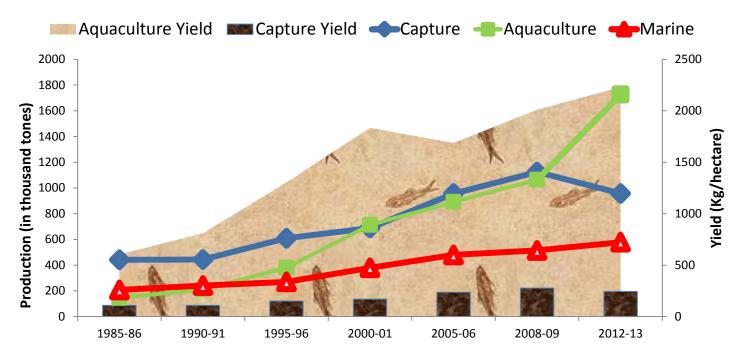


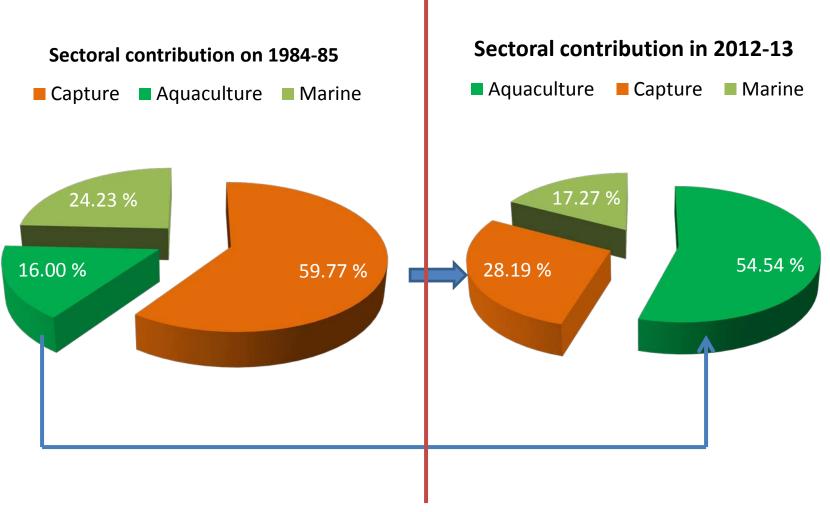
Bangladesh Agricultural University, Mymensingh-2202

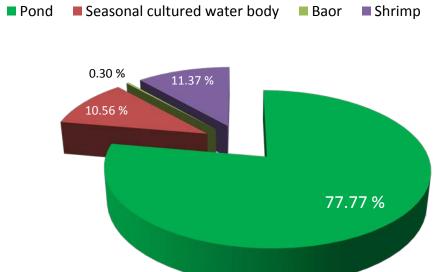
Production Risk, Inefficiency and Sustainability of Pangas Fish Farming: Lessons from the Bangladesh Aquaculture Sector

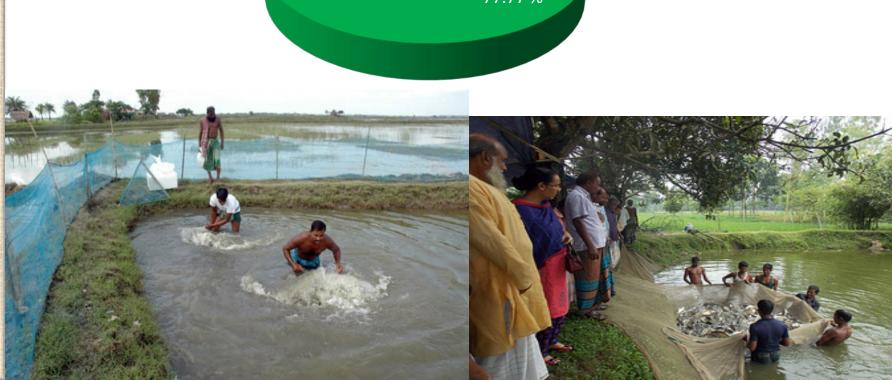
Md. Akhtaruzzaman Khan Ratna Begum Rasmus Nielsen E-mail: azkhan13@yahoo.com


