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Abstract 

The Type II dilemma zone describes a segment of road on the approach to a signalized intersection where, 

if occupied by a motorist presented with the circular yellow indication, is likely to result in a motorist 

having difficulty deciding to stop at the stop line or proceed through the intersection. This phenomenon 

results in increased frequency of three failure conditions: rear-end collision at the stop line (excessive 

deceleration rates), the more severe right-angle crashes in the intersections, and left-turn head-on 

collisions (both resulting from incorrect estimates of clearance time). A more effective boundary 

definition for Type II dilemma zones could contribute to the safe design of signalized intersections. The 

prevailing approaches to dilemma zone delineation include the consideration of the vehicle’s travel time 

to the stop line or the driver’s likelihood of stopping at a particular distance from the stop line. The 

imprecision of the driver’s perception of speed and distance suggest that fuzzy logic may contribute to the 

identification of the Type II dilemma zone boundaries. A Fuzzy Logic (FL) model was constructed and 

validated from driver’s empirically observed behavior at high-speed signalized intersections. The research 

resulted in an increased understanding of the phenomenon which, when applied to the timing of signals 

and the placement of vehicle detection, can improve the overall safety of signalized intersections. 
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1. Introduction 

The Type II dilemma zone describes a segment of road on the approach to a signalized intersection where, 

if occupied by a motorist presented with the circular yellow indication, is likely to result in a motorist 

having difficulty deciding to stop at the stop line or proceed through the intersection. This phenomenon 

results in increase frequency of three failure conditions: rear-end collision at the stop line (excessive 

deceleration rates), the more severe right-angle crashes in the intersections (incorrect estimates of 

intersection clearance time), and left-turn head-on collisions (incorrect estimates of clearance time). It 

should be noted that the Type II dilemma zone is not the only cause of these three failure conditions. 

Alternative causes are related to disobedience of the yellow and red indication or distracted drivers not 

detecting the yellow or red indications. The Type II dilemma zone conflict is believed to substantively 

contribute to the overall safety of signalized intersections, and particularly at high-speed signalized 

intersections where the severity of these types of crashes is worse due to the kinematics of the impulses 

exerted at higher speeds.  Unfortunately, national standards have yet to be implemented to address this 

issue. 

This research seeks to improve the way in which Type II dilemma zone boundaries have been 

previously identified. With improved boundary identification, more optimal change interval timing 

practices may result. This work contributes toward the information necessary for development of a 

standard procedure for change interval timing.  

The Manual on Uniform Traffic Control Devices (MUTCD) is the generally accepted authority 

on the application of traffic signs, signals, and pavement markings within the United States (MUTCD, 

2003). The MUTCD provides information on the meaning, sequencing order, and ranges of duration for 

the circular yellow and red indication, but appropriately does not provide guidance on specific timing 

practices, since signal timing exists outside the influence of the MUTCD (MUTCD, 2003).  

Given the lack of a design standard for calculation of change or clearance intervals, several 

approaches have been adopted by different agencies across the country. Arguably the most common 

approach in use is by the Institute of Transportation Engineers (ITE), which developed a recommended 



calculation that accounts for grade of approach roadway, perception-reaction time of driver, deceleration 

rate of vehicle, velocity of approaching vehicle, length of vehicle, and the width of the intersection as 

described by Roess, Prassas, & McShane (2004) and in the Traffic Engineering Handbook (1999). 

Several alternative practices to the ITE recommended calculations have also been employed to 

address change and clearance interval timing. For intersections with relatively level approaches, some 

authorities calculate the yellow change interval as one tenth the operating speed of the approach vehicles, 

with an arbitrary red clearance interval of 1 or 2 seconds. Other agencies may apply the same change and 

clearance duration to roads of similar functional classification or closely grouped intersections as 

described in the Institute of Transportation Engineers’ Traffic Signal Clearance Indication Course 

Material (2004).  

As evidenced in the above, the lack of a national standard for the timing of the change and 

clearance intervals has resulted in a variety of strategies being implemented across the county. This lack 

of uniformity, when considered in conjunction with the wide variety of vehicle and user composition 

interacting on today’s roadways, requires an updated examination of the dilemma zone issue.  More 

specifically, there is a critical need to establish a consistent definition within this document for the 

purposes of understanding and accurately describing the nature of the dilemma zone conflict (Gates, 

Noyce, & Larauente, 2007; Urbanik & Koonce, 2007). Since Type II dilemma zones are important to the 

timing of change and clearance intervals, a more accurate definition of the Type II dilemma zone would 

contribute significantly towards improvements in change and clearance interval timing practices.  

This research initiative seeks to improve upon our ability to identify the boundaries of the Type II 

dilemma zone region as well as the range of driver behavior within the Type II dilemma zone. To 

accomplish this task, Fuzzy Logic (FL) is proposed as an analytic tool. FL is applied to empirically 

observed dilemma zone interactions at high-speed signalized intersections to build a model of the location 

of the Type II dilemma zone. This proposed model is then validated against a separate set of empirically 

observed driver behaviors. Finally, the potential of the validated model is considered as a means to 

improve the design of high-speed signalized intersections.  



