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The intent of this work is to extend Implicit Monte Carlo Diffusion (IMD)[Gen.

2001] to account for frequency dependence and to incorporate the difference for-

mulation[Szo. 2005] as a source manipulation variance reduction technique. This

work shows the derivation of the probabilities and the associated proofs which

govern the frequency dependent IMD algorithm. The frequency dependent IMD

code was tested using both grey and frequency dependent benchmarks. The Su

and Olson semi-analytic Marshak wave benchmark was used for grey problems[Su

1996]. The Su and Olson semi-analytic picket fence benchmark was used for the

frequency dependent problems[Su 1999]. The dependence upon mesh refinement

was tested for both the grey and frequency dependent algorithms.

This work also includes the derivation of the difference formulation as it applies

to IMD. The newly derived difference formulation is then tested using aforemen-

tioned benchmark problems. The effectiveness of the difference formulation is

analyzed for both the grey and the frequency dependent implementations.

We show that the frequency dependent IMD algorithm reproduces the Su and

Olson benchmarks. The spatial refinement studies dependence indicate that while

solution accuracy is not significantly compromised with coarse meshes, spatial res-

olution can suffer dramatically. The temporal refinement studies indicate that the



existence of numerical diffusion for large time steps may require adaptive mesh

refinement in time. Frequency group mesh refinement studies indicates that the

computational cost of refining the frequency group structure is likely less than that

of deterministic methods.

This work demonstrates that applying the difference formulation to the IMD

algorithm can result in an overall increase in the figure of merit for frequency de-

pendent problems. However, the creation of negatively weighted particles from the

difference formulation can cause significant instabilities in regions of the problem

with sharp spatial gradiants in the solution. This will require the development of

an adaptive implementation of the difference formulation to focus its use in regions

that are at or near thermal equilibrium.
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Extending the Applicability of Implicit Monte Carlo Diffusion:
Frequency Dependence and Variance Reduction Using the Difference

Formulation

1 Introduction

The distribution of photon energy and material energy in a system is of in-

terest to many different fields. These fields include the field of astrophysics, glass

manufacturing, stockpile stewardship, among others. In these fields, the energy in

the system is generally thought to be in two primary forms; material energy and

photon energy. Material energy can best be described as the vibrational energy of

the atoms that compose the material. Photon energy is the energy that exists in

the system in the form of photons that have not been absorbed into the material.

The distribution of the energy in these systems has a significant impact on the final

resulting product. The energy distributions can also be very difficult to measure

and in many cases, if it is possible to measure them, the experiments themselves

can be very costly to perform.

One way to predict the energy distributions is to use the fundamental mathe-

matical and physical processes that govern the transport of photon energy to model

these systems. Using these fundamental ideas, the radiative transfer and material

energy balance equations can be derived. These two differential equations describe

the energy distribution in a system given the material properties, initial condi-

tions, and boundary conditions. Initial conditions, describe the beginning energy

distribution and material properties in the system. Boundary conditions describe

the way in which energy enters and leaves the system.

With the energy distribution fully described by a set of equations, it is necessary

to find a result. For some simple systems, these differential equations can be
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solved analytically. For most practical applications, however, this is not the case.

If an analytical solution is not possible, it is necessary to solve the equations

either using deterministic or Monte Carlo methods. Deterministic methods rely on

mathematical manipulations to the differential equations to create a linear matrix,

or linear equation, which can be used to solve the energy distribution in the system.

Monte Carlo methods rely on the derivation of probabilities that represent the

probable interactions and distribution of energy in the system. For a Monte Carlo

method, a particle is created from the probabilities defining the source terms of the

system. This particle then undergoes a random walk to determine where its energy

will reside at the end of the time step. A random walk consists of the generation of a

random number which is compared to the probabilities which describe the possible

interactions of the particle with the system to determine an interaction event. If the

particle undergoes scattering, the particle changes frequencies and directions and

continues until death (tallied or leaks out of the system). If the particle undergoes

a leakage event, that is not at the boundary of the problem, the particle is moved

to the new cell and transport continues. If an infinite number of energy packets

are created and transported through the system using the defined probabilities,

the exact solution to the original differential equations will be calculated.

There are advantages and disadvantages to solving these equations with either

Monte Carlo or deterministic methods. Monte Carlo methods are inherently paral-

lelizable. This is because the transport of one particle does not depend on another.

This is not ture for determinisic methods because the matrix solution is strongly

dependent on the entirety of the matrix. However, on non-parallel processes the

deterministic solution to the equations is generally faster than the Monte Carlo

solution. Another drawback of Monte Carlo is that it contains statistical noise,
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whereas deterministic methods do not. Deterministic methods also give the results

everwhere in the problems, whereas Monte Carlo methods only solve for the results

specified by the user.

In time-dependent problems that are highly absorbing, it has been found that

it is difficult to account for the absorption and quick reemission of photon particles

for large time steps. To deal with this problem, Fleck and Cummings developed an

effective scattering scheme that approximates the absorption and reemission of the

photons with an effective scatter. This method was named Implicit Monte Carlo

(IMC)[Fle. 1971].

If particles undergo many effective scattering events in a short distance, the

system can be said to be highly scattering. In regions of systems that are highly

scattering, the total length of time to perform a random walk to particle death

becomes very long. This makes solving problems with large amounts of effective

scattering very expensive using IMC. It also reduces the convergence rate of de-

terministice methods which rely on the effective scattering temporal discretization

scheme. The diffusion approximation is a good estimate for the solution to the

transport equation in regions that are highly scattering. This led to the develop-

ment of hybrid transport-diffusion schemes to solve problems which contain both

thick (many interaction in a short distance) diffuse (highly scattering) regions and

thin (small number of interactions in large distances) regions. High density sys-

tems, systems with energies and pressures exceeding 1011 J
m3 and 1Mbar, commonly

have regions that are thick, thin, and/or diffuse.

Hybrid deterministic methods must be broken down via domain decomposition

and the matrices for the diffusion domains and transport domains must be solved

separately with a source term that relies on each other’s solution vectors. This is
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not the case for Monte Carlo methods which can simply use a different random walk

depending on the region of the problem they are moving through[Gen 2001]. This,

combined with the other advantages of Monte Carlo, make it an ideal candidate

for hybrid transport-diffusion calculations.

The IMC method received its name because it relies on the Fleck and Cummings

implicit discretization of the radiative transfer equation, which creates an effective

scattering term. When the radiative transfer equation is discretized using standard

backward Euler time differencing, it results in a non-linear differential equation

because the Planckian source contains a temperature term raised to the fourth

power. A Taylor series expansion is used to approximate this non-linear term

and create an effective scattering term. This makes the time differencing of the

radiative transfer equation unconditionally stable even in thick diffuse systems.

After the effective scattering is introduced into the equation, it can be solved

either by deterministic or Monte Carlo methods[Fle. 1971].

Though IMC has been shown to produce stable and robust solutions in thick

diffuse systems, it can be a very inefficient solution method, particularly in regions

dominated by effective scattering. There have been a variety of methods developed

to deal with these inefficiencies[Fle. 1984][N’ka. 1991][Gen. 2001][Clo. 2003][Den.

2007].

Symbolic Implicit Monte Carlo (SIMC) attempts to improve the efficiency of

IMC using a spontaneous emission source with symbolic weights. This has the

drawback of requiring refined meshes in time and space to reduce teleportation

error. Teleportation error occurs when the end of a particle’s random walk occurs

away from the center of a cell. The energy is then unphysically “transported” from

its actual deposition or emission location to the cell center, because most methods
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such as SIMC approximate the source and deposition of energy at the cell centers.

Teleportation error also occurs in IMC for small time steps[N’ka. 1991].

SIMC also requires the solution of a linear system of equations at the end of the

Monte Carlo simulation to determine the symbolic weights used to approximate

the spontaneous emission source. This can be expensive if the matrix is large,

which is the case for systems with many spatial cells, or if the matrix is dense,

which is the case when the system has large time steps[N’ka. 1991].

This has led researchers to investigate the solution of radiative transfer prob-

lems in thick highly “scattering” regions using the diffusion approximation. It

is well known that the transport equation approaches the diffusion equation as

the medium gets thick and highly “scattering”. This essentially means that the

boundary layers are no longer strongly coupled to the solution of the problem. The

diffusion equation has been widely explored in the field of neutron transport and

many other related fields. It is known that most problems in high energy density

physics contain regions that are both optically thick and optically thin. This mo-

tivated the development of diffusion methods that can be easily coupled to either

IMC or SIMC.

The initial development of a “diffuse random walk” was one proposed way

to deal with thick regions in these problems. This consisted of a standard IMC

algorithm that could approximate multiple “scatters” with a single diffusion event

in these regions. Though it did show a potential speed-up, it had a drawback;

it did a poor job of accounting for the change in angle that occurs during many

scatter events. This meant that a standard IMC random walk had to be performed

in between all diffuse random walks[Fle. 1984].

The second proposed method was to couple standard SIMC and an SIMC
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method that solves the diffusion equation in thick regions[Clo. 2003]. This method

successfully reproduced grey and frequency dependent one-dimensional benchmark

solutions. Similar to standard SIMC, it is still necessary to solve a system of equa-

tions after the Monte Carlo transport, and teleportation error still accumulates

for transport regions. Thus, further research has continued. SIMC has been ex-

tended to include frequency dependence in the hybrid diffusion transport method.

The difference formulation, discussed in detail below, for SIMC was also developed

which has been shown to reduce variance in thick problems[Bro. 2005].

The difference formulation is a source manipulation variance reduction tech-

nique. It is applied to a system by subtracting the spatial and time derivative of

a designated Planckian from both sides of the transport equation. This effectively

changes the photon energy density to a new “differenced photon energy density”.

This means the transport operator remains unchanged, but the solution and source

vector are changed. When a Monte Carlo method is used to solve the equations, the

interaction probabilities are unchanged. If the differenced Planckian is set equal to

the Planckian of the current material state, computational cost is shifted to regions

only where the material and photon energy densites are out of equilibrium. The

difference formulation has been explored primarily in SIMC and has been shown

to significantly increase the figure of merit compared to the standard solution[Daf.

2005][Bro. 2005]. It has also been shown to yield promising results when used

with IMC[Gen. 2006], but has not been explored for Implicit Monte Carlo Diffu-

sion (IMD)[Gen. 2001] or Discrete Diffusion Monte Carlo (DDMC)[Den. 2007].

IMD and DDMC are similar in that they both apply the diffusion approxima-

tion to the effective scattering radiative transport equation, discretize it in space,

and solve the resulting linear system of equations via Monte Carlo. However, they
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are different in that IMD treats time discretely and DDMC treats time contin-

uously. Both methods have, at this point in time, only been developed for grey

(frequency independent) radiative transfer. In addition, the equations have only

been solved in 1D slab or spherical geometry, or 2D cylindrical geometry on or-

thogonal or AMR grids[Gen. 2001][Den. 2007].

It is the purpose of this work to extend IMD to solve frequency dependent

radiative transfer problems, and investigate the use of the difference formulation

in grey and frequency dependent IMD. Though we have chosen to work with the

IMD method, our approach can also be easily applied to the DDMC method.

1.1 Literature Review

This section contains a review of the literature on the development of the

Implicit Monte Carlo method, diffusion Implicit Monte Carlo methods, and the

difference formulation.

1.1.1 Implicit Monte Carlo Methods

Implicit Monte Carlo (IMC) methods were first introduced in computational

physics by Fleck and Cummings in 1971. IMC was developed in the attempt

to solve highly absorbing and reemitting photon transport problems. Compet-

ing Monte Carlo methods of the time were explicit in the treatment of the time

discretization. These discretizations were very capable of solving optically thin

problems where the radiation photon energy density was significantly out of equi-

librium. However, they had difficulties solving highly absorbing and reemitting

problems where the photon energy density was nearly in equilibrium with the ma-

terial energy density. For these problems the explicit methods required very small
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time steps[Fle 1971].

