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Analysis, coupled with an experimental investiga- 

tion, is an important step in the design process of 

electronic circuits. Fortunately, with the development 

of computer programs to perform general network analysis, 

the job of analyzing relatively complex networks is not 

as formidable as it once was. This investigation devel- 

ops guidelines for efficiently modeling active devices 

and circuits for time domain analysis using general net- 

work analysis computer programs. The amount of computer 

time required for large- signal transient analyses is 

investigated both analytically and experimentally in 

terms of the network parameters. 

Three factors are found to be important in determin- 

ing the amount of computer time that will be required in 

performing a computer analysis of a network. The factors 
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CIRCUIT CHARACTERIZATION 

FOR EFFICIENT COMPUTER ANALYSIS 

I. INTRODUCTION 

The Design Process 

As engineering systems become increasingly compli- 

cated, the designer must rely on more sophisticated 

design techniques. The design process for a system or 

for a subset of a system may be characterized by a simple 

block diagram such as appears in Figure 1. 

Specifications 

Experience 

Design techniques 

Available technology 

Figure 1. The design process. 

Using available technology, design techniques, and 

relying on his experience the designer will formulate a 

possible design to meet the necessary specifications. 

This design will generally next be analyzed to find out 

if the proposed design has a reasonable chance of 

1 

Possible 

design 
Analysis 

- 

Experiment 
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operating. If so, then generally, for electronic circuit 

design, the next step is to construct a breadboard model 

and perform laboratory tests on the design. There is a 

feedback at the analysis stage and at the experimental 

stage until the final design is achieved. 

This paper will focus on the center block of Figure 

1, that is, the analysis phase of engineering design. In 

particular, it will be concerned with digital computer 

aided time -domain analysis, and specifically with inves- 

tigating the efficient modeling of active devices for 

transient analysis. 

The Need for Computer Analysis 

A general purpose network analysis computer program 

offers the electronic circuit designer a direct means of 

studying the behavior of circuits. A designer may have 

a variety of reasons for analyzing a network; to find 

the output response for a given input, to increase the 

understanding of the circuit operation, to optimize the 

circuit performance, or to study circuit reliability. 

The potential value of a digital computer network 

analysis program is soon evident when even a relatively 

simple circuit is analyzed by conventional numerical or 

transform techniques. For example even a simple two - 

stage amplifier may contain over ten nodes and ten loops. 
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An analysis of such a circuit would require the evalua- 

tion of at least a tenth order determinant and the fac- 

torization of a tenth order polynomial. An exact 

analytical solution for the response quickly becomes 

nearly impossible or even irretractible. 

Evidently then, to obtain an analytical solution, 

the design engineer is left to three alternatives: to 

perform a long tedious attack on the problem with conven- 

tional techniques, resort to the use of gross simplifi- 

cations and approximations, or to use a computer network 

analysis program. Alternatively a breadboard design 

approach may be taken entirely, omitting the analysis 

phase, but when a circuit is developed entirely experi- 

mentally the resulting design may be far from optimum in 

terms of dc stability, switching speeds, reliability, or 

other characteristics. 

Computer analysis permits the designer to analyti- 

cally verify or discount laboratory observed response. 

It permits a one- parameter -at -a -time control over the 

response, and used properly, can lead to insight of the 

circuit operation. 

Plan and Scope of Presentation 

This study will investigate the characterization of 

active devices for large -signal transient analysis. In 



4 

particular, linear and non -linear transistor models will 

be investigated in regard to their effect on program 

solution times while retaining a desired degree of 

accuracy. 

The plan of presentation will be to first discuss 

transistor modeling, presenting static and dynamic models. 

Although the emphasis is on transistor equivalent cir- 

cuits the final results may easily be extended to include 

other devices; i.e., diodes, FETs, SCRs, etc., and other 

construction techniques; i.e., integrated -circuits. 

Following the chapter on transistor modeling will be 

a chapter on general network analysis. To phrase the 

network analysis problem in general terms, the state - 

variable approach to network analysis is used. The 

system of network equations is derived, the elimination 

procedure carried out, and the solution procedure given. 

The fourth chapter investigates modeling and com- 

puter running times. Findings from these studies are 

related to the analytical development of network equa- 

tions and in the final chapter general guidelines are 

summarized and presented. Primarily these guidelines are 

directed towards improving the speed of the transient 

solutions. 
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Relationship to Previous Work 

To relate the material in this report to previous 

work it is necessary to consider previous efforts in 

three areas: Transistor modeling, general network analy- 

sis, and computer network analysis programs. This divi- 

sion serves three objectives; first it is a convenient 

partition of earlier work, it provides orientation within 

each area, and it is basically the way the following 

material is presented. 

Similarities and differences of the present work to 

previous efforts will not be mentioned in this section 

but will be commented upon in the appropriate chapters. 

The object here is to provide some measure of perspective 

to earlier work and consequently the work of only a few 

authors is presented. It is not the object to present a 

comprehensive bibliography of all previous work, just a 

sampling of a few of the more important contributions. 

Transistor Modeling 

Transistor modeling has had an illustrious history, 

dating to the late 1940's and early 1950's. It is 

natural that device modeling has been important from the 

first days of transistors since a study and use of models 

of the electronic processes is necessary for the under- 

standing and development of electronic circuits. 
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Perhaps the classic article on large-signal junction 

transistor models is that of Ebers and Moll (12). Ebers 

and Moll characterized the static behavior of the tran- 

sistor in terms of network elements and their approach 

has found wide acceptance, particularly for those people 

closer to the laboratory design phase. 

In 1957 Beaufoy and Sparkes (4) introduced a model 

slightly different from, but entirely equivalent to, 

that proposed by Ebers and Moll. In their model, Beau - 

foy and Sparkes relate the collector current to the 

charge in the base region of the transistor. Their con- 

cept considers the transistor as a charge controlled 

device as opposed to a current controlled device. The 

two views differ only in their description of the exter- 

nal behavior and both lead to exactly equivalent results 

as measured at the external terminals. 

In an effort to correlate the physics of transistor 

action to modeling theory, Linvill in 1958 took a dif- 

ferent approach and presented what has become known as 

the lumped model (19). In the lumped model attention is 

focused on minority carrier flow in the semiconductor 

and the processes of recombination, storage, diffusive 

flow, and drift flow are modeled directly. While the 

lumped model describes the physical processes of the 

device quite closely it is not entirely convenient as 
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an analysis model, particularly with computer programs 

where often element types are restricted to resistors, 

capacitors, and inductors. 

These three modeling techniques are summarized and 

compared in an article by Lindholm, Hamilton, and Naurd 

(15). While a considerable amount of effort has been 

done on large -signal modeling and although numerous 

articles have appeared the work has, for the most part, 

been related to one of the above three modeling tech- 

niques. 

Small- signal transistor modeling has followed two 

general lines: A four -terminal representation using 

primarily h or y parameters, and incremental models based 

on describing the physics of the device by RLC network 

elements. The second method generally uses the hybrid - 

Pi or Tee equivalent circuit representation. A good 

survey of the earlier work in small- signal modeling has 

been given by Pritchard (24). A more recent presentation 

of the modeling process is given in Volume 3 of the SEEC 

series of volumes (27, p. 81 -119). 

General Network Analysis 

Like any general analytical approach, general net- 

work analysis places a burden on the analyst in terms of 

numerical or symbolic manipulation. However, the com- 

puter has influenced the area of analysis to make a 
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general approach to network analysis feasible and highly 

worthwhile. 

A good account of the approach to general network 

analysis is given in Seshu and Balabanian's book Linear 

Network Analysis (28, p. 77 -142) and in Seshu and Reed's 

Linear Graphs and Electrical Networks (29, p. 117 -152). 

The starting point for a general network analysis is the 

three basic relationships; Kirchhoff's voltage law, 

Kirchhoff's current law, and the branch voltage- current 

relationships or Ohm's law for linear elements. The 

classical approach does not always guarantee a set of 

independent network equations, consequently a state space 

approach is used. 

Bashkow (2) first formulated the network analysis 

problem in terms of state variables. Bryant (9) and 

Brown (7) extended this work and recently a good tutorial 

article by Kuh and Rohrer (18) on the subject has 

appeared. The state variable application to network 

analysis has been the impetus to develop several general 

purpose digital computer analysis programs. 

Computer Analysis Programs 

For several years now, there has been considerable 

activity in the area of network analysis using digital 

computers. Generally it is possible to subdivide the 

programs written to this end into two groups; 



9 

(1) Those programs where the attention has been focused 

upon a particular problem to be solved and (2) a second 

group where the effort has been directed towards creating 

a program more general in nature, i.e., capable of ana- 

lyzing more than a single problem of given topology. 

The first group is of limited use and will not be con- 

sidered further here. 

Computer programs of a more general nature can be 

classified as time domain or frequency domain analysis 

programs; linear or nonlinear analysis programs; statis- 

tical programs; and a host of other subdivisions. In the 

specific area of large- signal time domain analysis pro- 

grams, perhaps the IBM Corporation has been one of the 

more active in program development. Domenico (11) in 

1957 described a program capable of performing large - 

signal analysis. Branin (5), in 1962, discussed a 

further development of the program, capable of perform- 

ing DC and transient analysis. In 1964 a short summary 

of then available programs was given by Falk (13). 

Two of the more recent programs tailored specifi- 

cally to large -signal transient analysis of electronic 

circuits are the NET -1 (Network Analysis Program) pro- 

gram (20) and the PREDICT program (32). The PREDICT 

circuit analysis program is described and used later in 

this report. 
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Summary of Results 

In chapters three and four it will be shown that 

three factors are important in determining the amount of 

computer time that will be required in performing an 

analysis of a network. The factors are: (1) The size 

of the network, (2) the network time constants and the 

network natural periods, and (3) the representation of 

the parameters making up the network. Chapter five 

reduces these findings to general guidelines in modeling 

active devices for large- signal transient analysis by 

general network analysis computer programs. 
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IIo TRANSISTOR MODELING 

Introduction 

To obtain meaningful results from a network analy- 

sis, passive and active linear or non- linear devices must 

be represented to an acceptable degree of approximation. 

Furthermore the model chosen should be as simple as pos- 

sible, should present to the design engineer a readily 

interpretable equivalent circuit, and yet be sufficiently 

accurate in describing the physical device to predict 

the circuit performance. 

Basically, in this chapter, we are interested in 

modeling transistors for large -signal transient analysis 

and in particular, characterizing transistors for effi- 

cient analysis by general network analysis computer pro- 

grams. Although there are practically an unlimited 

number of large -signal models that may be used, three 

modeling methods have received much attention in the 

literature. They are: 

1. Ebers and Moll large -signal model (12), 

2. Beaufoy and Sparkes charge -control model (4), 

3. Linvill lumped model (19). 

All three of these models predict equally well the 

large -signal behavior of transistors but differ in their 

representation of the physical processes. The Ebers and 
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Moll and the Linvill models can be extended to include 

non -linear behavior of the junctions more conveniently 

than the charge -control model. The Linvill lumped model 

represents more closely the physical processes of the 

three methods and, when the interest is in relating 

device behavior to device physics, it has distinct 

advantages. 

Generally, however, transient circuit analysis com- 

puter programs are developed to predict the network 

response in terms of element values and externally meas- 

urable device parameters. The programs are circuit 

design and not device design oriented and consequently 

the object is not to describe the physical processes of 

device operation but to compute the circuit response. 

Consequently the Ebers and Moll and the charge -control 

models are more useful for most computer analysis pro- 

grams. 

The mathematical model common to all three models is 

a set of six basic equations for the base region, to- 

gether with a description of the junction conditions. 

The six equations deal with drift and diffusion currents, 

continuity of charge, impurity densities, and the elec- 

tric field in the base region (15). The equations 

describing each model are partial differential equations 

and each model effectively removes the space variable by 
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appropriate approximations. 

