
)

TOWARD ASSOCIATING SLOT NAMES WITH MEANINGS

by

Tsun-dah Shih

Submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

MASTER OF SCIENCE

June 1977

)

APPROVED:

Vesko Marinov , Assistant Professor
Department of Computer Science

in Charge of Major

Date presented : June 1977

July 1977

TOWARD ASSOC1ATING SLOT NAMES WITH MEANINGS

Tsun-dah Shih ·

Department of Computer Science
Oregon State University
Corvallis, Oregon

ABSTRACT

The p~per de sc ribes r esearc h on the ~epresentation of

knowledge. The goal is to develop a form a lism which can

be used for the testing of hypotheses on the nature of human

und ers t a ndin g and as a foundation for artificial intelligence

programs. The ideas expressed her ei n are impl eme nted in a

program which conv erses with the us e r in natural l anguage

about the objects in a room and their relationships.

The representation is within the 11 frame 11 paradigm.

Slots are utilized for storing the properties of a concept.

The same representation is used for both .the physical objects

and the meaning of the sentences. A novel techniqu e in our

approach is to associate a slot name with a procedure

describing th e mean ing of the property represented by the

slot. In addition, th e objects in our r e presentati on are

identified by description, i.e. there are no proper nam es

associated with the individual objects as in a ll ot h er

appr oac hes known to us,

}.

)

1.

2.

CONTENTS

Introduction.

Representation of Knowledge

1

4

3. Natural Language Understanding--An important area

4.

5.

6.

7.

of AI research.

A Dialogue with ROOM.

Knowledge Representation in ROOM.

1. World Knowledge .

2. Linguistic Know l edge.

3. Procedural Knowledge .

4. Syntactic Knowledge .

5. Inferential Knowledge

Implementation.

1. Stored Data

2. Top-level Control

3 . Syntactic Analysis.

4. Semantics

5. Action-response

6. Inferences.

7. Interactions.

8. Questions Answering

Remaining Problems.

Appendix- - Listing of the ROOM program

References.

7

.10

· .14

.14

.19

. 23

. 2 8

. 31

.35

. 35

.38

. 3 8·

.40

.42

.4 5

• 4 9

.51

.57

. 60 .

121

)

_)

1.

.Section 1. Introduction

The issue of representation of knowledge has

established itself as the main problem in artificial

intelligence at the present time. · It appears to be the

greatest obstacle towards building intelligent machines.

The problems of representation are important for natural

language understanding as well as for machine vision,

speech understanding, and most other directions of work in

artificial intelligence.

As a result, representation of knowledge has attracted

considerable attention on the part of artificial intelligence

researchers. On the extreme one can distinguish two major

trends: declarative vs. procedural representations. Each

apprcia~h has its advantages and drawbacks. In a declarative

representation it is easy _to add new knowledge but hard to

express transfer of control. In a procedural r eprese ntation

on the o·ther hand the transfer of control is very convenient

but it is hard to modify the knowledge base. Currently

there are many attempts to combine procedural and declarative

representations.

Many contemporary efforts on represen~ation attempt

to utiliz ~ the notion of frames. In such a representation

customarily there is a slot for eac h property of a concept.

Both in a fram e~like as we ll as in other representations

such as semantic n ets , there is a lot of information

)

2 .

implicit in the name of the slot . The name means~ lot to

the user but for the machine is ju~t- another string.

A novel technique in our approach is to define slot

nam~s to be procedur~s embodying the meaning of the property

·represented by the slot. In the LISP implementation bf our

ideas, a slot name coincides with a function (pr ocedure)

name, while the filler coincides with the function~l

argum e nts.

In order to test our ideas on representation we have

incorporated them in a simple natural languag~ understanding

program. The program converses with the user in English

about a few simple objects in a room and ~heir relationships.

For the meaning of sentences and phrases we utilize the same

representation formalism used for the meaning of physical objects

and actions.

There are six sections in this paper. Section 2 and 3

survey briefly the developments oi knowledge representation

in artificial intelligence and of natural language understanding

systems, respectively._

Section 4 gives a sample dialogue with the ROOM program

on which we test our representation ideas. Section 5 describes

knowledge representation in ou~ program. Section 6 shows the

implementation of our formalism .

Section 7 discusses some future directions of improvement

to the fepresentation formalism and the linguistic analysis,

)

which we believ e will improve the program's performance

and bring - it closer to that of a human.

3 .

4.

Section 2. Representation of Knowledge

Th e " state space" and " problem reduction" frameworks (1 3]

in the ear l y work on problem so l ving involved some sort of

" c:3.rtificial " representation . For example, the solutions to

the classic proble ms of Monkey and Bananas or Tbwer of Hanoi

seemed to require a human trans l ation of the initial problem

into the " rightn representation so that heuristic search

could be applied to obtain the "goal states " for the problem.

Another more general approach is the Predicate Calculus

framework (9,13,18] . Basic facts in Predicat e Calculus are

expressed in the form of predicates. Complex facts can be

· deduced from the basic ones through axioms. With the

incorporation of the more powerful resolution-based theorem

proving techniques, high h opes were associated with thi s

approach. Since the inference procedure is based completely

on syntax, it is somewhat difficult to incorporate semantic

heuristic knowledge denoting how to derive the inference.

The procedural approach to knowled ge representation is

based on the assumption that knowledge is primarily

ll knowing how " [5, 18] . The knov.rledge is in the form of

pro grams , which makes it easy to provide extens iv e guidance

of the inf erence but limits it to a particular problem and

a spec ific aspect of this problem as well. Impl ementation~

using this approach made use of a general infer entia l scheme

which is based on Pl an n er - lik e languag es .

The "pr oduction syqtem s 11 approach is a patt er n-based

representation [4,1 2) , which consists . of three components

in oper~tion: a linearly ordered set of production rules,

5.

a data base, and an interpreter. In general, a rule is a

string of symbols with a l eft and right hand side. A data

base is a collection of symbols. An interpreter scans the

left hand side of each rule until a rule is found,.which

matches against some sequence of sy mbols in the data base.

The matched symbols in the data base are then replaced by

the string of symbols in th e right hand side of the rule.

The process of ·scanning continues either with the n ext rule

or from the beginning of the set of rules.

Se~antic n etwork is a type of representation that i s

broadly us ed in natural language programs or speech

understanding systems [11,15,21]. It has been formulated

and utilized in various ways. The network, in general,

consists of nodes and links. A node sometimes represents

the word sense meaning, while a link represents the

relationship held between nodes, and the netw ork represents

th e common knowledge in a spec ific domain.

Minsky's " frame theory 11 set up a new approach to the

representation of knowledge problems. Minsky says: [10]

"When ever one encounters a new situation (or makes

a substantial change in one ' s viewpoint) he selects

from memory a structure ca lled a frame : a ~emembered

6.

framework to be adapted to fit reality by changing

details as ·necessary . II

"Attach ed to each frame are · several kinds of

informati on . Some of this information is about how

to use the frame. Some is about what one can expect

to happen next . . Some is about what to do if these

expectations are n~t confirmed "

Minsky himself did not follow through this idea to an

actual working system. Some of the recent work, however,

is attempting to implement frames.

Currently, a lan guage calle6 KRL (Kn owiedge Representation

Language) is under development [3] . It is designed as a

formalism to be used by understander systems. It utilizes

frames and also integrates the procedural and declarative

know l edge to some extent. The representation for declarative

knowledge is based upon descriptions. An object is described

by its properties, while a bomplei event is frequently

describ~d by means of multiple perspectives. Th e procedural

knowledg ~ is incorporated into the representation by

11pr ocedural attachment 11 • Other extended control structures

are also included in . KRL: multiprocessing and variable

depth processing; process frameworks, proc edu r e directories,

and directo~y modul es.

Section 3. Natural Language Understanding--an

important area of AI research

A great dea l of research on natural language

7 .

_understanding has been dohe during the past fifteen years

within the fie l d of artific i al intelligence. Winograd [16,17)

discussed in some detail the existing language understanding

systems. From his point of view, the evolution of mechanical

understanding can be divided into three stages : the early

AI system~, the second generation AI systems, and the current

developments .

A number of computer systems were implemented in the

first period. One such system was Bobrow .' s STUDENT system [1]

It represented the meanings of sentences in terms of a s~t

of l inear equations and could store other linear equations

so that the program us i ng them cquld ~olve problems in high

school a:lgebra.

Another · approach characterized as "limited logic " was

taken for answering questions. SIR [14) ~ for example, made

use of word associations as well as pattern matching

techniques to examine input s~ntences and could answ~r such

questions as " Is X a part of Y? " , etc . In SIR the f!leaning

of a concept is stored on the property lists of the .LISP

atom corresponding to the concept ' s name.

" Second generation " AI systems spanned the late sixties

and the ea~ly seventies. These systems differed from the

)

)

)

8.

early ones in that they h oped to find solutions to a large

range of problems of lan guage. Two distinct largely

well-developed dialogue systems are discussed.

One of them was Woods' LUNAR system which was designed

as a natural language information retrieval system for lunar

geology (20] . The syst~m understood a large set of questions.

It ga0e responses with a very limited structure, but generally

satisfying the needs. Augmented Transition Networks (6,1 9]

were used for accepiing input questions and for translating

th em int o a special query language which was designed to

interface with an information retrieval system .

An Augmented Transition Network is a finite state

recognizer with augmented features so as to allow recursive

calls to the network itself or to other networks. Attached

to a network 1s a set of states, arcs, and 11naming actions"

associated with each of th e arcs. An arc specifies the

condition for the current word in an input. A state tells

what has been processed so far. A "namin g action " binds

the current word to a " functional name" of the syntactic

structure of an input. The processor operatei in a manner

similar to the manner of a finit e state recognizer.

Th~ second system was Winograd ' s SHRDLU program (16]

whi c h converses · with a per~ on about manipulations of toy

blocks. The program repr ese nts its syntactic, semantic,

and reasoning knowl edge as procedures. It operates

concurrently with these components rather than treating

each of them as separate.

9 .

After the "s econd generation " AI systems, researchers

have concentrated more on the development of a good formalism

for the representation of knowledge than on the implementation

of dialogue systems or the implementation of systems for

understanding.

An example of a contemporary dialogue syste m. is the

GUS system under development in Xerox PARC [2]. It conducts

a dialogue with a traveller, for planning a simple trip.

The dialogue is di~ected by frames. The system utilizes

recursive techniques in order to acquire the need ed

information specified in a slot before going on to an6ther

slot of the same level. GUS uses procedural attachment to

facilitate the reasoning and to keep its initiati ve during

the con~ersation with the travell e r. The attached procedures

are of two types: DEMONS and SERVANTS. A DEMONS type

procedure is evaluated as soon as the slot is filled, while

a SERVANT type procedure is called with respect to the

condition specified in the slot.

J

10.

Section 4. A Dialogue with ROOM

The ROOM program was developed at the computer science

department at Oregon State University [8] . It is a natural

language understanding system. It has been used as a

test i ng ground for different representation idea s and

linguistic analysis.

The representition utilized in the program is in the

spirit of the 11 frame 11 paradigm. We are aiming .to develop

a fo~malism which can be used by machines for r epresent ing

knowledge.

An important aspect is that individual objects in the

program are identifi e d by description, i. e . there are no

proper nimes associated with them [7] . This approach is

similar to the nature of human und ersta nding. Humans do

not use generated symbols for identifying objects in an

enviroriment. Nevertheless natural intelligence performs

quite well without them as we all know.

The system converses with the us er ab6ut th e o bjects

in a room and their relationships. The room serves as the

boundary of the program ' s world. To reduce the impact of

the lack of vision we describe to the program (as we would

describe to a hum an) a room containing a few simple objects

and we talk about them. The system accepts sentences

describing n ew events . The new events could either introduce

n ew objects or make assertions about existi n g o bj ec ts. · The

sys t e m could also answer several types of questions.

11.

A sample dialogu~ with the system is given on

page 12-13. The bracket numbers in the dialogue we re added

for reference purpose . . The system responds with OK to carry

out an appropriate action and with I SEE to modify~ given

·object's properties. It says I KNOW if an event has been

previously introduced. It gives an error me ssage f or an

impossible event or a wrong assertion.

[1]
.[2]

[3]
[4]

[5]
. [6]

* (CONVFFSE)

r-:om·: PrLLO
U5ER: *~PPT IS IN THF FCOM

PC('r,;: t-'C'TH I l\1G
llSFG: *THF:R[rs · " PED r.ox IN ".rl-lE ROO~1

ncor,1 : . Ol\
USFF: *A GL1'CK EALL IS IN THE POX

[7] POQf,' : QI<
[8] u:=; E:F: *THE GOX IS PUT ON A s~~" LL 'T/\P.LE

[9] P.CO! 1 : CT<, TPE S~l!' LL TPSLE NO\•; SUPPORTS
[l O] USC!<: *T HC PA LL IS ON TllE · Ti\P.LE

[11] ROOi·'. : H i FACT THE DLl\CK BALL IS IN THE

[12) USFR: *Vll1~T I S IN THE FCOl -1

THE l,ED PCX

PED POX

[1 3) ROCf.: : A St1A LL TAP.LE , A PLACK PALL , ANr. A RED POX
[14] U S E P : * v" !-l Ff E I S TH E BOX

[15] POOi<: ON THE sn1 LL TAPLf.
[16] US CR : . * \-. HI CH ['ALL IS If\; T !-1 E P. 0 X

[1 7] scor.t: Tf..;[. PL1',CV l:,ALL
[18] l1~SF : *Tl-lE [',,\LL JS !HG

[1 9) Foor ,·: I SFf.
[2 0] U[~Ef-: *TPE PALL IS PUT IN 1', GFEEJ\: BOX

[2 1] rccw: (' T(, TPf C:PFE1'1 l30Y !',]Q\; ,' CCio' TJ\It :S THI: !3IG P[J\Cf •; !:l,z:iLL
[22] 1_1SEF : *THC rcx IS PUT ON T:-...· !=:IC: '1'1'.PLE

[2 3] PO Cr · : 0 F , T ! ~ f F I G 'I'/\ P LE . NC' h S l ; PP O r TS T F f GP CF N r: C X
[2 4] () ~ fT : *":E 7\ T I ~ 0 N T !ff ~ ~.:ALL Ti'\ FL E

[25] F'CC:r·': r. f<ED FCX
[2 6] lJ S CF; : *IS T ! 1 CF f fl P, ALL It; T [-l E F CD [3 C \

[2 7] \<CC!: : 1--"C'
[2 8] U [: r i~ : * Tf; [S C I S A 13 r-: Ol ·i N BALL If\' TH E R E C BOX

[2 9 J r:r·m ·:: or<'.
[3 0] US E F : * 1\ G I:< E EN 81'. LL I S I N !'1 S ~ 1 A LL r OX

[3 1] r. CC :.1 : CK
[32] usrr: -;;T'.1 F:Fr. IS A. fl.JG El'·LL IN r... rcx

1 2.

)

J

[3 3]
[3 4 l

[3 5]
[3 6]

[3 7]
[3 8]

[3 9] .
[4 0]

[41 l
[4 2]

[4 3]
[4 4]

[4 5]
[4 6]

[4 7]
[4 s l

[4 9]
[5 0]

[51]
· [5 2]

[5 3]
[54)

[5 5]
[5 6]

[5 7]
[5 8]

[5 9]
[6 0]

[61]

[62]

ROo~, : r KNO~\·
usrr: *THE RIG Rl\LL IS RPOW~

r.co~·: **f PROF** THE RALL IS [lIC J\.r--;o RLl\C[<
US f F : . * F H I C ll P l'.\ LL I S [1 L71 C [(

ROCV: THF ONE Ir THE GREFN PCX
USEP: *WHERE IS THE GPEEN COX

R 00 (l : 0 N THE B I G TAP L F
USES : *IS THEFE A EALL ON THE TABLE

PCO f·': NO
USEF: *THE GREEN PALL IS PUT ON THE TAELE

roor: : OJ<, 'l'!-TF PI G TABLE NOW SUPPOFTS Tf!E GREF.N pr, LL
USES~ *VEA T IS ON THE TABLE

RO O ~: : A G REEN l? ll L f., l\ t:: D A GP EE N 13 0 X
USEP : *THE GREEN BOX IS PUT I~ THE SMALL TAELE

RCO~: **CFFOF** IT IS ~FO~G THAT A TABLE CO~T~I~S A BOX
f_1 S E .R : * TH E S ~'; l\ LL 1; C, X I S PUT ON TH E S 1,i f', LL T [;fl LE

FOO[': . CK , 'J'PE 9:A t.L TPBLE nc~,, . SUPPOFTS TPE S1-il'LL BOX
US ER: *l-:F l' T I S ot,1 THE S~'l \ LL Tl>,ELE

Foor, . : A sr-'.P, LL POX A t.m A PED FOX
USfR : *THE RPOWN PALL I S PUT I N THE PfD BOX

FOOt•': IT I S l' I,PF ADY TEF.FE
USER : *WHICH BOX IS ON THE PIG TAPLE

FOOr: TPf GRFEN 20X
USFF: * J S THf GI G PALL IN THE GREEK BOX

.RCCr,:: YES
USfP : *THE RIC BALL I S BLACK

Fem :: YCU TCLD / ; E ' Pf~CRE
usu : : * 11: HAT I S I N THE FOOi<

13.

