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On the distribution of orbits in affine varieties

Clayton Petsche

Abstract. Given an affine variety X, a morphism φ : X → X, a point
α ∈ X, and a Zariski closed subset V of X, we show that the for-
ward φ-orbit of α meets V in at most finitely many infinite arithmetic
progressions, and the remaining points lie in a set of Banach density
zero. This may be viewed as a weak asymptotic version of the Dynam-
ical Mordell-Lang Conjecture for affine varieties. The results hold in
arbitrary characteristic, and the proof uses methods of ergodic theory
applied to compact Berkovich spaces.

1. Introduction

Let X be an affine variety and let φ : X → X be a morphism. Let
N denote the set of nonnegative integers, and for each n ∈ N write φn =
φ◦· · · ◦φ for the n-fold composition of φ with itself. Given a point α ∈ X, it
is a fundamental question of algebraic dynamics to describe the distribution
in X of the orbit

(1) α, φ(α), φ2(α), φ3(α), . . .

of α with respect to iteration of φ.
An informal governing philosophy states that the orbit (1) should dis-

tribute as generically as possible, except for the possible existence of trivial
obstructions. One way to make this idea more precise is to consider an arib-
trary Zariski-closed subset V of X, and to ask how often along the orbit (1)
does it occur that φn(α) ∈ V ? It may happen that φn(α) ∈ V for many
integers n, but for the trivial reason that φb(α) ∈ V0 ⊆ V for some inte-
ger b ≥ 0 and some φ-periodic subvariety V0 of V ; we say V0 is φ-periodic
if there exists an integer a ≥ 1 such that φa(V0) ⊆ V0. In this case, we
must have φn(α) ∈ V for all n along the the infinite arithmetic progression
aN+ b = {aℓ+ b | ℓ ∈ N}. But excluding this possibility, it should be a rare
occurence for V to contain φn(α).
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Theorem 1. Let X be an affine variety, let φ : X → X be a morphism,
let α ∈ X be a point, and let V be a Zariski-closed subset of X. If the set
{n ∈ N | φn(α) ∈ V } contains no infinite arithmetic progressions, then it
has Banach density zero.

Theorem 2. Let X be an affine variety, let φ : X → X be a morphism,
let α ∈ X be a point, and let V be a Zariski-closed subset of X. Then
{n ∈ N | φn(α) ∈ V } = A∪B, where A is a (possibly empty) finite union of
infinite arithmetic progressions, and B is a set of Banach density zero.

To specify some of our terminology, by an affine variety we mean Spec(A)
for a finitely generated k-algebra A over an arbitrary field k. The point α
in the statements of Theorems 1 and 2 is not assumed to be a closed point.

Given a subset S ⊆ N, the Banach density of S is defined to be

d(S) = lim sup
|I|→+∞

|S ∩ I|

|I|

the limit supremum taken over all intervals I in N with |I| → +∞. If S
has Banach density zero, then it necessarily has ordinary density zero in the
sense that 1

n
|S ∩ [0, n − 1]| → 0 as n → +∞. Simple examples1 show that

the converse is false in general, and so one may view a set having Banach
density zero as “thinner” than an arbitrary set of ordinary density zero.

Since infinite arithmetic progressions have positive Banach density, The-
orem 1 is formally weaker than Theorem 2. However, Theorem 1 is the main
result of this paper and is proved independently. Theorem 2 is proved using
Theorem 1 and a bootstrapping argument via induction on the dimension
of V . The main idea behind this argument is not new; similar arguments
are used, for example, in Ghioca-Tucker [12] and Bell-Ghioca-Tucker [2].

Our proof of Theorem 1 uses methods from topological dynamics and
ergodic theory, and our primary tool is a strong topological version of the
Poincaré Recurrence Theorem due to Furstenberg [11]. In order to ap-
ply this approach, we lift the dynamical system φ : X → X to a com-
pact Berkovich space X via a surjective, anti-continuous reduction map
π : X → X. If the set {n ∈ N | φn(α) ∈ V } contains many points, then we
can produce a measure-preserving dynamical system on X which positively
charges π−1(V ); the existence of a suitable recurrent point associated to this
dynamical system leads to the existence of the desired periodic subvariety
of V .