Fleck and Cummings proposed the development of IMC as a solution method

that would be unconditionally stable. They introduced the concept of “effective

scattering”. When the photon energy density of the system is nearly in equilib-

rium with the material energy density, many photons are absorbed and quickly

re-emitted by the background medium. Explicit methods require very small time

steps to remain stable in this limit. IMC treats the absorption and quick re-

emission of these photons as a single “effective scattering” event.

Though Fleck and Cummings chose to solve their implicit differencing of the

radiative transfer equation with matter coupling using a Monte Carlo algorithm,

it can also be solved using deterministic methods. Monte Carlo methods are at-

tractive because they are highly parallelizable by nature and are easy to couple the

standard transport equation and the diffusion equation.

IMC has been shown to be very robust and stable for problems ranging from

very thin to very thick. Though IMC is capable of producing accurate results

in thick diffusive regions, it reaches this solution very slowly. This is because in

thick diffusive regions the photon interactions are dominated by effective scattering

events. As the probability of scattering increases, the length of time for a random

walk increases. This makes IMC problems unacceptably slow in thick diffusive

regions. A variety of methods have been proposed to rectify this problem.

In Symbolic Implicit Monte Carlo (SIMC) the absorption and reemission of pho-

tons is treated as a spontaneous source of photons that are created with “symbolic

weights” which are determined at the end of every time step by solving a linear

equation. This has the advantage that for a given opacity, the length of the random

walk should be shorter because there is no longer an effective scattering term. This
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results in significant computational savings for some thick problems if the solution

of the linear system of equations is not significantly more computational expensive

then the transport random walk. As time steps increase in size and particles from

the spontaneous source are allowed to move to many different neighboring cells,

the linear systems of equations for the weights to be solved can become dense. This

increases the cost of the solution of the matrix problem reducing the overall figure

of merit. It is also true that the cost of the linear solve increases as the number of

cells increases[Bro. 1987]. SIMC has been shown to produce much less noise than

IMC for large opacities, but SIMC has a higher sensitivity to teleportation error.

Teleportation error occurs when a particle’s interaction is approximated to occur

at the center of a cell rather than at the actual event location. In this case the

probabilities of interactions between the actual event and the center of the cell are

not accurately represented. IMC is not immune to teleportation error; it is just

reduced by the effective scattering. The teleportation error can also be reduced by

decreasing the size of the spatial cells. It is also true that when effective scattering

is small ( small time steps) the teleportation error of IMC increases[McK. 2003].

1.1.2 Diffusion Implicit Monte Carlo Methods

Four Monte Carlo diffusion methods have been introduced in an attempt to im-

prove the efficiency of Monte Carlo solutions of the radiative heat transfer equations

using either effective scattering (IMC) or spontaneous source emission (SIMC). The

goal of each of these methods is to couple Monte Carlo transport in thin regions

to a diffusion approximated solution in the thick diffusive regions. It has been

shown that as a system becomes optically thick and diffusive the solution of the

transport equation satisfies a diffusion equation[Lar. 1983]. Three of the meth-
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ods introduced are approximations of the effective scattering transport equation

and one is the approximation of the implicit transport equation with spontaneous

source emission.

The first approach attempted to approximate a large amount of effective scat-

tering in a local cell with a single advance of the coordinates and time using the

diffusion approximation. We will refer to this as a “diffuse random walk”. This

approach demonstrated an increase in computational efficiency compared to the

standard IMC method, but because directional information can be lost after mul-

tiple diffuse random walks, it is necessary to have a standard IMC random walk

before and after each diffuse random walks[Fle. 1984].

In 1991 N’Kaoua introduced a method that couples a standard SIMC solution

with the Rosseland diffusion equation via domain decomposition. The Rosseland

diffusion equation is independent of both direction and frequency. The frequency

dependence is treated using a normilization of the opacity over all frequency to

create a Rosseland opacity. This Rosseland opacity is is strictly dependent on

temperature. This method maintains the fully implicit treatment of the temper-

ature that exists in SIMC. Domain decomposition is used to couple the diffusion

and standard transport regions. The particles are transported using either the dif-

fusion or transport equation depending on the their current domain. The coupling

equations are then used in conjunction with the diffusion and transport estimates

to create the linear system to solve and determine the symbolic weights of the

spontaneous emission source. Initial timing results comparing this method and

standard IMC with the random walk algorithm[Fle. 1984] showed it to be about

five times faster[N’Ka. 1991]. These timing results were for a spatially small sys-

tem and may be very problem dependent. Results presented by Clouet and Samba
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showed that this hybrid method accurately calculates the solution to the Su and

Olson “picket fence” opacity semi analytic benchmark[Clo. 2003].

Implicit Monte Carlo Diffusion (IMD) was developed in 2001 by Gentile. This

method employs a diffusion approximation of the effective scattering transport

equation to create an implicit diffusion equation. This diffusion equation is then

discretized in time and space. The discretized equations create a coefficient ma-

trix that is then solved via Monte Carlo, as described by Hammersly[Ham. 1964].

This method has the advantages that there is no need to solve a linear system

of equations at the end of the Monte Carlo transport simulation. Discrete Diffu-

sion Monte Carlo (DDMC) was developed by Densmore, Urbatsch, et al, with the

primary goal of creating a method that is easily integrated into IMC. In coupled

IMC/IMD simulations, there can be problems when transitioning particles from

IMD to IMC. One reason for this is that the current time of the particle is not

known when an IMD particle leaves the diffusive region. Thus, the particle is given

a random time between the current time point and the next. This can result in

a particle that leaves a cell before entering it, which is not physical. This does

not occur in DDMC, because the particles are treated continuously in time. It is

also challenging to efficiently determine when an IMC particle should become an

IMD particle and vise versa. In DDMC, the asymptotic diffusion limit is used to

develop the probability of transitioning from an IMD particle to a DDMC particle

at cell interfaces[Gen. 2001][Den. 2007]. Neighter IMD nor DDMC have been

implemented in problems with frequency dependence.
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1.1.3 The Difference Formulation

The difference formulation was introduced by Szoke and Brooks in 2005. The

difference formulation is a variance reduction technique. It manipulates the source

in the radiative transfer equation to better distribute the computational effort of

the solution of the linear system via Monte Carlo. Szoke and Brooks chose to apply

the difference formulation to the SIMC transport method. It has also shown to

be advantageous in reducing the variance in IMC calculations[Gen. 2006]. The

difference formulation involves subtracting the Planckian material energy distri-

bution from the current photon energy intensity. This creates a new form of the

photon energy intensity, referred to as the “difference intensity”. Introducing the

difference intensity, the system can be reduced to a form that closesly matches the

original radiative transfer equation. The source in the equation for the difference

intensity contains additional terms consisting of the spatial and time derivatives

of the material Planckian used in the differencing. This new form of the radiative

transfer equation still approaches the diffusion limit. This means that in thick

diffusive regions the result approaches the correct solution[Szo. 2005]. The com-

putational advantages have been explored in both grey[Daf. 2005] and frequency

dependent[Bro. 2005] media for the transport equation when solved with SIMC. It

was found that in semi-implicit or explicit systems the difference formulation was

only conditionally stable for SIMC[Bro. 2005] and IMC[Gen. 2006]. However, if

the difference formulation is treated truly implicitly in a piecewise constant dis-

cretization, it is shown to be unconditionally stable when used with SIMC. This,

however, creates a non-linear system of equations that need to be solved at the

end of every time step, which can be costly for large problems[Bro. 2005]. A

large amount of teleportation error can occur in large thick zones when using a
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piecewise constant spatial discretization of the difference formulation. However,

the piecewise linear treatment produces accurate and smooth results in large thick

cells. The piecewise linear treatment of the difference formulation still requires

the solution of a non-linear system of equations at the end of every time step[Bro.

2006].

1.2 Thesis Overview

The remainder of this thesis is organized as follows:

II. In Chapter 2, the radiative transfer and material energy balance equations

are introduced and discretized using backward Euler in time. This leads to

the “effective scattering” form of the equations described by Fleck and Cum-

mings[Fle. 1971]. Next, the well known diffusion approximation is applied to

the effective scattering system which leads to the development of the implicit

diffusion equation. The implicit diffusion equation with effective scattering

is discretized using a second order central differencing. Albedo and incident

flux boundary conditions are also derived for the diffusion problem.

III. Chapter 3 begins with an introduction to the basic Monte Carlo method.

The discrete diffusion equation developed in Chapter 2 is manipulated into

a form that can be solved using a Monte Carlo algorithm[Ham. 1964]. Both

grey and frequency dependent interaction probabilities are defined. Source

particle probabilities and their associated frequency distributions are also

defined.

IV. In Chapter 4, the difference formulation is derived for the frequency de-

pendent implicit diffusion and material energy balance equations. The im-
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plicit diffusion of Szoke and Brook for the transport equation is reproduced

to introduce important concepts and terminology[Szo. 2005], including the

derivation of the new source terms. The frequency distribution and sampling

algorithms of these new terms are also discussed.

V. In Chapter 5, numerical results from the solution of grey and frequency de-

pendent test problems are presented. Standard and difference formulation

results are compared against semi-analytic solutions from Su and Olson[Su

1996][Su 1997][Su 1999]. This section also includes an investigation of the

effect of spatial and temporal step size on the quality of the numerical solu-

tions. Finally, this section includes the computational costs associated with

frequency group structure and the use of the difference formulation.

VI. Chapter 6 contains a discussion of the IMD results with and without the

difference formulation and its dependence on temporal, spatial, and group

refinement. This chapter also includes recommendations for future research

on both IMD and the difference formulation.
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2 Transport

2.1 Introduction

In this chapter, the photon transport equation and material energy conserva-

tion equation are manipulated from their standard forms. The first manipulation

performed is the implicit time discretization described by Fleck and Cummings.

This explains the development of the Fleck factor which is used to create an ef-

fective scattering system[Fle. 1971]. The second manipulation is performed by

applying the assumptions which allows for the derivation of the diffusion equation

from the transport equation. Finally, the spatial discretization was developed for

the diffusion equation.

2.2 Radiative Transfer Preliminaries

The frequency-dependent thermal photon transport equation,

1

c

∂I(r̄, ν, Ω̄, t)

∂t
+ Ω̄ · ∇̄I(r̄, ν, Ω̄, t) = −σ(ν)I(r̄, ν, Ω̄, t) + σ(ν)B(ν, T (r̄)), (1)

describes the photon distribution in a physical system. In many problems of in-

terest, the photon distribution is tightly coupled to the material energy balance,

which is represented mathematically by,

1

c

∂Em(T (r̄))

∂t
=

∫ ∫
dνdΩ̄σ(ν)I(r, ν, Ω, t)−

∫ ∫
dνdΩ̄σ(ν)B(ν, T (r̄)). (2)

In equations 1 and 2 c denotes the speed of light [cm/sec], r̄ denotes a location

in space [cm], ν denotes the photon frequency, Ω̄ denotes the solid angle of photon

travel [radians], σ denotes the opacity [1/cm], t is time [sec], I(r̄, ν, Ω̄, t) is photon
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intensity [photons/(cm2 ∗ sec ∗ steradian ∗ eV )], B(ν, T (r̄)) is the Planck function,

Em(T (r̄)) is the material energy density [joules/cm3], and T (r̄) is the temperature

of the background medium [K].

The Planck function (or Planckian),

B(ν, T (r̄)) =
2h

c3

ν3

(e
hν

kT (r̄) − 1)
, (3)

describes the frequency distribution of the photons being emitted from a material

at temperature T (r̄). In this function h is Planck’s constant [joules ∗ sec] and k is

Boltzmann’s constant [joules/K].

