
AN ABSTRACT OF THE THESIS OF

Madhusudhanan Srinivasan for the degree of Pvlaster of Science in

Computer Science presented on March 17, 2005.

Title: Interactive Human Locomotion Using Motion Graphs and Mobility Maps

Abstract approved:

Ronald A. Metoyer

Graph-based approaches for sequencing motion capture data have pro-

duced some of the most realistic and controllable character motion to date. Most

previous graph-based approaches have employed a run-time global search to find

paths through the motion graph that meet user-defined constraints such as a

desired locomotion path. Such searches do not scale well to large numbers of

characters. In this thesis, we describe a locomotion approach that benefits from

the realism of graph-based approaches while maintaining basic user control and

scaling well to large numbers of characters. Our approach is based on precom-

puting multiple least cost sequences from every state in a state-action graph. We

store these precomputed sequences in a data structure called a mobility map and

perform a local search of this map at run-time to generate motion sequences in

real time that achieve user constraints in a natural manner. We demonstrate the

quality of the motion through various example locomotion tasks including target

tracking and collision avoidance. We demonstrate scalability by animating crowds

of up to a hundred and fifty rendered articulated walking characters at real-time

rates.

Redacted for Privacy

© Copyright by Madhusudhanan Srinivasan

March 17, 2005

All Rights Reserved

Interactive Human Locomotion Using Motion Graphs and Mobility Maps

by

Madhusudhanan Srinivasan

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

1\'Iaster of Science

Presented March 17, 2005
Commencement June 2005

Master of Science thesis of Madhusudhanan Srinivasan presented on

March 17, 2005

APPROVED:

Professor,tepriting Computer Science

Associate Director of the School of Electrical Engineering and Computer Science

Dean of the

I understand that my thesis will become part of the permanent collection of Ore-

gon State University libraries. My signature below authorizes release of my thesis

to any reader upon request.

Madhusudhanan Srinivasan, Author

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

ACKNOWLEDGMENTS

I express my deepest gratitude to my father and mother who have always

been a great source of encouragement for my graduate studies and an inspirational

example. I thank them for their support and faith in me, and for all the sacrifices

they made, so that I could acheive the educational goals that I had set for myself.

I am deeply indebted to my younger sister, whose unfailing support, sacrifice and

love has made me worthy of being an example to her. I am thankful to my family

for putting all their faith in me, and never doubting my abilities.

I would also like to thank Sandra for her unending support and motivation.

She has always stood by me during the times I doubted myself, and offered courage

and love. I humbly thank her for being in my life.

I deeply thank my advisor Dr. Ron Metoyer for his constant encourage-

ment, and guidance. He has been a great source of inspiration to me. His patient

advice and counsel have always shaped and guided my capabilities in the right

direction. I would also like to thank Dr. Eric Mortensen whose insightful dis-

cussions and inputs have always been priceless. I express my gratitude to all my

other comittee members, for their time and efforts, to serve on my committee.

Thank you all all very much.

I would also like to thank my friends at the Interactive Graphics and Vision

Lab for making it a fun place to work for me, and for their valuable support and

feedback. I would like to thank my life long friends in New York, Seattle and

Virginia for their enduring support. I would also like to thank all my friends in

Corvallis who have always exepcted the best from me.

TABLE OF CONTENTS
Page

1 INTRODUCTION . 1

2 LITERATURE REVIEW ... 6

2.1 Motion Editing and Motion Retargetting 6

2.2 Motion Synthesis .. 9

2.2.1 Statistical Modeling of Human Motion 10
2.2.2 Graph based approaches 11

2.2.3 Physically based modeling of human motion 13

3 MOTION PREPROCESSING ... 16
3.1 Translation and Orientation Offsets 17

3.2 Pose Transition Graph ... 19
3.3 Finding Strongly Connected Components 22

3.4 Representing All-Possible Smooth Sequences 26

4 REPRESENTING CONTROL USING MOBILITY MAPS 29

4.1 Constructing the Mobility Map 30

4.2 Pruning the Mobility Map ... 31
4.3 Using the Moility Map .. 32

5 COMBINING MOTION AND CONTROL 33

5.1 Locomotion pipeline ... 33
5.2 Target tracking: Searching for target poses 35

5.3 Ensuring smooth transitions 37

6 RESULTS ... 38

TABLE OF CONTENTS (Continued)
Page

6.1 Target Tracking . 38

6.2 Obstacle Avoidance ... 40

6.3 Crowds .. 41

7 DISCUSSION AND FUTURE WORK 44

7.1 Discussion ... 44
7.2 Future work ... 46

BIBLIOGRAPHY.. 49

LIST OF FIGURES
Figure Page

1.1 High-level direction by specification of location in the environment. . . 2

1.2 Locomotion control using our approach. (Top, left) The user can
control a character by giving it desired target locations. (Top, right)
A single character tracks a target while avoiding stationary obstacles.
(Bottom, left) and (Bottom, right) A demonstration of scalability.
These scenes contain 150 characters tracking targets in real time 4

3.1 An articulated figure with 23 joints and its hierarchical representation.
The joints have offsets and orientation with respect to their parent
and the root node has a translation and orientation, that defines the
position and orientation of the character 16

3.2 Original motion sequences (solid lines) are normalized by placing
them along a common facing direction, and computing the relative
position and orientation at each frame 17

3.3 Computing the facing direction of a character in pose i 18

3.4 The transition from a current pose in sequence A to a target pose in
sequence B will only be smooth when the next pose in A is similar
to the target pose in B and the previous pose for the target in B is
similar to the current pose in A 21

3.5 The directed pose graph can have nodes with no exits. These nodes
are dead-ends. Dead-end nodes and nodes that lead to dead-ends are
removed from the pose graph 23

3.6 Tarjan's algorithm detects the strongly connected components of a
graph C (V,E)... 24

3.7 Computing a stateaction graph from the pose transition graph. Con-
secutive poses with single out--going transitions are collapsed into a
single action. States represent poses with multiple outgoing transi-tions ... 25

3.8 Consider the simple shortest path tree rooted at node 1. The corre-
sponding entry for node 1 is shown in the partial matrix. The path
from node 1 to 15, for example, is found by starting at node 15 and
following the chain backward to 2 then 1 27

LIST OF FIGURES (Continued)
Figure Page

4.1 The mobility map for a particular state stores all of the states that can
be reached within a fixed number of state-action steps. It facilitates
control because it relates the user's spatial input to the character's
spatial capability from f 30

5.1 Our run time locomotion generation. The current state of the char-
acter is used to index into the mobility map to obtain a list of action
alternatives over the next few states. A greedy search based on a user
defined cost function is used to pick the best action that takes the
character closest to the goal................................. 33

5.2 Choosing the best sequence from a particular pose 34
5.3 A one-sided spherical linear interpolation of an angle parameter 36

6.1 An example of target tracking. The character is shown tracking the
yellow square target. The user can continuously change the target
location while the character attempts to walk closer to it........... 39

6.2 An example of obstacle avoidance. The character is attempting to
reach the user specified target while avoiding obstacles in the envi-
ronment. Each obstacle is approximated with a bounding cylinder.
The character successfully chooses a sequence of poses that move it
around the obstacle....................................... 39

6.3 When a potential collision occurs, the steer to avoid behavior com-
putes a new target location that avoids the obstacle. When the char-
acter nears the temporary target area, it is discarded and tracking of
the original target resumes................................. 41

6.4 Scalability of our algorithm. The figure shows a plot of per frame
processing time (in seconds) versus number of characters, with and
without rendering. Our run time algorithm can render approximately
150 characters at 30 frames per second 42

DEDICATION

I dedicate this thesis to my father and mother, who are responsible for what I

am today.

Interactive Human Locomotion
Using Motion Graphs and Mobility Maps

1. INTRODUCTION

Interactive environments such as video games, architectural walkthroughs,

and training simulators are present in many aspects of our everyday lives. With

the gain in popularity of 3D interactive environments, it is evident that real-time,

controllable character motion is needed. Of particular importance in these envi-

ronments are human characters that move about the environment in a believable

manner: both in terms of realism, and in terms of controllability.