2. Literature Review 

2.1 Defining Two Types of Dilemma Zone Problems 

The development of successful design solutions to transportation problems, or any other complex system, 

can be greatly hindered by poor problem identification. Such has been the case in the diagnosing of 

dilemma zone issues at signalized intersections. It is critical that a common definition be established if 

this traffic safety issue is to be adequately addressed. This document, building on previously established 

terminology (Gates et al., 2007; Urbanik & Koonce 2007), will refer to 2 general classes of dilemma zone 

conflicts (Type I and Type II).   

The Type I dilemma zone was first referenced in the literature by Gazis, Herman, & Maradudin 

(1960). It describes the possibility that a motorist presented with a yellow indication while approaching a 

signalized intersection will, due to the physical parameters of the situation, be unable to safely pass 

through the intersection or stop prior to the stop line.  This scenario is the result of poor intersection 

design associated with errors in signal timing and detector placement. Several site-specific characteristics 

can contribute to these errors, including but not limited to, the distribution of vehicle type in the traffic 

stream, the grade and operating speed of the approach, and the available stopping sight distance.  

It was not until 1974 that the Type II dilemma zone was formally identified in a technical 

committee report produced by the Southern Section of ITE (Parsonson, 1974). The Type II dilemma zone 

has also been termed an “indecision zone” which reflects the dynamic and probabilistic nature of Type II 

dilemma zone (Gates et al. 2007). The Type I and Type II Dilemma Zones are both depicted in Figure 1.  

 

2.2 Existing Approaches to  Dilemma Zone Description 

Several attempts have been made to quantify the location of the Type II dilemma zone. In 1978, Zegeer 

and Deen defined the boundaries of the Type II dilemma zone in terms of driver decision making. They 

identified the beginning of the zone as occurring at the position where 90% of drivers stopped and the end 

of the zone as occurring where only 10% of the drivers stopped (Zeeger & Deen, 1978). This definition 



agreed with the previous works of May (1968) and Herman, Olsen, & Rothery (1963). In 1985, Chang, 

Messer, & Santiago tried to define the boundaries in terms of the travel time to the stop 

Figure 1 Type I & Type II Dilemma Zone Diagram 
 

line as estimated from the onset of the yellow indication. The research found that 85% of drivers stopped 

if they were 3 seconds or more back from the stop line while almost all drivers continued through the 

intersection if they were two seconds or less from the stop line (Chang et al., 1985). Supporting examples 

of defining the Type II dilemma zone in relation to the stop line can be seen in the works of Webster & 

Elison (1965) and Bonneson, McCoy, & Moen (1994). Based on several of the previously mentioned 

studies it has been concluded that, as a rule of thumb, the Type II dilemma zone generally exists in the 

area between 5.5 seconds and 2.5 seconds from the stop line as measured from the onset of the yellow 

indication (Bonneson et al. 2002).  
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The three crash situations associated with dilemma zones are abrupt stops leading to rear-end 

crashes, failure to stop leading to right-angle crashes, and left-turn head-on crashes from incorrectly 

judging the clearance distance. On average, right-angle crashes tend to result in more serious injuries, 

therefore more emphasis is typically placed on their prevention. As the approach speeds of the 

intersecting roadways increase so too does the severity of the collisions, which is one reason why an 

added emphasis is placed on dilemma zone issues at high-speed signalized intersections.  

 

2.3 Comments on Existing Dilemma Zone Definitions 

The currently accepted definition of the Type II dilemma zone relies on the measure of a vehicles time to 

the stop line measured from the onset of the circular yellow indication with approximate boundaries 

reported from 2.5 to 5.5 seconds.  Existing research suggests that this definition captures the two most 

critical factors affecting the driver behavior upon exposure to the circular yellow indication, vehicle 

position and vehicle approach speed. Additionally, the time to stop line measure provides a metric for 

identifying the approximate location of the Type II dilemma zone on the approach to a signalized 

intersection. This definition does not however account for the imprecision with which the driver perceives 

measures such as speed and distance at the instant the circular yellow is presented. It also does not 

provide additional information as to how driver behavior varies within the Type II dilemma zone region. 

For these reasons alternative boundary identification strategies should be considered.  

