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A REVIEW AND ASSESSMENT OF NETWORK CONCEPTS AND
THEIR APPLICATIONS IN GEOGRAPHY AND RELATED DISCIPLINES

ABSTRACT

Networks are a structure common to many disciplines. Research on

networks has taken different forms in domains such as graph theory, sociology,

vascular networks, small-world networks, geomorphology, ecology, evolution and

engineering. Networks may be modeled as non-spatial networks (unvalued

graphs), which contain only topological information, or as spatial networks (valued

graphs), which contain both topological and distance or location information.

Geographers study spatial networks whether the networks occupy absolute or

relative space. All networks have topology and connectivity. Many networks are

thought to have emergent, systems properties of flow, feedback, hierarchy,

growthlreduction, indirect effects and robustness to error. As such, networks are a

useful conceptual tool for modeling phenomena in and across many diverse fields.

INTRODUCTION

Networks are found in most all disciplines. In engineering networks are

used to model electrical circuits. In anatomy the circulatory system is described as

a network. Molecular biology considers metabolic networks. Artificial

intelligence employs neural networks. Computer science has various computer



networks. City planning has road networks, water networks and electric grids.

Geology has faults and fissures that create networks. Ecology has food webs.

Mathematics has graph theory and branching processes. Geomorphology has

stream and ridge networks. Anthropology and sociology have social networks.

Economists have financial networks. Evolution has phylo genetic trees.

Communications has communication networks. Even in our everyday language we

may speak of family trees, "networking" or terrorist networks.

This paper explores networks in a variety of disciplines, suggests several

ways of classifying networks by their different characteristics, and attempts to

elucidate general properties common to all networks or classes of networks as

described earlier.

The first section reviews network terminology. The second section briefly

reviews the study of networks in seven different fields. These are illustrated in

Figure 1. The third section classifies networks and shows how the treatment of

networks in any of these subject areas often considers spatial propertieswhether

absolute or relativeof the networks. Thus, patterns and processes modeled as

spatial networks concern geographers. Finally, the paper speculates on properties

common to networks.

NETWORK COMPONENTS AND TERMiNOLOGY

Various terminology has been used to describe the components of networks.

This section aims to describe network elements, illustrate where network
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Figure 1. Network study and analysis in various subject domains reviewed in this paper.

components have been defined in the literature and show where terminology may

or may not be equivalent.

Networks are structures that have two basic components: nodes and the

links between these nodes. Or, stated another way, networks have two basic

components: edges and vertices where the edges meet. The former language of

nodes is generally used in the literature surrounding social network analysis, food

web network analysis and utility networks. It underscores the fact that the nodes

are often separate entities that have various relationships to each other as defined

by the links. The latter terminology of edges and vertices comes from graph theory

(Busacker and Saaty 1965). Here the emphasis is usually on the edges, with the

vertices occurring because edges intersect. This terminology may fit well with



actor arc
compartment bond
component branch
conductor channel
constituent connection
element curve
fork edge
hub link
intersection (line) segment
junction one-cell (matrix)
knot path(way)
node (relational) tie
point route
vertex side
zero-cell (matrix) spoke

Table 1. Elements of networks: Terminology

networks such as streams, where tributaries enter a main channel at vertices rather

than nodes. However, much of this terminology is used interchangeably and there

is very little consistency across the various fields of network study or even within a

field. Most authors use several different terms in the same article to express node

or link. A list of synonymous terms is found in Table 1.

The food web literature tends to use terms like compartment to show that

nodes may gain, lose, and store energy or nutrients (Christian and Ulanowicz 2002,

Ulanowicz 1999, Kay et al. 1989, Field et al. 1989, Mikulecky 1991). The small-

world network literature tends to use the term path or pathway (Watts and Strogatz

1998, Jeong et al. 2000, Wagner and Fell 2000, Strogatz 2001). In a geographic

information system (GIS), arc is often used (Chou 1997, Ch. 2). Social network

analysis uses actors and ties (Wasserman and Faust 1994). Subject-specific terms

are also used: neurons and synapses in neurology, for example (Feuvre et al. 1999).



Beyond the basics of nodes/vertices and links/edges, there are some more

specialized terms used to describe network components. Geomorphologists often

distinguish between internal and external links of a stream network (Shreve 1967,

Abrahams 1984, Ichoku and Chorowicz 1994), and a particular node representing

the most downstream point of a stream channel may be called an outlet or root

(Karlinger and Troutman 1989). Down node and up node have been used to

signify nodes in directional flow networks like streams (Ichoku and Chorowicz

1994). Sometimes, as in utility network analyses, certain nodes are defined as

sources or sinks/terminals of matter, energy or information (Frank and Frisch 1970,

Zeiler 1999, Ichoku and Chorowicz 1994). Finally, while it may not be part of the

network per se, a site may be defined as an area or point serviced by a distribution

network, such as a cell in a circulatory system (Banavar et al. 1999) or the area

drained by a stream segment (Swanson and Jones 2002).

Some terms have been developed to describe elements larger than a single

node or link but smaller than the entire network. The Web has been described as

having a core, upstream, downstream and tendril regions (Kleinberg and Lawrence

2001). Tn social network analysis, a pair of actors and the possible tie between

them is a dyad; localized clusters may be called cliques or relations (Wasserman

and Faust 1994, Collins and Chow 1998). In utility and communication networks,

a set of links that connect one group of nodes to all remaining nodes may be called

a cut (Frank and Frisch 1970). Branches of woody plants are units of study in plant

ecology and physiology (Sprugel et al. 1991).



Networks

Planar Networks Non-Planar Networks

Paths Trees Circuits Cells

Linear Flow Linear
Systems Barriers

Figure 2. Topological classification of networks.
(Adapted from Table 15.1 in Haggett 1967.)
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Various authors may

assign nuances of meaning to

the basic network terms. For

example, Chou (1997, Ch. 7)

distinguishes between nodes

and vertices in GIS network

analysis: nodes are at the

start and ends of line segments and carry information about the topology of the

network, while vertices simply delineate the segment. Jeong et al. (2000) define a

hub as a highly connected node. Wagner and Fell (2000) define a pathway as a

sequence of adjacent vertices. This is called a walk by others (Karlinger and

Troutman 1989). Kay et al. (1989) define an arc as a directed edge. However,

none of these definitions are standard across the entire range of network literature.

The basic terms can be combined to make a standard classification of

networks (e.g., Figure 2). A path is a sequence of links and nodes in which each

node has no more than two links. A circuit is a path in which the first and last

nodes coincide. A tree, or branching network, is a network that contains no

circuits. Cells make up areal networks of polygons. These are all planar networks

since they can be drawn in a plane so that the edges intersect only at their endpoints

(Busacker and Saaty 1965). In addition to the networks shown in Haggett's (1967)

diagram, networks may contain loops if both endpoints of one edge are the same

vertex (Carré 1979).



(a)
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(b)

Figure 3. Two types of hierarchical networks: Branching hierarchy (a) and nested hierarchy (b).

