

AN ABSTRACT OF THE DISSERTATION OF

Ben Tribelhorn for the degree of Doctor of Philosophy in Computer Science

presented on August 14, 2013.

Title: Computational Methods for Protein-Protein Interface Prediction

Abstract approved:

Michael J. Bailey

Protein-protein interactions underlie all biological processes and are a field of study

that has wide implications throughout many other fields including medicine, ge-

netics, biology, and ecology. Proteins are the building blocks and primary actors

of life. They work together to accomplish virtually every task within a cell, includ-

ing, metabolism, signal propagation, immune responses, and cell signaling. This

problem is a logical successor to the Human Genome Project: now that we know

so much about the DNA of living organisms, how do we advance our knowledge?

The Human Genome and other DNA sequencing efforts have provided complete

genetic sequences for more than 180 living organisms. However, these efforts fall

short of describing or predicting life processes because the sequence of a protein is

not enough to elucidate its function. Knowing this, the National Institute of Health

started the Protein Structure Initiative, which seeks to increase knowledge of pro-

tein structure and has led to an increase in the number of known proteins struc-

tures. Unfortunately, even these efforts fall short as there are over 80,000 known

protein structures but the function of many is completely unknown. The fledgling

field of interface prediction seeks to use this wealth of structural information to be

able to describe protein function and drastically increase our understanding of life

processes.

Presented herein is a novel methodology for solving the protein-protein in-

terface prediction problem leveraging a variety of Computer Science techniques.

Specifically detailed is a process for decomposing this 3-dimensional problem into

a feature extraction and classification problem using algorithms from computer

vision and machine learning.

c©Copyright by Ben Tribelhorn
August 14, 2013

All Rights Reserved

Computational Methods for Protein-Protein Interface Prediction

by

Ben Tribelhorn

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented August 14, 2013
Commencement June 2014

Doctor of Philosophy dissertation of Ben Tribelhorn presented on
August 14, 2013.

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection
of Oregon State University libraries. My signature below authorizes release of my
dissertation to any reader upon request.

Ben Tribelhorn, Author

ACKNOWLEDGEMENTS

I would like to thank my Advisor, Dr. Mike Bailey, for his support and guidance

without whom this work would not have been possible.

I would like to acknowledge Dr. Victor Hsu for his patience and support in

this endeavor, especially in providing data for this work. I would also like to thank

Camden Driggers for his explanations of Biochemistry.

To Aaron Moore, my business partner and friend, thank you for expanding my

horizons and always demanding perfection.

Finally, to my friends and family, thank you for your patience and support.

TABLE OF CONTENTS

Page

1 Introduction 1

1.1 Overview . 1

1.2 Proteins . 4

1.3 Interface Prediction . 6
1.3.1 CAPRI . 8

1.4 Biological Definitions . 9

2 Background and Prior Work 10

2.1 The Problem . 10

2.2 Integrating Features & Prediction . 12

2.3 Machine Learning Methods . 14

2.4 State of the Art . 16

2.5 Opportunity . 19

3 The Problem, Data, & Methods 20

3.1 Problem . 20

3.2 Methods . 20
3.2.1 Error Metrics . 22

3.3 Data . 23

4 Variance Analysis 26

4.1 Feature & Parameter Selection . 28

5 Multiple Scale Analysis 33

5.1 Computational Framework . 34
5.1.1 Protein Surface Segmentation 36

5.2 Segmentation . 39

5.3 Dynamic Property Computation . 44

5.4 Classification . 59
5.4.1 Random Forests . 60
5.4.2 Codebook Learning . 62

TABLE OF CONTENTS (Continued)

Page

5.4.3 Boosting . 64

5.5 Interface Prediction . 67

6 Analysis & Results 70

6.1 Segmentation Analysis . 70
6.1.1 Segmentation Validation . 74

6.2 Feature Validation . 77

6.3 Boosting Analysis . 78

6.4 Illustrated Results . 82

6.5 Multiple Scale Analysis System Summary 87

6.6 CAPRI Targets . 91
6.6.1 28th Round . 91
6.6.2 Previous Target . 95

7 Conclusion 96

7.1 Contributions . 96

7.2 Extensions to Multi-Scale Analysis 99
7.2.1 Segmentation . 99
7.2.2 Features . 100
7.2.3 Classification . 101

7.3 So long, and thanks for all the fish 102

Bibliography 102

Appendices 111

A List of Protein Data . 112

B Internal Data . 113

C SMARTS Descriptors . 116

LIST OF FIGURES

Figure Page

1.1 Interfaces (darkened) of CAPRI[1] targets, excerpted from [2]. . . . 2

1.2 Various proteins. 5

2.1 Classification of docking methods[3] 12

2.2 Blue depicts the interface and red highlights the critical residues.[4] 16

2.3 Docking results for CPORT-driven docking using HADDOCK (top),
compared to HADDOCK ab initio docking (bottom). The figure
shows the percentage of cases for which at least one structure of
that quality was generated during the rigid body stage (10,000 struc-
tures), and the top 400 (all refined structures), 100, 10 and 1 of the
refinement stage. One-star and two-star criteria correspond to the
CAPRI definitions.[5] For the rigid body stage, the fnat criterion
is not taken into account. doi:10.1371/journal.pone.0017695.g001
Image excerpted from [6]. 18

4.1 The variance analysis pipeline for classifying protein interfaces. . . 26

4.2 Feature vector that is constructed for each atom prior to PCA. Only
features 4 and 5 are truly real valued, the rest are binary or effec-
tively categorical (i.e. there are only so many types of atoms, so the
Van der Waals radius is one of five values). 29

4.3 Eight-fold cross validated results of labeling known protein inter-
faces. 32

5.1 The multiple scale analysis pipeline for predicting protein interfaces
independent of complex information. 33

5.2 Computational Framework Interface 35

5.3 Red indicates the interface, green indicates any surface accessible
atom part of a residue that contains at least one interface atom.
(1AK2 1) . 36

LIST OF FIGURES (Continued)

Figure Page

5.4 Top: Computed surface regions. Each color indicates a different re-
gion. Bottom: Amino acids. Each color indicates a type of amino
acid. Arrows: The arrows point out two locations where the com-
puted regions differ from traditional amino acid boundaries. The
top arrow points out that two different regions (green and brown)
are segmented where in the lower image there is just one amino acid
(red). Region size is approximately 26 atoms which is similar in size
to a residue. (1A2K 2) . 38

5.5 From left to right, top to bottom the approximate region size in
number of atoms is 20, 34, 46, 70. (1A2K 1). 40

5.6 Geodesic distance: the distance between the tips of the horseshoe
traveling along the surface of the object. 41

5.7 Clustering stability using kmeans++ seeding, the arrow points out
a small difference. Region size, n = 26. (1A2K 2). 43

5.8 Interface of 1A2K 1. 46

5.9 Solvent accessible surface access (SASA). Red to Blue (maximum
to minimum), Black means zero access. (1A2K 1) 47

5.10 Solvation energy normalized by surface area. Red to Blue (negative
maximum to minimum), Black means positive. (1A2K 1) 48

5.11 Hydrophobicity. Red to Blue (negative maximum to minimum),
Black means positive. (1A2K 1) . 49

5.12 Hydrophobicity normalized by surface area. Red to Blue (negative
maximum to minimum), Black means positive. (1A2K 1) 50

5.13 Standard Deviation of Hydrophobicity Weighted by SASA (surface
area). Red to Blue (maximum to minimum), Black means zero.
(1A2K 1) . 51

5.14 Number of Hydrogen Bond Donors. Red to Blue (maximum to
minimum), Black means zero. (1A2K 1) 52

5.15 Number of Hydrogen Bond Acceptors. Red to Blue (maximum to
minimum). (1A2K 1) . 53

LIST OF FIGURES (Continued)

Figure Page

5.16 Number of Rotatable Bonds per atom. Red to Blue (maximum to
minimum). (1A2K 1) . 54

5.17 Molar Refractivity. Red to Blue (maximum to minimum). (1A2K 1) 55

5.18 Molar Refractivity. Red to Blue (negative maximum to minimum),
Black is positive. (1A2K 1) . 56

5.19 Summary of included features. 58

5.20 Classification performance (F1) vs. number of trees. n is the ap-
proximate cluster size in atoms. Higher is better. Average of 10
trials. Train vs. Test selected to be opposite halves of the easy
dataset. 61

5.21 Classification performance on the test set vs. k the number of clus-
ters. Average of 10 trials. Train vs. Test selected to be opposite
halves of the easy dataset. Codebook using 21 tree Random Forest,
n = 46 is segmented region size. 64

5.22 Classification performance (F1) vs. number of trees in each round of
boosting that create a boosted random forest. Average of 10 trials.
Train vs. Test selected to be opposite halves of the easy dataset.
L = 10 the number of iterations, n = 46 is segmented region size. . 66

6.1 Graph showing precision versus the number of atoms in each seg-
mented region. Average of 10 trials using the first half of the easy
dataset. Black depicts a Random Forest with 21 trees, Red shows
boosted Random Forests with Early Stopping. 71

6.2 Graph showing classification success (F1) versus the number of atoms
in each segmented region. Average of 10 trials using the first half
of the easy dataset. Black is a Random Forest with 21 trees, Red
shows boosted Random Forests (ES). 72

6.3 Graph showing classification success (F1) vs the number of atoms
in each segmented region. Error bars show minimum and maximum
over 10 trials. Boosted Random Forests (ES). 73

LIST OF FIGURES (Continued)

Figure Page

6.4 Classification performance lost (precision lost) of the pipeline using
a Random Forest where the labeled segmentation level is left out.
The higher values show the strongest contributors to overall perfor-
mance. Average of 5 trials over first half of the easy dataset using
a Random Forest with 21 trees. 75

6.5 Classification performance (F1) of the pipeline using a Random For-
est where the labeled segmentation level is left out. The red line
indicates the performance using all of the segmentation levels. The
lower values (at the top of the graph) show the strongest contribu-
tors to overall performance. Average of 5 trials over first half of the
easy dataset using a Random Forest with 21 trees. 76

6.6 Classification performance lost (precision lost) of the pipeline using
a Random Forest where the labeled feature is left out. The higher
values show the strongest contributors. Average of 5 trials over first
half of the easy dataset using a Random Forest with 21 trees. . . . 78

6.7 Classification performance (F1) vs. number of trees in the boosted
random forest. Average of 10 trials. Train vs. Test selected to be
opposite halves of the easy dataset. L is the number of iterations,
ES means early stopping, n = 46 is segmented region size. 79

6.8 Classification performance (precision) vs. number of trees in each
forest in the boosted random forest. Average of 10 trials. Train vs.
Test selected to be opposite halves of the easy dataset. L is the
number of iterations, ES means early stopping, n = 46 is segmented
region size. 80

6.9 Classification performance vs. number of trees in the boosted Code-
book. Average of 10 trials. Train vs. Test selected to be opposite
halves of the easy dataset. L is the number of iterations, ES means
early stopping, n = 46 is segmented region size. Codewords: k = 15. 81

6.10 Results trained on all data. RF = Random Forest, RFE = Random
Forest Ensemble, CB = Codebook, CBE = Codebook Ensemble.
Used t trees, k codewords, and ES means early stopping during
boosting. 82

LIST OF FIGURES (Continued)

Figure Page

6.11 Results using a boosted random forest (detailed in Figure 6.10).
Left shows all predictions with at least one vote and the right shows
atoms that received at least two votes. This demonstrates the value
of the multiple scale analysis. Green means over prediction, red
correct, and blue under prediction. (2VDB 2) 85

6.12 From left to right, top to bottom the different segmentations by a
Random Forest, Boosted Random Forest, Codebook, Boosted Code-
books. The predicted interface is colored in red (correct prediction)
and green (over-prediction), under-predicted interface is in blue.
Brighter colored red or green reflects additional votes (higher confi-
dence). This example used 21 trees, k = 16 codewords, and L = 10
boosting rounds, trained on all data. (3CPH 2) 86

6.13 Multiple Scale Analysis System Summary. Sample results using a
Random Forest with 21 trees. 88

6.14 ROC curve showing the tradeoff for different thresholds in the Ran-
dom Forest for making a prediction. The red dot indicates the
chosen operating point for a Random Forest (t = 21). This point is
the majority vote threshold. The lower curve is a zoom of the top
curve. One run using first half of easy dataset. 89

6.15 ROC curve showing the tradeoff for different thresholds for how
many segmentation levels an atom needs to be identified in to be
predicted as an interface atom. As there are 10 segmentation levels,
a single atom can get up to 10 votes. Average of 5 trials using first
half of easy dataset. The operating point is 1+ votes which produces
less than 1% false positives. 90

6.16 CAPRI Round 28 - Target 59 (Rps28b). Green shows predicted
interface regions (not merged) using a Random Forest with 11 trees,
trained on the easy dataset. 92

6.17 CAPRI Round 28 - Target 59 (Edc3). Green shows predicted in-
terface regions (not merged). Top: Codebook prediction using 11
trees, k = 15, trained on the easy dataset. Bottom: Codebook and
Boosted Codebook prediction using 21 trees, k = 15, trained on all
data. 93

LIST OF FIGURES (Continued)

Figure Page

6.18 CAPRI Round 28 - Target 59 (Edc3). Green shows predicted in-
terface regions (not merged). Red shows the final interface and
structure as predicted by HADDOCK using a subset of predictions
from this figure and previous figure. Top: Boosted Random Forest
with 21 trees, L = 10 boost iterations, trained on all data. Bottom:
Top ranked interface using HADDOCK score (notice conformational
change is predicted because the shape has changed from the original
model). 94

6.19 CAPRI Target 58[7]. Results on left using boosted random forest.
Results on right using codebook. (4G9S) Classifiers trained on all
data, same as used in Figures 6.17 & 6.18 95

Chapter 1: Introduction

1.1 Overview

This work focuses on predicting the sites of protein-protein interactions. This

problem is a logical successor to the Human Genome Project: now that we know

so much about the DNA of living organisms, how do we advance our knowledge?

The Human Genome and other DNA sequencing efforts have provided complete

genetic sequences for more than 180 living organisms. However, these efforts fall

short of describing or predicting life processes because the sequence of a protein

is not enough to elucidate its function. Knowing this, the National Institute of

Health started the Protein Structure Initiative, which seeks to increase knowledge

of protein structure and has led to an increase in the number of know proteins struc-

tures. Unfortunately, even these efforts fall short as there are over 80,000 known

protein structures but the function of many is completely unknown. The fledgling

field of interface prediction seeks to use this wealth of structural information to be

able to describe protein function and drastically increase our understanding of life

processes.

Proteins are long chains composed of the 20 basic building blocks of life called

amino acids. The longest known protein, titin, contains 34,3501 amino acids. As

amino acids can be connected in any arbitrary sequence, the space of possible

1Titin has many forms in the range 27,000-35,000 amino acids.

2

protein sequences is exponentially large: > 2035,000. Within this space proteins

have evolved to perform every life process and within this space are design options

that would serve as cures for many diseases, but to locate and identify these is a

huge computational challenge. Furthermore, limiting the search to solved protein

structures presents a challenge as the number of structurally known protein interac-

tions is just over 200, although data from other techniques (i.e. Y2H2, TR-FRET3,

SPR4, etc.) has demonstrated that virtually all proteins interact with other pro-

teins or molecules either directly as their function or to modulate a function. Since

the number of structures deposited into the Protein Data Bank5 has doubled since

2006, this explosive growth of protein structure information motivates this field of

study.

The computational challenge for determining if or how a pair of proteins interact

is to identify the possible interfaces on each of the proteins and then determine

the possible combined structure. Given a 3D structure of a protein, the goal is

to classify correctly which surface regions are contained in a given protein-protein

interface. Figure 1.1 illustrates various interface sites. This research presents a

novel strategy for interface prediction based on surface segmentation and ensemble

learning.