2.3 Time Discretization

The explicit temporal discretization of equations 1 and 2 can become unstable

for systems that have strong absorption and remission[Gen. 2001][Fle. 1971].

This led Fleck and Cummings to develop an effective scattering which makes the

equation unconditionally stable[Fle. 1971]. To derive this effective scattering, we

introduce an expression for the Planck distribution function (equation 3);

B(ν, T (r̄)) =
1

4π
b(ν, T (r̄))Er(T (r̄)), (4)

where

Er(T (r̄)) = aT 4(r̄)

is the equilibrium radiation energy density,

b(ν, T (r̄)) =
h

kT (r̄)

15

π4

(
hν

kT (r̄)

)3

(e
hν

kT (r̄) − 1)
(5)

is the normalized Planck function, and

a =
8π5k4

15c3h3
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is the radiation constant. Inserting these definitions into equations 1 and 2 yields

the following new forms of the transport and energy balance equations;

1

c

∂I(r̄, ν, Ω̄, t)

∂t
+ Ω̄ · ∇̄I(r̄, ν, Ω̄, t) = −σ(ν)I(r̄, ν, Ω̄, t)

+
1

4π
σ(ν)b(ν, T (r̄))Er(T (r̄)) (6)

and

1

c

∂Em(T (r̄))

∂t
=

∫ ∫
dνdΩ̄σ(ν)I(r̄, ν, Ω̄, t)

− 1

4π

∫ ∫
dνdΩ̄σ(ν)b(ν, T (r̄))Er(T (r̄)). (7)

The Planck opacity, which is the frequency-dependent opacity averaged over

the Planck distribution, is defined by;

σp(T (r̄)) =

∫∞
0

dνB(ν, T (r̄))σ(ν)∫∞
0

dνB(ν, T (r̄))
. (8)

Substituting equation 4 into equation 8 and performing the integration yields;

σp(T (r̄)) =

∫ ∞

0

dνb(ν, T (r̄))σ(ν). (9)

The material energy balance (equation 2) can now be rewritten with a new

expression for the source emission term(
∫ ∫

dvdΩ̄σ(v)B(v, T (r̄))). The expression

for the Planck distribution function (equation 4) is inserted into equation 2 and

integration over all angles is performed.

1

c

∂Em(T (r̄))

∂t
=

∫ ∫
dνdΩ̄σ(ν)I(r̄, ν, Ω̄, t)− σp(T (r̄))Er (10)

The time rate of change of the material energy density can be defined in terms

of the time rate of change of material temperature using the ideal gas law[Inc.

2002];

∂Em(T (r̄))

∂t
= ρ(T (r̄))cv(T (r̄))

∂T (r̄)

∂t
. (11)
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In practice, ρ(T (r̄)) and cv(T (r̄)) are assumed to be constant over a time step.

Equation 10 can be expressed in terms of temperature by substituting in equation

11:

ρ(T (r̄))cv(T (r̄))

c

∂T (r̄)

∂t
=

∫ ∫
dνdΩ̄σ(ν)I(r̄, ν, Ω̄, t)− σp(T (r̄))aT 4(r̄). (12)

This new form of the material energy balance can be discretized in time using a

backwards Euler differencing:

ρ(T (r̄))cv(T (r̄))

c

Tt+1(r̄)− Tt(r̄)

∆t
=

∫ ∫
dνdΩ̄σ(ν)It+1(r̄, ν, Ω̄, t)

−σp(T (r̄))aT 4
t+1(r̄). (13)

The T 4
t+1(r̄) on the right hand side makes this equation non-linear. To treat this

non-linearity, T 4
t+1(r̄) is expanded about Tt(r̄) resulting in the following expression;

T 4
t+1(r̄) = T 4

t (r̄) + (Tt+1(r̄)− Tt(r̄))4T
3
t (r̄). (14)

The temperature change over the time step (Tt+1(r̄)− Tt(r̄)) is obtained by

substituting equation 14 into the material energy balance equation (equation 13).

Tt+1(r̄)− Tt(r̄) =

∆tc
ρ(T (r̄))cv(T (r̄))

(∫ ∫
dνdΩ̄σ(ν)It+1(r̄, ν, Ω̄, t)− σp(T (r̄))aT 4

t (r̄)
)

(
1 +

∆tcσp(T (r̄))4aT 3
t (r̄)

ρ(T (r̄))cv(T (r̄))

) . (15)

The Fleck factor, which can be described as the probability that an absorbed

photon will not be reemitted during the current time step, is defined as

f(T (r̄)) =
1(

1 +
∆tcσp(T (r̄))4aT 3

t (r̄)

ρ(T (r̄))cv(T (r̄))

) . (16)
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The temperature change over the timestep can then be written as

ρ(T (r̄))cv(T (r̄))

c

Tt+1(r̄)− Tt(r̄)

∆t
=

(∫ ∫
dvdΩ̄σ(v)It+1(r̄, v, Ω̄, t)− σp(T (r̄))aT 4

t (r̄)

)
f(T (r̄)), (17)

or

1

c

∆Em(T (r̄))

∆t
=

∫ ∫
dvdΩ̄It+1(r̄, v, Ω̄, t)σ(v)f(T (r̄))

−σp(T (r̄))f(T (r̄))aT 4
t (r̄). (18)

A similar non-linearity exists in equation 6 when the system is discretized in

time using backward Euler differencing. We again use equation 14 to write;

1

c

∆I(r̄, ν, Ω̄)

∆t
+ Ω̄ · ∇̄It+1(r̄, ν, Ω̄) = −σ(ν)It+1(r̄, ν, Ω̄) +

1

4π
σ(ν)b(ν, T (r̄))a

(
T 4

t (r̄) + (Tt+1(r̄)− Tt(r̄))4T
3
t (r̄)

)
. (19)

Substituting in the expression for the temperature change (equation 15) and per-

forming some algebra, the transport equation can be rewritten to include a new

effective scattering term.

1

c

∆I(r̄, ν, Ω̄)

∆t
+ Ω̄ · ∇̄It+1(r̄, ν, Ω̄) =

−It+1(r̄, ν, Ω̄)σ(ν) +
1

4π
b(ν, T (r̄))σ(ν)f(T (r̄))aT 4

t (r̄)

+
1

4π

σ(ν)b(ν, T (r̄))

σp(T (r̄))

∫ ∫
dνdΩ̄It+1(r̄, ν, Ω̄)σ(ν)(1− f(T (r̄))) (20)

The effective absorption opacity and scattering opacity are represented by σ(ν)f(T (r̄))

and σ(ν)(1− f(T (r̄))) respectively. The final time-discretized transport and en-
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ergy balance equations, in their unconditionally stable forms, are written as

1

c

∆I(r̄, ν, Ω̄)

∆t
+ Ω̄ · ∇̄It+1(r̄, ν, Ω̄) =

−It+1(r̄, ν, Ω̄)σ(ν) +
1

4π
b(ν, T (r̄)σa(ν)aT 4

t (r̄)

+
1

4π

σ(ν)b(ν, T (r̄))

σp(T (r̄))

∫ ∫
dνdΩ̄It+1(r̄, ν, Ω̄)σs(ν) (21)

and

1

c

∆Em(T (r̄))

∆t
=

∫ ∫
dνdΩ̄It+1(r̄, ν, Ω̄)σ(ν)f(T (r̄))

−σp(T (r̄))f(T (r̄))aT 4
t (r̄) (22)

respectively.

2.4 Diffusion Approximation

The Monte Carlo technique applied to the solution of the implicit transport

equation, Implicit Monte Carlo (IMC), has been used to solve many problems of

interest in high energy density physics. However, IMC can be very computationally

expensive in optically thick, highly “scattering” (absorption-reemission) regions.

This has prompted researchers to develop hybrid methods that couple the diffusion

equation in optically thick highly scattering regions to the transport equation in

thin regions. To derive the diffusion equation from the transport equation, it is
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first necessary to integrate equation 21 over all angles:

∫
dΩ̄

1

c

∆I(r̄, ν, Ω̄)

∆t
+

∫
dΩ̄Ω̄ · ∇̄It+1(r̄, ν, Ω̄) =

−
∫

dΩ̄It+1(r̄, ν, Ω̄)σ(v) +
1

4π

∫
dΩ̄

[
b(ν, T (r̄))σa(ν)aT 4

t (r̄)
]

+
1

4π

∫
dΩ̄

[
σ(ν)b(ν, T (r̄))

σp(T (r̄))

∫ ∫
dνdΩ̄It+1(r̄, ν, Ω̄)σs(ν)

]
(23)

The photon energy density (E) and flux (F ) are defined by[Gen. 2001]

E(r, ν) =

∫
dΩ̄I(r̄, ν, Ω̄) (24)

and

F (r, ν) =

∫
dΩ̄Ω̄ · I(r̄, ν, Ω̄). (25)

Inserting these equations definitions and 4π =
∫

dΩ̄ yields:

1

c

∆E(r̄, ν)

∆t
+ ∇̄ · Ft+1(r̄, ν) =

−Et+1(r̄, ν)σ(ν) + b(ν, T (r̄))σa(ν)aT 4
t (r̄)

+
σ(ν)b(ν, T (r̄))

σp(T (r̄))

∫
dνEt+1(r̄, ν)σs(ν) (26)

and

1

c

∆Em(T (r̄))

∆t
=

∫
dνEt+1(r̄, ν)σ(ν)f(T (r̄))− σp(T (r̄))f(T (r̄))aT 4

t (r̄). (27)

A relationship between the flux and energy density (Fick’s law)[Gen. 2001] can

derived by assuming that the photon intensity is linearly anisotropic (P1 approxi-

mation) and if the temporal derivative of the flux is small[Dud. 1976].

F (r̄, ν) = −D(ν)∇̄E(r̄, ν), (28)
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where D is the diffusion coefficient,

D(ν) =
1

3σ(ν)
. (29)

This diffusion coefficient is derived under the assumption that the system has

isotropic scattering. It should be noted that without a “flux limiter” it is possible

for this method to allow particles to transport faster then the speed of light. This

is an unphysical behavior that can cause wave fronts to propegate too deep and

too quickly in modeled systems. Flux limiters can be used to prevent this behavior

by forcing the diffusion coefficient to approach this limit as the system becomes

optically thin.

