

AN ABSTRACT OF THE THESIS OF

Xin Li for the degree of Master of Science in Electric and Computer Engineering

presented on September 26, 2016.

Title: Don’t Fool Me: Detecting Adversarial Examples in Deep Networks.

Abstract approved:

Fuxin Li

Deep learning has greatly improved visual recognition in recent years. How-

ever, recent research has shown that there exist many adversarial examples that can

negatively impact the performance of such an architecture. Different from previous

perspectives that focus on improving the classifiers to detect the adversarial examples,

this work focuses on detecting those adversarial examples by analyzing whether they

come from the same distribution as the normal examples. An approach is proposed

based on spectral analysis deeply inside the network. The insights gained from such

an approach help to develop a comprehensive framework that can detect almost all

the adversarial examples. After detecting adversarial examples, we show that many

of them can be recovered by simply performing a small average filter on the image.

Those findings should provoke us to think more about the classification mechanisms

in deep convolutional neural networks.

©Copyright by Xin Li

September 26, 2016

All Rights Reserved

Don’t Fool Me: Detecting Adversarial Examples in Deep Networks

by
Xin Li

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented September 26, 2016
Commencement June 2017

Master of Science thesis of Xin Li presented on September 26, 2016

APPROVED:

Major Professor, representing Electric and Computer Engineering

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my thesis to any

reader upon request.

Xin Li, Author

ACKNOWLEDGEMENTS

First, I would like to thank my major advisor Dr. Li, Fuxin for providing me

support and guidance during my study. I really appreciate an opportunity to work

with him and I considerably explored the filed of study of my interest with his help.

Great thanks for being especially supportive, understanding and patient during the

my final term in OSU. Every single question and confusion I have was answered by

Dr. Li, Fuxin in a rather detailed way. He is the person who wisely and tremendously

provided help that enlightened me during my research and my learning process.

Second, I would like to thank Dr. Ramsey, Stephen, Dr. Bobba, Rakesh and

Dr. Jansen, Henri J. F. for agreeing to serve on my graduate committee. Thank you

for giving me this opportunity.

Third, I want to thank the Department of Electrical Engineering and Computer

Science at Oregon State University for supporting me during my study.

Finally, I want to thank my dear parents for my life, their love, support and

encouragement. I want to thank my Graduate Coordinator Thompson, Nicole and my

Administrative Program Assistant Miller, Darcy. Both of them did great contribution

to my defense application process. I also want to thank my friends Zheng Zhou who

helped me a lot in some technical issue during my research. And I would show great

thanks for all my friends in Corvallis who stayed with me during my graduate study.

TABLE OF CONTENTS

Page

1 Introduction . 1

1.1 Overview . 1

1.2 Contribution . 4

2 Background . 6

2.1 Deep Neural Network. 6

2.1.1 Basic Structure Overview . 6

2.1.1.1 Neurons and Perceptron . 6

2.1.1.2 Multi-dimensional Representation . 8

2.1.1.3 Activation Functions . 8

2.1.2 Training the Network. 10

2.1.2.1 Optimization: Stochastic Gradient Descent 10

2.1.2.2 Backpropagation . 12

2.2 Convolutional Neural Network . 13

2.2.1 Convolution . 14

2.2.2 Convolution in Digital Image Processing . 15

2.2.3 Architecture of Convolutional Neural Networks 16

2.3 State-of-the-Art CNNs . 19

3 Adversarial Optimization of Deep Convolutional Networks 24

3.1 Adversarial Optimization . 25

3.2 An Overview of Related Works in Adversarial Example Area 25

3.3 Overview of Countermeasures . 29

4 Understanding the Trained Deep Classifier Under Adversarial Optimization 32

4.1 Deep Networks Are Robust to Random Noises . 32

4.2 Adversarial Behavior . 34

5 Identifying and Countering Adversarial Examples . 39

TABLE OF CONTENTS (Continued)

Page

5.1 Self-Aware Learning with an Abstain Option . 39

5.2 Estimating whether a Testing Image Comes from the Training Distri-

bution . 40

5.3 A Cascade of classfiers. 44

6 Experiments . 48

6.1 Data Preprocessing . 48

6.2 Experiment Settings . 48

6.3 Experiment for LBFGS-Adversarials Detection . 49

6.3.1 AlexNet Model Experiment on LBFGS-adversarials 49

6.3.2 VGG-16 Model Experiment on LBFGS-Adversarials 50

6.4 Testing Cascade algorithm on EA-Adversarials . 52

6.4.1 Images Classified Correctly and Incorrectly 53

6.5 Discussion . 55

6.5.1 Performance And Depth of a CNN . 55

6.5.2 High Detectability of EA-adversarials . 55

6.6 Image Recovery . 59

7 Conclusion and Future Works . 61

7.1 Conclusion . 61

Bibliography . 63

LIST OF FIGURES

Figure Page

1.1 An optimization algorithm can find the adversarial example where,

with almost negligible perturbations to human eyes, will completely

distort the prediction result of a deep neural network [1]. This al-

gorithm is quite universal, having been successfully tested on many

different networks and the user can direct the network to output any

category with adversarial optimization. 2

2.1 General Structrue of Neural Network . 7

2.2 Perceptron for a Single Neuron . 7

2.3 Sigmoid Function. 9

2.4 Tanh Function . 10

2.5 ReLu Function . 11

2.6 (a) A sample configuration of a state-of-the-art deep convolutional

network architecture ([2], figure modified from [3]). The network

consists of convolutional layers (convx-y indicates y convolutional

filters of size x), max pooling layers (maxpool) [4] and fully con-

nected layers (FC, where nodes are connected to every node from

the previous layer. Finally, a soft-max layer computes a logistic loss

for classification. ReLU nonlinearity is used for every layer. 14

2.7 Convolution on Images . 16

2.8 General Architecture of CNN . 17

2.9 Max Pooling. 19

2.10 LeNet-5 . 20

2.11 Architecture of AlexNet . 20

2.12 VGGNet Configurations: The only difference between configurations

is the number of convolutional layers, which lead to the change of the

CNN depth as shown in column A to E. conv stands for convolutional

layers . 23

2.13 Residual Learing Framework . 24

2.14 Top-1 error (%, with 10-corp testing) of plain network and Resnet . . . 24

LIST OF FIGURES (Continued)

Figure Page

3.1 Adversarial Examples: Normal images are on the left column, per-

turb images are on the right and the perturbation are in the middle. . 26

3.2 Adersarial Examples from QuocNet . 26

3.3 Adersarial Example Genterated by Fast Gradient Sign Method 28

3.4 Evolved Images Unrecognizable to Humans . 29

3.5 OpenMax outperforms Regular Method . 31

3.6 OpenMax outperforms Regular Method . 32

4.1 Robustness of Deep Networks. In the image domain, it requires ran-

dom noise of about 30% of the signal to make CNN start performing

worse. b) In the feature domain, it requires a whopping amount4 of

random noise to make CNN perform even a little worse. 34

4.2 Blue indicates normal examples and red/orange indicate adversarial

examples. (a) The projection of the data at layer 14 onto the 2 most

prominent directions; Adversarial example cannot be identified from

normal ones. (b) Projection of the same data to the 3,547-th and

3,844-th PCA projections, some adversarial examples are having sig-

nificantly higher deviation to the mean; (c) The absolute value of the

most extremal value in the projection to each eigenvector, normalized

by the standard deviation of the projections on the normal eigenvec-

tors; (d) The average normalized standard deviation of normal and

adversarial examples on each projection. 36

4.3 Average number of categories per example with predictions higher

than a threshold. (a) Before softmax; (b) After softmax. As one

can see, in normal examples, there are on average about 1 category

with a prediction score of more than 20 (before softmax), while with

adversarial ones, only 1% examples have a category with a prediction

score more than 20. However, since predictions on almost all cate-

gories have dropped, after softmax adversarial examples have much

higher likelihood on a particular category.. 38

5.1 RCO for each of the convolutional layers in AlexNet 44

5.2 RCO for each of the convolutional layers in AlexNet 45

LIST OF FIGURES (Continued)

Figure Page

6.1 Comparison Between OpenMax detection Methods and Cascade Clas-

sifier: The blue curve represents the performace of OpenMax Method,

and green curve represents the perfornace for Cascade Classifier. 50

6.2 Overall ROC Performance Curve of Cascade Classifier Trained on

VGG-16 Network . 51

6.3 Overall ROC of data generated from EA-adversarials dataset on

AlexNet . 52

6.4 Some of Misclassification on L-BFGS images by Our Classifier. (a)

and (b) are from normal dataset. (c) and (d) are from LBFGS-

Adversarial dataset, which is misclassified to category n02408429(water

buffalo) and n01518878(ostrich, Struthio camelus). 53

6.5 Some of Correctly Classified on L-BFGS images by Our Classifier.

(a) and (b) are from normal dataset. (c) and (d) are from LBFGS-

Adversarial dataset, which is misclassified to category n04209133(shower

cap) and n02328150(Angora). 53

6.6 Some of Misclassfied EA images by Our Classifier. From left to right,

they are misclssified to category n03220513 (dome), n01749939 (green

mamba), n04118776 (rule, ruler) and n03935335 piggy (bank, penny

bank) . 54

6.7 Some of Correctly Classified EA images by Our Classifier. From left

to right they are misclassified to n06874185 (traffic light, traffic sig-

nal, stoplight), n03443371 (goblet), n04522168 (vase) and n03742115

(medicine chest, medicine cabinet) . 54

6.8 Images Miscalssified by OpenSet Method but Correctly Classified by

Our Classifier. (c) and (d) are from LBFGS-Adversarial dataset,

which is misclassified to category n02133161(American black bear)

and n02328150(Agona). 55

6.9 PCA Projection Comparison . 56

6.10 Maximum Feature Map Extremal Value Comparison 57

6.11 Minimum Feature Map Extremal Value Comparison 57

6.12 Percentile 25 Value Comparison . 58

6.13 Percentile 50 Value Comparison . 58

LIST OF FIGURES (Continued)

Figure Page

6.14 Percentile 75 Value Comparison . 59

LIST OF TABLES

Table Page

6.1 Classification Result for Normal vs. LBFGS-adversarials 49

6.2 Classification Result for Normal vs. LBFGS-Adersarials 51

6.3 Classification Result for Normal vs. EA-Adversarials 52

6.4 Recovery Results. Simply using a 3�3 average filter we can recover a

large proportion of adversarial examples after detecting them using

the algorithm described previously. More complex cancellation ap-

proaches such as foveation in [5] that utilizes cropping can achieve

better results. 60

To the memory of my Papa, and to my Mama for your support and encouragement;

to all my friends in Corvallis for your care and company.