 

3. Methodology 

3.1 Fuzzy Set Theory for Generic Model Development 

Several research efforts have focused on the use of fuzzy sets or fuzzy logic (FL) as a tool for modeling 

vehicle interactions with traffic control devices such as signalized intersections. As an analytical tool, FL 

allows for the modeling of imprecise information. Driver decision making at a signalized intersection 

requires the estimation of vehicle position relative to the stop line, the speed and acceleration/deceleration 

capabilities of the vehicle, and the duration of the current indication. These quantities are continuously 



approximated by the approaching driver, and are therefore ideal fuzzy sets to be modeled with FL. Kuo, 

Chen, & Hwang (1996) used FL as a new mechanism for the calculation of change and clearance 

intervals. The new approach results in the determination of dynamic values for change and clearance 

intervals based on specific intersection and geometric conditions.  Recently, Rakha, El-Shawarby, & Setti 

(2007) performed a field study involving 60 participants to characterize the driver behaviors at the onset 

of yellow indication. They considered the uncertainty and anxiety in this decision-making process which 

was quantified in the choice situation by Yager and reviewed by Rakha et al. (2007) given as Equation 1: 

ܣ ൌ 1 െ	׬
ଵ

|஺ഀ|
ߙ݀

ఈ೘ೌೣ

଴  (1) 

Where ܣ is the level of uncertainty, and ܣఈ is the number of alternatives whose choice probability is 

greater than ߙ. In the case of driver choices within a dilemma zone, there are only two alternatives: either 

stop or go (Rakha et al., 2007). The quantification of uncertainty is reduced to Equation 2: 

ܣ ൌ 1 െmaxሺ ௌܲ, ܲீ ሻ ൅
ଵ

ଶ
min	ሺ ௌܲ, ܲீ ሻ (2) 

In which ௌܲ and ܲீ  are the possibility of stopping or going.  

 

 

3.2 Formulation of Type II Dilemma Zone Problem using Type 2 Fuzzy Set  

In this paper, driver behavior in Type II dilemma zone is modeled as an indeterminacy phenomenon 

which essentially has two aspects: uncertainty and vagueness. The uncertainty mainly comes from 

different groups of drivers with varying indecisive driving behaviors during the change interval when 

approaching high-speed intersections. The indecisiveness involves two choices: either to stop at the stop 

line or continue through the intersection.  

The vagueness phenomenon, different from the uncertainty, is an instance of second-order 

uncertainty arising when trying to group objects with a certain property. We claim that the fuzzy set of 

Type 2 theory is a reasonable mathematical description of the vagueness phenomenon.  Type 2 fuzzy sets, 



sets with fuzzy grades of membership, generalize the Type 1 fuzzy set in order to handle more uncertainty 

in the decision-making process.  

There are three primary approaches in the literature which describe how to establish the fuzzy-set 

membership function namely: declarative approach, computational approach, and modelization approach 

(Novak, 2006). A fuzzy set is a group of objects with a continuous grade of membership (Zadeh, 1965) 

characterized by a membership function ranging between 0 and 1.  It can be constructed by assigning a 

membership value to each object in the interval of [0, 1]. Membership values indicate the degree to which 

an object belongs to a fuzzy set. Let X denote the vehicle position during the change interval when 

approaching the high-speed intersection. With the decrease of the distance to the stop line, the driver 

behavior in the decision-making choice process varies. The drivers have to make a decision on either to 

stop at the stop line or proceed through the yellow light. The originally simple driver behavior becomes 

complex at a particular distance during the onset of the change interval because the driver may only know 

the duration of change interval approximately.   

A fuzzy set is characterized by its membership function as seen in Equation 3: 

:ሻݔ஺ሺߤ ܺ → ሾ0, 1ሿ (3) 

The fuzzy set ܣ can be defined as a set of ordered pairs as seen in Equation 4: 

ܣ ൌ ሼሺݔ, 	ݔ|ሻሻݔ஺ሺߤ ∈ ߯ሽ (4) 

Membership functions are usually formulated with idealized representation of straight lines. For practical 

purposes, triangular, trapezoidal, or Gaussian membership functions are utilized as idealized shapes.  

Specific to our case, we use triangular membership function. 

 

3.3  Fuzzy Boundary Identification of Dilemma Zone at Signalized Intersection Approach 

3.3.1 Data Collection Methods 

The data collection procedure included completing intersection inventories at each of the experimental 

locations, capturing video of vehicles interacting with the onset of the yellow indication, and conducting 

automated speed studies at the location of the advanced detector data. The collection of speed and video 



data were critical because individual vehicle speed and position are believed to impact the potential for 

conflicts during clearance intervals. 

As with many experiments that incorporate field observation, the identification of adequate 

experimental sites was of crucial importance. Vermont Agency of Transportation (VTrans) engineers led 

the selection of the test sites based upon their knowledge of the operational and safety characteristics of 

the Vermont state highway system. Both major approaches of the following intersections, located in the 

municipalities of Berlin and Rutland, were included in the experiment: 

 Route 62 at Paine Turnpike (eastbound and westbound approaches), 

 Route 62 at Airport Road (eastbound and westbound approaches), 

 Route 62 at Berlin Road (eastbound and westbound approaches), 

 Route 7 at North Shrewsbury Road (northbound and southbound approaches), and  

 Route 7 at Route 103 (northbound and southbound approaches).  

An intersection inventory was completed to help adequately describe some of the relevant 

geometric characteristics of each individual intersection approach. Aspects such as horizontal and vertical 

curvature, grade, clear zones, adjacent land use, and presence of guard rails were considered in the 

selection of appropriated data collection locations but not included in the modeling associated with this 

research initiative.  