2.5 Spatial Discretization

In this research we illustrate the numerical behavior of the IMD method using

a simple central difference discretization in a one-dimensional Cartesian coordinate

system. The continuous or multifrequency IMD methods are not limited to this

one-dimensional case, but its implementation is strongly dependent on the presence

of non-negative leakage probabilities. This constrains the choice of spatial grid and

discretization methods used with IMD. [This is discussed in greater detail later in

this thesis]

2.5.1 Interior Cells

A simple one-dimensional Cartesian grid will be used for all problems in this

work. A generalization of this grid can be seen in Figure 1. The spatial dis-

cretization is independent of temporal dependence. Thus, time dependence is not

expressly shown in this section.
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Figure 1: Simple one-dimensional orthogonal grid.
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The divergence of the flux in equation 26 can be expressed as a simple edge

centered differencing;

∇̄ · F (ν) =
Fj+ 1

2
(ν)− Fj− 1

2
(ν)

∆xj

. (30)

The flux on either side of the cell edge can be written using Fick’s law (equation

28);

F−
j+ 1

2

(ν) = −Dj(ν)

(
Ej+ 1

2
(ν)− Ej(ν)

)

∆xj

2

(31)

and

F+
j+ 1

2

(ν) = −Dj+1(ν)

(
Ej+1(ν)− Ej+ 1

2
(ν)

)

∆xj+1

2

. (32)

Finally, given the assumption that the flux is continuous it can be seen that

F+
j+ 1

2

(ν) = F−
j+ 1

2

(ν). (33)

The flux at the cell edge can now be written in terms of the cell centered energy

density by combining equations 31 through 33:

Fj+ 1
2
(ν) = − 2Dj(ν)Dj+1(ν)

∆xj+1Dj(ν) + ∆xjDj+1(ν)
(Ej+1(ν)− Ej(ν)) . (34)

With this new expressions for the photon flux at the cell edge the divergence of

the flux becomes:

∇̄ · F (ν) = −c
2Dj(ν)Dj+1(ν)

∆xj (∆xj+1Dj(ν) + ∆xjDj+1(ν))
(Ej+1(ν)− Ej(ν))

+c
2Dj−1(ν)Dj(ν)

∆xj (∆xjDj−1(ν) + ∆xj−1Dj(ν))
(Ej(ν)− Ej−1(ν)) . (35)

Inserting equation 35 into equation 26 yields a tridiagonal system of equations

for the cell centered energy density:

Bj(ν)Et+1
j−1(ν) + Dj(ν)Et+1

j (ν) + Cj(ν)Et+1
j+1(ν) = Qt

j(ν), (36)



25

where

Bj(ν) = − c2∆tDj−1Dj

∆xj (∆xjDj−1 + ∆xj−1Dj)
, (37)

Cj(ν) = − c2∆tDj(ν)Dj+1(ν)

∆xj (∆xj+1Dj(ν) + ∆xjDj+1(ν))
, (38)

Dj(ν) = 1 + c∆tσ(ν)f(Tj) + c∆tσ(ν)(1− f(Tj))− A(ν)− C(ν), (39)

and

Qj(ν) = c∆tσp(Tj)f(Tj)aT 4
j + c∆t

σ(ν)b(ν, Tj)

σp

∫
dνEt+1

j (ν)σs(ν) + Ej(ν). (40)

2.5.2 Boundary Cells

There are two boundary conditions considered in this paper; an albedo bound-

ary condition and an incident boundary flux. The albedo boundary condition can

be described as a boundary that reflects some fraction(γ) of the exiting boundary

partial flux back into the boundary cell. The partial flux entering the right surface

boundary can be expressed as

f−1
2

(ν) =
1

4
E 1

2
(ν)− 1

2
F 1

2
(ν), (41)

and the partial flux exiting the surface through the unit normal can be expressed

as

f+
1
2

(ν) =
1

4
E 1

2
(ν) +

1

2
F 1

2
(ν). (42)

The total flux can be expressed as the difference of the partial flux incident on and

exiting the left surface boundary.

F 1
2
(ν) = f 1

2

−(ν)− f+
1
2

(ν) (43)
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Given the case of an albedo boundary, the equation for the total flux (equation

43) becomes

F 1
2
(ν) = γf 1

2

+(ν)− f+
1
2

(ν), (44)

where γ denotes the precentage of the exiting flux that is reflected back into the

system. Combining Fick’s law, the partial fluxes, and the total flux (equation 28,

41, 42, and 44) and solving for the left boundary flux in terms of γ and Ej(ν)

yields;

F 1
2
(ν) = −

2D1(ν)E1(ν)
(

1−γ
1+γ

)

∆x1

((
1−γ
1+γ

)
+ 4D1(ν)

∆x1

) . (45)

Similarly the flux for a right albedo boundary condition can be expressed as

FJ+ 1
2
(ν) =

2DJ(ν)EJ(ν)
(

1−γ
1+γ

)

∆xJ

((
1−γ
1+γ

)
+ 4DJ (ν)

∆x

) . (46)

For the case where the system has an incident flux on the left boundary, flux

can be expressed as

f−1
2

(ν) =
1

4
E 1

2
(ν)− 1

2
F 1

2
(ν) + Fo(ν). (47)

Using this equation for the partial incident flux and the other equations used to

solve the albedo boundary condition above results in the following expression for

the total left boundary flux;

F 1
2
(ν) =

2D1(ν)E1(ν)
(

4Fo(ν)
c

− E1(ν)
)

∆x1

(
1 + 4D1(ν)

∆x1

) . (48)

Similarly the flux for a right incident flux boundary condition can be expressed as

FJ+ 1
2
(ν) = −

2DJ(ν)EJ(ν)
(

4Fo(ν)
c

− EJ(ν)
)

∆xJ

(
1 + 4DJ (ν)

∆xJ

) , (49)

where Fo(ν) denotes the incident partial flux.
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2.6 Summary

In this section the radiative transfer equation and material energy balance

equation were transformed into an “effective scattering” diffusion equation. This

diffusion equation was then discretized in space to generate a tridiagonal system

for the cell-centered energy density at the next time step. Discretized forms of the

boundary conditions were also derived
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3 Implicit Monte Carlo

3.1 Introduction

Monte Carlo methods have been used extensively in the field of nuclear physics.

This chapter will describe in detail how a linear system with certain characteristics

can be solved via a Monte Carlo algorithm[Ham. 1964]. This linear system must

be diagonally dominant and the off diagonal terms must be negative. Though it

might be possible to solve linear systems that do not have these properties with

this method, it is not included in the scope of this work and should be further

explored for the needs of running problems on non-orthogonal meshes.

3.2 Monte Carlo Basics

A Monte Carlo method consits of the generation of a finite number of particle

histories that are controlled by known probabilities of the system of interest. For

demonstrative purposes, we will use an example of a fixed source problem with

scattering. In this system, there are two possible interactions; scatter or absorp-

tion. First it is necessary to define a probability distribution function (PDF). This

function describes the probability that a variable (x) will lie in the range of two

values (a and b). A probability distribution function can be written as a function

of the probability density function f(x)[Lew. 1993];

P (x) =

∫ b

a

δx′f(x′) (50)

A probability density function is a function which describes the probability at value

x. In the example problem, the probability that a particle will have an interaction
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over a distance (x) [cm] can be written as

f(x) = e−xσt , (51)

where σt is the total opacity [1/cm]. The total opacity is equal to the sum of the

scattering opacity and the absorption opacity. Now it is necessary to define the

cumulative probability distribution function (CPDF). This function represents the

probability that some random variable x’ is less then or equal to x. This can be

written as;

F (x) =

∫ x

0

f(x′)dx′. (52)

Given the definition of the example probability density function, the CPDF can

be expressed as;

F (x) = 1− e−xσt . (53)

Knowing that the value of a CPDF will always range between zero and one, it

is possible to select a random number, between zero and one, to determine the

distance (x) traveled by the particle before a collision[Lew. 1993]. This is done by

setting F (x) equal to a random number (ζ) and then solving for x. Knowing the

location of the next collision it is now necessary to determine the collision type.

It is possible to determine the collision type by constructing another proba-

bility density function. For the example problem there are two types of possible

interactions; scattering and absorption. The probability density function of the

collision types will consits of a histogram with two values.

f(k) =

(
σs

σt
k0 ≤ k ≤ k1

σa

σt
k1 < k ≤ k2

)

Where the range between k denotes a collision type. The CPDF is constructed by

integrating this histogram from k0 to some value k. If this integration is performed
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and F (k) is set equal to a random number (ζ) between zero and one, the collision

type can be selected using;

k(ζ) =

(
scatter 0 ≤ ζ ≤ σs

σt

absorbed σs

σt
< ζ ≤ 1

)
.

If the collision type is an absorption, the weight of the particle is “tallied”; its

weight is added to a sum of absorption events for its current location. If the particle

is scattered, a new direction and frequency is chosen and the particle continues to

the next interaction location.

The IMD code presented in this work uses the probabilities defined in the next

section to create PDFs and CPDFs which are then used to create and transport par-

ticles. This work also uses absorption suppression combined with Russian Roulette

as a variance reduction technique. Absorption suppression works by tallying the

probability of an absorption event multiplied by the current particle weight at the

beginning of every random walk, rather than including it in the CPDF. This is

done until a particle dies (is tallied into census or leaves the problem) or falls be-

low a designated weight and Russian Roulette occurs[Lew. 1993]. During Russian

Roulette, the particle is either killed or its weight is increased according to a user

designated probability. Russian Rouletting is a unbiased way of ending a parti-

cle history[Lew. 1993]. Absorption suppression with Russian Roulette accurately

accounts for the absorption probability and it reduces the variance in the system.

3.3 Linear System

There are a few very important properties that a matrix must have in order for

a probabilistic interpretation of the linear system to be stable. The matrix must be

positively diagonally dominant and the fringe terms must be negative. This forces

the probabilities to be positive and finite. The linear system that is being solved
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in this paper is a simple tridiagonal system that is diagonally dominant and has

the correct sign for the matrix terms (equation 36). The system can be written as

Ax = b, (54)

where A is the coefficient matrix which for a tridiagonal system can be expressed

as follows;


D1 C2 0 . . . 0
B1 D2 C3 . .
0 B2 D3 C4 . .
. . . . . . .
. . BN−3 DN−2 CN−1 0
. . BN−2 DN−1 CN

0 . . . 0 BN−1 DN







E0

.

.

.

.

.
EN




=




Q0

.

.

.

.

.
QN




,

where B, C, and D are defined by equations 37, 38, and 39 respectively, Ej denotes

the photon energy density at the current time step in cell j, and Qj is the source

term expressed in equation 40.

To put this expression in a form that can be used to solve the linear equations

via Monte Carlo, we split A into its diagonal and off-diagonal components;

F = A−D, (55)

where D is defined by

D =




D1 0 . . 0
0 D2 . .
. . . . .
. . DN−1 0
0 . . 0 DN




.

Using the definition in equation 55, it is possible to rewrite the linear system as

Fx + Dx = b. (56)

This can be rearranged to get the form necessary to solve the linear equations with

a Monte Carlo algorithm[Ham. 1964].

x = Hx + D−1b (57)
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where H can be expressed as;

H = −D−1F (58)

or

H =




0 −C2

D2
0 . . . 0

−B1

D1
0 −C3

D3
. .

0 −B2

D2
0 −C4

D4
. .

. . . . . . .

. . −BN−3

DN−3
0 −CN−1

DN−1
0

. . −BN−2

DN−2
0 − CN

DN−1

0 . . . 0 −BN−1

DN−1
0




.

For simplicity of the probability derivations, matrix A can be broken up into

the streaming operator terms plus the remaining terms in the coefficient matrix.

We will denote these two matrices as F and D. Where these terms denote the

streaming operator (equation 35) and the remaining terms in the coefficient matrix

respectively.

D = A−F (59)

3.4 Probabilities

It can be seen that the diffusion equation (equation 26) in a single cell with a

single frequency or frequency group (ν) can be expressed as;

1

c

∆E(ν)j

∆t
+

N∑
i=1

F t+1
ij (v)Et+1

i (ν) =

−Et+1
j (ν)(σsj

(ν) + σaj
(ν)) +

b(ν, Tj)σ(ν)

σp(Tj)
(ν)σp(Tj)f(Tj)aT t4

j

+

∑νk

νk−1
σ(ν)

∫ νk

νk−1
dνb(ν, Tj)

σp(Tj)

∫
dνEt+1

j (ν)σsj
(ν). (60)
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In matrix form it can also be seen from equation 57 that the photon energy density

in a single cell for a single frequency can be expressed as;

Et+1
j (ν) = D−1

j (ν)Qj(ν) +
N∑

i=1

hji(ν)Ei(ν). (61)

These equations will be important later in this section.

Pth(ν) is the probability that a photon will have the frequency ν when it is

emitted from the material body. This probability can be expressed as;

Pthj
(ν) =

b(ν, Tj)σ(ν)∫∞
0

dνb(ν, Tj)σ(ν)
=

b(ν, Tj)σ(ν)

σp(Tj)
. (62)

For a multigroup method this probability would be expressed for group k as;

Pth,kj
=

∑νk

νk−1
σ(ν)

∫ νk

νk−1
dνb(ν, Tj)

σp(Tj)
. (63)

The Taylor expansion of the Planckian, as described by Barnett and Canfield [Bar.

