
AN ABSTRACT OF THE THESIS OF

Zhaoyu Li

Computer Science

Title: Complexity of

Experimental Study

for the degree of Master of Science in

presented on November 16. 1990

Probabilistic Inference in Belief Nets An

Abstract a roved: Redacted for Privacy
Bruce D. D'Ambrosio

There are three families of exact methods used for probabilistic inference in

belief nets. It is necessary to compare them and analyze the advantages and

the disadvantages of each algorithm, and know the time cost of making

inferences in a given belief network. This paper discusses the factors that

influence the computation time of each algorithm, presents the predictive model

of the time complexity for each algorithm and shows the statistical results of

testing the algorithms with randomly generated belief networks.



Complexity of Probabilistic Inference in Belief Nets

An Experimental Study

by

Zhaoyu Li

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Completed November 16, 1990

Commencement June 1991



APPROVED:

Redacted for Privacy
11trafissor of Computer Science in charge of major

Redacted for Privacy

Head of department of Computer Science

Redacted for Privacy

Dean of Gradua School

Date thesis is presented November 16. 1990

Typed by Zhaoyu Li for Zhaoyu Li



ACKNOWLEDGEMENT

The implementation of Conditioning , Clustering and Reduction , called

'IDEAL' system, is by Jack Breese and Sampath Srinivas at Rockwell The
implementation of SPI is by Bruce D'Ambrosio at Oregon State University. I
thank Bruce D'Ambrosio who gave me great help and direction in my work. I
also thank Walter Rudd, Thomas Dietterich and Prasad Tadepalli for their
help.



TABLE OF CONTENTS

lIntroduction 1

2 Affecting-time Factors in Probabilistic Inference Algorithms 3

2.1 Polytree algorithm 3

2.1.1 Conditioning algorithm 5

2.1.2 Clustering algorithm 7

2.2 Reduction algorithm 10

2.3 SPI algorithm 13

2.4 Summary 17

3 Experimental study 18

3.1 Input data and test results 18

3.2 Predictive models 20

3.2.1 Conditioning 21

3.2.2 Clustering 23

3.2.3 Reduction 24

3.2.4 SPI 25

3.2.5 Discussion 26

3.3 Validation test 26

4 Conclusions 30

5 Further research 31

6 References 32



LIST OF FIGURES

Figure Pages

1. A multiply connected belief net with probability distributions 2

2. The example of computing the probability p(dle=1) by using the
conditioning algorithm 6

3. The join tree generated from the belief net in figure 1, and c1, c2

and c3 are clique nodes 10

4. The process of transforming the belief net in figure 1 into the
belief net which corresponds to querying the conditional
probability p(dle=1) 12

5. The partition tree created from the belief net in the figure 1, the
internal expressions of the variables in the belief net and
conditioning expression for each partition node, and the process
for computing the probability p(dle=1) 16

6. Statistical result of testing Conditioning algorithm 22

7. Statistical result of testing Clustering algorithm 23

8. Statistical result of testing Reduction algorithm 24

9. Statistical result of testing SPI algorithm 25

10. Comparison between the predicted time , In(estimate), and real

computation time, In(time) for Conditioning algorithm 27

11. Comparison between the predicted time , In(estimate), and real

computation time, In(time) for Clustering algorithm 28

12. Comparison between the predicted time , In(estimate), and real

computation time, In(time) for Reduction algorithm 29

13. Comparison between the predicted time , In(estimate), and real

computation time, In(time) for SPI algorithm 29



LIST OF TABLES

Table Pages

1. The characteristics of the four probabilistic inference algorithms 17a

2. The characteristics of 26 randomly generated belief nets for experiments 19

3. The test results of 26 belief nets for the different algorithms 20



COMPLEXITY OF PROBABILISTIC INFERENCE

IN BELIEF NETS AN EXPERIMENTAL STUDY

1 INTRODUCTION

A belief network [6] is an acyclic, directed graph containing a set of nodes, a set of arcs and

a set of numeric probability distributions. The nodes represent variables, and each node can

assume a set of values that are mutually exclusive and exhaustive. Arcs and numeric probability

distributions represent probabilistic relationships between nodes. A singly connected belief

network is a belief network in which there are no two paths between any two nodes. A multiply

connected belief network is a belief network in which there may be more than one path between

any two nodes. Figure 1 is a example of a multiply connected belief net with distributions.

Belief networks provide an intuitive knowledge representation for probabilistic models. A

belief network contains the information needed to answer all probabilistic queries or make

probabilistic inference about the variables in the network, and it provides a computational

architecture for the propagation of evidence. The time cost of probabilistic inference in an

algorithm is determined by the methods used to perform the probabilistic computations. Since

more than one observation could be inserted in a belief net and more than one query could be

asked after each observation, the incremental characteristics with respect to observations and

queries of an algorithm are important.

There are three exact numerical methods for dealing with probabilistic inference in a belief

network. First, Pearl [6,7] developed an extended representation for belief networks which adds

two distributions, lambda and pi, to each node. These numeric distributions, associated with each

variable, can be updated by local communication between neighboring nodes. The marginal

distribution of each node can then be calculated from local lambda and pi values. The propagation

algorithm is only for singly connected belief networks. Related to the propagation,algorithm, two

algorithms, Conditioning and Clustering [6,10,12] have been developed for multiply connected

This research funded in part by NSF 1R188-21660.



2

networks. The second exact numerical algorithm developed by Shachter [9,10] is Reduction

which performs probabilistic inference by transforming the original belief network into a network

in which only the nodes of interest are left by using node removal and arc reversal techniques.

Finally, D'Ambrosio [3] developed a goal-directed symbolic reasoning algorithm (SPI) which

performs probabilistic inference by logical reasoning and then numeric computation among the

nodes concerned.

Since there are several different algorithms for probabilistic inference, it is desirable to

compare them and analyze the advantages and the disadvantages of each algorithm, and it would

be useful if we could predict the time cost when an inference is made in a given belief network.