FCC[': }\ GPEE;N Rl\LL , A St-".ALL BOX , l' PRm ·:t,1 8!' LL , l' e r e Ti"'PLC ,
l' GPf[N POX , A SMl'LL TAELE , ~ CI G FLACK SALL , ~ND A PED PO~
CSER : *BYE

[63] · ro e~ :· THArK YOU
l',; IL

*

J

)

14.

Section 5, Knowledge Representation in ROOM

The system has its world, linguistic, procedural,

syntactic, and inferential knowledge which operate in an

.integrated manner to understand the context. An input

sentence is parsed by its syntactic knowledge. The world,

linguistic, and procedural knowledge are used to form the

representation for the sentence. The_ inferential knowledg e

makes use of the representation for subsequent inferencing•

and . processing.

Knowledge rep~esentation in the general case would

necessarily be more complex than knowledge representation

in.the restricted case of ROOM. All comments the author

makes in this paper refer specifically to ROOM and not,

except as noted, to the general case.

5.1 World Knowledge

ROOM uses a frame corresponding to eacih concept

occurring within our specific context. The frame is

further specified according to the information provided.

Given a frame, a set of slots is associated with the frame

for storing its properties. The information of the slots

are effective only within this frame. Th e slots appearing

in a frame are sensitive to the context of what we are

doing. For example, the concept of "ball " in our context

may have several properties such as size, color, and location.

)

)

15.

In our representation a frame consists of a frame name

as well as a set of slots with slot names and fillers for

describing properties of the concept corresponding to the

frame name. (A frame nam e indicates the concept to which

it corresponds.) The slot nam es of the slots are LISP atoms.

Th e fillers are represertted in a large variety: a LISP atom,

a list of LI SP atoms, another frame, a list of other frames,

or a set of s ub-slots. All these are illustrated by examples

in this section, or in section 5.2, or in section 5.3.

For exa mpl e, the representation of the physical object

A BIG RED BOX is shown in Fig. 1. The frame nam e is BOX.

Ther e are four slots in the frame--SIZE, COLOR, CONTAINS,

and LOCATION.

(BOX

(SIZE BIG)

(COLOR RED)

(CONTAINS NIL)

(LOCATION ((POINTER NIL)

(RELATION NIL))))

Fig. 1 Representation of A BIG RED BOX

The fillers of the SIZE and COLOR slots are represented

differently from the filler of the CONTAINS or the LOCATION

)

)

16.

slot . They cl.re simply LISP atoms, i.e. BIG and RED. Each

of · these slots can be viewed as a pair of attribute and .

va lu e, f6~ describing the BOX's size and color.

The f ill er of CONTAINS is also represented differently

from the fil l er of LOCATION. In the CONTAINS case, it is

NIL in this example . If the box contains other physical

objects, then the filler becomes a list of other physical

object frames. For example, if the box in the example

contains a big ball and a green ball, the CONTAINS slot

in turn has the following representation instead of the one

shown in Fig. 1.

(CONTAINS ((BALL csrzE BIG)

(L OCATION {(POINTER (BOX & & & &))

(RELATION IN))))

(BALL (COLOR GREEN)

(L OCATION ((POINTER (BOX & & & &))

(RELATION IN))))))

Fig. 2 Representation of the CONTAINS slot

The filler of the LOCATION slot iB a list of two

sub-slots . Th e first on e is POINTER. It s fill e r is a

pointer to another . physical object frame. The second one

is RELATION 0hich is an ~ttribute~value pair, with a

preposition for the filler.

BALL's location is IN BOX.

In Fig. 2, for example, BIG

17,

The slots in the BOX frame are further characterized.

as structural, functional, and existential. Structurally,

a box has its size and color_ . Functionally, it contains

other physical objects. Existentially, it has its location.

These three types of slots, included in the BOX frame,

give the representation flexibility, modularity, and

generality.

The flexibility is indicated by the many possible uses

of the frame. The frame could be utilized to answer several

questions about the box as given by the inputs: WHAT. IS IN

THE BOX, WHERE IS THE BOX, WHICH BOX IS IN THE ROOM, etc.

It could also be used to represent some new facts as given

by the inputs: A BALL IS IN THE BOX, THE BOX IS PUT ON

THE TABLE, etc.

The modularity derives from the fact that each of the

three types of slots is independent of the others.

Modification of one of the properties does not require

change _s for others. Addition of new information becomes a

process of accumulation of the information. For example,

putting a ball in the box requires only the addition of

a ball frame to the CONTAINS slot. There is nothing to be

done about the b6x's location or its color and size.

The generality is illu s trated by the moving of a box

)

from one location to another. All objects contained in

the box to be moved, are moved without expl icitl y

reconstructing the data base and deducing each time that

the objects are moved because the box is moved.

18.

The WORLD representation contains the physical objects

in the room, with their relationships to o ther s . The room

serves as the boundary of the program ' s world. The WORLD

r eprese ntation is similar to the representation of physic a l

objects, as shown in Fig. 3. There is only one CONTAINS

(ROOM

(CONTAINS NIL))

Fig. 3 The initial WORLD representati o n

slot in it. The filler is NIL initially. The physical

objects mentioned in the conversation are either identified

and modifi ed appropriately or otherwise created and added

to the slot.

Notice that an individual object in WORLD is not

i solated from others. Rather, it is lin ked to another

object or simply WORLD such that the WORLD rep rese nta tio n

is a n etwork showing the current state of the environ ment .

)

19.

5.2 Linguistic Knowledge

The representati6n described in section 5.1 is utilized

also for the meaning of the phrases and sentences.

The NPF frame is u sed for representing the syntactic

mea~ing of a noun phrase. Fig. 4 shows the NPF frame for

the noun phrase A BIG RED BOX. There are three slots in the

(NPF

(DET A)

(ADJ (BI G RED))

(NOUN BOX))

Fig. 4 Syntactic representation of A BIG RED BOX

frame--DET, ADJ, and NOUN. Th e f illers of the DET, ADJ,

and NOUN slots are the definite determiner, the list of

adjectives, and the noun of the noun phrase, respectively.

The DET and NOUN slots are attribute-value pairs. The

filler of ADJ is a list of LISP atoms.

The meaning of a noun phrase i s formed as soon as the

NPF and physical object frames are established . Fig. 5

s hows the representation of the same noun phrase A BIG RED

BOX. There are twos-lots in the frame-- SYNTAX and. SEMANTICS.

The filler of SYNTAX is the NPF frame in Fig. 4, while the

filler of SEMANTICS is the physical objec t frame for BOX in

Fig. l.

(NP

(SYNTAX. (NPF

(DET A)

(ADJ (BIG RED))

(NOUN BOX)))

(SEMANTICS (BOX

· (SIZE BIG)

(COLOR RED)

(CONTAINS NIL)

(LOCATION ((POINTER NIL)

(RELATION NIL))))))

20.

Fig. 5 Representation of the noun phrase A BIG RED BOX

The representation of a declarative sentence is somewhat

more complex than the representation for a physical object

or a noun phrase. Suppose the declarative sentence

A BIG RED BOX ISO& A SMALL TABLE is the first sentence

described by the user, then the sentence ii represented as

shown in Fig. 6. The frame name is DECL-SENT, which is

significant to the process of retrieval (see section 5.5) .

There are six slots in the frame--SUBJECT, SUBJECT-SEARCH,

OBJECT, OBJECT-SEARCH, PREDICATE, and REPLY.

)

(DECL-SENT

(SUBJECT (NP

(SYNTAX (NPF

CDET A)

(ADJ (BIG RED))

(NOUN BOX)))

(SEMANTICS (BOX

(SIZE BIG)

(COLOR RED)

(CONTAINS NIL)

21.

(LOCATION ((POINTER (TABLE & & &))

(RELATION ON)))))))

(SUBJECT-SEARCH ((RESULT ,NONE) (POINTER NIL)))

(OBJECT (NP

(SYNTAX (NPF

(DET A)

(ADJ (SMALL))

(NOUN TABLE)))

(SEMANTICS (TABLE .

(SIZE SMALL)

(SUPPORTS ((BOX & & & &)))

(L OCATION ((POINTER (ROOM&))

(RELATION IN)))))))

(OBJECT-SEARCH ((RESULT NONE) (POINTER NIL)))

(PREDICATE ((VERB BE) . (RELATION ON)))

(REPLY 3))

Fig. 6 Repres e ntation of the declarativ e s entenc e

A BIG RED BOX IS ON A SMALL TABLE

J

)

22.

The SUBJECT and OBJECT slots describe the subject and

object of the sentence, i.e. A BIG RED BOX and A SMALL TABLE.

Their fillers are NP frames.

The SUBJECT-SEARCH and OBJECT-SEARCH slots keep -the

results df the identification process (see section 5.5) for

the subject and object. Their fillers contain two sub-slots:

RESULT and POINTER. If an object is identified, RESULT will

be either SIMILAR or FOUND, and POINTER points to a particular

physical object frame. Otherwise, RESULT will be either

NONE or NOTFOUND, and POINTER is NIL. Since the sentence

in this example is assumed to be the first sentence described

by the user, it is obvious that both the subject and object

could not be identified. Therefore the fillers of RESULT

for both the SUBJECT-SEARCH and OBJECT-SEARCH are none. ·

The fillers of POINTER are NIL.

The filler of PREDICATE is i list of two sub-slots:

VERB and RELATION, ke~ping the verb and preposition of the

sentence, respectively.

The REPLY slot is an attribute-value pair with its

filler being a number. The value part is no longer an

inherite~ property of the slot name but an indicator

corresponding to a specific reply stored in the list of

REPLIES (see page 37).

Questions are represented in a similar way to declarative

sentences, but with fewer slots and a different frame name

corresponding to a specific type of question (see section 6.8).

)

In addition to the WORLD representation containing

the physical objects in the room, there is a HISTORY

representation for keeping previous·sentences. It i s an

2 3.

ordered list of the previous sentence frames, according to

·th~ order of events described by the user . . All - sentehce

frames kept in HISTORY are meaningful with respect to the

-context, i.e. they are not describing the same events or

providing incorrect information. Objects mentioned in

the sentences share structures with the WORLD objects.

&.3 Procedural Knowledge

Section 5.1 and 5.2 described the frame representations

for physical objects as weli as the meaning of phrases and

sentences. The information represented by the slots are

declar~tive facts about the concepts ' properties--the .color

of the box is RED (in Fig. 1), the determiner of the noun

phrase is A (in Fig. 4), the subject of the s~ntence is

A BIG RED BOX (in Fig. 6), etc . However, there is no

specification of how to use such information. The information

makes sense to us because of our knowledge. It may not be

so obvious for our machine to have the same interpretation.

For example, the slots of the NPF frame in Fig . 4 are

used for keeping the words of the noun phrase in three

catagories, according to their grammatical features. When

we talk about the adjectives in the ADJ slot, we assume the

)

24.

adjectiveB modify •the noun in the noun slot. Al~o when we

talk about . the definite d~terminer in the DET slot, we know

that the noun is possibly referred to an existin~ object.

With our knowledge of the noun phrase, we notice that there

are relationships h·eld among the slots. But how does our

machine know that? Solution of this question is accomplished

by using an order slot which is filled with procedure names.

The authbr believe$ that this is an original co ntribution

to the technique of frame theory.

In this exa~ple, the procedural knowl edge ne e ded to

~anipulate the reiations with the slots is introduced in

an ORDER slot. Th e syntact ic meaning of the noun phrase

A BIG RED BOX is now represented as shown in Fig. 7 instead

of the previous one in Fi g. 4, by · adding an ORDER slot.

(NPF

(DET A)

(ADJ (BIG RED))

(NOUN BOX)

(ORDER NOUN ADJ DET))

Fig. 7 Syntactic representation of A BIG RED BOX

The ORDER slot does not contain any word which belon gs to

the words of the noun phrase but all slot nam es instead.

)

25.

The slot names appearing in the ORDER slot are defin~d as

procedural. In the LISP implementation of this idea, a

procedural slot name is a function {procedure) name which

takes the filler as its func{ional arguments. The procedure

·would accomplish the task of processing whatever has been

specif{ed in advance.

The ORDER slot further specifies the order of.us in g

the information in the frame, i.e. the order for the

evaluation of the procedures. In Fig. 7 the order of

evaluation happens. to be NOUN, ADJ, and DET. The procedural

knowledge for the given noun phrase is used to form a physical

object fram~ for the concept of BOX, to insert all structural

properties (BIG and RED) in the BOX frame, and to identify

the BIG RED BOX (see section 5.5) .

As for the declarative sentence frame in Fig. 6, the

information attached to the PREDICATE and REPLY slots again

has implicit meaning to us. We know that the verb and

preposition in the PREDICATE slot indicate the relationship

between the subject and object of the sentence. Also it

makes sense assuming that the number in the REPLY slot

corresponds to· one of the replies stored in the li~t of

REPLIES, although the number is no longer an inherited

property of the slot name. But our machine may not notice

these facts so easily. Therefore, PREDICATE as well as

REPLY are defined as procedural slot names so that p·rocedural

knowledge is incorporated to perform the same analysis as

)

2 6 .

we did.

T h e meaning of the declarat i ve seritence is now

represented as shown in Fi g. 8 instead of the one given in

Fig. 6, with the addition of an QRDER slot. The ORDER slot

sp~cifies the order for the evaluation of the procedures to

be PREDICATE and REPLY. The procedural knowledge associated

with the ,declarative sentence frame is needed to utilize all

kinds of information in the frame and the WORLD representation.

I t is also used to form the communication to the user

interacting with the program.

Notice that in Fig. 8 the ORDER slot does not include

all slot names in the frame. Those that are not in ORDER

are defined as descriptive. , Slot names are also defined as

. descriptive if a frame does not contain an ORDER slot. For

example, all slot names of the BOX frame in Fig . 1 as well

as those of the NP frame in Fig. 5 are descriptive.

Descriptive slots express declarative fa~ts of a concept's

properties.

In summary, the purpose of introducing an ORDER slot

is to incorporate procedural knowledge into declarative

data structures, giving our frame representation efficiency.

The procedural knowl~dge ~pecifies how to utilize the

information in the frames. It integrates different lev e ls

of knowledge such as providing guidance of inferences,

setting up responses, forming actions, etc. It also deals

)

j

(DECL-SENT

(SUBJECT (NP

(SYNTAX (NPF

(DET A)

(ADJ (BIG RED)) ·

(NOUN BOX)

. (ORDER NOUN ADJ DET)))

(SEMANTICS (BOX

(SIZE BIG)

(COLOR RED)

(CONTAINS NIL)

2 7 .

(L OCATION ((POINTE R (TABLE & & &))

(RELATION ON)))))))

(SUBJECT-SEARCH ((RESULT NONE) (POINTER NIL)))

(OBJECT (NP

(SYNTAX (NPF

(DET A) · ·

. (ADJ (SMALL))

(NOUN TABLE)

(ORDER NOUN ADJ DET)))

(SEMANTICS (TABLE

(SIZE SMALL)

(SUPPORTS ((B OX & & & &)))

(LOCATION ((POINTER (ROOM&))

(RELATION IN)))))))

(OBJECT- SEARCH ((RESULT NONE) (POINTER NIL)))

(PREDICATE ((VERB Bt) (RELATION ON)))

(REPLY 3) .

(ORDER PREDICATE REPLY))

Fig. 8 Representation of the declarative sentence

A BIG RED BOX rs ON A SMALL TABLE

)

with diff~rent type~ of .the fillers. The ORDER slot

furthermore ser~es as the top level control of a frame,

1.e, it specifies the order of using the information.

5.4 Syntactic Knowledge

2 8.

In order to obtain the representations· of phrases and

sentences described in s~ction 5.2, the system mak~s use of

the explicit ordering of words in an English sentence. The

syntactic knowledge is represented in the form of a list of

patterns corresponding to the types of input sentences, as

shown . in Fig. 9 . This analysis is similar to the Augmented

Transition Network approach.

_In the current representation a pattern consists of

a pattern name together with a set of states . For example,

the pattern name of the first pattern in Fig. 9 is

DECLARATIVE. There are five states in the DECLARATIVE

pattern. A state contains a state number as well as one or

more choices. A choice consists of a procedure together

with a number "next" specifying the next state to be

processed within the pattern. The procedure appearing in

a choice is used for recognizing the current leftmdst word

of a sentence and for keeping such a word som e place (in one

of the frames), provided the syntactic definition of th e

word satisfies the condition specified by the procedure.

For ~xample, given the procedure ?ADJ and the word RED with

its syntactic feature ADJECTIVE being kept in the dictionary,

)

)

((DECLARATIVE (1 (?NP S 2))

(2 (IS 3))

(3 (?VERB 4) (?P 5) (?ADJ 6) (?NPO 6))

(4 (? P 5))

(5 (?N PO 6)))

(THERE (1 (THERE 2))

(2 (I S 3))

(3 (?NP- A 4))

(4 (? P 5))

(5 (?NPO 6)))

(IS (1 (IS 2))

(2 (THERE 4) (?NPS 3))
- .

(3 (?P 5) (?ADJ 6))

(4 (?NP- A 7))

(5 (?NPO 6))

(7 (? P 5)))

29.