2Yeast two hybridization.
3Time Resolved Florescence Resonance Energy Transfer
4Surface Plasmon Resonance
5RCSB Protein Data Bank: http://www.pdb.org

3

398 Current Protein and Peptide Science, 2008, Vol. 9, No. 4 de Vries and Bonvin

Fig. (1). Performance of various web-server interface predictors (cons-PPISP [21], PIER [17], PINUP [16], ProMate [14], SPPIDER [15] and
WHISCY [7]) on recent CAPRI targets [39]. The interface predictions are mapped in dark on the protein surfaces. The first column shows the
true interface (in magenta) calculated using a 5Å distance cutoff criterion.

be derived; machine learning methods that did not perform
cross-validation; methods tested exclusively on benchmarks
from which antibody-antigen complexes were not excluded
(if indicated). To the best of our knowledge, there are 22
interface predictors fulfilling these criteria at the time of
writing (July 2007) [7, 12-18, 20, 21, 24-35, 39], although
new predictors appear regularly and we may have missed
some papers. These methods show a large variety of predic-
tion strategies, although some of them [31, 32] are extremely
similar in approach.

 For every method, the benchmark(s) of complexes on
which the method was tested is also indicated, and the vari-
ous benchmarks are listed in Table 1. The number of bench-
marks is smaller than the number of interface predictors

since several methods were tested on the same benchmarks
(although often with different interface/surface definitions).
Note that the actual set of proteins is often smaller since
many methods have difficulty in predicting some proteins
(for example, proteins that are very large, have missing or
unusual atoms, are in an inconvenient quaternary state, or for
which some properties cannot be obtained). Here it is as-
sumed that such exclusions have no influence on the per-
formance of the method on the benchmark as a whole. Also,
no discrimination is made between predictions on bound or
on unbound structures.

 In addition, we tested four continuous-score interface
prediction web servers (PIER, ProMate, SPPIDER and
WHISCY) on the docking benchmark 2.0 [42], a non-

Figure 1.1: Interfaces (darkened) of
CAPRI[1] targets, excerpted from [2].

Using techniques from computer vi-

sion, this problem is moved into a more

traditional space where these methods

have proved effective. Previous work

on this problem focuses on amino acids

as the principle actors and units for

determination (either through sequence

analysis or patches). In other words,

the interface is assumed to be a col-

lection of amino acids as opposed to a

collection of independent atoms. Clas-

sifying interfaces based on the bound-

aries of amino acids is limiting and in-

troduces an a priori bias to the learning

problem that is simply illustrated when

looking at solved examples: not all the atoms in the set of amino acids that “form”

the interface are actually within the possible interaction zone (6 Å). By introducing

a stochastic methodology to data segmentation prior to applying feature extraction

this bias can be reduced or eliminated. This is the key to our research which ad-

vances the success in computational solutions in this field. This approach is unique

in that features are not computed for arbitrary regions, but experimentally derived

per amino acid. The advantage of this novel methodology is that it allows for the

incorporation of higher level features that are absent in traditional approaches.

4

Solving the protein interaction problem today would broadly impact many

fields, including medicine, where this ability would speed drug development.6 Re-

ducing the opportunity cost of drug development would be a tremendous boon.

The total value of U.S. consumption of pharmaceutical drugs in 2009 was $300

billion.7 Obviously, improving the process of pharmaceutical development would

have real impact worldwide. Another important impact would be the ability to

find the protein partners of a given protein and elucidate signaling pathways, which

would greatly increase our knowledge of biology.

The actions of proteins from folding to docking are NP-Hard problems[8, 9, 10],

even though they are a huge part of virtually every biological process. There has

been limited success in the field to date, but since these processes complete within

a fraction of a second at every moment, there must be a tractable method to

predict (compute) these biological actions. Given the difficulty of these problems

on a theoretical basis, it motivates new techniques for predicting what nature

accomplishes with obvious ease and success.

1.2 Proteins

In order to define the problems addressed in this thesis, it is necessary to discuss

proteins generally before going into detail on the problem statement. For reference,

definitions of bolded typeface terms are provided in Section 1.4.

6The process of drug development would be sped up by finding modulations of a key inter-
action or an enzyme activity by identifying off targets and describing the mechanism of action
before drugs have to be tested in the lab and clinically.

7http://www.bls.gov/ppi/pharmpricescomparison.pdf

5

Proteins are genetically coded as a linear chain of amino acids. The human

body uses 20 amino acids as the building blocks for all the proteins it produces

and uses.8 These long chains of amino acids fold spontaneously in solution or with

the help of other proteins into complex 3D structures that dictates the protein

function. These structures (the spatial coordinates of the atoms of a protein) can

be determined using NMR[11] or X-ray Crystallography[12]. Solved structures are

usually deposited in the Protein Data Bank (PDB).

Immunoglobulin (IgG), Hemoglobin, Insulin, Adenylate Kinase, Glutamine Synthetase

~10 nm

(Antibody)

Figure 1.2: Various proteins.9

Proteins range in size and function, however as they are genetically coded it

should be assumed that virtually every protein has or had a biological function.

(Figure 1.2 shows a few common proteins9.) To determine the function of a pro-

tein, we need to know what other proteins it interacts with and where on the

surface it does so. Many proteins will interact both with themselves (forming

dimers/multimers) and with others. This interaction is called protein docking

8There are actually two additional natural amino acids that are used very rarely in the human
body.

9Edited http://en.wikipedia.org/wiki/File:Protein composite.png
Also, titin has a diameter of about 1.5 µm

6

and it is incredibly challenging to predict, partially due to the fact that energy

models provide an incomplete picture of the forces at work and because proteins

can undergo conformational change, a possibly significant structure change.

As protein-protein interactions are the key to protein functions within biological

processes, there is large interest in prediction. Current experimental methods

of determining which specific proteins interact include in situ hybridization and

mutation studies10, both of which are incredibly labor intensive (months of time

spent). Given the time is takes in lab, fast, highly accurate prediction methods

would facilitate discovery in a variety of biological fields. Additionally, only a small

set of complexes have been crystallized which is a requirement for determining the

structure by x-ray crystallography. In addition, large proteins or complexes are

not typically suited for structural determination by NMR. In order to accomplish

this prediction goal computationally, one must address a two tier problem: 1) Do a

particular pair of proteins interact, and if so 2) what structure do they form? There

are many techniques that have been developed to address this problem holistically

(described in the next Chapter), however given their low success, this research

focuses on a narrower problem: interface prediction.

1.3 Interface Prediction

An interface is the surface region (collection of atoms) that interacts with another

protein. Interaction is defined as a pair of atoms on opposite proteins within 6 Å of

10Also SPR, TR-FRET, etc.

7

each other (nucleus to nucleus)11. For reference 1 Å = 10−10 meters which is on

the scale of the length of a Carbon-Hydrogen bond, and 1.4 angstroms is approx-

imately the radius of a water molecule[13]. Unfortunately, there are many chal-

lenges and limitations in protein-protein interface prediction. Current state-of-the-

art methods are able to produce reasonably correct docking models for rigid-body

interactions[2]. However, in common cases that include conformational changes

and/or weak/transient interactions12, the current approaches fail spectacularly[3].

The simple reason for this is that there is no single property sufficient for unam-

biguous identification of the interface. In fact, there is considerable consternation

in the field as to which properties are actually useful for the identification of the

docking interface. One reason for this lack of specificity is that the set of known

interfaces is in the low hundreds as the experimental determination of complexes

requires a lengthy and often unsuccessful process using X-ray Crystallography or

NMR spectroscopy to map the interacting molecules both separately (free) and the

docked complex (bound). Since computational prediction is incredibly challeng-

ing, often researchers will relax the problem and use energy-based simulations to

produce a few hundred possible complexes and then attempt to rank them using

specific domain knowledge.

11Some use a definition of 5 Å, others define interfaces as the loss of surface accessibility: i.e.
what atoms get “buried” from docking. This document uses the definition above for all work
with the rationale that interacting atoms are the most relevant to predicting complexes. 6 Å is
the absolute maximum range for virtually all atomic interactions.

12Not all protein interactions form a stable or “permanent” complex. For example, transient
interactions would include enzyme-based processes.

8

1.3.1 CAPRI

There is a specific forum for evaluating protein complex predictions called the Crit-

ical Assessment of PRedicted Interactions (CAPRI)[1]. Taken from their website:

“CAPRI is a blind prediction experiment managed by capri management . Its tar-

gets are unpublished crystal or NMR structures of complexes, communicated on a

confidential basis by their authors to the CAPRI management. Participant predic-

tor groups are given the atomic coordinates of two proteins that make biologically

relevant interactions. They model the target complex with the help of the coordi-

nates and other publicly available data (sequence, mutations etc.), and submit sets

of ten models for assessment on the CAPRI Web site. After the prediction round

is completed, the CAPRI assessors compare the submissions to the experimental

structure, [and] evaluate the models on criteria that depend on the geometry and

biological relevance of the predicted interactions.” The scoring and ranking metrics

specified by the CAPRI event are one of the standards for reporting prediction

results. As the CAPRI group is now encouraging predictions of all types of inter-

actions, in this work the term “protein-protein interaction” is used loosely. The

goal in this work is to address any and all molecular docking, even if an actor is

not a protein per se.

9

1.4 Biological Definitions

Amino acid: Building blocks of life consist of a side-chain which is unique for

each of the 20 amino acids, composed of an alpha amine and a carboxyl group,

which can react together to form polymers (proteins).

Residue: Synonym for amino acid. Used in this document to indicate the rele-

vant portion of the exposed surface of an amino acid.

Protein: Covalently bonded chain of amino acids.

Docked Complex: A structure formed by non-covalent protein-protein interac-

tions. These can include more than two constituent molecules.

Conformational Change: Structural change in a protein that occurs in dock-

ing.

Conservation: The replacement of an amino acid by a functionally similar ana-

logue. The term implies a DNA mutation that “conserves” function.

Interface: Set of atoms at a docking site. Definitions can vary, i.e. buried atoms

or the distance between molecules. For more, refer to Section 1.3.

10

Chapter 2: Background and Prior Work

2.1 The Problem

The problem of predicting protein-protein interactions focuses on being able to

determine the bound complex formed given two structures of free molecules (a

representation of the each molecule in an unbound state). Each protein structure

contains two tiers of information: atomic level and residue level. Most researchers

use the amino acid sequence as the basis for extracting features. Each amino

acid has its own set of properties including solvation, interface propensity, and

hydrophobicity. Amino acids can also be evolutionarily conserved which is another

feature.[14, 15, 16] Finally, the most nebulous is the coordinate structure of the

protein (each atom location). The 3D cartesian positions of each atom allows

for the computation of inherent features including (but not limited to): surface

accessibility, tertiary structure (neighbors), secondary structure, and the shape of

the surface. There is no single feature that allows for the prediction of an interface,

so we must combine features and consider any additional information that can be

extracted.

Complexes are typically divided into different categories to further simplify

the problem. The two types of interactions are permanent (obligate) and transient

(non-obligate). Transient interactions typically form heterodimers (complexes with

11

two components that are not the same molecule). Whereas permanent complexes

can form heterodimers, homodimers (the same protein forming a complex with

itself), or multimers1. Permanent complexes are generally easier to predict for a

number of reasons. The most obvious is that to gain example data, we have to

crystallize the complex which biases the dataset for prediction as it is much eas-

ier to get permanent complexes to crystallize. Secondly, the interfaces for these

types of complexes tend to be larger, flatter, and better conserved than tran-

sient interfaces.[17, 18, 19] The next level of distinction is in the types of actors:

1) Enzyme/Inhibitor or Enzyme/Substrate , 2) Antibody/Antigen, 3) Others, 4)

Antigen/Bound Antibody2. The two antibody subtypes are the most difficult and

as recently as 2008 it has been suggested that attempting to evaluate prediction

performance on those types of complexes detracts from the progress that can be

made on the “easier” categories.[2, 18, 20] The classification of difficulty tends to

reflect the degree of structural change that the components undergo when forming

a specific complex. Remember that protein folding, the formation of the structure

from a strand of amino acids, is a challenging problem in its own right, so it is not

surprising that predicting conformational change is similarly difficult.

1A multimer can include both multiples of the same molecule as well as a variety of different
molecules.

2http://zlab.umassmed.edu/benchmark/

12

2.2 Integrating Features & Prediction

Although success is difficult to quantify (see Section 3.2.1 for evaluation criteria),

there is a forum, CAPRI, for evaluating efforts to solve the docking problem.

As of 2009, the most successful methods for predicting protein docking combine

algorithms into a multiple stage search problem.[3] Specifically this is done as

follows:

1. Global rigid body search - Generate 1000s of possible permutations

2. Identify sub-regions of interest - Best geometric matches, other criteria

3. Locally refine docked complex - Monte Carlo methods

4. Rank resultant model complexes - Predict top 10

Method Search Protein flexibilty Examples
Global methods Global Minimal, ZDOCK[21]

based on FFTs or smooth potential PIPER[22]
geometric hashing PatchDock[23]

MolFit[24]
Medium-range Limited region, Moderate, side RosettaDock[25]
methods: i.e. stochastic chains, some loops ICM-DISCO[26]
Monte Carlo
minimization

a priori
Restraint-based specification of Can be substantial HADDOCK[27, 28]

docking interface residues

Figure 2.1: Classification of docking methods[3]

13

The methods for computing these steps fall into three primary categories: geo-

metric matching, Monte Carlo minimization, and restraint-driven local search (See

the table in Fig. 2.1). Often, machine learning algorithms are used to optimize an

objective function from the input parameters, although there are some approaches

that use specifically designed objective functions. However, the latest methods,

including this work, are now focusing on adding a prior step which seeds regions of

interest. Using the features discussed previously, an attempt is made to determine

the surface regions that are possible interfaces.

Integrating the various properties of proteins is typically done in one of two

paradigms. The first method is to consider residues as the components of interest

and to determine the set of residues that form the protein interface. The second

way is to generate surface patches that are constructed of sets of residues, and then

attempt to determine the patch or patches that form the interface.[29, 30, 31, 32,

33, 34, 35] Also, within many efforts is an analysis at the sequence level which is

where conservation has been shown to be a distinctive feature. The downside to

these methods is that the sequence does not directly include structure information.

Regardless of the method, some form of energy minimization has to be simulated

to find a complex.

Since there is a lack of features that allow for an unambiguous identification of

protein interfaces, many solve this problem by using machine learning techniques

to work with weak features. Also, with such a wide set of potential types of

interactions, methods that attempt to solve them all concurrently tend to run into

tradeoffs between over- or under-prediction. Previous works have predominantly

14

applied Artificial Neural Networks (ANN) [19, 32, 35, 36, 37, 38], Support Vector

Machines (SVM) [29, 30, 34, 39, 40, 41, 42, 43, 44], Bayesian Networks (BN)

[4, 31, 33, 45], and Conditional Random Fields (CRF) [46] to this problem. SVMs

and BNs have seen the more success overall than ANNs.

2.3 Machine Learning Methods

The idea of an artificial neuron originally proposed by McColloch and Pitts (1943)

has evolved into the Artificial Neural Network. It has been used in the protein

interface prediction problem by a number of groups, however ANNs suffer in the

context of learning because they do not have any convergence guarantee and often

fall into a local minimum. They can also be very difficult to properly parameterize

(an NP-hard problem). Often, a better solution is to use a Support Vector Machine

(SVM).

Support Vector Machines attempt to find a hyperplane that segments the data

into two classes. SVNs maximize the margin (distance from nearest data points to

the dividing hyperplane), but in real world cases they can be sensitive to outliers

and noise. To address this, SVMs have parameterized error functions that act as

penalties to the maximization. (Although, this can lead to other issues). They owe

their popularity to their tendency to produce results typically superior to most

other methods in a variety of problem spaces. However, SVMs are easily biased

when training data is not balanced, and for the protein interface problem this is a

definite issue as interfaces are generally far smaller than half of the exposed surface

15

area. SVMs have been used extensively in this problem: Wang et al.[39] make a

nice comparison of different SVM parameterizations.

Graphical models (BNs & CRFs) seem a natural fit for encoding a priori in-

formation into a framework for inference. These models have been used primarily

as patch predictors, the goal being to identify regions of residues that are likely to

be part of an interface. There has been work that shows considering only local in-

formation from a single complex (intramolecular propensities) can work as a good

predictor to narrow the search space beyond geometric matching.[47] Bayesian

networks are often the graphical model of choice because it is straightforward to

use domain knowledge to define the variables and the structure for inference, as

opposed to Markov networks which are undirected. The difficulty with graphical

models is that inference on large networks is very slow because it can be reduced

to a maximum clique tree problem (NP-hard), so use of this method has to limit

graph sizes.