Networks may be hierarchical in structure. Two types of hierarchical

networks are possible (Figure 3): branching hierarchy and nested hierarchy. Many

types of networks may be modeled as branching hierarchical networks; they

include stream systems, evolutionary phylogenies, plant root systems,

organizational flowcharts, and viscous fingering of fluids (see Fleury et al. 2001).

In contrast, food webs and transportation systems are often modeled as nested

hierarchical networks. For instance, Mainguenaud (1995) designed a data model to

manage several levels of abstraction of road networks in an object-oriented GIS

using a nested hierarchical network structure. Other researchers interested in food

webs have relied on a hierarchical network approach also (e.g., Burns et al. 1991,

Ulanowicz 1990).
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SELECTED NETWORK LITERATURE

The following section reviews network study in a variety of fieldsfrom

mathematics and sociology to geomorphology and evolution.

Graph theory

Graph theory is the mathematical treatment of networks. Its beginnings are

traced to the Swiss mathematician L. Euler (1707-1783) who took on the famous

problem of finding a path that crosses the seven bridges of Konigsberg, Prussia,

once and only once. He proved it impossible (Biggs et al. 1976). Euler's solution

starts with a reference to the mathematician G. W. Leibniz who noted two branches

of geometry, one concerned with magnitudes ("which has always received the

greatest attention") and another ("almost unknown") concerned with position. This

geometry of position later came to be known as topology and is closely aligned

with the study of networks. At the time, Euler knew of no applications or methods

for this study of position but recognized that the Konigsberg bridge problem, while

seemingly geometrically construed, did not involve any measurement of distance

and so appeared to be concerned with position only (Biggs et al. 1976).

Euler reduced the bridge problem first to a simplified diagram and then to a

series of letter symbols representing each of the four land areas and seven bridges.

In doing so he created what mathematicians today call a graph. A graph is made up

of a finite set of vertices (in Euler's case, the four land areas), a finite set of edges



13

(the seven bridges), and a rule (the incidence mapping) for delineating which edges

are connected with which vertices (Biggs et al. 1976, Busacker and Saaty 1965).

The mathematician J. J. Sylvestor first used the word graph in its graph

theory sense in 1878 in reference to the then recent convention of using letters and

lines to represent molecules in "chemical graphic notation." Today the term graph

is used interchangeably with network, although, according to Busacker and Saaty

(1965), network may imply that quantitative attributes have been ascribed to a

graph. This may also be called a valued graph.

Graph theory defines a terminology to describe both local and global

properties of a graph (Busacker and Saaty 1965, Carré 1979, Biggs et al. 1976,

Wasserman and Faust 1994). These include directed graph, a graph in which an

edge from vertex a to vertex b is distinguishable from an edge from vertex b to

vertex a; path, a sequence of edges in which no edges or vertices are repeated;

circuit (or cycle for directed graphs), a path of at least three vertices where all

vertices are distinct except for the first and last vertices, which coincide; degree

(also called valence), the number of edges a vertex has; and connectivity, a property

of a graph if every vertex in the graph is joined by at least one path (Busacker and

Saaty 1965).

All graphs may be represented geometrically. For some graphs, this is a

geometric illustration of actual physical connection; for other graphs, it is a mere

convenience and has no spatial counterpart in reality. Figure 4 shows two ways of

representing the same graph: a geometric graph and a logical graph.
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Edges Corresponding
vertices

I A,B
2 B,C
3 C,D
4 B,D

(a) (b)

Figure 4. Geometric graph (a) and its logical graph (b). (Adapted from Figure 1-1 in Busacker
and Saaty 1965.)

As will be seen later in the paper, graph theory is used in a wide range of

applications, from economics to games to engineering, to solve problems like

critical path analysis, connectivity, "coloration" problems and flow problems

(Carré 1979).

The field of random graph theory has grown out of graph theory. Erdös and

Rényi (1960) studied the growth of graphs (networks) as edges are added at random

and, based on a given function of the dependence of the number of edges on the

number of vertices, established the likelihood of a certain graph topology and

properties such as graph diameter. They discovered that there is a threshold for

many properties of graphs such that, given the dependency of the number of edges

on the number of vertices, either almost every graph has a particular property or it

does not: a so-called 0 1 law (Bollobás 1985). Until more recently, random
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graphs and completely regular graphs, or lattices, were the two main graph types on

which to base models of real-world networks (see section on "Small world

networks")

Social network analysis

Social network analysis refers to the study of society through the analysis of

relationships among individuals or groups (Wasserman and Faust 1994). The

precursor to social network analysis, the "sociogram" (Moreno and Jennings 1938)

was a diagram showing relationships as links between points representing people.

This idea was expanded upon, especially by the use of matrices and graph theory,

to become the quantitative model and methodology of social network analysis.

Social entities such as individuals, groups, organizations or nations form the nodes

of the network; the relationships (such as kinship, money transfer, friendship,

communication, etc.) between these so-called "actors" are the links, or ties,

between the nodes. Social network analysis assumes that relationships in social

behavior and institutions are critical to understanding society, and assumes that

social entities (the actors) are interdependent. Structure refers to the pattern the

network takes on; it impacts both the functioning of individual actors and the

network as a whole. Social network analysis allows for the existence of properties

that are characteristic of the entire network or to two or more actors while not being

characteristic of any one actor. As should be evident, social network analysis was

developed in part as an alternative to individualistic, reductionist, deterministic
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approaches to sociology. This approach has been taken up by those in other fields,

as will be seen in the next section and the section on trophic interactions (see

McMahon et al. 2001).

Complex networks and scaling

Some of the most interesting work on networks has been stimulated by the

search for understanding the quarter power law in biological systems and,

concurrently, describing complex networks as systems using "small-world"

models.

Strogatz (2001) reviewed complex networks and delineated six reasons why

networks are difficult to understand: (1) structural complexity, (2) network

evolution, (3) connection diversity (i.e., links between vertices may have direction

or be inhibitory or excitatory), (4) dynamical complexity (nodes may be nonlinear

dynamical systems), (5) node diversity, and (6) meta-complications that arise from

a combination of the former complexities. To study networks, different fields have

masked certain complications while emphasizing others. Strogatz's own field of

nonlinear dynamics often looks at regular networks of dynamic nonlinear systems

where, when nodes are driven by limit cycles, the network tends to synchronize.

On the other hand, in static networks of complex architecture models exist for

random graphs, small-world networks, scale-free networks and generalized random

graphs (whose degree distribution does not have to follow only a Poisson

distribution as with the classic random graph model). Strogatz (2001) speculates
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that network architectures such as these may affect a network's ability to

synchronize or resist error, but that more research is needed here since, "in the

longer run, network thinking will become essential to all branches of science. .

(275).

Scaling in vascular networks

The quarter power scaling law (also called the allometric scaling

relationship) recognizes a relationship between organism body size and physiology.