1970], is integrated analytically and then used to calculate the Planckian. The

integrated Taylor expansion can be carried out to as high an order as the user

desires. Each extension of the Taylor expansion increases the accuracy of the

integral calculation.

The problems we consider do not have real scattering this is an effective scat-

tering system which means it is known that a scattering event is an approximation

for a quick absorption and reemission. This means that the probability of a pho-

ton with frequency ν being emitted after a scatter is equal to the probability of a

thermal photon being emitted at the frequency ν.

Pth(ν) = Ps(ν). (64)

The newly created particles must adhere to some interaction probabilities. The

most important of these probabilities is the census probability. Census, in this case,
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means that a particle will remain in the cell at the next time step. This probability

can be expressed as

P c
j (ν) =

1

Dj(ν)
, (65)

where D represents the diagonal terms expressed for internal cells in equation 39.

As ∆t approaches zero, the probability of census goes to one, and as the opacity

gets very large the probability of census will decrease toward zero. The scattering

probability can be defined as

P s
j (ν) =

c∆tσ(ν)(1− f(Tj))

Dj(ν)
. (66)

The scattering probability will go to zero as f approaches one. The leakage prob-

ability,

P l
ij(ν) = hij(ν) =

Fji(ν)

Dj(ν)
, (67)

is the probability that a particle will leak from a neighboring cell i into the current

cell j. This term will be always positive if the terms of matrix H are positive.

This means that the fringe terms of matrix A must be negative. The total leakage

probability,

P T l
j (ν) =

N∑
i=1

hji(ν) =
N∑

i=1;i6=j

Fji(ν)

Dj(ν)
, (68)

is the probability of a particle leaking out of cell j. The total probability of leakage

will always be less than or equal to one because the denominator can be expressed

as a sum which contains all terms in the numerator. The total leakage probability

is equal to zero if the cell is infinitely large. The source probability can be written

as

P q
j (ν) =

Qj(ν)
N∑

i=1

Qi(ν)

, (69)
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where Qi and Qj are terms in the source vector Q. Again, because the sum in the

denominator always contains the term in the numerator, the probability expressed

in equation 69 will range between zero and one.

The total radiation energy in the system can be expressed as;

ET =
N∑

i=1

(
c∆tσpfaT 4

i Vi +

∫ ∞

0

dνEt
i (ν)Vi

)
. (70)

If the total number of particles to be created is equal to N , then the number of

particles created in a single frequency in a cell j can be expressed as

N c
j (ν) = N

(
c∆tb(ν, Tj)σa(ν)aT 4

j Vj + Et
j(ν)Vj

ET

)
. (71)

This also means that the weight of each particle created can be expressed as;

wj(ν) =
(c∆tb(ν, T )σa(ν)aT 4

j Vj + Et
j(ν)Vj)

N c
j (ν)

. (72)

The photon energy density at any one time in a given cell j can be expressed as

Ej(ν) ≡ lim
Nj→+∞

P c
j (ν)wj(ν)Nj(ν). (73)

where P c
j (ν) is the census probability for cell j, wj(ν) is the weight of each particle,

and Nj(ν) is the number of particles with frequency ν in the cell j. This should

be equal to the total number of particles with frequency ν that are created in the

cell, enter the cell from surrounding cells, and scatter in the cell from a different

frequency into frequency ν.

Nj(ν) =
N∑

i=1

P l
ij(ν)Ni(ν) + N c

j (ν) + Ps(ν)

∫ ∞

0

dν ′P s(ν ′)Nj(ν
′) (74)

Now it is possible to substitute equation 74 into equation 73.

Ej(ν) = P c
j (ν)wj(ν)

N∑

i=1;i6=j

P l
ij(ν)Ni(ν) + (75)

P c
j (ν)wj(ν)N c

j (ν) + P c
j wj(ν)Ps(ν)

∫ ∞

0

dν ′P s(ν ′)Nj(ν
′)
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The source term in equation 75 can be rewritten such that

P c
j (ν)wj(ν)N c

j (ν) =
Pth(ν)c∆tσpfaT 4

t + Et
j(ν)

Dj(ν)
. (76)

Using equations 67, 73, and 65 the leakage term can be rewritten such that

P c
j (ν)wj(ν)

N∑
i=1

P l
ij(ν)Ni(ν) =

1

Dj

N∑

i=1;i6=j

Fji(ν)wpNi

Di(ν)
(77)

=
N∑

i=1;i6=j

Fji(ν)Ei

Dj(ν)
.

The scatter term of equation 75 can now be rewritten using equations 73 and 65

yielding;

P c
j (ν)wj(ν)Ps(ν)

∫ ∞

0

dν ′P s(ν ′)Nj(ν
′) =

Ps(ν)

Dj(ν)

∫
dν ′Ej(r, ν

′)σ(ν ′)s. (78)

Rewriting equation 75 with equations 76, 77, and 78 and replacing the probabilities

with associated matrix terms yields;

Ej = QjD
−1
j +

N∑
i=1

hjiEi. (79)

Using equation 75 with equations 76, 77, and 78 and multiplying
Dj

c∆t
by both sides

will yield the following result;

1

c

∆E(ν)j

∆t
+

N∑
i=1

Fij(v)Ei(ν) =

−Ej(ν)(σs(ν)j + σa(ν)j) + Pth(ν)σpfaT 4

+Ps(ν)

∫
dνEj(ν)σ(ν)s. (80)

This shows that if the system of probabilities defined above was solved with an

infinite number of particles Ej(ν) would be equal to Et+1
j (ν).
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For the right albedo boundary condition, the diagonal term can be expressed

as

Da = 1 + c∆tσ(ν)f(TJ) + c∆tσ(ν)(1− f(TJ))

+
c2∆tDJ(ν)DJ−1(ν)

∆xJ (∆xJ−1DJ(ν) + ∆xJDJ−1(ν))
+

c2∆tDJ(ν)
(

1−γ
1+γ

)

∆xJ

((
1−γ
1+γ

)
+ 4DJ (ν)

∆xJ

) . (81)

For the incident flux boundary condition, the diagonal term and the source term

can be expressed as

Dif = 1 + c∆tσ(ν)f(TJ) + c∆tσ(ν)(1− f(TJ))

+
c2∆tDJ(ν)DJ−1(ν)

∆xJ (∆xJ−1DJ(ν) + ∆xJDJ−1(ν))
+

c2∆tDJ(ν)

∆xJ

(
1 + 4DJ (ν)

∆xJ

) (82)

and

Qif = c∆tσp(TJ)f(TJ)aT t4

J + Et
J +

c8∆tDJ(ν)Fo

∆xJ

(
1 + 4DJ (ν)

∆xJ

) . (83)

For the boundary cells it is necessary to define a boundary leakage probability (P b)

and a boundary source probability P b,q. The albedo boundary leakage probability

is expressed as;

P bl
a (ν) =

c2∆tDJ (ν)( 1−γ
1+γ )

∆xJ

“
( 1−γ

1+γ )+
4DJ (ν)

∆x

”

Da(ν)
. (84)

The incident flux boundary leakage probability is expressed as;

P bl
if (ν) =

c2∆tDJ

∆xJ

“
1+

4DJ (ν)

∆x

”

Dif (ν)
. (85)

For these boundary cells the source probability shown in equation 69 would remain

true with the new value of Q defined in equation 83 for the incident flux boundary,

or the value of Q defined by equation 40 for the albedo boundary. If the appropriate

boundary leakage probability, either albedo or incident flux depending on user
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specifications, was add to the total leakage probability defined by equation 68 the

census tally (equation 75) will yields the correct results for the right boundary cell

equations. This will also be true for the left boundary conditions as defined in

Section 2.5.2.

If an infinite number of particles were simulated, this method would yield the

result as defined in equation 57. Using this method, it is possible to solve for the

photon energy density at the end of a single time step. However, it is not possible

to recalculate the material energy density, which is necessary to calculate time

steps in sequence, without including more probabilities and tallies. To solve for

the material energy density at the end of the time step it is necessary to solve the

equation of state (equation 90). This is done by creating an emission source tally

and an absorption tally. The absorption tally can be defined as the amount of

energy absorbed into the material over a time step

Ea
j (ν) = P a

j (ν)wpNj (86)

where P a
j (ν) is the probability of absorption into the material of cell j. The ab-

sorption probability can be expressed as;

P a
j (ν) =

c∆tσ(ν)f(Tj)

Dj(ν)
. (87)

As the Fleck factor (f(Tj)) approaches zero, the probability of absorption goes to

zero. This is true for systems that are purely scattering. As the opacity gets very

large, the probability of absorption goes to one. If equation 87 is subsituted into

equation 86 the following expresssion can be made for the energy absorbed in cell

j;

Ea
j (ν) =

c∆tσ(ν)f(Tj)wpNj

Dj(ν)
= c∆tσ(ν)f(Tj)P

c
j (ν)wpNj. (88)
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Given the definition in equation 75

Ea
j (ν) =

∫
dνc∆tσ(ν)f(Tj)Ej(ν). (89)

Knowing that Ej(ν) is an approximation for Et+1
j (ν) equation 90 can be rewritten

using equation 89.

∆Emj
=

∫
dνc∆tσ(ν)f(Tj)Ej(ν)− c∆tσp(Tj)f(Tj)aT t4

j (90)

This shows that the change in the material energy density can be determined using

the absorption tally defined above.

3.5 Summary

This section describes the matrix manipulations required to get the linear sys-

tem in a form that is solvable via Monte Carlo. After the matrix manipulations

are performed the probabilities are derived along with their associated proofs to be

used with the Monte Carlo Method. This includes the development of the tallies

which are required to produce the photon energy density and the material energy

density at the next time step. This section also includes the frequency distribution

functions associated with the thermal and scattering sources.
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4 Difference Formulation

4.1 Introduction

In this chapter the difference formulation will be derived for the frequency de-

pendent implicit diffusion and material energy balance equations. We demonstrate

that the application of the difference formulation does not change the converged so-

lution. The difference formulation is a variance reduction technique which changes

the source of the problem to focus the computational work on parts of the system

that are rapidly changing[Bro 2005]. The difference formulation in-dues subtract-

ing a differential time and streaming operator applied to the Planckian source from

both sides of the equation. This results in a new “differenced” energy density, de-

fined as;

Et+1
d (r) = Et+1(r)−B(v, Td(r)). (91)

Here B denotes the Planck distribution (equation 4) integrated over all angle and

Td(r) is the “differencing” temperature used for the subtracted Planckian source.
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4.2 Diffusion Equation

The photon energy density differencing shown in equation 91 can be used to

rewrite the diffusion equation (equation 26) in a new form;

1

c

∆Ed(r, ν)

∆t
+∇F t+1

d (r, ν) =

−Et+1
d (r, ν)σ(ν) + b(ν, T (r))σ(ν)f(T (r))aT 4(r)

+
σ(ν)b(ν, T (r))

σp

∫
dνEt+1

d (r, ν)σ(ν)(1− f(T (r)))

−b(ν, Td(r))aT 4
d (r)σ(ν)

+
σ(ν)b(ν, T (r))

σp

∫
dνb(ν, Td(r))aT 4

d (r)σ(ν)(1− f(T (r)))

−1

c

∆b(ν, Td(r))aT 4
d (r)

∆t
−∇(−D∇b(ν, Td(r))aT 4

d (r)
)
, (92)

where the Td is a user definable temperature chosen for the differencing. If the new

scattering term containing the normalized Planckian for the “differencing” tem-

perature in equation 92 is integrated and expanded, the new form of the difference

diffusion equation is;

1

c

∆Ed(r, ν)

∆t
+∇F t+1

d (r, ν) =

−Et+1
d (r, ν)σ(ν) +

σ(ν)b(ν, T (r))

σp

∫
dνEt+1

d (r, ν)σ(ν)(1− f(T (r)))

+b(ν, T (r))σ(ν)f(T (r))a

(
T 4(r)− T 4

d (r)
σdp

σp

)

+aT 4
d (r)

(
σdp

σp

b(ν, T (r))σ(ν)− b(ν, Td(r))σ(ν)

)

−1

c

∆b(ν, Td(r))aT 4
d (r)

∆t
−∇(−D∇b(ν, Td(r))aT 4

d (r)
)
. (93)
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Since the differenced temperature is time independent for a single time step, the

time derivative of the difference term is zero. However, the difference temperature

is dependent on space and using the second order differencing introduced in the

previous chapter, the difference spatial operator will become;

∇(−D∇b(ν, Td(r))aT 4
d (r)) =

−c
2Dj(ν)Dj+1(ν)

∆xj (∆xj+1Dj(ν) + ∆xjDj+1(ν))

(
b(ν, Tdj+1

)aT 4
dj+1

− b(ν, Tdj
)aT 4

dj

)

+c
2Dj−1(ν)Dj(ν)

∆xj (∆xjDj−1(ν) + ∆xj−1Dj(ν))

(
b(ν, Tdj

)aT 4
dj
− b(ν, Tdj−1

)aT 4
dj−1

)
.