While preparing this article we learned that two groups of researchers
have independently proved Theorem 2 for arbitrary Zariski spaces X, which
includes all algebraic varieties. First, Gignac uses a study of invariant mea-
sures and ergodic theory directly on the Zariski topology of X and does
not pass to Berkovich spaces. The necessary theory of Borel measures on
Zariski spaces is built in Gignac [14], and in the same paper he derives a
new measure-theoretic proof of a dynamical result of Favre ([8] Thm. 2.5.8).

1S = ∪n≥1{n
3, n3 + 1, . . . , n3 + n}
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The generalization of Theorem 2 uses this result of Favre, and is alluded to
in Gignac’s thesis [15], but the proof has not been published. Independently,
Bell-Ghioca-Tucker [3] have given a proof of Theorem 2 for Zariski spaces,
using an elementary approach which leads to interesting quantitative results.

In characteristic zero it has been conjectured that Theorems 1 and 2
are true (for arbitrary quasiprojective varieties) in the strengthened form in
which the Banach density zero statements are improved to finiteness state-
ments. This is known as the Dynamical Mordell-Lang (DML) Conjecture,
and was stated at this level of generality by Ghioca-Tucker [12], following
less general statements by Denis [7] and Bell [1]. While the DML Con-
jecture remains open at present, a great deal of progress has been made
in special cases; a non-exhaustive list would include the articles of Denis,
Bell, and Ghioca-Tucker already cited, as well as Bell-Ghioca-Tucker [2],
and Ghioca-Tucker-Zieve [13].

Many proofs of special cases of the standard characteristic zero DML
Conjecture use variations on the Skolem-Mahler-Lech method of p-adic anal-
ysis, often combined with auxiliary results from arithmetic geometry and
number theory. However, the Skolem-Mahler-Lech method breaks down in
characteristic p due to the lack of a suitable p-adic logarithm. This is il-
lustrated by the following example which was pointed out to us by Tom
Tucker.

Example 1. Let k = Fp(t) denote the field of rational functions over the
finite field Fp, define the map φ : A2 → A2 over k by φ(x, y) = (tx, (1− t)y),
and consider the point α = (1, 1) and the line V = {x+ y = 1} in A2. Then
φn(α) = (tn, (1 − t)n) and {n ∈ N | φn(α) ∈ V } = {pℓ | ℓ ≥ 0}, a set which
is not a union of finitely many infinite arithmetic progressions with finitely
many integers.

Example 1 shows that in characteristic p, Theorems 1 and 2 cannot be
proved in the strengthened form in which the Banach density zero statements
are improved to finiteness statements. In other words, no method which
is insensitive to the characteristic — and our approach to the proofs of
Theorems 1 and 2 is one such method — could possibly produce a full proof
of the standard characteristic zero DML Conjecture.

Interestingly, Denis [7] also proved a Banach density zero result in the
setting of an automorphism of Pn in characteristic p. In place of the Skolem-
Mahler-Lech method, he used a result of Bézivin [5] on recurrence sequences
in characteristic p. Bézivin’s theorem, in turn, relies on the well-known
theorem of Szemerédi on arithmetic progressions occurring in subsets of N
with positive Banach density. In view of Furstenberg’s [10] ergodic-theoretic
proof of Szemerédi’s theorem, there has been, at least indirectly, a connection
between ergodic theory and the Dynamical Mordell-Lang problem for some
time.

I thank William Gignac and Tom Tucker for helpful conversations. This
research was supported in part by NSF grant DMS-0901147.
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2. A few facts from topological dynamics and ergodic theory

In this section S denotes a compact metric space. Given a continuous
map T : S → S and a unit Borel measure µ on S, one says that µ is T -
invariant if µ(T−1(E)) = µ(E) for all Borel subsets E of S. Alternatively, a
standard argument shows that µ is T -invariant if and only if

∫

(f ◦ T )dµ =
∫

fdµ for all continuous functions f : S → R ([16] Thm. 6.8).
A point α ∈ S is said to be T -recurrent if α is a limit point of the

sequence {T n(α)}. There are several categories of results in the literature
whose purpose is to show the existence, or even plentitude, of recurrent
points in various settings. The main dynamical tool of this article is the
following strong topological version of the Poincaré Recurrence Theorem due
to Furstenberg; for the proof see [11] Thm. 1.1 and the three subsequent
paragraphs.

Poincaré Recurrence Theorem. Let S be a separable compact met-
ric space, let T : S → S be a continuous map, and let µ be a T -invariant
unit Borel measure on S. Then µ-almost all points of S are T -recurrent.