Observations of intersection operations and driver behavior were also conducted through the 

collection of video data. Cameras were unobtrusively mounted (15 to 20 ft off the ground) on a variety of 

fixed structures (500 to 600 ft back from the stop line) near the roadside. The cameras were oriented to 

face towards the signal heads on each major intersection approach. This system allowed for the clear 

identification of vehicle position and signal phase from a single location for a period of up to 4hrs 

between tape changes. Figure 2 depicts the installation of one such camera setup.  

In order to effectively use the 8mm video tapes to accurately identify the position of the vehicle at 

the onset of the solid yellow indication, the tapes were digitized and measurement points were transposed 



onto the digital files. The video file was then used in the dilemma zone and driver behavior analysis. 

Figure 3 shows a still frame of a completed digital video file overlaid with 50 ft intervals extending back 

from the stop line for several hundred feet.  

Once the 8mm video tapes were digitized with the measurement zones in place, they were burned 

to CDs so that multiple researchers were able to reduce the data into Excel © spreadsheets 

simultaneously. A team of trained researchers collaborated on the reduction of the overall database. As a 

part of the training component, researchers reviewed the same video file to ensure consistent results 

across researchers. In addition, random files were watched by multiple researchers in an effort to ensure 

consistency and validation of the research findings. 

3.3.2 Data Collection Results 

Approximately 510 hours of video-taped observation were collected across all 10 high-speed intersection 

approaches. Of this 510 hour sample, approximately 75 hours of video were reduced representing 

approximately 15 percent of the overall sample with an approximate range of 5 to 15 hours per 

intersection approach. Reduced observations yielded a sample size of approximately 1,900 vehicles which 

interacted with the change interval while approaching one of the signalized intersections from either 

direction on the main line.  

Samples of the speed, position, and driver behavior data collected in the field from two locations 

(Rte 7 at N. Shrewsbury (SB), and Rte 62 at Paine Tpke (WB)) are presented in this section. Specifically, 

the cumulative frequency of approach speeds collected at the location of the advanced detector for a 

duration of 72 hours and the cumulative frequency of vehicles choosing to stop in relation to their 

distance to the stop line at the onset of the yellow indication. Figure 4 shows an empirical cumulative 

distribution collected from Route 62 at Paine Turnpike.  

3.3.3 Generic Membership Function Formulation 

The development of a fuzzy membership function is an important step in evaluating fuzzy system 

applications.  It has been a challenging issue to generate suitable membership function in generic terms by 

different fuzzy construction rules.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Example of Typical Video Camera Installation 

 
Figure 3 Digitized Video with Measurement Zones 

 



 

Figure 4 Cumulative Distribution of Driver Stopping Behavior: Route 62 @ Paine Turnpike (WB) 
 

 

There are many research efforts focusing on generating fuzzy rules automatically such as genetic 

algorithms, simulated annealing and Kalman filtering techniques.  The shape of membership function, i.e. 

trapezoidal, triangular, or sigmoid, can be determined through a heuristic process.  The generation of 

generic membership function can be realized by learning strategies using training data.  A detailed 

description of generating membership function by different fuzzy construction rules is beyond the scope 

of this paper.  For more information, interested readers are referred to (Makrehchi et al., 2003). 

3.3.4 Example of Membership Function Formulation for specific location 

A fuzzy set can be fully defined by its membership function. How to determine the membership function 

is usually the first question that needs to be addressed. The adoption of any particular shape of 

membership function is often dependent on its applications.  At most times, the assumption for fuzzy 

control problems is a linear membership function in a triangular shape because of its mathematical 

simplicity and easy implementation.    
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  Fuzzy logic is a multi-valued logic with truth represented by a value on the closed interval, where 

0 is equated with the classical false value and 1 is equated with the classical true value.  Values in (0, 1) 

indicate varying degrees of truth. In the problem of Type II dilemma zones, the membership function of 

fuzzy subsets of vehicle position to the stop line is developed in Table 1. It is the construction of such 

bounding distributions that lead to validation.  The concerned problem domain is 600 ft, and it is divided 

into 12 subsets with each interval 50 ft. These subsets are categorized by close distance (possible to go), 

medium distance (greatest uncertainty) and far distance (possible to stop) using different membership 

functions. For the close distance case, if the vehicle position to stop line is less than or equal to 50 ft, then 

it is definitely close with membership equal to 1. From 50 ft to 300 ft, the membership is given by the 

linear function as can be seen from Figure 5. As the vehicle position to the stop line increases, the 

membership to classify its closeness decreases. When the vehicle position to stop line is greater than 

300ft, the membership function becomes 0. The same logic is applied to the medium distance and far 

distance. To clarify, a membership given by the membership function is not a probability, and it is not 

simply a quantitative variable at the interval level.   