Don’t Fool Me: Detecting Adversarial Examples in Deep Networks

1 Introduction

1.1 Overview

Recent advances in deep learning have greatly improved the capability to rec-

ognize images automatically. State-of-the-art neural networks perform better than

human on some difficult, large-scale image classification tasks in complex datasets.

Krizhevsky et. al. in 2012 proposed AlexNet[4] which has a similar but deeper ar-

chitecture compared the classic CNN, LeNet-5. Equipped with highly-efficient 2-D

convolution algorithm, which employ GPU parallelism, this model can train on huge

scale dataset in a fast way. With their dropout and data augmentation method, they

avoided the overfitting problem of the huge architecture. In 2014, Simonyan et. al.

explored how the depth of a convolutional neuron network affects its performance.

Using small 3�3 filter size, hey proposed their VGGNet[2] with 19-layer version and

16-layer version architecture, which significantly increased the accuracy and is gener-

alized to multiple datasets. Their work shows that the performance will increase when

the number of layers is increasing. Later in 2016, He et. al. proposed ResNet[6].

This artifact is a countermeasure for accuracy loss cause by exceedingly adding layers

of neurons to a network. This problem is addressed by introducing a residual learning

architecture to a plain convolutional neural network. And, using stochastic gradient

descent, their network can be easily trained with backpropagation.

However, an interesting discovery has been that those networks, albeit very

resistant to overfitting, would have completely failed if one perturbs some of the

pixels in the image via an adversarial optimization algorithm. In 2013, Szegedy et. al.

has lauched thier adversarial optimization altorithm[1] to generate image perturbation

2

that can mislead the networks to assign incorrect category to a given image. Those

perturbations make changes to images, which is indistinguishable from the original to a

human observer. (Fig. 1.1). In 2014, Goodfellow et. al. proposed a linear explanation

to Szegedy’s work, and introduced their fast gradient sign method that can generate

adversarial examples efficiently to facilitate the their adversarial training which helps

increase the generalization of the model[7]. After that, many related researches[8, 9]

are conducted and get more insights into the adversarial examples.

FIGURE 1.1: An optimization algorithm can find the adversarial example where, with almost

negligible perturbations to human eyes, will completely distort the prediction result of a deep

neural network [1]. This algorithm is quite universal, having been successfully tested on many

different networks and the user can direct the network to output any category with adversarial

optimization.

Those adversarial examples are dangerous if one would put a deep network

into any crucial real application. For example, in autonomous driving, adversarial

example would fool the driving system to let it consider a part of the road as clear,

but, in fact, some pedestrians are walking across. This would result in serious traffic

accident. In precision line, Robot fooled by adversarial examples would cause severe

financial loss or even produce the products that not safe for customers. Security issue

3

would arise when applying adversarial example to automatic recognition for confirming

identity (face, iris, speech, etc.). If the result of the network can be hacked at the

will of a hacker, crashes, wrong authentications and other devastating effects would

be unavoidable.

Therefore, there are ample reasons to believe that it is important to identify

when is a prediction highly confident. Such knowledge if available will help signifi-

cantly to control behaviors of robots employing deep learning. If a reliable procedure

exists and is hard-wired into the robot, it can prevent the robot from behaving in

manners undesirable from human because of the false perceptions it made about the

environment.

This is similar to many previous theoretical work such as [10], however has never

quite been applied in computer vision because of the immensely high dimensionality

and sparsity of data. It is well related to a basic dichotomy of machine learning, or

every function estimation problem in mathematics, statistics and physics: interpola-

tion vs. extrapolation. It is well-known that if the data to be predicted lies within a

subspace, convex hull, or manifold spanned from the training data, then it is more

likely to succeed as the prediction problem can be characterized as interpolating from

some training data nearby. Extrapolation is much harder, since it is extremely dif-

ficult to estimate data labels or statistics if the data comes as extremely different

from any known or learned observations. Therefore, in many cases it might be better

to abstain an extrapolation prediction. In statistical machine learning terminology,

the i.i.d. assumption is commonly used, so that the testing examples are assumed

to be drawn independently from the same distribution of the training examples. In

general, this precludes extrapolation, since there is a decent probability that some

training examples exist in some neighborhood of a testing example, given the i.i.d.

assumption.

Although these concepts are well-known, the difficulties of understanding and

applying them lie in the high-dimensional spaces that are routinely used in machine

4

learning and especially deep learning. Is it even possible to define interpolation vs.

extrapolation in a 4,000-dimensional or 40,000-dimensional space? It looks like al-

most everything is extrapolation since the data is inherently sparse in such a high-

dimensional space [11, 12], a phenomenon well-known as the curse of dimensionality.

The enforcement of the i.i.d. assumption seems impossible in such a high-dimensional

space, because the inverse problem of estimating the joint distribution requires an

exponential number of examples to be solved efficiently.

1.2 Contribution

Intuitions drawn from previous work [1, 7] show that deep learning finds man-

ifolds of much lower dimensionality and utilizes those low-dimensional manifolds to

build efficient learning machines. In this work, we use these trained networks and their

highly nonlinear transformations to run a number of empirical studies deep inside the

network, in order to visualize how the adversarial examples change the prediction of

the deep network, and to conclude that the located adversarial examples are likely

to be from a different distribution, using simple spectral dimensionality reduction

techniques such as PCA.

From those intuitions, we develop statistical estimates of whether an image

belong to the normal image distribution using sampling from inside the trained deep

neural networks. It turns out that these confidence estimates can almost perfectly sep-

arate between the known normal and known adversarial examples. Those confidence

estimates may have applications in controlling the network behavior and preventing

disastrous effects, and hopefully pave the way for further empirical and theoretical

research on self-aware learning. In this particular problem setting, we explore recov-

ering the original prediction from the corrupted adversarial example after we detect

it, and can achieve reasonably good accuracy even with a simple average filter on the

image.

5

As a result, our contribution can be listed below:

Y We run two different classification model, specifically AlexNet and VGGNet,

on normal image dataset and adversarial example dataset that is generated using

L-BFGS optimization algorithm by Szegedy et. al.. And them we visualized

the activation layer by layer by applying PCA dimension reduction to find how

adversarial examples differ from normal examples.

Y By the intuition that normal examples and L-BFGS optimized examples belong

to different probability distributions, we extracted the statistics of interest from

the evaluated activation when data are given to the models. And construct an

estimation of whether an example is a normal example or has been perturbed

with the adversarial optimization result.

Y We construct a detection mechanism for the networks that helps to draw statis-

tics of interest from convolutional layer activation. Use them to compute the

estimates and let networks be aware of the undesirable mistake.

Y We explored a recovery strategy to recover the images that has been detected

as problematic ones to the original images.

6

2 Background

2.1 Deep Neural Network

Deep neural network (DNN) is a computational paradigm inspired by biological

neural networks, though recent study shows that the working mechanism of the DNN

is fundamentally different from biological neural networks [13], which are used to esti-

mate or approximately express any functions that can depend on a high-dimensional

inputs that are generally unknown, for the purpose of feature extraction and classifi-

cation.

2.1.1 Basic Structure Overview

A basic deep neural network consists of four basic components: Inputs, neurons,

perceptron weights and outputs. As shown in fig.2.1, DNN structure has its input xi

and output ŷ on the two ends of the network respectively. The basic computational

units in an DNN is called neurons. They are, in fig.2.1, is denoted by a
�l�
i , which

means the ith neuron on the l � th layer. The neurons are connected by edges with

perceptron weights denoted as w
�l�
i,j , which means the perceptron weights for layer l

connecting the jth neuron on layer l to the ith neuron on layer l � 1. When all the

neurons at one layer connect to every single neurons at previous layer, we call this

layer the fully connected layer.

2.1.1.1 Neurons and Perceptron

As mentioned above, the neurons are the basic computational units in the DNN.

A single neuron is under taking a percrptron work. As shown in fig.2.2, when input

for a layer come to one neuron, the neuron firstly multiply the inputs with with weights

and sum them up, then apply to the sum an activation function φ. Hence the output

of each neuron is:

oj � φ�
n

Q
i�1

wi,jxi� �w
�l�
0,j (2.1)

7

FIGURE 2.1: General Structrue of Neural Network

It is common to write (2.1) in matrix form:

oj � φ�W
T
j X� �w�l�

0 (2.2)

where weights W and input X are of the same dimension, and w
�l�
0 is the bias term.

FIGURE 2.2: Perceptron for a Single Neuron

Neurons connected with inputs forms the inputs layer and neurons connected

with outputs forms outputs layer. layers between those two are called hidden layers.

And neurons in those layers are called hidden units.

8

2.1.1.2 Multi-dimensional Representation

Usually, one DNN has multiple neurons on one layer as shown in fig.2.1. So, the

output of network layer l can be expressed as matrix representation for the ease of

calculation:

Φl � Φl�W
�l�1�TX�l�1�� �w�l�

0 (2.3)

where Φl is a n-dimensional output, W �l�1�T is a m � n (n is the dimension of data)

matrix representing the proceptron weight for all the neurons at layer l�1. And, also,

DNNs have multiple layers of neuron, so we have network output:

Ŷ � ΦN�W �N�1�TΦN�1�...�W
�2�TΦ1�W

�1�TX �w
�1�
0 � �w�2�

0 � �w�N�1�
0 � �w�N�

0 (2.4)

2.1.1.3 Activation Functions

The perceptron mentioned in section.2.1.1.1 calculates an analog output by applying

an intended function to the linear combination of the inputs. This function is reffed

to as activation function. There are multiple frequently used activation functions.

Every Activation functions takes a scalar as its input and maps the scalar to another

according to how the criteria is defined mathematically.

Y Sigmoid Function

The mathematical form of sigmoid function σ is:

σ�x� �
1

1 � e�x
(2.5)

The curve for sigmoid function is shown in fig.2.3. This function takes a real valued

input and maps it to a value that is between 0 and 1. It is shown that that input

values with large absolute value will be map to approximately to 0 or 1, particularly

for large negative and large positive scalars respectively.