The approach to the characterization of transistors 

in this chapter will be the development of a composite 

model from a combination of a small- signal hybrid -Pi 

equivalent circuit and the Ebers and Moll model. The 

development of the small -signal equivalent circuit, the 

static model, and the dynamic model in the following 

sections do not produce a model that is new or different 

from those of previous efforts but is original in the 

presentation. The progressive development from a small - 

signal model to the large -signal dynamic model is differ- 

ent from earlier modeling in that it is not restrictive 

to either small or large -signal regions but includes 

both small-signal and large -signal considerations. 

As was stated earlier, the object of this study is 

to provide a foundation for the efficient modeling of 

active devices, in particular transistors, for use in 

circuit analysis using digital computer programs. To 

this end, the discussion of a transistor equivalent cir- 

cuit will, in addition to developing a suitable model, 

discuss non- linear element representation. In particular, 

the development will be directed towards application to 

computer network analysis. 
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Transistor Models 

One of the first steps in the analysis of any elec- 

trical network containing active devices is to describe 

the active devices by appropriate equivalent circuits. 

This generally consists of representing the device by 

PLC circuit elements and controlled voltage or current 

sources. The elements may or may not be linear. 

Several considerations must be taken into account 

when representing an active device by an equivalent cir- 

cuit. Among these considerations are: 

1. Operating region. The device may perform only 

over a small range in voltages and currents, in 

which case, usually the parameters in the model may 

be regarded as approximately linear. Otherwise the 

non-linear nature of the device may require non- 

linear parameter representation. 

2. Frequency range. When the analysis concerns 

itself only within a limited frequency range addi- 

tional simplifications may be made in representing 

the device. 

3. Accuracy. Generally in any analysis the degree 

of accuracy required in the results will greatly 

affect the complexity of the equivalent circuit 

used in the modeling. 

4. Measurability of parameters. Not only must 
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numerical values for the circuit elements in the 

model be determined but their dependency on electri- 

cal and physical conditions must be found. 

5. Efficiency in use. This will be taken to mean 

the relationship between computer solution times 

using a general time-domain network analysis program 

and the equivalent circuit parameter representation 

for a given solution accuracy. 

The transistor equivalent circuit to be presented 

in this section for later use will be developed in three 

phases. These phases will consist ofg (1) Small-signal 

equivalent circuit, (2) a static model, and (3) a tran- 

sient analysis or dynamic model. The small-signal and 

static models will be presented separately and then com- 

bined into one equivalent circuit which will be used to 

predict large-signal behavior. 

Small- signal Equivalent Circuit 

The development of a small-signal equivalent circuit 

for the transistor will be accomplished in this section 

in three steps. Step one will consist of considering an 

idealized small-signal circuit model for the transistor. 

Then this will be extended to a Pi-configuration which 

contains first-order approximations. Finally second 

order approximations will be discussed and added to the 

model of step two to characterize the transistor by means 
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of the well -known hybrid -Pi equivalent circuit. Through- 

out, the development will be in terms of a common emitter 

configuration. 

This procedure is justified in that it describes the 

usual steps in the design process for electronic cir- 

cuits, That is, in the initial stages of design, gross 

idealizations are made in the behavior of active devices 

and in the latter stages more detailed and precise models 

are used. 

An idealization of the transistor in the common - 

emitter configuration is shown in Figure 2. 

(a) (b) 

Figure 2. (a) Common -emitter transistor 
orientation and (b) idealized 
functional equivalent circuite 

Of course the infinite input and output impedances are 

gross approximations but the idealized model does pre- 

sent the common -emitter stage as a transconductance 

applifier which is quite correct. To this model we 

r 
tibe 
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now account for what might be called first -order effects. 

With the emitter junction forward biased and the 

collector junction reverse biased, excess minority car- 

riers are injected into the base region by the emitter. 

These carriers are transported across the base to the 

collector junction by drift and diffusion. At the col- 

lector junction they are swept into the collector body 

by the electric field in the space charge layer. 

In refining the idealized model the influence from 

two circuit disturbances will be considered 

1) Effects of a small increment in the forward 

biased emitter junction, and 

2) Effects of variations in the collector -to- 

emitter voltage. 

To a good approximation, the distribution of excess 

minority carrier concentration in the base region can be 

assumed linear. Consequently an increase in the emitter - 

base voltage will result in a transient increase of base 

current to maintain charge neutrality within the base 

region. In addition, due to the higher concentration of 

minority carriers, recombination is higher in the base 

region and there will be a resulting increase in the 

constant component of the base current. Finally, as a 

result of the increased forward bias on the emitter 

there will be an increase in the concentration gradient 



of minority carriers which, in turn, will produce an 

increase in collector current. 

The increase in collector current is related to 

LVBE by a proportionality 
constant called the tran- 

conductance and is designated by gm. The relationship 

between gm and Ic is (14, p. 134) 

gm 
__ 

kT IcI 

where (y indicates the magnitude of the collector 
current. 

The total small- signal base current is 

dvbe 

ib - gbvbe 
+ 

Cb dt 

(1) 

(2) 
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where the first term on the right side of the equation 

is due to the recombination and the second term to pro- 

vide charge neutrality to a small increase in VBE (or 

tVBE or, because 
we are considering small signals, vbe). 

Equations (1) and (2) can be used to modify the 

idealized model of Figure 2 (b). 



Figure 3. First -order small- signal 
equivalent circuit. 

The equivalent circuit of Figure 3 has a simple 

expression for its voltage gain. It is 

_ vice -gmvbeRL 
- R 

v 
_ 

Vbe vbe 
-gm L 

(3) 
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This equation implies that the voltage gain is 

limited only by the magnitude of RL and as RL becomes 

exceedingly large so does the small -signal voltage gain. 

However, second -order effects come into play to limit the 

gain. 

The width of collector -base space -charge layer 

depends on the magnitude of the collector -base voltage. 

For a positive increment in vcb the width of the space - 

charger layer decreases, causing an incremental increase 

in the base width. 

The increase in the base width has two effects (14)ó 

A 
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(1) The collector current decreases because the 

slope of the minority carrier distribution 

decreases, and 

(2) The base current increases because of the 

stored base charge and consequently the 

recombination increase. 

These two effects may be incorporated in the model 

by adding two resistors and one capacitor. Because the 

change in base width with a change in vcb is very small 

the resistors will be very large and the capacitor very 

small. These elements have been shown in Figure 4 as 

rcb" rCe , and 
Ccip 

Both the collector -base and emitter -base junctions 

have space -charge capacitances due to the depletion 

layer of the junctions. These capacitors are also volt- 

age dependent, but the model being considered here 

applies only to small -signals at a constant quiescent 

operating point so these capacitors will be taken as 

constant and have been indicated in Figure 4 by CTc and 

CTe° 
Their dependency on voltage will be discussed in 

the section on large- signal models. 

One final element must be included in Figure 4. It 

is the base resistance, or sometimes referred to as the 

base spreading resistance or extrinsic base resistance. 

This resistance accounts for the voltage drop in the 
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base region by the flow of majority carriers. The minor - 

carriers flow from emitter to base and the majority- 

carrier base current flows at right angles to the minor- 

ity current. This majority- current must flow through the 

inactive region of the base near the base contact and can 

be simulated by a resistor in series with an internal 

base lead. 

The small -signal equivalent circuit shown in Figure 

4 is commonly called the hybrid -Pi equivalent circuit. 

Figure 4. 

e 9m Ub'e 

Small- signal transistor 
equivalent circuit. 

ce 

The circuit in Figure 4 has been redrawn in Figure 

5 with the parallel capacitors combined and rcb, omitted. 

It is only at quite low frequencies that rcb becomes 
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important compared to the effects of Ccb/and for this 

reason it is generally omitted in analyses. 

Figure 5. Hybrid -Pi equivalent circuit for the 
transistor. 

Obviously the hybrid -Pi model for the transistor 

does not exhaust the possibilities for model configura- 

tions. However, this equivalent circuit has been shown 

to faithfully describe the small -signal behavior at all 

frequencies at which the device has reasonable gain. 

And for this reason it will be used in chapter four in 

investigating effects on computer solution times. 

Static Transistor Model 

In modeling transistors for large -signal transient 

analysis a convenient approach is to consider operation 

in two domains; the first being operation in the active 

region and characterized by a small signal model and the 
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other, operation due to non -linearities of the junctions 

and modeled by a static equivalent circuit. This section 

will consider the static behavior of junction transis- 

tors. 

On the basis of linear diffusion in the absence of 

drift fields the diffusion equation 

D 
2p P Po = ap 

P C at 
(4) 

may be used to derive general analytical expressions for 

the p -n junction transistor. From these equations the 

gross non -linear behavior of the transistor can be deter- 

mined. Ebers and Moll (12) have carried out this deriva- 

tion and show that the equations describing a generalized 

junction transistor have the form 

E q4:1c 

IE = all e kT -1 + a12 (e kT -1) (a) 

E c4c and (5) 

lc 
= a21 

(e_1) + a22 e kT -1 (b) 

where the currents and voltages are defined by Figure 6. 

p 

11 
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Figure 6. Voltage and current conventions. 

The quantities itIE and 
0c 

are the junction voltages 

and have the positive sense for a voltage drop from p to 

n material. Several assumptions were made by Ebers and 

Moll in deriving Equations (5 a,b). The most important 

are: 

1. The resistivities of the semiconductor regions 

are low. 

2. Injected current densities are low (linear 

diffusion equation). 

3. Base modulation effects are negligible. 

4. The emitter and collector junctions can be 

represented by an ideal diode. 

The ideal diode of assumption 4 is a diode which has 

terminal relations described by 

I = Is 
s 

(e 
kT _1 (6) 

where q /kT ~ 0.026 volts at 25 °C and Is is the reverse 



saturation current. 

The coefficients a11, a12, a21, 
and a22 

related to the four transistor parameters 

IEo = emitter saturation current with Ic = o 

Ico = collector saturation current with IE = o 
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are easily 

= normal current gain 

= inverted current gain 

which are easily measurable. When this is done, Equa- 

tions (5 a,b) become 

I °E I (14)c 

- CO (em- 
E 

1 + 
o(i co kT _1 (7a) 

1-0(n 0(i l dndi 

qE Oc 
o(nlEo kT Ico (ekT -1/ 

c 1-0,6104 1 dCi n 
These equations describe the static behavior of 

junction transistors provided the assumptions are ful- 

filled. The denominator term 1- o(i in Equations 

(7a,b) may be eliminated by using the short-circuit 

saturated currents 
Ics 

and IEs where IEo = IEs (1- °(n Q(i) 

and Ico 
= Ics (1 -fin (Xi) . Then Equations (7a,b) become 

OE Oc 
IE = -IEs (il) ekT + °4iIcs 

kT 
-(l) (8a) 

OE Oc 
Ic 

= nIEs 
e kT 

-1) 
- 

Ics (e 
kT 

-1 . (8b) 

-1 - 

\ 

¡/ 

te (7b) 

(e 
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These equations lead to the equivalent circuit in 

Figure 7(a). To more explicitly represent the diode 

nature of the junctions, the equivalent circuit of 

Figure 7(a) has been redrawn in Figure 7(b) where now, 

IN and II are the forward (normal) and reverse (inverted) 

currents flowing through the ideal emitter and collector 

diodes respectively. 

Several additional elements can be added to the 

model of Figure 7(b) to construct a model which more 

closely predicts actual device behavior. For example, 

although Equation (6) accurately describes the character- 

istics of an actual diode at small forward and reverse 

biases, deviations from the theoretical non -linear 

behavior occur at larger biases. These non -linearities 

may be very nearly accounted for over a wide range of 

variables by the addition of a small conductance in par- 

allel with the diode to account for the finite slope of 

the reverse characteristic, and by the addition of a 

small series resistance which accounts for the voltage 

drop in the bulk semiconductor material. A character- 

ization including these additional elements is shown in 

Figure 7(c). 