A sequence {µm} of unit Borel measures on S is said to converge weakly
to a unit Borel measure µ on S if

∫

fdµm →
∫

fdµ for all continuous func-
tions f : S → R.

Remark 1. The Portmanteau theorem gives several criteria for weak
convergence of unit Borel measures on metric spaces. We will use one such
result, namely that {µm} converges weakly to µ if and only if lim inf µm(U) ≥
µ(U) for all open subsets U of S ([6] Thm. 2.1).

3. The Berkovich spectrum of a trivially-valued k-algebra

Let k be a field. In this section we summarize the necessary facts about
the Berkovich spectrum of a trivially-valued k-algebra. Most of the facts
stated in this section are due to Berkovich himself in the more general setting
of arbitrary Banach rings; other facts presented here seem to be well-known,
but we supply proofs for lack of suitable references.

Let A be a k-algebra. A bounded multiplicative seminorm on A is a
function [·] : A→ R satisfying

(i) 0 ≤ [f ] ≤ 1 for all f ∈ A;
(ii) [·] restricts to the trivial absolute value on k;
(iii) [f + g] ≤ max{[f ], [g]} for all f, g ∈ A;
(iv) [fg] = [f ][g] for all f, g ∈ A.

Remark 2. This definition is equivalent to Berkovich’s definition [4] of
a bounded multiplicative seminorm when A is viewed as a Banach ring with
respect to the the trivial norm [·]0. In place of our conditions (i) and (ii),
Berkovich requires only that [1] = 1 and that 0 ≤ [f ] ≤ C[f ]0 for some
C > 0. Along with condition (iv) this implies that [f ]n = [fn] ≤ C for each
nonzero f ∈ A, whereby [f ] ≤ 1 upon taking n→ +∞. 0 ≤ [0] ≤ C[0]0 = 0,
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implying [0] = 0, and if a ∈ k× then 1 = [1] = [aa−1] = [a][a−1] with both
[a] ≤ 1 and [a−1] ≤ 1, implying [a] = 1. Finally, Berkovich requires only the
usual triangle inequality [f + g] ≤ [f ] + [g], but the binomial theorem and
the fact that [·] is trivially valued on k implies that [f + g]n = [(f + g)n] ≤
∑

0≤ℓ≤n[f ]
k[g]n−k ≤ (n + 1)max{[f ], [g]}n. Taking n-th roots and letting

n→ +∞ gives [f + g] ≤ max{[f ], [g]}.

The Berkovich spectrum of a k-algebra A is defined to be the set M(A)
of all bounded multiplicative seminorms on A. As a notational convention
it is standard to refer to a point ζ ∈ M(A), and to denote by [·]ζ its cor-
responding seminorm on A. The topology on M(A) is defined to be the
coarsest topology with respect to which the real-valued functions ζ 7→ [f ]ζ
are continuous for all f ∈ A. Equivalently, for each f ∈ A and each pair
s < t of real numbers, define a subset of M(A) by

(2) Us,t(f) = {ζ ∈ M(A) | s < [f ]ζ < t}.

Then the collection of all nonempty finite intersections of sets of the form
Us,t(f) forms a base of open sets for the topology on M(A).

Proposition 3. Let A be a k-algebra. Then M(A) is a nonempty com-
pact Hausdorff space. If A is countable then M(A) is metrizable and sepa-
rable.

Proof. For the proofs that M(A) is nonempty, compact, and Haus-
dorff, see [4] Thm 1.2.1. If A is countable, then the collection of all nonempty
finite intersections of sets of the form Us,t(f), for s, t ∈ Q and f ∈ A, forms
a countable base of open sets for the topology on M(A); in other words,
M(A) is second countable. Since M(A) is a compact Hausdorff space, it is
normal ([9] Thm. 4.25), and the Urysohn Metrization Theorem ([9] Thm.
4.58) states that a space is metrizable provided it is normal and second
countable. Finally, a second countable space is always separable ([9] Thm.
4.5). �

The Berkovich spectrum M(A) of a k-algebra A comes equipped with
the reduction map

(3) π : M(A) → Spec(A) π(ζ) = {f ∈ A | [f ]ζ < 1}.

That {f ∈ A | [f ]ζ < 1} is a prime ideal of A follows easily from the
properties (i), (iii), and (iv) of the definition of a bounded multiplicative
seminorm.