(WHAT (1 (WHAT 2)) (2 (IS 3)) (3 (?P 4)) (4 (?NPO 5)))

(WHERE (1 (WHERE 2)) (2 (IS 3)) (3 (?NPS 4)))

(WHICH (1 (WHICH 2))

(2 (?NP-N 3))

(.3 (IS 4))

(4 (? P 5) (?A DJ 6))

(5 (?NPO 6)))

(NP (1 (?DET 2)) (2 (?ADJ 2) (?NOUN 3)))

(NP-A (1 (A-AN 2)) (2 (?ADJ 2) (?NOUN 3)))

(NP-N (1 (?ADJ 1) (?NOUN 2))))

Fig . 9 Sentence patterns

)

3 0 .

?ADJ accepts the wbrd RED. The procedure occasionally

refers to another pattern in the list. For example, given

?NPS and the phrase THE RED BALL, ?NPS transfers its control

to the NP pattern. The NP, NP-A, and NP-N patterns are

defined as a noun phrase with a definite determiner, with

an A (AN) determiner, and withoui any definite determiner,

respectively.

When a pattern is used to parse a sentence, the state 1

is processed f ir st. The next state to be processed is

indicated by a number in a choice provided the choice

procedure succeeds in recognizing the leftmost word - or a

syntactic group of words of the sentence. In case the

choice procedure fails, other choices at the same state are

attempted. If none of the choice procedures succeeds, then

the sentence is not ~cceptable, i.e. the system cannot

understand the sentence at the pr~sent time. If a state

refer~ed by a number does not exist, it is defined as an

accepting state. The state 6 in the DECLARATIVE pattern,

for example, is the accepting state for a declarative

sentence . The sentence is grammatically accepted if an

accebting state is entered and also the sentence is ended . ·

For example, the first patt ern (DECLARATIVE) in the

list is used to parse the sentence on line 4 of th e sample

dialogue (p. 12) . The pattern indicates that the sentence

should begin with a noun phrase (?NPS stand~ for a noun phrase

31.

which is ihe subject of the sentence) followed by the word

IS, and IS is followed by a verb, a preposition, an

adjective~ or another noun phrase {?NPO stands for a noun

phrase which is the object of the sentence). In case a

verb follows IS~ then the subsequent word may possibly be

a preposition, and the preposition is followed by another

noun phrase. If an adjective follows IS, then the sentence

is supposed to be e~ded . Other patterns in the list are

interpreted in a similar way.

5.5 Inferential Knowledge

In the program's domain of discourse inferences are

made through either one of two perspectives on the knowledge

base: the WORLD and HISTORY representations.

WORLD is a network of physical object frames with thei~

relationships. Each frame corresponds to an object described

by the user. The network represents the current state of

the.environment. Its information is updated as a new event

is introduced. In other words, it is an abstract model of

the contents of the conversation.

HISTORY is the program 1 s memory of the conv e rsation.

It is an ordered list of previous sentence frames. It

indicates a sequence of events described by the user.

Individual objects mentioned in the sentences share structures

32.

with the world objects. This suggests that HISTORY also

represents the program's world. In effect WORLD grows or

is being modified as a result of adding information to

HI STORY.

With the introduction of these two perspectives, the

program identifies individual objects in a similar way to

that 6f a human. When a person uses an indefinite . article

'' a " for the concept of " ball ", for example, he may refer

Lo .:.my o ne of t he balls in hi s c nvir onmc n L. The program

therefore looks at the current world for any one of the

balls. When a person uses the definite article "th e ",

he possibly refers to a particular ball in his environment.

The ball usually corresponds to the one in his memory,

i.e. he has already seen or heard of t h e ball . The program

in this base l ooks at its history (memo~y) for that

particular ball. In case there is more than one ball in

HISTORY, the one most recently recorded is meant.

There are three types of iriferences. The first type

is to identify an object mentioned in an input sentence

from the objects e ither in WORLD or in HISTORY, depending

upon whether the definite determiner in a noun phrase is

A (AN) or THE. In case it is A (AN), the description of

some object is retrieved from WORLD for matchin g . The

~etrieval process is based on the name of a physical object

frame . A match succeeds when the current object ' s structural

)

3 3.

properties are a subset of those of the retrieved one.

On the dther hand, if the definite determiner is THE, then

the description of some object is ~etrieved from the SUBJECT

or OBJECT slot of the previous declarative sentence fram~s

stored in HISTORY, according to a " last in first out"

order, i.e. the most recent declarative sentence is examined

first. The retrieval process is based on the name of a

sentence frame, i.e. DECL-SENT provides suc h information.

Matching is similar to the A (AN) case. The search result

' for the A (AN) case is NONE or SIMILAR and for the THE case

is FOUND or NOTFOUND. This result is kept in the RESULT

sub-slot of either the SUBJECT-SEARCH or the OBJECT-SEARCH

slot of a sentence frame.

The second type of inference is to detect whether the

currently described event is possible. It deals mainly with

the existence of a specific functional property slot. For

example, the senience THE GREEN BOX IS PUT IN THE SMALL TABLE

on line 46 of the sample dialogue would not cause the system

to carry out any action because ther e is no CONTAINS slot

in the TABLE frame.

The third typ e of inference checks whether the c urr en t

event ha s been previously described. It utilizes a

" brute-force" search . for each existing physical object

which matches with the subject of a s~ntence, its LOCATION

slot is examined to see if the location of the physical

object match es with the object of the sentence. Because of

)

)

the nature of the program there cannot be more than one

match (see p. 23). Although the search method used is

"brute-force", it sti ll represents · a significant improvement

in the level of und~rstanding by the machin e.

35.

Section 6. Implementation

The ROOM program is written in UCI LISP and run under

the PDP-10 .time _sharing system at the University of Oregon .

. The program consists of the following components:

1. A ~et of stored data containing a small dictionary,

a . number of frames, sentence patterns, and partial

responses.

2. A top-level control communicating with the user

and monitoring processes.

3. A syntactic analysis component for processing an

input string.

4. A semantic framework for repres~nting physical

) objects and the meaning of sentences.

5. A set of inference procedures for making deductions.

6. An action-response structure for carrying out

appropriate actions and for setting up correct

responses.

6.1 Stored Data

The stored data .a re initially kept in LI SP property li sts

under the property indicators GRAM, MEAN, or FRAME.

The grammatical features of the words being used during

the conversation are stored on th e prop er ty lists of the

LISP atoms corresponding t o the words, within the property

indicator GRAM. For example, TABLE is represented as :

(DEFPROP TABLE

((SYNT NOUN))

GRAM)

3 6 •

It indicates that the filler of the SYNT slot is NOUN and

that the li~t is kept under GRAM. The same representation

is used for other words.

This same notation is used with GRAM replaced by MEAN

for the meanings of the words kept in MEAN. The meaning of

the concept of TABLE is represented as follows:

(DEFPROP TABLE

((SUPPORTS NIL)

(LOCATION ((POINTER NIL)

(RELATION NI L))))

MEAN)

It indicates that a table can support other physical objects.

The location of a table · would be a pointer to another

obj~ct and the relation of the table ' s location to the

location of anot h er object.

FRAME diff~rs f~om GRAM or MEAN in that it keeps the

sentence frames , the NP frame, and the NPF frame. Section 5.2

described these frames . Fig . £, 5, and 4 show th e further

specified declarative sentence, NP, and NPF frames,

respectively.

)

)

37.

The sentence patt er ns are stored in the variable

PATTERNS, which are in Fig. 9. The variable REPLIES keeps

a list of partial responses to be retrieved and used to

form re spo ns es to the us er . Fi g. 10 shows two of th e

partia l r espo ns es.

(2

(OR (AND (GREATERP (LENGTH PASS-1O -R EPLY) 2)

(FORM-ANSWER PASS-TO-R EPLY))

(21

(CDR

(MAPCAN (FUNCTION (LAMBDA (W) (APPE;ND (QUOTE (AND A)) W)))

PASS-TO-REPLY))))

(LIST (QUOTE "I DON'T KNOW WHICH")

PASS-TO-REPL Y

(QUOTE "YOU ARE TALKING ABOUT")))

Fig. 10 REPLIES 2 and 2i

)

38.

6.2 Top-level Control

There are thr~e procedures to perform the verbal

communicatiOns: SAY, LISTEN, and CONVERSE. SAY translates

a response into a readable form and sends it to the user .

. LISTEN takes in whatever the user describes to the program.

CONVERSE manages to communicate to the user through SAY~

to accept an arbitrary string through LISTEN, to ~end the

input string to the procedure · CONTROL, or to be used for

debugging in showing the current WORLD or HISTORY representation.

The procedure CONTROL receives an input sentence from

CONVERSE, looks at the first word of the sentence to make a

guess what kind of sentence it is, eva luat ei the cor~esponding

sentence frame when its slots are filled, and keeps the frame

in HISTORY of the conversation.

· To select an appropriate pattern and the frame, CONTROL

matches the first word of a sentence against the names of the

patterns. In case there is no match, CONTROL select~ the

DECLARATIVE pattern and the PECL-SENT frame; otherwise, the

matched pattern and the corresponding frame are chosen.

6.3 Syntactic Analysis

The syntactic analysis is controll~d by a LISP function

SENT-ANALYSIS . · Before parsing a sentence it receives a

specific proposed pattern and a sentence frame from the

procedure CONTROL. Syntactically, a sentence

J

)

A BIG RED BALL IS ON A BIG TABLE is processed as the

following, given the patterns as in Fig. 9.

39.

SENT-ANALYSIS enters at state 1 and finds that the

next word belongs to a noun phrase, therefore it branches

to the NP pattern. At state 1 of NP it expects the first

word to be a definite determiner, thus the procedure ?DET

is . evaluated to check for the word as a definit~ determiner.

In this example the word A is a determiner. Next,

SENT-ANALYSIS enters state 2 of NP to look for either an

adjective or a noun. In case an adjective appears, it

repeats, looking for another adjective or a noun. On the

other hand, if the definite determiner is followed by a noun,

then it checks the noun and returns back to whatever called

NP ..

The example shows . that the next word BIG happens to

be an adjective. ?ADJ is called to do a similar check as

in the determin~f case, but in a somewhat different manner.

For the determiner case the program needs only to know

whether the word is A, AN, or THE. But for ari adjective

it has to check with the word's syntactic feature stored

in GRAM. The adjective RED is treated as th e same way as

the word BIG. To this end SENT-ANALYSIS recognized the

the first three words of the s e ntence of which one is a

definite determiner and the others are adjectives. As

before, it looks at the subsequent word. But the next word

40.

BALL happens to be a noun ., so ?ADJ fails but ?NOUN succeeds

and returns back to state 1 of DECLARATIVE to resume
. .

processing the~e for the remainder of the sentence according

to th~ DtCLARATIVE p~ttern.

~ccepts the entire sentence.

Consequently, SENT-ANALYSIS

6.4 Semantics

The semantic framework of the program is used to

represent the meaning of a sentence processed by the syntactic

analysis. To represent the meaning of a sentence the program

has to understand in the first place the meaning of the pieces

of information described in a ~entence. This in turn triggers

off processing the constituents made up of the noun phrases,

the verbs, or the prepositions.

The representation of the meaning of a noun phrase is

accomplished once the n6un phrase has been recogni~ed as

syntactically correct. The words of a noun phrase are filled

into the appropriate slots in the NPF frame by the procedures

?DET, ?ADJ, or ?NOUN. Consider the noun phrase A BIG RED BALL

.and go back to the procedure ?NOUN mentioned in SENT-ANALYSIS
'

to realize the entire process .

?NOUN calls another procedure SLOT-EVAL after the word

BALL is filled in the NOUN slot . SLOT-EVAL e valuates the

procedural slots in the NPF frame with the order specified

in the ORDER slot (see page 24-25 above). Therefore, NOUN

41.

is called to create the physical 6bject frame which is an

instance of the prototype BALL frame kept under MEAN on

the property li st of the atom BALL. ADJ is next evaluated

to insert the structural properties such as color and size

·into the BALL frame by calling the procedure INSERT-IN-POF.

The physical object frame of A BIG RED BALL is shown in

Fig. 11. Notice that POINTER as well as RELATION in the

BALL frame are NIL. They will not be filled until the

(BALL

(SIZE BIG)

(COLOR RED)

(L OCATION ((POINTER NIL)

(RELATION NIL))))

Fig. 11 Representation of the physical object

A BIG RED BALL

procedure PREDICATE is eva luated (see page 26-27 above).

The procedure DET in the NPF frame is used for inf ere nc e

purpose . The process described completes a noun phrase ' s

syntactic and semantic representation in part. The NPF,

and BALL frames are put in the NP frame, and the NP frame

is in turn inserted into the SUBJECT or OBJECT slot in

the instance of a sentence frame .

)

42.

The object phrase of a sentence is treated in the s~me

way as the subject phrase. But the verb and preposition

are filled into the PREDICATE slot directly . Representation

of the meaning of a s~ntence is completed once the procedural

slots are evaluated.

6.5 Action-response

To check whether a computer system understands a

sentence we have to examine its action and response

corresponding t6 the sentence. RObM generates various types

of partial responses in the process of inferencing, carrying

out an appropriate action, or answering a questions. It

associates each type of the partial responses with a distinct

number which is filled in the REPLY slot of a sentence frame.

The procedure REPLY uses the number to retrieve the .data kept

in the REPLIES list to form a complete response. A partial

response usually is a partial noun phrase translated from an

internal representation, i . e.

in such a noun phrase.

there is no definite determiner

The program utilizes the procedure ZOOM to translat e

the interrial ~ipresentation of a physical 6bject or a list

of physical objects into a partial noun phrase. For example,

given the following BALL frame, ZOOM produc es the ex pr essio n

" (SMALL GREEN BALL) " .

)

(BALL

(SIZE SMALL)

(COLOR GREEN)

(LOCATION ((POINTE R (ROOM &))

(RELATION IN))))

43.

ROOM's actions involve the creation of physical objects

in the room or the movement of physical objects. It does

not carry out an act i on for each.sentence since the action

of a sentence may be e ith er previously de sc ribed or physically

impossible. Therefore, the program makes use of its reasoning

abil i ty to avoid redundancy.

To create a new object in the room the.program simply

adds it to the WORLD represent~tion and has the new object ' s

location pointing to WORLD a n d relation IN. Moving an object

from one location to another is somewhat d if ferent .

Computationally, the program tr~ces back to t h e object ' s

previous locatiori to remove the object from one of the

functional properties specified in its RELATION . POINTER

in the object's LOCATION slot is made to point to a new

location. An appropriate prepositio n is used for RELATION.

There are currently a number of predicates ih the program

such as ISON, ISIN, PUTON, and PUTIN corresponding to the

typ es of actions. A distinct proced ur e manipul ates each of

these . Th~ program generates such a procedure when the

)

Lf 4.

PREDICATE slot is being pr ocesse d. The procedure ISON is

very similar to the procedure ISIN. In fact, they could be

combined and share codes by passing aiguments such as

"suppor.t s " (or " contains ") and "·on " (or " in"). Th e reason

·of not doing that is to make each predicate serve as its own

· module so that when new predicates ar e introduced such as

ROLLOFF and BOUNCEOFF, we do not have to worry how they would

int eract with others. We s imply embed the knowledge into the

procedures.

Consider the sentence A GREEN BALL IS IN A SMALL BOX,

on line 30 of the sample dialogue, to see how ISIN is formed.

The PREDICATE slot for the sentence is shown in Fig. 12.

(PREDICATE ((VERB BE)

(RELATION IN)))

Fig. 1 2 ISIN

PREDICATE is eva luat ed to form the LISP expression

" (BE IN)", and it evaluates this expression. BE looks up ·

both the SUBJECT-SEARCH and OBJECT-SEARCH in the sentence

frame in order to decid e whether the expression ISIN n eeds

to be formed. Th e word ISIN is produced i f a sent e nce is

of the form "AN object IS IN AN object" . or "AN object I S IN

THE object' ' . Th e reasons for this are that the verb I S is

n

)

4 5.

for existential purposes and that a sentence does not have

an action if itis of the form "THE object IS IN AN object"

or "THE object IS IN THE ob j ec t". In . th e farmer case

ROOM tells the user the actual l ocat ion of the first

•11THE object ", and in the l at ter case ROOM simply tries to

find the " truth" of the sentence.

Once the procedur e ISIN is formed it is evaluated .

ISIN checks if a ball can be in a box (see section 5.5)

and a lso if the mea ning of t h e se nt ence h as been previously

d escr ibed. In the context of the dialogue t h e event has not

been introduced before. Therefore ISIN adds these two ·

objects to WORLD and establis h es the relationships b etween

them.

6.6 Inf ere nc es

In section 5.5 it was said that the program has three

types of infer ences. A definite.determiner in the noun

phrase of a declarative or a question sentence initiat es the

prog~a~ into the process of searching either WORLD or HI STORY

for a similar or a mentioned ob j ec t, respectively. This type

of inferenc e is defined as "i dentification ".

Th e e ntir e process of identification of an object is

through the uses. of t he procedures DET, SEARCH-WORLD or

SEARCH-HISTORY, and MATCH. DET is called in the first place

to check the type of the definite determiner in a

)

)

NPF frame~ The process of a WORLD iearc h begins in the

presence of ~n A or AN determiner in the DET slot in the

NPF frame and with the procedure SEARCH-WORLD.

SEARCH-WORLD looks throug h the current WORLD for

"fi ndin g a physical object similar to th e current one described

in the SEMANTICS slot in the NP frame. In case no similar

6b je ct is discovered, SEARCH-WORLD returns NONE as.the search

result. Oth e rwise, MATCH is brought in to check the structural

properties of the two physical objects in order to find a

match .

. MATCH returns NIL provided the current object has

more structura l properties than the world object or one of

t~e properties of the two objects does not match.