The degree of complexity of the equivalent circuit 

used, of course, will depend on several considerations. 

Among these considerations are; (1) the accuracy 



27 

(e 
n Es kT 

iIcs 

qc 

k 
1) 

(a) 

E 

(b) 

E 

Figure 7. Ebers and Moll large -signal model 
for junction transistors. 

n 
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desired in the final solution, (2) how well known or how 

easily measured the equivalent circuit parameters are, 

and (3) any restrictions on computer solution time 

available. 

Dynamic Transistor Model 

The dynamic behavior of transistors can be described 

by considering it to be a current -controlled device or 

by describing the behavior in terms of the density of 

minority carriers in the base region. The second method 

was introduced by Beaufoy and Sparkes in 1957 (4) and is 

generally referred to as charge -control operation. 

The approach to be taken in this section in repre- 

senting the transistor for dynamic operation will be to 

merge the small -signal Tee equivalent circuit and the 

large -signal static model to form a composite model. 

The hybrid -Pi equivalent circuit developed earlier may 

be easily transformed to the Tee circuit in the following 

way: First the voltage -controlled current generator is 

split into two generators -- one across rb,e and the 

other across Cb,c; the circuit is then as shown in 

Figure 8(a). The parallel combination of rb,e and gmVbe 

may be merged into a single conductance of value gm + 

1 /rbé which will be designated as re. 

When the circuit of Figure 8(b) is compared with 

the circuit of Figure 7(b) several similarities may be 



e 
(a) 

e 

(b) 

Figure 8. Development of a large -signal 
model. 
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Ye 

noted: They are both Tee connections, the current gen- 

erators in the collector circuits are both o(n times the 

current through the emitter diode. The current genera- 

Oc c4c 
tors Ics -1 and a(iIcs VP-- Çe -7) do not appear in 

the second model because the diode nature of the collec- 

tor junction was not considered in small- signal opera- 

tion and because the term (1+ v(n) IEo/ (1® a(no(i) was 

assumed small in comparison to IE. However, to provide 

for operation in the inverted mode with the dynamic 

model, these terms will be retained. The dynamic model 

then becomes as indicated in Figure 9. 

Resistors ree, re, rc, and rcc have already been 

mentioned. Capacitors Ce and Cc each actually consist 

Tr- 
C 

C 

n 

cs 
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E 
Figure 9. Dynamic model for large -signal 

analysis. 

of two components, one due to the junction transition 

regions CT and the other due to charge carriers in the 

base region CD. 

Transition capacitance, or space charge layer capa- 

citance, is somewhat analogous to a parallel plate capa- 

citor in that charges of opposite polarity are separated 

by a narrow region depleted of charge. Both the collec- 

tor and emitter junction transition capacitances have 

the form (23, p. 108) 

Co 
C 
T 

= 
(VZ-V)n (9) 

where Co is evaluated by measuring CT at a particular 

o 



31 

value of V, Vz is the contact potential of the transistor 

material, and n is a constant between 3 (graded junction) 

and 2 (step junction). Equation (9) applies to both 

junctions although in general Co and n will not be 

identical for the two junctions. 

The emitter diffusion capacitance CDe arises from 

the transit time and dispersion of minority carriers 

across the base region. In the small -signal case the 

transit time T 
e 

is related to the emitter diffusion 

capacitance by 

Te CDe re 
(10) 

where re is the small -signal diode resistance. And for 

common -base operation it is further related to the radian 

o( cutoff frequency through the relation 

Te = 1 /ó,.) (11) 

In the large -signal case re is not a constant so CDe is 

given by 
T 
e 

CDe - 8V1 
(12) 

aI 
l 1 

Ashar et al. have suggested that to more closely repre- 

sent the excess phase shift in the transport factor of 

modern diffused -junction transistors a delay factor be 

added in the single pole approximation for a(o This is 

accomplished by using the effective base transit time 

rather than fd or fT (1). 

= 

. 
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In a similar way the collector diffusion capacitance 

may be found. This capacitance accounts for the storage 

time in normal operation and will be designated by Cs. 

It is given by 
T 
s 

Cs = 
aV 

(13) 
2 

a22 

The storage (or saturation) time constant Ts can be 

obtained on the basis of charge -control equations (4) or 

from pulse measurements (1). 

The elements rbb' ree' and rcc 
are due to the bulk 

semiconductor material and are generally represented by 

a constant value of resistance. 

Equivalent -Circuit Element Representation 

In the small- signal model excursions of the signal 

levels are assumed sufficiently small so that all ele- 

ments can be assumed to be constant. This situation is 

altered drastically for the large -signal dynamic model. 

In this case the elements are explicit functions of the 

network voltages and currents. For example, the capaci- 

tor Ce of Figure 9 has the form 

Ce CTe + CDe 

Co Te _ + 
( VZ-V av1/ a I1 

= 

., 
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Co 
+ g-TI e 

kT 
n kT e Es 

(v -v ) 

z 1 

qV 
1 

Co 
I 
es 

(vz-V1)n kT 
e kT (14) 

However, on specification sheets, CTe is generally given 

by a plot of capacitance versus reverse bias voltage. 

Capacitor CDe must be computed from 'es (or I ) 

eo 
and f 

(or fT). Generally, the junction capacitances are not 

given for forward- biases, but are obtained by extrapola- 

tion into the forward -bias region. 

Generally the emitter and collector static charac- 

teristics are represented by curves of current versus 

voltage on device specification sheets, and these curves 

may be used in an analysis or the parameters for the 

analytic representation may be found from the curves. 

In the same manner the extrinsic base resistance Rbb bb 

changes with current level and to accurately represent 

the transient network response it may be necessary to 

represent it as a non -linear element in the analysis. 

A similar requirement might be necessary for Rcc, the 

saturation resistance. 

Application to Computer Analysis 

As pointed out in the last section there are a 

number of ways in which the electrical behavior of an 

q Vl 

ti 
+ 
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element may be described. However, in terms of network 

analysis by computer programs, these different represen- 

tations can be grouped into four classifications 

1. A numerical constant, 

2. a table, 

3. an analytic expression, 

4. or a combination of the above. 

In performing an analysis, not all of the above four 

element representations will be equivalent in terms of 

program efficiency. For example, a table lookup will 

obviously require more time than extracting a single 

constant value for an unknown. Furthermore, to evaluate 

an analytic expression may require a number of lengthy 

program operations compared to a simple table lookup 

procedure. 

In the solution for the network response several 

operations are involved in solving the algebraic matrix 

equations. The operations may require being done only 

once in a given problem or may be required for each 

solution step. The particular representation of a net- 

work element can have an influence on the solution pro- 

cess. The next chapter will show that variable R, L, 

and C elements force additional program operations at 

each solution time step. When other means can be found 

for representing non-linear passive elements the 
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solution will require less computer time Various 

methods for accomplishing this will be discussed in the 

fourth chapter. 
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III. GENERAL NETWORK ANALYSIS 

Network Analysis and Com uter Solutions 

The derivation of a general system of loop and node 

equations to be used in general network analysis has 

three purposes (29, p. 142). First it serves as a basis 

for the development of network theory, secondly it can 

always be used to provide the "right answer" whenever 

there is disagreement between "observed" and answers 

computed using simplifying approximations, and finally a 

general approach to the solution for the network behavior 

is necessary when solving problems using digital comput- 

ers. That is to say, the development of a general net- 

work analysis computer program must be based on the 

framework of a mathematical description of the general 

loop and node system of equations. Otherwise the program 

will be reduced to solving special cases and would con- 

sequently be of limited usefulness. 

It is the general approach to the formulation of 

network analysis that will be considered in this chapter. 

Within the context of this chapter, general network 

analysis will be defined as The formulation and solu- 

tion of a set of simultaneous independent equations which 

describe the response of an electrical network. Further- 

more, the electrical network must satisfy Kirchhoff's 
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current and voltage laws and Ohm's law. 

The description will be concerned initially with 

lumped linear networks and formalize the development of 

the network equations in matrix notation. The problem 

of writing the descriptive equations for a network, 

aside from solving them, can be in itself difficult, so 

to be most useful, a digital computer program for general 

network analysis should include an equation complier. 

That is to say, the program should be capable of deriving 

the descriptive network equations from a topological 

description of the network as input to the program. For 

that reason this chapter will also consider the question 

of choosing an appropriate set of independent network 

equations from the input data. Again the preference will 

be given to a method that is completely general and which 

always "works. 

The organization of this chapter will begin with a 

description of the method for obtaining a set of simul- 

taneous ordinary differential equations describing a 

general network. Following that, the question of choos- 

ing the set of network meshes will be covered and then 

the numerical procedure for solving the network equations 

will be described. The chapter will terminate by con- 

sidering a few special programming techniques used in 

implementing a network analysis program on a computer. 
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Throughout, specific relations will be derived relating 

to the speed of problem solution to the operations 

involved in obtaining the solution. These relationships 

will be summarized at the end of the chapter. 

It should be noted where the content and objective 

of this chapter differ from that of previous work. First 

the object here is to develop the necessary equations for 

the general approach to network analysis. This has been 

done before (28, p. 77 -142) but not to the extent of 

presenting the complete elimination procedure as has been 

done in this chapter. Furthermore, the object in this 

chapter has not only been to develop the equations 

describing a general analysis but to express them in a 

manner that can be related to computer solution time 

The sections on solution procedure and numerical integra- 

tion are related more directly to the network analysis 

problem than previous reports. In particular, an effort 

to relate the details of a general analysis to the prob- 

lem of excessive solution times has not appeared else- 

where. 

General Loop and Node Equations 

As mentioned in the introduction, the solution for 

the response of a network is based on solving a set of 

loop and node equations. This set of equations, in turn, 
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must satisfy Kirchhoff's current and voltage laws and 

Ohm's law. So we will begin by expressing these laws in 

matrix notation. 

Kirchhoff's current law can be written as 

Nb 

ak i.(t) = 0 k = 1,2,7..Nv (15) 

j=1 j J 

+1 positively 
where ak = 0 if the j -th branch is not 

J -1 negatively 

incident on the k -th node and N 
v 

is the number of circuit 

nodes. This equation may be rewritten in matrix nota- 

tion as 

Aaib (t) = 0 (16) 

where Aa = (ak and is of order (Nv,Nb) and ib(t) is a 
I 

column matrix of Nb (number of branches) rows. The sign 

of ak will be taken as positive when the current is 
J 

directed away from node k (positively incidence). 

As an example, the Kirchhoff current law equations 

for the network in Figure 10 are 

-( 
(Il 
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branches -i-- 
nodes 

1 1 0 0 0 1bl(t) 0 

r -1 0 -1 1 0 i (t) 
b2 

0 

0 0 0 -1 1 iba (t) = 0 

0 -1 1 0 -1 ib4(t) 0 

b5 
(t) 0 

A 

4 

2. 

3 

(a) Electrical 
circuit 

(b) Linear graph 
of (a) 

Figure 10. Example of a network. 

The matrix Aa is known as the augmented branch -node 

incidence matrix. Notice each column contains a +1 and 

a -1 and the sum of the elements in each column is zero. 

Any one row may be expressed as the negative sum of the 

other rows or, in other words, the rows are linearly 

2 

VZ 
9 3 4 

2 
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dependent. We may consider any one row as redundant and 

delete it leaving Nv -1 rows. The node corresponding to 

the deleted row is called the datum or reference node (6). 

This is equivalent to saying that exactly Nv -1 of the 

equations in Equation (15) are linearly independent. 