For example, larger organisms tend to have longer life spans and slower

metabolism. If organism attributes such as life span or metabolic rate are plotted

against organism body mass, the resulting relationship follows a quarter power law:

for instance, life span is proportional to the 1/4 power of body mass, metabolic rate

is proportional to the 3/4 power of body mass, duration of embryonic development

is proportional to the 114 power of body mass, etc. (Williams 1997). Scientists

have tried to decipher why these relationships scale by multiples of 1/4 instead of

1/3 as would be expected if the relationship was based solely on geometric

constraints.

West, Brown and Enquist (1997) attempted an explanation of the quarter

power law based on constraints caused by the circulatory system, a hierarchical (or

branching) network. They showed that the quarter power scaling law could be

derived from the physics of fluid flowing in the circulatory system.



Later, West, Brown and Enquist (1999) scrapped the fluid dynamics model

for a simpler model based not on physics but on network geometry. Their

reasoning follows that of Mandeibrot's fractal geometry (1982): the size and shape

of an organism has both an external, conventional, Euclidean geometry where

properties such as area, volume or mass scale by third powers and an internal,

effective, fractal geometry where the hierarchical, volume-filling structure of the

circulatory network creates an effective fourth dimension and properties such as

blood volume and metabolic rate scale to the quarter powers. Key to the argument

is the fact that capillary size is constant across species since basic network end

units such as cells have a constant size regardless of organism size.

Banavar, Maritan and Rinaldo (1999) reviewed West and colleagues' work

and, while they also used transportation networks with fixed transfer outlet sizes as

the key to explaining allometric scaling, they came up with a simpler mechanism

that is not confined to hierarchical networks. They concluded that the quarter

power law is a feature of any optimally efficient network. Instead of minimizing

energy dissipation as in West, Brown and Enquist (1999), Banavar et al. (1999)

defined the most efficient network as that network where blood volume (or other

transport substance, here denoted as V) is minimized. If T is the mean distance

between transfer sites of a D-dimensional system, then V scales as 711) and the

metabolic rate (for a circulatory system) scales as (mass)'

Both theories of allometric scaling have been applied to other domains.

Smethurst and Williams (2001) looked at hospital waiting lists and argued that if



II,

health care systems function as complex networks, they probably self-organize and

thus operate at an efficient equilibrium. Because of the power laws inherent in

many of these systems, complex systems have a large buffering capacity against

change. "If it turns out that waiting lists in general conform to power laws, then

this could explain why attempts to reduce them have only a temporary effect. A

paradoxical feature of waiting lists that conform to a power law is that they

represent the most efficient configuration for that organization" (Smethurst and

Williams 2001, 653).

Allometric scaling laws at the level of the organism have been extended to

the species, community and ecosystem levels (Enquist et al. 1998; Whittaker 1999;

Enquist et al. 1999; Enquist and Nikias 2001; Enquist and Niklas 2002). The logic,

as it has been applied to trees, is as follows. Since the metabolic rate of a plant

scales as the 3/4 power of the plant's mass, than the whole-plant resource uses

should also scale as the 3/4 power of the plant's mass. When the resource supply is

constant, the maximal population density should be proportional to the -3/4 power

of the average plant mass. (Traditional geometric models predict an exponent of

-2/3.) Finally, since the rate of resource use per unit area is the product of

population density and the rate of resource uses per individual, the total energy use

(plant productivity) does not depend on body size.

If proved true, this work on allometric scaling is innovative for two main

reasons. It provides an ecological law that appears to hold across various scales

from the individual to the ecosystem. Also, this allometric law that governs even
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macro ecological features results from the network structure of the water and

nutrient transport system of individual plants; Enquist and Niklas (2001) looked at

vascular plant production and the use of space and energy resources and concluded

that life-history differences in trees are constrained by allometric restrictions

resulting from the fractal-like vascular transportation networks of individual

organisms.

However, others such as Darveau et al. (2002) are critical of what they

deem a single-cause explanation to the complex problem of allometric scaling.

They argue that the quarter-power scaling exponent is the sum of multiple

contributors to an organism's metabolism and control. They show that since there

must be a difference in substrate use rate (such as oxygen) between basal and

maximum metabolic rate, then under resting conditions organisms must have an

excess of the substrate. This appears to invalidate the claims of Enquist and

colleagues (1998, 1999, 2001, 2002) whose allometric model relies on substrate

delivery limits imposed by the distribution system of the organism.

Small-world networks

Another branch of network research began with a paper by Watts and

Strogatz (1998) on "small-world networks" and has been expanded to include a

subset of small-world networks, "scale-free networks."

Models of complex network topology tend to assume one of two extremes:

either a network has completely random connection topology or completely regular
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connection topology (a "lattice"). The former, random graph theory, was

developed by Erdös and Rényi (1960) but is rarely a good description of real

complex networks which tend to lie somewhere between random graphs and

regular lattices. Watts and Strogatz (1998) investigated this murky middle ground

by simulating networks of varying degrees of topological randomness and looking

at two network properties: characteristic path length, L, and the clustering

coefficient, C. L is the average number of edges in the shortest path between two

nodes while C is the average of the ratio of connected nearest neighbors to all

nearest neighbors, or "cliquishness" of a typical subset of a network. L is a global

network property and is also called network diameter. C is a local property.

Regular networks (lattices) are highly clustered, and their diameter grows linearly

with the addition of nodes. Random networks are poorly clustered and their

diameter grows logarithmically with the addition of nodes.

What Watts and Strogatz (1998) found on the continuum between random

graphs and regular lattices are "small-world networks" that are highly clustered like

C(p)/C(0)

L(p)/L(0)

regular lattices yet have

small diameters like

random graphs. As shown

in Figure 5, as one goes

regular p random from a regular network to
graph graph

a random one, the
Figure 5. Normalized characteristic path length and
clustering coefficient for a family of random graphs.
(Adapted from Figure 2 in Watts and Strogatz 1998.)
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characteristic path length L drops rapidly due to the addition of a few random long-

range edges while C stays almost constant. This suggests that that transition from a

regular network to a small-world network is barely discernible at the local level.

Watts and Strogatz (1998) looked at a nematode neural network, a power

grid for the western United States and collaboration among film actors and found

them all to be small-world networks. They also modeled the spread of disease

through networks of varying topological randomness and concluded that, while all

models of disease spreading "indicate that network structure influences the speed

and extent of disease transmission,. . .our model illuminates the dynamics as an

explicit function of structure, rather than for a few particular topologies, such as

random graphs, stars and chains" (p. 442).

In the Erdos-Rényi random graph model and the Watts-Strogatz small-

world model, the probability P(k) that a node is highly connected to k other nodes

decreases exponentially with connectivity (or degree), k, indicating that highly

connected nodes are very rare. In fact, Barabási and Albert (1999) found that in

many large networks, vertex connectivity actually follows a scale-free power-law

distribution wherein agreement with small-world networkshighly connected

nodes dominate connectivity. Barabási and Albert found the power-law

distribution to be true for such networks as film actor collaborations, the Web, an

electrical power grid and citations in scientific publications.