> IIFET Conference 2016 Aberdeen, Scotland 11 to 15th July 2016

Overview of Bangladesh Fisheries

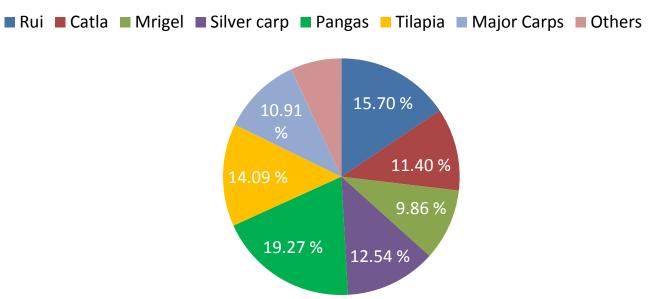

- In Bangladesh, fisheries is playing a vital role in providing food and nutrients, creating employment (12 million people) and poverty alleviation.
- Fish is the second largest export commodity, contribute 4.37% of total GDP and 3% of total export earning (BBS 2015).
- Bangladesh is the fourth largest inland freshwater fish producing country in the world (FAO 2014)


Scenario of sectoral contribution



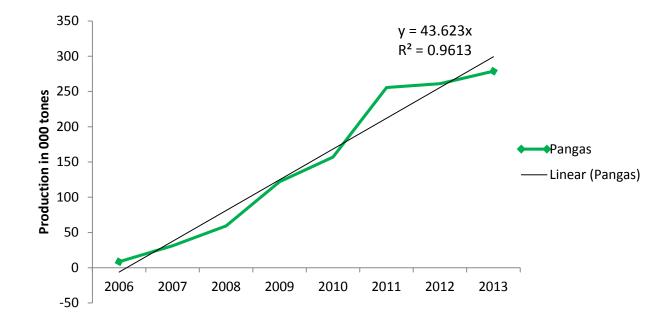
Percentage of total aquaculture production

Department of Agricultural Finance Bangladesh Agricultural University, Mymensingh-2202



Why Pangas?

- Pangas (Pangasius hypophthalmus) is relatively new and fast growing species, tolerate high density, and reach a marketable size within just five to six month.
- It is known as "fish for the poor" due to low market price.



➢Potential for export earnings (Vietnam earns USD 2 billion)

Production trend since 2006

Bangladesh Agricultural University, Mymensingh-2202 Department of Agricultural Finance

7/21/2016

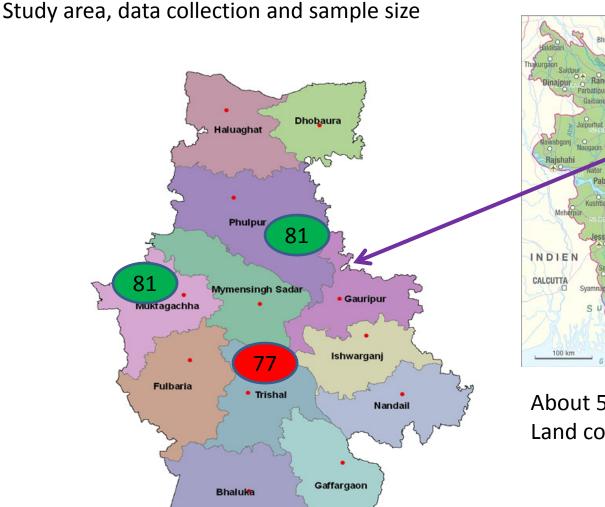
IIFET 2016 Aberdeen Scotland

- Number of stochastic biophysical and socioeconomic factors may influence on production system and differentiate production practice
- Production variability observed from farm to farm and location to location, might be due to input use variation and lack of proper management practices (institutional support-credit, extension services and socioeconomic characteristics- capital)
- Production cost has increased due to high input price specially feed (compared to output price) resulted farmers stop producing pangas
- Small farmers cannot purchase feed in proper time and sufficient amount because of capital constraint. Therefore, input use variability among farmers may create production risk

- Some input may reduce output risk while many increases risk
- There is substantial scope for controlling the level of production risk through efficient use of input quantities.
- > Question of sustainability (due to low price, high input cost, other fish culture)
- Literature: Asche & Tveterås (1998, 1999), Kumbhakar (2002, 2003), Kristin Roll (2008) etc. but no literature on Bangladesh aquaculture

Research question

What are the input risk factors that affect production of pangas farming? Are all the fish farmers technically efficient?