  The membership function is a graphical representation of the magnitude of participation of each 

input variable.  A weighting factor is associated to each of the input variables by membership function 

which describes the membership grade of the elements in the fuzzy set.  Take the membership function 

from the vehicle position to stop line in Figure 5 as an example, the triangular membership function is 

formulated. 

 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

Table 1 Fuzzy Subsets and Membership Function for Vehicle-Position (VP) 
Fuzzy Subsets Membership Function 

Close Distance (Possible to Go) ݂ሺܸܲሻ ൌ ൞

1.0 						ܸܲ ൑ 50

1.2 െ ൬
1
250

൰ܸܲ, 50 ൏ ܸܲ ൑ 300

0 						300 ൏ ܸܲ

 

Medium Distance ݂ሺܸܲሻ ൌ

ە
ۖ
۔

ۖ
ۓ

0 									ܸܲ ൑ 50

െ0.33 ൅ ൬
1
150

൰ܸܲ, 50 ൏ ܸܲ ൑ 200

2.33 െ ൬
1
150

൰ܸܲ, 								200 ൏ ܸܲ ൑ 350

0 								350 ൏ ܸܲ

 

Far Distance (Possible to Stop) ݂ሺܸܲሻ ൌ ൞െ2.0 ൅

0 						ܸܲ ൑ 300

൬
1
150

൰ܸܲ,				300 ൏ ܸܲ ൑ 450

1 				450 ൏ ܸܲ	

 

 

 

Figure 5 The Membership Function of Vehicle Position 
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 In the development process, we divided the vehicle position to stop line into three categories: 

close, medium, and far.  The essence of fuzzy variable is its indeterminacy, which means the description 

of close, medium, or far is not a fixed number but an interval such as the interval we define to delineate 

close is (0, 300), similarly (50, 350) and (300, 600) for medium and far distance. Obviously, there are 

some other combinations to describe the fuzziness, but the idea regarding how the fuzzy membership 

function is created remains unchanged. 

3.3.5 Validation of Membership Function 

In the domain of fuzzy set theory, validation is usually defined as bounding a fuzzy set by lower and 

upper functions which enclose fuzzy membership functions (Lodwick, Jamison, & Newman, 2001; 

Moore & Lodwick, 2003). The ways that validation can be used involving two situations: an uncertain 

construction of a membership function or known underlying membership function.  

 Given a fuzzy variable A, with associated membership function	ߤ஺ሺݔሻ, we say ܣ is enclosed if 

there exist bounding functions ݌஺ሺݔሻ and ݊஺ሺݔሻ satisfying	݊஺ሺݔሻ ൑ ሻݔ஺ሺߤ ൑  and for all valid ݔ∀ ,ሻݔ஺ሺ݌

membership functions ߤ஺ሺݔሻ of ܣ. Given any fuzzy variable ܣ with any associated valid membership 

function ߤ஺ሺݔሻ, the fuzzy variable		ܣ is validated if there exists a sequence of functions ݌௞ሺݔሻ, and ݊௞ሺݔሻ 

that enclose ܣሺ݊௞ሺݔሻ ൑ ሻݔ஺ሺߤ ൑ ,ሻݔ௞ሺ݌ ሻݔ௞ሺ݌ ሻ such that݇	݈݈ܽ	ݎ݋݂ → ሻݔሻ and ݊௞ሺݔ஺ሺߤ →   .ሻݔ஺ሺߤ

 It is obvious that membership functions ݌ሺݔሻ ൌ 1 and ݊ሺݔሻ ൌ 0 are enclosures for any fuzzy 

member and hence validate every real fuzzy variable. We seek the tightest bounding membership 

function. More advanced interval validation methods can be employed through constructing enclosures 

and bounding algorithms but it is not the main focus of this paper. Interested readers are directed to 

(Lodwick, W.A., Jamison, K.D., & Newman, F.D., 2001) for more information. The idea is that we can 

bound the results given probability distributions or membership functions.  

3.3.6 Model Formulation and Validation 

It is the intention of this research effort to incorporate the empirically generated fuzzy sets described in 

Table 1 as an input for a probabilistic model which will output the likelihood of a driver to stop at the stop 



line when presented the solid yellow indication. The idea of building a model to describe the probability 

of a vehicle stopping is not new, several attempts have been made using a variety of factors in a binary 

logistic regression model (Zhixia , Heng, Qingyi, & Zhuo ,2010; Gates et al., 2007 & Chang et al., 1985). 

However, our approach of combining a fuzzy set of vehicle position data as a determinate of stopping 

probability is unique.  