A drawback of sigmoid function is that it will saturate when the absolute value

becomes extremely large. The gradient of the function at that point will be infinitely

9

approaching to 0. When applying a back-propagation, computed gradient for the loss

function will be very small. An extra attention will need to be paid when initializing

the weights to prevent saturation.

FIGURE 2.3: Sigmoid Function

Y Tanh Function

The tanh function takes scalar inputs and maps them the value between �1 and �1.

Its activation can saturate, but its output will not always be positive. So it is preferred

than sigmoid. It is defined as:

tanh�x� �
sinh�x�

cosh�s�
�
ex � e�x

ex � e�x
� 2σ�2x� � 1 (2.6)

As we can see, tanh function is a scaled sigmoid function.

Y ReLU function

ReLU[14] function is the rectified linear unit function. It is defined as:

ReLU�x� � max�0, x� (2.7)

And its curve is shown in 2.5. RelU is take a thresh hold at zero and spamming all

negative inputs and set corresponding inputs as 0. It becomes popular to be used

10

FIGURE 2.4: Tanh Function

in the non-linearity part of the networks because its piecewise-constant sub-gradient

lead to easier computational implementation and fast convergence.

ReLU function can get a dramatically faster convergence when applying stochas-

tic gradient descent (SGD), which is due to its linear and non-saturation property.

Also, it has a simpler implementation than tanh and sigmoid function.

2.1.2 Training the Network

In training step, for a general classification or regression problem, we usually

optimize a loss function. In definition, a loss function (also termed as cost function)

is a function that maps an event or values of one or more variables to a real number.

Intuitively, it represents the cost associated with one event. Particularly in machine

learning problem, an evens can be abstracted to a set of parameters that form a

function.

2.1.2.1 Optimization: Stochastic Gradient Descent

One of the simple ways for optimization is gradient descent. The idea of gradient is

11

FIGURE 2.5: ReLu Function

that the gradient of a function at one point always has the direction where the value of

the function is decreasing. One need to choose a initial position as a start point in the

parameter space and calculate gradient at that point with respect to the parameters

on which we would like to optimize the loss and update the standing point by adding

to it the gradient to move to the next point where the value of the loss is less than

that at previous point. One can also scale the gradient to adjust the step size for

updating.

Modern implementation of gradient descent is usually batch methods, such as

BFGS. At each iteration, it consume the whole dataset to compute the gradient and

get converged well on local optimal. However, there are two issue for batch methods.

First, it is slow to use whole dataset to compute the gradient. Second, it is not

compatible for online learning. Stochastic Gradient Descent (SGD), motivated by

a computationally expensive operation, backpropagation, gives the solution to both

issue. Each iteration, it only requires one or a portion of data point to compute the

gradient.

θ � θ � αSθ J�θ;x, y� (2.8)

12

where J is the loss function and α is the learning rate. Usually, SGD takes a smaller

learning rate compared with the standard batch methods because SGD has much more

variance in the update direction than that of a regular gradient descent.

2.1.2.2 Backpropagation

As we talked about in 2.1.1.2, the output of a neural network has the form in (2.4).

When applying the gradient descent, one will have to take gradient to weights layer

by layer so that weights on all layers can be updated. These operations require one

to apply chain rule to the loss function which is a set of activation functions that are

nested together.

So, when calculating the gradient on the ith layer. We have:

∂J

∂Wi
�
∂J

∂fN
�
∂fN
∂fN�1

� ... �
∂fi�1
∂fi

�Φi�fi�1�x�� (2.9)

where:

fk�x� �W
�k�TΦk�fk�1� � a

�k�
0 (2.10)

f0�0� � x (2.11)

As we can see in (2.9) that, if we need the gradient at ith layer, we need to have all

gradients from above the ith layer calculated. That is, every time when we obtained

the gradient from one layer, we need to store them for future use.

There are a few thing we need to notice. Backpropagation algorithm does not

guarantees convergence. It is possible for the algorithm to oscillate around the optimal

point or reach a local optimal point. To avoid stopping at the local optimal, one can

run multiple experiments with different starting point, then choose the one with best

training or validation performance, or build a committee of networks that can vote

during testing process.

13

2.2 Convolutional Neural Network

In this section we will explain the basic concepts of a deep convolutional network

that is commonly used in visual recognition and will be used in the experiments of

this work.

The Convolutional Neural Networks (CNN) consists of neurons that are asso-

ciated with one another to form one or more convolutional layers, pooling layers and

fully connected layers (fig. 2.6). A convolutional neural network naturally exploits

the locality structure in data. In an image, pixels that are located close to each other

are more likely correlated than pixels that are far away, same holds for temporal data

(video, speech) where objects (frames, utterances) that are temporally close can be

assumed to be more correlated. This structure also makes CNNs easier to train be-

cause there are fewer parameters than those in a fully connected neural network with

same number of hidden units. The reason is that the weights used for producing one

type of feature in a convolutional layer are shared by the whole inputs. Most deep

networks adopt similar principles while varying in the structural complexity of the

system, such as adding more layers and smaller filters in each layer [2], multi-layered

network within each layer [15], combining multiple networks [16], etc.

In my experiment, I used the AlexNet and 16-layer VGG network model in

section.6. VGG with 16 layers contains 14 convolutional layers, each contains an

increasing number of 3 � 3 filters fig.2.6. It also has 5 max-pooling layers in between

the convolutional layers, and 2 fully connected layers before the classification layer.

The task that it performs is ImageNet classification [17], to classify natural images in

a photo collection into 1,000 different categories. It was trained on a training set of 1.2

million images and has a testing top-5 error rate of 13.5% (Additional better results

have been achieved by training a 19-layer network with multiple crops and batches of

data, as well as combining multiple models by bagging). AlexNet has 5 convolutional

layer, which is a shallower architecture, but is a great progress since LeNet-5.

14

FIGURE 2.6: (a) A sample configuration of a state-of-the-art deep convolutional network

architecture ([2], figure modified from [3]). The network consists of convolutional layers

(convx-y indicates y convolutional filters of size x), max pooling layers (maxpool) [4] and

fully connected layers (FC, where nodes are connected to every node from the previous layer.

Finally, a soft-max layer computes a logistic loss for classification. ReLU nonlinearity is used

for every layer.

2.2.1 Convolution

Convolution is an operation on two functions f and g, which produces a third function

that can be interpreted as a filtered f by g. In this interpretation we call g the filter.

If f is defined on a spatial variable like x, we call the operation spatial convolution.

Formally, for functions f�x� and g�x� of a continuous variable x, convolution is defined

as:

conv�x� � f�x� � g�x� � S
�ª

�ª

f�θ�g�x � θ�dθ (2.12)

Notice that, under the integral, function f and g are functions of θ, but the result is

still a function of x. Function g�x�θ� is obtained by shifting to the right the reflection

of g�θ� by x. Hence, the value of the convolution result will change while g sliding

through the axis from �ª to �ª.

However, most of the time, our inputs are discrete. The convolution of two

15

discrete function f�x� and g�x� is defined as:

conv�x� �
�ª

Q
k��ª

f�k�g�x � k� (2.13)

The length of the function is usually finite. So, the upper and lower bound of the

summation is usually from 0 to an integer N .

Convolution can be generated to be a 2-D operation, such as in images process-

ing. The 2-D convolutions can be expressed as:

conv�x, y� � S
�ª

�ª
S

�ª

�ª

f�θ1, θ2�g�x � θ1, y � θ2�dθ1dθ2 (2.14)

The discrete form is:

conv�x, y� �
�ª

Q
n1��ª

�ª

Q
n2��ª

f�n1, n2�g�x � n1, y � n2� (2.15)

Similar to the interpretation of the one dimensional form, the value of the 2-D convo-

lution will change while the filter matrix g sliding on the matrix f .

In digital image processing, input functions are defined 2-dimensional space

and will be discrete. Convolution will be applied in the form of (2.15). It is useful

in edge finding, feature detection, motion detection, image matching, and countless

other tasks.

2.2.2 Convolution in Digital Image Processing

The statistical properties in one image is homogeneous. Hence we can extracted same

features from all parts of the image to process. It means, if we have a N �N feature

detector patch, we can apply it to any patches randomly sampled form the image.

By applying convolution between the image and the feature detector patch, we can

obtained desired feature from all over the locations.

16

FIGURE 2.7: Convolution on Images

As an example shown in fig.2.7, we have a 3 � 3 feature detector patch, also

called kernel or filter. The filter will sliding through the image with a predefined step

size, also known as stride. Every time when the filter arrive at a location, we will

calculate convolution for the pixel located at the center of the filter. For a N �N filter

working on a gray-scale image, the convolution at pixel �x, y� can be calculated using

(2.15). For simplicity, one can view the value of the convolution as the summation

of the products of pixel value covered by the filter and the value on the filter at

corresponding position. To prevent images from shrinking in their size too much, we

usually apply padding zeros to the images on their edges.

2.2.3 Architecture of Convolutional Neural Networks

As shown in fig.2.8, Convolutional neural netoworks usually have a specialized con-

nectivity structure between neurons. It stacks multiple layers in the feature extraction

stage. Stages closer to the output will operate on more global level and more invariant

17

features. A classification stage is stacked at the end.

FIGURE 2.8: General Architecture of CNN

Y Convolutional Layer

Convolutional layers are commonly used in computer vision that only connect spatial

or temporally close nodes to the next layer. Compared with fully connected layers,

convolutional layers are locally-connected and have additional weight sharing.

In fig.2.8, one convolutional layer usually contains multiple filters. They will

apply convolution, which is in the form of (2.15) and visualized in fig.2.7 will be apply

to each input with one and each filter respectively. The inputs, like images, usually

have the dimension of m � n � r, where m � n would be the size of image and r is the

number of channels of a image. Adding to the convolution output some non-linearity,

the output of a convolutional layer i can be:

Yi � �T �f1 �Zi�, T �f2 �Zi�, . . . , T �fk �Zi�� (2.16)

where Zi is the input of layer i and f1, ..., fk are filters of size much smaller than the

input on this layer and � is the convolution operator. This network would apply the

same convolutional filters at every location of Zi, which means that the number of

parameters is much smaller than if each filter is the same size as input.

The filters can be of size x� y � z where x� y is the size of the filter that should

be smaller than the image, and z can be less or equal to the number of size of the

18

input. If there are k filters on one convolutional layer, the operation of convolution

will result in k new result images which is called feature maps because each filters is

to extract one kind of feature.