Will all size of farms sustain in the long run?

About 57 % pangas produced Land conversion from rice to fish

Analytical Technique

Cost-benefit analysis

➢Model developed by Just and Pope (1978) and further extended by Kumbhakar (2002) where mean, risk and inefficiency function

$$y = f(x; \alpha) + h(x; \beta)v - q(z; \gamma)u$$

Mean production function:

$$\ln[f(x;\alpha)] = \alpha_0 + \sum_{i=1}^{5} \alpha_i \cdot \ln(X_i) + \frac{1}{2} \sum_{i=1}^{5} \sum_{j=1}^{5} \alpha_{ij} \cdot \ln(X_i) \cdot \ln(X_j) + \sum_{d=1}^{2} \delta_d \cdot D_d + \mu$$

≻Risk function:

$$\ln[h(x;\beta)] = \beta_0 + \sum_{i=1}^5 \beta_i \cdot \ln(X_i) + \sum_{d=1}^2 \delta_d \cdot D_d + \lambda$$

► Inefficiency function:

$$q(z;\gamma) = \gamma_0 + \sum_{s=1}^6 \gamma_s \cdot S_s + \sum_{d=1}^2 \delta_d \cdot D_d + \nu$$

Sustainability analysis

Testing functional forms, risk and inefficiency

Decision

Reject

Reject

Accept

Reject

Reject

andra phi lagaan	
Depar Bangla	Нур
tme ades	Functional form te
nt o h A _l	I. Cobb-Douglas
f Ag gricu	Translog half-
ricu ıltur	II. Cobb-Douglas
ltura al U	Translog trun
al Fi nive	III. Translog half-ı
nano ersity	Translog trunc
ce y, M	Test of homoskeda
Department of Agricultural Finance Bangladesh Agricultural University, Mymensingh-2202	Test of the variance $H_0: \beta_1 = \dots = \beta_5 = 0, d$
ngh-	Test of no inefficie
220	No effects of soc
2	on inefficiency:

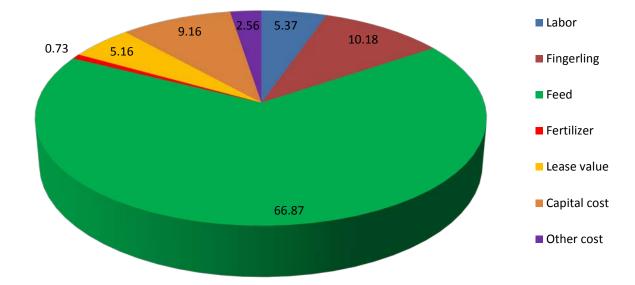
Hypothesis		LR test	No. of	Mixture $\chi^2_{0.01}$	
		statistics	restriction	critical value	
Fun	octional form test:				
Ι.	Cobb-Douglas half-normal versus	32.24	14	29.384	
	Translog half-normal				
II.	Cobb-Douglas truncated versus	32.31	14	29.384	
	Translog truncated				
III.	Translog half-normal versus	2.41	1	5.412	
	Translog truncated				
Test	t of homoskedasticity.				
Test of the variance function :		20.17	7	17.755	
H_{0}	: $\beta_1 = = \beta_5 = 0, \ \delta_1 = \delta_2 = 0$				
Test	t of no inefficiency.	10.54	1	5.412	
No	effects of socioeconomic variables				
lon i	inefficiency:				