(94)

It is possible to combine equations 93 and 94 to yield a familiar form of the

diffusion equation (equation 26).

1

c

∆Ed(r, ν)

∆t
+∇F t+1

d (r, ν) =

−Et+1
d (r, ν)σ(ν) +

σ(ν)b(ν, T (r))

σp

∫
dνEt+1

d (r, ν)σ(ν)(1− f)

−∇(−D(ν)∇b(ν, Td(r))aT 4
d (r)

)
. (95)

In fact this is identical to equation 26 with a new source term to replace the

thermal emission source. This is true if the differencing temperature is constant

over a single time step and the difference temperature is equal to the local material

temperature.

If the discretization scheme applied to equation 26 in Section 2.5 is applied to

equation 95, the diffusion equation would take on the following form;

Ad(ν)Et+1
d,j−1(ν) + Dd(ν)Et+1

d,j (ν) + Cd(ν)Et+1
d,j+1(ν) = Qt

d,j(ν), (96)
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where

Ad(ν) = − c2∆tDj−1(ν)Dj(ν)

∆xj (∆xjDj−1(ν) + ∆xj−1Dj(ν))
, (97)

Cd(ν) = − c2∆tDj(ν)Dj+1(ν)

∆xj (∆xj+1Dj(ν) + ∆xjDj+1(ν))
, (98)

Dd(ν) = 1 + c∆tσ(ν)f(Tj) + c∆tσ(ν)(1− f(Tj))− Ad(ν)− Cd(ν), (99)

and

Qd(ν) =

c
2Dj(ν)Dj+1(ν)

∆xj (∆xj+1Dj(ν) + ∆xjDj+1(ν))

(
b(ν, Td,j+1)aT 4

d,j+1 − b(ν, Td,j)aT 4
d,j

)

−c
2Dj−1(ν)Dj(ν)

∆xj (∆xjDj−1(ν) + ∆xj−1Dj(ν))

(
b(ν, Td,j)aT 4

d,j − b(ν, Td,j−1)aT 4
d,j−1

)

+Et
d,j. (100)

This coefficient matrix is the same as that previously derived but with a different

source term. This means all the probabilities developed in Section 3 are applicable

to simulations using the difference formulation. The only difference is that the

system is solving for the “differenced” energy density (Et+1
d (ν)) rather than the

actual energy density (Et+1(ν)). After the “differenced” energy density is found

for a given time step, it is possible to determine the actual energy density by adding

B(ν, Td(r)) to the “differenced” energy density.

4.3 Material Energy Balance

The difference formulation also changes the material energy balance equation.

The absorption tally defined in the Monte Carlo section (Section 3.4) is identical

in the differenced system to that of the standard system. However, the census
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tally involves Ed(ν) rather than E(ν). Given the difference formulation the energy

absorbed into the material (Ea
dj

(ν)) can be written as:

Ea
d,j(ν) =

∫
dνc∆tσ(ν)fEd,j(ν). (101)

Using equation 91 yields,

Ea
d,j(ν) =

∫
dνc∆tσ(ν)f(Tj) (E(ν)−B(v, Td(r))(ν)) . (102)

Integrating simplifies the expression to the Planck distribution.

Ea
dj

(ν) =

∫
dνc∆tσ(ν)fE(ν)− c∆tσpfaT 4

d (103)

This means that the absorption tally of Ed(ν) is equal to the change in the material

energy density.

∆Em = Ea
d,j(ν) (104)

4.4 Frequency Distribution

The derivation of the difference formulation is, in practice, simple. Creating

the appropriate frequency distribution for sampling is slightly more complex. In

the standard Monte Carlo case, the frequency distribution is fairly intuitive and is

described by a single Planckian (equation 62) and the current census distribution.

When the difference formulation is used, there are a number of new source distri-

butions that must be sampled. The first of these distributions is the initial census

distribution. In the standard form, the initial census distribution carries over from

the census distribution at the end of the last time step. In the difference formu-

lation, the Planck function is subtracted from the initial photon density (equation

91) changing not only the magnitude of the initial differenced photon density, but

also changing the frequency distribution. This means that the energy needs to be
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either added into the photon energy density using appropriate frequency bins (for

multigroup methods) or as particles (continuous or multigroup frequencies) with

the following probability distribution function PDF b(ν);

PDF b(ν) =
b(ν, Td)∫∞

0
dνb(ν, Td)

= b(ν, Td). (105)

For the grey case, this distribution is irrelevant and the differenced census energy

can just be subtracted from the magnitude of the total census. In the multigroup

or continuous energy case, if the subtracted difference energy is added to the census

using a distribution of negatively weighted particles it may artificially increase the

variance rather than decreasing it. In this case, the range of the census distribution

is no longer non-negative; it now includes a range of negative values. To avoid

this, it is possible to create a grouped frequency distribution function that spans

the range of frequencies currently represented in census. If this is done, the new

differenced census for each group can be expressed by;

Ek
d = Ek − aT 4

d

∫ νk

νk−1

dνPDF b(ν) = Ek − aT 4
d

∫ νk

νk−1

dνb(ν, Td). (106)

After the initial photon density has been modified it is necessary to deter-

mine the frequency distribution of the new difference formulation streaming source

(equation 94). This streaming source term is treated as two separate sources, each

with different opacity dependent coefficients. These two sources can be defined as;

qd,j−1(ν) =

c
2Dj−1(ν)Dj(ν)

∆xj (∆xjDj−1(ν) + ∆xj−1Dj(ν))

(
b(ν, Td,j−1)aT 4

d,j−1 − b(ν, Td,j)aT 4
d,j

)

(107)
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and

qd,j+1(ν) =

c
2Dj(ν)Dj+1(ν)

∆xj (∆xj+1Dj(ν) + ∆xjDj+1(ν))

(
b(ν, Td,j+1)aT 4

d,j+1 − b(ν, T, dj)aT 4
d,j

)
.

(108)

For multigroup methods it is possible to use equations 107 and 108 to get the

frequency distribution. Using these equations the following probability distribution

functions can be created;

PDF qd
j−1(ν) =

qdj−1
(ν)∫∞

0
dνqdj−1

(ν)
(109)

and

PDF qd
j+1(ν) =

qdj+1
(ν)∫∞

0
dνqdj+1

(ν)
. (110)

Using these PDFs, cumulative distribution functions (CDF) can be created, and a

random number between zero and one can be compared to these CDFs to determine

the event type. With an infinite number of random numbers the function will yield

the events in a quantity equal to their associated probabilities. The given CDF

for the emission of any particle emitted from the differenced streaming source with

multigroup opacities can be expressed as;

CDF qd
j−1(νk) =

∑k
0

∫ νk

νk−1
dνqd,j−1(ν)∫∞

0
dνqd,j−1(ν)

(111)

and

CDF qd
j+1(νk) =

∑k
0

∫ νk

νk−1
dνqd,j+1(ν)∫∞

0
dνqd,j+1(ν)

. (112)

This method of frequency distribution determination can be computationally ex-

pensive if performed in this fashion for every frequency selection. Improved per-

formance may be possible using tabulated functions or possibly some improved
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selection techniques similar to those shown by Brooks[Bro. 2005][Bro. 2006]. In

Brooks’ approach the streaming operator is independent of opacity, unlike the

streaming source in our work. Tabulating the distribution functions is likely a

more usable approach. After the new difference census value is determined, the

amount of initially differenced energy must be added back into the system to obtain

the energy density:

Et+1(r) = Et+1
d (r) + B(v, Td(r)). (113)

Again, it is necessary to consider the frequency distribution (described by equation

105) when adding this energy back into the photon energy density solution. In this

research, this addition is performed in the same fashion as the initial subtraction,

with the exception of when no particles registered in census. In this case, particles

were created with the frequency distribution of b(ν, Td(r)) and weights that sum

to aT d(r)4. The frequency distribution of the normalized Planckian for this work

was selected using the efficient algorithm described by Barnett and Canfield.[Bar.

1970]

4.5 Summary

In this section the difference formulation was derived for the diffusion equation,

including detailed descriptions of the new streaming source associated with the

difference formulation. The new streaming source was discretized using the second-

order central differencing applied earlier to the diffusion equation in the standard

form. We also derived the frequency distribution function as it relates to the new

streaming source.
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5 Results

5.1 Introduction

This chapter contains the results obtained from the grey and frequency depen-

dent calculations with and without the difference formulation. In the grey case,

the numerical results are compared to the semianalytic Marshak wave benchmarks

present by Su and Olson[Su 1996]. Frequency dependent calculations are compared

to the non-grey semianalytic benchmarks also presented by Su and Olson[Su 1999].

Figures of merit are calculated for the different solution scenarios to evaluate the

effectiveness of the variance reduction. The stability of the difference formulation

for the diffusion equation is also explored in grey and frequency dependent systems.

5.2 Grey Implicit Monte Carlo Diffusion

We first test the implementation of IMD on a one dimensional grey test prob-

lem[Gen 2001]. This problem consists of an initially cold semi-infinite body that

has a flux incident on the left face. This problem has a normalized semi-analytic

solution[Su 1996]. The Su and Olson results were translated into a normalized

form to allow comparison with the IMD code results using the constants defined

in Table 1. The unit (Mm) denotes Mega meters (or 1e+6 meters).

Constants

Constant Symbol Value Units

Planck h 6.626E-34 joule*sec.
Boltzmann k 1.381E-23 joule/Kelvin

Speed of Light c 299.8 Mm/sec.

Table 1: Constants used for all calculations
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Two different approaches are used to solve the grey test problem: an opti-

mized grey IMD code, and a multigroup IMD code that uses a constant frequency-

independent opacity. The multigroup code with the difference formulation is sig-

nificantly slower because of the necessity to integrate the frequency dependence

of the differenced Plankian. It is also slower without the difference formulation

because of sampling overhead.

5.2.1 Grey without the Difference Formulation

The first problem is the grey purely absorbing Su and Olson Marshak wave problem.

This problem will be referred to as “Problem 1.1”. The face source, which is

constant over time and has a magnitude of 74.925 at x=0 and 0 every where else,

is turned on at τ = 0.0 and left on for the duration of the problem, until τ = 1.0.

The problem specification is included in Table 2.