When we talk about motion synthesis for characters in interactive environ-

ments, speed is clearly an issue and in complex scenes with many characters, the

motion generation technique must scale well to multiple characters. For exam-

ple, imagine an architectural visualization of a train station design. To experiment

with design scenarios, an architect might want to populate the design and interac-

tively modify the design while observing the motion of the simulated pedestrians.

The simulated pedestrians should be realistic, should respond to each other and

the environment and should do so in real-time. Furthermore, the architect should

be able to populate a scene with a substantial number of pedestrians.

Creating such a scene is currently a challenging task. With the advance

of motion capture graph-based approaches, one can generate realistic motion that

is controllable in several ways including the placement of keyframes and desired

paths. With a robust library of motion capture data, one can generate compelling

scenes with fairly strict user constraints on character location, pose, and paths.

3

manner when directed to do so. For this reason, we choose to precompute as

much of the motion synthesis problem as possible. Precomputed motion segments

can then be tied together at run time and this scales well with the number of

characters in the environment. Run time locomotion synthesis can be combined

with high-level directives to produce controllable character motion.

Our solution to the problem involves precomputing all the reachable loca-

tions from a given pose of a character over a small time window. The result is a

tradeoff of memory for computation time. We then develop a novel approach to

index into precomputed motion sequences. Like Lee et al., our solution is based

on a stateaction graph, built directly from the posetransition graph [25]. How-

ever, instead of precomputing action policies for every sampled location in the

environment, we precompute possible action sequences from every state. This

provides a flexible structure that can be queried at run time. Other graph-based

approaches search the pose transition graph, or some form of the graph, to find a

graphwalk that globally achieves some set of user constraints. Instead of using

this graph directly, we reduce it to a stateaction graph [25]. A state represents

a pose, and an action represents a sequence of poses transitioning between a pair

of states. We compute the sequence of actions with the least cummulative cost

between every pair of states in the stateaction graph. This all pairs shortest path

(APSP) matrix encodes the smoothest sequence of actions (in pose space) from

one state to any other state.

As Kovar et al. noted in 2002, this APSP matrix alone is virtually useless

[19]. It must be indexed via a start and end pose and even then, we are given no

guarantees about the spatial path traveled or the time elapsed during the graph

walk between the two poses. We introduce the mobility map for mapping possible

character movements over a specified time window to end poses. This mobility

5

example scenes. In the first example, the character simply tracks the user's mouse

position. The user can interactively and continuously direct the character to

locations in the environment by pointing on the ground plane. In the second

example scene, we demonstrate reactive collision avoidance. In the last example,

we demonstrate scalability with a scene containing 150 walking characters (Figure

1.2). All example movies are recorded from the application in real-time.

We present our thesis as follows. First we address the problem of nat-

ural motion generation. we describe the preprocessing steps required to build a

graph of all possible natural motions. Then, we present a data-structure for rep-

resenting control the Mobility Map. Finally, we present a run-time algorithm for

combining control and motion generation, that results in controllable character

motion. We describe the run-time search process and how it integrates the user's

constraints with the precomputed structures. We shall conclude with a discussion

of implications of using mobility maps and future research directions.

6

2. LITERATURE REVIEW

Character motion synthesis from motion data has been an active area of

research in computer graphics in recent years. When animating characters using

motion capture data, motion editing refers to the techniques for editing and com-

bining individual sequences of motion data to synthesise new motion sequences.

Retargetting refers to the techniques used for mapping motion sequences to char-

acters with different physical characteristics. Motion synthesis is a more generic

term used for sythesis of motion either by editing motion sequences, by retarget-

ting or by combining existing motion sequences in a meaningful way.

2.1. Motion Editing and Motion Retargetting

Early work focussed on techniques for editing and combining individual

sequences of data. One of the earliest and probably the most significant contribu-

tion to motion editing techniques was by Witkin and Popovic [45]. They present

a scheme that operates on a set of motion curves. A motion curve describes the

value of one of the model's parameters, for instance the orientation of the knee

joint, as a function of time. Constraints are imposed by the animator in the form

of keyframes. Time warp constraints are easily imposed by sliding the keyframe

markers on a timeline. The new motion curve is generated by computing the

scale and offset required to warp the original motion curve. This scale and offset

is computed as a function of time. To concatenate motion clips with blending,

they overlap an interval at the end of the first clip with an interval at the begin-

ning of the second and progressively blend from the first clip to the second over

the course of the overlap interval using an ease-in/ease-out function.

Bruderlin and Williams approach the same problem in a different way

[61. They use techniques from image and signal processing for multiresolution

analysis of human motion. They treat the motion curve as a sampled signal.

The entire human body motion can then be described by a set of sampled one-

dimensional signals over time. Principles of multiresolution filtering can then

be applied to each of these signals. Low frequency components contain general,

gross motion patterns, whereas high frequencies contain detail. This resolves

the motion curves into multiple frequency bands. They combine multiresolution

analysis with multitarget interpolation to blend the frequency bands of two or

more movements seperately. A meaningful interpolation between two movement

requires that they parametrically correspond. In other words, the movements need

to be time-aligned with each other. This is automatically achieved by performing a

dynamic time warp between the two motion signals. They introduce displacement

mapping as a technique to constrain motion playback through keyframes specified

by the animator. Displacement mapping provides a means to change the shape

of a signal locally through a displacement map while maintaining continuity and

preserving the global shape of the signal.

More recently, Gleicher presented a novel approach for motion path editing

[11]. His work applied and extended the displacement mapping technique to

provide more control over a character's motion path. The goal is to provide the

user with an intuitive tool to edit and modify motion paths, without worrying

about the details of the character motion. This can be acheived by storing the

position and the orientation of the character at every frame as a local detail

relative to the direction of motion. In this way, the details are preserved when the

motion direction is changed to follow a different path. The character can then be

made to playback along any user given path by comparing the two paths. The

[sJ

relative orientation between the two paths is extracted by comparing the path

tangents at every point. This additional relative orientation is then applied to the

character, with the effect that the character follows the new path. For instance,

users can take a straight walking motion path and alter it to make the character

walk along a curve. Foot-plant constraints are enforced using inverse kinematics.

The motion editing problem has also been approached from an optimiza-

tion persepctive by many researchers. Gleicher presents a method to interactively

position characters using direct manipulation [9]. A spacetime constraints solver

edits and optimizes the existing motion clip to meet user constraints. He presents

a simple and effective constraint formulation technique that can be solved at

interactive rates. His work combines inverse kinematic constraints with motion

smoothness constraints. Lee and Shin present a similar constraint based approach

for motion editing [261. They combine and augment their inverse kinematic solver

with a hierarchical curve fitting technique. The kinematic solver is used to ad-

just the configuration of an articulated figure to meet constraints in each frame.

The motion displacement of every joint at each constrained frame is smoothly

propagated to multiple frames using curve fitting techniques. Their work differs

from that of Gleicher [9] in that they decouple the smoothness constraints across

frames from the inverse kinematic constraints at each frame.

Lee and Shin also extend their work to solve the problem of retarget-

ting motion data to characters with different physical characteristics. Gleicher

presents a similar spacetime optimization technique for retargetting motion from

one character to another [10]. He identifies specifc features of the motion as

constraints that must be maintained. A spacetime constraints solver computes

an adapted motion that re-establishes these constraints while preserving the fre-

9

quency characteristics of the original signal. For a good survey of these and other

constraint-based motion editing approaches see [13].

The work in this thesis focuses not on editing existing data sequences but

on generating continuous streams of motion by piecing together sequences of data.

2.2. Motion Synthesis

A quite different approach for motion synthesis is to solve the opposite

problem. Rather than modify motion capture data with constraints such as

keyframes, Pullen and Bregler presented a novel approach for using motion cap-

ture data to augment keyframed motion with the realistic detail from the motion

capture data [35].

Another popular approach for synthesizing motion is to interpolate multi-

ple motion sequence examples to generate new sequences that are similar to the

originals. Rose et al. use a radial basis function model to generalize motion cap-

tured behaviors such as walking and running for speed and angle for the terrain.