In this paper the characteristics of four algorithms, Conditioning, Clustering, Reduction, and

SPI will be discussed, and the factors related to the time

complexity of each algorithm will be analyzed. A set of test cases has been randomly generated

for the time complexity experiment. In each test case, several variables have been randomly

chosen as observations and several variables from the remaining variables have been chosen as

queries after each observation. The predictive model of time cost for each algorithm will be

presented after statistical analysis of the test results. Finally, these models will be verified by

testing some other randomly generated belief nets.

The implementation of Conditioning, Clustering and Reduction, called 'IDEAL' system, is

by Breese and Srinivas at Rockwell and the implementation of SPI is by D'Ambrosio at Oregon

State University.

p(a):

p(bla):

p(a=1) = .2

P(b=11a=1)=.8 p(b=1Ia=0)=.2

p(cla): p(c =1 la=1)=.2 p(c=1Ia=0)=.05

P(dlb,c): p(d=1113=1,c=1)=.8
p(d=1Ib=1,c=0)=.8

p(d=1Ib=0,c=1)=.8
p(d=10=0,c,=0)=.05

p(elc): p(e=1Ic=1)=.8 p(e =1 Ic =O) =.6

Figure 1. A multiply connected belief net with probability distributions.



3

2 AFFECTING-TIME FACTORS IN PROBABILISTIC INFERENCE ALGORITHMS

In this section, we will discuss three families of probabilistic inference algorithms and some

factors which influence the computation time of each algorithm.

2.1 Polytree algorithm

Pearl developed an algorithm for updating probabilities in singly connected belief networks

[6,7]. In Pearl's algorithm, two elements, lambda and pi, associated with each variable are added in

the belief network representation and probability propagation. The process of probabilistic

inference is carried out through a series of probabilistic operations, in which each node receives

information from its neighboring nodes and combines these messages to update its probability.

Let e-x stand for the evidence contained in the tree rooted at x and let e+x stand for the

evidence contained in the rest of the network, the lambda and pi message, X(x) and x(x), are

denoted as

and

4x) = p( 14

x(x) = p(xl efx),

and the belief distribution of x is

BEL(x) = p(xl e+x, e-x) = aP(e-xlx, e+x) p(xl e+x) = aP(e-xlx)p(xl efx) = a 4X) ir(x),

here a = [p(e-xl &+x)] -1 is a normalizing constant rendering iNBEL(x) = 1.

In Pearls algorithm, propagation' for polytree, there are three steps for local propagation and belief

computation which can be executed in any order. Assuming that a typical node x has n parents

U1,..., Un and m children Y1, ...Ym, the belief distribution of variable x can be computed provided

that three types of distributions of node x are available:

1. The current It message contributed by each parent Ui:

Vui) PO-dell/ix)

2. The current lambda message contributed by each child yj:

Xyi(x) = p( 6rxyilx)

3. The conditional probability distribution P(xlui,..., un).

where e+uix stands for the observations contained in the ancestors of nodes Ui, and e-xyi

stands for the observations contained in the sub-tree rooted at node Y. Then three steps can be

performed as:



4

1. Belief updating: The belief distribution of variable x, BEL(x), is

BEL(x) = aX(x) gx)

where

) = (x)

74x) = Eu1....un un)11i Kx(ui)

and a is a normalizing constant rendering 4BEL(x) = 1, and P(xlui,..., un) is the conditional

probability of x given u1,..., un.

2. Bottom-up propagation: Using the messages received, node x computes new X message to

be sent to its parents U1:

2i.x(ui) =13ExX(x) 4,61 P(xlui un)nA 7tx(uk)

3. Top-down propagation: node x computes the new pi message to be sent to its child yj:

Tryi(x) = ni,j kyk (x) Bi,...Un P(X1U1,..., Ling 7i,x(110

= a BEL(x)htyj(x)

The algorithm can be executed in parallel, or sequentially executed in any order for each node.

When a belief net is initialized, the pi message of each root node is equal to its prior probability

p(x) and all childless nodes are assigned the lambda message as X(x) = (1, , 1). Then the

algorithm starts lambda and pi propagations and belief computations. When observations are

inserted, all observed nodes are set as the lambda message as (0,...,0,1,0,...,0) with 1 at the

position that the observation is true, and then the propagation is activated. When an observation

is inserted, only pi propagation is needed for the sub-tree rooted as the observed node, and

lambda propagation for its antecedents and pi propagation for the other children of the

antecedents; therefore, it is reasonable to process propagation in certain order in sequential

case.

From the three steps above, based on the number of values in each variable and on the

number of parents of each node, we know that the time complexity of lambda, pi and belief

distribution computations for each node are exponential, because the summation in each formula

ranges over all value combinations of parent variables. Computation time of the algorithm is also

affected by the location of observations since the positions of observations may decrease the

number of parents of a node, and different observations will cause different propagations.

The main limitation of the algorithm is that the performance of belief updates is limited to a

singly connected belief net or polytree.



5

2.1.1 Conditioning algorithm

Since belief nets for practical use are usually not singly connected, Pearl [6] presents two

ways of converting a multiply connected belief network into a singly connected network, and then

applying his algorithm. One of the methods is conditioning, which is based on the idea of

changing the connectivity of a belief network and rendering it singly connected by instantiating a

selected group of variables.

An intuitive way of converting a multiply connected directed graph to a singly connected

graph is removing extra arcs in the graph, such that no two directed pathways exist between any

two nodes. The process can be performed in a belief network by instantiating a variable in a

pathway instead of removing an arc since there is a characteristic in a belief network that an

instantiated variable in a pathway will block information passed between its parents and its children

and among its children. We call the set of variables to be instantiated a cutset. Given a multiply

connected belief net with variables x1 , x2, ..., xn, the method of conditioning for querying a

variable x given observations E is to choose a group of variables xi1, x12,..., xik from the network

and instantiate them so that the information passing in the network is like that in a singly

connected belief network, then use the polytree updating algorithm for probability distribution

calculation. Obviously, the number of instantiations of the chosen variables is the product of the

number of values of each variable, that is, the times that the propagation algorithm is used for

probabilistic inference is exponential in the number of variables to be instantiated. The final result

of inference is determined by averaging the whole intermediate results weighted by the posterior

probabilities. The formula for calculating the query is:
P(xlE). XP(xlE,

in which, P(xlE, and P(xii ,...,xiklE) can both be calculated by the polytree algorithm.