Y Pooling Layer

Theoretically, the output of the convolutional layer can be used for training and testing

the classifier directly. However, the output of convolutional layer always has very high

dimensionality that will make the model computationally expensive. For instance, we

have a 224 � 224 images. After one layer of convolution with 90 filters to extract 90

types of features. The operation will give a result of dimension 224�224�90 � 4515840.

Working on the feature vector with such high dimension will make the classifier prone

to over-fitting.

As mentioned in 2.2.2, the images are usually statistically homogeneous. This

also means one type of statistics would be useful for all parts of images. By aggregating

the important statistics, we can reduce the dimensionality and also improve the results.

This operation is called pooling. By the type of statistics to extract, they are named

max pooling, min pooling or mean pooling. There is an example of max pooling in

fig.2.9. Max-pooling selects the maximal output from a small region, in order to allow

minor deformations for prominent features detected from the convolutional filter.

Also, pooling operation has a property which is termed as translate invariant

[18]. If the pooling patches are contiguous area and statistics are only extracted from

the same units, then, these pooling units will then be translation invariant, which

means the same feature from the convolution output should still be active after the

translation operation. So we can say operation in fig.2.9 is translation invariant.

19

FIGURE 2.9: Max Pooling

Other types of layers are also used in a CNN, for example, the normalization lay-

ers [4] such as batch normalization layers[19]. If all the nodes in a layer are connected

to all the nodes in the next layer, the network is called fully-connected.

2.3 State-of-the-Art CNNs

Firstly inspired by the biological visual perception mechanism[20], many archi-

tectures of the CNN had been proposed. Hubel and wiesel find the cells that act as

the probe for detecting the lights in 1959[21]. LeCun et. al. formed the fundamental

framework of CNN, LeNet [22][23]. LeNet-5 consists of 7 layers, which are convolu-

tional layers Ci, pooling layers Si and fully connected layers Fi, see fig.2.10. The

convolutional C1 and C3 contains 6 and 16 filters respectively. And pooling layers

should always generate same number of feature maps with its previous layer. The

input of the network will be prepossessed to a 32 � 32 image which is significantly

larger than the area occupied by its largest character to make the evident features

like stroke end-points appear near the center of the receptive filed. The 32 � 32 input

is also normalized before being processed to accelerate learning process.

They conducted multiple experiments on 100,000 hand-written characters (up-

20

per case and lower case, digits and punctuation) which are from 95 classes. They have

an pretty good overall performance error rates are 2.99% for upper case, 4.15% for

lower case, 1.4% for digits and 4.3% for punctuation.

FIGURE 2.10: LeNet-5

Many new architectures has been proposed and developed since 2006 after

LeNet:

Y AlexNet

AlexNet is proposed by Krizhevsky et. al. [4] in 2012. It has a similar but deeper

architecture compared to LeNet-5, see in fig.2.11. AlexNet contains five convolutional

layers and three fully connected layers and pooling layers. Cross-GPU parallelism

enable them to train a large scale network that cannot fit into the memory of a single

GPU.

FIGURE 2.11: Architecture of AlexNet

Configured with non-saturating non-linearity, ReLU function, in the non-linearity

21

part, AlexNet has a faster learning process on large dataset than that when configured

with traditional saturating non-linearity, e.g., Sigmoid function and tanh function.

Though ReLU does not require normalized input image because of the non-saturation

properties, their local localization applied to the training process turned out facilitates

the model to generalize.

They also configured AlexNet with overlapping pooling method throughout the

network. This strategy enables them to reduce the error rate by up to 0.4%, and also

prevents over-fitting, compared with non-overlapping pooling method.

Y VGGNet

In 2014, Simonyan et. al. [2] in Visual Deep Group proposed VGGNet. Also in the

area of computer vision, their attempt is to explore the influence that is brought by

the depth of the CNN. They fixed other parameters of a CNN, such as the size of

receptive filed[24], the number of filters on each convolutional layer or the scale under

which the detection operates[25].

In their experiment, the network accepts the fixed RGB image of size 224�224�3

subtracted by the mean of RGB dimension obtained from training dataset. They

used filters of size 3� 3 filters with convolution stride equals to 1 for all convolutional

layers. Spatial resolution is preserved by padding 1 pixel at the edge of the input of

the convolution. They used max-pooling method in all pooling layers with pooling

window of size 2 � 2.

After feature detection layers, they stacked two fully-connected layers with 4096

channels and one fully-connected layer with 1000�way softmax for 1000� categories

classification task.

ReLU activation was used for all hidden layers to provide non-linearity. Local

Response Normalization [26] does not increase the performance of their architecture

and increase the memory consumption.

During their experiment, they applied multiple training and testing process to

different configurations of their CNN. By adding or eliminating convolutional layers

22

between max-pooing layers, they increased or decreased the depth of their CNN. One

of the benefits that comes from this is that multiple layers of stacked convolutional

layer with filters of one size can express the function of one single convolutional layer

with filters of another size. For example, three 3�3-receptive-filed convolutional layer

can be stacked together to express a 7 � 7-receptive-filed layer. And, moreover, the

stacked layers consists of less parameters than the single layer. If there are C channels

for each layer, there will be 3 � �32C2� parameter for the stacked layers and 72C2

parameters for a single larger-filter layer, which is much more than that of stacked

layers.

The additional 1 � 1 convolutional layers are configured to some of the exper-

iments and were found to be a way to provide more non-linearity without effect the

effective receptive size provided by the stacked convolutional layers.

Tested on ILSVRC-2012 dataset and evaluated under different settings, such as

different scale and different type of corps, they showed that the increasing in depth

can bring benefits for classification accuracy.

Y ResNet

Kaiming et. al., in 2015, explored to find whether one network is necessarily better to

have more layers. The accuracy of a deep network will drop rapidly when it reaches

the highest point. This is not an overfitting problem and error rate will increase when

the network gets deeper. They finally proposed a solution which is called ResNet.

They proposed a residual learning structure (see fig.2.13) to address problem.

A shortcut connection is set up between the input and output of a block of layers,

which can be formulated as H�x� � F �x� � x. No extra parameter or computational

complexity is introduced by this shortcut. Applying this structure to every two con-

volutional layers of a CNN, they obtained the solution network, ResNet.

Comparison was made when they implemented a ImageNet Classification task.

fig.2.14 shows, testing on ImageNet data with plain network and ResNet (each have

18-layer and 34-layer configuration), the top-1 error rate tends to increase for a plain

23

FIGURE 2.12: VGGNet Configurations: The only difference between configurations is the

number of convolutional layers, which lead to the change of the CNN depth as shown in

column A to E. conv stands for convolutional layers

network when it gets deeper while ResNet keep decreasing the error rate as it gets

deeper.

24

FIGURE 2.13: Residual Learing Framework

FIGURE 2.14: Top-1 error (%, with 10-corp testing) of plain network and Resnet

3 Adversarial Optimization of Deep Convolutional Networks

In this section, we will introduce the adversarial optimization and have an

overview of the current state-of-the-art strategies for generating the adversarial ex-

amples. Finally, in this section, we will see some latest study of in the solution to

countermeasure adversarial examples.

25

3.1 Adversarial Optimization

The famous result that deep networks can be broken easily [1] is an important

motivation of this work. The idea is to start from an existing example and optimize

for an example that will be classified to another category while being close to the

original example. Namely, the following optimization problem is solved:

min
r

cYrY1 �L�fθ�x0 � r, y��

s.t. x0 � r > �0,1�d (3.1)

where x0 is a known example and y is an arbitrary category label, d is the input

dimensionality. c is a parameter that can be tuned for trading off between closeness

to the original example x0 and the classification loss on the other category y. It has

been shown, to the astound of many, that one can choose an r with very small norm

while completely change the output of the algorithm (e.g. Fig. 1.1), this can be even

done almost universally for almost all networks, datasets and all categories [1, 7]. This

leads many people to question whether deep networks are really learning the ”proper”

rules for classifying those images.

3.2 An Overview of Related Works in Adversarial Example Area

In 2014, Szegedy et. al. discovered two properties of deep neural networks.

They proposed that the semantic information in some layer is carried by the entire

space of an activation instead of an individual unit. The projection to any direction in

the space will make it indistinguishable, which means unit-level inspection methods

are less useful. And that makes one choose a global, or network level, inspection

method to explain how a model makes a decision on a category. This type of method

can also helps to find the particular region in the input that encloses the information

that greatly help the model to give a correct classification result. Then, under this

method, they give an implicit argument that, normally, by adding to a given example

26

some small enough increment or decrements will not change the class to which it

belongs to. But with an optimization proposed to find the small perturbation, the

example will no longer be classified correctly. The examples that are added with this

kind of perturbations were termed as ”Adversarial Examples”.

They conducted their experiment on multiple networks and on MNIST dataset.

And they find that their ”minimum distortions” can be generated using different net-

work and can fool networks with different parameters, particularly different initial-

ization, number of layers and ways of regularization, from which they are generated.

These adversarial examples can also be misclassified even when the network are trained

from a different set of data. Interestingly, all those perturbations are imperceptible

by human eyes, see fig.3.1.

FIGURE 3.1: Adversarial Examples: Normal images are on the left column, perturb images

are on the right and the perturbation are in the middle.

FIGURE 3.2: Adersarial Examples from QuocNet

27

In 2015, an explanation for the adversarial example generated by Szegedy in a

previous year[7] was proposed by Goodfellow et. al.. Their explanation shows that

the adversarial example can be produced leveraging the linear behavior of the deep

network. The linear behavior can be seen as a linear module in the network and has

a transfer function with a weights matrix W :

y �W Tx (3.2)

An adversarial example is considered as x̃ � x�η, where η is the perturbation optimized

in [1]. When such adversarial example applied to a deep network, the output will be:

ỹ �W Tx �W T η (3.3)

Because it is vector multiplication, increment W T η can be maximized by assigning η

to be the vector with the same direction of the weights W and with all element value

equals to 1. When solving a problem with large dimensional input, such as images,

this increment term will grow dramatically. Some networks are designed to show

most of it linear properties for the sake of easy training process. Hence, Goodfellow

et. al. approximate this kind of network as a linear model. The perturbation η can

be expressed as:

η � εsign�SxJ�θ, x, y�� (3.4)

where J�θ, x, y� is the loss function to optimize in the training process of the network, θ

is a set of parameters and ε is a small constant. Applying this algorithm for multiple

networks, when ε � 0.25, they obtain error rate 99.9% with 79.3% confidence for

a shallow softmax classifier on MNIST dataset, 89.4% error rate with 97.6% for a

maxout network. When ε � 0.1, the convolutional maxout network will get 87.15%

error rate with 96.6% probability on CIFAR-10 preprocessed by Krizhevsky et. al. in

2009.