Then we can write Kirchhoff's current law as 

A ib(t) = 0 (17) 

in which A is called the reduced incidence matrix and 

corresponds 

1 

-1 

0 

in our example 

1 0 0 0 

0 -1 1 0 

-1 1 0 -1 

(deleting 

ibl(t) 

ib5 (t) 

the third 

0 

row) to 

Next we turn to Kirchhoff's voltage law which can be 

stated as: 

Nb 

bk. v.(t) = 0 k = 1,2,®..Nm (18) 

J=1 

where the coefficients bk have the values ±1,0 depending 
J 

on the voltage reference in the k -th loop. The term bk 
j 

is unity when branch j is in loop k and positive when the 

voltage reference is at the tail of the loop orientation 

arrow. Kirchhoff's voltage law written in matrix nota- 

tion is: 

Ba vb(t) = 0 

where Ba = 
bkj 

(19) 

and is of order (Nm,Nb) i.e., (number 

0 

E 
J 
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of meshes, number of branches) and vb(t) a column matrix. 

There are Nb - Nv +l independent mesh equations for 

a connected network (28, p. 73) so the reduced form of 

Equation (19) becomes 

B v (t) 
b 

= 0 (20) 

and matrix B is called the fundamental -loop matrix (8). 

For the example in Figure 10, Equation (20) becomes 

nodésanches --- 
i 1 -1 -1 0 

0 0 1 1 

0 

1 

vbl 
vbl(t) 

vb2 (t) 

vb3 (t) 

vb4 ( t ) 

vb5 (t) 

v -i Relationships 

Kirchhoff's laws are concerned only with the branch 

voltages and currents and with the topology of the network 

elements. They do not specify anything about the nature 

of the branch elements themselves (resistor, capacitor, 

inductor, sources) or the linearity of the branch element. 

Kirchhoff's laws are associated purely with the topology 

of the network. 

Physically, each branch of an electrical network may 

consist of three distinct electrical devices: 1) a pas- 

sive element; 2) an ideal voltage source in series with 

the passive element; and 3) an ideal current source in 

o 
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parallel with the passive element. 

The relative positions and orientations of these 

electrical devices for a general r -th branch are shown in 

Figure 11. 

-aG + 1.1- r 
E 

m L e Ir+Vr - - 
r+ 

R, L, orC 

J 
Figure 11. A general network branch. 

The explicit inclusion of the time variable t has been 

dropped in Figure 11 and shall often be omitted in the 

following development. 

From this diagram the following assignments can be 

made for the voltage and current vectors (i.e., column 

matrices)° 

E = vector of source voltages 

= vector of source currents 

V = vector of element voltages 

I = vector of element currents 

v = vector of branch voltages 

i = vector of branch currents. 

0 1 

J 

CD ,4® 



The branch voltage vr is the voltage difference 

between the initial node m and the final node n. 
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Branch 

current it 
r 

is the positive current which enters the 

branch at node m. The voltage source is orientated so 

that 

Er = r 
vr (21) 

and the current source so that 

Jr = Ir it (22) 

Then, using the above assignments, Kirchhoff's cur- 

rent and voltage laws, Equations (17) and (20), can be 

written as 

and 

AI - Aj = 0 

BV - BE = 0 

(23) 

(24) 

In a network of b branches the self -impedance of the 

r -th branch may be defined as follows (6): 

Vr = Z I with 
'q 

= 0 for q r 
rr r 

and q = 1,2, -..b (25) 

and the self -admittance as 

Ir = Y V with Vq = 0 for q r 
rr r 

and q = 1,2,---b. (26) 

Likewise, the trans- impedance Zrs and trans -admittance 

Y Yrs between the r -th and s -th elements may be defined as: 

and 

Vr =Z I with Iq = 0 for q s 
rs s 

and q = l,2, th (27) 

Ir = Yrs Vs with Vq = 0 for q s 
rs s 

and q = 1,2,---b. (28) 

- 

- . 

{ 
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Then the relationship between the voltage and cur- 

rent in a single branch element is a generalization of 

Ohm's law or can be stated as 

and 

Vr 

b 

rsls 

b 
Ir = 5-S 

1 YrsVs 

(29) 

(30) 

Or in general, Equations (29) and (30) are represented as 

E + v = Z(J+i) (31) 

and 

J + i = Y(E +v) (32) 

where the matrices Z and Y consist of complex numbers in 

the most general case, and are mutually inverse, that is, 

YZ = ZY = U where U is a unit matrix. Equations (31) and 

(32), written in matrix form become 

rI _ O 
YO 

) 

VI 
(33) 

Ohm's law is entirely independent of the way in 

which the network branches are interconnected. In other 

words, Z and Y are related only to the "hardware" from 

which the network is to be constructed. 

A capacitor obeys a differential equation like 

I (t) = C ddtt) - cv(t) , 

an inductor obeys a differential equation like 

V(t) = L ddtt) = LI(t) , 

(34) 

(35) 

= 

I 

' 
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and a resistor obeys an algebraic equation like 

V(t) = RI (t) . (36) 

Equations (34), (35), and (36) can be combined into 

one matrix equation as 

Yc V = ZL I (37) 

For the network in Figure 10, Equation (33) is 

r 

Lldt 

R2 

V3 R3 

V4 
dt 

4 o 

V5 R5 

I2 

I3 

I4 

I5 

and Yc and ZLR are 

Yc 

1 

1 

f t dt 
1 
J 

1 

. 1 . . 

d 
® . ® C4 

. . 1 

R2 

R3 

d 
C4dt 

V3 

V4 

V 
5 R5 

d 
Lldt 

R2 

, Z = R3 

1 

vi 

V2 

11 

1 

-1 

`I1 I 

1 
2 

1 
3 

I4 

I5 

V1 

V2 

¡t 

0 

. 

k 

1 

= 

1 

R5 
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Network System of Equations 

The three fundamental systems of equations, i.e., 

Kirchhoff's and Ohm's laws, constitute the starting point 

for the development of the loop and node systems of equa- 

tions. Ohm's law leads to a system of ordinary integro- 

differential equations with constant coefficients and are 

generally solved using the Laplace transform method. 

The normal procedure for solving a system of simul- 

taneous ordinary integrodifferential equations by numeri- 

cal means would be first to express the system as a 

higher -order set of differential equations by removing 

the integrals through differentiation. Then the system 

of higher -order differential equations is reduced to a 

set of first -order equations by making a simple change of 

variable. This is illustrated by the following example. 

An n -th -order equation, 

y(n) = f (x,y,y,y, y(n -1)) 

may be transformed by letting 

Y 
1 

yo 

Y Y1 

11 y= yl y2 
1 

ylll = y11 y1 
Y 

1 2 3 

(n) Y = 
1 . o 

= Yn@1 = f(x9Yo'1719y2, 
.. o 

-° 

- 

- 

= = 
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The computation proceeds in parallel; one begins at some 

starting point and makes one step for each equation before 

proceeding to the next increment. When the derivative 

functions are evaluated, the current values of the array 

of the functional values (the y's) are used 

An alternative development, and the one to be fol- 

lowed here, consists of choosing an appropriate set of 

network variables that leads automatically to a set of 

first -order differential equations. When voltages across 

capacitors and currents through inductances are used as 

dependent variables and time as the independent variable, 

a set of first -order differential equations is obtained 

of the form: 

x + Ax = y 

in which x is the vector of independent variables and y 

represents the forcing functions or sources (2,8). The 

A matrix consists of scalar elements which are combina- 

tions of the inductances, capacitances or resistances of 

the network. 

The minimal set of branch currents and voltages 

whose instantaneous values are sufficient to determine 

completely the instantaneous state of the network is 

called a 'complete set of dynamically- independent network 

variables' or a state variable set. The process used to 

arrive at a complete set of dynamically- independent 
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network variables depends upon forming the branch equa- 

tions in a particular manner. This form involves the 

classification of the network branches into the following 

six groups with respect to any proper C -tree, that is, a 

network tree which contains the maximum number of capaci- 

tor branches and the minimum number of inductor branches; 

class description 

oC capacitive links 

P resistive links 

1' inductive links 

h capacitive branches 

resistive branches 

inductive branches. 

This branch classification is now used to subdivide, or 

partition, the network vectors and matrices into sub - 

vectors and sub -matrices. 

First the branch voltage and current are partitioned 

as 

i = 

io( 

io- 

and e = 

ea 

eß 

e`Y 

e6 

eµ 

(38) 

and then the element and source vectors are partitioned 

into link contained (subscript L) or branch contained 

(subscript T) vectors as follows 

a 

4%. 

iµ 

eA 

µ 
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EL 

ET 
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J = IjL 

JT 

(39) 

V = I = IL 

Each of the subvectors of Equation (39) are then further 

partitioned as follows 

and 

EL 

JL = 

VL 

TL 

Ec4 

Eß 
E 

Joe, 

Jß 
J'Y 

Vd 

VR 

V 

EZ, 

J,I, _ 

V,I, = 

IT 

Ex 

E 

Eµ 

(40) 

The state variables, 17 and V , as mentioned pre- 

viously can be used to completely describe the state of 

a network. Then 1-r and VX as dependent variables can 

describe the network performance by a system of first - 

order differential equations. 

In addition to Equations (38), (39), and (40), the 

branch node matrix A and the fundamental -loop matrix B 

may be partitioned as 

IT 

7 

Jo- 

Jµ 

VX 

VCr 

Vµ 

To( Iá 

= I 11 
;27 

IQ 

1µ 

VL 

V 
T 

- 

= 

= 
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I ATu AT I 

B = 
BT! 
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(41) 

(42) 

The subscripts L and T refer to links (or chords) and 

tree branches, respectively and U is again the unit 

matrix. 

Referring again to the network in Figure 10 a tree 

may be chosen as shown in Figure 12. 

(a) Linear graph 
of Figure 10. 

(b) Tree of (a), 
(solid lines). 

Figure 12. Linear graph and tree of 
Figure 10. 

For the tree of Figure 12(b) Equation (41) becomes 

(again eliminating the equation at node 3) 

branches -1 
nodes 

1 1 

A =IAL = 2 -1 

4 0 

5 2 3 4 

0- 1 0 0 

0: 0 -1 1 

-1 : -1 1 0 

(U 

AT 

71' 

. 

2 

4 s 

2 

4 

3 

I 
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and Equation (42) becomes 

1 5 2 3 4 

1 1 0 °-1 -1 0 

B = 1U 

BTI 
2 0 1; 0 1 1 

Besides the reduced incidence matrix A and the fun- 

damental circuit matrix B there is an additional matrix 

of interest in the following development. It is the 

fundamental cut -set matrix and may be constructed from 

either the A or B matrices. A cut -set is a set of edges 

of a connected graph such that the removal of the set of 

edges separates the graph into two pieces. The funda- 

mental cut -set matrix is defined as the system of cut - 

sets in which each cut -set includes exactly one branch 

of a tree of the graph. The use of fundamental cut -sets 

provides a completely general method of choosing an 

appropriate set of network equations, i.e,, a sufficient 

number of independent equations. 

The fundamental cut -set matrix is formed as follows: 

The fundamental cut -set matrix C = 1c, has one row 
ii 

for each branch of a tree of the graph and one column for 

each tree branch and link. 

For example, from Figure 12(b) the fundamental cut- 

set matrix is 

2 

C _ 3 

4 

1 2 3 4 5 

1 1 0 0 0 

1 0 1 0 -1 

0 0 0 1 -1 

i 

L 
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The fundamental cut -set matrix C equations are 

analogous to the fundamental loops. In fact, the cut -set 

matrix contains the incidence matrix A where the rows of 

A are expressible as linear combinations of rows of C 

(29, p. 96). Since each fundamental cut -set contains a 

tree branch which is in no other cut -set the Kirchhoff 

current law equations within C are linearly independent. 