Such a high level of self-organization in diverse networks is caused by two

features not present in former models: growth and preferential attachmentnew
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vertices tend to attach to highly connected vertices. Barabási and Albert (1999)

found that if these two properties were removed from the model, the scale-free

nature of the network was eliminated.

A paper by Albert, Jeong and Barabási (2000) expanded these ideas to

illuminate properties of error tolerance and attack vulnerability in complex

networks. The robustness of many systems to error or failure is often credited to

system redundancy, but Albert et al. (2000) showed that this robustness is a

property not of all redundant systems but of all scale-free networks. The scale-free

property of networks following a power law vertex connectivity distribution yields

an amazing tolerance to the removal of random vertices. However, when the most

highly connected vertices of a scale-free network are "attacked," its diameter

increases rapidly. In contrast, random graphs are not tolerant of error, and the

impact of deliberate attack is roughly the same as random failure. Albert and

colleagues (2000) believe that this robustness of scale-free networks "is probably

the basis of the error tolerance of many complex systems, ranging from cells to

distributed communication systems" (p. 381).

Amaral et al. (2000) conclude there are three classes of behavior for small-

world networks. They claim that scale-free networks are only one type of small-

world networks and suggest two additional classes of small-world networks:

broad-scale (or truncated scale-free) networks and single-scale networks. The three

classes of small-world networks are determined by varying constraints on

preferential attachment in the form of vertex aging, cost of adding a link or limited



capacity of the vertex. Scale-free networks have a vertex connectivity distribution

characterized by a power law. Broad-scale networks have a vertex connectivity

distribution characterized by a power law up to a certain threshold point; that is, the

most highly connected nodes are not scale-free. Single-scale networks have a

vertex connectivity distribution characterized by an exponential or Gaussian tail.

Amaral and colleagues (2000) investigated an electric-power grid, airport routes,

movie actor collaborations, friendship networks, a nematode neural network and a

lattice polymer chain and found them all to be single-scale networks with the

exception of the actor network which is a broad-scale network. Unlike other

studies (Barabási and Albert 1999, Jeong et al. 2000, Wagner and Fell 2000),

Amaral et al. 's (2000) investigation of small-world networks did not yield any

scale-free networks.

Watts and Strogatz (1998) suggest that small-world networks are probably

widespread in the natural and human-made/technological world and several other

authors have given examples as well.

Jeong et al. (2000) compared the metabolic networks of 43 organisms and

found that in spite of differing metabolic components, pathways and sizes, all the

networks show topological similarities of scale-free networks and have the same

diameter. This last surprising feature appears to not be characteristic of non-

biological scale-free networks. Jeong et al. (2000) propose that "the evolutionary

selection of a robust and error-tolerant architecture may characterize all cellular

networks, for which scale-free topology with a conserved network diameter appears
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to provide an optimal structural organization" (p. 653). Wagner and Fell (2000)

offered a similar report of a scale-free small-world network from their investigation

of the metabolic network of E. coil.

Non-biological small-world networks have also been investigated.

Kleinberg and Lawrence (2001) showed that despite the lack of an engineered

architecture, the Web shows a high level of self-organization and that, as it is so

decentralized, the Web's scale-free network topology must arise from local

behavior of preferential attachment.

An intriguing feature of some networks is their ability to be "navigated"

using only local knowledge. Interest in this aspect of networks dates back to an

experiment in the late 1960s where individuals throughout the U.S. were asked to

mail letters to a target person in Boston by sending her or his letter to an

acquaintance who in turn would forward the letter to one of their acquaintances. Of

the letters that reached their final destination, the average number of times the letter

was forwarded was around six (Travers and Milgram 1969). Kleinberg (2000)

showed that it is possible to navigate a small-world network with only local

information if the right level of clustering is present. Watts, Dodds and Newman

(2002) called this navigation property of social networks searchability. Based on

six underlying assumptions about social networks, they presented a model showing

that individuals have two types of partial informationinformation on social

distance and information on network pathsthat together can successfully direct a
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message through a social network even if the global network structure is unknown

at the local level of the individual.

Geomorphology and landscape ecology

Stream channels and forest roads are examples of the main physical

networks that have been studied in geomorphology and landscape ecology. Until

more recently, the study of stream networks in geomorphology was dominated by

the use of metrics such as bifurcation ratios, drainage density and link magnitude

that described topological properties of the network (see Abrahams 1984). Channel

growth and development was generally explained in terms of Shreve's (1967)

random topology model: stream networks are topologically random in the absence

of environmental controls, and stream link length and drainage area are

independent, random variables (Abrahams 1984). In terms of stream ecology, the

network structure of streams has rarely been taken into consideration; the current

framework based on the River Continuum Concept (Vannote et al. 1980) does not

take a network understanding of the stream system. Two new approaches are

enlarging the network view of streams and other network features in the landscape.

Swanson and Jones (draft 2002) propose that a network perspective in

landscape ecology has been neglected but has much to offer. Network structures

such as forest roads and streams are prime examples of form following function.

Because such networks transport flows of water, sediment, organisms, etc., they

show network properties of connectivity, (homogeneous) distribution and service to
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area ratio, their importance and impact may not be evident merely from the small

fraction of the landscape they occupy. Branching networks show unique capacities

in the face of disturbance: a debris flow initiated in one tributary of a stream

network may affect all areas of higher stream order downstream but leave smaller

tributaries undisturbed as areas of refuge. Branching networks may also be more

vulnerable to disturbance as when a landslide across a road cuts off transportation

to an area. Swanson and Jones suggest that this interaction between networks and

the areas they service in a landscape (or between networks and other networks, as

in Wemple, Jones and Grant [1996]) may offer insight into understanding the

scaling laws suggested by Levin (1992).

RodrIguez-Iturbe and Rinaldo (1997) expand on Mandeibrot's (1982)

assertion that rivers are fractals since they exhibit similar pattern over a range of

scales, many of their variables demonstrate the power law relationship (i.e.,

discharge to channel width or depth) characteristic of scale-free patterns and

processes, and they are practically space-filling with a fractal dimension near two

(Tarboton et al. 1988). They suggest an "optimal channel network" model based

on fractals that takes into account the statistical chance of random topology models

along with an added deterministic factor of "necessity": energy expenditure

minimization. The efficiency of the networkminimization of energy loss both

locally and globally along with homogeneous energy expenditure throughout the

networkis used to explain the branching, fractal structure of stream channels.



Kirchner, Feng and Neal (2000) found that a catchrnent's release of chloride

as measured in streamfiow follows a fractal scaling pattern. Whereas catchrnent

runoff followed rainfall levels with only a slight delay and attenuation of signal,

chloride concentrations were strongly dampened and exhibited power-law scaling.

This implies that flow through a catchment follows a power-law travel time

distribution where the catchment has both a short-term response to and a long-term

"memory" of input variation. Kirchner, Feng and Neal (2000) suggest their

findings may be related to such factors as fractal scaling in soil pores, bedrock

features and the flowpath to the stream. Supporting this conjecture, Haggerty et al.

