion-detection circuit adapted
to the micropipeline methodology,” M.Sc., University of Manitoba, 1995.

193

[113] H. Lampinen and O. Vainio, “Circuit design for current-sensing completion
detection,” in Circuits and Systems, 1998. ISCAS’98. Proceedings of the 1998
IEEE International Symposium on, vol. 2. IEEE, 1998, pp. 185–188.

[114] H. Lampinen, P. Perala, and O. Vainio, “Design of a self-timed asynchronous
parallel FIR filter using CSCD,” in Circuits and Systems, 2003. ISCAS’03.
Proceedings of the 2003 International Symposium on, vol. 5. IEEE, 2003,
pp. V–165.

[115] T. Kumaran, M. Santhi, M. Srikanth, N. Srinivasan, M. Balaji, and G. Lak­
shminarayanan, “Transient current sensing based completion detection with
event separation logic for high speed asynchronous pipelines,” in TENCON
2009-2009 IEEE Region 10 Conference. IEEE, 2009, pp. 1–6.

[116] L. Nagy and V. Stopjakova, “Current sensing completion detection in deep
sub-micron technologies,” in Design and Diagnostics of Electronic Cir­
cuits and Systems (DDECS), 2010 IEEE 13th International Symposium on.
IEEE, 2010, pp. 145–148.

[117] B. Gadamsetti and A. Singh, “Current sensing completion detection for high
speed and area efficient arithmetic,” in Circuits and Systems (APCCAS),
2010 IEEE Asia Pacific Conference on. IEEE, 2010, pp. 240–243.

[118] E. Grass and S. Jones, “Activity-monitoring completion-detection (AMCD);
A new approach to achieve self- timing,” Electronics Letters, vol. 32, no. 2,
pp. 86–88, 1996.

[119] J. Crop, E. Krimer, N. Moezzi-Madani, R. Pawlowski, T. Ruggeri,
P. Chiang, and M. Erez, “Error detection and recovery techniques for
variation-aware CMOS computing: A comprehensive review,” Journal of
Low Power Electronics and Applications, vol. 1, no. 3, pp. 334–356, 2011.
[Online]. Available: http://www.mdpi.com/2079-9268/1/3/334

[120] M. Keating, D. Flynn, R. Aitken, and K. Shi, Low power methodology man­
ual: for system-on-chip design. Springer Verlag, 2007.

[121] K. Hu, T. Jiang, J. Wang, F. O’Mahony, and P. Chiang, “A 0.6 mw/gb/s,
6.4–7.2 gb/s serial link receiver using local injection-locked ring oscillators in
90 nm cmos,” Solid-State Circuits, IEEE Journal of, vol. 45, no. 4, pp. 899
–908, Apr 2010.

http://www.mdpi.com/2079-9268/1/3/334

194

[122] R. Pawlowski, E. Krimer, J. Crop, J. Postman, N. Moezzi-Madani, M. Erez,
and P. Chiang, “A 530mv 10-lane simd processor with variation resiliency
in 45nm soi,” in Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), 2012 IEEE International, Feb 2012, pp. 492 –494.

[123] D. P. Siewiorek and R. S. Swarz, Reliable computer systems (3rd ed.): design
and evaluation. Natick, MA, USA: A. K. Peters, Ltd., 1998.

[124] A. Avizienis, “Arithmetic error codes: cost and effectiveness studies for ap­
plication in digital system design,” IEEE Transactions on Computers, vol.
C-20, pp. 1322–1331, 1971.

[125] N. Touba and E. McCluskey,	 “Logic synthesis of multilevel circuits with
concurrent error detection,” Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, vol. 16, no. 7, pp. 783–789, 1997.

[126] S. Mitra and E.	 McCluskey, “Which concurrent error detection scheme to
choose?” in Test Conference, 2000. Proceedings. International. IEEE, 2000,
pp. 985–994.

[127] K. Mohanram, E. Sogomonyan, M. Gossel, and N. Touba, “Synthesis of
low-cost parity-based partially self-checking circuits,” in On-Line Testing
Symposium, 2003. IOLTS 2003. 9th IEEE. IEEE, 2003, pp. 35–40.