This fact makes the cut -set matrix more attractive to use 

than the incidence matrix because linearly independent 

equations are insured, whereas they are not in the 

reduced incidence matrix. 

Using the fundamental cut -set matrix, Kirchhoff's 

current law expression of Equation (23) becomes 

(43) 

If the columns of the A, B, and C matrices are 

ordered according to branches and links as was done in 

Equations (41) and (42) then the fundamental cut -set 

matrix can be partitioned as 

c= 

and the following 

C = AT 

Using Equation 

C = 

CL U 

relations 

A and 

(45), Equation 

1-B 
T 

U 

result (29, p. 

-1 
CL 
L T 

= A 
T 

AL 

(44) becomes 

98) 

(44) 

(45) 

(46) 

Next the B and C matrices are partitioned according 

C I- C J 0. 

. 
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to the six classes described on page 49 (8,9) 

1 0 0 40. B0(0_ Bdµ 

B = 0 1 0 Bç Bpa. Bp4 

0 0 1 Byx B, B74 

and (47) 

I 

-lx. -B -By; 1 0 0 

/ 
C = -B -B -B oKpu 0 1 0 

/ / / 
-130(4 -BP4 -B74 0 0 1 

where, for example, the columns correspond to branches 

and the rows to links for the circuit matrix. 

In the construction of the network tree it follows 

that the loops defined by the capacitive links must be 

purely capacitive, hence 

Ba(o-=0 
and 

B0 = 0 

Further, the loops defined by the resistive links can 

contain no inductors, so 

Bp4 =0 

Then it follows from the manner followed in constructing 

the network tree that Equations (47) can be written 

1 0 0 B,Ax 0 0 

B= 0 1 0 Bpx Bpo- 

0 0 1 B,yx B70- B 
71, 

and (48) 

. 

. 

0 



C = 

-Bdx, -B. -B7k 1 0 0 

-B; 0 1 0 

0 0 -B7;11 0 0 1 
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(48) 

(cont'd) 

In addition the coefficient matrices for the branch 

capacitance and resistance will be denoted by 

C(0( 0 

C = 
0 Cxx. 

and (49) 

R = 
Rßß 0 

0 R 

and the matrix of the self and mutual inductances by 

L L77 L7µ 

Lµ7 
L 

(50) 

we can construct a combined matrix equation 

describing the network equations. To do this, Ohm's law, 

Equations (34), (35), (36), (49), and (50), Kirchhoff's 

voltage law, Equation (24), and Kirchhoff's current law 

in terms of the fundamental cut -set matrix, Equation (43) 

are used. 

The single matrix representing the network equations 

become 

0 B 

C O 

ZRL -Yc 
V 

BE 

CJ 
0 

(51) 

/ i / 

O -Bß 

Finally 

I 

= 
. 



This equation in expanded form is 

Kirchhoff 
voltage 
laws 

Kirchhoff 
current 
laws 

Ohm's 
law 
equations 

. 1 0 0 BAO 

. . 0 1 0 Bpx 0 

. . 0 0 1 Byx Byo_ 

. -Bloc BY0 0 0 . 

0 - B'pb- BY6 0 1 0 . 

0 0 -ByµO 0 1 . 

1 . 

e 

ß0. d 
. 

. I a. . -1 . dt' ® 

. . 1 . . . 

d 
Aát. o . 

. . -1 . . o 

R6 . 

, yd ° µµá t 

a. 
d t' 

. -1 . 

D, 
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(52) 

BE 

BE 

BE 

CJ 

CJ 

µ CJ 

VoL 

Vß 0 

Vy 0 

vx. 

Vcr 0 

V 

The vector on the right side of Equations (51) and 

(52) are column vectors representing the loop voltage 

generators and the nodal current generators. 

Equations (51) and (52) summarize the three basic 

laws of electrical networks and Branin (6) has made a 

formal statement of the electrical network problem as 

follows: 

Given: 1) an electrical network whose linear graph 

determines the matrices A, B, and C, 

2) the impedance matrix Z or its inverse Y, 

and 

3) the arbitrary voltage and current sources 

E and J; 

Find: 4) the branch voltages and currents, v and 

i, so that the three basic laws of 

electrical networks hold true. 

. 

. . . 

O 

. . 

. . o 

. . 

. 

. 

. . o . 

. . . -1 

0 

0 

0 

, 

. 

. . . 

. 

. . . 

. 

. 

. 

I,. 

Sp 

L. 

IQ 
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There are several methods for solving this problem, 

of which the two classical methods are the node and mesh 

methods. In node analysis method the node -to- reference 

voltages are used as auxiliary variables and in the mesh 

method the mesh currents are used. In any case the 

interest is in obtaining a complete set of dynamically 

independent network variables whose instantaneous values 

are sufficient to determine completely the state of the 

network at an instant in time. 

Elimination Procedure 

Starting with the network equations of Equation (51) 

or (52) the procedure to be followed is to eliminate 

variables until a set of dynamically- independent vari- 

ables is obtained. The process of elimination depends on 

forming the branch equations in a certain form. This 

form involves classifying the network branches into the 

six classes stated earlier. This produces twelve classes 

for the branch voltages and currents as in Equation (38). 

The elimination process consists of expressing ten of 

these classes algebraically in terms of the remaining 

two classes. It has been shown (2) that by using the 

voltages across capacitors and the currents through 

inductors as the set of independent variables, a set of 

first -order differential equations describe the response 
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of a network. 

The branch equations used in the elimination process 

are formed by using a particular tree construction 

(9, 31). Tree -branch elements are chosen in the order; 

capacitors, resistors, and inductors. Then to carry out 

the elimination process the variables I , Iß , , Iu , I 9 V(x. 9 Vi 9 V^ , Vu 9 
Vµ 

are expressed in terms of the state variables 

I,Y and VV 

together with the various generators and their differen- 

tials. 

The elimination procedure to be carried out below 

will consist of expressing Kirchhoff's laws in terms of 

the six voltage and current classes. Then Ohm's law will 

be applied to resistors to solve for the resistor volt- 

ages and currents and finally the voltages and currents 

for the inductors and capacitors will be solved for in 

terms of 1-y and VX 

Kirchhoff's voltage and current laws from Equations 

(24) and (43) , or (51) , are 

BV - BE = 0 (24) 

CI - CJ = 0 (43) 

and using Equations (42) and (46) then 

B = 
I 

U BT 
I 

(42) 

C = 1-4 UI (46) 

I 

Ix 

. 



partitioning according to Equation (38) Kirchhoff's 

voltage law may be written as 

BV= B E 

IU BTI 
V 

= IU BT E 

IU BTI 

Vc,4. 

Vß 

Vy 

V]k 

V6 

Vµ 

144 

Vp + BT 

Vy 

= 

10\. 

V6 

VP. 

Next using Equation (48) 

Vd 

Vß + 

V,y 

Ba.x 0 0 

B ßx B ß6 0 

BIt 6 B711 

Vx 

V6 

Vµ 

which, when expanded, gives 

Ecg. Ek 

Eß 

E7 
T 

+ BT E 

Eµ 

Ed Bo% 0 0 Ex 

Eß Bp x BR6 0 E6 

E.y B7N. alto_ 131 ,11 Eµ 

V0(.. + Bock Vh = E + Bo(x E 
Vß + Bpx Vx + Bß6 V6 = Ep + BR x Ex + Bß6 

V + B`Y V + B,Y V + B Vµ = E+ B E + B,y E + 
`y % 6 µ µ ñ T y6 6 

B,y µE . 

59 

(53a,b,c) 

By a similar process Kirchhoff's current law may 

be developed as 

I 

I U BTI 

Eµ 

Ed 

g BA x 

+ 

E, 
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Using Equation (48) gives 

Jo( 

Jp 

J,Y 

Jx 

J6 

Jµ 

o 

BIß - B/cµI,Y + Ix = -J - Bps.Jß - B/y, JIY+JK 

- Bß6 IR - 
81,11 

6I`Y 
+ I6 = -BR6JR - By uJ,Y + J6 

- B,µIY + Iµ = -BµJ,Y + Jµ . 

With rearranging 

Ix = BkXId + Bpx Ip + By [xr+ Bpx JR + B,kJ,Y] + Jx 

I6 = 
Eß6Iß 

+ BY6I,Y - [Bo-J + Br/y6J,Y1 + J6 

Iµ = BYkIT - BkJ7 + Jµ . -I (54a,b,c) 

Next Ohm's law for resistors will be used to solve 

for Ip . From Equation (52) 

RßßIß = Vp (55) 

and 

R60.I6 = V6 . (56) 

Substituting Vp from Equation (53b) into Equation (55) 

and solving for Ip yields 

Ip = Rßß 
-1 

Eß + BpxEx + Bß6E6 - BßhVx - Bß6V6 

(57) 

Equations (56) and (54b) yield 

170. = R66 Bß6Iß + BYo-17 - (B6Jß + B;c7J7) + J6 

and substituting this value for V6 into Equation (57) 

produces 

C I = C J 

-BTU 
11 

= 

-BT 

-BkkI04_ 

. 

_BTUIJ 

Ix 

Ip + IJ = -B,l, + 

17 I 

LL 

! 
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Ip= Rpß LE + EpxEx + B6E m B Vk 

-BRIR66[BRIR 

solving for Ip 

+ B76I,Y (BRJR +BQJ) + J6] 

L - 
Ip = [Rp+ BßR60.Bpa] 

_l 
[Ep + BpiEx. + BpuE - BpVx 

[BR][BJIy + BJp + BJ,Y 
I 

. (59) 

Then with a knowledge of the state variables IY and 

V. all of the terms on the right side of Equation (59) 

are known and thus Ip may be computed. The value of 

IQ may be computed once Ip is known by using Equation 

(54b) and by then using Equations (55) and (56) Vß and 

V6 can be calculated. 

Table I summarizes the solution at this point in 

the derivation. Starting with the state variables the 

TABLE I. SOLUTION VARIABLES 

state variable 

state variable 

Equation (59) 

Ip and Equation (54b) 

Iß and Equation (55) 

Iu and Equation (56) 

I o< , Ix , Iµ , Vck , V, , VX , 

remain to be derived. 

Vµ 

current in the tree branch resistors and then the tree 

chord resistor currents are calculated. Knowing the 

,. 

- 
L 

- J - 

I 
ti 

V k 

I 
R 

I6 

V 
R 

VQ 
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resistor currents, the resistor voltages may be found. 

The next step is to solve for the inductor voltages. 

17 is a state variable, therefore, by using Equa- 

tion (54c) I can be found directly. The inductor volt- 

ages V1, and V can be found by using Kirchhoff's laws 

from Equations (53c) and (54c) and Ohm's law relation- 

ships from Equation (52), repeated below 

d d 
L77dt -LT -LT 

+ L`Y{ -dt Iµ - vY 
(60) 

d d 
Lµ7dt 17 + LkI-dt Iµ 

vµ 
(61) 

By using the four equations and eliminating Iµ , 

V7 , and V4 , Ï7 may be solved for. A dot is used to 

denote differentiation with respect to time. The pro- 

cedure is to differentiate Equation (54c) with respect 

to time producing 

= B'1,11 17 ® + d4 e (62) 

Equation (62) is then substituted into Equations (60) and 

(61) to eliminate I . The resulting expressions for 

V.y and Vµ are then used in Equation (53c) which is 

A 

finally solved for I.y , yielding 

-1 
L + 1,74B, 

/y4 
+ BL + By4L41Bq 

E7 + B7XEX + B76Eu + E74E1 
- 

[- I VA. + 

+ L B74Lkk + L74 [B7µí7 - 
Jµ ] 

e 

(63) 

'L can be solved for by substituting 1y into the 

derivative of Equation (54c). Finally the inductor 

= 

14 
BY1aJ7 

= i.y - 

ByoNcl 

I 

Y 



voltages V,}, and V are evaluated from Equations (60) 

and (61). The equations are as follows 

I 

63 

= Bi,µ i , - Bi J7 + J (64) 

= L77 I, + L,Yµ I 
µ 

. . 
= I + 

47 7 44 

(65) 

(66) 

- 

Since the capacitor voltage VX is a state variable, 

VO4 can be computed directly from Equation (53a). The 

capacitor currents Icc, and Ix can be found from a process 

similar to that for the inductor voltages. 