SEARCH-WORLD is no longer evaluated in case Tis returned

by MATCH, and it returns the search result as SIMILAR together

with a temporary pointer to the similar world object . In case

NIL is returned, SEARCH-WORLD is repeated from the name

following th e one ju st examined in the world objects li st .

The procedure SEARCH-HISTORY is called by DET when the

definite determiner THE appears in the NPF frame. The way

to find a ~entioned object in SEARCH-H ISTORY is similar to

the way to find a similar object iri SEARCH-WORLD. They are

different in two r espects . SEARCH-HISTORY work$ on e ith e r

both the subject and object or one of them in some prev i ous

declarative sentences. SEARCH-HISTORY returns the search

)

47.

result as FOUND or NOTFOUND instead of SIMI LAR or NONE in

SEARCH~WORLD.

SEARCH-HISTORY starts with a sentence retrieved from

the HI STORY representation. The retrieval of a sentence

·from HISTORY is performed in a "last in first out" order .

Only the previous declarative ·se ntence frames are used.

Thenr it works in the · manner described in SEARCH-WORLD

to find the me ntion ed obj~ct in the SUBJECT s l ot of the frame

of the last entry in.HISTORY. If it is not fou nd in the

SUBJECT slot, SEARCH-HISTORY examines the OBJECT slot . If

the object is not found in the last entry in e ith er slot of

HISTORY, SEARCH-HISTORY exa mines the next to last e ntry's

-fr~rne and so ori recursively. If the object is not found in

HISTORY at all, the program indicates this fact by the

REPLIES 21 of Fig. 10, pag e 37 above.

The second type of inference is to detect a situation

which cannot exist . It utilizes the procedure INFER-BY-PROP.

INFER-BY-PROP notices the type of the functional property

corresponding to the given preposit i on and l ooks for the

same slot in the object frame under consideration. Failure

to find such a slot results in th e termination of the entire

process. CONVERSE gives an error messa ge to the user.

For exa mpl e , the se nt e nc e THE GREEN BOX IS PUT IN . THE SMALL

TABLE on line 46 of the dialogu e results in an errDr message.

)

)

·43.

The third type of inf erence makes u se of the outcomes

of the identification process and finds out whether the

current event has been previously described. The search ·

result of an individual physical object in "identification"

~esults in one of the fou~ possible cases, i.e~ NOTFOUND,

FOUND, NONE, or SIMILAR. There are sixteen possible

combinations. The third type of inf erence is conc~rned only

with the combination of SIMILAR and SIMILAR; Two procedures

are used: BOTH-SIMILAR and SIMILAR-OBJS.

SIMILAR -OBJ S once again searches WORLD for all similar

objects with respect to the one encountered, and it returns

a list of the similar objects (with addresses and c6ntents).

BOTH-SIMILAR takes such two lists--one for the subject and

the other for the object of the sentence. BOTH-SIMILAR

checks if the location of a physical object in the subject

list is a member 6f the object li st. In case it is,

BOTH-SIMILAR returns NIL as the result, which indicates

the current event has been described before.

For example, suppose the system receives the following

sequence of three sentences :

1. A RED BALL IS ON A TABLE

2. A BALL IS ON A RED TABLE

3. A RED BALL IS ON A TABLE

SIMILAR - OBJS returns the subject list of A RED BALL and the

object list of A TABLE and A RED TABLE. BOTH- SIMILAR then

49.

find~ out that the locati on of A RED BALL 1s the sa me as

A TABLE, which is a member of th e object list . Ther efore,

BOTH-SIMILAR returns NIL. ROOM sets up the response I KNOW.

6.7 Int era ctions

The previous sections describ ed in detailed way the

representations of the different types of knowledge and

their uses. There is a s~ntactic component of parsing an

input and of expect ing t h e s ub sequent word with possibilities;

a semantic framework of forming the meanin g of concepts;

the inf ere nti~l knowledge of judging the current enviro nment ;

an action-response element embedded in action type procedures.

But the syst~m will not accomplish the task if these parts

are not treated as a whole. Consider the following example

and bbserve how ROOM operates in an integrat~d manner.

Suppose ROOM has received the following two sentences :

1. A RED BALL IS ON A RED TABLE

2 . A BIG BALL IS ON A BIG TABLE

ROOM processes the new sentence THE RED BALL IS PUT ON THE

BIG TABLE as follows.

It first parses the noun phrase and forms a physica l

ob j ect frame for THE RED BALL. Because of the pr ese nc e of

the definite determiner THE which implie s the current object

ha s been mentioned, the id e ntification process tak es place

to look for the most recent RED BALL from HISTORY; as a

)

)

50.

result RED BALL is discover e d and FOUND is put in RESULT

in the SUBJECT~SEARCH slot. Since the noun phrase has . been

pro6essed, the subsequent wo~d that SENT~ANALYSIS expects

is the verb IS, according to the DECLARATIVE pattern. In

fact, IS is recognized and it is kept in VERB in the PREDICATE

slot. Again, the program returns back to the pattern. The

next word is another verb PUT, therefore PUT replaces the

former verb.

The rest of the sentence is processed and accepted in

the same way. To this e nd the sentence frame h as a ll s l ots

filled. The remaining task is to evaluate al'l those procedural

slots.

Thus, PREDICATE is the first one to be evaluated. It

returns the LISP expression "(PUT ON)" and evaluates the

expression. PUT first finds out whether RED BALL can be

put on BIG TABLE. In this example, the condition results

in T because of TABLE's SUPPORTS slot. PUT also checks

.if BIG TABLE supports RED BALL. If not, PUT forms the

procedure FUTON .to carry out the action, resetting

appropriate pointers and relations.

In general, ROOM goes back and forth to understand an

input se ntence usin g its different types of knowl edge in

ari integrated ma nn er , which is similar to the huma n way of

und e rstanding.

)

)

51.

6.8 Questions Answering

Questions answering of a natural language understanding

system appears to be les~ intricate than the modification of

a system's data base. A system in general retrieves the

~ssertions which hav~ already been mad~ by a programmer or

throughout a conversation. In other words, the complexity

of the reasoning is greatly reduced.

ROOM can answer several types of questions such as

WHAT, WHERE; IS, and WHICH. There is a spec if ic question

frame associated with _ each of these. The slots included in

the frame are contingent upon the type.

The way of answer~ng questions in the current program

is simplified because of a limited set of predicates being

used. This is done by considering only the information

related to a question, i.e. the important role played by

verbs is neglected at the present time.

The question WHAT IS IN THE ROOM on line 12 of the

dialogue is represented in Fig. 13. The WHAT frame does

not include the SUBJECT or SUBJECT-SEARCH slot as appears

in the declarative sentence frame (see Fi g . 8)_. It consists

of the OBJECT, OBJECT-SEARCH, PREDICATE, REPLY, and ORDER

slots. The ORDER slot specifies the ord e r of evaluation of

the WHAT frame to be OBJECT-SEARCH and REPLY. Th e procedur e

OBJECT-SEARCH i s used to form a procedure name corresponding

to the current type . In this case it forms QUESTION- WHAT.

)

(WHAT

(OBJE CT

· (ROOM

(CONTAINS

((TABLE (SIZE SMALL) (SUPPORTS &) (LOCATION &))

(BALL (COLOR BLACK) (LOCATION&))

(BOX (COLOR RED) (CONTAINS&) (LOCATION&))))))

(OBJECT-SEARCH ((RESULT FOUND) (POINTER (ROOM&))))

(PREDICATE ((VERB BE) (RELATION IN)))

(REPLY 2)

(ORDER OBJECT-SEARCH REPLY))

5 2.

Fig. 13 Representation of the question WHAT IS . IN THE ROOM

on line 12 of the dialogue

QUESTION~WHAT first obtains the functional slot from the

object mentioned in a question, according to the preposition.

It then calls ZOOM to translate the list of obj ects within

the functional slot into an expression which can b e used by

REPLY to form the answer for a WHAT type question. In this

example, QUESTION-WHAT gets the CONTAINS slot of ROOM and

calls ZOOM to ob tain th e partial response:

((SMALL TABLE) (BLACK BALL) (RED BOX))

REPLY co~bines the partial response with another partial

response (REPLIE S 2) to form the answer to the question,

given on lin e 13 of the dialogue .

)

)

53.

The question WHERE lS THE BOX on line 14 of the

dialogue is represented in Fig. 14. The WHERE frame consists

(WHERE

(SUBJECT (BOX

(COLOR RED)

(CONTAINS ((BALL & &)))

(LOCATI ON ((POINTER (TABLE & & &))

(RELATION ON)))))

(SUBJECT-SEARCH ((RE SULT FOUND)

(POINTER (BOX & & &))))

(PREDICATE ((VERB BE) (RELATION NIL)))

(REPLY 6)

(ORDER SUBJECT-SEARCH REPLY))

Fig. 14 Repr esen tation of the question WHERE IS THE BOX

on lin e 14 of the dialogue

of th e SUBJECT , SUBJECT-SEARCH, PREDICATE, REPLY, and ORDER

slots. The way of answering a WHERE type question is similar

to the way of answering a WHAT type question; But

QUESTION-WHERE differs from QUESTION-WHAT in that it looks

for the LOCATION slot of an object ~ather than one of the

functional s l ots. In this examp l e , QUESTION~WHERE obtains

BOX's LOCATION slot and ca ll s ZOOM to form the partial

response : (ON THE (SMALL TABLE))

)

54.

The IS frame has the s ame structure as the declarative

senten~e frame. To answer an IS type question the program

performs the same way as in a declarative sentence, but

with the conversion of a response to an answer. In addition,

-in the latter case ROOM sometimes creates objects in the room

if the event has not been mentioned earlier or otherwise looks

fo~ the correctne~s of a sentence. However, in the case of

a question there is no creation of objects in the room at all.

The procedure TRANSLATE converts the number in the

REPLY slot into another number corresponding · to an answer for

a specific IS type question'. For example, the user may

initially describe to the system the following three sentences.

Assuming that the third sentence is similar to the environment

of the question on . line 26 of the dialogue, replies to the

following three sentences are, for the first sentence OK and

1. A RED BOX IS ON A SMALL TABLE

2. A BIG BLACK BALL IS IN A GREEN BOX

3. IS THERE A BALL IN THE RED BOX

for the second sentence also OK. As for the third one,

since it begins with the word IS, the IS frame is used rather

than the DECL-SENT fram e . TRANSLATE further converts th e

reply number of OK into the reply number of NO, which is an

ultimate response to the question.

)

55.

If the environment is not the same, the reply is

different . . For example, if a red box had already been put

on the small table, the response t6 sentence 1 would be

I KNOW. If a ball had already been described as being in

the red box, the answer to sentence 3 would be YES.

The reasons for not using the DECL-SENT frame for

IS quest~ons are that th e procedures can tell whe ther the

creation of objects is nec essary and the procedure

SEARCH-HISTORY knows which sentence frame is to be retrieved

and used.

The . prototype WHICH frame differs from WHAT, WHERE, or

IS, as shown in Fig. 15. The slots in the frame are more

or less the same as those in the IS and DECL-SENT, but the

ORDER slot is like the one in the WHAT frame. The reasons

for this are that in the current version of the program a

WHICH question may have either subject and ob ject or simply

a subject, and the subject of a WHICH questi on does not

initially refer to any object in the room because ~here is

no definite determiner in the noun phrase. Most information

to the question is in the object . Th erefore , OBJECT-SEARCH

is defined as a procedure to use th e search information of

the object.

Th e program b eg in s with the evaluation of th e

OBJECT-SEARCH slot. If RESULT of the OBJECT-SEARCH slot

i s NIL, then the qu est icin pattern is possibly to be

)

(WHICH

(SUBJECT NIL)

(SUBJECT~SEARCH ((RESULT NIL) (POINTER NIL)))

(OBJECT NIL)

(OBJECT- SEARCH ((RESULT NIL) (P OINTER NIL)))

(PREDICATE ((VERB NIL) (RELATION NIL)))

(REPLY NIL)

(ORDER OBJECT-SEARCH REPLY))

Fig. 15 The prototype WHICH frame

56.

WHICH ?NP-N IS ?ADJ (see section 5.4). ROOM searches WORLD

for an object similar to the one in the ?NP-N, with the

augmented property described by the ?ADJ. For exampie,

after the question WHICH BALL IS . BLACK on lirie 36 of the

dialogue, ROOM searches for the black ball in the room and

~eturns its location. On the bther hand, in case RESULT

of the OBJECT- SEARCH slot is not NIL, ROOM looks for a

similar obje6t from the functional slot of ?NPO (see section

5.4)~ according to the preposition in the question. For

example, after the question WHICH BALL IS IN THE BOX on line

16 of the dialogue, ROOM searches a ball from the CONTAINS

slot of BOX and returns it structural properties, i.e. BLACK.

)

57.

Section 7. Remaining Problems

A large additional e ffort i s n ee ded on one hand to bring

the representation to a state which mak es it powerf ul and on

the other hand to bring th e p er form a nc e o f th e ROOM program

t o a l eve l which is comparable to hu man behavior in th e same

environment.

The use.of an " answer " frame could possibly enable

the syste m to be flex ibl e for generat in g responses under

different ci r c umstan ces . The sc h eme of "memory by description"

would also be used exte n sive l y to reduce the search space to

some exte nt. ·

Another im portant direction of our researc h in the futur.e

i s to enab l e the system to hav e the capability of defining a

new co n ce p t, g i ven another concept and so me sim il ar properties.

For examp l e , t h e user may happen to mention the un known concept

of TRASH CAN, then the sy s te m i s expected to have the ability

of defining s uc h a conc~pt t h roug h the following conversation :

ROOM: WHAT IS A TRASH CAN?

USER: IT IS AN OBJECT.

ROOM: CAN YOU TELL ME MORE ABOUT IT?

USER: IT IS LIKE A BOX, BUT IT IS ROUND.

As a re s ult, the descr .iption for the concep t of TRASH CAN

i s establ i shed -- s h ape and BOX' s properties.

J

)

58.

We are also aiming toward representing the meaning of

some difficult action verbs, in the form of procedures.

For example, ROLL or BOUNCE requir~s the syste~ to have

the knowledge of time events in addition to the knowledge

6f the locations of physical objects.

As we go on, many additional issues -will be faised.

For each solution there probably will be a set of other

problems r e lated to it. We hope that th e curr e nt statu s

of the ROOM program will provide us with a broad e r view

on th~ problems and with a powerful tool for attacking

them.

)

59.

Acknowledgements

The author is grateful to th€ support for this work

received from the Comp~ter S~ience Department at Oregon

State University and the computing faciiities provided by

the University of Oregon. Specifically, the autho~ would

like to express his gratitude to his adviser, Vesko Marinov,

for bringing up the problem and for giving numer ous suggestions,

comments, remarks, and tremendous assistance. Th e author is

also grateful to his minor professor, Harry Goheen, for

correcting and furnishing a great deal of remarks on ·the

initial draft. This paper will hardly have been completed

without them.

Furthermore, the author would .like to thank the following

people: Bill Bregar and Chi Poon, for being the co-workers

of the first version of the ROOM program; Bob Eifrig and

Sum Lau, for supplying comments on the first version of the

program; his honored parents and his elder brother Hung Shih,

for alway~.

)

Appendix--Listing of the ROOM program

The ROOM program is listed in the following order:

1. STORED-DATA, page .61 - 66.

2. IO-FUNCTIONS, page 67-70.

3. SENTENCE-ANALYSIS, page 71-81.

4. WORLD-FUNCTIONS, page 82-114.

5. QUESTIONS, page 115-120.

For each FUNCTION written, the following information is

given acco~ding to the order:

60.

1. FUNCTION type--FEXPR is explicitly indicated.

2. Specification of arguments passed in a FUNCTION.

3 . . The function of each FUNCTION.

(CfFPR0F ETCFfD -D ~T~
(· : •:t '1- [: C-[t1.'l ? C:l- lt T::c:·

BALL

) VP.LU E)

NI L
*

BIG
BLACK
ROX
BROh'N
GREEN
IN
I S
01''
PUT
PfD
ROO~(

S~'J\L L
'f,Z,PI,F

~ F 1'~ TE~~ CC - FF l'. r,: E'
t,:p
1'1 PF
t'-'"P-N
Pf, TT E f. ti S
F.[PL if S)

' 6].

)

(CEFPFOF CF I NPROPS
(N I L Ff;,l>)'E GRAr< ~1El\t'i EXPR F EXPR MACJ<O VALUE SPEC I .AL)

V/\ L UC)

(CEFPRC'P PAL L
((s n 1T .rwm1))

G.RJ',[,'.)

(Cf FFPC'P l:',f.l l ,L
((LCCTIT I O"i ((PCH 1TER NI L) (RE L.b'TION ln L))))

r,, r f\ ti)

(DE FPFOP r.r ~ ·
((SYNT PC'JfCTJVE))

C:FM:)

(DFPPPC'P F I G
((SJ7E P I G) (l' ·P PLY - TO (Pf.IL L POX Tl'PLC)))

r, E' f.l. J\1 l

(8E' F PF0P F L f.lCK
((SYNT ACJ ECTTVE))

GRAM)

(DFFPFOP PLAC [<
((COL OR BLACK) (l'·P P LY-TO (E l\LL BCX ·T .7\8L f)))

6 2 • .