In the opposite direction, each prime ideal p of A gives rise to a bounded
multiplicative seminorm obtained from the quotient map A→ A/p followed
by the trivial norm on the integral domain A/p. We call

(4) triv : Spec(A) → M(A) [f ]triv(p) =

{

0 if f ∈ p

1 if f /∈ p.

the trivial map.
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Remark 3. It follows at once from the definitions that the trivial map
is a one-sided inverse of the reduction map, in the sense that π ◦triv is equal
to the identity map on Spec(A). In particular, triv is injective and π is
surjective. On the other hand, for each ζ ∈ M(A), we have triv(π(ζ)) = ζ
if and only if the seminorm [·]ζ only takes the values 0 and 1.

Proposition 4. Let A be a k-algebra.

(A) (Berkovich [4] Cor. 2.4.2) If A is Noetherian, then the reduction
map π : M(A) → Spec(A) is anti-continuous in the sense that the
inverse image of every closed (resp. open) subset of Spec(A) is
open (resp. closed) in M(A).

(B) The trivial map triv : Spec(A) → M(A) is closed.

Proof. Consider an arbitrary closed subset V (a) = {p | a ⊆ p} of
Spec(A), where a is an ideal of A. If A is Noetherian then a = (f1, . . . , fn)
for some finite collection f1, . . . , fn ∈ A. It follows that

π−1(V (a)) = {ζ ∈ M(A) | π(ζ) ∈ V (a)}

= {ζ ∈ M(A) | a ⊆ {f ∈ A | [f ]ζ < 1}}

= ∩f∈a{ζ ∈ M(A) | [f ]ζ < 1}

= ∩1≤j≤n{ζ ∈ M(A) | [fj]ζ < 1}.

Each set {ζ ∈ M(A) | [fj]ζ < 1} is open by the definition of the topology
on M(A), and therefore π−1(V (a)) is open.

To show that the trivial map is closed, let 〈ζi〉 be a net in triv(V (a))
such that ζi → ζ in M(A), thus for each index i we may write ζi = triv(pi)
for pi ∈ V (a). Since for each f ∈ A we have [f ]ζi → [f ]ζ , and since each
seminorm [·]ζi only takes the values 0 and 1, the same is true of [·]ζ ; in
particular, by Remark 3 it follows that ζ = triv(p) where p = π(ζ). If f ∈ a,
then f ∈ pi for all i, and so [f ]ζi = 0 for all i, implying that [f ]ζ = 0 and
thus f ∈ p. We have shown that a ⊆ p, so p ∈ V (a), and consequently
ζ = triv(p) ∈ triv(V (a)). �

Proposition 5. Let A and B be k-algebras and let φ : Spec(A) →
Spec(B) be a morphism of affine k-schemes. There exists a continuous map
Tφ : M(A) → M(B) such that πB ◦ Tφ = φ ◦ πA and Tφ ◦ trivA = trivB ◦ φ.

M(A)
Tφ

−−−−→ M(B)

πA





y





y

πB

Spec(A)
φ

−−−−→ Spec(B)

M(A)
Tφ

−−−−→ M(B)

trivA

x





x





trivB

Spec(A)
φ

−−−−→ Spec(B)

Proof. Denote by Φ : B → A the k-algebra homomorphism obtained
from viewing A and B as the rings of global sections on Spec(A) and
Spec(B), respectively; thus φ(p) = Φ−1(p) for each p ∈ Spec(A). For each
ζ ∈ M(A), define [·]Tφ(ζ) : B → R by [f ]Tφ(ζ) = [Φ(f)]ζ . Routine calcula-

tions verify that [·]Tφ(ζ) is a bounded multiplicative seminorm on B, and we
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obtain a map Tφ : M(A) → M(B). Given ζ ∈ M(A), we have

πB(Tφ(ζ)) = {g ∈ B | [g]Tφ(ζ) < 1}

= {g ∈ B | [Φ(g)]ζ < 1}

= Φ−1({f ∈ A | [f ]ζ < 1})

= φ(πA(ζ)).

Given p ∈ Spec(A), both of the seminorms [·]trivB(φ(p)) and [Φ(·)]trivA(p) on
B only take the values 0 and 1. Therefore for each g ∈ B we have

[g]trivB◦φ(p) = 0 ⇔ g ∈ φ(p) = Φ−1(p)

⇔ Φ(g) ∈ p

⇔ [Φ(g)]trivA(p) = 0

⇔ [g]Tφ(trivA(p)) = 0,

and we conclude that trivB(φ(p)) = Tφ(trivA(p)).