Assi et al. use Bayesian Networks to identify “hot spots” or critical components

of interfaces[4]. Figure 2.2 compares experimentally determined interfaces and

critical residues with their predicted results for two proteins. Bradford et al.[45]

also use a patch analysis technique, in their case they use simpler topologies with

a few more variables. They tried to accomplish two things, one to predict if the

patch is part of the interface, and secondly to predict if the type of binding is

obligate or non-obligate (permanent vs. transient). They report better results

than previous work using SVMs.

Unfortunately, using BNs requires human design to form a proper network and

16

Ab+ and Ab! datasets (Figure 2B). Finally, when the
distribution of prediction probabilities is plotted as
function of the importance of the interface residue, i.e.
critical or non-critical, a clear correlation can be
observed, i.e. residues that are predicted with high proba-
bility are more likely to be important in the interaction,
i.e. critical (Figure 2B, inset).

A leave-one-out cross-validation was also performed to
evaluate the predictive performance of the method. Given
the large differences in mutational information that is
available for each of the protein complexes and in order
to avoid the bias that would be introduced by these
complexes contributing the most to the statistical
analysis, the performance of the method was assessed in
terms of the ability of recover critical residues as a
function of screened residues. A critical residue was con-
sidered to be ‘recovered’ if the prediction probability
was equal or higher than 0.8. Figure 1 (Supplementary
Data) shows the percentage of recovered critical residues
upon prediction by using the default expert BN
(Figure 2A, Ab+) and the naı̈ve version. On average,
default BN was able to recover up to 75% of critical
residues, i.e. 75% of the actual critical residues were pre-
dicted with a probability equal or higher than 0.8 (using a
naı̈ve BN the percentage of recovery was 68%).

Prediction examples

The protein complex formed by interleukin 4 and receptor
alpha (PDB identification code 1iar) is one of the
complexes that was analyzed (56). Two out of 20
residues that mediate the interaction between interleukin
4 and the receptor alpha have been experimentally verified
as critical residues. PCRPi prediction was highly accurate
when compared with the available experimental data (10)
(Figure 3A). Arg85 (following the PDB numbering) was
also predicted as a critical residue, although the decrease
in binding energy according to the available mutational
data is only 0.41Kcalmol!1. As it is shown in Figure 3A,
Arg85 is located in the center of the interaction patch,
flanked by two important residues Arg88 and Glu9.
Arg88 is a polar residue with a long side chain that pro-
trudes the surface and makes extensive atomic contacts

with the receptor alpha, hence a priori a clear candidate
to be an important residue in the interaction.
A second example is the protein complex formed by

chymotrysin and the basic pancreatic trypsin inhibitor
(BPTI) (PDB identification code 1cbw) (57). BPTI inter-
acts with chymotrypsin through an interface that includes
15 residues, one of which, Lys15, was proved to be critical
for BPTI binding (57). As it is shown in Figure 3B, PCRPi
prediction was 100% accurate, since all validated critical
and non-critical residues were predicted as such.

Validating the PCPRi predictions in the
VH–Anti-RAS–HRAS complex

PCRPi was also used to predict the critical residues
mediating the interaction between the VH domain of an
Fv antibody fragment that binds to mutant HRAS with

Table 1. Accuracy and AUC values for different BNs (naı̈ve and expert) tested during 10-fold cross validation process on Ab+
and Ab! datasets

Naı̈ve BNs Expert BNs

Measuresa AUC Accuracy AUC Accuracy

Ab+ Ab! Ab+ Ab! Ab+ Ab! Ab+ Ab!

IE 0.75 0.72 0.76 0.74 – – – –
TOP 0.74 0.72 0.71 0.77 – – – –
BE 0.72 0.76 0.71 0.85 – – – –
CON 0.52 0.69 0.72 0.76 – – – –
3DCON 0.51 0.66 0.68 0.71 – – – –
ANCCON 0.44 0.49 0.51 0.56 – – – –
ANC3DCON 0.58 0.61 0.71 0.77 – – – –
IE, TOP, BE, CON, 3DCON, ANCCON, ANC3DCON 0.82 0.88 0.79 0.86 0.83 0.89 0.81 0.84

aBN attributes as described in the ‘Material and Methods’ section.

Figure 3. Comparison between experimentally determined and pre-
dicted critical residues. (A and B) The surface representation of the
interaction surface of the human interleukin 4 (PDB code 1iar, chain
A), and the bovine basic pancreatic trypsin inhibitor (BPTI) (PDB code
1cbw, chain D), respectively. Residues depicted in red were either
experimentally determined (ddGbinding" 2.0Kcalmol!1 when mutated)
(i) or predicted (prediction probability" 0.8) as critical residues (ii).
Conversely, residues depicted in blue are either non-critical according
to experimental data (i) or were predicted as non-critical (ii).

PAGE 7 OF 11 Nucleic Acids Research, 2010, Vol. 38, No. 6 e86

Figure 2.2: Blue depicts the interface and red highlights the critical residues.[4]

tends only to identify portions of an interface rather than the whole interface. As

there are no successful methods that determine the entire interface from these key

residues, it is clear that additional work to isolate the interface is needed.

2.4 State of the Art

Based on the class of interaction, the best prediction method will vary. It is clear

from the CAPRI event, there is no obvious front-runner in solving this problem.

For a sense of the “State of the Art:” Using consensus information with HAD-

DOCK3[27], Figure 2.3 shows results from 2011[6] that illustrate the rate of success

3HADDOCK is a molecular simulation package that takes a prediction and uses it as restraints
for defining the system being simulated.

17

addressing this problem. One, two, three star complexes is a rating for the quality

of the solution where more stars is better. Ab initio docking shows HADDOCK

without consensus information (aka ‘vanilla’ HADDOCK).

Refer to Section 2.2, and you will recall that most methods addressing the

protein docking problem start with a geometric (rigid-body) search and then re-

fine using stochastic methods to allow the proteins to change shape. The graphs

shown in Figure 2.3 show, on the y-axis, the maximum possible success rate at each

stage of this process. In other words, if an oracle looked at the set of possibilities

and pointed out the correct prediction, how many correct predictions remain un-

der consideration. Depicted clearly here: more difficult complexes (two and three

star) are so difficult that even the rigid body stage misses most of the correct solu-

tions. (This is usually because the harder complexes involve more conformational

change). Notice in the top graph, the success rate for the Top 1 ranked prediction

is under 10%. As the top prediction is the prediction, the system success rate is

indicated by the final column. This illustrates the extreme difficulty of the prob-

lem and delineates the bar for success. As these results integrate predictions from

many different researchers, it is one of the top predictors in this realm.

We illustrate the HADDOCK system results here because our system, to be

detailed in Chapter 5 produces an output (interface prediction) that would be given

to HADDOCK or a similar system. The goal of this research is to increase the

performance of docking predictors by doing a better job of localizing the protein

interface than current systems.

18

Figure 2.3: Docking results for CPORT-driven docking using HADDOCK (top),
compared to HADDOCK ab initio docking (bottom). The figure shows the percent-
age of cases for which at least one structure of that quality was generated during
the rigid body stage (10,000 structures), and the top 400 (all refined structures),
100, 10 and 1 of the refinement stage. One-star and two-star criteria correspond to
the CAPRI definitions.[5] For the rigid body stage, the fnat criterion is not taken
into account. doi:10.1371/journal.pone.0017695.g001 Image excerpted from [6].

19

2.5 Opportunity

Prior work formulates this problem as a single question of “What is the docking

interface for a complex?” This paper argues that the problem is actually a two-tier

question. First, given an arbitrary protein, what are the interfaces? Virtually

every protein has a function; many of them dock with multiple other proteins

(including themselves as in homodimers). This question has been addressed by

some communities.[4, 30] The second tier is to determine if a complex forms given

two proteins and their sets of interfaces. The motivation to separate these questions

is partially due to the methods that can be applied, and in the difficulty in creating

a completely new docking software. The work presented in the following chapters

is appropriate for integrating with existing software, especially ones that expect

input seeds like HADDOCK.

20

Chapter 3: The Problem, Data, & Methods

3.1 Problem

Predicting protein interfaces is the problem that this work focuses on as it is

a required first step towards solving the docking problem. Given a protein, we

know a priori that it has a function, but what is unknown is how it achieves that

function. Since many complexes are collections of docked proteins we can expect

that a protein has at least one but in many cases more than one interface. This

leads to a difficulty when trying to apply machine learning methods because we

cannot be fully confident in providing negative examples of interfaces. This is due

to the fact that even if we know that a pair of proteins dock to form a complex,

their binding interface many not be the only one. So when using the available data

on protein interfaces, we need to employ methods that are robust to noisy data

to compensate for an implicit bias in the training data. The methods that follow

were investigated with this consideration in mind.

3.2 Methods

Presented in the following chapters are two methods for predicting protein inter-

faces. They are very different approaches, while the core of this work explores the

latter it is important to view the investigations chronologically to see the evolution

21

of this work.

The first approach discussed is a variance analysis (Chapter 4). With inspira-

tion from the statistical analysis in Bordner et al.[30], this presents a technique we

developed to incorporate the frequency of atomic occurrence. This work focused

on the simple case of attempting to predict all interfaces without using negative

information. This, unfortunately, fails at even the simpler test of recognizing a set

of only interfaces.

The core of this work focuses on a second method that, in essence, transfers

the interface prediction problem into a standard computer vision/machine learning

paradigm. We use ideas from image analysis to create a pipeline for predicting in-

terfaces: segmentation, feature extraction, classification, and agglomeration. This

transference allows for the use of many traditional methods with novel adaptations.

The implementation presented uses a multiple scale decomposition to extract more

information than traditional residue- and patch-based methods. This system for

identifying interfaces was used to generate entries to the 28th Round of the CAPRI

event. For an objective discernment of the variations between parameter selections,

the next section discusses the metrics used in this document. These are not the

typical “success” metrics as those can be more forgiving. See the results discussion

for more on the overall success of this work.

22

3.2.1 Error Metrics

In later sections, success is reported in terms of Precision, Recall, F1 (also

F-score) as opposed to a simpler success rate or accuracy. The reason for this

is that the problem is biased towards predicting the negative as interfaces are a

small portion of the overall protein. Reporting accuracy would be misleading in

that under-prediction is favored (always predicting no interface means an accuracy

≈ 0.7 − 0.9 or 70%-90% success1). So, we want to focus on terms that show how

well we are actually solving the problem at hand. To do this we count atom-

by-atom True Positives (TP), True Negatives (TN), False Positives (FP), and

False Negatives (FN). Using these counts we can compute the metrics listed in the

Equations 3.1, 3.2, 3.3. Each of these terms gives a value zero to one inclusive that

can be roughly viewed as a percentage. For a sense of scale, most top predictors

result in under 10% success depending on how it is reported. In this document it

is the F1 value most closely resembles “success”-rate. In all graphs in this paper,

a larger value (for each of these metrics) indicates a better success rate.

P recision = P =
TP

TP + FP
(3.1)

Recall = R =
TP

TP + FN
(3.2)

F1 = 2 · P ·R
P +R

(3.3)

1Recall that the size of an interface typically ranges from 10-30% of the surface of a protein.
So it is easy to achieve a high accuracy when failing to predict.

23

A short rationale: Precision is important because in this problem being able

to localize and distinguish a portion of an interface addresses the hardest part

of the problem and a high precision results from successfully identifying interface

subsets without predicting a large portion of the surface. However, this becomes

undefined when under-predicting (we typically define P = 0 if TP = 0), so Recall

is also necessary to address how much of the interface is being missed. F1 is a useful

way to combine these two terms because it is the harmonic mean and it reports

an overall success metric that is not biased by true negatives. F1 is often used

in the field of information retrieval for measuring search, document classification,

and query classification performance.[48] Also note that as precision and recall are

inversely related, attaining a high F1 requires success at both measures.

3.3 Data

Each protein structure contains two tiers of information: atomic and amino acid

parameters. Each atom is associated with a 3D position, exposed surface area,

radius, polarity rank, and bond type while each amino acid is associated with

a charge, polarity rank, secondary and tertiary structure, exposed surface area,

and possibly equivalency information (common mutation that still contributes to

docking known as evolutionary conservation). Unfortunately, the difficulty with

this problem formulation is that it is not clear how best to combine parameters or

even to calculate them.

24

Surface accessibility, for example, can be calculated in multiple ways (po-

tentially skewing prediction). Most often it is defined using a cutoff for absolute

area exposed or in relative terms, as a percentage of maximal accessibility. Ob-

viously the goal from the perspective of computer science would be to learn from

the data, but it has been shown that the type of complex being predicted has a

strong impact on the utility of the indicators.[2] For this reason permanent com-

plexes and transient complexes are often predicted separately, partially due to the

difference in the “known” interactions. Transient interactions cannot be mapped

as simply as permanent structures that lend themselves to crystallization-based

analysis. This means that within the research and results presented in this docu-

ment, there is a bias towards permanent complexes as that is the majority of the

available examples.

We use the Lee-Richards molecular surface definition which is computed using

the NACCESS software program.[49, 50] This program outputs the .asa and .rsa

files used in this work. The .nbc files (non-bonded contacts) are generated using the

CNSsolve software program.[51] The non-bonded contacts form the set of atoms

that this work refers to as the protein interface for a given complex. Obviously

computing these differently would change the results considerably.

The sets of complexes and some computed features used in this research were

provided by Dr. Victor Hsu2. The selection of complexes is based on a standard

benchmark set for this problem. Chapter 4 uses Benchmark 3 data[52] and Chapter

2Department of Biochemistry and Biophysics, Oregon State University

25

5 uses a subset of Benchmark 4 data[53].3 These benchmark sets also rank the

difficulty of each complex as easy, medium, and hard and provide the type of

interaction. Difficulty is rated by the iRMSD[54], which is the deviation of the

structure between the bound and unbound forms (before and after docking). We

do not furnish these categories of difficulty to the learning algorithms used in this

work.

As protein docking requires multiple actors to create a complex, images will

specify the named complex that a specific protein is part of i.e. 1NCA and then will

reference which component with the number 1 or 2. So 1NCA 1 refers to the first

half of the 1NCA complex, and 1NCA 2 refers to the second half. The distinction

between first or second is arbitrary, but the structures can be visually identified

by comparing them to the components listed in the benchmark set. Typically,

although not always, each component of a complex will have its own name. These

components can be docked complexes themselves, however in these cases they are

treated as a single molecule.

3http://zlab.umassmed.edu/benchmark/

26

Chapter 4: Variance Analysis

Interface Data

PCA

1-Class SVM

per atom features

k largest

Figure 4.1: The variance analysis pipeline
for classifying protein interfaces.

This chapter details a pipeline that uses

variance analysis over a set of avail-

able features to attempt to predict the

protein interface. Figure 4.1 shows

the steps in this process, starting with

atomic data. Each atom has a number

of attributes, many of them are cate-

gorical and converted to the binary 0

or 1. Each atom is also associated with

the amino acid that it is a component

of, and has specific values shared by all

atoms in a given type of amino acid. As

the number of atoms in a patch can be variable, we need to convert the features

to a fixed length attribute vector for classification. To achieve this goal Principle

Component Analysis (PCA)[55] is employed to capture the variance of the features

over different patches. The assumption is that the distribution of atoms would be

indicative of a protein interface. Finally, a classification method is needed.

The typical uses of machine learning have focused on the basic version of each

algorithm. The inspiration for the approach detailed in this chapter is an adapta-

27

tion of Support Vector Machines (SVM)[56]. Using the knowledge that all protein

interfaces are biologically favored and an effective active process, we extend this

to the concept of a one class SVM. A single class SVM is different from a normal

SVM in that instead of trying to distinguish two classes by maximizing the margin

between them, it attempts to create a hypersphere around the data that correctly

identifies the single class of interest (protein interfaces). This is particularly rel-

evant to to this problem because we cannot merely assume that given a complex

the entire remainder of the surface save for the interface is not a protein interface

with another molecule. In fact, we know that proteins tend to bind with more

than one other protein often, proteins bind with themselves.

Recall that Support Vector Machines are a construct for finding a linear sepa-

ration through optimization of non-linearly separable original data through the use

of kernel functions. In a one class SVM, the hypersphere (instead of hyperplane)

that is created attempts to find a distribution that assumes the need to eliminate

outliers and noise. So we can expect a one class SVM to achieve less than 100%

success on a training dataset depending on the input data and the choice of kernel

function.

28

4.1 Feature & Parameter Selection

This approach does a patch-style1 prediction of interface/non-interface. As noted

previously, the patches used are the sets of atoms that are already known to be

interfaces. For the dataset, we used a set of 124 experimentally determined struc-

tures. I extracted the non-bonded contacts (atoms closer than 6 Å between the

two proteins) for each protein.