Since the computation time is exponential in the number of variables in a cutset, minimal

cutset in a belief net is desirable. Unfortunately, finding a minimal cutset in a belief net is NP-hard

[12]. Suermondt and Cooper [12] proposed a heuristic algorithm for finding a cutset in polynomial

time with respect to the number of nodes. The main steps of the algorithm are as follows:

A. Remove all nodes that have a single parent and no children and the nodes that have single

child and no parent, remove the arcs that connected the pruned nodes.



6

B. If there are any nodes left, find a good cutset candidate. Three steps for choosing a good

cutset candidate are:

1. Choose the nodes that have one or no parents;

2. Choose the node from step 1 that has the most neighbors;

3. If there is more than one node, choose the node that has the lowest number of possible

values.

Add the node chosen above into the cutset, then remove it from the network. If there remain

nodes in the network, return to step A.

Figure 2 gives an example of using the conditioning algorithm to query the probability of

node d given the observations e =1 in the belief net in figure 1.. Using the algorithm above, we can

obtain the cutset which has one variable A. The belief net in figure 2(a) is a singly connected

graph by instantiating the cutset variable A with value 0 and the figure 2(b) shows the same graph

with the instantiation of A=1.

A =0 A =0

D

(a)

E = 1

A =1 A =1

D

(b)

E = 1

Figure 2. The example of computing the probability p(dle=1) by using the conditioning algorithm.

The time complexity of the algorithm is 0(n2). This algorithm does not guarantee to find a

minimal cutset, but the experiment with 60 randomly generated belief networks showed that it

found the minimal cutsets in approximately 70 percent of the networks. Therefore, the

conditioning algorithm is exponential in cutset size which determines the number of times the

polytree algorithm will be used and is exponential in the maximum antecedents of a node in the



7

remaining polytree when using the polytree algorithm for each instantiated polytree. That is
20(ecutset_size + number_of_parents_not_in cutset).

Different belief nets may have the same cutset_size but different computation time for

some queries. There are some other parameters , like the number of nodes, number of arcs per

node, the maximal in-degree in a belief net and so on, which may also affect the computation time.

How these parameters are related to the computation time is unknown since there exist many

different belief nets given the same number of nodes and number of arcs, but they may tell us

roughly how complicated a belief net is. Also, the number of queries and the number of

observations are significant factors affecting the computation time of some algorithms. Thus, we

will consider these parameters as affecting-time factors that influence computation time in each

algorithm.

In the conditioning algorithm, the number of nodes, arcs, maximal in-degree in a belief net,

number of observations and cutset size should be considered as factors that influence

computation time in the algorithm. Number of queries is not such a factor because any marginal

probability can be calculated easily after local propagation of lambda and pi distributions. The

number of observations will cause different time cost depending on whether an observed variable

decreases the cutset size or not. If an observed variable does not decrease the cutset size, the

time of querying any variables will be a little longer than that of querying the same variables

before inserting the observation because more time will be used for propagating the observation;

but if an observation decreases cutset size, the querying time will be almost cut in half (assuming

that the observed variable has two values). Therefore, it is hard to predict the total querying time

after a group of observations. It is possible to predict querying time after first observation if we

know the cutset size of the belief net according to theoretical analysis of the algorithm.

2.1.2 Clustering algorithm

Another method of handling multiply connected belief nets which uses the polytree

algorithm is clustering. Clustering involves forming compound variables (a compound variable

consists of several variables in a belief network) in such a way that the resulting network of

compound variables is singly connected. Generally, there are many different ways to cluster a

belief network since any two nodes in a belief network can be merged to one clique node if there

is only one directed path connecting the two nodes or if there is no directed path between them.



8

In the extreme case, a clustered tree can be formed by lumping together all non-leaf variables as

one variable. However, the exponential carcOnality of a compound variable and its structureless

nature make it difficult to compute and explain the beliefs accrued by individual hypotheses within

this variable. Pearl [6] proposed a strategy of clustering, and Lauritzen and Spiegelhalter [5]

presented a modified version.

There are two parts to the clustering algorithm. First, create cliques (a clique is a maximal

subset of nodes which is a complete sub-graph) and form a join tree (a tree with cliques as nodes).

Second, update the tree when any observations are inserted. Creating cliques and forming a join

tree involves the following steps:

1. Convert the belief network into a Markov network by interconnecting the parents of each

node and then making the original directed edges in the belief network non-directed. A Markov

network is an undrected graph in which unconnected nodes are conditionally independent.

2. Triangulate the network by using the maximum cardinality search, which transforms the belief

net into a chordal graph (a chordal graph is a undirected graph in which every cycle of length of

four or more has a chord). After triangulation, the chordal graph can be decomposed into a set of

cliques that have the running intersection property. The running intersection property here

means that when all cliques are sorted in an order of (C1, C2, ..., Cn), then for all j there exits i <

j such that Ci Ci n (Ci u u Co).

3. Sort the cliques in the increasing order of the maximum index number of nodes in a clique

and assemble them in a join tree by connecting each clique node ci to a clique node Ci (j < i)

sharing the maximum index number of nodes with Ci . Each clique is now modeled as a clique

node in the join tree.

4. Set up the conditional probability distributions of clique nodes according to the links in the join

tree. Each combination of states of the component belief net nodes of the clique node is one

state of the clique node.

Figure 3 shows one join tree generated from the belief net in figure 1 by the algorithm

above.