To show that Tφ is continuous, it suffices to show that T−1
φ (Us,t(f)) is

an open subset of M(A) for each s, t ∈ R and f ∈ B, because sets of the
form Us,t(f) (defined in (2)) generate the topology on M(B). This follows

from the easily checked identity T−1
φ (Us,t(f)) = Us,t(Φ(f)). �

4. The Proofs of Theorems 1 and 2

Remark 4. In order to prove Theorem 1 we may assume without loss
of generality that the base field k is either finite or countably infinite. For
suppose that k is arbitrary and let A = k[t1, . . . , tr]/I be a finitely generated
k-algebra, where I is an ideal of k[t1, . . . , tr], let φ : Spec(A) → Spec(A) be a
morphism, let α ∈ Spec(A), and let V = V (a) be an arbitrary Zariski-closed
subset of Spec(A), where a is an ideal of A. Let Φ : A→ A be the k-algebra
homomorphism obtained from viewing A as the ring of global sections on
Spec(A); thus φ(p) = Φ−1(p) for each p ∈ Spec(A). Let k0 be a subfield of
k which, on the one hand is finitely generated over the prime subfield of k,
but which on the other hand is large enough so that all coefficients of Φ and
all generators of I, α (viewed as a prime ideal of A), and a are elements of
the image of k0[t1, . . . , tr] under the quotient map k[t1, . . . , tr] → A. Letting
I0 = I ∩ k0[t1, . . . , tr], we may view A0 = k0[t1, . . . , tr]/I0 as a k0-subalgebra
of A. Thus Φ : A → A restricts to a map Φ0 : A0 → A0 and we obtain
a morphism φ0 : Spec(A0) → Spec(A0) defined by φ0(p) = Φ−1

0 (p). Define
α0 = α ∩A0 and a0 = a ∩A0. A straightforward calculation (using the fact
that inverse image commutes with intersection) shows that φ0(α0) ∈ V (a0)
if and only if φ(α) ∈ V (a), and more generally that

{n ∈ N | φn0 (α0) ∈ V (a0)} = {n ∈ N | φn(α) ∈ V (a)}.

Proof of Theorem 1. As discussed in Remark 4, we may assume
without loss of generality that X = Spec(A) for a finitely generated k-
algebra A over a countable field k. Letting X = M(A), it follows from
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Proposition 3 that X is a separable metrizable space. As constructed in
§ 3 we denote by π : X → X the (anti-continuous) reduction map, and by
triv : X → X the (closed) trivial map.

Given a morphism φ : X → X, a point α ∈ X, and a Zariski-closed
subset V of X, assume that the set {n ∈ N | φn(α) ∈ V } has positive
Banach density; we must show that this set contains an infinite arithmetic
progression. Denote by T = Tφ : X → X the continuous lift of φ : X → X
constructed in Proposition 5.

The positive Banach density hypothesis implies that there exists a se-
quence {Im} of intervals in N with |Im| → +∞ and

(5) lim
m→+∞

|{n ∈ N | φn(α) ∈ V } ∩ Im|

|Im|
> 0.

Define a sequence {µm} of unit Borel measures on X by

µm =
1

|Im|

∑

n∈Im

δTn(triv(α)),

where δx denotes the Dirac measure supported at the point x ∈ X. By
Prokhorov’s theorem ([6] Thm 5.1), passing to a subsequence we may assume
without loss of generality that the sequence {µm} converges weakly to a unit
Borel measure µ on X.

Claim 1: µ is T -invariant.

Claim 2: µ(π−1(V )) > 0.

Postponing the proofs of the two claims, we will now complete the proof
of Theorem 1.

The Poincaré Recurrence Theorem (see § 2) implies that µ-almost all
points of X are T -recurrent, and since µ(π−1(V )) > 0, there exists a T -
recurrent point ζ ∈ π−1(V ) ∩ supp(µ). Further, ζ must be a limit point of
the forward T -orbit of triv(α). For if U is an open subset of X containing ζ,
then lim inf µm(U) ≥ µ(U) > 0 by Remark 1 and the fact that ζ ∈ supp(µ);
it follows that T n(triv(α)) ∈ U for some (in fact infinitely many) n ≥ 1.