The best set of atomic features consisted of f = 20 as determined by trial and

error. We tried many variations of features (including QUANTA solvent acces-

sibilities), but because so many variables are categorical with a large number of

categories (20-40) the sparsity was detrimental to performance. In some cases this

led to an error rate considerably worse than random guessing. The set of features is

listed in Figure 4.2. Features 7-13 reduce amino acids from 20 to 7 categories. The

reason to include so many features as categories instead of as real valued features

is because SVMs tend to work better with all features normalized in the range

[0, 1].

As the number of interacting atoms can vary wildly based on the function and

the involved proteins, the data needs to be normalized into a constant size feature

vector. Often, other methods will use a frequency analysis to describe patches with

a constant length feature vector. In this work, we used PCA to estimate principal

components of length f . The method for computing PCA is as follows: given a

matrix Dn with n data points, you have to center the data to remove the mean

1Patch-based prediction relies on segmenting the surface of a protein into surface regions.
These are often simply computed using BFS on residues given a central residue.

29

Feature Notes

1 Residue Polarity Rank Trinquier et al.[57]

2 Residue Charge -1, 0, or 1

alpha helix, 3-10 helix, beta strand

3 Secondary Structure beta turn, beta turn no H-bond,

3-1 (extended left-hand) helix, other

4 Solvent Access [49, 50]

5 Surface Area [49, 50]

6 Van der Waals Radius

7 Small and nonpolar GLY, ALA, PRO

8 Small and polar SER, CYS, THR

9 Large and nonpoalr VAL, LEU, ILE, MET

10 Large and polar ASN, GLN

11 Basic (pH) HIS, LYS, ARG

12 Acidic (pH) ASP, GLU

13 Aromatic PHE, TRY, TRP

14 Hydrogen

15 Sulfer

16 Oxygen

17 Nitrogen

18 Carbon

19 0

20 0

Figure 4.2: Feature vector that is constructed for each atom prior to PCA. Only
features 4 and 5 are truly real valued, the rest are binary or effectively categorical
(i.e. there are only so many types of atoms, so the Van der Waals radius is one of
five values).

30

(Eqn. 4.2), then do Singular Value Decomposition (Eqn. 4.3), and then extract the

vectors in V based on the largest eigenvectors (diagonal in Σ).

Cn = In −
1

n
(4.1)

M = CnDn (4.2)

M = UΣV (4.3)

We explored multiple open source solvers for SVD including OpenCV [58] and

SLEPc/PETSc [59, 60]. We found that OpenCV when compiled performs dras-

tically differently on different systems and on different operating systems on the

same physical hardware.2 In most builds, OpenCV would hang during the compu-

tation and never halt. We use the SLEPc extension to PETSc because it runs more

consistently and produces smaller variations to minor changes to initial conditions.

Retrospectively, the high numerical instability of this process recommends against

this process.

By choosing the k = 3
4
·f top components from PCA, there is a constant feature

vector of length kf = 300. This was determined by trial and error. The reason

k is a fraction of f is that the smallest components from PCA represent noise in

the data and end up being tremendously misleading to classification. Two input

features are always set to zero, and they are intuitively similar in effect to the

bias input to neural networks. The effect is that they allow for PCA to throw

2This is caused by the difference in compilers and how they optimize. Clearly the validation
tests in OpenCV do not stringently check the equation solver.

31

out irrelevant or noisy data when we choose only the top k components. Without

these two extra features, the prediction is much worse.

Finally, these feature vectors are given to a one-class SVM. The added benefit

is that there is no natural way to include negative information without just gener-

ating surface regions randomly. It doesn’t make sense to include the entire rest of

the molecule as a single “non-interface” because it would go against the implicit

knowledge of relative planarity and interface size as well. Additionally if you were

to include every possible “non-interface” within a size range, the bias towards the

negative class would be extreme (far beyond 100:1). This bias in training data has

been an issue in other SVM approaches where the whole molecule is fed in as two

regions (interface, non-interface).[46]

We used the OpenCV SVM implementation3 which has two parameters γ and

ν as well as the choice of kernel function. We can choose between kernels: linear,

polynomial, sigmoid, and radial basis function (RBF). A discussion of kernel func-

tions is beyond the scope of this work, so suffice to say that we chose to use an RBF

kernel as they tend to perform the best in many machine learning contexts. The

parameter ν embodies the idea of an activation function and reducing it from the

default ν = 0.5 value makes it more predictive, we settled on a value of ν = 0.25

using grid search. And, γ is the parameter for the radial basis function kernel

(RBF):

K(χi, χj) = e−γ||χi−χj ||2 (4.4)

3The OpenCV implementation is based on libsvm[61], a popular program.

32

We found that the optimal range for this parameter was approximately 0.18 <

γ < 0.3. Ultimately, to achieve the best performance, grid search is used to settle

on the best parameter choices.

As 116 complexes were used in this experiment, we have 232 interfaces to clas-

sify. Over an 8-fold cross validation we achieve an overall training error rate of

36% and a testing error rate of 94% (using γ = 0.2). We would expect to achieve

closer to 100% success on training data since we are not providing any negative

information. Additionally, since the testing error rate is so high (only succeeded

in one fold), we have found that this method lacks enough input information to

succeed at this problem. See Figure 4.3 for the results.

Training Testing

Cross Validated Error 36% 94.4%

Num. Successes 1039/1624 13/232

Figure 4.3: Eight-fold cross validated results of labeling known protein interfaces.

This methodology for predicting interfaces is unfortunately a very poor per-

former. Using just positive examples, we need to achieve better performance in

the cross validated test sets to consider extending this method. Ultimately, this

investigation shows that a variance analysis is not enough to predict interfaces.

However, this lack of success led to rendering interfaces atom-by-atom (as opposed

to highlighting amino acids) which illustrated the key insight that the next chapter

is predicated upon (depicted in Fig. 5.3).

33

Chapter 5: Multiple Scale Analysis

Protein

Segment

Compute
Features

Classify

Merge

Interfaces

Figure 5.1: The multiple scale analysis
pipeline for predicting protein interfaces
independent of complex information.

This chapter presents a novel process

for predicting protein interfaces, illus-

trated in Figure 5.1. This approach

transfers the problem into a computer

vision style problem, by creating a seg-

mentation of the surface of an input

protein. Then it computes features for

regions of the surface, which can then

be classified by machine learning tech-

niques. Labeled regions are then ag-

glomerated to output a predicted inter-

face.

The process of segmentation, fea-

ture extraction, classification, and

merger is very successful in computer

vision and is a well established research

area. By using a computer vision ap-

proach, a variety of studied algorithms

can be leveraged towards the protein in-

34

terface prediction problem. The intuitive parallel to this problem: an image anal-

ysis problem tries to identify a specific object within an image; we are attempting

to identify an interface on the surface of a protein. More specifically, instead of

identifying a collection of pixels, in this domain the goal is to label the correct set

of atoms.

This Chapter uses a subset of Benchmark 4 data; see the listing in Appendix

A for the distinction of which complexes are considered “Easy.”

5.1 Computational Framework

The exploration of a multiple scale analysis technique followed the investigations

of the previous chapter. As it was not completely clear, visually, why the previous

method failed, using a custom graphical interface (Figure 5.2) as a wrapper for the

analysis framework led to the key observation which is discussed in Section 5.1.1.

This program is the source of all of the unattributed images in this document that

illustrate proteins.

In order to construct a custom analysis pipeline that is modular, this program

imports various data (.pdb, .asa, .nbc) and loads it into a custom format. (See

Appendix B). This program then uses a combination of original code and the open

source library OpenBabel[62] to compute various features for surface regions on

the molecules. We modified OpenBabel to return atom specific descriptors as it is

typically used to summarize a whole molecule.

35

Figure 5.2: Computational Framework Interface

36

5.1.1 Protein Surface Segmentation

Prior work in this field has focused on various specific subsets of interactions: ho-

modimers/multimers, heterodimers, antigen/antibody, enzyme-inhibitor, etc. A

great majority of previous work uses residue-level analysis as the basis of their

methods: frequencies, patches, conservation, polarity, etc., at which point a learn-

ing algorithm is applied to the data. Atom-level information is sometimes included,

but always with respect to the residue grouping.

Figure 5.3: Red indicates the interface, green indicates any surface accessible atom
part of a residue that contains at least one interface atom. (1AK2 1)

37

Separating interactions based on the boundaries of amino-acids is limiting and

introduces an a priori bias to the learning problem. Figure 5.3 illustrates this

problem. When classifying by residue, every green colored atom would be an

over-segmentation of the interface (shown in red). By introducing a stochastic

methodology to data segmentation prior to applying feature extraction this bias

can be reduced or eliminated.

The proposed solution detailed in the next section is illustrated in Figure 5.4.

It shows how a different segmentation can offer different boundaries which helps

to alleviate the problems inherent in predicting based on residues. The region size

shown is chosen to match the approximate size of amino acids.

38

Figure 5.4: Top: Computed surface regions. Each color indicates a different region.
Bottom: Amino acids. Each color indicates a type of amino acid. Arrows: The
arrows point out two locations where the computed regions differ from traditional
amino acid boundaries. The top arrow points out that two different regions (green
and brown) are segmented where in the lower image there is just one amino acid
(red). Region size is approximately 26 atoms which is similar in size to a residue.
(1A2K 2)

39

5.2 Segmentation

In order to address the problem identified in the previous section, we introduce a

novel method that computes surface regions that do not adhere to typical residue

boundaries. To compute regions, a segmentation algorithm needs to be selected.

The question in segmentation problems is often one of how to decompose the

data. There are several methods that lie in two major categories: hierarchical

and partitioning (flat). Since clustering relies on a similarity metric and there

isn’t an obvious way to say that two atoms are in a “similar” grouping especially

given the inherent structural regularity, using a hierarchical algorithm would be

a poor choice. Instead we need to find the protein interface without any prior

knowledge except spatial locality (which suggests spatial clustering is a proper

choice). Common and effective partitioning algorithms include k-means[63], mix-

ture of Gaussians[64], and Spectral Clustering[65].

This section presents a clustering method inspired by an image segmentation

algorithm that is an extension of k-means clustering, called SLIC Superpixels[66].

The idea is a simple adjustment to the algorithm: a random or equally spaced set

of initial clusters are selected over the surface of a molecule and clusters are up-

dated using a weighted distance metric. In this case, we compute both Euclidean

and geodesic distances.1 These surface regions have a number of benefits. In ad-

dition to not being limited by the residue boundaries, they are still predominantly

1Geodesic distance is the shortest surface-path between two points whereas Euclidean dis-
tance is the shortest path between two points. The tips of a horseshoe are a good example: low
Euclidean distance, high geodesic distance. See Figure 5.6.

40

contiguous surfaces that can be classified. This is more true to real life interactions

where docking sites depend on the specific exposed atoms and not the whole amino

acid.

Figure 5.5: From left to right, top to bottom the approximate region size in number
of atoms is 20, 34, 46, 70. (1A2K 1).

41

Figure 5.6: Geodesic distance: the distance
between the tips of the horseshoe traveling
along the surface of the object.

This method of segmentation is

best contrasted with patch-based

methods. Bordner et al.[30] used

15 residue patches based on an Eu-

clidean distance computation be-

tween Cα atoms2. Obviously, this

introduces a bias because the Cα

could be buried and not reflective

of surface geometry. This novel

method for surface segmentation has tremendous advantages over current methods,

especially because this allows for multiple scale segmentation and classification.

Picking initial cluster centers was improved by employing kmeans++3 which

has the benefit of producing typically better clusterings[67]. Example segmenta-

tions at various sclaes are shown in Figure 5.5. The difference between segmen-

tations at the same scale is shown in Figure 5.7 which shows high stability in the

clustering. This means that to successfully over-segment the surface, clustering

at different scales is a requirement because we wouldn’t get meaningfully different

segmentations by clustering multiple times at the same scale.

The choice of scale for clustering is a challenging one. Bordner et al. used

patches composed of 15 residues.[30] Using an approximate size of 20+ atoms per

2Cα is the primary backbone Carbon for a given amino acid.
3kmeans++ is an adaptation to traditional kmeans where the 2, . . . , kth centers are picked

with a probability proportional to their distance to the nearest cluster center (instead of ran-
domly).

42

amino acid, this suggests a region size of about 300 atoms. Also, given that an

interface should be 10-30% of the surface, regions should not be computed unless

at least four can be created at a given scale. This suggested an approximate range

for segmentations of 20-300 atoms per cluster. However, regions on the larger

side of this range results in zero predictions. This shows that there isn’t enough

distinctive information in the feature set to reliably predict any portion of any

interface using larger regions as it hides local effects. This is due to the fact that

you’d have to segment, by luck, in alignment with the true interface. Based on

visual analysis, different size regions tend to allow different areas to be predicted,

so a multiple scale segmentation is recommendable.

Refer to Section 6.1 for a discussion of the segmentation granularity that is rec-

ommended by this problem. In practice, 10 segmentation levels are used (Eqn. 6.1).

43

Figure 5.7: Clustering stability using kmeans++ seeding, the arrow points out a
small difference. Region size, n = 26. (1A2K 2).

44

5.3 Dynamic Property Computation

The next step is to compute properties for each surface region. Feature selection

is a large problem in machine learning, so the choice in this effort is to include as

much information as possible and use a classification method that works well with

weak features. In image analysis there are many common choices including edges,

corners, texture, color, and higher level features including shape and structure

metrics. It is not clear that there are obvious parallels to the surface of a protein, so

the features we employ are biological. While we could have chosen to include shape

features this could be misleading as conformational change can easily modify the

final shape. (Addressing conformational change is left to the second tier problem

of docking). The proxy for this specific concept is exposed surface area (SASA) as

that is the amount of initial physical exposure during docking. Additionally, some

ideas from image analysis could be applied to these features, such as gradients

(a proxy for “edges”). This is left for future work because to produce the most

accurate set of continuous values one would need to compute not just the feature

for every region, but for every atom’s local neighborhood which is out of the scope

of this thesis.

Features are computed for each segmented region. Some are normalized based

on the nominal region size which is defined as exposed surface area. Many of these

features included were chosen due to the relative ease of computation, especially

as some are supported by OpenBabel. Footnotes reference SMARTS descriptors

computed using OpenBabel, see Appendix C for more information.

45

It is worth noting that generally features are experimentally derived for amino

acids and therefore computing them for an arbitrary collection of atoms, instead

of for the whole molecule or single amino acids, is unique within the field.

In order to see the different features, the following pages illustrate each feature.

As the values are biological, to render them in each case, the values are normalized

and trimmed manually in order to show the range of highest variability in the

feature, for the specific molecule depicted. The idea here is just to see that each

feature presents a different view of the molecule. These images use a red to blue to

black color scale. The scale is linear from red to blue with a normalization factor,

however in almost every image this caps large values. Black is used to indicate

extreme values at the edge of blue (typically where the number is zero).

46

Figure 5.8: Interface of 1A2K 1.

47

• Solvent accessible surface area (SASA) - What is revealing in this image is

that a large swath of the surface (purple tone) has only a moderate amount

of surface area exposed relative to the number of atoms in the clusters.

Figure 5.9: Solvent accessible surface access (SASA). Red to Blue (maximum to
minimum), Black means zero access. (1A2K 1)

48

• Solvation energy weighted by surface area - The energy potential for water

to bind to a surface. Two versions are computed (Kyte & Doolitle and Sharp

et al. see [68]). Notice here there are only a few bright spots indicating a

large potential.

Figure 5.10: Solvation energy normalized by surface area. Red to Blue (negative
maximum to minimum), Black means positive. (1A2K 1)

49

• Hydrophobicity [69, 70, 71] - Repulsive potential of a surface region, relates

to the electron cloud locations.

Figure 5.11: Hydrophobicity. Red to Blue (negative maximum to minimum), Black
means positive. (1A2K 1)

50

• Hydrophobicity weighted by surface area

Figure 5.12: Hydrophobicity normalized by surface area. Red to Blue (negative
maximum to minimum), Black means positive. (1A2K 1)

51

• Standard deviation of weighted hydrophobicity - Intuition: variance within

a region contributes additional information.

Figure 5.13: Standard Deviation of Hydrophobicity Weighted by SASA (surface
area). Red to Blue (maximum to minimum), Black means zero. (1A2K 1)

52

• Hydrogen Bond Donors4 - Two versions computed.