Beginning with Ohm's law relationships from Equa- 

tion (52) 

CoOk = 'K (67) 

Cx vA = Ix (68) 

and using Equations (53a) and (54a) the solution for 

I.L follows 
-1 . 

. 

Id, = [e_i + BdX-1 Bo(A 

)44XA-1 [ + 41127 - (Bo(074-. 
+ 

Bi6J(3 + Bf,µJy) + Jx]] o (69) 

Current Ix follows directly from Equation (54a) and 

V? from Equation (68) . 

All of the variables in Table I can now be expressed 

in terms of I7 and Vx . To summarize, the terms present 

in each variable are shown in Figure 13. Beginning with 

the state variables, the "flow" of the solution is 

v7 

Vµ . 

`ti(AEA 



64 

depicted with the dependence of each variable on the 

others indicated. Equations used in each step are indi- 

cated on the path arcs. 

Figure 13, Flow diagram for transient 
solution. 

Solution Procedure 

The set of first -order differential equations 

established from topological circuit considerations can 

be evaluated at each value of circuit time provided the 

values of the state variables are known at each time. 

The normal procedure for obtaining a time history of the 

circuit response is to start with time equal to zero and 

evaluate the network initial conditions to establish 

values for the state variables. 

Solution of the network equations is then accom- 

plished through matrix operations and produces state 

variable derivatives. These derivatives must be 



65 

numerically integrated to produce new state variables for 

the evaluation at the next time step. That is, the state 

variable S at time i +l is evaluated from 

S(i +l) = S 
(i) 

(70) 

where At is the time step between evaluations of the 

network equations. After the computed derivatives of 

the state variables are numerically integrated, the 

Output 
designate) 
V & :C"s 

Integration 

Routines 

Update 

Variables 

Iy (o), V),(o) 

(Initial 
Conditions) 

Figure 14. Transient solution procedure. 

variable elements and sources are updated and the system 

of network equations are evaluated at the next time step. 

The value of each element voltage and current is avail- 

able at each time step as output. This solution proced- 

ure is shown schematically in Figure 14. A repetitive 

evaluation of the transient solution and subsequent 

integration of the state variable derivatives produces 

the time history of the network response. 

+ At S(i) 

A 

Matrix 

Operations 
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Numerical Integration 

The solution of the network equations, among other 

things, depends on integrating the differential equations 

describing the state variables at each time step. The 

rate at which the solution progresses is dependent on the 

method of performing this integration. There are two 

basic categories of methods available for this process: 

1. One -step methods which do not depend on the past 

history of the solution. The most widely used 

one -step method is the Runge -Kutta. 

2. Multi -step methods in which the next solution 

point is obtained by using previous solutions. 

Most methods of this type are called predictor - 

corrector. 

Basically the process can be described as follows: 

We take the starting point, compute the slope, and move 

in that direction for a short distance, and select the 

next point. Using this as a new starting point the slope 

is again evaluated and so it proceeds. No control of the 

errors between the true solution and the computed solu- 

tion is achieved by this method, so generally a slightly 

different procedure is followed. 

In general, the solution to the first -order differ- 

ential equation 



dx 
= 

f(x,t) 
dt 

67 

(71) 

effectively replaces the result of truncating a Taylor- 

series expansion of the form 

hh2 
1, 
ii 
3 .. 

x 
n+1 

= xn 
n 

+ hxn + -- x + x 
n 

+ --- (72) 
n n 

21 31 

by an approximation in which xn is calculated from a 

formula of the type (17, p. 233) 

X + h(a x 
n-1 

+ aoxn + a x 
n+ 1 -1 o n 

= X 
n-p 1 n-1 

+ 
r 
x 
n-r)' 

(73) 

In the special case where f(x,t) = Ax, where A is a 

constant the preceding equation takes the form 

(1- 
-1 
Ah)x 

n+1 
=x 

n-p 
+ Ah(a x 

o n 1 
+a x 

n-1 

+ + a x 
r n-r) 

(74) 

where at least one of the coefficients of ar 
r 

is nonzero. 

The general solution to this equation is (17, p. 203) 

x=c p +c 1p1 + cp 
n o o 

(75) 

where the c coefficients are determined by the initial 

values of xo, xl, xr and pl, p2 pr are their 

roots of the characteristic equation obtained by sub- 

stituting the particular solution xn = pnxo into 

Equation (74) (5). 

The principal solution of Equation (75) will be 

generated by one of the roots and the other r -1 roots 

represent parasitic solutions. These parasitic 

... 

..° 

°° 
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solutions correspond to the fact that the order of the 

difference equation exceeds the order of the approximated 

differential equation by r. If any one of the parasitic 

roots is greater in magnitude than unity, the correspond- 

ing term in Equation (75) will increase without limits 

as n increases (17, p. 205). This situation arises when 

the integration interval h is too large and is called 

numerical instability. 

A frequently used pair of predictor -corrector 

formulas for numerical integration uses Milne's method 

and is 

predictor: 

4h 
xn+l - xn3 + 3 

(2xn®xn-1 + 2xn-2) + 

45h5x (5) (k ) 

corrector: 

h . 

xn+l xn-1 + 3(xn+l + 
4xn + xn-1) 

h 
5 

90 
x(5)(4 

) 

(76) 

(77) 

where the values of k lie between the largest and smallest 

argument involved in the formulas and, in general, are 

not equal. 

To avoid numerical instability in the use of the 

above integration formulas, and if Equation (71) is 

rewritten as x = -ax +b, then the integration step h must 

satisfy the relationship ha L 0.83 (10). In network 

- - 
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equations a will be a matrix and consequently the above 

restriction on the integration step size requires that 

h be less than the smallest natural time constant of the 

network (5). Although these roots contribute least to 

the solution they force the numerical integration to pro- 

ceed at a rate dependent on them and consistent with the 

allowable error in the solution. 

Then in designing a system for solving the set of 

differential equations it is desirable to use as large a 

value for h as possible. Besides the formulas for inte- 

grating each step, it is necessary to have formulas for 

halving or doubling the integration interval and criteria 

for when to do so. The criteria for doubling or halving 

is provided through a comparison of predicted and cor- 

rected values. These formulas are given in Hamming 

(16, p. 208). 

In contrast to the predictor-corrector methods the 

Runga -Kutta methods do not use information from pre- 

viously calculated points and consequently are self - 

starting and, in fact, are generally utilized in starting 

the methods that do require previous solution points. 

In both predictor-corrector and Runga -Kutta inte- 

gration methods automatic step -size control is possible. 

Generally predictor-corrector methods require two 

derivative evaluations per time step as against four 
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for the Runga -Kutta method, but Warten (30) has shown 

that from stability considerations the extra derivative 

evaluations per single time step for the Runga -Kutta 

method do not appear as serious a drawback as might 

first appear. 

Warten's method estimates the local truncation 

error in the Taylor - series expansion of the solution and 

then, using the error, prescribes smaller steps during 

the transient region and larger steps in the steady 

state portion. This allows the solution to progress at 

a rate that depends on the numerical integration errors 

and greatly speeds the solution process. 

Chapter Summary 

Figures 13 and 14 provide a summary of the transient 

solution procedure. The equations 

process are summarized below° 

vR 
= I = 

Bd\_ EX 

NI 17 - ! Jy + Jµ 

[Rßß +BßaR6íSB, ßQr [Eß 

- B00.Vx + E 

[Bß6R66l 
pyaLy + J 

Ripßlß 

[°1 l , 

Bd 
°1 

Cd, ++1.4,0s. C 
+1.4,0s. ] 

used in the solution 

(53a) 

(54c) 

+Bps.EX. + BßuE6 - Bßh Vk 

- Bß0-Jß 
+ B;cJyJ (59) 

(55) 

. $c - 
xCKl 

El3xI{3 

+ B,I - CBJd + Jß + BykJy + J_I (69) I + BhIß + B,Iy ° [4\ Jd+B.1,,.Jß + ,,µJy + J] 
J (54a) 

V_ = 

I4 = 

Iß 

[E0( + 

Ix _ 
L 

= 

- 
L 
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_ lI (68) 

I6 = BpuIp + Bya17 - ß [B3rjJ + ByuJ7 ] + (54b) 

V6 = R6oI6 (56) 
-1 

17 B7+ BµL7 + BLµB7µ L77+ 7µ µ L7µµ 7 

L 

E7 + B7x,Ex + B7o_E0_ + B,µE - 
L 

B7xVx + B70- 

+ 
[ BpT Eµ + 

L7µ1 [B7µJ7 Jµ] (63) 

Iµ = B7µi7 -BJ +.I J (64) 

V7 = 
L77i`Y 

+ L,},µiµ (65) 

v=Lµ7i7+Lz (66) 

The solution of these equations at each time step 

produces state variable derivatives (Ly and A) which 

are numerically integrated providing the starting point 

for the next time increment. 

The first term in brackets in Equations (59) and 

(69) will be diagonal matrices when only simple passive 

elements appear in the network. The corresponding term 

in Equation (63) will be non -diagonal if there are 

mutual inductive terms. The fact that the inverse is 

required for these three terms at each time step can be 

a significant factor in the time required in the solu- 

tion process. This will be discussed in more detail in 

the next chapter. 

When integrating the state variable derivatives in 

preparation for the next solution pass, it is highly 

desirable to use the largest integration time step 

Vx 

= 

J 
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possible consistent with numerical stability. In order 

to do this the time step should be variable as suggested 

earlier. Procedures for accomplishing this are given by 

Ralston (25, p. 102) for predictor- corrector methods and 

by Warten (30) for Runga -Kutta integration methods. 

The elimination process leading to the equations 

used in the final solution process was different from, 

but entirely equivalent to, Bryant's method (9). With 

but minor differences the equations summarized in this 

section are identical to those used by the PREDICT cir- 

cuit analysis program in solving for the time response 

of a network. 
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IV. MODELING AND COMPUTER RUNNING TIMES 

Introduction 

The previous two chapters have, in turn, provided a 

brief background for modeling transistors for large -sig- 

nal analysis and derived the algebraic matrix equations 

describing a general time domain analysis. In this chap- 

ter both of these developments will be utilized in estab- 

lishing efficient modeling techniques for large -signal 

network analysis. 

To establish the relationships between the model and 

the resulting computer running time two means will be 

utilized: (1) The analytical equations from the preced- 

ing chapter will be used, and (2) a general network 

analysis program will be used. The computer program that 

will be used is the PREDICT circuit analysis program 

developed by IBM Corporation, Space Guidance Center, 

Owego, New York under contract to the U.S. Air Force 

Weapons Laboratory (32). 

The PREDICT program is a large, general purpose, 

network analysis program which automatically solves, from 

a description of the network topology, differential and 

algebraic matrix equations which completely characterize 

the behavior of a complex network. The program is the 

product of several years of investigation and development 
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of general network analysis programs by the IBM Corpora- 

tion. The mathematics of the PREDICT program is formu- 

lated much in the same way as the development in the 

preceding section on general network analysis. PREDICT 

is written in both the FORTRAN II and FAP languages 

expressedly for the IBM 7090 - 7094 computer. A descrip- 

tion of this program is given in the PREDICT manual (32). 