 $H_0: \gamma_1 = ... = \gamma_6 = 0, \delta_1 = \delta_2 = 0$

Cost and Return (per acre)

Results

Quantity	Со	st (in BDT)	USD
128		25,074	321
26,807		47,349	607
10946		312,015	4000
302		3,409	44
		11,956	153
		399,803	5126
		24,068	309
		42,737	5488
		466,608	5982
8	3,151		
E	6.64		
		541,665	6944
		166,489	2134
		75,057	962
		1.16	
	128 26,807 10946 302	128 26,807 10946 302 	128 25,074 26,807 47,349 10946 312,015 302 3,409 11,956 399,803 24,068 42,737 466,608 8,151 66.64 541,665 166,489 166,489


1 USD = 78 BDT, 100 decimal = 1 acre and 2.47 acre = 1 hectare

7/21/2016

Parameters estimates of mean function, $f(x, \alpha)$

Variables	Coefficient	Std. error
In Labour	0.147***	0.053
In Fingerling	0.027	0.025
In Feed	0.551***	0.033
In Capital cost	0.133***	0.035
In Farm Size	0.127*	0.067
In Labour $ imes$ In Labour	-0.152	0.27
In Fingerling \times In Fingerling The edcoefficients of feed, labour, capital and	-0.182*	0.095
Infauence Xthearproveduction significantly. The pos	s itive 3 sign impl	ies49tahat an
Intervense in Fitterlinge of these input factors wou	d [.] 974crease proc	ဖ င်း ၊စိn. The
In Labour X in Feed has the highest influence on pro	duction of nang	0.089
In Capital × In Labour OI 0.551, WHICH IMPIRES that p	roclyction increa	0.073
រមក្រំរុងរារ%ការចករទួនកម្ល in the use of feed.	-0.135*	0.08
In Capital $ imes$ In Feed	-0.160*	0.109
In Farm size $ imes$ In Labour	0.273	0.333
In Farm size $ imes$ In Fingerling	0.114	0.171
In Farm size $ imes$ In Feed	0.205*	0.107
In Capital $ imes$ In Farm size	0.098	0.068
Trishal (1 if Trishal, 0 otherwise)	-0.026	0.027
Muktagachha (1 if Muktagachha, 0 otherwise)	0.012	0.03
Constant	0.115***	0.034

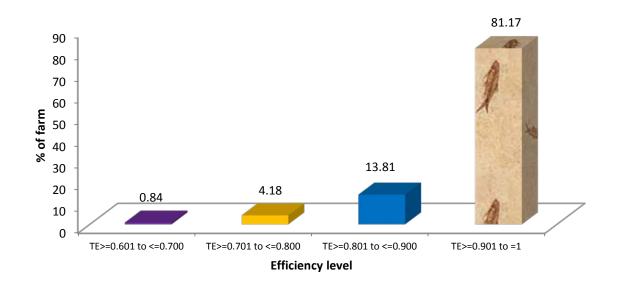
Variable	Coefficient	Std. error
In Labour	-0.628	0.614
In Fingerling	0.893**	0.409
In Feed	-0.800*	0.435
In Capital cost/investments in physical assets	-1.045**	0.487
In Farm size	2.132**	0.843
Trishal (1 if Trishal, 0 otherwise)	-0.137	0.415
Muktagacha (1 if Muktagachha, 0 otherwise)	0.804**	0.389
Constant	-5.305***	0.399

Labor- family labor

Fingerling- Believe that more fingerling – more production, oxygen become low and creation of toxic by product such as carbon dioxide and ammonia increases and its decreases the production.

Feed- Large farm apply sufficient amount of feed but small cannot due to capital constraint **Capital-** increasing investment in equipment (STW, boat, house of feed, water pump, net etc. reduce risk)

Parameters estimates of inefficiency function $q(z, \gamma)$


Variable	Coefficient	Std. error		
Age (years)	-0.011	0.027		
Education (years of schooling)	-0.042	0.055		
Experience (years)	-0.071	0.100		
Training (number of days)	-0.041*	0.022		
Credit (dummy)	-1.154*	0.663		
Extension Service (dummy)	-1.22***	0.476		
Trishal	-0.167	0.709		
Muktagachha	-0.645	0.943		
Constant	-1.406	1.097		
Mean technical efficiency (%)		0.92		
Maximum (%)		0.995		
Minimum (%)		0.609		

An average TE score of 0.92 is relative high compared to other studies of TE in aquaculture (not pangas) production in Asian countries (Sharma and Leung 2003, Iliyasu et al. 2014).