They also emphasize parametric control of emotional expressiveness for a set of

basis behaviors [36]. Park et al. present a scattered data interpolation method

that produces on-the-fly locomotion controllable with user defined paths [31]. Wi-

ley and Hahn show that linear interpolation of example hand motions can produce

compelling motion [44]. Kovar and Gleicher produce a continuous parameterized

space by extracting and blending similar motion clips from a database [20], [21].

A quite different approach for motion synthesis is to generate sequences by

drawing upon examples. Hsu et al. match movements of a lead dancer to stored

example clips to extract and synthesize corresponding follow movements [16]. Kim

et al. present a similar approach for generating motion corresponding to an input

10

rhythm [15]. In this thesis work, we will focus solely on sequencing provided data

without significantly introducing any new motion data through interpolation or

blending.

2.2.1. Statistical Modeling of Human Motion

Researchers have focussed on uncovering the statistical nature of a library

of data in order to generate new motion sequences with similar statistical proper-

ties [3, 34, 4, 27, 281.

In most of the statistical approaches, motion generation is cast as an unsu-

pervised learning problem in which the goal is to acquire a generative model that

captures the essential structure of the motion data. One characteristic feature of

all the statistical approaches is the representation of one or more motion frames as

a state. A motion playback sequence can then be considered as a probability dis-

tribution over time-series and can be modeled as a markov chain. This generative

model is then used for synthesis of new motion sequences.

Various statistical approaches use a state-space representation of motion

parameters. Bowden considers human motion as a deformation of shape in a three-

dimensional space [3]. Linear shape deformations can be modeled using a point

distribution model through principle component analysis of shape deformation.

Human motion deformation is non-linear. Non-linear statistical models of defor-

mation are learned through piecewise linear approximation of deformation. The

temporal dynamics of the model is represented by a markov chain. In this manner,

a spatio-temporal model of human motion can be learned and reproduced. Tanco

presents a similar approach for motion generation [28].

11

Li et al. model the local repetitive patterns in complex human motion

using a linear dynamic system and the global dynamics of the entire sequence by

switching between these linear systems. [27]. The local repetitive patterns may

consist of primitives like spinning, hopping, kicking, and tiptoeing for instance, in

a dance sequence. These patterns are analogous to textures and are called motion

textons. Each motion texton in the state-space is represented by a linear dynamic

system that is learned from motion examples using an expectation-maxmization

algorithm. Again, the relationship between the motion textons is modeled as a

markov process, and is represented as a matrix of transition probabilities. Once

the motion is learned, users can synthesize and edit the motion at the texton level

and at the distribution level.

Brand et al. make a distinction between structure and style in motion data.

Motion structure is captured by transition probabilities represented by a hidden

markov model. States are modeled by a gaussian distribution over a small space

of motion frames. A multidimensional hidden markov model is parameterised by

the style of the motion and is called a style machine. The style machine defines a

space of HMMs and fixing the style of motion yields a unique HMM.

These approaches generate new motion sequences with characteristics or

style similar to that of the motion library, but do not take user constraints into

account. In this paper, we are interested in generating motion that meets user

defined constraints.

2.2.2. Graph based approaches

In 2000, Schödl et al. presented the video textures approach for gener-

ating infinitely long video sequences given a library of video data. Particularly

12

interesting was the controllable motion sprite example of a fish that could inter-

actively track the user's mouse [38]. The controllable sprites inspired several of

the examples that will be presented in this paper. This work was followed by

an improved approach for interactively controlled video sprites [37]. The Video

Textures work inspired a body of work in the motion capture area presented at

Siggraph 2002. Each of these approaches was built around the use of a graph

to represent the possible transitions among the motion capture data. This graph

representation was much like the graph representation used by Schödl et al. to

structure the video texture sequences. Kovar and his colleagues build a motion

graph from sequences of motion capture data, synthesize smooth transitions to

add to the graph, and search the graph to find a sequence of poses that generates

character locomotion along an arbitrary path [19]. Lee et al. take a very sim-

ilar approach with a two-layer graph that allows for efficient search. They also

presented several different user interaction methods including trajectory specifi-

cation, keyframe specification, and a full-body vision-based interface. Arikan and

Forsyth also presented a graph-based approach with a hierarchy of graphs and a

novel randomized search technique that produces controllable animated motion

at interactive rates [2]. Arikan et al. followed this work with a technique for

generating motion from automatically annotated libraries of motion capture data

[1]. Each of these approaches created very natural motion that achieved user

constraints such as path following, keyframes, or task performance but each these

approaches also involves a run-time global search for a sequence. Although these

approaches generate highly controllable and strikingly natural motion, they do

so at the cost of time and scalability. In 2003, Gleicher et al. presented "snap-

together" motion which relies on preprocessing the data for an efficient simple

graph structure that can be queried at run-time to generate natural transitions

13

[12]. Our approach builds on a similar structure for natural transitions. We aug-

ment our structure with spatial information to enable real-time path planning

with natural-looking transitions. vIost recently, Lee et al. [25] presented a rein-

forcement learning approach for precomputing action policies based on a motion

graph. This approach is similar to ours, however, the solution is tied to the cost

function used for computing the optimal actions during the learning process. We

present a similar idea for precomputing actions but we store them in an efficient

structure that is not tied to a particular cost function, and in fact, could utilize a

new cost function at run time.

There are also many techniques for sequencing multiple pieces of motion

data that do not use the graph-based approach. One of the earliest examples was

presented by Perlin who used a simple blending approach combined with scripted

rules to generate responsive characters [32, 33]. Lamouret and van de Panne

present a technique for searching for and extracting the motion sequences that

preserve continuity and match the terrain on which the character is moving [22].

In this paper, we focus on real-time controlled motion arid in particu-

lar, character locomotion. Locomotion is of interest for obvious reasons in video

games, virtual environments and any graphical environment that involves human

characters. Locomotion requires not only smooth motion but planning for a nat-

ural path.

2.2.3. Physically based modeling of human motion

A considerable amount of research has been done in the area of developing

physics based approaches to simulate and control human motion. A majority of

these approaches are insipired by previous work in robotics and control. Laszlo

14

et al. model walking and running as a periodic limit cycle [23]. A human char-

acter can be considered as a mechanical toy that drives its joints in a repetitive,

periodic fashion. However, this open-loop control is insufficient for unstable dy-

namic motions such as walking and running. They propose a control technique

that provides a general method of turning unstable open-loop motions into stable

closed-loop motions. Using this procedural method, users can control the global

characteristics of human motion such as direction, speed and stride rate.

Van de Panne and Lamouret address the same problem by using guiding

forces to allow progressive learning of control actions for balanced locomotion

[41]. The guiding forces are external torques applied on the posture to enforce

balance during walking or running. The appropriate control actions to produce

the desired motion are then progressively learned. Once a basic control strategy

for a gait has been synthesized, the guiding force can subsequently removed or

eliminated through further optimization. Hodgins and her colleagues provide

control algorithms for men and women performing running, bicycling and vaulting

[14].

More recently, Faloutsos et al. presented a framework for composing in-

dividual controllers for performing more complicated tasks [8]. Their framework

allows for researchers to integrate various low-level controllers into a single con-

troller for broader functionalities. They demonstrate their framework by creating

a virtnal stuntperson that can balance itself, react protectively using arms in a

fall, roll over and get up from a fall.

These physics based approaches have the advantage of being reactive to

the environment but it is currently very difficult to develop robust and flexible

controllers for physical simulations and they are often computationally expensive.

Several others have developed procedural techniques for walking and running [39,

15

17, 7]. For a good overview of the various approaches for generating character

locomotion, see [30].

16

3. MOTION PREPROCESSING

We use the Biovision hierarchical data format to represent our character

motion. Each motion sequence is a collection of poses that can be played back

over time. A pose is defined as a single sample of motion capture data and consists

of a root node position and orientation, and joint angles for each joint. A pose of

a character is represented as a hierarchy of joints, each joint having three degrees

of rotational freedom. Our character has 23 joints (Figure 3.1), and therefore a

total of 69 degrees of freedom.