Although most of the results presented in this 

chapter was derived using a specific program running on 

a particular computer the nature of the PREDICT program 

and the data are general. Consequently the results and 

conclusions will be valid for most general time -domain 

network analysis programs formulated within the same 

framework as in chapter three. 

In terms of equivalent circuits and network repre- 

sentation, several factors are important in determining 

the amount of computer time that will be required in 

performing an analysis of a network. These factors are: 

(1) The network size, i.e., the number of circuit 

nodes and branches; 

(2) Network time constants; 

(3) Network natural frequencies; and 

(4) Element representation. 

Each of the above will be investigated in the fol- 

lowing subsections and will be related to network 



modeling. 

Network Size and Running Time 
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In solving the algebraic network equations several 

matrix operations are required. In particular, these 

operations are: 

matrix addition, 

matrix subtraction, 

matrix transposition, 

matrix inversion, and 

matrix multiplication. 

Each of the above operations are performed numerous times 

at each integration time step. The time required to com- 

plete each matrix operation is a function of the matrix 

size. Figure 15 depicts how the amount of computer time 

required for each operation varies as a function of 

matrix size or order for rather simple, unsophisticated 

matrix programs written in FORTRAN and run on a CDC 3600 

computer. Timing for the operations were obtained from 

an internal clock on the computer and repeating each 

operation 1000 times to obtain a reasonable time dif- 

ference. 

Each point on the curves in Figure 15 represents 

one computer run. However, the statistics of the points 

were investigated in two ways. First a nearly diagonal 

tenth -order matrix was timed for 1000 repeated inversions 
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on ten separate computer runs. The ten samples were 

identical with the exception of one which was one second 

less (nine runs required 54 seconds and one run required 

53 seconds). The clock can only be interrogated to the 

closest second, providing a possible plus or minus one 

second spread in timing for any particular operation. 

Again using the matrix inversion program, ten tenth- 

order matrices were constructed using a random number 

table. In this case the spread for ten samples was from 

79 to 82 milliseconds per operation. For this particular 

program, which uses a Gauss-Jordan elimination procedure 

(16, p. 366), the minimum inversion time will occur with 

a diagonal matrix (45 ms for a matrix of order ten). No 

effort was made to find the maximum time but presumedly 

it would be a matrix containing no zero elements. 

The other matrix routines contain no statements 

that branch on a zero test so will exhibit no dependence 

on element values as does the matrix inversion program. 

From Figure 15 it is immediately obvious that com- 

pared to matrix multiplication and inversion the other 

matrix operations require a negligible amount of computer 

time in the total solution process. A log-log plot of 

the time per operation versus the order of the matrix 

shows that for multiplication the time varies as the 

matrix order to the 2,7 power and for matrix inversion 
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as the matrix order to the 2.5 power. As an approxima- 

tion, taking the inverse of a matrix requires about twice 

the amount of time as multiplication requires up to 

matrix sizes of approximately ten by ten. 

If the assumption is made that for a typical solu- 

tion pass the number of matrix operations is approxi- 

mately the same for each operation, then the matrix mul- 

tiplications and inversions will constitute the major 

part of the solution time. 

As the size of the network increases, i.e., contains 

a greater number of network branches and nodes, the size 

of the matrices will increase. Consequently the solution 

time will increase also and in approximately the same 

manner as the matrix inversion and multiplication time 

does. That is, the solution time should depend on the 

network size to approximately the same power as inversion 

and multiplication. 

Two networks were used to verify the above state- 

ment. The first consisted of a common -emitter amplifier 

in which identical stages were successively added in 

cascade. Each stage added two nodes to the network. A 

plot of the program solution time versus the number of 

nodes for this circuit is shown in curve (a) of Figure 

16. For this curve the following relationship holds: 

2.1 
Program g solution time OC (Number of network nodes) 

(78) 
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where 0,L means 'proportional to'. 

The second case consisted of cascading identical 

stages of a series -parallel RLC network. The solution 

time versus the number of network nodes is shown in 

Figure 16 curve (b). Below solution times of approxi- 

mately 50 seconds, the influence of the faster matrix 

operations (addition, subtraction) and the programming 

transfer operations (calls to subroutines) cause a de- 

parture from Equation (78). Solution times above 50 

seconds show a relationship in very close agreement with 

Equation (78). 

Interpreted simply, Equation (78) means that dou- 

bling the circuit size and other factors remaining con- 

stant will have a resulting effect of increasing the 

running time by a factor of approximately four. 

Network Time Constants and 

Natural Frequencies Versus Running Time 

In addition to the computer solution time arising 

from the solving of the matrix equations themselves, the 

network time constants and natural frequencies play a 

fundamental role in determining the solution time. The 

distinction between time constant and natural frequency 

being that the time constant is equal to the reciprocal 

of the real part, and the natural frequency is equal to 

the imaginary part of a root of the network 
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characteristic equation. In terms of RLC elements, for 

a parallel RC network the time constant is the RC product 

and, for a parallel LC network the natural period is 

2 l/Lc. 

As previously mentioned, the integration step size 

h must satisfy the equation h S 0.83a where a is the 

coefficient matrix in the differential equation 

x = It is easily shown by writing the network 

equations that the smallest value for a in the set of 

differential equations will correspond to the smallest 

natural time constant of the network, or alternatively 

to the largest natural frequency. 

Program running time or solution time is defined as 

the amount of time required for the repeated solution of 

the network equations. It does not include the computer 

time used in formulating the network equations in matrix 

form or the reading out of the computed results by the 

computer. 

Two examples will be used to show the nature of the 

variation of solution time to network time constants and 

network natural frequencies. The first will be a simple 

two -stage RC circuit (curve (a) in Figure 17) in which 

the analysis is performed for different values of the 

predominant RC time constant. The solution time versus 

the problem time divided by the smallest time constant 

-ax +b. 
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is shown in Figure 17. 

For solution times less than approximately six 

seconds the majority of the time is taken up by the 

mechanics of the computer program, for example in the 

transfer of subroutine arguments in call and return 

statements. The solution time, for times greater than 

six seconds, exhibits a near linear relationship to the 

abscissa. From curve (a) of Figure 17 this relationship 

is 

Program running time Problem time 
Smallest time constant 

0.9 

(79a) 

In Equation (79a) a proportionality exists rather 

than an equality because, in general, a network to be 

analyzed may contain any number of elements and nodes. 

In that case the expression could be generalized to a 

form 

Program running time = k 
time 

Smallest time constant 

0.9 

(79b) 

where k is different for each network and depends on 

the complexity and size of the network. Equation (79b) 

assumes the circuit contains a time constant that pre- 

dominates over the other time constants (i.e., is less 

than) and over other circuit natural frequencies. Two 

values of k are depicted by curves (a) and (b) in 

Problem 

¡' 

, 
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Figure 17. Curve (b) represents the analysis results 

for a network containing seven more branches than that 

for the network of curve (a). However, both networks 

have a single time constant that governs the analysis 

time. From the previous section it is expected the 

larger network, for the same value of minimum time con- 

stant, will require more analysis time which is the case 

for Figure 17. The important thing to note, however, is 

that both curves have the same slope indicating the same 

exponent for Equation (79b). The value of k is dif- 

ferent though, for the two cases. In curve (a) 

k = 0.023 and in curve (b) k = 0.097. 

When the smallest natural period is less than the 

smallest time constant, then the roots of the character- 

istic equation influencing the solution time the most 

are controlled by the natural frequencies of the circuit. 

The smallest natural period then determines the integra- 

tion step size and consequently the solution time 

required for a given problem time. To illustrate this 

behavior a series LC circuit driven by a voltage step 

was analyzed for different values of the LC product. 

From the curve of Figure 18 the following empirical 

relationship can be obtained 

Program running time 4C. Problem time 
Smallest natural period 

103 

(79c) 
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Again this relationship could also be generalized to 

include circuit size and other effects. Instead Equa- 

tions (79a) and (79c) will be expressed as a single equa- 

tion; Equation (80), in which the value of the integra- 

tion step size, for a given circuit, will be determined 

by whichever is smaller -- the smallest time constant or 

the smallest natural period. 

Program running time viL 
Problem time 

Smallest time constant or 
smallest natural period 

1.1 

(80) 

The exponent of Equation (80) is the average of the 

exponents from the previous examples. A value of unity 

for the exponent would be accurate enough for modeling 

purposes in most cases. 

Large -Signal Transistor Model 

and Element Representation 

Having established in the previous sections that the 

network size and the network time constants and natural 

frequencies are important parameters in determining the 

amount of computer time that will be used in performing 

an analysis, this section will experimentally relate 

transistor element representation to solution times. 

Again the solution time will be considered as the real 

time spdnt in solving for the network response for a 

1 
r 

j 
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given problem time and solution accuracy. This time will 

not include the time consumed in reading in network data, 

formulating the network matrix equations, generating 

function tables for variables, or in reading the results 

out onto magnetic tape or other output devices. 

As an example of the solution time differences in a 

small -signal analysis and a large -signal analysis, con- 

sider the circuit shown in Figure 19(a). The small - 

signal circuit was analyzed for a problem time of 75 ns 

using small -signal equivalent circuit data for a 2N2369 

biased at Ic = lma. The analysis accuracy was held to 

one percent and the solution took 317 integration time 

steps in 28 seconds. In contrast to this the large - 

signal equivalent circuit was analyzed for a problem 

time of 75 ns and the same solution accuracy but required 

327 integration steps and 42 seconds. These two anal- 

yses illustrate that some care is needed in modeling 

active devices to insure that the analysis will be 

accomplished in a reasonable amount of computer time. 

It was demonstrated earlier that in comparison to 

addition, subtraction, and transposition, matrix multi- 

plication and inversion require far more time for a given 

matrix size. In the previous chapter it was shown that 

at each integration time step several algebraic matrix 

equations must be evaluated. Included among these 
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equations are the following three equations that must be 

solved at each time step: 

lß = [R+BRB1 
-1 

[Eß 
+B0Ex +.ß6E6 -BpT.VX 

TpuRaujiBIlluIry +J6 -13136Jß +B 
(TJ`ÿ ] 

(81) 

and 

17 rL,`Y+L ̀YµBTµ+B7µLµ1'+BTµLiB7µ 

° [E,Y +B,YxEN. +3..76E6 +B},µEµ - [Bx +B,Y6V6] 

. 

+ [BWL+LW1 -CB`Y!-J`Y -dia, 
.1 

-1 - 

1 [ r 
E +BxE x 

-BdA. CT 1 [BIß +13;1_11,11 -NQ0o4. + 

+B:11µJ7] + Jx 
J 

(82) 

(83) 

These three equations represent the three cases where a 

matrix inverse must be taken in solving for the network 

response. In each expression the inverse involves the 

elements R, L, and C and the fundamental loop matrix. 

The fact that these are the only equations where the 

inverse is required is a result of the manner in which 

the problem was formulated. 

When the resistive, capacitive, and inductive 

elements for a particular network to be analyzed are 

linear then the terms 

ß +Bß6Rff6Bß6 

+L 
ß +B L 

+ß 
77 7µµ 771a µ µ7 7Lß7µ 

and 

[C.,(71 + Boe.xC,,1B.] (84 a,b,c) 

-1 / _ +Ba. °kl ° I 
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need only be inverted once during the entire analysis. 

However, when the network contains non -linear resistors, 

capacitors, and inductors the above terms must be 

inverted at each time step or solution pass. This fact 

means that for large circuits, the non -linear passive 

elements will greatly affect the amount of computer time 

the analysis requires. For this reason it is highly 

desirable to avoid the use of non -linear passive elements 

in the network representation if possible. 

The network in Figure 19(c) will be used to illus- 

trate the effects of when non -linear resistors are 

present in the circuit. In both analyses the problem 

time was 75 ns and the solution accuracy one percent. 