~~ fAt ,1)

(C'EFF.ROP fOX
((SYF ·'T' 1-.;o ur:) l

G R,Z1Ji)

(DE'FPFOP BOX
((CONTAINS N I L) (LOCTI.TIOi'1 ((PCHJTER td L) (FE Ll\.TI01': '.'dL))))

l·' FAJ\')

(rrr-PROP rrcv r
((SYt'T P.[\JFCTIVC))

C::F!-'-~,;)

(D[FFP OP PFQ'.·'.1''
((C(;LC::F r:<Pm·'I") (,Z\PPLY-TO ('8/\LL P(1X TJ\1',LE')))

t1'FN,1)

(Cf"F PPCP crru·
((SY i'; T f\ [:.J C CT I VE))

C::Pl'Y)

(. D L: f PROP G f- E F:' 1''.

((COLOF CFE' Et :) (i'IPFLY-TO (Pll LL l'.CX Ti 1 ri1..r)))
r,.• E f'. ~-)

NIL
*

(OEFPPCP J N
((SYNT P P FPCS ITJ 0~))

C: FP ~•)

(r~ E F P r OP I ~;
((5. YFT VF. pn,))

GF.l\ 1.:)

(DEFPPCP on
((SYNT P~EPC5 I T I CN))

CF1',f'.)

(CEFFF.CP PUT
((SYfT VEfP.))

GF.Z\tc}

(DF:F Pl-<CP F'FD
((.r. n:T l\ l' JCCTIV E))

c;r-:.11~1)

(f:E'FPF:CF FE['
((C'C'LOP REJ;) (.Z'PPLY - T C (F .l\LL ECX TJ\PLE)))

i'vl f. f>.)'.1)

(DEFPF OP F0C'!i
((~ YPT NCU~!))

) G PM ')

(CffPf (:P POO'.•'
((CONT JI Ji.' S · ~d L))

~, F .ll 1•:)

(DEFPl'C;P ~• !ALL
((SYfT PDJ F.CTIVE))

GI~ Al,:)

(f;[fPPCP · s !·<!\ LL
((S I 7.F :~f"1l\ LL) (l,P£='LY - TC (Bl\LL EOX Tl \[LF.)))

~TA!'')

(.DfFPF OP TP.P LE
((SY f'.!T 1~CLJr!)) .

(:Fl\ :-')

(DFFPF'OP T.Z\l?-[.E
((c:;{.JPPOGTS:, t: I L) (L OCl\TIOf\ : ((POH'TEP t-:I L) (FE L.I\TJ 0 1·J 1':IL))))

r'Fl \N)

J\1 IL

*

6 3 •

)

(DEfFPOP ~l:TTENCF-PP/\ .i,:E
((DECI, - S 1:~i'-'T

6 4.

((SUP .JECT t'~IL) (SUP,JFCT-SET-RCl1 ((PfSULT t'HL) (PCH'.TER !\'IL)))

(\•YfPE

, (OPJFCT NI L)
(Of:l,JECT-Sfl' ,P CI~ ((F.ESULT l'!I L) (POit-:TER tHL)))
(PRfDTCATE ((VER P t\lJL) (F.CL/\TICl\ ~1IL)))
(r. CPL Y 1'! I L)
(ORDER PRED I CATE REPLY)))

('(SUP,JECT rIL) (SUR:Jf.CT-SE/1 .RCE ((RF::SULT l'HL) (PCH''IF:R NIL)))
(PFED I C,1',.TE ((VEEP NIL) (FELll_TION r:IL)))
(:R E P LY 1,'. I L)
(ORCEP SUPJECT-SU'f.C !1 PFPI -Y)))

(VPT'-T
((O?.JFCT l\:IL) (OPJf.CT-SEllPCIJ ((P[SULT °t''IL) (PC-::H'TEP i''IL)))

(PFEDICl'Tf. ((VEF P l'DL) (RFL/\'T'TOt~ °t'1IL)))
(PE PLY t,' IL)
(OFDFP OGJfCT - SE/\PCH FEPLY)))

(1•:H JCf-1
((~-U~JC CT T·:IL) (.C::.UP,JPCT-SE/\PCH ((PESUI.'T' !,'TL-) (POJt.:'T[P ~JIL)))

· (OP ,JPCT NIL)
(OP.JECT - Sfl';PC!--I ((Pf SULT l\1 J I,) (PCH:T[F ~'IL)))
(PFECICl\Tf ((VEPP °t-1 TL) (PFLlTIC~? !'~IL)))
(F_ E PLY ~! J L)
(OFCER OBJECT - SE'A .RCP. FEPT,Y)))

(IS
((SU8Llf.CT NIL) (SUPJECT-SFi'.lFCF ((F, f S ULT 1,1 J L) (POH'TEF NIL)))

(OD,JECT l-lJI,)
(OBJECT-SEl\FC!-: ((f?ESUL'l' !'?IL) (P0Il'2TF.'.P ~:IL)))
(P P EDICJ' ,'ff. ((VETE 't-!IL) (FEL,J,,TIOl ·J t·:IL)))
(FE PLY UH,)
(ORDER PFfDJC~TE FEPLY))})

(C-Cfi ; F'GT1 • UP
((~Yi' ' Tl\X t:IL) (SD :Jl.l\'TICS NIL))

F r •_l , '. '. c l

(DE~fPPOP ,Jr,p
((1::, FT ~< I L) (l'-CJ ',_TI L) (t,l CU H en L) (0 PC E P t: 0 Ut-' l\. DJ C r:: T))

FF l' r·' F:)

(DFTP F'CF 1,1 P-t-'
((J', ['.J r: JL) (1''G UN t'1 IL) (O PCEP t,'.nu1': /\Cc1))

FFZ',"[)

t' IL
*

)

65.

(Df f PfOP PATTER~S
(P 1' 'I"I' E P L'i S (C E C L I\ Fi Ii T I VE . (l (? l\1 P ::; 7.))

(2 (I S 3))

Vl'd.,UE)

NIL
*

' (3 (?V FFE 4) (?P 5) (?!I.D J 6) (?NPO 6))
(4 (?P 5))
(5 (? t-: PO 6)))

(THERE (1 (TPERf 2))
(2 (J S 3))
(3 (?NP - l'\ 4))
(4 (?P 5))
(5 (?.N PO 6)))

(IS (1 (IS 2))
(2 (T l)Ef:E 4) (?NPS3))
(3 (? 1? 5) (? J.1 DJ 6)) ·
(4 (? l'1 P - 7', 7))
(5 (?NP0 6))
(7 (?P 5)))

(f•'Jlf-T • (J (l,~]Jf\1' 4)) p (J:=: 3)) (3 (?P 4)) ('1 (?i'-'PO 5)))
(\ "flf.FF (1 (1i-~lf.Pf:' 2)) (2 (J ~ 3)) (3 (? L,1PS 4)))
WHICH (1 (n -1 ICP 2))

(2 (? n P - t-: 3))
(3 (I~ 4))
(4 (? P 5) (? l\ DJ 6))
(5 (?NPO 6)))

(:\'P (J (? DE'!.' 2)) (2 (?T >DJ 2) (?NOlll\' ?))) .
(~'P - 1\ (J (l'-r,r 2)) (2 (?t-ra 2) (?FGU~ -1 3) l l
U-F - t-: (.l (?,7\CcT l) (?t:C •l'l': 2))))

n

)

(DEFPPOP PEPLIES
(FEPLIES

(2
(OF (ANC (GREA T EPP (LE NGTP PASS-TO-FEPLY) 2)

(F ORM-l\NSWEP PASS-T O-F EPLY))
(CC R

6 6 •

Wl' ,PCAN (r,m :C TIO N (Ll \l'·'B DP· (I ·,) (1\PPEND (QUCTE (Mm A)) W)))
PASS-TO-REPLY))))

(] (LI ST (r'U OTE "Of <"")))
(4

(LI ST (C'UOTE " Or< , ")
(APPEND (CUOtE (TP E))

(ZCO!','. OP a FC'T')
(OUOTE (NCV SUPPOPTS THE))
(7 CO~ su~aECT))))

(5 (LI ST (r'UO'J'f;: "I SPF ''.)))
(6 (LIST P/\f ,C::-TO-FF :P LY))
(7 (LJ S'l' (('ll OTF " W)Tl'IJ\ 1G ")))
(11 (L IST (('UCTF " YF~ 11) .))

(12 (f .JST (CUOTE " 'I'f~F (WI:~ ") P/\~S-TO-RCPLY))
(1 J (L I ~ T ((' ll OT E " T p E II) (z C' 0 f,I pH y s :J !3)))
(14

(L I ST (Cl' CT F 11 0 fl , 11)

(2 J_

(/\PPfND (0UOTF (THE))
(zocr-~ O!?JECT l
(QCOTE (U(H,., CCl1'Tt'-.H:S THE))

(ZOO~ SUBaCCT))))

(LI. C:T (C'UCTF "I CO[,J'T f.l':Q\,) VH ICF! 11)

Pl\~S-TO-REfJLY
(CUC 'IT II YOU ,l\ FF T ./\ L K H : G !': :3 O{_ 1 T 11)))

(22 (LIST (('L'OTE 11 T Kf\:C1·-:11))) •

(23 (LI ST (('UOTE II Hi F~.CT 11) P,l\Sf-TO - PF.PLY))
(24 (LI ST (('UCTF 11 \''f .LL, 11) PASS-TC-FfPLY))
(25 (LI ST (C'UOTF " re, ")))
(26 (LI ST (CCC'Tf 11 \\~1IC[l 11) (zo,-:;r•.• SUB cJPCT)))
(2 7

(LI ST (GUO'IC 11 I DON ' T THINK TEJE")
(7. Oet ·• OE.J F.CT)
P.ll '.' c;-TQ - F' C PLY
(7C'CI' Pf1YfC'r)))

(30 (LI S T (r'lJCTf 11 J T JC:. llLFP.l\CY Tf--lFPP. ")))
(3 1 (f., JC:'f (C'UC'Tf " YOU TOLD r,'f Pf'FC"R:[11)))

(::i 2
(I , T ST

(0 l '0Tf
11 J C!\~l 'T l1rrr-:R ST 71r D SUCfl ,7\ SPN TD!Cf i'l'J' TFC PI~CSH1T TE ' E 11))))

VT\ l.UP.)

)

)

(, 7 .

(Dfr'PPGP IO-Fllt- ~CTIONS
(IC-FUNCTIOf\'S CONVEFSE LISTEN Sli-Y REPLY ERm :sG FORr·'-ANSl• ~ER)

Vl'-LUE)

l\'J L
*·

l)

)

(DEF'PFOP CONVFPSE
(LM' .PCJ'> 1'T L

(FROG (STRH'G . PF.PLY- H I STCFY l'?CF LC PP.,SS-TO-FEP LY)
(SET(' FEPLY (0UCTE (flELLC)))
(SET(' ;.•.•OF'L(' U'TI T{E' (CUOTE ?Cm:) (('UOTf !•1E7-\:---1})')

A (SrY) .
(L ISTEN)
(EPFfET

(CO l'i D ((F.' Q (CA F ~TR I NG) (QUOTE SY f))
(SET(: REPLY (CUOTE: (T ll.~NK YClJ)))
(sr ~Y) ·
(RfTUml))

((PO (CI\F STBIFC) (CUCTE E))
(SPT<TNT (FVl\L (C P,CF .STPH ' C)) J)

G8.

(SFTG Pf PLY (!:llC:Tr (f~ •'C CF' FOFi•: FVP.[.fll\TIOt~))))
((~Tr,~c (Cl\R STl~H'G)

EXPF)

rIL

*

(QUOTE (fl l'\N TPF' 'T:PEPF r·1 HEFC >/P.I CH Ff-:ll\T IS)))
(CONTRCL (C~P STFI~G)))

(T (PEPLY 32))))
(GO A)))

Top l oop of the ROOM program .

)

)

(CE'FPP OP LIST H J
(LM<BC,P.. f\: IL

(TEr PRI)
(PFif\ 1C (CUOTC . (' USf.F: "))
(SETO STP I NG (LI NEFfAD)))

EXP R)

Reads the input sentence and puts in

(C[TPF OP. :-r,y
(LM T l"'i'' ~-: Ir,

('lTRP RI)
(Ff ~'.P·T . (C'U CTE ".R OCf,1: "))
(~-r PC (FUKCTIC h

(L .Z'IYP['.Z\ W)

STRING.

{CONC ((llTC1: \';) (PFPiC \'·') (PFH'C . (()UOTE /)))
(T

(1':l\ PC (FUl'-JC'l'T ON

6 9 •

(L Ar-! ED A. (7,) (P 8 H J C . Z) (PF It ~ C (C' U O 'I' E: /))))

EXPR)

tJ IL
*

1•;)))))
FEP L Y))

Writes the reply.

)

(I' r, F P RO P f F P LY_ .
(t i\r-rrr {t))

(SE' J·1] f!E PL'{

fXFR)

l-l JL
*

((:Ct:C (r (F\ •l· I (C'/\rF (M ?:SCC {\; RFPLI2: ~))))
(' ::' {[Vl,f. ICi,L'l , t' \SE,GC 32 PLPLIFS)))))))

N - Reply numb er

70.

Ret ri eves the reply from REPLIE S according t o the number.

(C f F F P (:' P f. Fi F [/ SC
(L ·~~:Ul \ (L) u:::ET(' f-:CPLY (CO\ 1 S {0.UO'TE **Ef: PCT* *) L)) (f. Rf: !\IL))

Ff.Yf.R) .

NIL
*

FEXPR

L - Message

Prints . the message and pops to the top loop.

(r r· l" r-F c P f c, F: < - .7\ :•: c:: r" r r
(J ,i : '.· · ,-, [' ,7: (:,:)

\ ,7\ r p E f.J J> (j,; l\ F Cr ['.: (Fu,· l CT I Cr,:

.E'XFF)

J.,; IL
*

(L[l['.PDA ((·:)
(T1 PPE~ 1r. {C'UCT[(1\)) [,' (LifT (('UCTL " 11 f 11)))))

(R Ei·'.CVE (C/\, f (Ll' S'l ;()) X.))
(Cll OTE'. (!'.:JC 1\))
(U'f:T X)))

X - A partial response with.more than two noun phrases

Inserts co mmas between t h e noun phra ses ,· etc.

n

)

)

(CEFPROP S ENTE'NCF-Al.'-'.A LYS IS
(RENTENCE-ANALYSIS CONTROL

SENT-ANALYSIS
?NPS
?NPO
?NP-A
?NP-N
.PARSE-&-FILL
?DET
A-AN
?ADJ
?NOUN
?P
?VERP.
JS
THERE
WH/1.T
WHERE
WHICH)

VALUE)

NIL
*

71.

n

)

72.

(OEFPPOP CONTFOL
(LA~nDA (CPENER)

(PROG (F-TN STANCE SUBJECT OBJECTS-RESULT PHYSOB)

EXPP)

. NIL
*

((LA~PrA(FPt~F PATTF8NS) .
(COND ((rEMr OPFNEP (nUOTE (A AN THE THERE)))

(SETQ F-JNSTANCE
(CONS (CUOTE DECL-SENT)

(CADF (ASS OC (OUOTE DECL-SENT) FRAME))))
(~ND (OR (EO OPENER (0U OTE THERE))

(SENT- ANALYSIS (C AP PATTER~S)))
(SENT-AN ALYSIS (ASS CC OPENER PATT~RNS))))

(T (SETQ F-T~STANCE
(CONS OPE~ER (CPDR (AS80C OPE~EF FRAME))))

(SE NT-ANALYSTS , ~sscc OPENE8 PATTERNS)))))
(fAK E (QUOTE SENTENCE-FRAME) (QUOTE FRAME))
PATTFRNS)

(CONC ((E O (FILLER F-INSTANCE REPLY) 32) (REPL Y 3?))
(T (SL OT-EVAL F-INST~NCE)

~

(OR (GREATERP (FILLER F-INSTANCE REPLY) 20)
(BOOKKEEPING F-INSTANCE))))))

OPENfP - Th~ first word of an input s e ntenc e ~

~•onito rs the entire unders~ onding process.

)

(CEF FROP SENT-ANALYSIS
(L A11.:BDA (TYPE)

(PROG (STRUCTUPE NEXT STATE CHOICE)
(SET Q STRUCTURE (CDR TYPE))
(SETQ NEXT 1 .)

FOLLOI'~
(S ETQ STATt (ASSOC NEXT STRUCTURE))
(AND (NULL STR H 1G) (NULL STATF) (P ETUPN T))
(1'1''0 (NULL STllTF) (:RETURN))
(SETQ .CHOICE (CDP STATE))

NEWE1\1'J'PY
(A}JD (NULL CfHJICE)

(RETUF/'1 (FILL F-I N:-::TM!C8 FEPLY 32 RPL!'CD)))
(A.NC' (f.V ,ll.L (C fR C 1-TOICE)) (GO FOLLOW))
(S FT0 CHOICE (CDR CHOICE))
(GO NEWENTRY)))

EXPR) .

NIL
*

TYPE - A- sentence pattern.

P2rses an input string accorcling to the sentence pattern.

73.

)

(CEFPF:OP ?1-,ps
. (L 1\ f< P CJ\ (X)

74 .