Their result of perturbation gives a good generalization of the adversarial exam-

ple. The intriguing phenomenon is that different models always classify one adversarial

28

FIGURE 3.3: Adersarial Example Genterated by Fast Gradient Sign Method

example to the same class. They believe classifiers all resemble a linear classifier that

can learn same set of parameters from different part of the dataset.

In 2016, Moosavi-Dezfooli et. al. proposed an efficient algorithm for computing

the adversarial examples [27]. They defined an expression for the robustness ρ of a

classier for a predicted label:

ρ�k̂� � Ex
∆�x; k̂�

SSxSS2
(3.5)

where k̂ is the label of interest, Ex is the expectation operator. And ∆�x; k̂�, which

means the robustness for label k̂ at point x, has the definition:

∆�x; k̂� � min
r

SSrSS2 s.t. k̂�x � r� x k̂�x� (3.6)

which means the minimum perturbation to make an example be misclassified by a

classifier is the distance from the example to the hyperplane in the input space. The

higher robustness intuitively means the data point is far from the hyper-plane for

classification. By applying an iterative update rule, they iteratively push the point to

another side of decision boundary. Thus make an adversarial example.

In 2015, Nguyen et. al. proposed another different way for fooling a deep

network [28]. They produce images that is completely unrecognizable by human eyes

(see fig.3.4), while a deep neural network can assign it to some category with an

extremely high probability. Based on the traditional Evolutionary Algorithms (EAs),

29

they employed a new method called MAP-Elites that generate a population of such

images that has a very high score and keep the one with best-so-far score, and then

make a random permutation on the image. They used direct encoding and indirect

encoding (two kind of way to represent a EA-adversarial image) to generate fooling

images.

For images to match MNIST images (28 � 28 gray scale image), both direct

and indirect way, with 200 generations or independent evolution, and get a median

confidence of 99.99%. And for ImageNet images (256 � 256 images), they use 10

crop of size 227 � 227 in one images for network. Direct EAs for it only get median

confidence 21.59% for 20,000 generations. Only 45 classes can be successfully fooled

with confidence of over 99%. Indirect EAs performs well after 5,000 generations with

confidence of 88.11%

FIGURE 3.4: Evolved Images Unrecognizable to Humans

3.3 Overview of Countermeasures

Countermeasures also evolved in recent years [29, 30]. Goodfellow et. al. in

[7], inspired by Szegedy et. al., proposed their adversarial training (meaning that

30

training on the adversarial example), which serves as a regularization part of the

model. They believe that deep networks are able to represent functions that show

less vulnerability to adversarial example, which is supported by the theorem of Uni-

versal Appropriator[31]. Their fast gradient sign method is low-overhead algorithm

to generate adversarial example, which makes adversarial an efficient process. With

adversarial training they obliged to reduce the error rate from 89.4% to 19.7%.

From (3.4), They managed to derive an modified objective function with second

term as its regularization term:

J̃θ, x, y � αJ�θ, x, y� � �1 � α�J�θ, x � εsign�SxJ�θ, x, y��� (3.7)

This regularization term produce the increase the ability of perturbation of the ad-

versarial example, which in turn an efficient way. They applied this method to a

maxout network with dropout regularization, they are able to obtain the error rate

0.94% (without adversarial training) to 0.84% (with adversarial training). After that,

noticing that the training error cannot reach zero, they modified the network with

more units on each layer (1600 units per layer instead of previous 240 per layer),

they trained this network with early stop. The result dropped from 1.14% without

adversarial training to on average 0.79%.

An 2016 work by Bendale et. al. introduced an new model layer[32], which

is called OpenMax. They were inspired by the previous work about open set, which

indicates that some of the data may belong to the categories that has not been learned

by the CNN. In their work, they termed the activation output of the penultimate layer

as Activation Vector (AV), denoted as vi�x�, i > �1,N�. Applying extreme value fitting

to the mean of AVs of different category, they are able to obtain a hyper parameter

ρ to revise the original AV and obtain an logical activation v0�x� for the openset.

Similar to the Softmax, the OpenMax is definde as:

P �y � jSx�
evj�x�

PNi�0 evi�x�
(3.8)

31

where vi�x�, i > �0,N�, is the output value of units in the activation layer, which

represent N �1 confidence values for N categories and an additional openset category.

They conducted their experiments on 80,000 test images set(50,000 validation data

in ILSVRC2012 dataset, 15,000 fooling images and 15,000 unknown images) using

pre-trained AlexNet and OpenSet did outperform SoftMax in terms of F-measure,

see fig.3.5. They also visualized the probabilities given by OpenMax and regular

FIGURE 3.5: OpenMax outperforms Regular Method

SoftMax, which shows that OpenMax will assign low confidence on unknown in-

stances of images, see.

32

FIGURE 3.6: OpenMax outperforms Regular Method

4 Understanding the Trained Deep Classifier Under Adversarial
Optimization

The term Adversarial Example [1] was firstly proposed by Szegedy et. al. in 2014

when they were analyzing the counter-intuitive properties of deep neural networks.

The general property of this kind of examples is that it can mislead a well-trained

network anomaly. Specifically, in the process of classification, it makes networks assign

to it a category to which it does not belong.

4.1 Deep Networks Are Robust to Random Noises

Despite astounding findings in 3.1, deep learning is relatively robust to conven-

tional perturbations on many different levels. We perform some experiments using a

standard 16-layer VGG network [2] as mentioned previously.

In Our experiment, we added Gaussian perturbation to the input image. Two

33

experiments are conducted, the first add various levels of perturbation on the original

image. The second adds perturbations on the 14-th layer (the first fully-connected

layer with 4,096-dimensional feature). This layer is chosen because it is sufficiently

close to the final prediction while not at the final layer, and it avoids complications

from the convolution layers (which we will get to in Section 4). One could think of the

convolution layers as doing feature extraction and the fully-connected layers as doing

machine learning in the traditional sense: given input x and predict an output y.

Under this line of thought, the first fully-connected layer would contain the features

for the learning.

As Fig. 6.8 shows, the prediction degrades as one adds stronger and stronger

perturbation. However, deep networks can handle noise with standard deviation under

15 percent of data standard deviation without much trouble, which is significantly

larger than the adversarial perturbation it can handle.

At the 14-th layer, deep learning is more resilient. In fact, it is extremely resilient

that even if one enters half the noise w.r.t. to the signal, it can still perform admirably

with only a 1% drop in classification accuracy. This basically shows that, although the

previous papers on adversarial training might give the impression that deep learning

is not robust, it is not the case. If one does not specifically aim at attacking it, it

would be difficult to degrade a deep learning classifier, and the features it learned are

even more robust. For a perturbation to break the network, it would have generated

substantial variation on the learned feature (e.g. in the 14-th layer) to make the

classification fail. We believe this is important to note, since then it is clear that

the adversarial examples are finding very specific and non-random perturbations to

corrupt the prediction. Especially, those perturbations have caused significant changes

to the deep features (such as the ones at the 14-th layer) such that an otherwise

extremely robust feature has been corrupted completely.

34

0 10 20 30 40 50 60 70 80 90

Noise Level (% of Data Standard Deviation)

0.4

0.5

0.6

0.7

0.8

0.9

T
o

p
-5

 A
c
c
u

ra
c
y

Robustness in the Image Space

0 50 100 150

Noise Level (% of Data Standard Deviation)

0.78

0.8

0.82

0.84

0.86

T
o

p
-5

 A
c
c
u

ra
c
y

Robustness of the 14-th Level Learned Feature

(a) (b)

FIGURE 4.1: Robustness of Deep Networks. In the image domain, it requires random noise

of about 30% of the signal to make CNN start performing worse. b) In the feature domain, it

requires a whopping amount4 of random noise to make CNN perform even a little worse.

4.2 Adversarial Behavior

As we have shown, deep networks degrade nicely in almost the entire feature

space, thus cannot be broken easily from random vectors, and they are more robust

in the very deep layers.

In order to gain a deeper understanding of the behavior of a deep network,

we utilize spectral analysis. As a starting point, we perform principal component

analysis (PCA) [33] at the 14-th layer of the network (the first fully-connected layer).

The rationale behind using a principal component analysis is that each deep learning

layer is a nonlinear activation function on a linear transformation, hence a lot of the

learning process lies within the linear transformation, for which PCA is a standard

tool to analyze.

A linear PCA is performed on the entire collection of 50,000 images from the

ImageNet validation set collected using the approach in (3.1), starting from random

images in the collection. The result shows very interesting findings (Fig. 4.2) and

35

shed more light on the internal mechanics of those adversarial examples. We show the

effects via a number of figures. In Fig. 4.2(a), we show the PCA projection onto the

first two eigenvectors. This cannot separate normal and adversarial examples, as one

could possibly imagine. The adversarial examples look exactly like an interpolation,

rather than an extrapolation. However, it does seem that the adversarial examples

reside mostly in the center while the normal examples occupy a bigger chunk of space.

Interestingly, as we move forward to the tail of the PCA projection space, the

picture start to change significantly. In Fig. 4.2(b), we can see that there are a sig-

nificant amount of adversarial examples that has extremely large values w.r.t. to the

normal examples in the tail of the distribution. We chose to print the projection on

the 3,547-th and 3,844-th eigenvector, but similar distributions can be found all over

the place. As one can see, at such a far end on the tail, the projection is very similar

to a Gaussian distribution. An explanation for that could be that under this “unin-

formative” weighted direction most of the weighted features are nearly independent

w.r.t. each other, hence the distribution of their sum is similar to Gaussian, according

to the central limit theorem1. However, although normal examples behave similarly

to a Gaussian, some adversarial examples are having projections with a deviation as

large as 5 or 10 times the standard deviation, which are extremely unlikely to occur

under a Gaussian distribution.

1Note this is directly after the final convolution layer without a ReLU transformation, since ReLU
destroys the negative part of the data distribution, the data no longer looks like a Gaussian after
ReLU. However, some tail effects can be observed even in the distribution after ReLU.