Non-linear resistors require a matrix inversion at each 

solution step but in many cases a non -linear resistor 

may be transformed to a voltage dependent current source. 

A voltage or current source representation does not 

require a matrix inversion, as is easily verified by 

inspecting the summary of solution equations in the 

preceding chapter. 

In illustrating this effect by the circuit of 

Figure 19(c), the current source II, which represents 

the non -linear behavior of the emitter -base junction, 

will be represented by a non -linear resistor. The 

capacitors CE and CC will be analytic expressions as in 
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Equations (87a,b). 

The source Il has the form 

I1 = -2 .61x10 
-6( e 40. 1xVRE +4.01x10 -6 

29 0 4xVRC 

(85) 

The large -signal resistance (RÉ) of the junction becomes 

then 

RÉ = á = V /[2061x10®6(e40m1mVRE-1) 
1 RE 

4.01x10- -6 e29 0 4VRC-1)] 

(86) 

The results of the analyses, in terms of the solu- 

tion times, were 

TABLE II. SOLUTION TIME AND E -B 
JUNCTION REPRESENTATION 

E -B Junction. 
Representation 

Problem 
Time 

Integra- 
tion Steps 

Solution 
Time(sec) 

Voltage depend- 
ent current 
generator 

75 ns 327 42 

Variable 
resistor 75 ns 414 107 

It is obvious that the representation of non -linear 

resistive elements by voltage dependent current sources 

will greatly speed the solution process even when the 

circuit is of limited size. 

In the solution process, after the state variables 

are updated through numerical integration, the variable 

( e . 

- - 
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elements are then updated prior to the next algebraic 

matrix operations. The variable elements are, in general, 

either time variable or network voltage or current 

dependent, or perhaps a function of both time and voltage 

or current. Updating these elements can consist of a 

table lookup procedure or an equation solving process. 

With efficient programming either process will require 

approximately the same amount of time in terms of total 

computer running time. 

The same effect, i.e., increasing the solution time 

by variable elements, could also be illustrated by the 

emitter and collector capacitances. However, as depicted 

by Figure 15, the matrix order must be larger than two 

before the effects of matrix inversion times become 

significant. In place of the non -linear representation 

of the elements, the time constants become the control- 

ling influence on the solution time. 

Nevertheless it is worth while investigating the 

variation of CE and CC of Figure 19(c) to see the effect 

on the circuit response. While a sensitivity factor 

could be defined relating circuit response to parameter 

variation, the intent of this report is to investigate 

the influence on computer running times for device 

characterization; therefore the intent here is only in 

showing that considerable care must be taken in the 
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modeling of active devices. 

When CE and CC were expressed as variables the 

following analytical expressions were used 

3.7 -5 _40.1xVRE CE 3,32x10-- e 
(1.1-VRE)-34 

CC - 
3 .3 

-3 
e29.4xVRC 

C 1.58x10 
(1.1-VRC) .10 

(87a,b) 

The values are from measurements on 2N2369 transistors. 

Both CE and CC were represented as constants while 

the other capacitor was expressed analytically by either 

Equation (87a) or (87b). The values for each capacitor 

and the resulting solution times are given in Table 

TABLE III. CAPACITOR VALUES FOR CE AND CC 
VERSUS SOLUTION TIMES 

CE Constant CC Constant 

CE CC 
Solution 
Time 

CE CC 
Solution 
Time 

Analytic 

100 

50 

10 

Analytic 42 sec. 

48 

80 

368 

Analytic Analytic 

5 

3 

2 

42 sec. 

41 

55 

70 

Aside from the increased solution times due to 

smaller time constant values in each case, the circuit 

response and its sensitivity on parameter value is 

interesting. Figure 20 shows the circuit response for 

the three cases where CE is the element varied. For 

= + 

+ 
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this circuit the delay is the principal response para- 

meter affected by the emitter -base capacitance. Figure 

21 reveals that the collector -base capacitance primarily 

controls the large -signal risetime for the circuit of 

Figure 19(c). 

Not only do Figures 20 and 21 show the extreme care 

that is necessary in modeling active devices accurately, 

but that the networks can be very sensitive in terms of 

running time to the element representation and element 

values. 

Extension to Integrated Circuit Analysis 

Although the preceding material has had for its 

framework the modeling of transistors and transistor 

circuits, it is directly applicable to other active 

devices and circuit elements. The only restrictions 

placed on the nature of the circuit to be analyzed occur 

in the formulation of the analysis procedure itself. In 

chapter two the analysis problem was based on ordinary 

PLC passive elements and VI sources. Therefore any 

analysis must also be formulated with similar elements. 

As an example of the types of problems one encounters 

with integrated circuits consider the cross -sectional 

view of a diffused resistor for hybrid integrated cir- 

cuits depicted in Figure 22(a). 
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An equivalent circuit for this resistor is shown in 

Figure 22(b) where, in addition to the resistor, a 

distributed capacitance and diode must be associated. 

with the resistor due to the substrate material. Among 

other effects the distributed capacitance will form a 

distributed shunt across the resistor at high frequen- 

cies This distributed capacitance may be represented 

by a series of resistor -capacitor stages, or both the 

resistor and capacitor may be modeled by analytical 
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expressions which express their distributed effect 

directly. 

The point is that integrated circuits may be ana- 

lyzed by general network analysis techniques provided 

adequate equivalent circuits are used in which the 

elements are expressible as RLC elements. Several 

approximations may be necessary in such equivalent cir- 

cuits. Narud and Meyer (21) have discussed the charac- 

terization of integrated circuits and the nature of 

these approximations. 

Chapter Summary 

In this chapter several aspects of equivalent cir- 

cuit representation have been presented and related to 

computer solution times for general network time domain 

analysis programs. Network size, network time constants 

and natural frequencies, and network element representa- 

tion have been related to the amount of computer time 

required to solve for the network response. These 

relationships are a result of the mathematical formula- 

tion of the general network analysis problem as applied 

to computer programs. It is not possible to establish 

exact relationships or equations to predict how much 

computer time will be required for an analysis of a 

network of a given size because of the great number of 



98 

possible element representations, network connections, 

and branching paths in any particular solution. It is 

possible, however, to generalize from a few simple 

analysis examples and formulate guidelines in modeling 

that, in most cases, will be valid. This will be 

accomplished in the next chapter. 
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V. CONCLUSIONS 

Important Results 

In the foregoing chapters the primary purpose has 

been to establish a relationship between the modeling 

process (especially large -signal transistor equivalent 

circuits) and the models' effect on the amount of com- 

puter time that would be required by a general time 

domain network analysis computer program. In relating 

computer solution times to the model, both the mathemat- 

ical expressions for the solution and experimental 

results show that three considerations are important and 

should be considered in modeling to avoid excess solution 

times. They are: 

(1) The network size or in other terms the order 

of the matrices describing the network 

topology; 

(2) The network time constants and natural 

frequencies; and 

(3) The representation of non -linear equivalent 

circuit elements. 

For networks consisting of linear elements a measure 

of the effect of circuit size on the resulting computer 

time is shown in Figure 16. The amount of computer time 

varies, to a good approximation, as the second power of 
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the number of nodes. In circuits containing non-lineari- 

ties this relationship will tend to have higher powers 

due two factors (1) the need to update variable 

elements at each integration step, and (2) the extra 

amount of time required for matrix inversion when vari- 

able resistors, capacitors, or inductors are present. 

Figure 17 and 18 show that the smallest natural 

periods or the smallest time constants are of fundamental 

importance in determining the amount of computer time 

that will be required for a specified problem time. This 

is a result of the necessity for keeping the integration 

step size small enough to avoid numerical instability. 

Tables II and III illustrate the importance of 

element representation. In particular, when circuit 

elements are expressed as variables it becomes necessary 

to take the inverse of the solution matrices at each 

time step, thus increasing the solution time, 

Guidelines in Modeling 

From the results of the preceding chapter several 

guidelines can be established as an aid in modeling 

active devices and network elements for computer time 

domain analysis. In particular, the specific purpose of 

the guidelines is to help avoid equivalent circuits that 

will force a general purpose transient analysis computer 
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program to use an excessive amount of computer time for 

a given problem time. These guidelines will be stated 

as RULES but it should be understood they are rules only 

in a general sense. 

RULE 1: Try to limit the size of the circuit. 

For the PREDICT circuit analysis program the following 

approximation holds: 

where 

Running time = as (Number of nodes)2 
2 

(sec) (88) 

a 3.7 sec (89) 

for reasonable amounts of computer time on the IBM 

computer (reasonable would be about ten minutes), 

7094 

Another interpretation of Rule 1, besides the obvious 

interpretation, is that the result of the analysis should 

be insight to the problem posed for analysis, not merely 

numerical answers. Often the same problem expressed in 

simpler terms or divided into sub-networks can provide 

more insight. 

RULE 2: Try to avoid large spreads in circuit 

time constants or wide ranges in net- 

work natural frequencies. 

As shown in chapter four, the running time for a 

general transient analysis program with a variable 

integration period is 

IT 



Running time .0( 
(Problbem time) (sec) 
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(90) 

where b can be either the smallest time constant of 

the circuit or the reciprocal of the highest natural 

frequency. Again, in terms of computers in the 7094 

class (operating cycle time = 2 microseconds) this means 

when 

(Problem time)<6xlo 
b 

(91) 

the machine time will be reasonable (less than ten min- 

utes for an IBM 7094). 

RULE 3: Try to avoid variable R,L,C elements. 

Variable passive elements require a matrix inversion at 

each integration step in the solution process. This 

rule becomes especially important as the size of the 

network increases (see Figure 15). 

Suggestions for Future Work 

It is only relatively recent that digital computer 

programs capable of performing transient analyses of 

large, non -linear networks have been available. Notable 

among those programs that are available is the NET -1 

program (20) and the PREDICT program (32). Several 

groups are presently working on transient analysis pro- 

grams (26,30) and it is expected that considerable fur- 

ther work will be supported in this area. 

\ 
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One of the primary difficulties in transient analy- 

sis programs is speed. Although much can be gained in 

program refinements in the areas of integration methods 

and more efficient matrix operations, what is needed is 

orders -of- magnitude increases in the program speeds. 

Several approaches have been taken towards improving the 

speed of solutions. One method is to integrate the lin- 

ear and non -linear sets of differential equations sepa- 

rately and join the solutions periodically. This has 

been successfully used in transient analysis programs 

(3,5) but could be further developed. 

Certaine has developed a transformation method of 

numerical integration that uses time -dependent relaxation 

methods that shows promise of reducing solution times of 

circuits with mixed time constants (25, p. 128 -132). 

This method, however, has been found to present mathemat- 

ical difficulties with many types of circuits, making it 

less powerful than was hoped (33, p. 13). 

The problem of speeding computation has been, for 

the most part, directed towards reducing the amount of 

work to be done by the program, that is, to find algo- 

rithms which produce some result in the least number of 

operations, or to improve the rate of convergence of a 

given algorithm for a given accuracy. Another approach 

has been proposed by Neivergelt (22) which improves the 
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speed of solution by parallel computation. Redundancy in 

computation is introduced so that several subtasks can be 

performed in parallel and then joined at intervals. This 

approach could conceivably lead to faster network analy- 

sis programs. 

Besides the general area of improvement of program 

speeds as an area for further study another topic is 

suggested. It is the area of active device modeling for 

large- signal analysis. At present the analysis approach 

is usually either through the Ebers and Moll model or the 

charge- control model to an estimate of circuit speeds, 

delays, and stability. It is very difficult to estimate 

the relationship between parameter values and resulting 

response for the non -linear case. It would be worth 

while to study these interrelationships in more detail. 

Perhaps meaningful equivalent circuit element sensitivity 

factors could ne established for various circuit con- 

figurations. 
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