0

b Root Node
(Pelvis)

Lower by \ght
a.

Upper back/ \Right knee N4 knee

/
:

I

FIGURE 3.1. An articulated figure with 23 joints and its hierarchical represen-

tation. The joints have offsets and orientation with respect to their parent and

the root node has a translation and orientation, that defines the position and

orientation of the character.

17

FIGURE 3.2. Original motion sequences (solid lines) are normalized by placing

them along a common facing direction, and computing the relative position and

orientation at each frame.

The orientation and offset for each child joint in the hierarchy is specified

with respect to its parent joint. The position and orientation of the character is

determined by the position and orientation of the root joint (Figure 3.1).

One of the keys to our approach is precomputing much of the motion gen-

eration problem. To this end, we build on graph based techniques that sequence

individual poses. To facilitate placement of the character at any location with

any orientation during motion synthesis, we store poses as relative translation

and orientation offsets of the root node from the previous pose.

3.1. Translation and Orientation Offsets

To orient a character along any direction on the floor plane, we must

make the orientation of the character independent of its captured orientation

ZT
Az

YNiocaij

x

L Niocaij

N

yaw angle y

FIGURE 3.3. Computing the facing direction of a character in pose i.

(Figure 3.2). We first define the local frame as a right-handed coordinate frame

centered on the character's root body, the pelvis, with the positive x-axis pointing

out the front of the pelvis and with the z-axis up. Let the facing direction, Niocai,,

be defined as the vector aligned with the local x-axis for pose i. We also choose a

reference vector to be the unit vector in the direction of the world x-axis, N.

We project the facing direction vector Ntocat onto the ground plane and

normalize it, resulting in a vector Nf0a1(Figure 3.3). 1vVe then compute the facing

angle or the yaw angle, , to be the angle between Nfocai and N.

= arcsin(Neai x N) (3.1)

is used to build the yaw rotation matrix Myawj. The orientation of a pose i,

without the yaw component, is denoted by R and is computed by factoring out

the facing direction Myaw from its orientation R.

19

(3.2)

For motion synthesis, we need to position and orient successive poses, given an

arbitrary initial position and orientation. This is possible if we know the relative

position and orientation of a pose with respect to the previous pose. Let the

recorded world orientation and position of a pose i be denoted by R, and P,

respectively. We compute the relative orientation R.,., and relative position Pre1

with respect to pose i 1 as follows:

Rreij = R1 * R (3.3)

Prel = R1 * (P, P_1) (3.4)

Given an arbitrary world position and orientation R_1 of pose i 1, the new

world position and orientation of pose i is

= P_1 + D' * Prel (3.5)I

R = * Maw,i * Rrei, (3.6)

Our motion preprocessing step involves computing R, Rreij, Pre1 from equations

(3.2, 3.3, 3.4) for every pose i in our motion database.

At run time, once the character is initialized with a starting pose, position,

and orientation, successive poses can be drawn at the correct location with the

correct orientation using equations (3.5 , 3.6).

3.2. Pose Transition Graph

One of our goals is to precompute much of the motion generation problem.

The first step is to compute a pose-transition graph similar to the variations

presented at Siggraph 2002 [19, 24, 2].

20

We measure the difference, D2, between two poses i and j considering

both joint angles and joint angle velocities as well as the linear velocity of the

root node. Joints angles are stored as quaternions and the joint angle difference

between two poses is

wkIIlog(qq,k)I (37)

where q is the kth joint angle quaternion at pose i and wk is the weight for that

particular joint. Same angle difference would be less evident at the wrist joint

than at the shoulder joint. This is beacuse of the hierarchical structure of the

skeleton. Orientation of a joint higher in the hierarchy affects the orientation of

more joints than that of a joint lower in the hierarchy. For this reason, each joint

is weighted separately using a heuristic: the further the joint is from the root

node, the lower the weight. In particular, we use the weights suggested by Jin

Wang and Bobby Bodenheimer [43].

To retain the dynamics of the motion when making transitions, we include

velocity terms for the joint angles and the root node. An alternative approach to

consider motion dynamics is to compare poses over a window [19]. In our case,

including joint angle velocities works well in practice. The joint angle velocity for

the kth joint of the ith pose is

Iog(q(t)q,k(t 1))
i,k = (3.8)

where At represents the capture rate for the motion data (0.033s). The linear

root velocity difference, V, between two poses i and j is = j/ where

14 is the velocity of the root node at pose i.

Now that we can determine the distance between two poses, we will use

this information to determine the cost of transitions between two poses. For

21

Sequence-A
i 1+1

FIGURE 3.4. The transition from a current pose in sequence A to a target pose

in sequence B will only be smooth when the next pose in A is similar to the target

pose in B and the previous pose for the target in B is similar to the current pose

mA.

a transition from one pose i to another pose j to appear smooth, the distance

between pose i and j 1 should be small and the distance between pose i + 1 and

j should be small (Figure 3.4).

We define the total cost to transition from pose i to pose j in terms of the

differences in joint angles, joint velocities, and root node velocity. The joint angle

term of the transition cost is

= 0.5 * D+1, + 0.5 * D,_1 (3.9)

The joint velocity term of the transition cost, O, is computed similarly.

Oi,j + 0.5D1,_1 (3.10)

wkIIi,k j,kII
(311)

22

The root node term of the transition cost is

= 0.5 * + 0.5 * (3.12)

The total transition cost between any two poses i and j is then computed as

Ti,j = We * Gi,j + W * + Wv * (3.13)

where w0, w and w are weight factors for the joint angle, joint velocity and root

node velocity terms.

The resulting transition cost matrix is a weighted directed graph where

the nodes are the poses and the edges with weights are valid transitions and their

costs. As suggested by Lee et at. [24], this preliminary graph is pruned based

on two rules. The first rule prunes out high cost transitions to reduce storage

requirements and improve the quality of transitions. Pruning may introduce dead

ends in the graph. The second rule eliminates dead ends by computing the largest

strongly connected component of the graph using Tarj an's algorithm [40]. The

remaining components are removed resulting in a single graph where any node

can be reached from any other node.

For our implementation, we used a motion capture library with 33,404

poses in the graph. The computation is distributed over a cluster of 48 2.4 Ghz

Intel Xeon machines with 1GB RAM each. It takes approximately 40 minutes to

compute the pose transition graph.

3.3. Finding Strongly Connected Components

As mentioned above, pruning may introduce dead ends in the graph and

there is a possibility that a transition may lead to a pose from which there are

no exits. We must remove such transitions from the graph before computing the

23

state-action graph. For a smooth and continuous playback, we do not want to get

into such states (Figure 3.5).

FIGURE 3.5. The directed pose graph can have nodes with no exits. These nodes

are dead-ends. Dead-end nodes and nodes that lead to dead-ends are removed

from the pose graph.

To be able to reach any node from any other node, we prune the pose-

transition graph to remove dead-ends and nodes leading only to dead-ends. We use

Tarj an's algorithm to determine the strongly connected graph components [40].

The goal is to generate a single large strongly connected graph. The unconnected

components are deemed dead ends and are removed resulting in a single graph

where any node can be reached from any other node.

We present the basic idea behind Tarjan's algorithm here. The pseudocode

for Tarjan's algorithm is presented in Figure 3.6. It consists of a recursive pro-

cedure VISIT and a main program that applies procedure VISIT to each node

that has not already been visited. Procedure VISIT enters the nodes of the graph

in depth-first order. For each strongly connected component C, the first node of

C that procedure VISIT enters is called the root of component C. The main

goal of the algorithm is to find the component roots. For this purpose, we define

24

(1) procedure VISIT(v);
(2) begin
(3) root[vJ v; InCornponent[vI False;
(4) PUSH(v. stack);
(5) for each node w such that (v,w) E Edo begin
(6) if w is not already visited then VISIT(w);
(7) if not InCornponcni[w] then root[v) MJN(root[v]. root[w])
(8) end;
(9) if root[vJ = v then
(10) repeat
(11) w POP(stack);
(12) InCornponent[w] True;
(13) untilw=v
(14) end;
(15) begin/* Main program /
(16) stack := 0;
(17) for each node c E V do
(18) if v is not already visited then VISIT(v)
(19) end.