(in press) have shown that tracer transport through the hyporheic zone of a 2nd-

order mountain stream follows a power law residence time distribution.

Ecology

An important question in ecology is how the structure of food webs and

ecosystems affects system stability. Research done in the 1 970s showed that

complex ecosystems should be less stable or have weaker interspecific interactions

than simple ecosystems (May 1973, Gardner and Ashby 1970). For example, food

web species richness increases with decreasing food web connectance (Yodzis

1980, Pirnm 1984). The idea that complexity destabilizes food webs was an

enigma to ecologists who observed that existing natural systems tend to be complex

(Polis 1998).
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McCann, Hastings and Huxel (1998) showed that interaction strengths

between food web components are key to resolving this apparent dichotomy.

According to their model, weak links dampen oscillations between consumers and

resources, which in turn lowers the chance of extinction.

Berlow (1999) suggested that weak links in food webs also are important

for their contribution to system variability. Because both direct and indirect and

positive and negative interactions occux in food webs, it is possible that effects that

counterbalance each other are deemed "weak" and their importance underestimated

by ecosystem researchers and managers.

More recently, Neutel, Heesterbeek and de Ruiter (2002) showed that real

food webs are so arranged that the sum of interaction strengths oflinks in long

trophic cycles (called loops by the authors) is lower than for cycles of the same

length in randomized food webs. Long cycles have many relatively weak top-down

(predator-prey) effects due to a decrease in biomass at higher trophic levels and

predators feeding on more than one prey type. Since weak interactions are thought

to contribute to food web stability, these findings help explain why food webs may

be so complex but still preserve stability.

Other food web studies have focused on "network analysis." Network

analysis is "a branch of ecology that deals with applying mathematical

methodologies to flow-storage models to identify holistic and emergent properties

of ecosystem behavior" (Fath and Patten 1999, 177). It arose from Leontief's

input-output theory of economics, which, in turn, had been influenced by the study
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of electrical circuits (Margalef 1991). So-called network analysis in ecology is

both an analytical tool, mainly for studying trophic interactions and energy flow

through ecosystems, and a way of conceptualizing ecosystems (Higashi and Bums

1991).

Network analysis in ecology has developed out of a concern that science is

too intent on reduction and mechanism, and that a systems approach is needed to

understand ecosystems (Higashi and Bums 1991, Patten 1991, Ulanowicz 1990).

Ecosystems are viewed and modeled as networks in which individual organisms,

species or other such groupings are considered nodes connected by links involving

the exchange of nutrients or energy (Kay et al. 1989, Patten 1991). For instance,

Asmus and McKellar (1989) performed a network analysis of a salt marsh food

web using 19 compartments (edaphic algae, birds, sediment dissolved organic

matter, etc.) and the amount of energy exchange from photosynthesis, respiration,

emigration and immigration. They were able to determine, among other things,

that the oyster reef portion of the salt marsh depended upon the water column for

69% of its energy and that most of the cycled flow depended on cycles of two path

lengths.

Fath and Patten (1999) show that networks at lower levels of organization

have properties of structure andfunction (process), and these regulate the behavior

of the system expressed at a higher level of organization. Matrices are constructed

using the known topology and energy or nutrient flow values of the food web

network. An unvalued, directional matrix of the food web's topology is called the
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structural information matrix, or adjacency matrix, and used in pathway analysis.

Four other valued matrices (showing flow between components, input into the

system, output out of the system and storage in components) represent the food

web's function. These matrices are the basis of flow analysis, storage analysis and

utility analysis and are useful for determining such network behavior as retention

time, turnover rates, cycling rates, indirect contributions and qualitative

relationships like competition and mutualism.

In particular, the network functional analyses of flow and utility have been

used to create four hypotheses central to network environ analysis (Fath and Patten

1999). From flow analysis (which identifies cycling rates and indirect

contributions), come the emergent properties of dominance of indirect effects,

amplflcation and homogenization while from utility analysis (which identifies

qualitative relationships such as competition) comes the property of synergism.

These are each looked at in turn.

Many food webs show a greater contribution from indirect effects than from

direct effects (Fath and Patten 1999). Indirect effects are defined as flows between

nodes that are not adjacent: in the network A -' B -' C, indirect flow is A -' C

while direct flow is A B and B -' C. Because of the suspected dominance of

indirect effects in food webs, the "whole set of network interactions is potentially

more important in determining the system behavior than are the direct transactions"

(Fath and Patten 1999, 177).
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Network amplification is a result of network components getting back more

than they put in (Fath and Patten 1999). This behavior is due to cycling in well-

connected networks where the total flow through a node may be greater than the

total input into the network.

Network homogenization is also the result of network cycling. Here, the

hypothesis is that there is a tendency for flow to become equally distributed

throughout the network, especially if the network is highly connected (Fath and

Patten 1999).

Finally, the hypothesis of network synergism proposes that overall network

relations are inherently more positive than is apparent from direct interactions alone

(Fath and Patten 1999). By virtue of the network's organization, all involved living

constituents reap positive benefits (Muller 1997, 145).

The existence of indirect effects in ecological networks raises the issue of

causality. Ulanowicz (1990, 1997, 1999) recalls the four levels of cause defined by

Aristotlematerial, efficient, formal and finaland argues that they are

intrinsically hierarchical in nature: they operate at different scales in the same

system (Ulanowicz 1997, 13). He posits that modern science concerns itself only

with material and efficient (or mechanistic) causes. At risk of being accused ofin

his own wordsmisguided transcendentalism, Ulanowicz (1990, 1997, 1999)

attempts to identify and quantify formal and final cause using network analysis as a

model. He claims that the positive feedback inherent in any cyclic network is a

formal cause of the network's growth and development. A quantitative measure of
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this growth and development is ascendency, a measure of network size (flow

activity) and organization athway articulation). System ascendency should

increase as a system matures and decrease if a system becomes perturbed.

Ulanowicz (1991) claims it may also be possible to measure effects of final cause

since formal cause (ascendency) at the network level may be final cause at a finer

scale.

Network analysis in ecology has been applied almost exclusively to food

webs. Examples of this can be found in Higashi and Burns (1991) and Wulff, Field

and Mann (1989). However, there is promise that concepts of network analysis (at

least in terms of the perspective rather than the tool) are being used in broader

ecosystem contexts. Maurer (1999) has suggested some similar ideas for

macroecology in his book Untangling Ecological Complexity.

Building on Salthe's (1985) ideas of hierarchy with upper- and lower-levels

of causation, Maurer (1999, ch. 8) argues that ecology has been mainly concerned

with lower-level processes while disregarding causation from larger spatial and

temporal scales. For example, in computer simulations of the species-area

relationship, he shows that a model incorporating upper-level causation in the form

of geographic range structure (with the assumption that species do not have equal

access to local sites) performs better than random models based on habitat

heterogeneity and passive sampling.