  The model development and selection process was very much guided by the nature of this 

research problem.  We are concerned with modeling the Type II dilemma zone problem as an 

indeterminacy problem using a probabilistic model that predicts driver stopping probability according to 

fuzzy inputs. To go or to stop is a decision which has to be made in a Type II dilemma zone. It is 

essentially a choice behavior which can be discrete or continuous. We are formulating this problem using 

a continuous approach.  Generally, binary logistic models are appropriate to predict a dependent variable 

on the basis of continuous or categorical independents to assess the impact of independent control 

variables.  Thus, a binary logistic regression model is adapted to model drivers’ stopping probability in 

which “distance to stop line” is the only independent variable.  The model takes the form presented in 

Equation 5: 

௜ܲሺ݌݋ݐݏሻ ൌ 	
ଵ

ଵା	௘షഁ೔
 

௜ߚ ൌ ܽ ൅ ܾ଴ܼ଴ 

Where: ௜ܲ is the stopping probability of  ݅௧௛ driver 

   .௜ is a linear combination of multiple factors such as vehicle position etcߚ

ܼ଴ is the vehicle’s yellow onset distance 

The above model can be calibrated using field-observed trajectory data by performing regression 

analysis. The calibrated model can therefore be viewed as ground truth data when evaluating the fuzzy 

logic model of driver’s stopping probability. The result of the regression analysis is summarized in Tables 

2, 3 and 4.   

(5)



Table 2 shows the determination of the constants a and bo for equation 5. It was determined that 

a= -3.916 and bo=0.014 with statistical significance (P < 0.001).  

Table 3 shows the calculation of the R2 values for the binary logistic regression. The Nagelkerke 

R2 (0.581) is appropriate for this model. In many circumstances, desirable R2 might be as high as 0.8 or 

0.9. However, when dealing with field experimentation it can be difficult to achieve R2 as high.  

According to the classification analysis in Table 4, the distance to stop line is statistically 

significant by have a p-value less than 0.05. Therefore, the binary logistic regression model after 

calibration can be expressed with the following constants for a and bo: 

 

௜ܲሺ݌݋ݐݏሻ ൌ 	
ଵ

ଵା	௘షഁ೔
 

௜ߚ ൌ െ3.916 ൅ 0.014ܼ଴ 

On the other hand, when using the fuzzy membership value as the only independent variable, the 

driver’s stopping probability can be represented by the following binary logistic model in Equation 6: 

௜ܲሺ݌݋ݐݏሻ ൌ 	
ଵ

ଵା	௘షഁ೔
 

௜ߚ		 ൌ ܽ ൅ ܾ଴ܸܯܨ 

Where, FMV is the fuzzy membership value from the defined membership function by vehicle’s 

yellow-onset distance. The result of the regression analysis for Equation 6 is summarized in Tables 5, 6, 

and 7.  

Table 2 Variables in the Equation 
  B S.E. Wald df Sig. Exp(B) 

Step 1a DIST .014 .001 90.404 1 .000 1.014 
 Constant -3.916 .430 82.759 1 .000 .020 

a. Variable(s) entered on step 1: DIST. 
 

Table 3 Model Summary 
Step -2 Log likelihood Cox & Snell R Square Nagelkerke R Square 

1 255.190a .432 .581 

(5 updated) 

(6)



a. Estimation terminated at iteration number 5 because parameter estimates changed by 
less than .001. 
 

Table 4 Classification Table 

Observed 
Predicted 

Go=0, Stop=1 Percentage 
Correct 0 1 

Step 1 
Go=0, Stop=1 

0 164 20 89.1 
1 34 102 75.0 

Overall Percentage   83.1 
b.  *The cut value is .500 
 

Table 5 Variables in the Equation 
  B S.E. Wald df Sig. Exp(B) 

Step 1a FMV -6.397 .737 75.368 1 .000 .002 
 Constant 2.129 .273 60.684 1 .000 8.410 

a. Variable(s) entered on step 1: FMV. 
 

Table 6 Model Summary 
Step -2 Log likelihood Cox & Snell R Square Nagelkerke R Square 

1 266.783a .411 .553 
a. Estimation terminated at iteration number 6 because parameter estimates changed by less 

than .001. 
 

Table 7 Classification Table 

Observed 
Predicted 

Go=0, Stop=1 Percentage 
Correct 0 1 

Step 1 
Go=0, Stop=1 

0 151 33 82.1 
1 15 121 89.0 

Overall Percentage   85.0 
 * The cut value is .500 

 

Table 5 shows the determination of the constants a and bo for Equation 6. It was determined that 

a= -6.397 and bo=2.129 with statistical significance (P < 0.001).  

Table 6 shows the calculation of the R2 values for the binary logistic regression. The Nagelkerke 

R2 = 0.553 is appropriate for this model.  



After calibration using regression analysis, Equation 6 can be updated with constants for a and bo 

to be the following expression, where FMV is identified to be a statistically significant variable. 

௜ܲሺ݌݋ݐݏሻ ൌ 	
ଵ

ଵା	௘షഁ೔
 

௜ߚ			 ൌ 2.129 െ  ܸܯܨ6.397

Figure 6 shows an empirical cumulative distribution from Route 7 at North Shrewsbury, in which 

the input variable to the membership function is the distance to the stop line. The membership function 

outputs a fuzzy membership value which is factored as an input to the binary logistic regression model. A 

proper choice of the behavioral parameter α to the stopping probability model will reproduce the logistic 

relationship.  