Since ζ is T -recurrent, the open neighborhood π−1({π(ζ)}) of ζ in X

contains T a(ζ) for some a ≥ 1. In other words

φa(π(ζ)) = π(T a(ζ)) ∈ {π(ζ)},

and in particluar this implies that

φa({π(ζ)}) ⊆ {φa(π(ζ))} ⊆ {π(ζ)}.

Since ζ is a limit point of the forward T -orbit of triv(α), it follows that the

open neighborhood π−1({π(ζ)}) of ζ contains T b(triv(α)) for some integer
b ≥ 0. We conclude that

φb(α) = φb(π(triv(α))) = π(T b(triv(α))) ∈ {π(ζ)}

and therefore
φaℓ+b(α) = (φa)ℓ(φb(α)) ∈ {π(ζ)} ⊆ V
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for all ℓ ∈ N, verifying that the set {n ∈ N | φn(α) ∈ V } contains the infinite
arithmetic progression aN + b, and completing the proof of Theorem 1. It
now remains only to give the proofs of the two claims.

Proof of Claim 1: Consider an arbitrary continuous function F : X → R.
Then for each m ≥ 1 we have

∫

(F ◦ T )dµ −

∫

Fdµ = Am +Bm +Cm

where

Am =

∫

(F ◦ T )d(µ − µm)

Bm =

∫

Fd(µm − µ)

Cm =

∫

((F ◦ T )− F )dµm.

The weak convergence µm → µ implies that Am → 0 and Bm → 0, and
writing Im = {am, am + 1, . . . , bm}, we have

|Cm| =

∣

∣

∣

∣

1

|Im|

∑

n∈Im

(F (T n+1(triv(α))) − F (T n(triv(α))))

∣

∣

∣

∣

=

∣

∣

∣

∣

1

|Im|
(F (T bm+1(triv(α))) − F (T am(triv(α))))

∣

∣

∣

∣

≤
2

|Im|
supx∈X|F (x)|.

Since |Im| → +∞ we have Cm → 0, and so
∫

(F ◦T )dµ =
∫

Fdµ, completing
the proof that µ is T -invariant.

Proof of Claim 2: Since the closed set triv(V ) is a subset of the open
set π−1(V ), Urysohn’s lemma ([9] Thm 4.15) implies that there exists a
continuous function G : X → [0, 1] such that G(x) = 0 for all x ∈ X\π−1(V )
and G(x) = 1 for all x ∈ triv(V ). By the weak convergence µm → µ and (5)
we have

∫

Gdµ = lim
m→+∞

1

|Im|

∑

n∈Im

G(T n(triv(α)))

= lim
m→+∞

1

|Im|

∑

n∈Im

G(triv(φn(α)))

≥ lim
m→+∞

|{n ∈ N | φn(α) ∈ V } ∩ Im|

|Im|
> 0.

(6)

On the other hand
∫

Gdµ ≤
∫

π−1(V ) dµ = µ(π−1(V )), and combining this

with (6) establishes Claim 2. �
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Proof of Theorem 2. For the purposes of this proof, let us call a
subset of N asymptotically periodic (AP) if it is equal to the union of a finite
(possibly empty) collection of infinite arithmetic progressions together with
a set of Banach density zero. Observe that: (i) finite sets are AP; (ii) finite
unions of AP sets are AP; (iii) if S is AP, then so is {aℓ+ b | ℓ ∈ S} for each
a ≥ 1, b ≥ 0.

Given an affine k-variety, a morphism φ : X → X, a point α ∈ X, and
a Zariski-closed subset V of X, we must show that {n ∈ N | φn(α) ∈ V } is
AP. The proof will use induction on dim(V ); in the zero-dimensional case V
is a finite set and the result is trivial. Suppose that dim(V ) ≥ 1 and assume
that the theorem is true for Zariski-closed subsets of X of dimension less
than dim(V ). If V1, . . . , Vr are the irreducible components of V , then

{n ∈ N | φn(α) ∈ V } = ∪j{n ∈ N | φn(α) ∈ Vj},

and so we may assume without loss of generality that V is irreducible.
We may assume that there exists an infinite arithmetic progression aN+b

(for a ≥ 1 and b ≥ 0) such that

(7) φn(α) ∈ V for all n ∈ aN+ b,

because otherwise we are in the situation of Theorem 1, which we have
already proved.