FIGURE 3.6. Tarjan's algorithm detects the strongly connected components of

a graph C = (V,E).

a variable root[v] for each node v. When procedure VISIT is processing node v,

root[v] contains a candidate node for the root of the component containing v.

Initially (at line 3) node v itself is the root candidate. When procedure

VISIT processes the edges leaving node v (at lines 5-8), new root candidates

are obtained from children nodes that belong to the same component as v. The

MIN operation (at line 7) compares the nodes with respect to the order in which

procedure VISIT has entered them, i.e., MIN(x, y) = x if procedure VISIT

entered node x before it entered node y, otherwise MIN(x, y) = y. This is

implemented by using an array and and a counter to assign a unique depth-first

number to each node. When procedure VISIT has processed all edges leaving

v, root{v] = v if and only if v is the root of the component containing v (line 9).

Note however, that if v is not a component root we do not know if root[v} is the

right root of tile component containing v.

25

:

Pose transition graph

I

f

Ste-action aph

FIGURE 3.7. Computing a stateaction graph from the pose transition graph.

Consecutive poses with single outgoing transitions are collapsed into a single

action. States represent poses with multiple outgoing transitions.

To distinguish between nodes belonging to the same component as node v

and nodes belonging to other components, a boolean variable InComponemt[w] is

defined for each node w. Its initial value is False. When a component C is fully

detected, procedure VISIT sets ImCoTnponent[wJ True for each node w that

belongs to C (lines 10-13). A stack is used for this purpose. Each node stored

on the stack in the beginning of procedure VISIT. When the component is fully

detected the nodes belonging to it are on the top of the stack. Procedure VISIT

removes them from the stack and sets the InComponent values to True.

Since Tarj an's algorithm requires that the entire graph be in memory, this

algorithm cannot be run in parallel over multiple machines. For our sparse graphs,

it took approximately 7 minutes to compute the strongly connected components of

the 33,404 node graph. All components of less than 60 nodes were discarded from

26

the original graph. In our experiments, the algorithm found one large connected

component with 30,665 poses.

As Lee et al. [25] noted in their recent work, the pose transition graph has

relatively few poses with multiple out-going transitions. Most of the poses have

single outgoing transitions. We collapse consecutive poses with single outgoing

transitions into an action (Figure 3.7). This results in a "state-action" graph

in which a state represents a pose with multiple out-going transitions. Taking

an action results in a transition from one state to another. The cost of taking

an action is the sum total cost of consecutive pose transitions that make up the

action. The resulting stateaction graph has 15,659 states.

3.4. Representing All-Possible Smooth Sequences

Given the state-action graph, a shortest path between any pair of states

defines a sequence of state-actions steps that guarantee smooth playback. Ide-

ally we would like to take this graph and run queries for shortest-path between

arbitrary pairs of states (poses) to ensure smooth playback. Previous methods

have used such a graph to globally search for motion sequences (graph-walks)

that meet some user constraint, such as a ground trajectory. Rather than use the

state-action graph directly, we precompute the shortest path between all pairs of

states in the state-action graph and store the paths in an all pairs shortest paths

matrix (APSP).

We use Dijkstra's algorithm to compute the single-source shortest paths

for every state. The running time of Dijkstra's algorithm is O(N + E), where N

is the number of states in the graph and E is the number of edges (actions) in

the graph. Since our graph is large (about 15,659 states), we use the bucket-sort

27

1=1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 -1 1 -1 1 4 1 -1 4 -1 4 -1 2 12 -1 2

2

FIGURE 3.8. Consider the simple shortest path tree rooted at node 1. The

corresponding entry for node 1 is shown in the partial matrix. The path from

node 1 to 15, for example, is found by starting at node 15 and following the chain

backward to 2 then 1.

implementation of Dijkstra's algorithm [29]. Bellman-ford's principle allows us

to optimize the storage of the APSP trees. If the shortest path between node i,

and node j is through node k, then the shortest path between i and k, and the

shortest path between k and j form the shortest path between i and j. We can

take advantage of the inherent redundancy in the paths represented by the APSP

matrix to store it in 0(n2) space. We store the APSP trees in a single n x n

matrix. At entry i,j, if there is a path from i to j, we store the number of the

state that is the last step in the path from i to j. Using this chaining approach,

we can easily extract the sequence of states that lead from i to j by following the

chain in reverse order. Figure 3.8 shows a simple example.

The result of this step is a matrix that encodes the most natural action

sequences the character can take to move from one state to another given the

library of recorded data at hand. This graph guarantees smooth motion between

any two pairs of states assuming bad transitions have been pruned out in the

creation of the original pose transition matrix. The APSP graph computation

requires approximately 60 minutes for our library of data.

Given the APSP matrix our approach will focus on choosing the appro-

priate pairs of states to generate action sequences that meet the user constraints.

These poses will serve as our indices into the APSP matrix. In the following

chapters, we will discuss how we choose target poses that meet particular user

constraints. In Chapter 4, we discuss a method for representing control by com-

puting reachable spatial locations from evey state. Chapter 2.2 combines motion

generation and control using a run-time algorithm for motion synthesis.

29

4. REPRESENTING CONTROL USING MOBILITY MAPS

The All-Pair-Shortest-Path (APSP) matrix transforms the motion-

synthesis problem into one of selecting sequences of nodes or graph walks hav-

ing the least total cost. It encodes the various ways that we can re-assemble

clips to create natural and smooth motion. The matrix can be queried for a

smooth sequence Sf.f between any two states (poses) f, and f3. S1.13 repre-

sents smoothest sequence of actions between states f and f. This sequence of

actions may result in other intermediate states between f, and f.

We are now in a position to consider the problem of finding motion that

satisfies user-specified requirements in real-time. In our case, the user is interested

in extracting sequences from the APSP matrix that enables a character to reach

a specified location on the floor. From now on, we shall use the term "state" and

"pose" interchangeably.

The APSP matrix alone cannot be queried for sequences that satisfy this

constraint. This is because the query can only be in terms of pairs of states (ft, f').

However, the user constraint is specified in terms of a 2-D spatial location, P1ioor,

on the floor. In other words, if the character is in state f, we need to find a target

state f3 that results in a sequence Sff that takes the character towards Pf/oor.

To be able to do this, we need to know the resulting position and orientation of

the character on the floor plane if it takes the action sequence Sf,f. In other

words, we need to map every action sequence from f, to a resulting position and

orientation on the floor plane. This mapping would allow us to determine, at

every state, what the character is capable of achieving spatially.

31

where n(Sf.f3) represents the number of states in the state-action sequence

and k n(F). The idea is to compile a list of poses that can be reached

from each pose in our motion-graph, within some fixed number of state-action

steps (F). We choose F to be 25 because it gives a reasonable lookahead distance

for determining where the character is heading and in practice has proven to be

a good window. For each sequence Sj3, Vf E F, we also compute and store

the orientation (R3) and the position (P) of f relative to f by placing f, at the

origin, facing along the x-axis and evaluating the relative translation and orienta-

tion changes for each pose in the sequence (Figure 4.1). This can be accomplished

by using equations (3.5, 3.6).

4.2. Pruning the Mobility Map

Each entry in the mobility map is a state f, followed by a list of target

states F. Each state in F is a terminal state of a motion sequence that ends

at a particular location, and at a particular orientation with respect to f. The

more the spatial locations the character can reach from f, the more controllable

the character will be. This forms the motivation for removing certain states f

for which the number of states in F, is below a certain threshold. We choose the

threshold to be 30, since it has practically proven to provide optimum control of

the character in our experiments.

A mobility map can be considered as a directed graph with every node f,

having neighbors in F,. For this reason, pruning the mobility map may introduce

dead-ends. So we find the strongly connected components as in section 3.3. This

results in a new mobility map with a set of states f such that every state has at

least 30 terminal states in F.