Figure 7 shows the ultimate result of the calibrated binary logistic regression produced by the 

updated Equation 6. This function is validated in Figure 7 by comparing the ground truth (GT) and the 

fuzzy membership result (FMR). The GT probability function describes the actual observed stopping 

behavior of drivers related to the vehicle position at the onset of the CY indication from the data 

presented in Figure 6, while the FMR result predicts the driver stopping behavior based on the Fuzzy Set 

prediction. A visual inspection of the comparison of the two models clearly shows that the FMR is very 

similar to the GT.  

3.3.7 Comparison to previous results 

 As an additional measure of validation for our model, which uses fuzzy logic to characterize 

uncertainty, was compared to previous work.  There was some limitation as to the number of previous 

research efforts that could be directly compared with the model developed herein as a result of the need 

for consistent input variables (a critical aspect of comparison). However, the work of Rakha et al. 2007, 

previously discussed in this manuscript presents one model which can be directly compared. Figure 8 

displays the probability functions for running and stopping as presented from Raka et al. as well as from 

our FMR. 

 

(6 updated) 



 

Figure 6 Cumulative Distribution of Driver Stopping Behavior:  
Route 7 @ North Shrewsbury (SB) 

 

 

Figure 7. Comparison of Vehicle Stopping Probability Based on its Position at the Onset of the CY 
for the Ground Truth and the Fuzzy Logic Model Result 
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 As presented in Figure 8, the probability function developed by Rakha et. al. terminates at 

approximately 360 feet from the stop line. The original Rakha et al. study measured distances in meters, 

but was converted to feet here to allow for a more direct comparison of the results. While our work carries 

driver behavior out to 475 feet. This difference can be attributed most directly to the operating speed of 

the approaches. Rakha et al. directed subjects on a closed course to travel at 45 mph while our naturalistic 

approaches operated at an 85th percentile speed of 57.5 mph. The higher speed results in a shift of the 

Type II dilemma zone appearing further away from the intersection.       

3.3.8 Conclusion 

 To summarize, the authors have established that it is feasible to use fuzzy logic to delineate 

dilemma zones and by doing so some of the uncertainty involved in the delineation can be effectively 

captured. When applied to a specific intersection such an approach allows a better match to the “true 

dilemma zone” over the long ran perceived by most drivers. This fuzzy approach was developed from a 

sample of field data collected in Vermont and validated off a second independent set of data also acquired 

in Vermont. When compared to the previous work of Rakha et al. the model is reasonably consistent.  

 

Figure 7. Comparison of Vehicle Stopping stopping/running probability based on its position at the 
onset of the CY for the fuzzy logic models result and  



4. Contribution 

  This work supports, and builds upon previous research (Kuo, Chen, and Hwang, 1996) where 

similar membership functions were created.  The distance to stop line membership function developed by 

Kuo et al. is comprised of three similar fuzzy subsets with slightly varying thresholds used to define the 

functions.  The vehicle position membership function developed in this research builds upon previous 

research by capturing critical driver behavior patterns at higher speed locations where the consequences 

of driver failure are more severe.  

  This current research  develops a binary logistic regression model for drivers stopping probability 

in a fashion similar to the work of Gates et al in 2007; however, the input to the model is achieved though 

a fuzzy subset which appears to result in a desirable prediction of driver behavior while being 

significantly less data dependent than many previous modeling efforts.  The implications of the ability to 

predict driver behavior, while requiring less by way of data input has the potential to translate into the 

ability to model significantly more intersection approaches thus developing a better understanding of the 

entire phenomena.  

  Additionally, one model developed by Rakha et al. was compared to the FMR in Figure 8 and is 

very similar in shape, although constructed for an intersection approach on a test track with a stipulated 

approach speed more than 10 mph less than the naturalistic observations used in the development of the 

FMR. Our work contributes to Rakha et al.’s effort as our model is provided for higher speed approaches 

where the consequences of Type II dilemma zones are even more severe.   

  There are three primary failure conditions resulting from the two types of dilemma zone 

scenarios. This research effort concerns itself specifically with the two of these failures (rear-end collision 

on the approach and right-angle collision in the intersection) associated with through traffic in a Type II 

dilemma zone. The fuzzy boundary identification of the Type II dilemma zone has the potential to 

improve safety at high speed signalized intersections by accurately predicting where drivers will have an 

increased difficulty in deciding how to react at the onset of the circular yellow indication. With this 

knowledge traffic engineers can ensure that signal timing and detection practices to improve the 



operations of high-speed signalized intersections. Future research work is planned to further test how this 

model can help to achieve this ultimate goal.  

   

5. Discolosure 

The authors have no conflict of interests associated with the research included in this manuscript. 