Figure 5.14: Number of Hydrogen Bond Donors. Red to Blue (maximum to mini-
mum), Black means zero. SMARTS [!#6;!H0] (1A2K 1)

4http://www.ra.cs.uni-tuebingen.de/software/joelib/tutorial/descriptors/descriptors.html

53

• Hydrogen Bond Acceptors[72]5 - Two versions computed.

Figure 5.15: Number of Hydrogen Bond Acceptors. SMARTS
[$([!#6;+0]);!$([F,Cl,Br,I]);!$([o,s,nX3]);!$([Nv5,Pv5,Sv4,Sv6])] Red to Blue
(maximum to minimum). (1A2K 1)

5http://www.ra.cs.uni-tuebingen.de/software/joelib/tutorial/descriptors/descriptors.html

54

• Rotatable Bonds6 per atom. This is an indicator for possible conformational

change.

Figure 5.16: Number of Rotatable Bonds per atom. Red to Blue (maximum to
minimum). SMARTS [!$(*#*)&!D1]-!@[!$(*#*)&!D1] (1A2K 1)

6http://www.daylight.com/dayhtml tutorials/languages/smarts/smarts examples.html#ROTATE

55

• Molar Refractivity[71] - Total polarizability of a mole of a substance

Figure 5.17: Molar Refractivity. Red to Blue (maximum to minimum). (1A2K 1)

56

• Total Polar Surface Area[73] - Typically useful in medicinal chemistry, polar

surface area effects interactions.

Figure 5.18: Molar Refractivity. Red to Blue (negative maximum to minimum),
Black is positive. (1A2K 1)

57

• Complex type - This is the interaction category (4): Enzyme/Inhibitor or

Enzyme/Substrate, Antibody/Antigen, Antigen/Bound Antibody, Others.

[53]

These 13 real valued features plus complex type make up the entirety of the

information used to learn about protein interfaces. See a complete list in Figure

5.19. It is obviously not an exhaustive set, but the goal is to have included enough

to successfully localize interfaces. See the Conclusions for other possible inclusions.

For the majority of the graphs reported, only the first 13 features were included

due to the late addition of the 14th feature. The final results presented use all 14

features.

58

Feature Reference

1 Solvent Accessible Surface Area [49, 50]

2 Solvation Potential Kyte & Doolitle [68]

3 Solvation Potential Sharp et al [68].

4 Hydrophobicity (log p) Wildman et al. [71]

5 Normalized Hydrophobicity (log p
SASA

) Tribelhorn 2013

6 Standard Deviation of log p
SASA

Tribelhorn 2013

7 Hydrogen Bond Donors 1 SMARTS

8 Hydrogen Bond Donors 2 SMARTS

9 Hydrogen Bond Acceptors 1 SMARTS

10 Hydrogen Bond Acceptors 2 SMARTS

11 Rotatable Bonds per atom SMARTS

12 Molar Refractivity Wildman et al. [71]

13 Total Polar Surface Area Ertl et al. [73]

14 Interaction Category Hwang et al. [53]

Figure 5.19: Summary of included features.

59

5.4 Classification

Given that this problem suffers from a clear lack of strongly predictive features,

choosing a learner that is effective with weak features is a necessity. The choice of a

Random Forest classifier fits this requirement well because it is effective with both

weak features and missing data which lets us reduce the bias from the training

set in theory.[74] Random Forests are also very fast classifiers and can even be

implemented on the GPU.[75] Although SVMs are also competitive with Random

Forests for many classification tasks, they are difficult to use in practice as selecting

the right kernel function is an open problem. They can also be more susceptible to

noise in the training dataset. Also, as the size of an interface is between 10%-30%

of the surface, it can create a training bias that is difficult to overcome in both

SVMs and Neural Networks. Usually this is addressed by randomly discarding

data-which is undesirable given the small size of the dataset.

60

5.4.1 Random Forests

A Random Forest is a collection of decision trees that classify based on a majority

vote. The implementation in this work creates trees depth-limited to ten7, uses

bagging8[76], and uses Gini impurity9[77] to determine the best split. Since we

use bagging with replacement, each tree will see 1− 1
e
≈ 63.2% unique examples.

One additional modification is included which is to limit the number of features

that can be tested at each split (usually
√
F or log2 F). This helps create a set of

different trees because the algorithm is limited in the choice of split.10 In practice

this means that each split gets to choose randomly between 4 features (out of

F = 13 possibles).

Algorithm 5.4.1: CreateRandomForest(S = {Data}N , t)

f = log2(|Si|) + 1 // Num features to try at every split

for i← 1 to t

S ′ = Draw N samples from S with replacement

Ti = Tree(S ′, f)

RF = {T1, . . . , Tt}

return RF

7Used to avoid over fitting.
8Bootstrap aggregating (bagging) is designed to improve the stability and accuracy of machine

learning algorithms used in statistical classification and regression. It reduces variance and helps
to avoid overfitting.

9This is a metric that determines how well a given split distinguishes between classes. Defined
as 1−Σf2i where fi is the fraction of examples of the ith class. Weighting these on the two sides
of a proposed split by the number of examples on each side is minimized to choose the best split.

10Without this adaptation trees are more uniform because only bagging introduces random-
ness. Also, this helps the Random Forest utilize weaker features.

61

The optimal number of trees in a forest has been suggested to be no more than

128.[78] Typical rules of thumb suggest about 100 is the optimal maximum. Figure

5.20 shows performance vs. the number of trees learned. Based on these results

a set of 21 trees is used for most data analysis (Figures 5.21, 6.1, 6.2). An odd

number of trees are chosen to avoid tie votes.

●

●
●

●
●

●
●

● ● ●

●
● ● ● ● ● ● ● ● ●

♦ ♦

♦
♦

♦
♦ ♦

♦
♦

♦

♦

♦
♦

♦
♦

♦
♦ ♦

♦ ♦

11 21 31 41 51 61 71 81 91 101
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Number of Decision Trees

F1

! n = 70 Train
! n = 70 Test
! n = 20 Train
! n = 20 Test

Figure 5.20: Classification performance (F1) vs. number of trees. n is the approx-
imate cluster size in atoms. Higher is better. Average of 10 trials. Train vs. Test
selected to be opposite halves of the easy dataset.

Since the testing results are so poor, it suggests that additional effort is required

to solve this problem. One method to improve the application of random forests

is to adjust the feature space. Often using structural clues from the feature space

can improve classification performance.

62

5.4.2 Codebook Learning

One method to extract and utilize structure within the feature space is to apply

a codebook-style processing to that space. Other common methods include PCA,

SVM kernels, and k-Nearest Neighbors. Since decision trees are limited to splits

on the axes of the data, changing the feature axes can produce improvements.

As there are a limited number of features, dimension reduction is not a concern;

instead the goal is to acquire more information from the features.

Traditionally, codebook learning focuses on labeling bags of features, i.e. docu-

ment classification. Since the obvious bag in this problem is a protein, the problem

of labeling is uninteresting as every protein should have at least one interface. In-

stead of generating random interfaces (bags of adjacent regions) to fit into this

paradigm, the adaptation is to use the idea of codewords to change the feature

space and ignore the concept of bags and term frequencies. In light of this, what

is presented here as codebook learning can also be considered a case of distance

metric learning.[79, 80]

The algorithm used here starts by clustering, using kmeans++, all of the fea-

ture data which creates a set of codewords (cluster centers). The feature data is

then mapped as a distance to each cluster center to create a new feature vector that

is given to the learner. In this case a Random Forest with 21 trees. See Section 6.3

for more discussion of the number of trees used. Then the resultant random forest

and set of codewords are used to classify future inputs. See Algorithm 5.4.2. There

is one other parameter that needs to be tuned which is k, the number of codewords.

63

Algorithm 5.4.2: CreateCodebook(Learner, S = {Data}N , k)

C = k-means++(S, k)

for i← 1 to N

S ′i = distance1,...,k(Si, C1,...,k)

H = Learner(S ′)

return 〈H,C〉

Figure 5.21 shows the success of this method depending on how many code-

words, k, are chosen. Heuristically, picking points where there is a knee joint is a

good choice because error in clustering decreases monotonically as you increase the

number of clusters, so a location where the performance changes a larger amount

indicates a good clustering. (This is similar in practice to the Gap statistic[82]).

There are also unsupervised methods for picking k that consider purity, normal-

ized mutual information, stability, or cross-validation likelihood.[81, 82, 83] In this

case, a visual inspection shows k = 15 is the best choice because the F1 perfor-

mance peaks. As there are 13 features this shows that there is some additional

structure within the features that is captured using this method. This method

also fails to produce any results when the number of clusters is decreased below

13, demonstrating that each feature is strong enough on its own to be of utility.

Notice that in Figure 5.21, the red line shows an improvement using codebooks

over the classification performance shown in Figure 5.20 using a Random Forest

(by the F1 metric). However, with inspiration from Zhang et al.[84], there is reason

64

●

●

●

●
●

●

●

■
■

■

■

■

■ ■

12 14 16 18 20
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Number of Clusters: k

Ra
tio

! Precision
! F1

Figure 5.21: Classification performance on the test set vs. k the number of clusters.
Average of 10 trials. Train vs. Test selected to be opposite halves of the easy
dataset. Codebook using 21 tree Random Forest, n = 46 is segmented region size.

to believe that this can be improved even further. The key idea is to move the

codebook creation process into a boosting cycle to dramatically decrease the error

rate.

5.4.3 Boosting

The next step to improving the results in classifying regions of a protein interface

is to incorporate boosting.

Adaptive Boosting, aka AdaBoost[85, 86], is a method for reducing over-fitting

65

and creating a strong learner from a set of weak learners. Detailed in Algorithm

5.4.3, the general idea is to learn repeatedly using a set of weights. At each iter-

ation, misclassified examples are weighted more, and correctly classified examples

are weighted less. This process converges exponentially quickly. The set of weak

learners trained are then combined using the α values as a weighting for their vote.

Algorithm 5.4.3: AdaBoost(Learner, S = {Data}N)

initialize W1(i) = 1/N, for all i← 1 to N

for ` = 1, 2, . . . , L

h` = Learner(S,W`)

ε` =
N∑
i

W`(i) h`(Si) 6= Label(i)

0 h`(Si) = Label(i)

α` =
1

2
· ln

1− ε`
ε`

W`+1(i) = W`(i) ·


eα` h`(Si) 6= Label(i)

−eα` h`(Si) = Label(i)

normalize W`+1

return H = 〈{h1, . . . , hL},WeightedVote(α1, . . . , αL)〉

This implementation of AdaBoost uses weighted sampling with replacement to

simulate learning with weights. In cases of very large datasets there are better

methods[87], but this suffices for the relatively small dataset in this problem.

Boosting usually employs a simple weak learner like a decision stump (meaning

66

limited depth, typically h = 1 or sometimes h <= 5). It is uncommon to boost

random forests as the effect is presumably similar. However regarding Figure 5.22,

when training neural networks there can be a benefit of training using momentum

to speed convergence, in this case that grouping many trees causes a similar effect

as choosing too large of a momentum. It is interesting to note that in this case of

boosting having more than a single tree improves performance. Finally, what we

can deduce from this graph is that with 110 trees we get better performance than

10 trees, but increasing to 210 or more trees causes serious over-fitting on possibly

noisy data.

●

●

●

●

●

●◆

◆

◆ ◆

◆
◆

1 11 21 31 41 51
0.005

0.010

0.015

0.020

0.025

0.030

Number of Trees

F1

! n = 46 Train
! n = 46 Test

Figure 5.22: Classification performance (F1) vs. number of trees in each round of
boosting that create a boosted random forest. Average of 10 trials. Train vs. Test
selected to be opposite halves of the easy dataset. L = 10 the number of iterations,
n = 46 is segmented region size.

67

Boosting is applied at a given segmentation level just like the previous classifica-

tion methods. The reason here is that performance is severely negatively impacted

by trying to boost using all of the segmentation levels in one large ensemble.

The parameters to tune for boosting are the number of trees per iteration and

possibly the number of boosting iterations. Boosting is also applied to codebooks.

See Section 6.3 for discussion of the number of boosting iterations and boosting

codebooks.

5.5 Interface Prediction

Presuming that this process has classified a large number of individual regions, the

method for selecting a final region is straightforward. Each region that is predicted

to be an interface adds a vote to its member atoms. Then some traditional com-

puter vision techniques are applicable: blur, thresholding, opening, and connected

components.

However, in many cases this system still favors under-prediction, so a manual

determination can be made. The following algorithm is proposed for unsupervised

output, but is premised on cases where there are multiple regions receiving many

votes. In practice this does not occur often enough to require such a generalized

system.

68

Algorithm 5.5.1: Merge(S = {Atom}N , D = blur rad, g = gap rad)

for i = 1, 2, . . . , N

for j = 1, 2, . . . , N

if dist(Si, Sj) < D

σi = σi + Votes(Sj)

T = IterativeThresh(σ)

R = ConnectedComponents(S, T, g)

return 〈R, σ〉

Algorithm 5.5.1 starts by “blurring” votes; within euclidean radius D = 6Å,

count all of the votes within that sphere and update σi (sum of neighbor’s votes

and own votes) for each atom i. The intuition here is similar to a blur or opening

operation where we are assuming that the probability of being in an interface

increases if it is near other portions of an interface and vice versa. The next

step is to find a threshold for which an atom is unlikely to be in the interface

despite receiving votes. This is a common method for increasing confidence of

a final segmentation. To accomplish this, we use iterative thresholding which is

essentially a special case of k-means with k = 2. Everything below the threshold T

is reduced to σi = 0. Finally, since we know that interfaces are not atom-by-atom

contiguous, we use a connected components algorithm using an acceptable gap

radius, g = 12Å, to allow for holes or gaps within a larger interface region.

This algorithm returns all of the connected components and the total number

of votes for each region. Regions are ranked by the total number of votes which

69

should be proportional to the confidence in the final segmentation. These output

regions can then be given as an input into a docking system such as HADDOCK

as the key locations in order to seed a prediction. In the case of HADDOCK, these

can be set as ‘mandatory’ components of an interface and it will be able to include

those regions in its predictions.

70

Chapter 6: Analysis & Results

This chapter investigates some of the parameter choices used in the previous chap-

ter. After discussion of how these impact the overall results, we present the results

of the Multiple Scale Analysis method and show its predictions applied to CAPRI

targets.

6.1 Segmentation Analysis

Figures 6.1 and 6.2 show the training performance averaged over 10 trials (using

the first half of the easy dataset) of the pipeline presented for a given scale of

region segmentation. We expect precision to decrease as the number of atoms per

cluster increases given that the likelihood of a region being a complete subset of

an interface decreases. It is this tradeoff between precision and recall that also

motivates a multiple scale analysis. Notice that the precision for the Random

Forest classifier is much less smooth than the boosted case. This implies that

there is considerable instability based in this process. The instability is expected

and suggests the use of boosting to remedy the problem.

Notice in Figure 6.1, for individual Random Forests, precision begins to increase

starting around n = 100 until it declines precipitously. This is misleading as the

increase is actually reflecting an increase of zero correct predictions which biases

71

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●
●

●

●

●

●
●
●

●●
● ●

●

●
●

●●●●●●●●●
●●

●
● ●

●

25 50 75 100 125 150 175 200
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Approximate Cluster Size (atoms)

Pr
ec

is
io

n

Figure 6.1: Graph showing precision versus the number of atoms in each segmented
region. Average of 10 trials using the first half of the easy dataset. Black depicts
a Random Forest with 21 trees, Red shows boosted Random Forests with Early
Stopping.

this metric. As Figure 6.2 shows that the success peaks at n = 94, it suggests

something is causing a “sweet-spot”.

Figure 6.3 shows the minimum and maximum F1 scores over ten trials using

error bars (highlighting just the peak values of the boosted case). It is interesting

to note that for different sizes the range can be drastically different. What is the

difference between n = 92 and n = 98? We see that the stability of clustering

changes at different sizes and that is the strongest impact between cluster sizes.

Picking points where both precision and F1 peak (implying a high recall) are

likely to combine for the best overall prediction when including multiple scales.