Food web study invokes relative space in the form of "energy-space" or

"nutrient-space" but tends to ignore absolute spacethe fact that the food web
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components must be in proximity of one another in order for the exchange of

energy, information and nutrients. (The distinction between absolute and relative

network space will be made in a later section.) Polis, Anderson and Holt (1997)

suggest ways to form dynamic, "spatially subsidized" food webs from the

integration of landscape ecology and food web ecology. They document the

movement of detritus, prey and consumers in the landscape and propose that food

web dynamics are heavily reliant on this movement, which is a function of a

heterogeneous landscape. Thus, landscape variables such as habitat boundaries and

patchinesswhich themselves may be modeled as network systemsare important

features of food web ecology.

Genetic networks

The evolutionary history of a group, or phylogeny, is often represented by a

graphical summary, or phylogenetic diagram (Freeman and Herron 1998, ch. 10).

The phylogeny is a best estimate that describes the pattern and sometimes the

timing of branching events. If the phylogenetic diagram is rooted, the result is

often called a tree. Rooted phylogenies "root" the tree to a common ancestor and

reveal the order in which events occurred. Sometimes the length of the branches is

proportional to time or the amount of genetic change (Freeman and Herron 1998).

In contrast, unrooted phylogenies are sometimes referred to as networks (Gee

2000), and they do not attempt to account for the sequence of evolutionary events.



35

In this paper, we consider both phylogenetic trees and phylogenetic networks to be

networks.

The crux of the problem in phylogenetics is deciding which tree (or

network) best fits the data. Not only must there be a method for evaluating the best

tree, but since there are so many possible trees for even small numbers of taxa

(2,000,000 different branching patterns exist for a tree with 10 species, for

example) there must also be a method for finding the best tree. The four basic

methods available for estimating treesdistance-matrix, maximum parsimony,

invariants and maximum likelihoodare reviewed by Swofford and Olsen (1990,

ch. 11). In addition, more recently researchers have also been using a method

called Bayesian inference, a probabilistic method that is similar to maximum

likelihood methods but much faster for large data sets (Heulsenbeck et al. 2001,

Murphy et al. 2001, Karol et al. 2001).

The process of "horizontal transfer" (sometimes called lateral transfer)

occurs when genetic information moves from one lineage to another. It is deemed

a rare occurrence in the history of life in which the regular transfer of genetic

information occurs through inheritance. The best-known case of horizontal transfer

is that of organelle DNA: chioroplasts and mitochondria, which have their own

DNA, probably evolved from bacteria living symbiotically in early eukaryotic cells

(Freeman and Herron 1998). New evidence from complete genomes of bacteria

suggests that horizontal gene transfer among very early organisms may mean the



"trunk" of the tree of life is a cyclic network where branches may both split and

merge (Pennisi 1998).

Rohlf and colleagues (1990) performed a simulation to determine how the

topology of a phylogenetic tree influences the accuracy of the estimated phylogeny.

They looked at both tree balance (also called tree symmetry) and tree

"steniminess", the average distinctness of the taxonomic subsets on a tree, for three

models of evolution: phyletic, speciational and punctuational. Accuracy was

determined using "consensus techniques" (Rohif 1982, Colless 1980) to compare

the proportion of datasets in common between the estimated tree and the known

tree. Tree topology was found to have considerable effects on the accuracy of

estimating phylogenetic trees. In general, trees with high stemminess are easier to

estimate than trees with low stemminess, and tree balance also may improve the

estimate's accuracy.

Finally, it has been suggested that a network view of gene interactions is a

better measure of biological complexity at the organism level than the number of

genes in an organism's genome or the number of interactions between genes

(Szathmáry et al. 2001). Borrowing from graph theory and network studies in

ecology, Szathniáry et al. (2001) propose applying network indices like clustering

coefficients and node degree to gene-regulation networks to provide better

measures of biological complexity.
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Engineering of service networks, with a focus on GIS

A great deal of research in the fields of engineering, mathematics and

computer science has applied graph theory to problems in the design and function

of communication, utility, transportation, computer and operations networks. The

journal Networks, for example, is dedicated to such applications.

Classic network design problems include the minimal spanning tree

finding the minimal length of arc needed to connect all nodes in a networkand

the maximal covering treefinding the network(s) that services the most nodes

given a finite set of resources to construct or maintain the arcs (Hutson and ReVelle

1989). One example of this is the design of transmission corridors for power lines,

pipelines or highways. Huber and Church (1985) discuss how the use of grids in

computer modeling of transmission corridors may introduce representational error

in the form of proximity, orientation andlor elongation error.

Other design problems involve the location of some facility on the network

(ReVelle and Swain 1970). For these problems, the analysis may be based on some

total distance (where distance may be metric or in terms of cost or time) for travel

to the facility(s), a maximal service distance, or a maximal coverage for a given

service distance and number of facilities (Church and ReVelle 1974). For instance,

Murray and Church (1995) give an optimal solution approach for locating a waste

disposal site given a discrete set of potential locations.



Another set of problems involves network flow. Here the objective is to

find the shortest path through a network, the maximum flow possible, or the

minimum cost of flow (Ahuja et al. 1993, ch. 1).

Finally, network analysis in transportation and utilities may also involve

selecting node and link capabilities (as in diameter of pipes in a gas pipeline

network) and analysis of the system vulnerability to error or attack (Frank and

Frisch 1970).

The geographic information system (GIS) has become an important tool in

the fields of transportation and utilities planning (e.g., Glasbrook 1994, Greene et

al. 1999, Fiset and Cavayas 1997). Here, the main questions usually involve

finding the shortest path through a network, optimizing facility location or finding

which center serves a particular link (Lupien et al. 1987). In their key paper on GIS

and networks, Lupien, Moreland and Dangermond (1987) state that GIS contributes

to network analysis because its database management system enables the

calculation of realistic flow constraints in a network. Research on network design

in a GIS appears to be limited, although Greene and colleagues (1999) have applied

GIS for network design in sewer systems with good results as have Taher and

Labadie (1996) with water-distribution networks.

GIS-based networks also have been used to extract drainage channel

networks from digital elevation models (DEMs) (e.g., Moore 1996, Cohn et al.

2000, Yang et al. 2002, Verdin and Verdin 1999) and model economic networks

(Benenson et al. 1998).
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The current network model used by ESRI (Environmental Systems

Research Institute) for Arclnfo v. 8 software is designed with transportation and

utility networks in mind. The geodatabase consists of two synchronized networks:

a geometric network that records a set of features, and a logical network that has no

coordinate values and exists to store the network topology only (Zeiler 1999).

Arc View has a Network Analyst extension and ARC/INFO has an ARC

NETWORK package; both are designed to solve network problems such as shortest

path, nearest facility or other transportation issues (ESRI White Paper 1998).

In one of the few papers to specifically treat network modeling in a GIS,

Mainguenaud (1995) presents a Graph Data Model that combines graph theory with

object-oriented models. This nested hierarchical model uses object orientation to

overcome the problem of differences in data structure between entities represented

as polygons (i.e., a town) and entities represented as networks (i.e., a railway or

road grid). With object orientation, a polygon at one level of scale may be an

abstraction of a local area network or a node of a greater network at another level of

scale (i.e., a town may be an abstraction of a local road grid and/or maybe a point

feature on an interstate highway).