 

6. Role of the Funding Source 

 The initial data collection for this research initiative was funded by the Vermont Agency of 

Transportation (VTrans). VTrans representatives participated in the identification and selection of the 

study locations and provided information on the existing conditions at the locations (i.e. grades of 

approach roads, signal timings, etc.). They have been made aware of the submission of this document and 

were permitted the opportunity to review and comment on the manuscript before submission. 

 

7. References 

Bonneson, J.A., McCoy, P.T., & Moen, B.A. (1994). Traffic detector design and evaluation guidelines 

(Report TRP-02-31-93). Lincoln, Nebraska: Department of Roads. 

Bonneson, J.A., Middleton, D.R., Zimmerman, K.H., Charara, H.A., & Abbas (2002). Intelligent 

Detection-Control System for Rural Signalized Intersection (0-4022-2). Texas Transportation 

Institute.  

Chang, M.S., Messer, C.J., & Santiago, A.J. (1985) Timing traffic signal change intervals based on driver 

behavior. Transportation Research Record, 1027, 20-30. 

Gates, T.J., Noyce D. A., & Larauente, L. (2007). Analysis of dilemma zone driver behavior at signalized 

intersections. Paper presented at the meeting of TRB, Washington, D.C. 

Gazis, D.C., Herman, R., & Maradudin, A. (1960). The problem with the amber signal light in traffic 

flow. Operations Research, 8(1), 112-132. 



Herman, R., Olson, P.L., & Rothery, R.W. (1963). Problem of the amber signal light. Traffic Engineering 

and Control, 5, 298-304. 

Institute of Transportation Engineers. (2004). Traffic signal clearance indication: Course material. 

Washington D.C. 

ITE Technical Committee 4A-16. (1989) Determining Vehicle Change Intervals: A Proposed 

Recommended Practice. ITE Journal, 57, (7), 27–32. 

Kuo, K.Y., Chen, Y.J., and Hwang, R.C. (1996). Calculation of the change and clearance intervals of 

traffic signal by fuzzy logic system. Paper presented at the meeting of Joint Conference of 

International Computer Symposium, Kaohsiung, Taiwan.  

Lodwick, W.A., Jamison, K.D., & Newman, F.D. (2001) Extension of interval validation methods to 

fuzzy set theory. Paper presented at the North American Fuzzy Information Processing Society.  

Manual on Uniform Traffic Control Devices. (2003). Federal Highway Administration, U.S. Department 

of Transportation, Washington D.C.  

May, A.D. (1968). Clearance interval at flashing systems. Highway Research Record, 221, 41-71 

Moore, R., & Lodwick, W. (2003) Interval analysis and fuzzy set theory. Fuzzy Sets System, 135 (1), 5-9.  

Novak, V. (2006) Fuzzy sets as a special mathematical model of vagueness phenomenon. In B. Reusch 

(Ed.) Computational Intelligence, Theory and Applications. (pp.683-690). Dortmund, Germany: 

Springer Berlin Heidelberg. doi: 10.1007/3-540-34783-6_66 

Parsonson, P.S., Day, R.A., Gawlas, J.A., & Black Jr, G.W. (1979). Use of EC-DC detector for 

signalization of high-speed intersections. Transportation Research Record, 737, 17-23. ISSN: 

0361-1981 

Parsonson, P.S. (1974). Small area detection at intersection approaches: A section technical report. 

Washington D.C.: Institute of Transportation Engineers 

Rakha, H., El-Shawarby, I., & Setti, J.R. (2007). Characterizing driver behavior on signalized intersection 

approaches at the onset of a yellow-phase trigger. IEEE, 8(4), 630-640. doi: 

10.1109/TITS.2007.908146 



Roess, R.P., Prassas, E.S., & McShane W.R. (2004). Traffic Engineering, 3rd Edition. Upper Saddle 

River, NJ: Prentice Hall. 

Traffic Engineering Handbook, 5th Edition (1999). Institute of Transportation Engineers, Washington, 

D.C.  

Urbanik, T., & Koonce, P. (2007). The dilemma with dilemma zones. Retrieved from 

http://www.oregonite.org/2007D6/paper_review/A4_Urbanik_Paper.pdf/. 

Webster, F.V. & Elison, P.B. (1965) Traffic signals for high-speed roads. (RLL Technical Paper 74). 

Crowthorne, Berkshire England. 

Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8, 338 – 353. 

Zeeger, C.V., & Deen, R.C. (1978). Green-extension systems at high-speed intersections. ITE Journal, 19 

– 24.  

Zhixia, L., Heng, W., Qingyi, A., & Zhuo, Y. (2010). Empirical analysis of drivers’ yellow stopping 

behaviors associated with dilemma zones. Paper 10-3315 presented at the annual meeting of 

TRB, Washington, D.C. 

Masoud Makrehchi, Otman Basir, Mohamed Kamel. (2003). Generation of fuzzy membership function 

using information theory measures and genetic algorithm, Lecture Notes in Computer Science, 

Fuzzy Sets and Systems – IFSA 2003, Volume 2715. Springer Berlin/Heidelberg.  

 