The time complexity of step 1 is 0(n2). Step 2 needs 0(n + e) time for triangulation

according to Tarjan and Yannakakis's algorithm [5], here n is number of nodes and e is number of

arcs in a belief net. So it is 0(n2) for that e is 0( n2) at most. There are at most (n-1) cliques in a

belief net since any node and its parents form a clique. Since the number of clique nodes in a join



9

tree is less than the total nodes in the belief net, the complexity of forming the join tree in is 0(n2)

in step 3. In step 4, setting up probability distributions is time consuming. The states of a join

node are determined by the combination of all belief nodes in that join node, so the operations

expected to compute the probability distributions for a join node are exponential in clique size of

the join node or number of belief nodes in that join node. This indicates that the maximal clique

size in a join tree is a key factor of considering time complexity in probabilistic inference in

clustering algorithm and that it can be computed at time cost 0(n2) in the number of nodes in a

belief net.

When observations are inserted, the join tree will be updated by local computation of

lambda, pi and probability distributions for each dique node. Three steps perform this function:

1. Create dummy clique nodes that send lambda messages to the clique nodes affected by the

observations.

2. Update the join tree by using the polytree algorithm. The belief of a clique node is the joint

probability of appropriate states of the component belief net nodes, given observations used for

inference in the join tree.

3. Calculate the beliefs of each of the belief net node by finding the smallest clique node in

which the belief net node is a member, and then marginalizing the clique node's belief over the

states of the other component nodes of the clique node.

The time cost for step 1 and step 3 is very low and can be ignored compared to step 2. The

complexity of step 2 results from using the polytree algorithm which is exponential with respect to

the number of parents of a node. It seems that it shouldn't take very long because the number of

parents in the join tree for any join node is at most one. But the key point is that, since states of a

clique node are determined by the states of the belief nodes in that clique, the calculation of

clique states affected by the observation is exponential in clique size based on the number of

values of variables. Furthermore, one observation may affect more than one clique node and so

the time cost will be linear in the number of clique nodes affected. From analysis above we know

that it is possible to use the maximum clique size to estimate the total updating time for the

algorithm.

Observations are handled as dummy clique nodes in the algorithm and propagation

provides incrementality with respect to observations. These dummy clique nodes remain attached

to the cliques unless the observations are changed by new observations relating to the nodes



10

inserted. The join tree can be repeatedly used for inference when new observations added. Thus

the time cost is polynomial in number of observations.

Considering two parts together we know that clustering algorithm is exponential in clique

size when using polytree algorithm for probabilistic inference. The factors that influence

computation time should also include the number of nodes and number of arcs which will affect

the number of cliques and the number of cliques which have the maximum clique size, and

number of observations which will affect clique size of some clique nodes. The number of queries

is not a affecting-time factor since the marginal probability of a belief node can easily be calculated

from the join node it exists in. As in the conditioning algorithm we usually consider the total time

to be polynomially related to the number of nodes and arcs in a belief net.

Figure 3. The join tree generated from the belief net in figure 1,
and c1, c2 and c3 are clique nodes.

2.2 Reduction algorithm

Reduction is another method for probabilistic inference in a belief network. Schachter

[9,10] outlined a goal-directed algorithm for belief net transformations. The main idea of the

reduction algorithm is as follows: given a belief net with n nodes representing probabilistic

relations of n variables xi, x2, ..., xn, then the marginal probability of any variable xi given

observations xii , xik, that is p(xilxii, xik), corresponds to a particular graph. This graph can

be derived from the original belief net by node removal and arc reversal; these transformations

maintain the consistency between the original net and the transformed net for the query.

Rege and Agogino [8] developed a heuristic algorithm for the reduction process. The

algorithm takes 0(n2) storage and 0(n3) time for symbolic or topological transformation. The

symbolic transformation algorithm removes nodes and reverses arcs, until only conditioning and



11

conditional nodes are left. Letting C be the set of conditioning and conditional nodes and K be

the other nodes to be removed, the five steps of the algorithm are:

1. Remove all nodes in K that have no successors. Repeat until all nodes without successors

are removed. If K is empty go to 5.

2. Remove all nodes in K that have only one successor each. If more than one node is to be

removed, remove them in the order of fewer predecessor first. Repeat until all nodes with one

successor are removed. If K is empty go to 5.

3. Select the node in K with least number of successors, let the node be x.

4. Pick a successor of node x and check the number of paths from x to the successors; if there

is more than one path, reject it; otherwise reverse the arc between x and that successor with

concomitant updating of their predecessor and successor set according to Bayes theorem.

Check if x has only one successor, if so remove x and if K is not empty go to 2 otherwise go to 5. If

x has more than one successor go to 4.

5. For every successor of a conditional node, check for more than one path between conditional

node and that successor. If there is more than one path, reject that successor; if not, keep track of

the successor with the least number of predecessors (y). Reverse the arc between the

conditional node and y with a concomitant updating of successor and predecessor sets. Repeat

5 until the conditional node has no successors.

Figure 4 shows the process of transforming the belief net in figure 1 to the belief net which

corresponds to querying the variable d given the observation of e, i.e. p(dle=1).

Most of the cost results from calculating conditional probability in arc reversal. Assume that

node xi conditionally depends on nodes wi, node xi conditionally depends on node xi and nodes

wj, and both xi and xi conditionally depend on nodes wij, then after arc reversal between node xi

and xj, the conditional probability of P(xpwi, wj, wip and P(xilwi,wip will be:

P(xilwi,wi,wip= Li P(xilxi,wi,wip*P(xilwi,wii)

From the above formulas we know that the cardinalities of xi and xi are usually increased after arc

reversal, and calculation of the conditional probability distribution is exponential in the number of

parents of node xi and xi. We use the word dimensionality of node xi, to denote the number of

arcs from set of nodes { xj, wi, w1, wij) to node xi, then the probability computation for node xi will

be exponential to its dimensionality.



remove a

irreverse arc <c, d>

remove c

The maximum dimensinality is 4.

ilrreverse
arc <a,c>

reverse
<d,. e>

12

Figure 4. The process of transforming the belief net in figure 1 into the belief net which
corresponds to querying the conditional probability p(dje =1).