72

●

●

●●●
●●

●
●
●

●

●●●●●
●

●

●●

● ● ●
●
●
●●●

●
●●
●
● ● ● ● ●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●
●

●

●
●

●

●
● ●

●

●

●

●
●●

●

●●

●

●

●

●
●

25 50 75 100 125 150 175 200
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Approximate Cluster Size (atoms)

F1

Figure 6.2: Graph showing classification success (F1) versus the number of atoms
in each segmented region. Average of 10 trials using the first half of the easy
dataset. Black is a Random Forest with 21 trees, Red shows boosted Random
Forests (ES).

Looking at these graphs, it is apparent that there are a number of interesting points

to pick for segmentation levels. These are the ten scales at which segmentation is

done with the hope that these scales are biologically relevant.

20, 22, 26, 34, 36, 46, 55, 60, 70, 94 (6.1)

The utility of the small region sizes of 20, 22, 26, 34, and 36 atoms is high

because they cause a segmentation size of approximately one or two amino acids.

Since these are the functional units of a protein, it is not surprising that smaller

73

Approximate Region Size (atoms)

86 90 94 98 102 106 110 114

F1

0.04

0.05

0.06

0.07

0.08

0.09

Boosted RF

Figure 6.3: Graph showing classification success (F1) vs the number of atoms in
each segmented region. Error bars show minimum and maximum over 10 trials.
Boosted Random Forests (ES).

regions do not provide enough distinguishing information while the scale of an

amino acid does provide information. On the high end, a region of 94 atoms is

about the size of 6 amino acids. This is small compared to the segmentation size

of many other works. For example, compare to [30] which used 15 residue patches.

We find that patches larger than a certain size are less effective presumably due to

the loss of smaller signals. These graphs also show that collections larger than a

74

single amino acid are useful for distinguishing an interface which validates patch-

based methods.

6.1.1 Segmentation Validation

We can demonstrate the contribution of each of these segmentation levels by using

a leave one out validation methodology. Figures 6.4 and 6.5 show the performance

of the system with each patch size left out. In these graphs, the lower the perfor-

mance without the segmentation level the more important it is because it indicates

a stronger contribution to the overall system. Notice that the the strongest con-

tributor to precision, n = 36, actually detracts from the F1 metric. Given this

tradeoff, we chose to emphasize precision because in this domain we are most

concerned with narrowing down the location at the expense of finding the entire

interface. As we know that interfaces are spatially localized regions, a higher con-

fidence set of predictions is more desirable than a larger set of predictions as these

results can be fed into a docking system to predict protein complexes.

Figure 6.4 shows that each segmentation level, when not used, reduces the

system’s performance. This shows that every level that we have chosen to include

makes a positive contribution to our system.

75

Precision Lost

36

70

94

22

55

26

60

34

46

20

ALL

0 0.04 0.08 0.12 0.16

Segmentation Level Left Out

Figure 6.4: Classification performance lost (precision lost) of the pipeline using a
Random Forest where the labeled segmentation level is left out. The higher values
show the strongest contributors to overall performance. Average of 5 trials over
first half of the easy dataset using a Random Forest with 21 trees.

76

F1

20

46

60

55

ALL

34

26

70

22

94

36

0 0.005 0.010 0.015 0.020

Segmentation Level Left Out

Figure 6.5: Classification performance (F1) of the pipeline using a Random Forest
where the labeled segmentation level is left out. The red line indicates the per-
formance using all of the segmentation levels. The lower values (at the top of the
graph) show the strongest contributors to overall performance. Average of 5 trials
over first half of the easy dataset using a Random Forest with 21 trees.

77

6.2 Feature Validation

For each feature included in the system, we show its contribution to performance

in Figure 6.6 using the leave one out validation method. In this figure, the lower

values indicate the strongest contributors. We see that the different methods of

determining H-Bond Donors or Acceptors (using SMARTS see Appendix C) can

change the utility of the metric especially in the case of Acceptors. It is not surpris-

ing that H-Bond Donors are the most useful features because they represent the

most reactive regions on the surface of a molecule. It is also interesting to see that

the two methods for estimating the Solvation energy have largely different impacts

on the performance which we would expect given the difficulty of estimating this

value. Also, the inclusion of Molar Refractivity offers minimal benefits as it barely

changes the system performance by either the precision or F1 metric, so we would

advise against its inclusion in future systems. This was not unexpected, as it is

almost completely redundant when using TPSA, Hydrophobicity, and SASA.

This leave one out validation shows that the features we use are not inde-

pendent; in that case, the performance gaps would be expected to exactly sum

to the total system-wide performance. As a corollary, we can detract from the

performance of the system by employing certain features. For example, using the

standard deviation of hydrophobicities without first normalizing the values reduces

the system performance by almost 20% (by the precision metric). So only the stan-

dard deviation of the weighted hydrophobicity1 is included in our set of features

1Abbreviated as “STDDEV N log p” in Figure 6.6

78

Precision Lost

H Bond Donors 2

H Bond Donors 1

Solvation S

H Bond Acceptors 2

STDDEV log p / SASA

Category

log p or Hydrophobicity

H Bond Acceptors 1

log p / SASA

Rotatable Bonds / atom

SASA

Total Polar Surface Area

Solvation KD

Molar Refractivity

ALL FEATURES
0 0.04 0.08 0.12 0.16

Feature Left Out

Figure 6.6: Classification performance lost (precision lost) of the pipeline using a
Random Forest where the labeled feature is left out. The higher values show the
strongest contributors. Average of 5 trials over first half of the easy dataset using
a Random Forest with 21 trees.

which is the first use of this feature in this problem and we have shown that it

is a very strong feature. The other feature that we have introduced, Normalized

Hydrophobicity (log p / SASA), also demonstrates considerable utility in this

problem.

6.3 Boosting Analysis

Figures 6.7 and 6.8 show the performance of boosting on Random Forests. Early

stopping is a method where boosting stops after an individual member of the

79

●

●

●

●

◆

◆

◆ ◆

◆

◆

■

■

■ ■

■
■

▲

▲

▲

▲

1 11 21 31 41 51
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Number of Trees

F1

! L = 25 Test
! ES Test
! L = 10 Test
! L = 50 Test

Figure 6.7: Classification performance (F1) vs. number of trees in the boosted
random forest. Average of 10 trials. Train vs. Test selected to be opposite halves
of the easy dataset. L is the number of iterations, ES means early stopping, n = 46
is segmented region size.

ensemble correctly classifies all of the training examples. In many cases this is

with the number of iterations being L = 2 or L = 3 and in virtually every case

L ≤ 5. The testing and training sets were chosen arbitrarily to be the first half and

second half of the easy dataset (listed in Appendix A). Each data point represents

an average of 10 trials on the same clustering (region size n = 46), so only the

training of the Random Forests varies.

It should be clear that the choice of the number of trees, t, for the optimal

boosted Random Forest is a difficult one. Is it better to choose for a higher (F1)

number of correct classifications even if that increases our incorrect predictions as

80

●

●

●

●

■ ■ ■

■

◆ ◆

◆

◆

●

●

●

●

1 11 21 31
0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Number of Trees

Pr
ec

is
io

n

! ES Test
! L = 25 Test
! L = 50 Test
! L = 10 Test

Figure 6.8: Classification performance (precision) vs. number of trees in each
forest in the boosted random forest. Average of 10 trials. Train vs. Test selected
to be opposite halves of the easy dataset. L is the number of iterations, ES means
early stopping, n = 46 is segmented region size.

well? Or is it better to focus on small sets of highly correct predictions (Precision)

with the tradeoff of under-prediction? Seeing that in Figure 6.7 all of the boosting

rounds except early stopping perform almost identically at t = 21, which shows

that this choice promises a certain stability. We also know that increasing the

rounds of boosting should slowly reduce testing error, so choosing a point where

the most rounds has the lowest test error is also likely to be indicative of a good

choice. However, it is also difficult to ignore the early stopping case which performs

very well with t = 1 which is very similar to traditional boosting.

Boosting is also applied to codebook learning inspired by the work presented in

81

■

■
■

■◆
◆

◆

◆
●

●

●

●

1 11 21 31
0.000

0.005

0.010

0.015

0.020

0.025

0.030

Number of Trees

F1

! ES Test
! L = 25 Test
! L = 10 Test

Figure 6.9: Classification performance vs. number of trees in the boosted Code-
book. Average of 10 trials. Train vs. Test selected to be opposite halves of the
easy dataset. L is the number of iterations, ES means early stopping, n = 46 is
segmented region size. Codewords: k = 15.

Zhang et al.[84]. However, with larger number of boosting rounds training becomes

impossible because the weights focus on the hardest cases which eventually become

a set of non-separable classes. See Figure 6.9 to see the effectiveness of boosting. In

this case, choosing the number of trees to be t = 21 is a far more obvious choice. It

is also worth noting how the peak value in this result compares to Figure 6.7 where

it handily beats every data point except the early stopping case. This validates the

use of this more complex learning paradigm as it manages to pull out additional

structure from the training data. The sensitivity to the number of boosting rounds

is due to the small size of the dataset.

82

6.4 Illustrated Results

Every training run results in highly variable results. This implies that the data

doesn’t support a strong classification which is well supported in the literature.

Given the instability of classification and the need to search parameters, the results

included here allow for a sense of what the system is capable of accomplishing.

What we show here is that in many cases the correct result is mixed in with

false predictions. This shows that we can reduce the search space towards the

interface location in many cases (Same point as shown in Figure 2.3 comparing

the best possible result at each stage). Since the segmentation is different every

time we run the software these values for Precision and F1 are just one pass using

the resultant classifier. It will perform differently between runs (although more

similarly than re-training the classifier).

RF RFE CB CBE

t = 11 ES, t = 21 t = 21, k = 15 t = 21, ES, k = 16

Precision 0.0697 0.0502 0.0464 0.0502

F1 0.0107 0.0222 0.0040 0.0248

Localized Interface 94/232 113/232 44/232 26/232

Easy

Localized Interface 48/102 37/102 38/102 21/102

Med/Hard

Figure 6.10: Results trained on all data. RF = Random Forest, RFE = Random
Forest Ensemble, CB = Codebook, CBE = Codebook Ensemble. Used t trees, k
codewords, and ES means early stopping during boosting.

Figure 6.10 shows the overall results for four different training runs (one for each

83

type of classifier). This shows the tradeoff between methods: do you pick a higher

precision or a higher F1? What we see is that the un-boosted classifiers perform

considerably lower when looking at the F1 score. This is because the boosting

cases made more predictions (due to Early Stopping). If you disable early stopping

then the boosted methods drastically under predict, in many cases making zero

predictions given enough boosting rounds. This more clearly illustrates that the

features are not a strong enough set to solve this problem.

Let’s take the idea of precision one step farther. Since it is the ratio of true

positives to false positives, a value of 1 would mean every prediction correctly

finds part of the protein interface. Since we achieve in the best cases of about

0.05-0.1, that means that we are correct in localizing the interface in

about 5-10% of our predictions. This is a good way to compare these results

to other methods. Recall the state of the art in protein docking (the other half of

this problem) is currently upper bounded by a success rate of about 10%. We’ve

achieved results that are on par with other methods. Also other works (such as

Assi et al.[4]) have focused on identifying critical sub-regions of protein interfaces

(aka “hot-spots”), which is what we have also achieved in our predictions. We can

narrow the possible interactive sites down from thousands of areas to a few regions

with definite certainty in the cases where this system makes a prediction.

Figure 6.11 shows the value of multiple scales. It depicts the difference between

all predictions and a threshold (atom by atom) requiring at least 2 votes. In most

cases this threshold increases our confidence in a specific considerably. We did

not measure this directly, in part because not enough regions received multiple

84

votes from any given classifier. Note that the random forest was the classifier that

generally produced the most predictions.

Figure 6.12 shows an example segmentation by the four classification methods

discussed in the previous chapter. It is worth noting that on the right are the

boosted variants show a much more conservative segmentation. We observe this

in every testing run which illustrates the boosting benefit of avoiding over-fitting.

It is especially clear in the boosted random forest case where the difference is

that multiple regions get 4/10 votes with the random forest, but only a single

region gets a single vote in the boosted case. Interestingly, the variation between

a single codebook and the boosted version tends to be minimal. This result is

better than most because it doesn’t identify any region that doesn’t include at

least one interface atom and regardless of the classification method it localized the

interface. This level of performance should be attainable for most structures. The

next chapter discusses the extensions that could lead to this goal.

85

Figure 6.11: Results using a boosted random forest (detailed in Figure 6.10). Left
shows all predictions with at least one vote and the right shows atoms that received
at least two votes. This demonstrates the value of the multiple scale analysis.
Green means over prediction, red correct, and blue under prediction. (2VDB 2)

86

Boost

RF

CB

Figure 6.12: From left to right, top to bottom the different segmentations by a Ran-
dom Forest, Boosted Random Forest, Codebook, Boosted Codebooks. The pre-
dicted interface is colored in red (correct prediction) and green (over-prediction),
under-predicted interface is in blue. Brighter colored red or green reflects addi-
tional votes (higher confidence). This example used 21 trees, k = 16 codewords,
and L = 10 boosting rounds, trained on all data. (3CPH 2)

87

6.5 Multiple Scale Analysis System Summary

We can illustrate the performance of this system using a receiver operating charac-

teristic (ROC) curve, by tuning the decision threshold on the classifiers. To demon-

strate this, we use the basic Random Forest where the typical decision threshold

is a majority vote of the constituent trees. In the case of a 21 tree Random Forest

this means at least 11 trees must agree on a given classification. However, it is

possible to tune this threshold to increase the confidence of a prediction. Often

the operating point, the threshold in this case, is chosen to be when recall equals

precision. This assumes that the cost of a False Positive is equal to the cost of a

False Negative, which is not true in this case. For the interface prediction problem,

it is much more important to avoid False Positives as they increase the error in

the docking prediction problem when used as initial guesses.

Figure 6.14 shows the ROC curve for the Random Forest classifier and high-

lights the chosen operating point. We chose the majority vote threshold as it

offers the highest number of correct predictions while maintaining more than a

5-fold margin on the cost of a False Positive to a False Negative. Intuitively, given

that the size of an interface is 10-30% of the surface atoms2, if we predict all of

the interface atoms and the atoms nearby we have selected very roughly about

20% of the atoms incorrectly (False Positive) and would have achieved 100% True

Positives which is a simple 5-fold ratio. Since we are classifying regions with

the Random Forest, this is a possible outcome. However, it hides some of the

2Counted by residue. This includes atoms outside of the 6Å interaction zone that are part
of a residue that contains an interacting atom, or true interface atom.

88

complexity regarding the number of segmentation levels. This assumes that any

positive prediction for a region automatically designates its component atoms as

“interface.” This need not be the case.

Figure 6.15 shows the impact of increasing the number of times an atom must

be predicted as “interface” (up to 10 times given 10 segmentation levels). We illus-

trate that using a higher threshold in the merge stage allows for higher confidence

predictions at the expense of the number of predictions. For this threshold we

chose 1 or more votes as the operating point because the number of predictions

becomes too sparse, typically only one interface in the whole dataset is identified

when increasing this threshold.

Complexes 167

Average molecule size 3826 atoms

2-Class problem Binary “Interface”

(per atom)

True Positive % 3.1382 %

False Positive % 0.6075 %

RF Operating Point 0.5 (majority vote)

Operating Point # of atoms

True Positive 9,876

False Positive 63,184

True Negative 12,366,167

False Negative 340,222

Figure 6.13: Multiple Scale Analysis System Summary. Sample results using a
Random Forest with 21 trees.

89

!

!!

!

!

!
!

!
!
!!
!

!

0.00 0.02 0.04

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

False Positive Fraction

T
ru

e
Po

si
ti

ve
 F

ra
ct

io
n

!

!

!

!

!

!

!

!
!

!

!!
!!!!!!!!!

!

0.0 0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

False Positive Fraction

T
ru

e
Po

si
ti

ve
 F

ra
ct

io
n

Figure 6.14: ROC curve showing the tradeoff for different thresholds in the Random
Forest for making a prediction. The red dot indicates the chosen operating point
for a Random Forest (t = 21). This point is the majority vote threshold. The
lower curve is a zoom of the top curve. One run using first half of easy dataset.

90

!

!

!
!
!

0.000 0.002 0.004 0.006 0.008
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

False Positive Fraction

T
ru

e
Po

si
ti

ve
 F

ra
ct

io
n

(1+)

(2+)

(5+)

Figure 6.15: ROC curve showing the tradeoff for different thresholds for how many
segmentation levels an atom needs to be identified in to be predicted as an interface
atom. As there are 10 segmentation levels, a single atom can get up to 10 votes.
Average of 5 trials using first half of easy dataset. The operating point is 1+ votes
which produces less than 1% false positives.