[128] H. Le, W. Starke, J. Fields, F. O’Connell, D. Nguyen, B. Ronchetti,
W. Sauer, E. Schwarz, and M. Vaden, “IBM POWER6 microarchitecture,”
IBM Journal of Research and Development, vol. 51, no. 6, pp. 639–662, 2007.

[129] B. Sinharoy, R. Kalla, W. Starke, H. Le, R. Cargnoni, J. Van Norstrand,
B. Ronchetti, J. Stuecheli, J. Leenstra, G. Guthrie et al., “IBM POWER7
multicore server processor,” IBM Journal of Research and Development,
vol. 55, no. 3, pp. 1–1, 2011.

[130] J. H.	 Wensley, M. W. Green, K. N. Levitt, and R. E. Shostak, “The de­
sign, analysis, and verification of the SIFT fault tolerant system,” in ICSE
’76: Proceedings of the 2nd international conference on Software engineering,
1976, pp. 458–469.

[131] N. Oh, S. Mitra, and E. J. McCluskey, “Ed4i:	 Error detection by diverse
data and duplicated instructions,” IEEE Trans. Comput., vol. 51, no. 2, pp.
180–199, 2002.

195

[132] G. A. Reis,	 J. Chang, N. Vachharajani, R. Rangan, and D. I. August,
“SWIFT: software implemented fault tolerance,” in CGO ’05: Proceed­
ings of the International Symposium on Code Generation and Optimization
(CGO’05), 2005, pp. 243–254.

[133] E. Mizan, T. Amimeur, and M. Jacome, “Self-imposed temporal redundancy:
an efficient technique to enhance the reliability of pipelined functional units,”
in Computer Architecture and High Performance Computing, SBAC-PAD
2007. 19th International Symposium on. IEEE, 2007, pp. 45–53.

[134] S. Das, C. Tokunaga, S. Pant, W. Ma, S. Kalaiselvan, K. Lai, D. Bull, and
D. Blaauw, “RazorII: In situ error detection and correction for PVT and
SER tolerance,” Solid-State Circuits, IEEE Journal of, vol. 44, no. 1, pp.
32–48, 2009.

[135] ——, “Razorii:	 In situ error detection and correction for pvt and ser tol­
erance,” Solid-State Circuits, IEEE Journal of, vol. 44, no. 1, pp. 32–48,
2009.

[136] K. Bowman, J. Tschanz, N. S. Kim, J. Lee, C. Wilkerson, S.-L. Lu, T. Karnik,
and V. De, “Energy-efficient and metastability-immune timing-error detec­
tion and instruction-replay-based recovery circuits for dynamic-variation tol­
erance,” in Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of
Technical Papers. IEEE International, Feb 2008, pp. 402 –623.

[137] S. Mitra, M. Zhang, N. Seifert, T. Mak, and K. Kim, “Soft error resilient sys­
tem design through error correction,” VLSI-SoC: Research Trends in VLSI
and Systems on Chip, pp. 143–156, 2008.

[138] M. Dean, D. Dill, and M. Horowitz, “Self-timed logic using current-sensing
completion detection (CSCD) ,” The Journal of VLSI Signal Processing,
vol. 7, no. 1, pp. 7–.16, 1994.

[139] F. Vargas and M. Nicolaidis, “SEU-tolerant SRAM design based on current
monitoring,” in Fault-Tolerant Computing, 1994. FTCS-24. Digest of Pa­
pers., Twenty-Fourth International Symposium on. IEEE, 1994, pp. 106–
115.

[140] E. Neto, I. Ribeiro, M. Vieira, G. Wirth, and F. Kastensmidt, “Using bulk
built-in current sensors to detect soft errors,” Micro, IEEE, vol. 26, no. 5,
pp. 10–18, 2006.

196

[141] B. Gill, M. Nicolaidis, F. Wolff, C. Papachristou, and S. Garverick, “An
efficient BICS design for SEUs detection and correction in semiconductor
memories,” in Proceedings of the conference on Design, Automation and Test
in Europe-Volume 1. IEEE Computer Society, 2005, pp. 592–597.

[142] R.	 Troutman, Latchup in CMOS technology: the problem and its cure.
Kluwer Academic Publishers, 1986.