Distribution of efficiency level

About 81 percent farmer's technical efficiency level is greater than 90% and no farms operate below 60% level.

Uses of different input on the basis of efficiency level

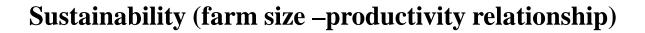
Dep Bar	
oartm Iglade	Efficiency Level
ent of sh Ag	
Agr	0.951-1.00
icult tura	0.901-0.950
ural I Uni	0.851-0.900
Fina vers	0.801-0.850
nce ity, N	0.701-0.800
Лут	≤ 0.700
Department of Agricultural Finance Bangladesh Agricultural University, Mymensingh-220	Inefficient fa
220	More feed

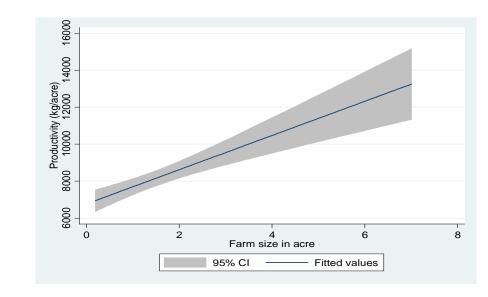
Efficiency	Labor (man-	Fingerling	Feed	Production	FCR (Feed
Level	days/acre)	(No. of	(kg/acre)	(kg/acre)	conversion
		pieces/acre)			ratio)
0.951-1.00	123	23770	14644 🛧	9747 🔺	1.50
0.901-0.950	117	23471	10320	7079	1.48
0.851-0.900	103	23969	8595	5289	161
0.801-0.850	126	24807	9547	5935	1.62
0.701-0.800	92	25644	8001	4338	1.84
\leq 0.700	106	25613	5537	3238	1.71

Inefficient farmers use less quantity of labor but more fingerling stocking rate.

More feed gives more production and eficient farmer is more productive conpared to inefficient farmer. But the feed conversion ratio (FCR) is less for efficient farmers compare inefficient farmers.

N




Ratio of observed input and efficient input according to farm size (Under and over use of input)

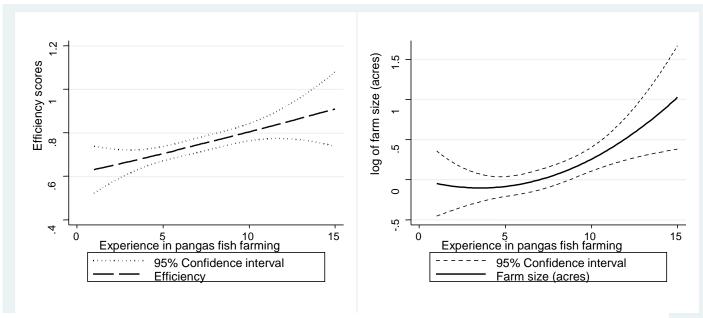
Input	Farm size (acre)						
	≤0.50	0.51-	1.01-	1.51-	2.01-	≥2.51	All farms
		1.00	1.50	2.00	2.50		
Labor	0.92	0.87	0.95	0.92	1.11	1.18	0.95
Fingerling	1.04	1.09	1.06	1.05	0.80	0.74	1.01
Feed	0.77	0.84	0.74	0.80	0.96	1.06	0.83

Considering all farms, inputs dosage the pangas farmers currently apply is 5% lower for labor, 17% lower for feed. But overall fingerling stocking rate is optimal in the study area.