For each integer j ≥ 0, define

Wj = {φn(α) | n ∈ aN+ j}.

In particular, we have Wb ⊆ V by (7) and the fact that V is Zariski-closed.
For each j ≥ 0 we have

φ(Wj) = φ({φn(α) | n ∈ aN+ j})

⊆ φ({φn(α) | n ∈ aN+ j})

= {φn(α) | n ∈ aN+ j + 1}

=Wj+1.

Thus for each j ≥ 0 the morphism φ restricts to a map φj : Wj → Wj+1.
Moreover, each map φj is dominant, since Wj+1 is defined to be the Zariski-
closure of a set of points in the φ-image of Wj. A consequence is that the
sequence {dim(Wj)} is nonincreasing, and therefore must stabilize. Possibly
replacing b with a larger element of its congruence class modulo m, we may
assume without loss of generality that dim(Wj) = dim(Wb) for all j ≥ b.

Each integer n ≥ b is contained in one of the a infinite arithmetic pro-
gressions aN+ j for b ≤ j ≤ b+ a− 1, and therefore

{n ∈ N | φn(α) ∈ V } = S ∪ Sb ∪ Sb+1 ∪ · · · ∪ Sb+a−1

where S is a subset of {0, 1, . . . , b− 1} and

Sj = {n ∈ aN+ j | φn(α) ∈ V ∩Wj}.

We must show that each set Sj is AP.
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Case 1, dim(Wb) < dim(V ): Define ψ = φa and for each j let β = φj(α).
Then

Sj = {aℓ+ j | ℓ ∈ N and ψℓ(β) ∈ V ∩Wj}

is AP by the induction hypothesis and the fact that

dim(V ∩Wj) ≤ dim(Wj) = dim(Wb) < dim(V ).

Case 2, dim(Wb) = dim(V ): SinceWb ⊆ V and V is irreducible, we must
have Wb = V . Since Wb is irreducible, it follows from the existence of the
dominant maps φj : Wj → Wj+1 that Wj is irreducible for all j ≥ b.
Given b ≤ j ≤ b + a − 1, we must have either dim(V ∩Wj) < dim(V ) or
dim(V ∩ Wj) = dim(V ). In the former case, Sj is AP by the induction
hypothesis and the same argument used in Case 1. In the latter case, we
have

dim(V ∩Wj) = dim(V ) = dim(Wb) = dim(Wj)

and we conclude that Wj = V , since Wj and V are both irreducible. It
follows from the identity Wj = V that φn(α) ∈ V for all n ∈ aN+ j, and we
conclude that Sj = aN+ j, which is AP. �
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[11] H. Furstenberg, Poincaré recurrence and number theory, Bull. Amer. Math. Soc.

(N.S.), 5 (1981), pp. 211–234.
[12] D. Ghioca and T. J. Tucker, Periodic points, linearizing maps, and the dynamical

Mordell-Lang problem, J. Number Theory, 129 (2009), pp. 1392–1403.
[13] D. Ghioca, T. J. Tucker, and M. E. Zieve, Intersections of polynomials orbits,

and a dynamical Mordell-Lang conjecture, Invent. Math., 171 (2008), pp. 463–483.

http://arxiv.org/pdf/1401.6659v1.pdf


12 CLAYTON PETSCHE

[14] W. Gignac, Measures and dynamics on Noetherian spaces, J. Geom. Anal., to ap-
pear, http://link.springer.com/article/10.1007/s12220-013-9394-9

[15] W. Gignac, Equidistribution of Preimages in Nonarchimedean Dynamics, Ph.D.
Thesis, University of Michigan (2013), http://hdl.handle.net/2027.42/99809

[16] P. Walters, An introduction to ergodic theory, vol. 79 of Graduate Texts in Math-
ematics, Springer-Verlag, New York, 1982.

Clayton Petsche; Department of Mathematics; Oregon State University;
Corvallis OR 97331 U.S.A.

E-mail address: petschec@math.oregonstate.edu

http://link.springer.com/article/10.1007/s12220-013-9394-9
http://hdl.handle.net/2027.42/99809

	1. Introduction
	2. A few facts from topological dynamics and ergodic theory
	3. The Berkovich spectrum of a trivially-valued k-algebra
	4. The Proofs of Theorems 1 and 2
	References