32

4.3. Using the Moility Map

The mobility map for every pose f, stores { P, R3, Sf _f, F }. Now given

the position and orientation of a pose f of the character in the environment, we

can use this data-structure to quickly evaluate its resultant position and orienta-

tion within the next few states. Hence the name Mobility Map. The mobility map

can be viewed as a coarse representation of the APSP matrix. Rather than store

all sequences that lead from a pose to all other poses, it stores all spatial loca-

tions that can be reached from a single pose within some small time frame. This

coarse map can be efficiently searched to find the appropriate target pose because

it stores spatial locations that can be compared to the spatial constraints of the

user. This mobility map is similar to that introduced by Brogan and Hodgins as

a method for controlling physical simulations at a coarse level of detail [5].

The mobility map takes approximately 20 minutes to compute and has 6550

states after pruning. For the examples in this paper, the mobility map requires

approximately 25MB of memory. Through experimentation with our locomotion

dataset, we have found that on average, a state can reach approximately 38 target

states in 25 state-action steps.

At this point, we have precomputed the mobility map. For each state,

this map stores every state that can be reached within 25 state-action steps and

the corresponding state-action sequence. We can now discard the APSP matrix

and the original transition matrix. At run time, a search through the action

alternatives from the current state will result in a target state and a subsequent

state-action sequence to that state.

34

Goal

Displacement
for target
state option

N Target statej

ActionState

Current State i

FIGURE 5.2. Choosing the best sequence from a particular pose.

to retrieve a list of possible action alternatives from that state. A greedy search

is then performed over these alternatives, to pick the one that gets the character

closest to the goal. This process is repeated at each state of the avatar to make a

constant progress towards the goal.

35

5.2. Target tracking: Searching for target poses.

The goal of the run-time search component is to choose state-action se-

quences that meet user constraints given the character's current configuration.

The character's current configuration includes its state, position and orientation.

The user constraint is provided as a desired location on the ground plane. When a

desired location request is received, the system indexes the mobility map with the

character's current state to determine all the action alternatives that are available

from that state. It then searches these alternatives for the best option where best

is determined by a cost function. The cost function for our examples is of the

following form.

CostToGoal = WD * D + w6 * 9 (5.1)

Let i represent the current state and j be one of many possible target state

options that can be reached from i in 25 state-action steps. D is the Euclidean

distance between the goal location and the character's projected location if it

chooses target state j. 9 is the deviation angle (measured in degrees), for the

state j. The deviation angle is the angle between the character's resulting facing

direction if it were to follow the sequence for state j and the vector from the

character's position to the user's desired location if it were to follow the sequence

for state j (Figure 5.2).

Each of the elements of the cost function has an associated weight as well.

For all examples in this paper, the cost function weights WD and w0 were set

to 310.0 and 17.0 respectively in equation 5.1. However, these weights could be

tuned interactively at run-time. The state-action sequence corresponding to the

chosen target state is extracted from the mobility map at run-time and stored in

a)

U
E

a)
a.

0

Time *

nterpolation

36

FIGURE 5.3. A one-sided spherical linear interpolation of an angle parameter.

a buffer. The display function then accesses the state-action sequence and plays

the motion.

It is important to note that responses to the user direction requests are

not limited to the end of the 25 step state-action window. A decision is computed

whenever the character is in a state from which it has action alternatives. If a new

user direction is provided while a state action sequence is being carried out, the

algorithm flushes the buffer and computes a new state-action sequence starting

from the current state. Otherwise, a new sequence replaces the buffer only if it

takes the character closer to the goal than the sequence currently in the buffer.

As a result, at every decision point (or state) if the user input changes or a better

sequence is found, a new sequence is chosen that makes progress toward the goal.

The running time of the mobility map search is bounded by the largest

number of displacement options from any single pose in the mobility map. In

theory, since the average number of options for each pose in the mobility map is

37

approximately 38, the local search is constant time on average. In practice, the

number of options from a single state may increase with the total number of poses

in the dataset.

5.3. Ensuring smooth transitions.

Recall that we prune the transition matrix in an early step to remove

poor transitions. Although our mobility map consists of sequences of poses that

represent the smoothest possible motion given our data, there are still cases where

a small C0 discontinuity is visible. To remedy this, we perform a one sided blend

(Figure 5.3). We have to do a one sided blend because our motion synthesis is

online, and we do not know when a transition is expected in the sequence. In

other words, cannot do a blend over a window across the transition point.

When we are at a pose where a transition into a different sequence is about

to happen, we look ahead several frames (about 5-10) into the next sequence. We

then perform an interpolation from the current pose to that pose. The position

of the root node is interpolated linearly, while the orientation of the root node

is interpolated using spherical linear interpolation. We also use spherical linear

interpolation for the joint angles. If the motion is interrupted during an interpo-

lation, we choose the pose nearest the interpolated pose as the current pose and

continue with a new lookup. This interpolation eliminates any discontinuities.

6. RESULTS

We summarize and discuss our results in this chapter. For the examples

presented in the following sections, we used a library of motion capture data

consisting of 114 sequences for a total of 33,404 frames of data. The data was

captured with the Vicon 612 3D optical motion capture system with six high-

resolution 1000 Hz digital M-cameras, 64 channels of analog-to-digital input, and

real-time data processing capabilities [42]. Our capture area was approximately

l5ft.xl0ft. We captured an actor performing various locomotion behaviors such

as walking straight at various speeds, turning at various radii, coming to a stop,

starting from a stop, standing in place, and turning in place. The data was

then cleaned and converted to joint angle data using the Vicon Workstation and

the BodyBuilder software. Real-time demonstrations were generated on an Intel

Xeon 1.7 MHz processor with 1.OG RAM. We demonstrate the performance of

our algorithm with three locomotion based examples that are described in the

following sections. Each demonstration contains real-time characters controlled

at a high-level by the user.

6.1. Target Tracking

To demonstrate a character's target tracking ability, we control the nay-

igation of a character through a maze (Figure 6.1). This example was inspired

bythe controllable video sprite fish presented by Schödl et al. [38]. The user is

given control over a yellow square cursor on the ground plane. The character then

moves to this location using the run-time procedure described above. The user

can continuously specify new target positions.

40

The character's path is not predetermined in any way. Rather, given a

start location and desired end location, the character finds a path to the goal that

is determined completely by the available motion options and the cost function.

In essence, the path taken by the character is completely determined by it's cur-

rent pose and the sequences available to it. Because there are many poses for

which there are very few options to choose from, the resulting path is not always

direct. The character sometimes wanders slightly, but eventually reaches the tar-

get destination. Wandering occurs under two conditions. First, there are some

states that may have poor spatial options to choose from, even if there are a large

number of action alternatives. Second, the character may be stuck in a relatively

long state-action sequence before reaching a state with more action alternatives.

We have found out that on average, every fourth pose is a state with multiple

choices.

6.2. Obstacle Avoidance

For this demonstration, we implemented a simple steer to avoid behavior

that chooses target locations that avoid collisions with cylindrical obstacles (Fig-

ure 6.2). As the character walks in the living room environment, it maintains

a five-second lookahead to determine if there are any obstacles in its immediate

path. If a potential collision occurs, the system computes a new target location

to avoid the collision and take the character around the obstacle (Figure 6.3).

The new target location is computed using simple planar geometry. If the

line along the lookahead vector intersects the obstacle at points A arid B, then a

temporary steer to avoid target is a point P such that OP I AB and IJOPI = 2r,

where r is the radius of the cylinder representing the obstacle. The character

0.055

0.050

[IJiI
0.040

0.035

0.02

0.02

0.01

0.01

o With rendering Without rendering

100 200 300 400 500 600 700 800
characters

42

FIGURE 6.4. Scalability of our algorithm. The figure shows a plot of per frame

processing time (in seconds) versus number of characters, with and without ren-

dering. Our run time algorithm can render approximately 150 characters at 30

frames per second.

the scene results in only an added local search. This means that the "update"

time for a scene with multiple characters in it should linearly increase with the

number of characters in the scene. The "update" time for a scene only involves

the time for performing a local search in the mobility map, and does not include

the rendering time.