Examined whether the **inverse relationship** holds for pangas farms in Bangladesh. The relationship is tested using a **simple local polynomial regression** line with 95% confidence interval. Figure shows that there is a **positive relationship** between farm size and productivity, which implies that larger farms are more productive compared to smaller farms.

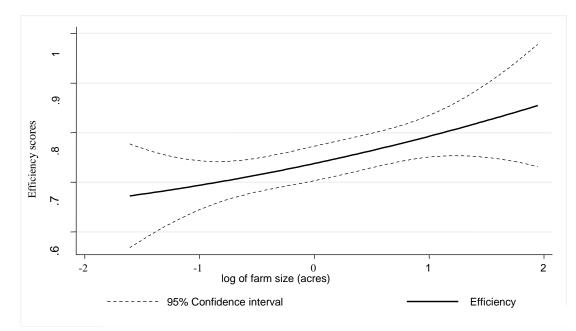
The result may be explained by the fact that large farm has economic, technical, management and financial advantages compared to small farm.

7/21/2016


Bangladesh Agricultural University, Mymensingh-2202

Department of Agricultural Finance

Sustainability (experience – efficiency and farm size relationship)


Quadratic prediction of efficiency and fish farm size on experience in fish farming

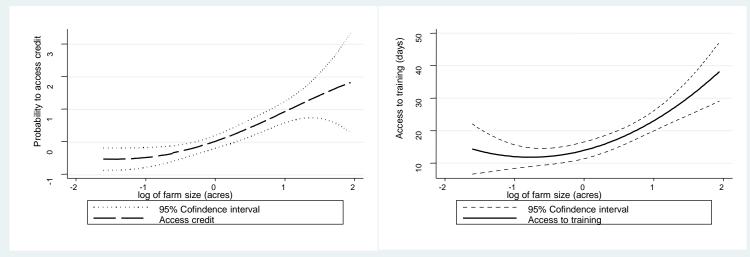
Since experience in fish farming is defined as the time a farmer has spent in fish farming, it allows us to say something about sustainability in fish farming. We explain how farm size and efficiency levels vary with experience in fish farming

Both efficiency and farm size significantly increase with increasing experience in fish farming.

Sustainability (farm size-efficiency relationship)

Quadratic prediction of efficiency and farm size

Efficiency increases with increasing farm size. These results imply that farmers with small farm size and little experience are less efficient.


This suggests that in the short-run, new pangas fish farmers are at the lower end of their learning curve and at the same time have small farm size. But as the fish farmers get more experienced, their efficiency levels improve while at the same time they accumulate their farm size over time.

7/21/2016

Sustainability (farm size- access to credit and training relationship)

Fractional polynomial prediction with probit model of access to credit on farm size, and quadratic prediction of number of days of training in fish farming on farm size

we observed from field that farmers with small farm size not only faced credit constraints but also had limited access to fish farming training services.

This suggests that unless farmers with small farm size gain access to productivity enhancing services like credit, training, they may be less efficient in the short-run and hence less sustainable. Above figure confirms this conjecture.

The probability to access credit increases with increasing farm size and that farmers holding relatively large farm sizes have better access to training services than farmers holding small farm sizes.

- Feed is the most important component of pangas production and pangas fish farming is profitable.
- Labour, feed and capital (investments) significantly increase the mean production.
- Increasing use of capital and feed have a risk reducing effect, while fingerlings have risk increasing effect.
- Access to credit could also reduce the risk among the farmers who receives credit if the money is spend on risk-reducing inputs, such as, feed, capital and extension service.
- Inverse relationship is not applicable to pangas farming in Bangladesh i.e. large farmers are more productive and efficient.

- Both efficiency and farm size significantly increase with increasing experience in fish farming, and efficiency increases with increasing farm size.
- In addition, large farm has better probability to access credit and training- these indicating that large farm might sustain in the long run.
- Bangladesh government should take more initiative to provide loans especially for small scale fish farmers that are not able to pay high interest rate or have less collateral and provide extension service for small scale farmers to promote pangas fish farming in Bangladesh.

Thank You for Listening with Patience

Sustainable Seafood Dinner

IIFET