13

Since a query P(xilxii ,xi2,...xik) will generate a corresponding belief net from the original

net, it is hard to use any symbolic intermediate result for new observation or querying another

variable; no caching is implemented in the algorithm and any query will start transformation from

the original belief net. Obviously, if we know the maximum dimensionality in a belief network

transformation, the time cost in the algorithm is intimately related polynomial-time to the number of

queries and exponential-time to the maximum dimensionality. The number of nodes and the

number of arcs should also be the affecting-time factors in the algorithm since they are closely

related to the algorithm. The observations is not a affecting-time factor since it is carried out in the

step 5 very quickly.

A parameter which records the maximum dimensionality of computing numeric probability in

transforming original belief net to a desired net is chosen as affecting-time factor of the algorithm

in our test and it can be computed at 0(n3) in the number of nodes in the belief net.

2.3 SPI algorithm

The symbolic probabilistic inference algorithm (SPI) developed by D'Ambrosio [3] is a

query-driven algorithm which uses Bayes theorem directly for probabilistic inference in multiply

connected networks. In this algorithm, probabilistic inference occurs in two steps. In the first step,

symbolic reasoning determines which nodes in a belief net should be queried or computed

according to current marginal or conditional queries; then the probability computations are carried

out for those nodes.

Symbolic representation of a node in SPI is the node marginal in terms of its conditional

distribution and the immediate antecedents needed for computation. When a node is queried, its

marginal probability can be calculated from its symbolic expression if all marginal probabilities of its

immediate antecedent's are known. If some of them are unknown, then sub-queries are

generated for these nodes. This is a recursive process which continues until all values needed

are known. All queries and sub-queries are processed according to the structure of the belief net;

it is possible to cache some intermediate results for some nodes. If computation proceeds in the

same path as before, cached results can be used.



14

In order to get a better factoring result, a partition strategy , which also supports

intermediate result caching, is used in SPI, and an ordering heuristic algorithm is used before the

probability computation. A partitioned belief net is a tree structure. Associated with each partition

is a conditioning expression which stores the union of the expressions for the observed value of

each observed variable in that partition. There is one conditioning expression for each partition

because any observation in a partition will only affect its child partition node.

There are three steps in the SPI algorithm:

1. Create a partition tree from the belief net.

2. After each observation, modify the conditioning expressions of the belief net in the partition

affected by the observation.

3. When querying a variable x, use the formula

P(x) = Union(exp(x), exp(conditioning roo)y Union(exp(conditioning toot))

to compute its probability. For conditioning queries or joint probability, for example p(x&yjz),

use the following formula

P(x&ylz) = Union(exp(x), exp(y), exp(z), exp(conditioning mot))/Union(exp(z),

exp(conditioning toot)).

Here, conditioning root is the conditioning expression for the root partition. The symbolic

reasoning is carried out first; it generates whole expressions relevant to the current query. If the

values of some of the expressions in the above formula are unknown, some other expressions

related to computing the unknown expressions are generated and computed by using a similar

formula as above. This process is carried out recursively until all expressions needed are

obtained. Usually only those conditioning expressions which affect the queried node would be

considered as the conditioning expression in the above formula according to Bayes rule, but it will

take time to detemine which observation would affect a queried node. Therefore, it is better to

consider all conditioning expressions in a partition tree, starting conditioning from the root

partition then recursively to all its child partitions until an observation is met , which blocks

propagation of the observation from other nodes in that branch, or until the leaves of the partition

tree are met. The cost of always starting in the root is lower than the cost of finding the lowest valid

starting partition. If there is not a conditioning variable in the query, the probability computation for

the denominator can be replaced by a normalizing factor. Figure 5 shows the partition tree created

from the belief net in the figure 1, the internal expressions of the variables in the belief net and

conditioning expression for each partition node, and the process for computing the probability

p(dle=1)



15

Step 1 is a heuristic partitioning algorithm; its complexity is 0(n2). In step 2, after each

observation, the algorithm will change the representations of the children of the observed node.

The algorithm resets the expression of the observed node as 1.0 and its value space is a

singleton consisting of only the observed value. It also resets the conditioning expression to the

union of its current expression and the expression for the observed value of the observed node;

where union is an operation defined for computing the expression for certain joint distributions.

Hence, the representation in SPI can be modified incrementally in observations. Since there is a

caching strategy in the algorithm, there should be a cache modification after each observation.

The cache invalidation strategy used here is the following: when an observation is inserted, all

caches on the path from that partition to the root are invalidated. The time cost in step 2 is very

little compared to step 1 or step 3. Most time is spent in step 3. The time of computing any two

expressions in the formula in step 3 is exponential in number of variables in the two expressions

or its dimensionality. Since computation time is exponential in the number of variables in two

expressions, it is important to factor them as optimally as possible. The strategy used here is to do

a static factoring of the probability space prior to the processing of any queries and then to use

fast expression ordering heuristics to minimize the cost of computations within each part of static

factoring. The time complexity of symbolic reasoning is 0(n3) in the number of nodes since for

each partition node union, decomposition and ordering operations are needed which are of time

complexity 0(e2), 0(e) and 0(e2) respectively. Here e is the number of factors in factoring.

Therefore, the total time used for querying a node mainly depends on the number of factors and

the maximal dimensionality in the query.

From the analysis above we know that affecting-time factors in SPI algorithm are

dimensionality of a factor which can be computed at 0(n3) in the number of nodes in a belief net,

number of queries, and maybe the number of nodes and the number of arcs. Time complexity is

exponential in the maximum dimensionality in a query, polynomial in number of queries. The

number of observations is not a time affecting-factor since it takes very little time for modifying

affected partitions and related probability expressions. Since the factoring algorithm is heuristic

and the number of factors is related to the paths retrieved in the belief net, the time model

consisting of above parameters may not fit real test time very well.