ESRI products are generally based on the vector spatial model while other

GIS software, such as IDRISI, is based on a raster spatial model. Husdal (2000)

studied the ease of representing networks in both models and concluded that

vector-based network models are not only the most intuitive, but are most suitable

for analyzing precisely defined paths like roads or rivers, and networks where



attributes heavily influence the network. Raster-based network models are most

suitable for situations involving finding a path across terrain that does not have

already defined paths as is the case when extracting stream channels from DEMs.

NETWORKS AND GEOGRAPHY

The following section relates networks specifically to the study of

geography by reviewing concepts such as topology, geometry, and relative and

absolute space, and examining how these concepts apply to the study of networks

in general, and especially in geography.

Some background information

Topology and geometly

Topology is a type of geometry in which order and contiguity are more

important than Euclidean geometry properties of distance, orientation and

straightness (Cole and King 1968). If a network or other figure is drawn on a piece

of paper, those characteristics of the network that remain unchanged even if the

paper is stretched, crumpled or bent are topological. The most important topologic

property of networks is connectivity; adjacency and containment are other

topological properties (Chou 1997). (Note: Connectivity in this sense should not be

confused with connectivity as it is used in graph theory to define a network where

all nodes are joined by at least one path.)



41

Relative versus absolute space

Abler, Adams and Gould (1971) make a distinction between absolute

spacethe traditional treatment of space by geographersand relative space.

"The number of dimensions we use and the way we measure distance along them

determine the nature of any space we construct" (p. 73). Relative space involves

things like time-space, cost-space and genetic distance. Absolute space involves

real distances and locations on the face of the earth. An example of a transportation

network in cost-space is found in Figure 6.

Conceptual models

All networks are abstractions of realitymodels constructed to generalize

patterns, processes and relationships of the real world. The network as a model

may correspond to actual physical, material entities, or it may not (Figure 7). It is

often helpful to visual these networks as graphical/diagrammatic representations,

A

1250 B

either as a "mental map" or a virtual

or real graphical representation

(Figure 4a). Or, it may be helpful to

represent a network as a table of nodes

and links as in Figure 4b or as a matrix

Figure 6. Network using cost-space: Cost of as in Table 2. Unvalued tables and
shipping one ton of goods between cities A, B
and C. (Adapted from Figure 3-15 in Abler
et al. 1971.)



network model

/
represents physical does not represent

entities physical entities

nodes represen arcs represent nodes and arcs
physical physical represent physical
entities entities entities

Figure 7. Networks that model physical entities versus networks that do not.

matrices such as these contain all the topological information in a network, but no

location or distance information. A diagrammatic (geometric, according to

Busacker and Saaty, 1965) representation of a network may contain location

information as well as topologic information. A network (as an abstraction, table,

matrix or graphical representation) consisting of only topologic information is

sometimes referred to as a "graph" (Haggett and Chorley 1969).

Marital relation between Florentine families
FAMILY
Acciaiuoli 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Albizzi 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0
Barbadori 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

Bischeri 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
Castellani 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0
Ginori 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Guadagni 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1

Lamberteschi 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Medici 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 1

Pazzi 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
Peruzzi 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0

Pucci 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ridolfi 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1

Salviati 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

Strozzi 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0

Tornabuoni 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0

Table 2. Matrix representation of a network. (From Table B.6 in Wasserman and Faust 1994.)



43

Network

Discrete Continuous
network Network

Figure 8. Discrete versus continuous networks.

Continuous versus discrete

Some networks are

continuous while others are

discrete (Figure 8). Discrete

networks are such that the

existence of edges depends on the existence of the edges' vertices: if a vertex is

removed from the network, all of its edges cease to exist. This is the case, for

example, in a food web: if a species is removed the species no longer functions as

predator or prey and thus not only the species "node" is removed, but all the links

incident to it. This need not be the case for continuous networks. A circulatory

system is an example of a continuous network: if a vertex is removed, say, by a

tourniquet, although network flow is restricted, the edges leading to and from the

vertex still exist.

Non-spatial and spatial networks and geography

All networks have topology. Some networks also have a spatial component

(Figure 9). These spatial networks may be founded in absolute space or in relative

space according to the distinction made by Abler, Adams and Gould (1971).

Thus, non-spatial networks contain topological information but, at least at

the local level, contain no spatial information, no shape, no distance. These

networks have only topologic geometry. A matrix graph of the network would
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network/\
spatial non-spatial

network network/\
relative absolute

space space/\
time- cost- etc.
space space

valued graphs unvalued graphs
interval or ratio measures nominal measures

topology and spatial information topology information

Figure 9. Spatial versus non-spatial networks.

consist oniy of ones and zeros, thus representing the binary nature of the network:

either there is or there isn't a relationship between two nodes. Measurements are

nominal. A matrix such as seen in Table 2 contains all the information of the

network. Often the term unvaluedgraph (a graph with only nominal

measurements) is used to describe a non-spatial network.

It may be of interest to include information about the location (relative or

absolute) of the nodes in a network. In addition, it may be of interest to also

include information about the length and shape of the arcs in the network. If either

is specified, the network has spatial properties. Spatial networks, whether in

absolute or relative space, are concerned with both the relationships and

connectivity information given by the network topology and the distance (and
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distance

(a)

(genetic distance)

(b)

Figure 10. Two spatial networks: A stream network (a) and a phylogenetic tree (b).

sometimes shape and orientation) information given by the location of the nodes

and/or the length of the arcs (length measured in absolute space or in time-space,

etc.). A matrix graph of the network consists of numerical values representing the

distances or lack thereof of links between nodes. The network also may be spatial

by virtue of the nodes having location whether or not the arcs have distance.

Measurements are interval or ratio. These networks have both topologic geometry

and Euclidean (or Manhattan or Riernann, etc.) geometry.

It is often most convenient to represent stream channels, utilities, vascular

systems and transportation systems as spatial networks in absolute space. As such,

graphical representations of these networks have absolute distance (as feet or

kilometers, for example) as each dimension (Figure lOa). The network in the

figure is two-dimensional, but it is easy to imagine extending this idea to a third

spatial dimension for three-dimensional networks.



On the other hand, in a two-dimensional graphical representation of an

evolutionary phylogeny, time (often relative time) is the one dimension and

evolutionary distance may be the second dimension (Figure lOb). Such networks

contain time-space information as well as topological information. These temporal

networks exist over time. The nodes are not all in existence at once. The arcs are

temporal in the sense that they connect the nodes through time. Inherent in these

networks is a chronology. Without this chronology the network ceases to exist.

These networks tend to be branching, or tree, networks.