Problem 1.1 Parameters

Parameter Value Units

Number of Cells 500 N/A
Number of Particles 4000 N/A

Length 50 Mm
Left Albedo 0 N/A

Right Albedo 1 N/A
Initial Material Temp. 0.01 K

Material Density 1.0 Kg/Mm
Number Of Time Steps 20 N/A

Final Time [τ ] 1.0 N/A
Material Opacity 1.0 1/Mm

Table 2: Problem specifications used for the Su and Olson purely absorbing grey
Marshak wave problem (Problem 1.1)

Figure 2 demonstrates the results obtained from the optimized grey IMD code.
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Figure 2: Normalized one dimensional grey solution compared to Su and Olson re-
sult[Su 1996] at τ = 1.0 with no scattering and no difference formulation. (Problem
1.1)
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In this figure “censusSolution” denotes the photon energy density as determined

by the IMD method, “CensusAnalytic” represents the semi-analytic benchmark

results from Su and Olson, “materialSolution” denotes the material energy density

calculated via the IMD method and finally “MaterialAnalytic” is the semi-analytic

material energy density benchmark results from Su and Olson.

The results from the multigroup calculation of this test problem are shown in

Figure 3.

Figure 3: Grey IMD solution run with the multigroup IMD code compared to Su and
Olson result[Su 1996]. (Problem 1.1)
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Next, the effect of spatial (Problem 1.2a) and temporal (Problem 1.2b) refine-

ment was investigated with the grey IMD code. This problem will be referred to

as “Problem 1.2”. Five versions of this test problem were run for each type of

refinement. The spatial refinement was tested using the basic run settings defined

in Table 3. The different spatial refinements are listed in Table 4.

Problem 1.2 Parameters

Parameter Value Units

Number of Cells 120 N/A
Number of Particles 10000 N/A

Length 15 Mm
Left Albedo 0 N/A

Right Albedo 1 N/A
Initial Material Temp. 0.01 K

Material Density 1.0 Kg/Mm
Number Of Time Steps 20 N/A

Final Time [τ ] 1.0 N/A
Material Opacity 1.0 1/Mm

Table 3: Problem specifications used for Problem 1.2.

Problem 1.2a Spatial Refinements

Number of Cells Cell Size

60 0.25
120 0.125
240 0.0625
480 0.03125
960 0.015625

Table 4: Spatial refinements for Problem 1.2a

Figure 4 demonstrates the material energy density determined by the grey IMD

code for various cell sizes. This shows that spatial refinement has very little relative

effect on the shape of the material energy density.
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Figure 4: Material energy densities from the grey IMD code with various cell sizes.
(Problem 1.2a)
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The temporal refinement for Problem 1.2 was performed using settings identical

to those described in Table 3. Table 5 lists the five temporal refinements that were

considered.

Problem 1.2b Temporal Refinements

Number of Time Steps Time Step Size ∆τ

10 0.1
120 0.05
240 0.025
480 0.0125
960 0.00625

Table 5: Temporal refinements for Problem 1.2b

Figures 5 and 6 show that the degree of temporal refinement has a greater

effect on the numerical solution than the degree of the spatial refinement. This is

paticularly true at the leading edge of the Marshak wave.

5.2.2 Grey with the Difference Formulation

In Problem 1.2, the Su and Olson grey benchmark result is simulated using the

optimized grey IMD code and the difference formulation. In this case, the differ-

ence formulation temperature was chosen to be the material temperature in the

associated cell. This problem has parameters identical to those of Problem 1.1 (see

Table 2).

The difference between figures 7 and 2 show that the difference formulation

yields a significant reduction in the variance.
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Figure 5: Material energy densities from the grey IMD code with various time step
sizes. (Problem 1.2b)
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Figure 6: A closer look at the leading edge of the Marshak wave material energy
densities from the grey IMD code with various time step sizes. (Problem 1.2b)
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Figure 7: Normalized one dimensional grey solution with the difference formulation
compared to Su and Olson result[Su 1996] at τ = 1.0 with no scattering. (Problem
1.1)
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5.3 Frequency Dependent Implicit Monte Carlo Diffusion

This section contains the results of test problems solved using the frequency

dependent IMD method. This includes an exploration of frequency dependent

systems with and without the difference formulation. The majority of the sim-

ulated results are compared against the Su and Olson non-grey Marshak wave

semi-analytic benchmark with a picket fence opacity. The stability and accuracy

of the method are investigated as both the number of time steps and the number

of cells is varied.

5.3.1 Frequency Dependent IMD without the Difference Formulation

The next problem is the Su and Olson non-grey benchmark result with a picket

fence opacity defined such that: the bins are logarithmically spaced in frequency,

even frequency bins have a large opacity, and odd frequency bins have a small

opacity. The opacities are chosen such that the Planck opacity, defined by equation

9, is equal to one[Su 1999]. The opacities chosen for this work are shown in Table

6

Picket Fence Opacities

Number of Time Steps Time Step Size ∆τ

Small Opacity 2
101

Large Opacity 200
101

Table 6: Opacities used to construct the opacity distribution for the frequency
dependent IMD results.

The remainder of the specifications for this problem (Problem 3.1) are listed in

Table 7.

Figure 8 shows that the IMD code can accurately reproduce multigroup solu-
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Figure 8: Normalized one dimensional frequency dependent solution compared to Su
and Olson result[Su 1999] at τ = 1.0 with no difference formulation. (Problem 3.1)
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Problem 3.1 Parameters

Parameter Value Units

Number of Cells 120 N/A
Number of Particles 400000 N/A

Length 15 Mm
Left Albedo 1 N/A

Right Albedo 1 N/A
Initial Material Temp. 0.01 K

Material Density 1.0 Kg/Mm
Number Of Time Steps 40 N/A

Final Time [τ ] 1.0 N/A
Small Opacity 2

101
1/Mm

Large Opacity 200
101

1/Mm

Table 7: Problem specifications used for the Su and Olson purely absorbing grey
Marshak wave problem at τ = 1.0 (Problem 3.1).

tions. Here “smallOpacityCensus”, “largeOpacityCensus”, and “materialSolution”

refer to the photon energy density for the small opacity, large opacity, and the ma-

terial energy density respectively, as calculated by the multigroup IMD code. The

Su and Olson semi-analytic result for the small opacity photon energy density,

large opacity photon energy density, and material energy density are labeled as

“smallAnalytic”, “largeAnalytic”, and “materialAnalytic”.

The effect of spatial (Problem 3.2a) and temporal (Problem 3.2b) resolution on

the frequency dependent IMD method was tested with the parameters defined in

Table 8. The spatial and temporal resolution used for these problems are shown

in Tables 4 and 5 respectively.

Figure 9 shows the solution to the frequency dependent IMD method with the

various spatial refinements. The solution is relatively insensitive to the choice of

spatial cell size.

Figures 10 and 11 show the dependence on the time step size. The penetration
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Figure 9: Frequency dependent IMD solution for various cell sizes. (Problem 3.2a)
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Figure 10: Frequency dependent IMD solution for various time step sizes. (Problem
3.2b)
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Figure 11: A closer view of the frequency dependent IMD solution for various time
step sizes at the head of the Marshak wave. (Problem 3.2b)
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Problem 3.2 Parameters

Parameter Value Units

Number of Cells 120 N/A
Number of Particles 10000 N/A

Length 15 Mm
Left Albedo 1 N/A

Right Albedo 1 N/A
Initial Material Temp. 0.01 K

Material Density 1.0 Kg/Mm
Number Of Time Steps 20 N/A

Final Time [τ ] 1.0 N/A
Small Opacity 2

101
1/Mm

Large Opacity 200
101

1/Mm
Number of Groups 1000 1/Mm

Table 8: Problem specifications used for the frequency dependent temporal and
spatial refinement. (Problem 3.2)

distance of the Marshak wave is influenced by the time step size.

The group refinement on the material energy density and the effect of frequency

group calculation time was also investigated. This set of problems has the spec-

ifications in Table 9 with several choices of group structures: 1000 groups, 2000

groups, 4000 groups, 8000 groups, and 16000 groups.

The material energy density determined by the multigroup IMD method for

various numbers of groups is shown in Figure 12. Figure 13 shows the computa-

tional cost as a function of numbers of groups used for the calculation.

5.3.2 Frequency Dependent IMD with the Difference Formulation

This section will explore properties of the frequency dependent implementation of

IMD with the difference formulation. We will generate three different solutions

using the IMD code with the difference formulation and one without the difference
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Figure 12: The material energy density determined by the frequency dependent IMD
method for various numbers of groups. (Problem 3.3)
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Figure 13: Computational cost as a function of number of groups used in the calcu-
lation (Problem 3.3)
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Problem 3.3 Parameters

Parameter Value Units

Number of Cells 120 N/A
Number of Particles 10000 N/A

Length 30 Mm
Left Albedo 1 N/A

Right Albedo 1 N/A
Initial Material Temp. 0.01 K

Material Density 1.0 Kg/Mm
Number Of Time Steps 20 N/A

Final Time [τ ] 1.0 N/A
Small Opacity 2

101
1/Mm

Large Opacity 200
101

1/Mm
Number of Groups 1000 1/Mm

Table 9: Problem specifications used for the frequency dependent IMD with various
numbers of groups. (Problem 3.3)

formulation. The problem specifications are listed in Table 10. This problem will

be referred to as “Problem 4.1”.

The temperature distribution used in the difference formulation is a user de-

scribed quantity. This termperature is varied such that it was a defined percentage

of the current material temperature for the associated cell. The percentages used

for these problems are listed in Table 11. we are interested in the effect this choice

has on computational cost of the method and the degree of variance reduction.

Figures 14, 15, 16, and 17 show the IMD solution with the difference formulation

for the various percentages of the difference formulation temperature as compared

to the material temperature. The “smallAnalytic”, “largeAnalytic”, and “materi-

alAnalytic” denote the Su and Olson semi-analytic non-grey benchmark results for

the energy density of the small opacity associated photons, large opacity associated

photons, and the material, respectively. The material energy density results are
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Problem 4.1 Parameters

Parameter Value Units

Number of Cells 500 N/A
Number of Particles 10000 N/A

Length 50 Mm
Left Albedo 1 N/A

Right Albedo 1 N/A
Initial Material Temp. 0.01 K

Material Density 1.0 Kg/Mm
Number Of Time Steps 20 N/A

Final Time [τ ] 1.0 N/A
Small Opacity 2

101
1/Mm

Large Opacity 200
101

1/Mm

Table 10: Problem specifications used for the frequency dependent difference for-
mulation tests. (Problem 4.1)

Difference Formulation Temperatures for Problem 4.1

Problem Realization % Material Temperature

Problem 4.1a 00.0 %
Problem 4.1b 10.0 %
Problem 4.1c 30.0 %
Problem 4.1d 50.0 %

Table 11: The percentages of the material temperature used for the difference
formulation temperature. (Problem 4.1)
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Figure 14: Frequency dependent result without the difference formulation compared
to the Su and Olson semi-analytic result[Su 1999]. (Problem 4.1a)
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Figure 15: Frequency dependent result, using the difference formulation temperature
set to 10% of the material temperature, compared to the Su and Olson semi-analytic
result[Su 1999]. (Problem 4.1b)
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Figure 16: Frequency dependent result, using the difference formulation temperature
set to 30% of the material temperature, compared to the Su and Olson semi-analytic
result[Su 1999]. (Problem 4.1c)
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Figure 17: Frequency dependent result, using the difference formulation temperature
set to 50% of the material temperature, compared to the Su and Olson semi-analytic
result[Su 1999]. (Problem 4.1d)
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displayed for all four realizations of Problem 4.1 in figure 18.