16

Partition tree:
root

Observation: e=1:

The internal expressions:

exp(A). A Conditioning root = EtiCC

exp(B)=BIAA Conditioningot = 1.0

exp(C)=CIAA Conditioning 1.0

exp(D)=DIBCBC

exp(E)=EticC

The process of computing the probability of p(dle=1)

postetior(D)= Union(exp(D), Conditioning root) = Union(DpcBC, EticC) = °IBC B C Etic

Union(exp(B), exp(C), Conditioningci ) = Union (BIAA, CIAA, 1.0). BIA CIA A

Union (exp(A), Conditioningo2) = Union(A, 1.0) = A

posterior(D) = D1Bc BIA CIA A Etic =P(DIB,C)P(BIA)P(CIA)P(A)P(E=tIC)

Ft1C(IBDIBC[ZABIA (CIA N]c1)1root

The maximum dimensionality is 3.

Figure 5. The partition tree created from the belief net in the figure 1, the internal expressions of
the variables in the belief net and conditioning expression for each partition node, and the
process for computing the probability p(dle=1).



17

2.4 Summary

The characteristics of the four probabilistic inference algorithms are summered in table 1.



CONDITIONING CLUSTERING REDUCTION SPI

BASIC APPROACH
Polytree Propaga-
tion Algorithm

Polytree Propaga-
tion Algorithm

Node Removal
Arc Reversal

Goal-direction
Algorithm

FACTORS THAT
INFLUENCE COM-
PUTATION TIME

Number of nodes
Number of arcs
Number of obser-
vations
Cutset size

Number of parents

Number of nodes
Numberof arcs
Number of obser-
vations
Clique size

Number of nodes
Number of arcs
Number of obser-
vations
Number of queries
Dimensionality

Number of nodes
Number of arcs
Number of obser-
vations
Number of queries
Dimensionality

TIME COMPLEXITY

Exponential in cut-
set size and max
antecedent

Exponential in max
clique size

Exponential in max
dimensionality

Exponential in max
dimensionality

INTERMEDIATE
RESULT CACHING No No No Yes

INCREMENTAL TO
OBSERVATIONS No Yes No Yes

Table 1. The characteristics of the four probabilistic inference algorithms.



18

3 EXPERIMENTAL STUDY

Once we determined qualitatively the factors influencing computation time for each

algorithm, we turned our attention to developing a quantitative model of these influences. The

methodology used was to generate some test cases with the time affecting-factors chosen

randomly; run each algorithm with these test cases, analyze the test results statistically and find a

good regression model for each algorithm; and finally verify the predictive models with a second

set of randomly generated test cases.

3.1 Input data and test results

We use J. Suermondt't random net generator to generate all test cases. This generator

starts with a fully connected belief net of size n, and removes arcs selected at random until the

number of the remaining arcs is a selected value. There were twenty belief nets generated for

experiments initially. They were randomly generated in the range of ten to thirty nodes and 1.0 to

5.0 average incoming arcs per node. Since some of the belief nets were too big for one or

another algorithm to run in a reasonable time, another six belief nets with nodes ranging ten to

thirty and 1.0 to 1.6 average arcs per node were added to the experiments. Table 2 presents

some characteristics of the 26 belief networks; max-ant is the maximum number of antecedents

of any node in a belief net; cutset-size is the maximum cutset size in the conditioning algorithm;

clq-size is the maximum clique size in the clustering algorithm; rdct-dm is the maximum

dimensionality in the reduction algorithm; and spi-dm is the maximum dimensionality in the spi

algorithm. The , in all tables, denotes an unknown value since the algorithm could not finish

running that test cases in ten hours.



19

net nodes arcs arc/node max_ant outset-size clq-slze rdct-dm spl-dm

1 23 28 1.2 5 3 6 9 6
2 13 62 4.8 8 9 11 10 9
3 13 61 4.7 10 9 11 11 10
4 18 85 4.7 11 * * 14 13
5 16 54 3.4 7 10 11 12 7
6 17 34 2 5 7 9 6 6
7 23 60 2.6 9 * 13 15 12
8 10 15 1.5 3 3 4 6 4
9 27 35 1.3 4 3 5 9 5
10 12 26 2.2 5 5 7 6 6
11 23 87 3.8 9 13 18 12
12 11 36 3.3 6 4 7 8 7
13 14 15 1.1 3 1 4 4 4
14 16 40 2.5 5 7 8 9 6
15 19 76 4 10 * * * 13
16 29 131 4.5 11 * * * *
17 29 90 3.1 8 * * * 16
18 16 35 2.2 5 4 7 8 6
19 15 53 3.5 10 9 11 14 10
20 26 101 3.9 10 * * 13
21 28 34 1.2 4 2 5 5 4
22 25 30 1.2 4 3 5 7 6
23 22 29 1.3 4 5 5 9 5
24 27 41 1.5 5 6 8 7 6
25 25 25 1 4 1 5 8 5
26 16 16 1 5 1 6 6 5

Table 2. The characteristics of 26 randomly generated belief nets for experiments.