{PTIFSE...,~ - F ILL (OUOTE NP) (QUCTE SliSJECT) (')(JCJTE SUGJCCT-Sf/lP CH)))
F:XPR)

(t)F.~~p f.<OP ?i-Ji;,O
i r. r, ,,. F· r-P, I >: l ·

/1'/\PSE-&-FILL (QUOTE KP) (QUOTE OBJ ECT) (QUOTE 013J ECT-SEl\RCH)))
EXPR)

. (DE F P RO P ? f\• P- l'.I.
(Lf-.t'P-C .P. (X)

(PAFSE-&-FILL (QUOTE NP-A) (QUOTE SUPJECT) {CUOTE SUEJECT-SEAPC I~)))
EXPR) .

NIL
*

X - State number

Each FUNCTION calls PARSE-G-FILL to process a noun phrase.

)

J

(DEFPPCP ?NP-N
(LAMEDA(X)

(SETQ NEXT X)
(PROG (NPF-INSTANCE NP-INSTANCE POF)

75.

(SCTC ~PF-INSTANCE (COPY (GET (QUOTE NP-N) (QUOTE FRAME))))
(8E~T-A~ALYSIS (ASSOC (QUOTE NP-N) PATTERNS))

T) .
EXPR) .

NIL
*

(StTQ SUBJECT ~OF)
(FILL-SENTENCE)
(FILL F-INSTANCE SUBJECT NP~INSTANCE RPLACD))

X - State number

Processes a noun phrase without any definjte determiner.

)

(DEFPRCP PAFSE-~-FILL
(LArrDA(~P~NA~E SUBJ-CBJ S-RSLT)

(SETO NEXT X) .
(PPOG (NPF-JNSTA NCE NP-INSTANCE POF)

T)
EXPR)

NIL
*

(SCTQ t1 PF-INSTANCE U"AKE (QUOTF NPF) (OUOTE FRA~F)))
(SENT- AN~LYSIS (ASSOC NP-NA ME PATTERNS))
(SET SUBJ-OPJ PHYSOB)
(FILL F~INSTANCE (S-PSLT) RESUL~ $-RESULT FPLACD)
(OR (MEMQ S-RESULT (QUOTE (NONE NOTFOUND)))

(FILL F-INS'I'ANCE (S-RSLT) PCINTER PHYSOE RFLACD))
(FILL-SEKTEt- iCE)

. (FILL F~INSTANCE (SUBJ-OBJ) NP-INSTANCE RPLACD))

NP-NAME - Name of a noun phrase pattern

SUBJ-OBJ - SUBJECT or OBJECT

S-RSLT - SUBJECT~SEARCH or OBJECT-SEARCH

Processes a noun phrase.

7 6.

)

(:CEFPPOP ?DET
(LM1P[;Z\ (X)

(SET() NEXT X)
(CCf\1C .

((tv1H'0 (CflP ~TPI!''G) {QUOTE (A J\N TfTE)))
(FI LL NPF-INSTnNCE DET (CflF STRING) RPLACD)

. (SETQ STFH.!G (CDR STRING))
T)))

EXPR)

(DEFPRC,P A-AN
(LM :B DZI (X)

(SET(; Nf.XT X')
(CCl._JD

({ ~: Et•'.0 (CAF STFJNG) (QUOTE (l \ AN)))
(FILL NPF - INSTANCE DET (CAR ~TRING) FPLACC)
(SETQ STFING (CDP STRING))

T)))
EXPR)

NIL
*

X - State number

7 7 •

?DET checks i f the leftmost word i s a definite determiner.

A-AN checks if the leftmost word is an indefinite article.

)

)

(f\Ft'PROP ?Ii.DJ
(LM'.POP , (X.) .

(SETQ NF.XT X)
(COf\1 ['

78.

((EQ (Cl\DR (ASSOC (C'UOTE SYNT) (GET (CAR STPING) (QUOTF. GRAM))))
(0UOTE ADJECTIVE))

· (COND ((F.:0 .(LEI- 1GTH (GET (0UOTE NPF-11':ST,l.lNCE) (QUOTE VALUE))) 1)
(ADD-TC-OPJ (CAP STRING)))

(T {FILL NPF-INSTANCF ADJ (CAF STRING) CONS)))
(SETO STRING (CDR STRING))

T)))
EXPR)

X - State number

Checks for the leftmost word as an adjective.

Checks if the adjective modifies the previous noun phrase.

(I:'E'FPPOP ?NOUN
(LN'BT;l\ (X)

(~ET(' tffXT X)
(C Oin' .

7 9.

((EC' (CTIDR (1'.SSGC (QUOTE SYNT) (GET (CAR S'IP.H 1G) (QUOTE GRAM))))
(nl10'1'F NOUN))

(FILL NPF-I~STPNCE NOUN (CAr STPING) PP L ACD)
- (SET() STP I NG (CCR STRI1vG))

(SLOT-EVAL NPF-INSTANCE)
T)))

EXPP)

NIL
*

X - State number

Checks for the leftmost word as a noun~

Ca l ls SLOT-EVAL to evaluate the procedural s l ots in the

NPF frame.

) (DFFPROP ?P

)

(LA ~: P. DA (X)
(SET(' t,1 EXT X)
(COl'!C'

((F() (CACP (ASSOC (0UOTE 8YNT) (GET (CJ:i.R ~TR ING) (QUOTE GRAf✓))))

. (QUOTE PPEPOSITION))
(FitL F-I~STANCR PREDICATE RFLATI ON (CAR STRING) RPLACD)
(SFTO STRING (C'DP- STRIJ\lG))

T)))
f.XPR)

X - State number

Che6ks for the leftmost word as a preposition.

J

(CEFPPOP ?VF.F:P
(LM 1 BD/\ (X)

(SET Q NEXT X)
(COND

80.

((EQ (C.ZI DR (ASSOC (QUOTE S YNT) (GET (CAR S'l'R H:G) (QUOTE GRAM))))
(QUOTE VERP))

(EVAL (LIST (READLIST (CONS (QUOTE?) (EXPLODE (CAR STRING))))))
.(SETQ STRING. (CDR STRHTG))
Tl l l

EXPR)

X - State number

Checks for the leftmost word as a ve~b.

(DEFPPCP IS
(L! \ MP !; !\ (X)

(SET () 1'1EXT X)
(COl'm

((EQ (C:AP STRING) (QUCTE I S))
(FILL F~INSTANCE PREDICATE VERE (QUCTE BE) FPLACD)
(SETO STBING (CDR STRI NG))

T)))
EXPR)

NIL
*

. X ~ State number

Checks if the leftmost word is IS.

(DEFPPOP '!'HERE
(LM ·1BDT> (X)

(SETC NEXT X)
(COtm

((E() (CAR S.TRHIG) (QUOTE THE'RE)) (SETO STRING (CDF- STRH 1G)) T)))
EXPF)

(D EfPROP ',; HAT
(Ll'IME?C•A(X)

(S ETO. NFXT X)
(CCi'1D

((f. G (CAR STFH'G) (QUOTE WHJ'>,T)) (SETQ STFING (CD R STRING) T))))
EXPR)

(DFFPFOP \'!PF.RE
(L/l YP.Dl\ (X)

(SET(' NEXT X)
(C CND

((EC (Cl\P STRING) (QUOTE rt HERE)) (Sf.T O STFING (C DR STRING)) T)))
EXPF)

(DEFP:ROP \·;H ICP
(L l', 1'-' 8 Cl~ (X)

(E f'I'C P EXT X)
(C OND

) ((E(l (Cl' -R STRI't-'G) (('UOTE' i•rnI-CIJ)) (S ETQ STRH JG (CD P STRil\:G)) T)))
EXPR)

NIL

*

X - · state number

Each FUNCTION checks for the leftmost word as the name of

the FUNCTION.

n

)

.J

(DEFPRCP ½ORLD-FUNCTTONS
(~OFLD-FUNCTIONS DET

NTL
*

ADJ
NOUN
SLOT-EVl\L
INSERT-IN-POF
POOKKEEPING
PREDICATE
FILL
FILLEF'
FHJO-SLOT
FI LL-S fi\ 1TE1'1Cf.
FJLL-HlSTOPY
JNFPF-BY-PROP
SFARCP-WORLD
S EJI.RCB-HT STORY
PFEVJOUS-OBJECT
l''.ATCfl
r-'.AKE
PPETTYLEV
ZOOf,1
zomn
BE
S llBJ-NOTFOU1'1D
SUBJ-OK
80TB
CHECKSUBJ-08JOK
C fl EC I<-CORRECT
CHCCK-EXISTEl\JCf
l\.CTU AL- LOC

IS 11';
ISON
CH EC K-r-~ E11BE"R-0 F
Nfl-1-LOC
"/l.CTICl ·'.-PPEP
ROTP-SH1JLi'\.R
S H1l LA F-Or ,JS
?PUT
PUT
PUTIN
PUTOl\ 1

CPL8TE-POI NTEF .
1'DI:-T0-08.J
l\DD-PPOP
l\DC'-COLCP
MODIFY
I S - '·10 C' I FY
1-'. ESSAGE
ASSEPTION

. TPl\l'lSLl\TE)

82.

()

)

J.

(CfFPF OP rET
(LP.~''? ,f\11 (flFTICLF)

8 3 •

(COND ((F (' (CP.f.. APT JCLF) (QUOTE THE)) (SEP.PCEl-HISTOPY POF))
((~E~O (CAP ~FTICLE (0UOTE (~ TIN)))

FEXPF)

NIL
*

(Sf~PCP-WORLn POF (FILL ER WORLD CONTAINS))))))

FEXPR

ARTICLE - List of a definite determiner

Initializes a WORLD or a HISTORY search.

()J[FPFCP .Z\DJ
(L l.lf,Tf.:J\ (LIET- OF-ADJS)

(COt-1[' ((NULL (CA F LI ~T-OF-P<DJS)))

Fl::XPR)

· J\1 IL
*

(T (I NSERT-IN-POF (REVERSP (CAP LIST-OF-~DJS))))))

FEXPR

LIST-OF-ADJS - A list containing a sub~list of adjectives ·

Calls INSERT-IN-POF to insert structural properties in a

physical object frame.

n

)

84,.

(DEFFR CP 7-!0Ut:
(L~ YB DA (OBJPCT) (SET(? POF (' 1?1.T<'E (C AP OEJECT) . (QUO'J'f. ~·1EA N))))

. FFXPR)

NIL .
*

FEXPR

OBJECT . List of a noun

Makes a physical object frame for the noun.

(DEFPPOP SLOT-EVAL
(I,MTBDA (H:STl'INC r:) .

U'.l'-PC (FUt -JCTIOJ ,J (L A!v'.!?Cl\. (O'RDFR) (FVi"L (/ISSOC OI~DET: HlSTANCE'))))
{CCR (P SSOC (QUOTE ORDER) INST~ NCE))))

EXPR)

NIL
*

INSTANCE - Frame name

Evaluates the procedural slots in IN STANCE

()

)

(DFFPROP INSF.FT-IN-POF
(LA~'BOJl. ('A DJS)

(SET(' POF

EXPP)

~JI L

*

(TIPPEND
(LIST (CJ'.l.P POF))
WAPCA"1

(FUt-1CTION
(LN~PDJ\. (JI DJ)

. ((LT-1t,:l?OA (A)
(AND (MEMQ (CAR POF) {FILLER A APPLY-TO))

(LIST (CADR ,ll.))))

(~AKE ADJ (QUOTE fFAN)))))
ADJS)

(CCR POF))))

. ADJS - List of adjectives

Checks if each of the adjectives applies to the noun.

8 5.

If it does, inserts properties in the physical object frame.

~

)

(DEFPROP BOOKKEEPING
(Lll~ 'P. DA (L) (.SETQ HISTORY (CONS (EVAL (CAR L)) HISTORY)))

FEXPR)

NIL
*

FEXPR

L - List 6f the nam~ of a ~entence frame

Keeps the sentence frame in HISTORY.

(DEFPPOP PPEDJCATF
(Ll'.l"'RDJi (L)

(l\ [\1 D (C A D jl P-R L)
(EVJ\ L

(~APCAN (FU NCTION

8 6.

(LMJEDA (ACTION-TYPE) (C OPY (CDP l\CTIOt, J-TYPE))))
(C A F L).))))

FEXPR)

NIL
*

FEXPR

L - A ·1ist containing a sub-list of two slots--VERB and RELATION

Forms a list of two atoms--the verb being its CAR and the

preposition being its CADR, and evaluates the expression.

)

_)

(DEFP ROP FILL
(LM'.BDA (L)

(PPOG (PE t,iAP-1) .
((LAMPDA(SL OT FILLER ADD-TO)

(C0t-1D (f'iCD-'1'0
(.FPLACD SLOT

8 7 •

(LIST (t-1CONC (LIST FILLfK) (CADR SLOT)))))

FEXPR)

NIL
*

(T (RPLACD SLOT (LIST FILLER)))))
(FU T-SLOT (CDR L) (EVAL (CARL)))
(EVAL (CAP PErAIN))
(EC (CAD R PE Ml\ IN) (QUOTE CONS)))))

FEXPR

L ~ List of a frame name, slot names, the name of a

~tructure to be filled, and ihe way to be filled.

Calls FIND-SLOT to find the slot and fills it with the

new structure.

(DE'FPROP FILL!:P
(r_. r11,1 rr ,I\ { L)

{Cl'>.CF

88.

(FH'r.'-SLCT (A PPEl''D (CD R L) {('UO TE {F OR FILLE R))) (F.Vl\L (C i'lR 1)))))
FEXPP)

NIL
*

FEXPR

L - List of a frame name and slot names

Calls FIND-SLOT to find the right slot and returns ·the

filler of the slot.

{DFFPROP FIND-SLOT
(L AMBDA (I NFO FRr ME)

((LT\fPDA(? FVAL EKD)
(Cor ,1D (END (.llFD (i";E[•'i() (C l\CDP INFO) (QUOTE (C O"t'-'S PPLACD)))

(Sf T0 RE~AI~ (CDR INFO)))
) ?EVAL)

(T (F H'D-SLC'T (C GR IPFO) (C t.DF ?FV AL)))))
(ASSOC (CF (M-.:0 (.2\TCM (Cl\F . INFO)) (C AR H 'FO)) (EVllL (Cf\l\F. I NFO)))

FF .71~0:E)_
(r-:Er~0 (C .u.C-DR INFO) (QUOTE (CO NS PPLACD FILLER)))))

EXPP)

NIL
*

INFO - Li st of slot names and other information specified

in FILL or FILLER

FRAME - A structure--a frame or a list of sub-slots

Calls recursively to find th e right s l ot for FILL or FI LLER.

)

1)

(DEFPRCP FILL~SENTENCE
(Ll\~' PDll NIL

(f .tT(1 t-1P--INS'I'l>.NCF (CCPY (GET (QUOTE NP) (QUOTE FRl\ME))))
(FILL ~P~INSTANCf SYNTAX NPF-INSTANCF PPLACD)
(FILL l\'P-INST1\i 1C E SE~'l'.I NTI CS POF FPLACD))

EXPF)

NIL
*

Creates an instance of the prototype NP frame.

Fills the slots in the . frame.

(DFFPROP FILL-BISTCRY
(L M]rCl\ tnL

(FILL F-INST~NCE SUPJECT SE~ANTICS sueJECT RPLACD)
~FILL F-INSTANCE O~JECT SE~ANTICS OBJECT FPLACO))

EXPP)

tJIL
*

89.

Makes the objects mentioned in a sentence share structures

with the WORLD objects.

)

)

(QFFPFOP INFFF-BY~PPOP
(L~ ~BD~(F UNCTIONAL)

(AND (NULL _(ASSOC FUNCTIONAL OPJECT))
(FV AL

EXPR) _

(APPE ND (QUCTE (F RRMSG IT IS WRCNG THAT))
(I.,I ST (QUOTF A)

(C fl.R OP.JFCT)
FUNCTION!IL
(QUOTE A)
(CAR SUBJECT))))))

FUNCTIONAL - CONTAINS or SUPPORTS

Finds the functional slot in a physical object frame.

Calls ERRMSG if th e slot i s not found.

90.

J

)

(DFFPP0P SEAFCH-WOPLD
(LAMPDA(POF VCRLD~OSJECTE)

(CCND ((NOT

f.XPR)

NIL
*

(CFF~ .-1:T
(f'1!1 PC (FUNCTiOJ\" ·

(Lfl~~QA(WORLD-ORJ)
(J\ ND (E0 (C P. F PO[,') (C ,l\ F T:JCPLD-0P,J))

(ERPSET Wl\TC! l POF WGRLD-O!?J))
(SETQ PHYSOR ~ORLD-OqJ)
(SETQ S-EESUtT (QUOTE SI~ILAP))
(E P R J\1 I L))))

~CRLD-OPJECTS))))
(T (SETQ PHYSC'P. POF) (SETQ S-I<CSULT (QUOTE NCNE)))))

POF - Physical object frame

WORLD-OBJECTS List of physical object frames in the

WORLD's CONTAINS slot.

Searches WORLD for an object similar to POF.

91.

r)

)

)

92.

(DEFP ROP SEARCH-HISTORY
(LAr- '.BDfl (POF) ·
. (COND ((EQ (CAP POF) (QUOTE ROOM))

(S FT(' PflYSOB i•iORLD)

EXPP)

NIL

*

(SETO S~PESULT (QUOTE FOUND)))
((NOT

· (F F.PSFT
(~·:APC (Fm 1C'I'ION

{Lr MBDA (SENTE NCE)
(OR · (NEC (Cl'R .SENTENCE) (OllOTE DECL-SENT))

(PPEVJOV S-OBJPCT (0UOTE SUPJFCT))
(PREVIOll S-OPJECT (QUOTE OPjECT)))))

HJ STORY)))
(SFT0 8-Rf.SlJLT (()UOTE FOUND)))

(T (SETO PHYSOP. POF) (SET0 S-RF~llLT (O fJOTE ~.lO'TFOllND)))))

· POF - Physical object frame

Searches HISTORY for a mentioned object with its structural

properties similar to th6se of POF.