In our experiments, without rendering or obstacle avoidance, our approach

can update the positions of up to 500 target tracking characters at approximately

43

30 frames per second (Figure 6.4). With rendering turned on, our run-time algo-

rithm can update the positions of approximately 150 characters at 30 fps.

44

7. DISCUSSION AND FUTURE WORK

We have presented a framework for generating natural, scalable locomotion

in real time that is controllable at a high level. We have demonstrated the results

for single characters tracking targets as well as for crowd scenes of up to a hundred

and fifty characters. We have also presented the algorithmic complexity of the

steps in our approach. In the following sections, we discuss some of the problems

and issues concerning our framework, and provide an insight into possible future

directions opened up by this work.

7.1. Discussion

Due to the nature of our approach, the character locomotion is generated

at two levels articulated motion and path planning. The articulated motion is a

direct result of graph walks in the APSP matrix. The path planning is a result of

the combination of the mobility map and the greedy local search. The character's

path to the goal is determined solely by the cost function and exactly what the

character is capable of achieving from the current pose.

We have demonstrated that given a target goal location in the environment,

the character can successfully find the target. Through experimentation, we have

found that goals placed too close to the character can lead to problems because our

data set does not include enough maneuvers for tight spaces. We have found that

a target distance between 3 and 6 meters works very well for guiding the character

with finer control while a larger target distance of greater than 10 meters leads to

more organic paths determined primarily by the data in the graph. We have also

demonstrated that the character is reactive enough to respond to simple collisions

using a steer-to-avoid collision response algorithm. Finally, we have demonstrated

scalability by showing a rendered large scene of 150 characters still running in

real time and by experimenting with up to 500 characters whose motion can be

computed in real-time without rendering.

Like Lee et al., our approach precomputes action sequences from every

state [25]. However, instead of storing only the optimal action for a particular

behavior and a particular constraint, we store all possible state-action sequences

from a state. Given a new behavior constraint, such as desired walking speed or

desired task (stop, walk, run etc.), there is no need to learn a new policy table.

Rather our approach would only require a new cost function that incorporated

these constraints. We would continue to use the same mobility map. Scheduling

and combining multiple cost functions is left as future work.

Although we have only presented examples of locomotion, we believe this

approach can easily be extended to other domains. Clearly, the pose transition

graph and APSP matrix can be built for any library of data. The mobility map

we have presented is specific to locomotion behavior. However, one could imagine

building a more general, capability map, that maps some other behavior to target

poses. For example, imagine that we want to build punching behaviors for a boxing

game. The capability map could easily store, for each pose, the target locations

for character punches or what behaviors the character was capable of given the

current pose. The user input could be defined as desired punch locations. Given

a cost function that measured the distance between two punch targets, a search

could be performed to choose the appropriate target punch pose given the current

pose. These two poses would then be used to index into the APSP matrix. This

approach is applicable whenever the user input can be expressed as some physical

value that can be derived from the motion sequences, such as positions.

46

Annotations can also be used in our approach. For example, all poses can

be annotated with the type of sequence they belong to. User input might include

tasks such as run, jump, fall, etc. Although we did not demonstrate it in any

of our examples, we successfully annotated walking and standing data and were

able to incorporate them into our cost function. In doing so, we could choose to

reward standing poses in certain situations and walking poses in others.

7.2. Future work

Although we have demonstrated successful motion generation in several ex-

amples,there are several areas for improvement in our approach. First, although

memory is cheap, it is not infinite. We are exploring methods for reducing memory

requirements by further compressing the mobility map data structure. Another

problem is that in our current implementation we synthesize small portions of

transitions, but we do not synthesize any motion sequences via blending or in-

terpolation. This means that we must capture all data necessary to perform the

required tasks for the application. Unfortunately, there are some cases where the

character just does not have the appropriate data examples to draw from in order

to move appropriately. We are investigating methods for filling in the sparse mo-

tion areas of the graph automatically as well as techniques for on-the-fly motion

synthesis. Motion capture based techniques require the capture of a large amount

of motion data. We are also interested in exploring methods for determining when

one has enough data and if not, how to identify the types of data needed.

Finally, we would like to explore techniques for improving the responsive-

ness of the character. In our current experiments, there are some cases where

the character just does not have the appropriate data examples to draw from.

47

For example, we have found that goals placed too close to the character can lead

to problems because our data set does not include enough maneuvers for tight

spaces. This could be due to a lack of options from a particular state. On the

other hand, there could be many options, but those options may not have a good

spatial distribution. We are investigating methods for utilizing the mobility map

to identify sparse motgion areas of the graph and recognize the types of motion

needed. We are also interested in finding better ways to build a mobility map.

For example, rather than choosing states with many action alternatives, we could

instead choose states with a good spatial distribution of action alternatives. Fi-

nally, motion capture based techniques require the capture of a large amount of

motion data. We are also interested in exploring methods for determining when

one has enough data in the mobility map.

This work provides an insight into the problems involved in developing

controllers for character animation driven by motion capture data. Typically,

an end-user requires character motion to be re-parameterized by a user specified

constraint. In this work, an attempt has been made to re-parameterize charac-

ter motion by user-specified 2D locations on the floor. As discussed above, this

approach is severely limited by the number of options available from a particular

pose in the mobility map. Consider for instance a "perfect" mobility map where

every node has sufficient options to allow the character to get to a reasonable

number of places from the current pose. This would increase the reactivity of

the character to user-inputs, and provide us with a near perfect controller that

can direct the character anywhere on the floor plane. Unfortunately this would

require infeasible amounts of data to be recorded and stored.

One of the future directions aims at achieving this goal. One way of aug-

menting the mobility map with more options is interpolating the existing options

to create more options. This can be achieved by building a registration curve

through all the options for a particular pose and varying the blend weights to get

the desired distribution of sequences from the current pose [18].

To solve storage problems, we are looking into ways of representing joint an-

gle trajectories and root node trajectories using a Linear Dynamic System (L.D.S).

Such a representation will help us build models of human motion, and allow us to

compactly represent motion-capture data.

Another area where the concept of mobility map can be applied is in aug-

menting 2D pedestrian simulation. Pedestrian simulation is built around standard

techniques like flocking behaviors, social forces models or cellular automata mod-

els, to name a few. Unfortunately these models govern crowd behavior based on

standard scripted rules or on point-mass physics. This approach is not realistic

because it doegs not take into account what an actual individual is capable of

doing, from a particular "state". A "state" may include, but is not limited to,

information such as the current pose and orientation of the individual. The mo-

bility map provides us with this information. This structure can be used along

with a standard crowd simulation strategy to produce realistic crowd scenarios.

This thesis is but a small step towards realizing the goals of creating be-

lievable, controllable arid scalable character motion. Much work has to be done

in addressing the issues discussed above, and in improving the robustness of the

approach.

49

BIBLIOGRAPHY

[1] 0. Arikan, D. Forsyth, and J. O'Brien. Motion synthesis from annotations.
ACM Transaction on Graphics, 22(3):402-408, 2003.

[2] 0. Arikan and D. A. Forsyth. Interactive motion generation from examples.
ACM Transactions on Graphics, 21:483-490, 2002.

[3] R. Bowden. Learning statistical models of human motion. In IEEE Workshop
on Human Modeling, Analysis and Synthesis, CVPR 2000, pages 199-206,
2000.

[4] M. Brand and A. Hertzmann. Style machines. In Kurt Akeley, editor, Pro-
ceedings of ACM SIGGRAPH 2000, Computer Graphics Proceedings, Annual
Conference Series, pages 183-192. ACM Press / ACM SIGGRAPH / Addison
Wesley Longman, 2000.

[51 D. Brogan and J. Hodgins. Simulation level of detail for multiagent control. In
Proceedings of the first international joint conference on Autonomous agents
and multiagent systems, pages 199-206. ACM Press, 2002.