Table 3 presents the test results of all belief networks. In each test case, we randomly

determined the number of observations to be inserted in that test case, then we randomly choose

each observation from all variables in the belief net and finally we choose at random a set of

variables as queries from remaining variables after each observation. The total observations and

total queries are shown in columns obs and query and the columns from 4 to 7 present the total

computation time in seconds. We generated all test cases as above because we think that all

factors in a belief net generated at random may give us more reasonable test results and be closer

to realistic models. The experimental results show that SPI gives the best performance of the

algorithms. The best performance of SPI is due to the characteristics of the algorithm, goal-

directed reasoning, caching intermediate results, and its incremental nature with respect to

observations. But caching and incremental observations are not key points for speeding the

algorithm. The test [3] shows that caching significantly improved the performance but not

dramatically (about 10 to 40 percent, see [3]). The key point is the goal-directed reasoning which

only considers the nodes relevant to the query and the numeric computations which are carried



20

out among those nodes. In contrast to the SPI, in the polytree propagation algorithm, when an

observation is inserted, the message passes through all nodes; querying one variable will take

almost the same time as querying all variables. Another advantage of SPI is that the heuristic

strategy of factoring the probability space in SPI decreases the factor dimensionality in

computation.

net obs query cond/t cluster/t reduct/t split

1 23 142 265.82 924.70 114.81 4.3
2 7 27 * * 304.85 3.14
3 10 33 * * 1067.88 6.9
4 17 97 * * 6517.16 6.95
5 9 49 * * 540.55 2.72
6 1 1 229.28 5037.58 0.62 0.21
7 5 40 * * 1215.84 9.42
8 10 31 55.55 25.84 10.63 0.62
9 27 127 666.45 709.02 280.83 5.74
10 1 8 80.84 438.00 5.22 0.27
11 4 22 * * 35608.22 20.56
12 9 17 1136.6 3754.33 40.29 0.86
13 12 30 19.32 24.88 7.23 0.55
14 9 34 3983.83 10312.11 55.26 1.24
15 16 74 * * * 43.4
16 26 199 * * * *
17 12 142 * * 367.95
18 13 53 544.99 4099.10 44.56 1.31
19 15 48 * * 784.25 3.85
20 11 98 * * 81.79
21 4 46 37.48 72.92 28.53 0.86
22 9 130 117.49 195.57 95.15 4.29
23 10 88 247.15 208.34 121.23 2.4
24 1 25 380.19 1187.11 32.67 1.48
25 13 48 83.12 95.65 154.21 4.03
26 13 57 125.03 112.06 25.28 0.8

Table 3. The test results of 26 belief nets for the different algorithms. * denotes an unknown
value. All algorithms are implemented in Common-Lisp and run in the SUN/4.

3.2 Predictive models

We know that the cutset can be found by using Coopers heuristic algorithm at time cost

only 0(n2) in the number of nodes in a belief net; the maximal clique size can be computed at

time cost 0(n2) in the number of nodes in a belief net; the maximum dimensionality in the

reduction algorithm can be computed at the time cost 0(n3) in the number of the node in a belief

net; and the maximum dimensionality in the SPI can be computed at the time cost 0(n3). The time



21

cost for computing the affecting-time factors for each algorithm is trivial compared with the real

probability computation. We used stepwise regression by hand to test different models for each

algorithm, and we choose one which fits best to each algorithm.

3.2.1 Conditioning

Figure 6 is the statistical analysis for 17 test results of 26 generated test-cases; the rest of

them can not be run in a suitable time. The test results show that the running time after first

observation is exponential in cutset size and maximal in-degree of a belief net, and is polynomial in

number of nodes and average arcs per node. It also shows that the test results and theoretical

analysis above fit pretty well. One caveat the implementation of the conditioning algorithm in

IDEAL system does not perform any intermediate result caching. When a new observation is

inserted, the algorithm starts to consider all observations inserted so far for a query.



22

Response: in(time/lst obs.)

Summary of Fit
Rsquare .9884395
Observations (or Sum Wgts) 17

Parameter Estimates
Term Estimate Std Error t Ratio Prob41
Intercept -5.068423 1.07096 -4.73 0.0005
cutset .44784380 .065629 6.82 0.0000
In(nodes) 1.1048083 .393202 2.81 0.0158
In(arcs) 2.4039352 .571994 4.20 0.0012
anticedents .60619205 .135307 4.48 0.0008

Whole-Model Test

0 i I i

0 2.5 5 7.5
In(t /1 ob) Predicted

Figure 6. Statistical result of testing Conditioning algorithm.

The predictive model is:

In(time) = -5.068 + 1.15 In(nodes) + 2.404 In(arcs) + 0.448 cutset + 0.606 antecedents.



23

3.2.2 Clustering

Figure 7 shows the regression result for the clustering algorithm using 15 test cases of 26

randomly generated belief networks.

Response: In(time)

Summary of Fit
Rsquare
Observations (or Sum Wgts) 15

.9829846

Parameter
Term

Estimates
Estimate Std Error t Ratio Prob>lti

Intercept -7.514065 .927943 -8.10 0.0000
In(nodes) 1.740452 .310834 5.6 0 0.0002
In(arcs) 2.8928964 .394450 7.33 0.0000
In(obs) .71854693 .092004 7.81 0.0000
cliques .97732662 .091748 10.65 0.0000

Whole-Model Test

3
2 5 5 7.5 1 0

In(time) Predicted

Figure 7. Statistical result of testing Clustering algorithm.

The predictive model is:

In (time) = -7.514 + 1.741In(nodes) + 2.893 In(arcs) + 0.7191n(obs) + 0.977 cliques.



24

3.2.3 Reduction

Figure 8 shows the regression result for the reduction algorithm with 22 test cases.

Response: in(time)

Summary of Fit
Rsquare .9215450
Observations (or Sum Wgts) 22

Parameter Estimates
Term Estimate Std Error t Ratio Prob>lti
Intercept -3.225386 .619687 -5.20 0.0001
dimensionality .56022507 .043936 12.75 0.0000
In(query) .76246946 .147666 5.16 0.0001

Whole-Model Test

-2.5
-2.5 0 2.5 5

In(time) Predicted

Figure 8. Statistical result of testing Reduction algorithm.

The predictive model is:

In(time) = -3.225 + 0.763 In(query) + 0.5602 dimensionality.



25

3.2.4 SPI

Figure 9 shows the regression result using the same randomly generated test cases. The

number of arcs is deleted from the model for that it is not significant in the statistical analysis.