[143] P.	 Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi, “Model­
ing the effect of technology trends on the soft error rate of combinational
logic,” in Dependable Systems and Networks, 2002. DSN 2002. Proceedings.
International Conference on. IEEE, 2002, pp. 389–398.

[144] F. Tan	 and S. Fok, “Thermal management of mobile phone using phase
change material,” in Electronics Packaging Technology Conference, 2007.
EPTC 2007. 9th, Dec 2007, pp. 836 –842.

[145] T. Maruyama, “SPARC64 VIII: Fujitsus next generation quad-core proces­
sor,” in Hot Chips, vol. 20, 2008.

[146] S. Sankaran, J. Squyres, B. Barrett, V. Sahay, A. Lumsdaine, J. Duell,
P. Hargrove, and E. Roman, “The lam/mpi checkpoint/restart framework:
System-initiated checkpointing,” International Journal of High Performance
Computing Applications, vol. 19, no. 4, pp. 479–493, 2005.

[147] L. Rockett Jr, “An seu-hardened cmos data latch design,” Nuclear Science,
IEEE Transactions on, vol. 35, no. 6, pp. 1682–1687, 1988.

[148] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K. Kim, “Robust system design
with built-in soft-error resilience,” Computer, vol. 38, no. 2, pp. 43–52, 2005.

[149] T. Uemura, Y. Tosaka, H. Matsuyama, K. Shono, C. Uchibori, K. Takahisa,
M. Fukuda, and K. Hatanaka, “Seila: Soft error immune latch for miti­
gating multi-node-seu and local-clock-set,” in Reliability Physics Symposium
(IRPS), 2010 IEEE International. IEEE, 2010, pp. 218–223.

[150] P.	 Hazucha and C. Svensson, “Impact of cmos technology scaling on the
atmospheric neutron soft error rate,” Nuclear Science, IEEE Transactions
on, vol. 47, no. 6, pp. 2586–2594, 2000.

197

[151] G. Messenger, “Collection of	 charge on junction nodes from ion tracks,”
Nuclear Science, IEEE Transactions on, vol. 29, no. 6, pp. 2024–2031, 1982.

[152] D. Holcomb, W. Li, and S. Seshia, “Design as you see fit: System-level soft
error analysis of sequential circuits,” in Proceedings of the Conference on
Design, Automation and Test in Europe, 2009, pp. 785–790.

[153] “Nangate 45nm open cell library,” http://www.nangate.com.

[154] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of sequential
benchmark circuits,” in Circuits and Systems, 1989., IEEE International
Symposium on. IEEE, 1989, pp. 1929–1934.

[155] A. Moody, G. Bronevetsky, K. Mohror, and B. de Supinski, “Design, model­
ing, and evaluation of a scalable multi-level checkpointing system,” in Pro­
ceedings of the 2010 International Conference for High Performance Com­
puting, Networking, Storage and Analysis (SC). IEEE Computer Society,
2010, pp. 1–11.

[156] J. Chung, I. Lee, M. Sullivan, J. H. Ryoo, D. W. Kim, D. H. Yoon, L. Ka­
plan, and M. Erez, “Containment domains: a scalable, efficient, and flexible
resilience scheme for exascale systems”,” in to appear in SC’12, 2012.

[157] T. Hoffmann, G. Doorribos, I. Ferain, N. Collaert, P. Zimmerman, M. Good-
win, R. Rooyackers, A. Kottantharayil, Y. Yim, A. Dixit, K. De Meyer,
M. Jurczak, and S. Biesemans, “Gidl (gate-induced drain leakage) and para­
sitic schottky barrier leakage elimination in aggressively scaled hfo/sub 2/tin
finfet devices,” in Electron Devices Meeting, 2005. IEDM Technical Digest.
IEEE International, Dec 2005, pp. 725 –728.

http://www.nangate.com

	Introduction
	Circuit Reliability Challenges in Near-Threshold
	Introduction
	Near/Sub-Threshold Operation
	Variations at Near/Sub-Threshold
	Sources of Variation in CMOS circuits
	Static Variations
	Dynamic Variations

	Characteristics of Variations
	Random Variations
	Systematic Variations

	Soft Errors
	Temperature-Induced Soft Errors
	Voltage-Induced Soft Errors
	Process Variation-Induced Soft Errors
	Aging Effects on Soft Errors
	Radiation-Induced Soft Errors