91

6.6 CAPRI Targets

6.6.1 28th Round

Target 59 is a complex between the LSm domain of the fission yeast Edc3 and

ribosomal protein Rps28b. The target is a gift of Dr. Remco Sprangers (Max

Planck Institute for Developmental Biology, Tubingen, Germany). The coordinates

used are for NMR model 1 of entries 4A53 (Edc3) and 1NE3 (a homolog of Rps28b).

In collaboration with Dr. Victor Hsu and Hari Caushik3 we submitted complexes

predicted using our predictions with HADDOCK.

Using only the first 13 features (no complex interaction type), we found results

illustrated in Figures 6.17 & 6.18. Of the 10 predictions we submitted we used

different key sites between runs based on the different predictions from our classi-

fiers. The reason for this manual action is that in very few cases did the predictors

agree. The only case that had multiple agreements was on the tip of Rps28b, see

Figure 6.16.

We also submitted predictions for four protein-peptide interactions (not shown).

Results from this event are expected later in 2013.

3Oregon State Univerisity

92

Figure 6.16: CAPRI Round 28 - Target 59 (Rps28b). Green shows predicted
interface regions (not merged) using a Random Forest with 11 trees, trained on
the easy dataset.

93

CB/CBE

CB

Figure 6.17: CAPRI Round 28 - Target 59 (Edc3). Green shows predicted interface
regions (not merged). Top: Codebook prediction using 11 trees, k = 15, trained
on the easy dataset. Bottom: Codebook and Boosted Codebook prediction using
21 trees, k = 15, trained on all data.

94

RFE

HADDOCK

Figure 6.18: CAPRI Round 28 - Target 59 (Edc3). Green shows predicted inter-
face regions (not merged). Red shows the final interface and structure as predicted
by HADDOCK using a subset of predictions from this figure and previous figure.
Top: Boosted Random Forest with 21 trees, L = 10 boost iterations, trained on
all data. Bottom: Top ranked interface using HADDOCK score (notice conforma-
tional change is predicted because the shape has changed from the original model).

95

6.6.2 Previous Target

Here is the most recent CAPRI Target (#58) with published results (2013): PliG

/SalG lysozyme complex with SAXS data aka 4G9S[7]. Figure 6.19 shows the best

results we can achieve using the same classifiers (same training run) we used for our

predictions on Target 59. We think that it is interesting that the prediction on the

right side circles the interface. This suggests that something around the site might

be contributing to the interface. In the future it might be worth investigating

if using more interface “edge” information might increase our ability to find an

interface.

Figure 6.19: CAPRI Target 58[7]. Results on left using boosted random forest.
Results on right using codebook. (4G9S) Classifiers trained on all data, same as
used in Figures 6.17 & 6.18

96

Chapter 7: Conclusion

Predicting protein interactions is an extremely challenging problem. The facet

addressed in this work, identifying protein interfaces, is a key step to solving a

biological process that nature ensures functions perfectly. Since these mechanisms

function at every moment in every living organism, it should be a computationally

solvable problem. This presents great opportunity, and in this field of study, the

desire for success is so great that both demonstrations of methods that do not

work and of those that do are considered of particular interest to the scientific

community. The work presented in the previous chapters demonstrate entirely

new results that extend the knowledge in this field.

7.1 Contributions

Overall this paper constitutes a meaningful set of contributions to both the dis-

ciplines of Computer Science and Biophysics. This research combines multiple

techniques that have not been investigated in concert within this problem space

previously.

We have presented two novel methods for addressing the protein interface pre-

diction problem. In Chapter 4 we demonstrated that atomic level information

merged with residue information was not enough to produce results beyond the

97

state of the art using a single class SVM. This suggested a number of extensions

that were pursued to improve our results. The multiple scale analysis, articulated

in Chapter 5, makes significant contributions to the field and produces competitive

results. This approach also led to an entry to the 28th Round of the CAPRI event.

This work presents a first for each of the following items.

1. New segmentation method that eliminates a priori bias. Prior methods

depended on residue-level segmentations which is shown to be misleading

in solving this problem. We also highlight the range of potentially optimal

patch sizes.

2. Dynamic property computations. For each segmented region we determine

properties including some that have not been employed previously. We also

include new meta features.

3. First use of codebooks for this problem. We show that codebooks are able

to find additional structure in the data.

4. First use of boosting in this problem. We show that boosting improves the

confidence of localizing an interface at the expense of under-prediction.

5. Employed and contrasted a variety of ensemble learning methods, including

random forests which display positive characteristics for this problem.

6. Submitted protein docking predictions to the CAPRI event by combining

results from this work with the HADDOCK software.

7. Created an integrated and modular prediction system that matches other

top performers on this problem by identifying critical regions within inter-

faces.

98

8. Presented (in the next section) a set of actionable extensions to the multiple

scale analysis pipeline that could improve results.

Prior work typically formulates this problem as a single question of “What is

the docking interface for a complex?” This paper argued that the problem is actu-

ally a two-tier question. We have demonstrated that by focusing on the interface

prediction tier that we can elucidate critical portions of the interface in many cases

which would improve results in docking simulation systems, such as HADDOCK.

Our system produces results that are different than any existing system which em-

phasizes our contribution to the field as our work generates orthogonal predictions

that can improve consensus driven docking (recall the state of the art driven by

a consensus in Figure 2.3). Ultimately, our system has the following advantages

over other top performers:

• Speed - Near-realtime (under 30 seconds) compared to the hours for most

other systems. Also can benefit from newly solved complexes with a simple

retraining.

• Modularity & extensibility (see next section)

• No requirements for expert-definitions since machine learning optimizes pa-

rameters automatically, unlike other “hot-spot” predictors (i.e.[4]).

• Can be leveraged to improve existing restraint-based docking simulators by

predicting the critical regions of an interface since there is a very low false

positive rate.

• No a priori bias on interface location.

Given the extraordinary difficulty of this problem it is important to continue

99

to pursue novel ideas. While this work explored every avenue to achieve the best

results, there are a few small adaptations that could be explored in the future

thanks to the modularity of this system. In that vein, the next section details

some possible avenues for future research.

7.2 Extensions to Multi-Scale Analysis

The first place to improve this work would be to incorporate additional data by

harvesting homodimer/multimer complexes. If we assume that all types of docking

provide information there are possibly hundreds of additional data points that

could be leveraged to improve this process. Some researchers do include this data

to increase their available training data.

7.2.1 Segmentation

We found that the segmentation using k-means++ is generally stable, so repetitive

over-segmentation, a desirable action, is not feasible. A more principled segmen-

tation could drastically improve results. Spectral clustering could create more

geometrically relevant clusterings. Also, by looking at the set of atoms in an in-

terface it resembles a set of polka-dots which suggests that creating regions that

are not contiguous might be able to better align to the physical reality. This could

be achieved by computing a larger form of surface accessibility: instead of using

the radius of a water molecule, using a sphere 2-3 times larger would allow for the

100

emphasis of the primary surface actors.

7.2.2 Features

Additional features are required to increase this system’s ability to identify inter-

faces. One area for including more features would be to include more versions of

the hydrophobicity calculations. These are empirically derived values and there

are many different versions published by researchers. Secondly, although confor-

mational changes can make initial shape less relevant to the final complex, shape

is a part of this problem that should be considered. There are many ways to de-

fine shape; typically a FFT is applied (i.e. over a spherical volume). In the 2D

case this is a texture descriptor for image analysis. This suggests that a similar

effort could be a useful feature in this problem. Other shape feature that could be

adapted include aspect, waviness, etc. Finally as discussed previously, a gradient

meta feature for the current features could be incorporated. Ideas like a Histogram

of Gradients (HOG) are commonly used in image processing and are an obvious

place for adaptation to this problem.

Outside of the pipeline to predict interfaces without knowing the opposite actor,

inter-molecular propensities is an area that has been highly studied and could be

incorporated in a second pass. In the same spirit there is also some existing work

on intra-molecular propensities that could be specifically included (as opposed to

hoping that the learning system identifies these correlations).

101

7.2.3 Classification

Classification methods allow for almost limitless improvements. Below are some

“low hanging fruit” for variations worth investigating and ideas that showed up

when reading related literature.

Random Forest: Since we found a large instability in the output of the random

forests1, either the set of features was too weak or that the randomness inserted

was not well utilized. One way to address this problem would be to use a different

split criteria, the gini coefficient used can be foiled in cases where there are too few

options. Since this method used too few features, the split choice could have been

too limiting. One alternate heuristic for splitting is called ReliefF that improves

the detection of correlational dependencies between features.[88, 89] (Recall we

claim these exist based on the results from the application of Codebooks.)

Codebooks: The first place to improve this classifier would be to employ spectral

clustering or Gaussian Mixture Modeling instead of kmeans++. Both of these

methods can result in better approximations of the feature space, which is difficult

to manually determine.

The version of codebook learning used in this work is actually a simplification of

the typical approach. A modification of the pipeline to add an agglomerative phase

to create “bags” would transform this method into something more reminiscent of

traditional codebook learning. In this extension, you could then implement features

1Larger than is typical or desirable for this learner.

102

as tf-idf (term-frequency inverse-document-frequency, see Zhang et al.) instead of

as a distance metric.

Boosting: AdaBoost, the version of boosting implemented in this work, is the

standard “first pass” method for incorporating boosting. However, there are many

other versions that have been shown to improve upon this version, among them

gradient boosting can perform significantly better.

Additionally, boosting could be applied to SVMs. Boosting SVMs is also a

successful paradigm as SVMs are some of the best classifiers. We could incorporate

the single class SVM into boosting and perhaps see more stable results than the

random forest classifier.

7.3 So long, and thanks for all the fish

This document presented a set of contributions that extend the field of protein

docking prediction. Our method is naturally collaborative, as it focuses on provid-

ing key insight, the interface location, to existing models and methods (including

HADDOCK). In creating an orthogonal methodology, the consensus in protein

docking is improved by this work.

103

Bibliography

[1] J. Janin, “Assessing predictions of protein-protein interaction: The CAPRI
experiment,” Protein Science, 2005. http://www.ebi.ac.uk/msd-srv/capri

[2] S. J. de Vries and A. M. Bonvin, “How proteins get in touch: Interface predic-
tion in the study of bio-molecular complexes,” Current Protein and Peptide
Science, 2008.

[3] S. Vajda and D. Kozakov, “Convergence and combination of methods in
protein-protein docking,” Current Opinion in Structural Biology, 2009.

[4] S. A. Assi, T. Tanaka, T. H. Rabbitts, and N. Fernandez-Fuentes, “PCRPi:
Presaging critical residues in protein interfaces, a new computational tool to
chart hot spots in protein interfaces,” Nucleic Acids Research, 2010.

[5] R. Mendez, R. Leplae, L. De Maria, and S. Wodak, “Assessment of blind pre-
dictions of protein-protein interactions: current status of docking methods.”
Proteins, 2003.

[6] S. J. de Vries and A. M. J. J. Bonvin, “CPORT: A consensus interface pre-
dictor and its performance in prediction-driven docking with HADDOCK.”
PLoS ONE 6(3): e17695., 2011.

[7] S. Leysen, L. Vanderkelen, S. Weeks, C. Michiels, and S. Strelkov, “Structural
basis of bacterial defense against g-type lysozyme-based innate immunity,”
Cellular and Molecular Life Sciences, 2013.

[8] R. Unger and J. Moult, “Finding the lowest free energy conformation of a pro-
tein is an np-hard problem: Proof and implications,” Bulletin of Mathematical
Biology, 1993.

[9] B. Sadjad and Z. Zsoldos, “Toward a robust search method for the protein-
drug docking problem.” IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 2011.

104

[10] K. Dukka Bahadur, E. Tomita, J. Suzuki, and T. Akutsu, “Protein side-
chain packing problem: a maximum edge-weight clique algorithmic approach.”
Journal of Bioinformatics and Computational Biology, 2005.

[11] K. Wüthrich, NMR of Proteins and Nucleic Acids. Wiley, New York, 1986.

[12] J. C. Kendrew, G. Bodo, H. M. Dintzis, R. G. Parrish, and H. Wyckoff,
“A three-dimensional model of the myoglobin molecule obtained by x-ray
analysis.” Nature, 1958.

[13] Y. Zhang and Z. Xu, “Atomic radii of noble gas elements in condensed phases,”
American Mineralogist, 1995.

[14] O. Lichtarge, H. Bourne, and F. Cohen, “An evolutionary trace method defines
binding surfaces common to protein families.” Journal of Molecular Biology,
1996.

[15] I. Mihalek, I. Res, and O. Lichtarge, “A family of evolution-entropy hybrid
methods for ranking protein residues by importance,” Journal of Molecular
Biology, 2004.

[16] S. Madabushi, H. Yao, M. Marsh, D. Kristensen, A. Philippi, M. Sowa, and
O. Lichtarge, “Structural clusters of evolutionary trace residues are statis-
tically significant and common in proteins.” Journal of Molecular Biology,
2002.

[17] D. Caffrey, S. Somaroo, J. Hughes, J. Mintseris, and E. Huang, “Are protein-
protein interfaces more conserved in sequence than the rest of the protein
surface?” Protein Science, 2004.

[18] I. Kufareva, L. Budagyan, E. Raush, M. Totrov, and R. Abagyan, “Pier:
protein interface recognition for structural proteomics.” Proteins, 2007.

[19] Y. Ofran and B. Rost, “Proteinprotein interaction hotspots carved into se-
quences,” Journal of Molecular Biology, 2003.

[20] H. Zhou and S. Qin, “Interaction-site prediction for protein complexes: a
critical assessment.” Bioinformatics, 2007.

[21] K. Wiehe, B. Pierce, W. Tong, H. Hwang, J. Mintseris, and Z. Weng, “The
performance of ZDOCK and ZRANK in rounds 6-11 of CAPRI.” Proteins,
2007.

105

[22] D. Kozakov, R. Brenke, S. Comeau, and S. Vajda, “PIPER: an FFT-based
protein docking program with pairwise potentials,” Proteins, 2006.

[23] D. Schneidman-Duhovny, R. Nussinov, and H. Woldson, “Automatic predic-
tion of protein interactions with large scale motion,” Proteins, 2007.

[24] N. Kowalsman and M. Eisenstein, “Inherent limitations in protein-protein
docking procedures,” Bioinformatics, 2007.

[25] J. Gray, S. Moughon, C. Wang, O. Schueler-Furman, B. Kuhlman, and
D. Baker, “Protein-protein docking with simultaneous optimization of rigid-
body displacement and side-chain conformations,” J Mol Biol, 2003.

[26] J. Fernandex-Recia, M. Totrov, and R. Abagyan, “ISM-DISCO docking by
global energy optimization with fully flexible side-chains.” Proteins, 2003.

[27] C. Dominguez, R. Boelens, and A. M. Bonvin, “HADDOCK: a protein-
protein docking approach based on biochemical and/or biophysical informa-
tion.” Journal of the American Chemical Society, 2003.

[28] S. J. de Vries, A. D. J. van Dijk, M. Krzeminski, M. van Dijk, A. Thureau,
V. Hsu, T. Wassenaar, and A. M. J. J. Bonvin, “Haddock versus haddock:
New features and performance of haddock2.0 on the capri targets,” Proteins,
2007.

[29] I. Res, I. Mihalek, and O. Lichtarge, “A structure and evolution-guided monte
carlo sequence selection strategy for multiple alignment-based analysis of pro-
teins.” Bioinformatics, 2005.

[30] A. J. Bordner and R. Abagyan, “Statistical analysis and prediction of protein-
protein interfaces,” PROTEINS: Structure, Function, and Bioinformatics,
2005.

[31] H. Neuvirth, R. Raz, and G. Schreiber, “Promate: a structure based predic-
tion program to identify the location of protein-protein binding sites.” Journal
of Molecular Biology, 2004.

[32] H. Chen and H. Zhou, “Prediction of interface residues in protein-protein
complexes by a consensus neural network method: test against nmr data.”
Proteins, 2005.

106

[33] J. Bradford, C. Needham, A. Bulpitt, and D. Westhead, “Insights into protein-
protein interfaces using a bayesian network prediction method.” Journal of
Molecular Biology, 2006.