Response: In(time)

Summary of Fit
Rsquare .9148749
Observations (or Sum Wgts) 25

Parameter Estimates
Term Estimate Std Error t Ratio Prob>lt I
Intercept -7.324417 1.0294 -7.12 0.0000
dimensionality .35215165 .033013 10.67 0.0000
In(query) .55869691 .119700 4.67 0.0001
In(nodes) 1.2635668 .395430 3.20 0.0043

Whole-Model Test

-2
-2 -1 0 1 2
In(time) Predicted

Figure 9. Statistical result of testing SPI algorithm.

The predictive model is:

In(time) = -7.325 + 1.264 In(nodes) + 0.559 In(query) + 0.352 dimensionality.



26

3.2 5 Discussion

In the above time predictive models, Conditioning, Clustering and SPI show that the

affecting-time factors in these models are consistent with the theoretical analyses in the section 2.

However, we did not see the expected sensitivities to nodes and arcs as in the reduction

algorithm. We surmise the reasons for non-sensitivity of some factors are two: one is that the

reduction heuristic masks node and arc sensitivity by going into the higher dimensions. That is,

the local nature of the reduction algorithm makes the reduction process more likely to be non-

optimal as number of nodes increases, and the other is that the node removal strategy in the

algorithm makes the algorithm less sensitive to the number of nodes and the number of the arcs.

3.3 Validation test

Another 13 belief nets were generated for testing the predictive models. They were

randomly generated in the ranges of ten to thirty nodes and 1.0 to 5.0 average arcs per node.

Since some of the belief nets are too big for one or another algorithm to run in a reasonable time,

another seven belief nets with nodes ranging from ten to thirty and 1.0 to 1.6 average arcs per

node were added. The number of observations and the number of queries after each observation

were randomly determined as well. The following figures (Figures 10 to 13) show the comparison

between the time cost calculated from the predictive models and the real time cost of running

those algorithms. The In(estimate) axis represents the predicted time in natural logarithm and the

In(time) axis represents the real computation time in natural logarithm. From the figures, we know

that the predictive models give very close estimates for the real computation time. The difference

between the estimated time and the real time cost is at most five-fold in the all predictive models.

Since the running time on the same inputs varies as much as twice its value sometimes, the

predictive models are acceptable.



27

12

n

1 0-
e

8
i

m
a 6

t

4- . .

2-

0

0 2

In(time)

4 6 8 10 12

Figure 10. Comparison between the predicted time , ln(estimate), and real computation
time, In(time) for the conditioning algorithm. There is one point in the figure which dose not
fit the real computation time well; this is because the observation reduces the number of
cutsets by 1 in real computation, so it took less time than estimated.



28

12

n

10
e

t 8-
i

m
a 6

t

)
4-

2-

0

0 2

In(time)

4 6 8 10

Figure 11. Comparison between the predicted time , In(estimate), and real computation
time, In(time) for the clustering algorithm. There is one point in the figure which dose not fit
the real computation time. In this test case, since there is only one clique node in the belief
net, there is no propagation needed after each observation. The real time cost is much
smaller than estimated.



29

8

n

e
6

t

m
a 4

t
e

2

0
0

In(time)

2.5 5 7.5 10

Figure 12. Comparison between the predicted time , In(estimate), and real computation
time, In(time) for the reduction algorithm.

4

n

e 2_

t

m
a 0

t
e

-2-

-4
-2

In(time)

0 1 2 3 4

Figure 13. Comparison between the predicted time , In(estimate), and real computation
time, In(time) for the SPI algorithm.



30

4 CONCLUSIONS

From the statistical analysis, the predictive models of computation time for four widely used

exact algorithms in probabilistic inference in a belief net, Conditioning, Clustering, Reduction

and SPI, are presented. They give a close estimation of the real time cost. One of the four

algorithms, SPI shows better performance than the other algorithms. This is because SPI has the

characteristics of query-directed reasoning, caching of intermediate results and incrementality

with respect to observations. Its advantages compared with the other algorithms make it more

suitable for practical probabilistic inference systems.



31

5 FURTHER RESEARCH

Probability computation is the most time consuming step in probabilistic inference

algorithms. Further research should focus on how to speed up the computation. Factoring the

probability space in SPI is one of the good ideas for dealing with this problem. An effective

factoring strategy will reduce time cost.



32

7 REFERENCES

[1] Barlow, R. E. and Pereia, C. A. B. The Bayesian Operation and Probabilistic Inference

Diagrams. Nov., 1987, draft book chapter.

[2] Cooper, G. F. Probabilistic inference using belief networks is NP-hard. Knowledge System

Laboratory, Stanford University, Memo KSL-87-27, May 1987.

[3] D'Ambrosio, Bruce. Symbolic Probablistic Inference in Belief Nets. Dec. 15, 1989, OSU

technical report.

[4] D'Ambrosio, Bruce. Incremental Construction and Evaluation of Defeasible Probabilistic

Models. Mar. 13, 1989, to appear in International journal of Approx. reasoning.

[5] Lauritzen, S. L. and Spiegelhalter D. J. Local Computations with Probabilities on Graphical

Structures and their Application to Expert Systems. Royal Statistical Society. Jan., 1988.

[6] Peari J. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Mateo, 1988.

[7] Pearl, J. Fusion, Propagation, and Structuring in Belief Networks. Artificial Intelligence, 29(3):

241-288, 1986.

[8] Rege, A. and Agogino A. M. Topological Framework for Representing and Solving

Probabilistic Inference Problems in Expert Systems. IEEE, Nov, 1988.

[9] Shachter, R. D. Evaluating Influence Diagrams. Operation Research, vol. 34 No.34, Nov.,

1986.

[10] Shachter, R. D. Evidence Absorption and Propagation Through Evidence reversals.

Proceedings of the Fifth Workshop on Uncertainty in AI, 1989.

[11] Srinivas, S. and Breese, J. IDEAL: Influence Diagram Evaluation and Analysis in Lisp. May 8,

1989, Rockwell Palo Alto Lab technical report.

[12] Suermondt, H. J. and Cooper G. F. Probabilistic Inference in Multiply Connected Belief

Networks Using Loop Cutsets. Mar., 1989, Stanford technical report.