36

-6 -4 -2 0 2

Eigenvector Number 1

-4

-3

-2

-1

0

1

2

3

4

E
ig

e
n
v
e
c
to

r
N

u
m

b
e

r
2

Head Distribution

Normal examples

Adversarial Examples

-10 -5 0 5

Eigenvector Number 3547

-6

-4

-2

0

2

4

6

8

10

12

E
ig

e
n
v
e
c
to

r
N

u
m

b
e
r

3
9
8
4

Tail Distribution

Normal examples

Adversarial Examples

(a) (b)

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Eigenvector Number

2

4

6

8

10

12

E
x
tr

e
m

a
l
V

a
lu

e

Eigenvector Number vs. Extremal Value

Normal examples

Adversarial Examples

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Eigenvector Number

0.6

0.8

1

1.2

1.4

1.6

N
o
rm

a
liz

e
d
 S

ta
n
d
a
rd

 D
e
v
ia

ti
o
n

Normalized Standard Deviation

Normal examples

Adversarial Examples

(c) (d)

FIGURE 4.2: Blue indicates normal examples and red/orange indicate adversarial examples.

(a) The projection of the data at layer 14 onto the 2 most prominent directions; Adversarial

example cannot be identified from normal ones. (b) Projection of the same data to the 3,547-

th and 3,844-th PCA projections, some adversarial examples are having significantly higher

deviation to the mean; (c) The absolute value of the most extremal value in the projection to

each eigenvector, normalized by the standard deviation of the projections on the normal eigen-

vectors; (d) The average normalized standard deviation of normal and adversarial examples

on each projection.

Fig. 4.2(c) and Fig. 4.2(d) shows that there are two distinct phenomena:

Y The extremal value and standard deviation on the projections onto the first

500 � 700 eigenvectors are decidedly lower in the adversarial examples than the

37

normal ones.

Y The extremal value and standard deviation on the projections onto the last

1,000�1,500 eigenvectors are decidedly higher in the adversarial examples than

the normal ones.

It is interesting to reflect about the causes and consequences of those properties.

One deciding property is that there is a strong regularization effect in adversarial ex-

amples on almost all the informative directions. Hence, the predictions in adversarial

examples are lower than those of normal examples, rather than higher as it might

seem in Fig. 1.1. In Fig. 4.3, we show the number of categories with a prediction

higher than a threshold. The result shows strong regularization effects in adversarial

examples: before the softmax transformation, normal examples have on average one

category prediction that is more than 20, however adversarial examples have only

0.01 category predictions more than 20, meaning one in 100 examples with even one

strong prediction. The reason that those adversarial examples appear more confident

after softmax is because that the predictions on all the other categories are regularized

even more. Hence the normalization component of softmax has decided that the single

prediction, although much less strong, should be assigned a probability of more than

90%. This could be seen as an artifact of softmax that requires the normalization

term, however, there is no good alternative that handles simultaneously multi-class

classification. One could utilize one-against-all to compute per-class probabilities for

each yes/no decision, however that is well-known to be difficult to calibrate among

different one-against-all classifiers in order to generate a unique classification result.

The second property also offers important insight to the problem. We can

hypothesize that some additional dependencies that the adversarial examples have

utilized to lower the prediction values have made its way into the tail of the distribu-

tion, and produced large deviations from the mean which is only possible with high

interdependency. While the tail is not immensely useful during classification, it does

have some contributions. The main insight we can gain from this is that it is possible

38

to use the deviation of PCA projections to the mean to determine whether the data

come from the normal distribution or the adversarial distribution. This provides a

basis for us to devise confidence estimates of deep learning that can reject predicting

on those adversarial examples.

0 10 20 30 40 50

Network Prediction Threshold before SoftMax

10
-4

10
-2

10
0

10
2

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
C

a
te

g
o

ri
e

s

Average Number of Categories per Example

with Prediction Larger than Threshold

Normal examples

Adversarial Examples

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Network Prediction Threshold After SoftMax

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
C

a
te

g
o

ri
e

s

A
b

o
v
e

 T
h

re
s
h

o
ld

Average Number of Categories per

Example with Prediction Above Threshold

Normal examples

Adversarial Examples

(a) (b)

FIGURE 4.3: Average number of categories per example with predictions higher than a

threshold. (a) Before softmax; (b) After softmax. As one can see, in normal examples, there

are on average about 1 category with a prediction score of more than 20 (before softmax),

while with adversarial ones, only 1% examples have a category with a prediction score more

than 20. However, since predictions on almost all categories have dropped, after softmax

adversarial examples have much higher likelihood on a particular category.

39

5 Identifying and Countering Adversarial Examples

5.1 Self-Aware Learning with an Abstain Option

Previous work on adversarial examples has mainly focused on re-training the

network to gain better separation on adversarial examples. In this work, based on

the previous findings, we instead advocate an approach that would first identify ad-

versarial examples. This would help us to avoid classifying those examples, which do

not come from the input distribution we are trained on and are likely adversarial.

This puts us into the framework of self-aware learning [10] where the learning

algorithm has an abstain option of saying “I don’t know”, instead of making actual

prediction on the example. We define a framework that is slightly different than [10],

avoiding the KWIK requirement of never making a mistake.

We assume that the training input is drawn i.i.d. from a distribution P �x, y�,

where x is the input and y is the output. Assume that the testing input is drawn

from a mixture distribution between P �x, y� and Q�x, y�:

Pm � ΩP �x, y� � �1 �Ω�Q�x, y� (5.1)

, where Ω > �0,1� is an unknown mixture weight, and Q�x, y� is an adversarial distri-

bution. Assume that we have a classifier that includes a function f�x�, and a boolean

strategy ai between predict and abstain that can be chosen for each individual xi.

Assume that the expected error from our classifier on the adversarial distribution is

eq (which could be assumed, if no other prior is present, as the random guessing error

of C�1
C for a C-class classification problem). Further assume that abstaining always

incur a fixed cost ea. As long as ea @ eq, abstaining would be better than predicting

on the example drawn from the adversarial distribution, however, ea should be set

sufficiently large so that it still makes sense to predict if the classifier is confident

about it.

For each testing input, the testing of the self-aware classifier is then trying to

40

optimize minaEPmLa�x, y� where

La�xi, yi� �

¢̈
¨̈̈
¨̈̈
¦
¨̈̈
¨̈̈
¤̈

P �yi x f�xi��, if ai � predict, �xi, yi� � P �x, y�

eq if ai � predict, �xi, yi� � Q�x, y�

ea if ai � abstain

(5.2)

hence the classifier needs to select between making a prediction using its function f�x�

and risk paying eq versus abstaining. It is then not difficult to see that the optimal

strategy is:

ai � predict, if P �Ω � 1Sxi�P �yi x f�xi�� � P �Ω � 0Sxi�eq @ ea

ai � abstain, otherwise (5.3)

which leaves the question of estimating P �Ω � 1Sxi�, whether the image xi comes

from the training distribution or the adversarial distribution. Our main contribution

is an algorithm defined in the next subsection to solve this subproblem of estimating

P �Ω � 1Sxi�.

5.2 Estimating whether a Testing Image Comes from the Training
Distribution

We seek evidences that can separate adversarial examples from normal ones. A

simple idea would be to proceed to the fully-connected layer and look for extremal

value patterns on the tail, as in Fig. 4.2(b), where an SVM classifier on the normalized

standard deviation can correctly classify more than 99% of the adversarial examples.

However, since the tail distribution corresponds to only very small differences in the

input, an adversarial optimization algorithm can defend against this by explicitly

minimizing the projection on the tail PCA components, without heavily affecting the

prediction results.

Instead we turn to early convolutional layers, where the tail distribution is

not obvious and easy to combat against, and that would achieve fastest prediction

41

between normal and adversarial examples. Convolutional layers are very interesting

to consider, since they work with many small correlated images and generate many

different outputs, each for a small window in the input. The output of different

locations in an image under one convolutional filter can be thought of as a sample

from a distribution on the responses w.r.t. a convolutional filter output. For example,

if the filter is detecting a left-right boundary, the distribution would capture the

statistics of how likely such a left-right boundary would be in an image. Similar ideas

have been used in computer vision ever since the SIFT BoW model [34]), however,

we are hoping to compute statistics out of it to decide whether the image looks like a

normal distribution or an adversarial one, rather than extracting meaningful features

for classification.

Suppose the output at a convolutional layer m is an W �H �K tensor, where

W and H represent the width and height of the tensor, and K represents the number

of convolutional filters. Before max-pooling, W and H would be the same as the

image size, and after max-pooling it will be smaller. Such a tensor can be considered

as a K-channel image where each pixel has a K-dimensional feature. We consider

the feature on every pixel to be a random vector drawn from the distribution Dm of

convolutional pixel outputs, a K-dimensional distribution.

The statistics extraction in the training phase can be summarized as algorithm.1.

(1 represents the all-one vector). And the testing phase works as algorithm.2

The simple algorithm collects the variances on each PCA component in each

image and input those into an SVM classifier. As one can see from the empirical

results in Fig. 4.2(c) and Fig. 4.2(d), the footprint of the adversarial examples are

very eminent in those variances on principle directions, hence we expect the SVM

classifier to be able to capture those footprints and achieve good classification results.

42

Algorithm 1 Single Layer Statistics Extraction

1: Draw examples from the Dm of normal images in a training set to form an example

matrix Z.

2: Compute the mean m and PCA projection matrix W of Z.

3: Compute the standard deviation s on each dimension in the PCA projection

W��Z �m1��.

4: For each image I, draw many examples (many pixels) from this image ZI ,

project them using PCA: W��ZI � m1�), and normalize them by dividing

standarddeviation on each respective dimension.

5: Collect the statistic for each image as xI � E�YZIY1�, where L1 norm is the vector

L1 norm on each column, it is used just for convenience reasons, in principle any

statistic can be used.

6: Collect 25, 50 and 75 percentile point from the filter maps on each convolutional

layer. The resulting vector would also be a K dimensional feature vector for each

percentile.

7: Collect minimum and maximum extremal value from feature maps on each of the

convolutional layers.

8: Train an linear logistic regression (or SVM) classifier on a training set with normal

and adversarial examples obtained from step 4 to 7. Label normal examples as

�1 (negative example) and adversarial examples as �1 (positive example).

43

Algorithm 2 GetStatistics

1: for each layer do

2: For each image I, draw many examples (many pixels) from this image ZI ,

project them using PCA: W��ZI �m1�), and normalize them by dividing s on

each respective dimension.