[6] A. Bruderlin and L. Williams. Motion signal processing. In Robert Cook,
editor, Proceedings of ACM SIGGRAPH 95, Computer Graphics Proceedings,
Annual Conference Series, pages 97-104. Addison Wesley, 1995.

[7] M.G. Choi, J. Lee, and S.Y. Shin. Planning biped locomotion using motion
capture data and probabilistic roadmaps. ACM Transactions on Graphics,
22(2):182-203, 2003.

[8] Petros Faloutsos, Michiel van de Panne, and Demetri Terzopoulos. Compos-
able controllers for physics-based character aniniation. In Eugene Fiume, edi-
tor, Proceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings,
Annual Conference Series, pages 251-260. ACM Press / ACM SIGGRAPH,
2001.

[9] M. Gleicher. Motion editing with spacetime constraints. 1997 Symposium on
Interactive 3D Graphics, pages 139-148, 1997.

[10] M. Gleicher. Retargeting motion to new characters. In Michael Cohen, edi-
tor, Proceedings of ACM SIGGRAPH 98, Computer Graphics Proceedings,
Annual Conference Series, pages 33-42. Addison Wesley, 1998.

[11] M. Gleicher. Motion path editing. In 2001 ACM Symposium on Interactive
3D Graphics. ACM, march 2001.

50

[12] M. Gleicher, H. Shin, L. Kovar, and A. Jepsen. Snap-together motion: as-
sembling run-time animations. In Proceedings of the 2003 symposium. on In-
teractive 3D graphics, pages 181-488. ACM Press, 2003.

[13] Michael Gleicher. Comparing constraint-based motion editing methods.
Graphical models, 63(2): 107-134, 2001.

[14] J. K. Hodgins, W. L. Wooten, D. C. Brogan, and J. F. O'Brien. Animating
human athletics. In Robert Cook, editor, Proceedings of ACM SIGGRAPH
95, Computer Graphics Proceedings, Annual Conference Series, pages 71-78.
Addison Wesley, August 1995.

[15] Tae hoon Kim, Sang Ii Park, and Sung Yong Shin. Rhythmic-motion synthesis
based on motion-beat analysis. ACM Trans. Graph., 22(3):392-401, 2003.

[16] Eugene Hsu, Sommer Gentry, and Jovan Popovic. Example-based control of
human motion. In Proceedings of the 200 ACM SIGGRAPH/Eurographics
symposium on Computer animation. ACM Press, 2004.

[17] H. Ko and J. Cremer. Vrloco: Real-time human locomotion from positional
input streams. In Proceedings of Presence '96, volume 5, pages 367-380, 1996.

[18] L. Kovar and M. Gleicher. Flexible automatic motion blending with registra-
tion curves. In In Proceedings of Eurographics/SIGGRAPH Symposium on
Computer Animation (2003).

[19] L. Kovar, M. Gleicher, and F. Pighin. Motion graphs. ACM Transactions on
Graphics, 21:473-482, 2002.

[20] Lucas Kovar and Michael Gleicher. Flexible automatic motion blend-
ing with registration curves. In Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pages 214-224.
Eurographics Association, 2003.

[21] Lucas Kovar and Michael Gleicher. Automated extraction and parameteriza-
tion of motions in large data sets. volume 23, pages 559-568. ACM Press,
2004.

[22] A. Lamouret and M. van de Panne. Motion synthesis by example. In Proceed-
ings of the Eurographics workshop on Computer animation and simulation
'96, pages 199--212. Springer-Verlag New York, Inc., 1996.

[23] J. F. Laszlo, M. van de Panne, and E. Fiume. Limit cycle control and its
application to the animation of balancing and walking. In Holly Rushmeier,
editor, Proceedings of ACM SIGGRAPH 96, Computer Graphics Proceedings,
Annual Conference Series, pages 155-162. Addison Wesley, 1996.

51

[24] J. Lee, J. Chai, P.S.A. Reitsma, J.K. Hodgins, and N.S. Pollard. Interactive
control of avatars animated with human motion data. ACM Transactions on
Graphics, 21:491-500, 2002.

[25] Jehee Lee and Kang Hoon Lee. Precomputing avatar behavior from human
motion data. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics sym-
posium on Computer animation. ACM Press, 2004.

[26] Jehee Lee and Sung Yong Shin. A hierarchical approach to interactive motion
editing for human-likefigures. In Alyn Rockwood, editor, Proceedings of ACM
SIGGRAPH 1999, pages 39-48, Los Angeles, 1999. Addison Wesley Longman.

[27] Y. Li, T. Wang, and H. Shum. Motion texture: a two-level statistical model
for character motion synthesis. ACM Transactions on Graphics, 21:465-472,
2002.

[28] L. Molina-Tanco and A. Hilton. Realistic synthesis of novel human movements
from a database of motion capture examples. In Proceedings of the Workshop
on Human Motion, IEEE Computer Society, pages 137 142, 2000.

[29] Eric N. Mortensen. Vision-assisted image editing. Computer Graphics,
33(4):55-57, November 1999.

[30] F. Multon, L. France, M. Cani-Gascuel, and G. Debunne. Computer anima-
tion of human walking: a survey. The Journal of Visualization and Computer
Animation, 10(1):39-54, 1999.

[31] Sang Ii Park, Hyun Joon Shin, and Sung Yong Shin. On-line locomotion
generation based on motion blending. In Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, pages 105-ill.
ACM Press, 2002.

[32] K. Perlin. Real time responsive animation with personality. IEEE Transac-
tions on Visualization and Computer Graphics, 1(1):5-15, 1995.

[33] K. Perlin and A. Goldberg. Improv: A system for scripting interactive ac-
tors in virtual worlds. In Holly Rushmeier, editor, Proceedings of ACM SIG-
GRAPH 96, Computer Graphics Proceedings, Annual Conference Series,
pages 205-216. Addison Wesley, 1996.

[34] K. Pullen and C. Bregler. Animating by multi-level sampling. In Proceedings
of IEEE Computer Animation 2000, 2000.

[35] K. Pullen and C. Bregler. Motion capture assisted animation: Texturing and
synthesis. ACM Transactions on Graphics, 22, 2002.

52

[36] C. Rose, M. Cohen, and B. Bodenheimer. Verbs and adverbs: Multidi-
mensional motion interpolation. IEEE Computer Graphics and Applications,
18(5):32-40, 1998.

[37] A. Schödl and I. Essa. Controlled animation of video sprites. In Proceedings
of the 2002 ACM SIGGRAPH/Enrographics symposium on Computer ani-
mation, Computer Graphics Proceedings, Annual Conference Series, pages
121-127. ACM Press, 2002.

[38] A. Schödl, R. Szeliski, D. Salesin, and I. Essa. Video textures. ACM Trans-
actions on Graphics, pages 489-498, 2000.

[39] H. Sun and D.N. Metaxas. Automating gait generation. In Proceedings of
ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference
Series, pages 261-270. ACM Press, 2001.

[40] R. Tarjan. Depth first search and linear graph algorithms. SIAM Journal of
Computing, 1(2):146-160, 1972.

[41] Michiel van de Panne and Alexis Lamouret. Guided optimization for balanced
locomotion. Computer Animation and Simulation '95, pages 165-177, 1995.

[42] Vicon. Vicon 612 optical motion capture system.
http://www.vicon.com, 2004.

[43] Jing Wang and Bobby Bodenheimer. An evaluation of a cost metric for se-
lecting transitions between motion segments. In Proceedings of the 2003 ACM
SIGGRAPH/Enrographics Symposium on Computer Animation, pages 232--
238. Eurographics Association, 2003.

[44] D. J. Wiley and J. K. Hahn. Interpolation synthesis for articulated figure
motion. In Proceedings of IEEE Virtual Reality Annual International Sympo-
sium, pages 156-160, 'Iarch 1997.

[45] A. Witkin and Z. Popovic. Motion warping. In Robert Cook, editor, Pro-
ceedings of ACM SIGGRAPH 95, Computer Graphics Proceedings, Annual
Conference Series, pages 105-108. Addison Wesley, 1995.