	Hard Errors
	Summary

	The Current Art in Circuit Reliability
	Introduction
	Speculative Speed-Up and Error Detection Techniques
	Architectural Retiming
	Circuit-Level Speculation
	Tunable Replica Circuits
	Razor Flip-Flops
	Transition Detectors

	Error Recovery Techniques
	Clock Gating
	Counterflow Pipelining
	Micro-Rollback
	Multiple Issue
	Adaptive Scaling Methods
	Checkpoint-Restart
	Summary of Recovery Methods

	Higher Level Error-Protection Techniques
	Architecture Level Error-Protection Techniques
	Architectural Data Protection
	Software Level Error-Protection Techniques

	Summary Error Detection/Protection of Methods
	Error Detection and Recovery in Near/Sub-Threshold
	Speculative Error Detection in Near/Sub-Threshold
	Error Recovery Techniques in Near/Sub-Threshold
	Near/Sub-Threshold Timing Error Detection

	Conclusions

	A Design Automation Methodology Approach
	Introduction
	Limitations of Existing Libraries and Design Techniques in Near/Sub-Threshold
	Combinational Logic Failure
	Sequential Logic Failure
	Timing Model Inaccuracy
	Design Time and Portability

	Proposed Near/Sub-Threshold Characterization Method
	Parse Standard Cell Liberty File
	Input-to-Output Delay Variation Test
	Analysis and Cell Removal Decisions

	Results
	Characteristics of Removed Cells
	Area Improvement
	Delay Improvement
	Energy Improvement

	Conclusions

	Energy Constrained Encryption: A Case Study in Near-Threshold Circuit Design
	Introduction
	Potential Solutions to Near-Threshold Challenges
	Check and Adapt
	Large Guard-Banding
	Architectural or Circuit Redesign
	Near-Threshold-Aware Synthesis Techniques

	Case-Study
	Hummingbird Encryption Scheme
	Tested Solutions

	Results
	Area Impact
	Energy and Power Impact
	Variation of Each Architecture

	Conclusion

	Asynchronous Circuit Operation
	Introduction
	Traditional Asynchronous Techniques and Challenges
	Asynchronous Logic Elements
	Hazards

	Asynchronous Micropipelines
	Micropipeline Configurations
	Handshake Mechanisms

	Asynchronous Completion Detection
	Custom Circuits
	Null Convention Logic
	Matched Delay Lines
	Speculative Completion
	Current Sensing Completion Detection
	Sense-Inverter Based CSCD
	Activity-Monitoring Completion Detection (AMCD)

	Proposed Completion Detection Methods
	Proposed Transition Aware Completion Detection
	Proposed Pseudo-Asynchronous CSCD Method

	Compared Results
	Conclusions

	Synchronous Completion Detection
	Introduction
	Variation Study
	Proposed Error Detection Methods
	Transition Detecting
	Current Sensing Completion Detection

	Results
	Razor Results
	TACD Results
	CSCD Results
	Energy, Area and Complexity

	Conclusion

	Current Sensing Completion Detection Test Chip
	Introduction
	Previous Work Comparison
	CSCD Test Chip Design
	SIMD Pipeline Design
	Current Sensor Design
	Design for Test Features

	Chip Measurement Results
	Sensor Calibration Analysis
	Droop Plot Measurements
	Noise Analysis
	Power Gate Sizing
	Throughput Analysis
	Results Summary

	Future Work
	Sensor Improvements
	System Improvements

	Conclusions

	Using Current Sensors to Detect Errors in a Radiation Environment
	Introduction
	Related Work
	Current Sensors

	Current-Sensor SET Error Detector
	SET Detector Operating Principles
	Masking and False Alarms
	Sensor Calibration

	Architecture
	SET Detection and Recovery
	Interaction with Other Protection Mechanisms
	Calibration Architecture

	Methodology
	Current Sensor Evaluation Methodology
	False Alarm Evaluation Methodology

	Results
	Single Gate Analysis
	4-bit Ripple-Carry Adder
	False Alarm Rate Analysis and Performance Impact
	Implementation Overheads

	Conclusions

	Conclusions
	Final Thoughts
	Future Work

	Bibliography