3: Collect the statistic for each image as xI � YZIY1, where L1 norm is the vector

L1 norm on each column.

4: Collect 25, 50 and 75 percentile point from the filter maps on each convolutional

layer. The resulting vector would also be a K dimensional feature vector for each

percentile.

5: Collect minimum and maximum extremal value from feature maps on each of

the convolutional layers.

6: Use the trained linear logistic regression (or SVM) classifier to predict the like-

lihood whether the example belongs to the normal or the adversarial distribution.

7: end for

44

5.3 A Cascade of classfiers

The ROC curve from a single layer shows that the detection task with respect

to a single convolutional layer will not give a good result, as shown in fig.5.1. On

FIGURE 5.1: RCO for each of the convolutional layers in AlexNet

each convolutional layer, the value of area under ROC is no more than 0.9. So we

cannot trust the detection result from only one single convolutional layer.

Viova et. al. in their precious work proposed a strategy to detect patches

of pixels that represent human faces[35]. The cascade classifier is designed based

on AdaBoost and is composed by a sequence of base classifiers. Each classifier is

responsible for operating on data from the corresponding convolutional layer.

A cascade classifier is usually used in a binary classification setting, see fig.5.2,

such as detecting the existence of a positive example. SC N represents the classifiers

corresponding to each convolutional layer. X is the input of the cascade classifier.

In general, in the training process in cascade classifier, a detected positive example

will trigger the classifier on the next stage continue training on it. And, as soon

45

as one example is assigned to be negative, the cascade classifier system will discard

it immediately. This training behavior conforms our reality that, in the real world,

normal data are far more than defected data so that images can be considered to be

normal most of the time.

Instead of using this method directly, we constructed a modified version of

cascade classifier, considering working on single layer data will result in a poor result.

The base classifiers will not solely consider statistics from their own stage, instead,

after one stage of training, the remaining positive examples will be concatenated to

the corresponding features on the next stage. The training task is harder at the latter

stages of the cascade.

The cascade classifier has pretty good property of their overall recall and false

positive rate. The recall and false positive rate are equal to the, respectively, produc-

tion of single layer recalls and false positive rate respectively, and they can be shown

as fig.5.2.

FIGURE 5.2: RCO for each of the convolutional layers in AlexNet

The operations that represented by fig.5.2 can also be summarized as algorithm.3.

46

Algorithm 3 Training Process of a cascade of Classifier

1: Npool � Normal Example pool

2: Ntrain � g

3: Ptrain � Training Perturbed Dataset

4: Ptest � Testing Perturbed dataset

5: L� Number Of Convolutional layer

6: s� sizeof�Ptrain�

7: while current layer B L Or Npool x g do

8: svm� LinearSVM.instantiate()

9: Ntrain � draw sebset of size s from Npool

10: T � Ptrain 8Ntrain

11: Datatrain � statistics of interest corresponding to images in T calculated by

algorithm.1

12: svm.train(Datatrain)

13: Datapool � statistics correspond to Npool

14: Nnegative,Npositive � svm.predict(Npool)

15: Eliminate Nnegative from Npool

16: end while

The overall false positive rate of a K stage cascade classifier can be represented

as:

F �

K

M
i�1

fi (5.4)

where fi is the false positive rate at each layer. And similarly the true positive rate

can be represented in the same form:

T �

K

M
i�1

ti (5.5)

where ti is the true positive rate at each stage. Given the goal of the true positive

rate (recall) of the classification problem, we can maintain a pretty high true positive

rate while having the false positive rate attenuate layer after layer in the process of

47

training. This can be done by selecting the classification threshold which corresponds

to a relatively high true positive rate. For example, in AlexNet, the when we choose

the threshold that yields 0.97 true positive rate, the false positive rate will range from

0.85 to 0.35, so the overall true possitive rate 0.86 and false positive rate 0.05. This

result gives a pretty good ROC curve.

48

6 Experiments

6.1 Data Preprocessing

We have two source of data source for defected data, data generated using

L-BFGS by [1] and data generated by EA by [28]. LBFGS-adversarial dataset are

generated from For ILSVRC2012 validation dataset. In total, 4,400 L-BFGS data

were extracted from this dataset. For the purpose of contrast, we also generated

5,000 EA-adversarial images using the algorithm in [28].

In the data preparation process, we extracted statistics of interest, mentioned in

section 5.2, from feature maps in the lower 9 convolutional layers for both normal ex-

ample and LBFGS-adversarials in VGG-16 convolutional neural networks, and in all 5

convolutional layers for normal, LBFGS-adversarials and EA-adversarials respectively

in AlexNet.

All input images had been re-shaped into 224 � 224 � 3 dimensions for VGG-16

model and re-shaped into 227� 227� 3 dimensions. And they were normalized before

input into the networks for evaluation.

6.2 Experiment Settings

We use MatConvNet from VLFeat to capture the feature maps of interest for

all normal dataset, LLBFGS-adversarials and EA-adversarials. And we selected to

use pre-trained model imagenet-vgg-verydeep-16 as our VGG-16 CNN model and

use imagenet-caffe-alex as our AlexNet model.

We selected LinearSVC from scikit-learn toolkit in the python2.7 as our base

classifier in our cascade classifier.

49

6.3 Experiment for LBFGS-Adversarials Detection

Our classifier has been run on multiple convolutional layers in the network.

Experiments show that we are very capable of identifying LBFGS-adversarials. We

show that, although in each single layer base classifier does not performs perfectly

with an accuracy no more than 80% and poor ROC curve, the overall performance of

a cascade classifier composed with classifiers from each layer can reach as high as over

90%, which showcases the effectiveness of the spectral analysis and the idea of using

statistics on the pixel distributions from each image.

6.3.1 AlexNet Model Experiment on LBFGS-adversarials

We performed our design of cascade classifier on the data generated from ImageNet

ILSVRC2012 validation images using AlexNet network. In table.6.1, we show the

single layer performance when experimenting with AlexNet, and we can see single

layer performance, as we expect, is not very high:

TABLE 6.1: Classification Result for Normal vs. LBFGS-adversarials

Network Layer 2nd 3rd 4th 5th 6th

Accuracy 57.5 � 0.69 67.3 � 0.73 70.9 � 0.57 74.9 � 0.87 78.95 � 0.63

However, when we configured all layers of base classifier together, the perfor-

mance increased greatly. The base classifier is selected to be SVM, specifically, scikit-

learn LinearSVC. Tuning on the parameter C and true positive rate (recall), we found

it best performs with C � 0.005 and with the threshold corresponding with 0.97 true

positive rate. The average accuracy reaches 83.337% over 20-fold cross-validation.

To compare the performance with another detection algorithm, we also applied the

OpenMax method mentioned in section.3.3. To learn the Weibull distribution, the

50

EVT is applied on the same set of training dataset. The ROC only get 0.81 AUC

from the testing data on which our detector have just performed. And its accuracy is

poor, see fig.6.1.

FIGURE 6.1: Comparison Between OpenMax detection Methods and Cascade Classifier: The

blue curve represents the performace of OpenMax Method, and green curve represents the

perfornace for Cascade Classifier.

6.3.2 VGG-16 Model Experiment on LBFGS-Adversarials

For comparison, we also performed this same classification task experiment on the

data generated from the same dataset as in section6.3.1 but using VGG-16 network.

The single layer performance is shown in table.6.2

51

TABLE 6.2: Classification Result for Normal vs. LBFGS-Adersarials

Network Layer 2nd 3rd 4th 5th 6th

Accuracy 72.1 � 0.69 84.1 � 0.73 80.3 � 0.57 81.4 � 0.87 74.3 � 0.63

Network Layer 7th 8th 9th 10th

73.9 � 0.61 74.2 � 0.65 71.2 � 0.72 74.3 � 0.79

With the same set of base classifier, with parameter C � 0.005 and with clas-

sification threshold corresponding to 0.98, the accuracy of the classifier reaches on

average 90.665% over 20-fold cross-validation. The accuracy is higher than the result

from AlexNet, see fig.6.2.

FIGURE 6.2: Overall ROC Performance Curve of Cascade Classifier Trained on VGG-16

Network

x

52

6.4 Testing Cascade algorithm on EA-Adversarials

To test the generalization property of our detector. We performed 20-fold corss-

validation, with the same set of parameters as section.6.3.1, on data generated from

EA-adversarials in [28] using AlexNet. The result shows that EA-adversarials are

much more detectable than LBFGS-adversarials by our detector.

FIGURE 6.3: Overall ROC of data generated from EA-adversarials dataset on AlexNet

Single stage classifier performance when working on detection of EA-adversarials

is also much more higher than that when working on detecting LBFGS-adversarials,

see table.6.3. We only need the data generated from the first three convolutional

layer to reach the overall 97.34% detection rate.

TABLE 6.3: Classification Result for Normal vs. EA-Adversarials

Network Layer 2nd 3rd 4th

Classification Accuracy 93.45 � 0.69 98.3 � 0.73 97.9 � 0.57

53

6.4.1 Images Classified Correctly and Incorrectly

(a) (b) (c) (d)

FIGURE 6.4: Some of Misclassification on L-BFGS images by Our Classifier. (a) and (b) are

from normal dataset. (c) and (d) are from LBFGS-Adversarial dataset, which is misclassified

to category n02408429(water buffalo) and n01518878(ostrich, Struthio camelus).

(a) (b) (c) (d)

FIGURE 6.5: Some of Correctly Classified on L-BFGS images by Our Classifier. (a) and

(b) are from normal dataset. (c) and (d) are from LBFGS-Adversarial dataset, which is

misclassified to category n04209133(shower cap) and n02328150(Angora).

54

(a) (b) (c) (d)

FIGURE 6.6: Some of Misclassfied EA images by Our Classifier. From left to right, they are

misclssified to category n03220513 (dome), n01749939 (green mamba), n04118776 (rule, ruler)

and n03935335 piggy (bank, penny bank)

FIGURE 6.7: Some of Correctly Classified EA images by Our Classifier. From left to right

they are misclassified to n06874185 (traffic light, traffic signal, stoplight), n03443371 (goblet),

n04522168 (vase) and n03742115 (medicine chest, medicine cabinet)

55

(a) (b) (c) (d)

FIGURE 6.8: Images Miscalssified by OpenSet Method but Correctly Classified by Our Clas-

sifier. (c) and (d) are from LBFGS-Adversarial dataset, which is misclassified to category

n02133161(American black bear) and n02328150(Agona).