(DEFP ROP PREVIOUS-OEJFCT
(LJIY2Dl': (0!3J)

(~ND (EC . (CAR POF)

FXPR)

(C l'F (SETC PfiYSOB (PILLER SEN'T'ENCE (OBJ) .SE'f<APTl~S))))
(E PRSET (~ATCH POF PHYSOB))
(FFR NIL)))

OBJ - SUBJECT or OBJECT

Retrieves OBJ from HISTORY.

Calls MATCH to match the structural properties between

OBJ and POF.

)

(DCFPRCP ~1.l>TCH
(L!l .ti EDA (POF l i CPLD-OBJ)

(/lf\'D (GP Efl.TE1'P (LEf\ 1GTH (CDR POF)) (LENGTH (CCR WORLD-OBJ)))
(E FRN IL))

(~1'.A PC (FUNCTION
(LAfPr~ (~F ~-OPJ~PROP)

(OF (80 (CADF NEV-OBJ-PROP)

9 3 •

(C flDF (l>,8SOC (C.~R NE¾-Ol?J-PPOP) (CDP WOP.LD-OPJ))))
(MEMO (C~P NFW-OPJ-PPOP)

CXPR)

NIL
-A·

(0UOTE (CONT AINS SUPPORTS LOC~TION)))
· (E RF NIL))))

(CDR POF)))

POF - Physical object frame

WORLD-OBJ - WORLD object frame

Finds a match between POF and WORLD-OBJ.

J

)

(Df.FPFOP ~11\KE
(LM'.P.I)li ('· ' I) (CONS w· (COPY (GET W I))))

FXPR)

·FIL
*

W - Concept's name

I - Property indicator

Makes a frame .corresponding to the concept.

(DEFPRCP PRFTTYLEV
(L M'.!30/l (S N)

(DSK OUT JUNK
(PFOGl (PRHlC (QUOTE "(P POG NIL (SETC JUN.K @"))

(P RH:TLEV S ~i)

(DS KIN JUNK)
(T ERPRI)

(P PINC (QUOTE/]))))

(SPRINT JUNK 1))
EXPR)

tnL
* ·

S Structure

N - Number

94.

Prints the strutture (infinite list) to certain levels.

()

)

9 5.

(CfFPF.CP ZOCM
(L M~ B DA (0 r J E' CT) .

(COt-lD ((A'I'Cr 1 (CAP 0J)JFC'1')) (ZO OMl OP.JECT))
(T (MAPC AP (FUNCTION (LA~t.BDA (OBJS) (ZOOMl OP.JS))) OEJECT))))

EXPF)

NIL

*
OBJECT - List of physical object frames

Translates OBJECT into noun phrases without defini.te determiners.

(DEFPPOP zorno
(Ll\~·'.f:L'l\ (OP,JFCT)

(APPE!\D
(f.' APCP,.!,:

('FUNCTION
(LP..~·:PDl\ (SL OT)

(.Mm U·'Ei 1: () (Cll P SLOT) (QUOTE (SIZE COLOR)))
(COPY (CDR SLOT)))))

(CC'R OBJECT))
(LI ST (CP,R CJ;JECT))))

BXPF)

f'; IL
*

OBJECT - Physical object frame

Translates OBJECT into a noun phrase without a definite

determiner.

96.

r-, (DEFPROP DE

)

(LAMEDA(RELJ\TION)
(COND ((NULL (CAR FELATION)) . U':ODI FY))

(T

Ff.XPR)

NIL
*

{(LAMBDA(DFCL-SENT SUBJ-STATUS OBJ-STATUS)
(COl-10 ((EC SUBJ-STATUS (0UOTE tWTFOuNC)) (SUSJ-NOTFOUND))

((NOT (SUBJ-OK)) (POTH)))
(COND ((NULL DECL-SENT) (TF/IJ ,1SLJ\TE))

((EC' (FILLET? F-INSTANCE REPLY) 3) (FILL-HISTORY))))
(E() (CAP F-:INS'l'/\NCE) (0UOTE DECL-SH :'l'))
(FILLER F-I~ST~NCE SUBJECT-SEARCH RESULT)
(fILLER F-INSTANCE .CBJECT-SEARCH PESULT)))))

RELATION - Preposition

Monitors the process when the verb of a sentence i~ IS.

)

(D£FPROP SOGJ-NOTFOUND
(L.l\~8Cl' ~JIL

(COND ((EC OBJ-STATUS (QUOTE .NOTFOUND))
(SE~Q PASS-TO-REPLY

9 7 •

. (APPFND . (ZOOM SUBJECT) (QUOTE (A1':C)) (zom1 OBJECT))))
(T (SETQ PASS-TO-REPLY (ZOOM SUBJECT))))

(FILL F-INSTANCE REPLY 21 RPLACD))
EXPF) ·

NIL
*

The subject is already not found in HISTORY.

Checks if the object is found in HISTORY.

Sets up a reply and reply number.

(CEFPPOP S~JB.J-0 K
(L M · '. P C JI NI L

(COt ·7D
((EC OBJ-STATUS (QUOTE NOTFODND))

(SFTQ PASS-TO~RfPLY (ZOOM OPJECT))
(FILL F-IN~TANCE REPLY 21 RPLACD)

T))) .
EXP.R)

NIL

*

The search result for SUBJECT is not NOTFOUND.

Checks if the object is found in HISTORY.

Sets ~pa reply and a reply _number.

n (DEFPFOP POTH
.(LP.r,;p Di'\ ti TL

(CO NC ((II .NO (F() SlJl:J-ST.llTUS (C,UGTE FOmID))
(E0 OPJ-STATUS (QUOTE FOUND)))

(CHECK-EXISTE NCE))
(1 (CHECKS~BJ-OBJOK))))

F.XPR)

NIL
*

Directs further processes when the search results for

both the subject and object are not NOTFOUND.

9 8.

) (DEFPPOP CHECKSURJ-OGJOV
(Li'\ ~'P[',l\ ~JI I.

(COf\1D ((1:0 S fJPJ-S 'J'Ji.TUS (QUOTE FOUND)) (CFFCK-COPPFCT))
. (T (F ORM-Nl\fv1E (OUOTF. IS) (CAP :RELATION)))))

EXPP)

l'1 IL
*

When the search results for both the subject and object

are not FOUND, che6ks if the subject is found in HISTORY.

)

)

(DEFPFOP CHECV-CORFECT
(LAMRDA NIL

{ /LAMBOA{SUBJ-LOC)
(COND ({liND {EC' {CAB 08JECT) · (C~.P SUEJ-LOC))

(EFRSE~ (MfTCH OEJECT sueJ-LOC)))
{FILL F-INSTANCE REPLY 22 RPLACC))

99.

(T (~CTUAL-LOC (FILLE R SUEJECT LOCATIO~ RELATION)))))
(FILLER SUBJECT LOCA~ICN POINTER)))

EXPF)

NIL
*

Looks fo~ the correctness of a sentence when the subject

is found in HISTORY.

.J .

(DEFPP OP CHECK-EXISTENCE
(LAME C'!\ NII,

((LAM~DA(SUBJ~LOC)

100.

(COND ((EO OB,JECT SUEJ-LOC) (FILL .F-HlSTAl~CE REPLY 22 PPLACD))
(T (tCTU~L-LOC (FILLEP surJECT LOC~TICN PELATION)))))

{FILLEF SUPJECT LOCATION POINTFR)))
EXPF.)

NIL
*

. When both the subject and object are found in HISTORY,

checks if the event has been described before.

Sets up a reply a~d a reply number .

. (DEFP FOP AtTUAL-LOC
(LArPDA(FFL~TION)
{SET(PASS-TO~PEPLY

· (APPEND (CUOTE (THE))
.(zom-: SUF,JEC'l')
(LI ST (0UOTE IS) RELATION (QUOTE 'l'BE))
(Z OOM SUEJ-LOC)))

(FILL F-INSTANCE FtPLY 23 RPLACD))
EXPF)

NIL
*

RELATION - Preposition

Sets up a reply telling the user the actual lo~ation .of

the subject .

\

J
101.

(DCrPRCP FOR~1-t"At-(E
(LJ\t l BDJ\ (VE EB PFLATIO~:)

(EV.ZIL (LI ST (PEACLIST (NCONC (EXPLOCE VER8) (E XPLODE PELATICN))))))
EXPR)

!''IL
*

VERB - Verb

RELATION - Preposition

Forms an expression combining the verb and the prepositiori

in one word.

Evaluates the e,xpression.

)

102.

(DEFPRCP ISIN
(L /'.I t-1i B. DA J\1 I L .

(J NFER-PY-PRCP (QUOTE CONTAINS))
(COND ((EO OP.J-STATUS (QUOTE FOU1':D)) (CHECK-r ,1Er~EER-OF (QUOTE IN)))

((EO OEJ-~TATUS (QUOTE NONF))
(OR (NUL L DF CL -SENT) (NEVi-LOC OBJECT h'ORLD (QUOTE IN)))
(J\CTI ON-PREP (QUOTE I N) ((;UOTE CONTAINS)))

((E Q SUBJ-ST~TUS (QUOTE NONE))
(l'CTI ON-PFEP (C'UCTF. n:) (0llOTE CON'I'AINS)))

((EFrSET (ROT0-SJMJLAP)) .
(ACTICN..:PREP (0l1CTE H') (0 l1O'1'E CCWTl\ TJ\'S)))

(T (FILt F-I NSTANCE FEPLY 22 RPLA CD))))
FXPR)

(D EFPRCP ISON
(L .ll M P D 1\ l'' l L
. (I NFER-PY-PROP (0UOTE SUPPOPTS))
. (C01': D ((EC' OPJ-S'I'l\TUS (0UOTE FOUFD)) (C!ffCK-MEf,:J:ER-OF (QUOTF CN)))

((E0 OBJ - STfaTUS (OUOTE NONE)) I •

(OF (t'WLL DEC L-S ENT) (~!EVi-LOC OP,JfCT t·IOPLD (QUO'I'E H T)))
(ACTIO! ·' -PREP (('UOTE ON) ((;UOTE SUPPORTS)))

. ((E0 SUPJ-ST ATOS (CUOTE NONE))
(ACTIO1':-PPEP (QUOTE ON) (QUOTE SUPPORTS)))

((ER RSFT (BOTH -SIMILAR)) . .
(J\.C'[ION-P F[P (QUOTE on (CUOTF s UPPOFTS)))

(T (FI LL F-INST AN CE FEPLY . 22 RPLACC))))
EXPP)

NIL .
*

Carries o ut appropriate act i ons when the verb is IS and

the prep6sition is IN or ON.

n

)

(DfFPPOP CHECK-~E~BFF-OF
(L~,r,·pol\ (.RCLl\TIC:I 'n

((LAMPDA(FUNCTIO~AL)
(C01';D

((EFRSF.:T
(~11\ PC

(FUNCTION
(L /_ ~I RC ri (0 8 J)

(AND (EQ (CfiR SUB,JECT) (Ct\P. OBJ))
(ERFSET (KATCH SUPJECT OBJ))
(EFR NIL))))

(CADR FUNCTIONAL)))
(ACTION-P REP FELPTION (CAR FUNCTIONAL)))

(T (FILL F-INST ~~CE REPLY 22 RPLACD))))
(ASSOC (CONVERT RELATIOK) OBJECT)))

. EXPR)

NIL
*

RELATION - Preposition

Checks if the subject is on or in the object, wheri

the subject is not found irt HISTORY but the object is

found.

103.

I

)

(DEFPROP NHi-LOC
(LArRDA(FrA rE-NA~E NEW~LOCATION PREPOSITION)

(FILL t.-;Q}<L[) COi~TAH1 S FEAME-NM:lF, cot, ~~)
(FILL FFN:E-NM1F. LOCATIOf\l POINTER NEY\'-LOC/\TION :RPLACD)
(FILL FRA~E-NArE LOCATION RELATION PPEPOSITION RPLACD))

EXPP)

NIL
*

FRAME-NAME - Physical object frame

NEW-LOCATION New location of FRAME-NAME

PREPOSITION - Preposition

104.

Adds FRAME-NAME to WORLD. Fills FRAME-NAME's LOCATION slot.

(DEFPROP ACTION-PFfP
(L irEDA (FPE~ RELATICK)

(CC,f\TD
(DECL- SEf\:T (SET(' SUBJFCT (FILLFF F-IPS'I'l\f\:CE SUR,TECT SEFMJTICS))

(~ EW-LCC SUBJECT OBJECT PREP)
(OR (EO OBJECT ½CPLD)

(FILL OBJECT (RELATION) SUBJCCT CONS))))
(FILL F-INSTANCE REPLY 3 RPLACO))

EXPF)

NIL
*

PREP - Preposition

RELATION - Functional slot name

Establishes the relationship between the subject and object.

)

105 .

(DEFPFOP BOTH-SIMIL AR
(LJ'l.MBOJ',. l''IL

((L/'1'18CA (OPJECT- -S)
(~~A PC (Fl.Jl''.CTI.01:l ·

(LAMPDA(08J-TARGET) _
(0P (NULL CGJ- TAPGET)

(/'IND (rE MQ (FJLLE P ODJ-T APGET LOCJ'lTION POINTER)
OP.,JF.CT--S)

(EPP NIL)))))
(S IMJL ~P-O~JS (FILLE R F-INSTANCF SUEJECT SE~~ NTICS))))

(SH ~JLT-IP- OBJS (FILLEP F-INSTM ,;CF OBJECT SEl"J11'1'I'ICS))))
EXPP)

NIL
*

Ch ecks if the currenily described . event has been previously

int roduced .

(I'E FPP OP S'IrHLl\F-013J S
(L l',til?Dl\ (0Pc1)

(t ·'!'PC.ll ,P (Flll''CTIOf\!
(Ll\'. 0'.BDl'. (>')

EXPP)

NIL

*

(/\ J\10 (F.Q (CM~ CEJ) (Cl\P X)) (f.fPSET (l'/'\TCH OB J X)) X)))
(FtLLER WORLD CCNTAI~S)))

OBJ - Physica l object frame

Returns a list of physical object frames similar to OBJ.

)

(DEFPT<OP ?PUT .·
(LM ' BDI- r·n L

106.

(OR (Fr (FILLE F F-INSTANCR SUBJFCT-SEARCH RESULT) (QUOTE FOUND))
(FILL F-INST~NCE REPLY 26 FPLACD))

(FILL F-IfSTArCF PREDICATE VERB (CAR ~TPING) FPLACD))
FY.PP)

t:IL
* ·

· Initial process for the verb PUT.

)

j

(DEFPPC'P PU'I
(L/IMBDA(FFL~TT CP)

(INFEP-fY-PP OP (CO NVEPT (CAP PELATION)))
(OR (FILLEF F~I~STANCF REPLY)

((L M:PDA (05.J-.S'l/l'I'llS)

107.

. (COND ((At-1D WOT OBJ-STl\TUS (('UOTE (SHl!L/IP FOUND)))
(fRRSCT

(1''.AT Cf-:1 01:,JECT
(FILLER SU3JECT LOCATION POINTER))))

(FILL F-I~STANCE REPLY 30 RPL/ICD))
((OF (EQ OPJ-S'I'/ITUS (CUCTE FOUND))

..

(NE~-LOC (FILLER F-INST/INCE OPJECT SEMANTICS)
~WRLO
((:UOTE IN))

T.)
(FORf<-1':/IYE · (QUOTE PUT) (C!>.F PELl\TION))
(FILL-HI STORY))))

(PILLFP. F-rr ,~sTr-rcr OP.JFCT-SEJIPCH PE~U[,'I'))))
FEXl?R)

NIL
*

FEXPR

RELATION - Preposition

Monitors appropriate operations for the verb PUT.

(DEFPFOP PUTIN
(L AMPDA NIL .

((Lf.\li8DA (OLD-LOC OLD-RELATION)
(FILL ~UEJECT LOCATION POINTER OBJFCT RPLACC) .
(FILL SUBJECT LCC ~TTON RELATION (0UOTE IN) PPLACD)
(FILL DEJECT CONTAINS SUBJECT CONS)
(OF (E~ OLD-LOC WOPLC)

(DELE TE-fCINTEP SUBJECT OLD-LOC OLD-RELATION))
.(FILL F-INSTANCf REPLY 14 RPLACD))

(FiLL EF surJECT LCC~TION POI~TFF)
(CONVEFT (FILLER SUBJECT LOCATION RELATION))))

F.XPF)

(DEF PROP PUTON
(r...nr·'B[•l\· ~JIL

((L f~PDl\ (OLD-LOC CLD-PELATION)
(FILL SUPJFCT LCCATIO N POINTFP OPJPCT RPLACD)
(FILL SUSJECT LCCAT~CN REL~TTON (OUOTE ON) FPLACD)
(FILL OPJPCT SDPPOFTS SUGJECT CONS)
(CR (EC OLD-LOC VOPLD)

(DEL ETE-POINTEP SUBJECT OLD-LOC OLD-RELATION))
(FILL F-INST Af CE PEPtY 4 FPLACD))

(FILLE R SUBJECT LOCATION POirTEP)
(CONVERT (FILL ER SUBJECT LOCATION FELATION))))

EXPR)

) l'lIL
*

J

Puts the subject in or on the object.