[34] J. Bradford and D. Westhead, “Improved prediction of protein-protein binding
sites using a support vector machines approach.” Bioinformatics, 2005.

[35] F. Pettit, E. Bare, A. Tsai, and J. Bowie, “Hotpatch: a statistical approach to
finding biologically relevant features on protein surfaces.” Journal of Molecular
Biology, 2007.

[36] A. Porollo and J. Meller, “Prediction?based fingerprints of proteinprotein in-
teractions,” Proteins, 2007.

[37] Y. Ofran and B. Rost, “Proteinprotein interaction hotspots carved into se-
quences.” Bioinformatics, 2007.

[38] H. Zhou and Y. Shan, “Prediction of protein interaction sites from sequence
profile and residue neighbor list.” Proteins, 2001.

[39] B. Wang, P. Chen, D.-S. Huang, J. jing Li, T.-M. Lok, and M. R. Lyu,
“Predicting protein interaction sites from residue spatial sequence profile and
evolution rate,” FEBS Letters 580, 2005.

[40] B. Wang, H. Wong, and D. Huang, “Inferring protein-protein interacting sites
using residue conservation and evolutionary information.” Protein Peptide
Letters, 2006.

[41] A. Koike and T. Takagi, “Prediction of proteinprotein interaction sites using
support vector machines.” Protein Eng. Des. Sel., 2004.

[42] J. Chung, W. Wang, and P. Bourne, “Exploiting sequence and structure ho-
mologs to identify protein-protein binding sites.” Proteins, 2006.

[43] Q. Dong, X. Wang, L. Lin, and Y. Guan, “Exploiting residue-level and profile-
level interface propensities for usage in binding sites prediction of proteins.”
BMC Bioinformatics, 2007.

[44] O. Martin and D. Schomburg, “Efficient comprehensive scoring of docked pro-
tein complexes using probabilistic support vector machines,” Proteins, 2008.

107

[45] J. R. Bradford, C. J. Needham, A. J. Bulpitt, and D. R. Westhead, “Insights
into protein-protein interfaces using a bayesian network prediction method,”
Journal of Molecular Biology, 2006.

[46] M.-H. Li, L. Lin, X.-L. Wang, and T. Liu, “Protein-protein interaction site
prediction based on conditional random fields,” Bioinformatics, 2007.

[47] S. J. de Vries and A. M. J. J. Bonvin, “Intramolecular surface contacts contain
information about protein-protein interface regions,” Bioinformatics, 2006.

[48] C. J. van Rijsbergen, Information Retrieval. Butterworth-Heinemann, 1979.
http://www.dcs.gla.ac.uk/Keith/Preface.html

[49] S. Hubbard and J. Thornton, “NACCESS,” 1993, [Computer Program]. De-
partment of Biochemistry and Molecular Biology, University College London.

[50] B. Lee and F. Richards, “The interpretation of protein structures: estimation
of static accesibility.” Journal of Molecular Biology, 1971.

[51] A. Brunger, P. Adams, G. Clore, W. DeLano, P. Gros, R. Grosse-Kunstleve,
J. Jiang, J. Kuszewski, M. Nilges, N. Pannu, R. Read, L. Rice, T. Simonson,
and G. Warren, “Crystallography & NMR system (CNS): A new software suite
for macromolecular structure determination.” Acta Crystallographia Section
D: Biological Crystallography, 1998.

[52] H. Hwang, B. Pierce, J. Mintseris, J. Janin, and Z. Weng, “Protein-protein
docking benchmark version 3.0,” Proteins, 2008.

[53] H. Hwang, T. Vreven, J. Janin, and Z. Weng, “Protein-protein docking bench-
mark version 4.0,” Proteins, 2010.

[54] F. Armougom, S. Moretti, V. Keduas, and C. Notredame, “The iRMSD: a
local measure of sequence alignment accuracy using structural information.”
Bioinformatics, 2006.

[55] K. Pearson, “On lines and planes of closest fit to systems of points in space,”
Philosophical Magazine, 1901.

[56] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, pp. 273–297, 1995.

108

[57] G. Trinquier and Y. Sanejouand, “Which effective property of amino acids is
best preserved by the genetic code?” Protein Engineering, 1998.

[58] “OpenCV,” [Computer Program]. http://opencv.org/

[59] “Scalable library for eigenvalue problem computations,” [Computer Program].
http://www.grycap.upv.es/slepc/

[60] “Portable, extensible toolkit for scientific computation,” [Computer Program].
http://www.mcs.anl.gov/petsc/

[61] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector machines,”
ACM Transactions on Intelligent Systems and Technology, 2011.

[62] N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, and
G. R. Hutchison, “Open babel: An open chemical toolbox,” Journal of Chem-
informatics, 2011.

[63] S. P. Lloyd, “Least squares quantization in pcm,” IEEE Transactions on In-
formation Theory, 1982.

[64] D. Titterington, A. Smith, and U. Makov, Statistical Analysis of Finite Mix-
ture Distributions. Wiley, 1985.

[65] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis and
an algorithm,” in Advances in Neural Information Processing Systems (NIPS).
MIT Press, 2001, pp. 849–856.

[66] A. Radhakrishna, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk.,
“SLIC Superpixels compared to state-of-the-art superpixel methods.” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2012.

[67] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful seed-
ing,” SODA ’07 Proceedings of the eighteenth annual ACM-SIAM symposium
on Discrete algorithms, 2007.

[68] L. Wesson and D. Eisenberg, “Atomic solvation parameters applied to molec-
ular dynamics of proteins in solution,” Protein Science, 1992.

[69] T. Masuda, T. Jikihara, K. Nakamura, A. Kimura, T. Takagi, and H. Fu-
jiwara, “Introduction of solvent-accessible surface area in the calculation of
the hydrophobicity parameter log p from an atomistic approach,” Journal of
Pharmaceutical Sciences, 1997.

109

[70] A. Sarkar and G. E. Kellogg, “Hydrophobicity - shake flasks, protein folding
and drug,” Curr Top Med Chem, 2010.

[71] S. A. Wildman and G. M. Crippen, “Prediction of physicochemical parameters
by atomic contributions,” Journal of Chemical Information and Modeling,
vol. 39, no. 5, pp. 868–873, 1999.

[72] V. Gillet, P. Willett, and J. Bradshaw, “Identification of biological activ-
ity profiles using substructural analysis and genetic algorithms.” Journal of
Chemical Information and Computer Sciences, 1998.

[73] P. Ertl, B. Rohde, and P. Selzer, “Fast calculation of molecular polar sur-
face area as a sum of fragment-based contributions and its application to the
prediction of drug transport properties,” Journal of Medical Chemistry, 2000.

[74] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5-32,
2001.

[75] T. Sharp, “Implementing decision trees and forests on a gpu,” Computer Vi-
sion - ECCV 2008, 2008.

[76] L. Breiman, “Bagging predictors.” Machine Learning, vol. 26(2), 123-140,
1996.

[77] L. Breiman, J. Friedman, C. J. Stone, and R. Olshen, Classification and Re-
gression Trees. Belmont, California: Wadsworth Inc., 1984.

[78] T. M. Oshiro, P. S. Perez, and J. A. Baranauskas, “How many trees in a ran-
dom forest?” in Machine Learning and Data Mining in Pattern Recognition,
2012.

[79] L. Yang, “Distance metric learning: A comprehensive survey,” Michigan State
University, Tech. Rep., 2006.

[80] E. Xing, A. Y. Ng, M. Jordan, and S. Russell, “Distance metric learning, with
application to clustering with side-information,” Advances in Neural Informa-
tion Processing Systems (NIPS), 2003.

[81] P. Smyth, “Model selection for probabilistic clustering using cross-validated
likelihood,” University of California, Irvine, Tech. Rep., 1998.

110

[82] R. Tibshirani, G. Walther, and T. Hastie, “Estimating the number of clusters
in a data set via the gap statistic,” Journal of the Royal Statistical Society:
Series B, 2001.

[83] E. Levine and E. Domany, “Resampling method for unsupervised estimation
of cluster validity,” Neural Computation, 2001.

[84] W. Zhang, A. Surve, X. Fern, and T. Dietterich, “Learning non-redundant
codebooks for classifying complex objects,” International Conference on Ma-
chine Learning (ICML), 2009.

[85] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line
learning and an application to boosting,” 1995.

[86] Y. Freund and R. E. Schapire, “Experiments with a new boosting algorithm,”
Machine Learning: Proceedings of the Thirteenth International Conference,
pp. 148–156, 1996.

[87] Z. Kalal, J. Matas, and K. Mikolajczyk, “Weighted sampling for large-scale
boosting,” British Machine Vision Conference, 2008.

[88] M. Robnik-Sikonja and I. Kononenko, “Theoretical and empirical analysis of
ReliefF and RReliefF,” Machine Learning Journal, 2003.

[89] M. Robnik-Sikonja, “Improving random forests,” Machine Learning, ECML,
2004.

111

APPENDICES

112

Appendix A: List of Protein Data

Benchmark v4

1A2K, 1AHW, 1AK4, 1AKJ, 1AVX, 1AY7, 1AZS, 1B6C, 1BJ1, 1BUH, 1BVK,

1BVN, 1CGI, 1CLV, 1D6R, 1DFJ, 1DQJ, 1E6E, 1E6J, 1E96, 1EAW, 1EFN,

1EWY, 1EZU, 1F34, 1F51, 1FC2, 1FCC, 1FFW, 1FLE, 1FQJ, 1FSK, 1GHQ,

1GL1, 1GLA, 1GPW, 1GXD, 1H9D, 1HCF, 1HE1, 1HIA, 1I4D, 1I9R, 1IQD, 1J2J,

1JPS, 1JTG, 1JWH, 1K4C, 1K74, 1KAC, 1KLU, 1KTZ, 1KXP, 1KXQ, 1MAH,

1ML0, 1MLC, 1N8O, 1NCA, 1NSN, 1OC0, 1OFU, 1OPH, 1PPE, 1PVH, 1QA9,

1QFW, 1R0R, 1RLB, 1RV6, 1S1Q, 1SBB, 1T6B, 1TMQ, 1UDI, 1US7, 1VFB,

1WDW, 1WEJ, 1XD3, 1XU1, 1Z0K, 1Z5Y, 1ZHH, 1ZHI, 2A5T, 2A9K, 2ABZ,

2AJF, 2AYO, 2B42, 2B4J, 2BTF, 2FD6, 2FJU, 2G77, 2HLE, 2HQS, 2I25, 2J0T,

2JEL, 2MTA, 2O8V, 2OOB, 2OOR, 2PCC, 2SIC, 2SNI, 2UUY, 2VDB, 3BP8,

3D5S, 3SGQ, 4CPA, 7CEI //END OF EASY 116

1ACB, 1ATN, 1BGX, 1BKD, 1DE4, 1E4K, 1EER, 1F6M, 1FAK, 1FQ1, 1GP2,

1GRN, 1H1V, 1HE8, 1I2M, 1IB1, 1IBR, 1IJK, 1IRA, 1JIW, 1JK9, 1JMO, 1JZD,

1K5D, 1KKL, 1LFD, 1M10, 1MQ8, 1NW9, 1PXV, 1R6Q, 1R8S, 1SYX, 1WQ1,

1XQS, 1Y64, 1ZLI, 1ZM4, 2C0L, 2CFH, 2HMI, 2HRK, 2I9B, 2IDO, 2J7P, 2NZ8,

2O3B, 2OT3, 2OZA, 2Z0E, 3CPH

113

Appendix B: Internal Data

struct Complex

{

// Energies

float tot_energy;

float bond_energy;

float angle_energy;

float improper_energy;

float dihedral_energy;

float vdw_energy;

float tot_intermolecular_energy;

float intermol_vwd_energy;

float intermol_electrostatic_energy;

float desolvation_energy;

float alpha_carbon_RMSD;

// Buried Surface Area

float act_bsa;

float pct_bsa;

float pct_cpx_bsa;

float p1_delta_sa;

float p1_pct_delta_sa;

float p2_delta_sa;

float p2_pct_delta_sa;

// Summed Buried Surface Area

float all_bsa[5];

float tot_bsa[5]; // Sidechain

float main_bsa[5]; // Mainchain

float np_bsa[5]; // Nonpolar

float pol_bsa[5]; // Polar

114

int complex_type; //Eg. enzyme:ligand, antigen:antibody, etc.

int num_nb_contacts; // Nonbonded contacts

};

struct NBC

{

// Nonbonded contact between two atoms in different proteins.

int amino_acid_type[2]; // 20 Types

int amino_acid_polarity[2]; // Polarity rank 1-20 from Trinquier et al 1998.

int amino_acid_charge[2]; // -1, 0, 1

int residue_num[2];

int atom_type[2]; // 40 types (3 are Hydrogens: 60/61/62)

int strand_id[2]; // ? how to scale these numbers?

float residue_dec[2];

float dist; //A

};

struct Atom

{

float x, y, z;

float solvent_access; //A^2

float surface_area;

float vdw_radius; //A

int residue_num; // Use this to index into parent amino acid to get

// that data if needed

float residue_dec;

int atom_type;

float logP; //hydrophobicity

float TPSA; //topological polar surface area

float MR; //molar refractivity

bool HBD;

bool HBD2;

bool HBA1;

bool HBA2;

115

bool PHBD;

int RB;

bool interface;

int votes;

};

struct Residue

{

int strand_id;

int amino_acid_type;

int residue_num; //Self

int polarity_rank;

int charge;

int secondary_struct_element; // 7 Types

// Values go up to about 250?

float all_abs, all_rel;

float tot_abs, tot_rel; //Sidechain

float main_abs, main_rel; //Mainchain

float np_abs, np_rel; //Nonpolar

float pol_abs, pol_rel; //Polar

float residue_dec; //Stange cases where we get 181.1 or whatever

};

116

Appendix C: SMARTS Descriptors

From Wikipedia1:

SMiles ARbitrary Target Specification (SMARTS) is a language for

specifying substructural patterns in molecules. The SMARTS line no-

tation is expressive and allows extremely precise and transparent sub-

structural specification and atom typing.

SMARTS is related to the SMILES line notation that is used to en-

code molecular structures and like SMILES was originally developed

by David Weininger and colleagues at Daylight Chemical Information

Systems. The most comprehensive descriptions of the SMARTS lan-

guage can be found in Daylight’s SMARTS theory manual, tutorial and

examples.

Below are the specific searches that this work uses. For each of these are

are more than one method to specify a query with the named intent. The ones

used are hopefully representative of the desired results. We also attempted to

compute “Possible Intra-molecular Hydrogen Bonds” but this tended to cause stack

overflows on many of the proteins, so it was not included.

1http://en.wikipedia.org/wiki/Smiles arbitrary target specification

117

Number of Hydrogen Bond Donors (HBD) 12

[!#6;!H0]

Number of Hydrogen Bond Donors (HBD) 22

[$([O;H1,-&!$(*-N=O)]),$([S;H1&X2,-&X1]),$([#7;H;!$(*(S(=O)=O)C(F)(F)F);

!$(n1nnnc1);!$(n1nncn1)]),$([#7;-])]

Number of Hydrogen Bond Acceptors (HBA) 12

[$([!#6;+0]);!$([F,Cl,Br,I]);!$([o,s,nX3]);!$([Nv5,Pv5,Sv4,Sv6])]

Number of Hydrogen Bond Acceptors (HBA) 22

[$([$([#8,#16]);!$(*=N~O);!$(*~N=O);X1,X2]),$([#7;v3;!$([nH]);!$(*(-a)-a)])]

Rotatable bond3

[!$(*#*)&!D1]-!@[!$(*#*)&!D1]

An atom which is not triply bonded and not one-connected i.e.terminal con-

nected by a single non-ring bond to and equivalent atom. Note that logical op-

erators can be applied to bonds (”-&!@”). Here, the overall SMARTS consists of

two atoms and one bond. The bond is “site and not ring”. *#* any atom triple

bonded to any atom. By enclosing this SMARTS in parentheses and preceding

with $, this enables us to use $(*#*) to write a recursive SMARTS using that

2http://www.ra.cs.uni-tuebingen.de/software/joelib/tutorial/descriptors/descriptors.html
3http://www.daylight.com/dayhtml tutorials/languages/smarts/smarts examples.html

118

string as an atom primitive. The purpose is to avoid bonds such as c1ccccc1-C#C

which wo be considered rotatable without this specification.