6.5 Discussion

6.5.1 Performance And Depth of a CNN

We compared the over all results from section.6.3.1 with section.6.3.2. The

ROC curve of VGG-16 outperforms that of AlexNet experiment. The difference is

that AlexNet has fewer number of convolutional layers. In the process of training

and test, every time when we move forward to the next level, we will concatenate the

feature from the previous layer to the next. This means, having more layers would

help to gain more information for detection task. From table.6.1, table.6.2 and

table.6.3, we can see, as we move to the higher level of layer, the performance is in

an increasing trend.

6.5.2 High Detectability of EA-adversarials

In section.6.4, the experiment result shows EA-adversarials are highly de-

tectable by our detector. To gain more insight into this result, I made a few com-

parisons between the statistics of interest extracted from normal images, perturbed

images and EA-adversarials.

We visualized the mean of the statistics that used for the detection task from the

56

first layer of the AlexNet on all its dimensions. As we can see in fig.6.9, from left part

to the right part of the curve, the difference of the mean value of the PCA projection

on layer 1 in AlexNet extracted from EA-adversarials and that of the normal ones is

increasing dramatically, while, compared to the EA-adversarials, the statistics from

LBFGS-adversarial have much less difference from the normal data and the difference

does not change very much as we see from left to right.

FIGURE 6.9: PCA Projection Comparison

Also, from fig.6.10 and from fig.6.11, extremal statistics (minimum value and

maximum value in each feature map) from LBFGS optimization result gain more

difference from normal data. LBFGS-adversarials have smaller maximum values and

greater minimum values. This may implies that the effect of the LBFGS optimization

is to push the original data more compacted together. However, we can also see

statistics drawn from EA-adversarials have more severe extent of fluctuation, which

is also the reason why EA-adversarials are more distinguishable.

57

FIGURE 6.10: Maximum Feature Map Extremal Value Comparison

FIGURE 6.11: Minimum Feature Map Extremal Value Comparison

From fig.6.12, fig.6.13 and fig.6.14, we still see the EA-adversarials evidently

differ from normal images. The EA-adversarial statistics fluctuate much more severely

than LBFGS-adversarial data from the normal data.

58

FIGURE 6.12: Percentile 25 Value Comparison

FIGURE 6.13: Percentile 50 Value Comparison

59

FIGURE 6.14: Percentile 75 Value Comparison

6.6 Image Recovery

Insights from [7] indicates that the adversarial mechanism is very specifically

attacking vulnerable gradients starting from the first convolutional layer. Insights

from the previous experiment also suggests that the adversarial effect could be very

obvious even after the first convolutions. Therefore a natural idea would be to destroy

the adversarial effects in the first convolutional layer to try to recover the original

image. We try a very simple approach: applying an small (e.g. 3 � 3) average filter

on the adversarial image before using CNN to classify it. The positive and negative

adverse gradients will average out in this approach, and making the masked features

from the normal images to show up a bit. In Table 6.4 we show such recovery results:

after using a 3 � 3 average filter on identified adversarial examples, the classification

accuracy grows from almost 0% to 73.0%, showcasing the effectiveness of this simple

average filter.

60

TABLE 6.4: Recovery Results. Simply using a 3 � 3 average filter we can recover a large

proportion of adversarial examples after detecting them using the algorithm described previ-

ously. More complex cancellation approaches such as foveation in [5] that utilizes cropping

can achieve better results.

Approach Top-5 Classification Accuracy

on Recovered Images

Original Image (Non-corrupted) 86.5%

3 � 3 Average Filter 73.0%

5 � 5 Average Filter 68.0%

Foveation (Object Crop MP) [5] 82.6%

Those results show that we can both detect and recover from adversarial exam-

ples with very high accuracy. However, the authors believe that the main issues with

the current deep convolutional networks is that they are too locally focused. As one

can see, some adversarial examples that can be cancelled by a simple 3 � 3 average

filter could corrupt the output of the deep convolutional network. For human with a

large receptive field, they will not even care about what happens within a 3 � 3 area.

Therefore, the authors believe that future deep learning approaches should focus on

enlarging the receptive field in order to reduce the chance of being fooled by adversar-

ial examples. Another potential direction is to research classification approaches that

do not require a softmax-type normalization, in order to avoid regularizing attacks

such as the ones used in the adversarial optimization in (3.1).

The reason for the behavior of EA images should be that they are not close to

any of the training normal training examples in the input space. From the comparison,

we can also interpret that the main contribution for the detection may lie in the

exremal statistics when we try to detect L-BFGS optimization result.

61

7 Conclusion and Future Works

7.1 Conclusion

This paper proposes to deal with adversarial examples in deep learning using an

approach that detects the adversarials. This is achieved by making empirical obser-

vations on the spectral properties of normal and adversarial examples and designing

relevant algorithms that examine spectral statistics to identify normal and adversarial

examples.

From the fact we see in the experiment in previous section, we saw that, for

adversarial example detection, the performance detector we trained is correlated with

the number of convolutional layers we used. We extract those statistics of interest

from 9 layers of feature map in the VGG-16, and from 5 layers of feature maps in

AlexNet. The classifier will discard the example points and stop working on them as

soon as they are considered to be negative (statistics generated from normal images).

Remaining examples will still be under tested until it reaches the end stage of the

classifier or detected to be negative. The high recall value we selected for the base

classifier brings the high false positive rate. This means even though the an example

are detected to be positive, more stages of tests are needed to eliminate the false

positive examples.

Another insight we have is that fooling images are much more detectable than

adversarial examples in section.6.4. The reason is adversarial images is generated

from normal images by adding an non-saturating increment to the normal ones. Nor-

mal inputs and adversarial inputs are very close by the distance in the input space. As

for Fooling examples, they are generated to be with no semantic meaning for human

eyes and they are not geometrically close to any examples in the training example

distribution. Namely, the probability for fooling examples of being an outlier is high.

The experiments in section.6 shows that, after we successfully train a cascade

of classifiers, we can detect the incoming adversarial examples on-fly. the empirical

62

statistics of interest will be extracted during the time each feature map is evaluated.

However, the performance is subject to the number of layers in a network. One of

the possible future work direction is to design a classifier architecture that performs

independent with the number of layers.

63

Bibliography

1. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow,

I., Fergus, R.: Intriguing properties of neural networks. arXiv preprint

arXiv:1312.6199 (2013)

2. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:1409.1556 (2014)

3. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic seg-

mentation. In: International Conference on Computer Vision (ICCV). (2015)

4. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep

convolutional neural networks. In: Advances in Neural Information Processing

Systems. (2012) 1097–1105

5. Luo, Y., Boix, X., Roig, G., Poggio, T.A., Zhao, Q.: Foveation-based mechanisms

alleviate adversarial examples. arXiv preprint arXiv:1511.06292v3 (2016)

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.

In: IEEE Conference on Computer Vision and Pattern Recognition. (2016)

7. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial

examples. arXiv preprint arXiv:1412.6572 (2014)

8. Fawzi, A., Frossard, P.: Manitest: Are classifiers really invariant? arXiv preprint

arXiv:1507.06535 (2015)

9. Sabour, S., Cao, Y., Faghri, F., Fleet, D.J.: Adversarial manipulation of deep

representations. arXiv preprint arXiv:1511.05122 (2015)

10. Li, L., Littman, M.L., Walsh, T.J., Strehl, A.L.: Knows what it knows: a

framework for self-aware learning. Machine learning 82(3) (2011) 399–443

11. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the

curse of dimensionality. In: Proceedings of the thirtieth annual ACM symposium

on Theory of computing. (1998) 604–613

12. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.

Springer-Verlag, New York (2001)

13. Nguyen, A.M., Yosinski, J., Clune, J.: Deep neural networks are easily fooled:

High confidence predictions for unrecognizable images. CoRR abs/1412.1897

(2014)

64

14. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann

machines. In: Proceedings of the 27th International Conference on Machine

Learning (ICML-10). (2010) 807–814

15. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Er-

han, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions.

arXiv:1409.4842 (2014)

16. Zeiler, M., Fergus, R.: Stochastic pooling for regualization of deep convolutional

neural networks. In: ICLR. (2013)

17. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-

scale hierarchical image database. In: IEEE Conference on Computer Vision and

Pattern Recognition. (2009)

18. Yang, J., Yu, K., Huang, T.: Supervised translation-invariant sparse coding. In:

Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on,

IEEE (2010) 3517–3524

19. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training

by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

20. Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang,

X., Wang, G.: Recent advances in convolutional neural networks. arXiv preprint

arXiv:1512.07108 (2015)

21. Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of mon-

key striate cortex. The Journal of physiology 195(1) (1968) 215–243

22. Le Cun, B.B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel,

L.D.: Handwritten digit recognition with a back-propagation network. In: Ad-

vances in neural information processing systems, Citeseer (1990)

23. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied

to document recognition. Proceedings of the IEEE 86(11) (1998) 2278–2324

24. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.

In: European Conference on Computer Vision, Springer (2014) 818–833

25. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Over-

feat: Integrated recognition, localization and detection using convolutional net-

works. arXiv preprint arXiv:1312.6229 (2013)

65

26. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep

convolutional neural networks. In: Advances in neural information processing

systems. (2012) 1097–1105

27. Moosavi-Dezfooli, S., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate

method to fool deep neural networks. CoRR abs/1511.04599 (2015)

28. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled:

High confidence predictions for unrecognizable images. In: IEEE Conference on

Computer Vision and Pattern Recognition. (2015)

29. Gu, S., Rigazio, L.: Towards deep neural network architectures robust to adver-

sarial examples. arXiv preprint arXiv:1412.5068 (2014)

30. Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A.: Distillation as a

defense to adversarial perturbations against deep neural networks. arXiv preprint

arXiv:1511.04508 (2015)

31. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are

universal approximators. Neural networks 2(5) (1989) 359–366

32. Bendale, A., Boult, T.: Towards open set deep networks. arXiv preprint

arXiv:1511.06233 (2015)

33. Jolliffe, I.: Principle Component Analysis. Springer-Verlag (1986)

34. Leung, T., Malik, J.: Representing and recognizing the visual appearance of

materials using three-dimensional textons. International Journal of Computer

Vision 43(1) (2001) 29–44

35. Viola, P., Jones, M.J.: Robust real-time face detection. International journal of

computer vision 57(2) (2004) 137–154