More than one network model is possible for a process or pattern from the

real world. A network of airline routes between cities is taken as an example. A

non-spatial, topological model is shown in Figure 1 la and 1 lb. A spatial model

using absolute space is shown in Figure 11 c and lid. A spatial model using cost-

space is shown in Figure lie and 11 f. Other models for the same airline network

are possible.

Interesting to note is that non-spatial networks may have spatial aspects at

the global level. At the global level, the network has properties like diameter and

walk or circuit lengths and distances. These are not measured in absolute space nor

in time- or cost-space but in "network space": how many steps are needed to get

from one node to another along the network. Furthermore, the network may, at the

global level, take on characteristics of shape: clustering has been identified in some

social networks (Wasserman and Faust 1994) and tendrils and core regions

identified in the Web (Kleinberg and Lawrence 2001), for example. How and why
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Diagrammatic Representation Matrix Representation

A B c

_y/.

ht connections between citiesA 010000B 100110Coo 0010DO 10011E 011101
0 0 110

(a) (b)

C_____________________________
D Fli yeencilie_

A 0 125 0 0 0 0
B 125 0 0 275 300 0

C 0 0 0 0 100 0

D 0 275 0 0 150 50

E 0 300 100 150 0 100

0 0 0 50 100 0B'I"T100
(c) (d)

A-
Fli
A 0 200 0 0 0 0
B 200 0 0 175 100 0

C 0 0 0 0 150 0

D 0 175 0 0 125 100

E 0 100 150 125 0 150

$100 F 0 0 0 100 150 0

F

(e) (I)

Figure 11. Several different ways of modeling an airline route with networks.

these emergent spatial properties arise out of non-spatial information is an

interesting phenomenon deserving of more study.

Using the network as a vehicle, this categorization may help give

cohesiveness to the often amorphous field of geography. Geographers have interest
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Figure 12. The study of geography as the study of networks.

in studying spatial networks whether these networks are conceived of as occupying

absolute or relative space (Figure 12). Physical geographers may study networks in

absolute space such as streams. Urban planners may study geography in terms of

the time it takes to travel along a city's road network. Economic geographers may

study networks in cost-space. Cultural geographers may study networks in social-

space. Biogeographers may study networks in genetic-space, and so on.



NETWORK PROPERTIES INFLUENCING SYSTEM BEHAVIOR

Are there properties common to all networks? The following paragraphs

are speculations on properties characteristic of all networks, or of certain classes of

networks as defined in the previous sections. All the properties of networks

mentioned belowconnectivity, flow, emergent properties, hierarchy, robustness,

growth and reduction, feedback and indirect effectsare system properties. They

are not properties of isolated edges or nodes, but global properties of the network.

Much of this paper has concentrated on networks as structure but now the emphasis

will be on networks as system.

By definition, all networks have the property of connectivity. At times the

emphasis is on bow point features like people in social circles or substrates in

metabolic pathways or pages on the World Wide Web are connected to each other.

At other times the emphasis is on how the connections themselves are arranged:

how tributaries form stream networks and how traffic flows through cities. In

either case, a key reason for the use of a network model for the pattern or process is

to show connectivity. Much of the information contained in a network modelthe

topologyconcerns connectivity. For many networkspossibly for all networks

where both edges and vertices are physical entitiesconnectivity is important to

preserve flow be it the flow of material, energy or information.

All networks consisting of at least two connected nodes have both local and

global properties. These global properties are emergent properties that occur at

coarser scales and are not necessarily characteristic of any single node or link or
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readily found in social network analysis and food web network analysis.

Many networks are hierarchical, either as branching hierarchical networks

or as nested hierarchical networks. Many hierarchical networks have fractal

properties and as such are self-similar, exhibit scale-free properties like power-law

connectivity distributions, and display emergent properties. Hierarchy plays an

important role in many ideas of scale and is investigated in the study of vascular

networks, sociology, geomorphology, ecology and GIS representation.

There is much interest in network tolerance to disturbance and network

robustness to error and attack. It has been shown that some network configurations

are more tolerant of disturbance than others. Error tolerance is a generic property

of communication networks because of their scale-free connectivity distributions

(Albert et al. 2000). The effect of disturbance such as landslides and debris flows

on an ecosystem is influenced by the structure of networks like stream channels and

ridge systems (Swanson and Jones 2002). Autonomy of branches in woody plants

may limit the damage of a local injury to the entire plant (Sprugel et al. 1991).

Most all networks are capable of growth and/or reduction. The small-world

network literature has addressed the issue of network growth to some extent (Albert

et al. 2000, Jeong et al. 2000, Watts and Strogatz 1998). However, these studies

are usually limited to discrete networks where nodes are added and each additional

node either does or does not have a connection to the other nodes. Network

reduction in these networks has only been studied in light of disturbance events
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Figure 13. Possible responses of discrete (a,b) and continuous (c,d) networks to attack.

where a large network is ultimately reduced to several or many smaller networks.

In these cases, disturbance in the form of attack to a node destroys not only the
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node but also all links to it (Figure 1 3a). In the case of a disturbance to the link, the

entire link is destroyed and the nodes that were its endpoints are reduced by one

degree (Figure 1 3b).

Little is known about the dynamics of continuous networks of the sort

where growth and reduction make take either of two forms: 1) new nodes may

appear or disappear as just seen, and 2) edges may lengthen or shorten without the

addition of a node. Stream networks are examples of this latter type. A reduction

in a network like a stream system does not necessarily mean the creation of several

smaller networks from the original network; instead, the network may be more

inclined to "shrink" by the removal and/or shortening of external edges. A

disturbance may remove a vertex, in which case the edges connected to this vertex

might still exist as external edges (Figure 1 3c). Or, a disturbance may attack an

edge (Figure 1 3d), in which case, unlike the previous example in the paragraph

above where the entire edge is destroyed, two edges may be created. If this is the

case, then at what point along the edge the network is attacked makes a difference.

Cyclic networks are often credited with the capacity for feedback. This is

certainly an emphasis in the food web literature and also in the biochemical

network literature. Several authors have investigated the role of positive feedback

in food web networks on both the behavior and organization of the ecosystem

(Ulanowicz 1990, Deangelis and Post 1991). Barkai and Leibler (2000) have

created a model to show that biochemical networks are adaptive because the



53

network acts as a feedback system responding to system activity rather than system

parameters such as enzyme concentration.

Finally, networks as systems exhibit indirect effects as well as direct effects

and networks as structures allow for the possible quantification of these indirect

effects. Research in food web ecology suggests that indirect effects are more

important than direct effects and thus a network approach to the study of food webs

is essential (Ulanowicz 1997).

CONCLUSION

It is often convenient to model systems as networks. This can be seen from

the use of networks in fields as diverse as mathematics, sociology, geomorphology,

physics, engineering, ecology and evolution. Intriguing results from the study of

networks in these disciplines suggest that 1) networks can be classified based on

structural characteristics such as connectivity distributions or infonnation

characteristics such as spatial information, and that 2) many types of networks have

common properties of connectivity, feedback, indirect causality, hierarchy, growth,

self-organization and tolerance to error.
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