Figure 18: Non-grey result at various percentages of the material temperature for the
difference formulation. (Problem 4.1)

The relative standard deviations associated with the material energy density

for the different realizations of Problem 4.1 are shown in Figure 19. The relative

standard deviation is simply the standard deviation of the associated cell energy

density divided by the value of the energy density in that cell.

In Figure 19, the values associated with “Rel STD 50 0.1Tm” denotes the

relative standard deviation (Rel STD) of the material energy density with total
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Figure 19: The relative standard deviation of the material energy density for the
different realization of Problem 4.1.
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problem length equal to 50 Mm and the difference formulation temperature equal

to 10% of the material temperature. The other values are defined similarly with

the exception of “Rel STD 50 noDF” which denotes the solution generated without

the difference formulation.

For Problem 4.1 the total figure of merit is the sum of the figure of merit for

each cell over the whole problem. The associated relative total figure of merit is the

total figure of merit associated with a given variance reduction technique divided

by the total figure of merit without it. This is expressed for Problem 4.1 in Figure

20.

5.4 Summary

The results obtained from the grey and frequency dependent calculations were

compared to the benchmark semi-analytic results of Su and Olson[Su 1996][Su

1999], with and without the difference formulation. The temporal and spatial

resolution dependence was tested for both the grey and frequency dependent IMD

methods using five refinements in each independent variable. The efficiency of

the difference formulation at various percentages of the material temperature was

tested as a way to reduce the material energy density variance.
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Figure 20: The relative total figure of merit for the difference formulation at various
percentages of the material temperature. (Problem 4.1)
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6 Conclusions

6.1 Introduction

This chapter will discuss the results presented in Section 5. This includes an

analsis of the results of the Implicit Monte Carlo Diffusion frequency dependent and

grey solutions compared to their associated semi-analytic benchmarks, presented

by Su and Olson[Su 1996][Su 1999]. Stability, variance, and accuracy will all be

discussed based on the material temperature, because it is generally the most

important quantity, particularly in multiphysics applications. The conclusions that

can be drawn from the spatial and temporal refinements of the frequency dependent

and grey methods will be explained. Similarly, the impact of group refinement on

the frequency dependent methods will be be analyzed. The performance of the

difference formulation on the benchmark problems will be discussed. The overall

variance reduction will be quantified for the frequency dependent IMD method with

the difference formulation, including some statements on the stability/instability

of the difference formulation and potential problems in its use.

6.2 Implicit Monte Carlo Diffusion without the Difference Formulation

The development of the grey IMD method was completed for initial testing of

the difference formulation. Working with a grey system is simpler then a multi-

group system because there is no need to distribute the differenced energy among

frequency groups. It can simply be subtracted and added to the total photon energy

density. Similarly, there is no need to randomly sample from the frequency distri-

bution of the streaming source obtained from the difference formulation. Though
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the grey system is a good platform for initial testing it is not a realistic physical

model of any radiative transfer applications. The multigroup method was initially

tested for on a grey problem by setting the opacity equal to a single value for every

frequency.

The results of Problem 1.1 (Figures 2 and 3) show that both IMD codes can

accurately reproduce the Su and Olson purely absorbing grey benchmark result[Su

1996]. Both codes, grey and multigroup, produce a significant amount of noise in

the low energy regions of the solution. This is related to the relatively small number

of particles created in these regions because of the comparative low contribution

to the total energy of the system.

The results generated from the standard IMD method for Problem 3.1 (Figure

8) show that the frequency dependent IMD code can accurately reproduce the

results of the semi-analytic picket fence opacity benchmark defined by Su and

Olson[Su 1999]. The photon energy density associated with the large opacity (large

census σ = 200
101

) is underestimated in the regions between x=2 and the front of the

Marshak wave because not enough particles are created in that region to get an

accurate distribution of the thermal emission frequencies. There is significantly

more noise in the cold region of the problem due to the low overall contribution of

energy in those cells.

The results from Problem 1.2a (Figure 4) and Problem 3.2a (Figure 9) show the

effect of spatial resolution on the accuracy of the material energy density solution.

With a relatively coarse spatial mesh, very little shape resolution is lost and the

solution remains stable. As the number of particles used to solve the matrix via

Monte Carlo approaches infinity, the solution approaches that of the linear system.

As a result the Monte Carlo solution will have a spatial accuracy dependent on the
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discretization scheme used to generate the linear system.

The results from Problem 3.2b (Figure 10 and Figure 11) show the effect of

the time step size on the multigroup IMD method. The results from Problem 1.2b

(Figure 5 and Figure 6) indicate a similar effect on the grey IMD method. As the

temporal discretization is refined, the penetration distance of the Marshak wave

is reduced. This is an effect of the discretization and not the solution method.

As the size of the time step increases, the streaming terms become unphysically

dominate. This causes the numerically simulated wave front to progress too far into

the problem, effectively smearing out the wave front. The changes in the numerical

solution from the temporal refinement are also expected to be more drastic (than

those seen from the spatial refinement) because the spatial refinement is second

order and the temporal refinement is first order.

It is known that the cost of solving the matrix deterministicly scales linearly

with the number of groups used. This is because for every group a new matrix

must be solved. This is not the case for the Monte Carlo method. The frequency

dependence of the Monte Carlo method is determined via the random sampling

from the frequency distribution functions. Figure 12 shows the computational cost

as a function of the number of groups used. The cost per group curve has a slope

equal to 1/2 compared to a deterministic method, which would be nearly one. Only

a single matrix solution takes place and the frequency distribution is defined by

the particle frequency distribution.

Using a Monte Carlo method for solving the matrix has advantages and dis-

advantages. The major advantage is there is no need to solve the matrix for each

group. However, the solution to the linear system of equations using Monte Carlo

takes much longer than the deterministic solution. The goal of developing IMD was
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to couple it with IMC. Using a Monte Carlo method to solve the diffusion equation

has the advantage that it is much easier to couple to the IMC method. Using the

criteria defined by Densmore et al, it is possible to transition particles from IMD

(or DDMC) to IMC[Den 2007]. For the deterministic solution, the spatial domain

must be decomposed and the deterministic solution could only be coupled to the

IMC solution at the end of every time step.

6.3 Implicit Monte Carlo Diffusion with the Difference Formulation

Figure 7 shows the solution to Problem 1.1 using the grey IMD method and

the difference formulation. A significant reduction in the variance occurs in the

region of the problem where the material is near thermal equilibrium. In fact,

on the right side of the Marshak wave no particles are actually transported and

the variance incurred from the Monte Carlo method in this region is equal to

zero. The energy is simply subtracted off at the beginning of the time step during

the initial differencing of the problem. It is then added directly back into the

problem at the end of the time step. Like most variance reduction techniques,

this reduction in variance comes at a cost. Without the difference formulation,

the IMD system defined in this work is unconditionally stable. This is not true

for the system with the difference formulation. In standard IMD, there are no

negatively weighted particles created. This means that the total energy in any

cell can never become less than zero. Equations 107 and 108, which represent

the streaming source terms created from the difference formulation, indicate that

negative particles will indeed be created. This means that it is possible for more

negative weight than positive weight to be deposited into a single cell, causing the

overall material temperature to become less than zero. One way to alleviate this
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is to use absorption and census supression with a very low weight cutoff. These

problems demonstrated how unstable the difference formulation can be even for

the grey case. The stability appears to be strongly dependent on the number of

particles that are used and the spatial gradient of the energy density. When the

difference formulation failed, it was at the leading edge of the Marshak wave. It

never failed in the large near equilibrium back end of the Marshak wave or the cold

portion of the material at thermal equilibrium. In fact even if a vacuum boundary

is set on the cold side of the problem, well away from the head of the Marshak

wave front, the system was stable. The figure of merit was not determined for the

grey case because it would be much higher than that of the frequency dependent

difference formulation. The estimation of computational efficiency of the difference

formulation was limited to the frequency dependent case.

The stability of the frequency dependent IMD method with the difference for-

mulation was explored. Problem 4.1 (Figures 15,16, and 17) shows the ability of

the frequency dependent IMD method with the difference formulation to solve the

Su and Olson picket fence opacity benchmark result[Su 1999]. Figure 18 shows that

three difference formulation solutions with various match the solution without the

difference formulation. The variance is reduced as the percentage of the material

temperature used for the difference formulation is increased. This will be explored

in greater detail later in this section.

The Problem 4.1 results for the difference formulation with the difference tem-

perature equal to that of the material temperature were not included because of

numerical instability. There was also an instability in the cumulative distribution

function used to calculate the frequency distribution (equations 111 and 112). This

instability exists because the subtraction of two nearly equal numbers when the
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Plankian distribution for a frequency group is low for both temperatures creating

a large roundoff error. Also, if the Planck integral expansion is not accurate, the

Planckian for a higher temperature at a given frequency can be lower than that

of a lower temperature. This is unphysical because it is known that the Planckian

at a higher temperature is larger at every frequency the the Planckian at a lower

temperature.

The relative standard deviation of the material energy density was quantified to

determine the effectiveness of the difference formulation at reducing the variance.

The relative standard deviation is a measure of the uncertainty of the solution

compared to its mean. The relative standard deviation for Problem 4.1 is shown

in Figure 19. This figure shows that with the exception of the leading edge of

the Marshak wave, the relative standard deviation is consistently lower for the

majority of the difference formulation temperatures. This is especially true for the

portions of the problem that are near equilibrium (either ahead or behind of the

wave front).

The total figure of merit is the sum of the material energy density figure of merit

overall cells. The increase in the total figure of merit can then be expressed as the

total figure of merit of the calculation with the variance reduction technique divided

by the total figure of merit without the variance reduction technique. Figure 20

shows the relative increase in the figure of merit as a function of the percent of

the material temperature used for the difference formulation. This figure shows

that there is a strong increase in the figure of merit as the percent of the material

termperature for the difference formulation is increased.
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6.4 Overall Conclusions and Future Work

This research shows that frequency dependent IMD can be used to accurately

reproduce solutions to the frequency dependent radiative transfer equations where

the diffusion approximation is valid. It also shows that frequency dependent IMD is

stable if the spatial and temporal discretizations used to generate the linear system

are stable. Though this frequency dependent system is solved via IMD, frequency

dependent DDMC should also be possible. The primary difference between DDMC

and IMD is the treatment of the temporal discretization.

The difference formulation was shown to have some significant advantages and

disadvantages when used with IMD. Implimentation of the difference formulation

significantly increases the figure of merit in regions of the problem where the sys-

tem is near equilibrium. However, the difference formulation did become unstable

in regions containing sharp gradients. This was associated with the creation of

large negatively weighted particles from the streaming source of the difference for-

mulation. These instabilities can be reduced by using a lower temperature for the

difference formulation. This reduces the size of the negatively weighted particles

being produced by the difference formulation source and it increases the amount

of positively weighted particles created by the thermal emission source.

Several improvements to IMD are left for future work, including the extention

of the method on orthogonal meshes beyond one dimensional and two dimensional

cylindrical. It will take very little effort to extend this work toward two or three

dimensional orthogonal meshes. However, unstructured polyhedral meshes which

are commonly used in high density physics, pose difficult problems because of

the possible creation of positive off diagonal elements in the coefficient matrix as

explained in Section 3.4, and in the work of Gentile[Gen. 2001], for the leakage
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probabilities to be positive the off diagonal elements of the coefficient matrix must

be negative. Techniques for matrix manipulation such that all off diagonal elements

will be negative will be very important.

Improved implementations of the difference formulation should also be explored.

This includes automating the use of the difference formulation in different regions

of the problem. The goal is to focus the use of the difference formulation where

the system is near equilibrium and reduce its use in regions of sharp gradients.

More work should also be done to develop an efficient and stable algorithm for

the frequency distribution function of the difference formulation streaming source.

The majority of the computational work for the difference formulation is associated

with the sampling of this source.
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