Resets pointers, etc.

108.

(DEFPFCP CFLCTE-POI~TER
(L" '-1P. Cll (C PJ OL f.'- LC'C Of.,D- PE Ll.\ T J Ot--1)

((LJ\ Y~C :l\ (F-SLOT)
(r OND ((rUL L (CDR F-SLOT))

(FILL OLD-LOC (OLD-FELJ.l.TION) NI L RPLl',CD))
(T (DSE~OVF O~J F-SLOT})))

(FILL ER OLD-LOC (OLD-REL~TION))))
E.:XPE)

OBJ - Physical object frame

OLD-LOC POINTER of OBJ ' s LOCATION s l ot

OLD-RELATION RELATI ON of OBJ ' s LOCATION slot.

109.

Gets . rid of OBJ from the functional slot of its location.

I

110.

(DEFPROP ADD-T0-08J
(LP.~-'. 8 DA (.l'ID C-11-D,l)·

((LA rPDA (CECL-SENT SIZE COLOR)
(OF (AND SIZE COLOR (ASSERTION))

((Ll\ MEC.z'I U'-C'J)
(C0NC

(SI7.E
(OP (A!' :D (ASSOC (('UOTF SIZF) P..DJ) (r-!f:SSl\GE (CDF SIZF)))

(7-'CD-COLOR)))
(COLOP

(0:R (.riND (/'ISSOC (QUOTE COLOR) .z'II:'J) (r 1~SSJ\GE · (CDR COLOP.)))
(l\ f' D- PF OP)))

(T (.z'I.DD-PPOP))))
(~A~f l\DD-l\CJ (QUOTE VP~N)))))

(E0 (C_llR F-INSTJ)NCF) (QU OT E DECL-SFNT))
(ASSOC (~UCTF ~I2F) PHYSOB)
(!ISSOC (0UCTFC OLOR) PHYS0B)))

FXPR)

NIL
*

ADD-ADJ Adjective

Performs appropriate processes--modifying a physical object's

properties.

)

(CEFPFOP ~DD-PPCP
(LM'.RDA tn L

(COND (DECL-SF NT

111.

. (PPL TICD SUBJECT (NCO NC (LIST (CADR l\DJ)) (CDR SUBJECT))))
(T

EXF"F)

NIL

*

(SETQ SUBJECT
(NCONC (LIST (CAR SUBJECT))

. (LIST (C ADF A □j)f
(C DR SUBJECT))))))

Adds size or color to a physical object frame.

(DEFPPOP ArD-CCLOP
(LP..~·1E D7-' ~'11 L

(COND (DECL-SENT

EXPR)

NIL
*

(FPLACC (Cr R SUBJECT)
(t -:tONC (LIST (CAC·P ADJ)) (CDDF SUBJECT))))

(T
(SET (' SUBJECT

(NCONC (LI ST (C AR SUBJECT) (CACR SUB,JCCT)) ·
(LIST (C~DF ADJ))
(CDDR SUBJECT))))))

Adds color to a physical object frame, i. e. size

already exists.

112.

, .. -) (DE FPPOP ~'ODH'Y

)

(L 11 ~1 l3 D l\, P T L
(O.P (FILL EF F-IN~TANCE FCPLY)

EXP.Pl

NIL
*

(COl'ZD ((CC (CJ\P F-H -'STJ'lt-JCE) (QUOTE. DECL-SFN1r))
(FILL F-INSTANCE REPLY 5 PPL~CD)
(FILL F-INSTANCE SUBJECT SEMA~TICS SUBJECT RPLACD))

(T (IS-~ '.ODIFY)))))

Directs processes for the following sent~nce pattBrns:

1. ?NPS IS ?ADJ

2. IS ?NPS ?ADJ

(DFFPROP JS-rODIFY
(L M:BD/\ !\'II.,

(CCKD ((FRRSET (~ATCH SURJECT PHYSO~))

EXPF)

NIL
*

(F I LL F - T NS T ,z\ 1\1 C r.: PEP LY 1 J RP L .r.,, C D)
(FILL F-INSTANCE SUBJECT SFM~NTICS PHYSOB RPLACD))

(T (FILL F-I rST~NCE REPLY 25 RPLPCD))))

Answers questions of the pattern I S ?NPS ?ADJ

J

)

(DEFPR OP ASSERTION
(Ll 1Y f3 [J':I , tH L

(CON D (.(f RR SET

./ '

(~;/\PC (FUNCTION
(L M-'.PDA (PROP)

(./\ND (E 0 (CJIDF
(CDR SUBJECT)))

(OR (AND DECL-SENT
(,r;i ES Sl\G E

113.

PROP) ADD-ADJ) (E RR NIL))))

(LIST (C!>DR SIZE) (O.L'OTF AND) (CJl,DF COLOR))))
(FILL F-INST ANCE ~EPLY 25 FPLACD)))

T)
EXPP)

t-1IL
*

(DECL-SE' NT (FI.LL F-H 1 STANCE FEPI,Y .31 RPLl.\CD))
(T (FILL F-JNST~NCE PEPLY 11 RPLACD)

(FILL F-H ISTANC E SUBJECT S EMAt-:TICS SUBJECT F.PLJ\,CD)))

When size and color already ex ist, checks for any

contradiction.

(f.:'fF PP('P 1'ES8f.GE
(L Ar F DA(~CJECTIVE)

(l' i\1 D D E' C L- S E t, T ·

EXPR)

NIL
*

· (fVl1L
(APPE~~ (0UCTE (FFR ~SG THE))

(LJ ::T (CP: F .~UP.Jf.CT) (OUOTf IS))
J\['JECTIVE))))

ADJECTIVE - Adjective

Gives an error message for a wrong assertion.

)

114.

(DEFPROP TPANStATE
(L/IY PDA 1'1 I[.

((L /\. ~i P D .n (R E P LY -N Ul'v! 8. E R)
(COND ((PC FFPLY-NUMPE.R 22)

. (FILL F~INSTANCE REPLY l] RPLACD)
(FILL-HISTORY))

((F-0 IffPLY-NU~ ~PER 3) (FILL F-H ..iSTANCE PFPLY 25 .RPLACD))))
(FILLER F-INSTANCE REPLY)))

EXPP) .

· t~I L
*

Converts a reply number for a declarative sentence into a

r~ply number for an IS question.

)

(DEFPFOP QUESTIONS
(QUESTIONS SUPJECT-SEAFCH

OBJECT-SEARCH
QUESTION-KHERE
QUESTION-WHAT
QUESTION-WHICH
WHICH-ADJ
~HICH-NPO
FORM-QUESTION-NAME
CONVERT)

VALUE)

NIL
*

115.

(DEFPFOP SUBJECT~SEAPCH·
([,M 1EC'l\ (L) .

(Cmm ((E Q (CJI.DAAR L) (QUOTE FOUtJC))

FEXPP.)

(EVAL (FORli-CUESTIOl\-tJ M,E (('UO'l'E S UE:J ECT))))
(T (FILL F-INSTANCE RFPLY 21 RPLACD)

(S ETQ PASS-TO~PFPLY (ZOOM SUPJCCT)))))

FEXPR

116.

L - A list containing a sub-list of two slots--RESULT and

POINTER .

. If RESULT of the SUBJECT-SEARCH slot is FOUND, then

SUBJECT-SEARCH calls FORM-QUESTION-NAME.

(DFFPROP OP,JfCT-SEf'\F:CEl
(LMH3C .l\ (L)

(CONC ((O F (E(l (C ADi'lAR L) (Cl:OTE FC:lJI\ D)) (lq .TLL OPJECT))
(EVAL (F OF~-ODCSTIC~-NA~E (0U OTE orJECT))))

(T (FILL F-JNSTANCE FFPLY 21 FPL~CD)
(SETO PA£S-TO-REPLY (ZOO~ OBJECT)))))

FEXPR)

NIL
*

FEXPR

L - A list containing a sub-list of two slots--RESULT and

POINTER.

If RESULT of the OBJECT-SEARCH slot is FOUND or there is

no 6bject in a question, then OBJECT~SEARCH calls

FORM-QUESTION-NAME.

)

(or FPPCP CUESTION-l'lf-!E RE
_ (L.n.MB['l\ (OBJ)

((Ll\MBD~(LOC-PT LOC-R8L)
(SETQ PASS-TO-FEPLY

117.

(l\PPEND (LIST LOC-RCL (QUOTE THE)) (ZOOf,1 LCC-PT)))
(FILL F-INSTANCE REPLY 6 FPLACD)
(FILL F-INSTJlNCE SUBJECT SEMANTICS OBJ FPLACD))

(FILLER OEJ LCCATION POINTER)
(.FILLER OBJ LOCJl,TION RELA'I'ION)))

FXPR)

NIL
*

OBJ - Physical object frame

Answers a ,where type question.

(DEFPPOP QU8STION-~PAT
(L M' I: D_A (0 B ,J)

((LM'PD A (Fl 1t-1CTIC'NAL)
(CON[, (UJULL FlJNCTIONP.L) (FILL F-H:STl" -NCE FFPLY 7 PPLl\CD))

(T (SET(" FASS-TO-PEPLY (zoor,: FUt-!CTrm : 1\L))
(FILL F-I NST~NCE REPLY 2 PPLACC)))

(FILL F-INST A~CE CPJECT SEMANTICS OPJ RPLACC))
(PILLER OBJ ((CO~VERT (FILLER F-INSTANCF PREDICATE RELATION))))))

EXFR)

NIL
*

OBJ - Physical object frame

Answers a what type question.

·() (DEFPFOP ruESTION~VHICH
(LT\i-'BDA (OBJ)

(CONC ((tWLL OPJ) n ·:HICH-AD J))
(T

(WHICH-~JPO

118.

(C ONVERT (FILLFP F-INSTANCE PREDICATE RELATION)))))
. (FILL F- HJSTM~C E SUGJECT SErrnt--TI cs PHYSOB RPLA CD))

FXPR.)

VI L
*

OBJ - Physical object frame

Initializes processes for a which type question.

(DEFPR OP FORM-0UESTJON-Nt MF
(L A r: 8 D l\ (C ~ j)

(LIST (F f.ADLIST
(tiCO~'.C (EXPLODE (QUOTE (PFSTION-))

(EXPLODE (CAR F-INfTANCE))))
) CB,J))

_EXPF)

OBJ~ - SUBJECT or OBJECT

Forms a question type procedure name.

(C EFPROP CONVERT
(L AMP D~ (R EL-PREP)

(CO NC' ((EO FE L-PREP ((ilTOT~ IN)) (GUOTE CCt lTA H~S))
((F C' F.E'L-PF EP (QUOTE ON)) (0 ll OTE SUPPO RTS) .)))

FXPP)

NIL
*

REL-PREP Preposition

Converts TN into CONTAINS and ON into SUPPORTS.

. i

119.

') (DEFPROP 1•:H ICH..;ADJ
(LAi''.SD.n, NIL
. (s EAFCf-l-\,JORLD SUBJ f.CT (FI LLEF WOPLD CON'I'A n~s))

(COND ((fQ $-RESULT (QUOTE SIMILAR))
(SETC PASS-TO_-REPLY

(APPEND (LIST (FILLER PHYSOB LOCATION RELATION)
(QUOTE THE))

(ZOOM (FILLEP PHYSOB .LOCATION POINTER))))
(F I LL F - I NS TI'S C E

S U·EJ ECT-S El',RCH
RESULT
(QUOTE SIMILAR)
RPLACD)

(FILL F-INSTANCE SUBJECT-SEARCH POINTER SUPJECT RPLACD) _
(FILL F-I NSTANCE REPLY 12 FPLACD))

(T (FILL F-I NSTANCE
S l1'3J ECT-S EA RC H­
P ES ULT
(QUOTE NONE)
RPLl'.I.CD)

(FILL F-I NSTANCF REPLY 26 PPLACD))))
CXPP)

NIL
*

Answers WHICH type questions of the pattern WHICH ?NP-N IS ?ADJ

120.

t) (DEFPPOP WllICfl-1'1PO .
(LAMPD.ll(FUNCTIONAL)

)

(SEARCH-VCRLC surJECT (FILLEP OPJ (FUNCTIONAL)))
(CONC ((EQ S-RESULT (GUOTE SIMILAB))

FXPF)

(FILL F-H ~STl\NCE
SUDJECT-SE/\RCH

. RESULT
(('UOTE SI11-'ILAR)
RPLACD)

(FILL F-INSTANCE SUBJECT-SEARCH POINTER SUBJECT FPLACD)
(FILL F-INSTA~CE FEPLY 13 RPLACD))

(T (FILL F-I NSTANCE
SUBJECT-SEARCH
HE.SULT
(QUOTE NONE)
EPL.llCD)

(FILL F-HJST.Z\NCE REPLY 27 RPL!'CC)
(SETO PASS-TO-REPLY (LIST FUNCTICN~L (QUOTE A))))))

FUNCTIONAL - CONTAINS or SUPPORTS

Answers WHICH type questions of the pattern

WHICH ?NP-N IS ?P ?NPO

)

121.

References

[l] Bobrow, D.G. "Natural Language Input for a Computer

Pro bl .em Solving System." In Minsky, M. (Ed.) ,

· - Semantic Information Processing. Cambridge, Mass.:

The M.I.T. Press, 1968.

[2] Bob~ow, D.G., and the PARC understanding group.

"GUS-1, A Frame Driven Dialog System." Artificial

Intelligence 8:2, (Spring 1977).

[3] Bobrow, D.G., and Winograd, T. "An Overview of KRL,

a Knowledge Representation Language." Cognitive

Science 1:1 (Jahuary 1977).

[4]

[5]

Davis, R., and King, J. "An Overview of Production

Systems." (Stanford AI MEMO 2 71). Stanford, Ca. :

Stanford University, October 1975.

Hewitt, C. "A Language for Proving Theorems in Robots."

Proceedings of the International Joint Conferenc e on

Artificial Intelligence, p. 295~3 □ 1, Bedford, Mass.,

Mitre Corp., (1969).

[6 J Kaplan, R. "On Process Models for Sentence Analysis."

[7]

In Norman, D.A., Rumelhart, D.E., and the LNR Rese a rch

Group, Explorations in Cognition. San Francisco, Ca.:

Freeman, 1975.

Marinov, V. "Memory by De scription in the ROOM Program."

1977 ACM Computer Conference in Atlanta, Jan. 3l~Feb. 2,

abstract, p. 4.

} '

J

[8]

122.

Marinov, V., Bregar, w.·, P6on, C., and Shih, T.

"It's a Small World - An Approach To Representation."

Depaftment of Computer Science, Oregon State University,

1977, unpublished.

[9] McCarthy, J., and Hayes, P. "Some Philosophical

Problems from the Standpoint of Artificial Intelligence."

In Meltzer B., and Michie, D. (Eds.), Machine

Intelligence~' p. 463-502. New York: American Elsevier

Publis~ing C6mpany, Inc.~ 1969.

[10) Minsky, M. " A Framework For Representing Knowledge. "

In Winston, P. (Ed.), The Psychology of Computer Vision.

New York: McGraw-Hill, 1975.

[11) Nash-Webber, B. "Th e Role of Semantics in Automatic

Speech Understanding." . In Bobrow, D.G. and Collins, A.

(Eds.), Representation and Understanding. New York:

Academic Press, 1975.

[1 2) Newe ll, A., and Simon, H. Human Problem Solving .

Prentice Hall, 1972.

[1 3) Nilsson, N. Problem-Solving Methods in - Artificial

Intelligence. Mc~raw-Hill, 1971.

[14) Raphael, B. " SIR: A Computer Program for Semantic

Information Retrieval. 11 In Minsky, M. (Ed.),

Semantic Information Processing. Cambridge, Mass.:

The M.I.T. Press, 19~8.

)

i)

123.

[15] Simmons, R.F. "Semantic Networks: Their Computation

and Use for Understanding English Sentences." ·

In Schank~ R., and Colby, K. (Eds.), Computer Models

of Thought and Language. San Francisco, Ca.: Freeman,

1973.

[16] Winograd, T. Understanding Natural Language.

[17]

[18]

New York: Academic Press, 1972.

Winograd, T. "Five Lectures on Artificial Intelligence."

(Stanford AI MEMO 246). Stanford, Ca.: Stanford

University, September 1974.

Winograd, T. "Frames and the Declarative-Procedural

Controversy." In Bobrow, D. G. , and Collins, A. (Eds.) , ·

Representation and Understanding. New York: Academic

Press, 1975.

[19] Woods, W.A. "Transition Network Grammars for Natural

Langua ge Analysis." Communications of the Association

for Computing Machinery, 1970, 13(10), p. 591-606.

[20] Woods, W.A., Kaplan, R.M., and Nash-Webber, B.

"The Lunar Sciences Natural Language Information

System: Final'Report." (BBN Report No. 2378).

Cambridge, Mass.: Bolt Beranek and Newman, June 1972.

[21] Woods, W.A. "What's In A Link: Foundations for

Semantic Networks." In Bobrow, D.G., and Collins, A.

(Eds.), Representation and Und e rstanding. New York:

Academic Press, 1975.

	Shih_Tsun_dah_1977_06_A
	Shih_Tsun_dah_1977_06_B

