Inventory of Spawning Habitat Used by Oregon Coastal Fall Chinook Salmon

Brett L. Hodgson Steven E. Jacobs

Ocean Salmon Management Program

Oregon Department of Fish and Wildlife

Funds supplied by:

Pacific Salmon Treaty (administered by the National Marine Fisheries Service), Contract Number NA-57FP0148 (Task 5, Segment 1, Work Project 5).

TABLE OF CONTENTS

INTRODUCTION1
METHODS
SPAWNING HABITAT INVENTORY
SPAWNING DISTRIBUTION SURVEYS
RESULTS
SPAWNING HABITAT SURVEYS
SPAWNING DISTRIBUTION SURVEYS
DISCUSSION
BASIN SUMMARIES
NEHALEM RIVER
Wilson River
SILETZ RIVER
SIUSLAW RIVER
ALSEA RIVER
RECOMMENDATIONS
ACKNOWLEDGMENTS
LITERATURE CITED
APPENDIX A
APPENDIX B
APPENDIX C

INTRODUCTION

Current trends in spawning escapement levels of coastal fall chinook salmon (Onchorynchus tshawytscha) in Oregon suggest that populations of the various north migrating stocks are at healthy levels of abundance. North migrating fall chinook stocks inhabit coastal river basins in Oregon from the Necanicum River south to the Coquille River (Figure 1). The inferred healthy status of these stocks is based upon an index of peak spawner counts derived from the Oregon Department of Fish and Wildlife's (ODFW) annual spawning survey program. A total of 56 standard index surveys (45.8 miles) are monitored on an annual basis to estimate peak escapement levels and stock status trends for north-migrating stocks. Standard surveys are assumed to be representative of fall chinook (ChF) spawning habitat throughout each of these basins, and thus corresponding spawner escapement levels are assumed to be accurate. However, standard surveys are primarily located in small tributaries that are most conducive to foot surveys and coastal ChF are known to spawn extensively in mainstem reaches and large tributaries. Counts in standard surveys may be sufficient to monitor long term trends of indexes of spawner abundance, however, they are likely inadequate for deriving estimates of total spawner abundance. To meet the objectives of ODFW's Coastal Chinook Salmon Plan (ODFW 1992) and comply with fisheries management programs as directed by the Pacific Salmon Treaty (Pacific Salmon Commission 1985) accurate annual estimates of spawner escapement are needed.

Presently, peak count indexes are used to estimate total spawner abundance as follows:

$$S_{T} = \frac{1}{0.48} \sum_{j=1}^{T} M_{j} \left[\frac{\sum_{i=1}^{j} P_{ij}}{\sum_{i=1}^{j} m_{ij}} \right]$$

where

 S_T = Total fall chinook spawner population in area of interest

M_i = estimated miles of fall chinook spawning habitat in basin j

p_{ii} = **peak** count of fall chinook spawners in survey *i* in basin *j*

 $\mathbf{m}_{ii} = \mathbf{mileage}$ of spawning survey *i* in basin *j*.

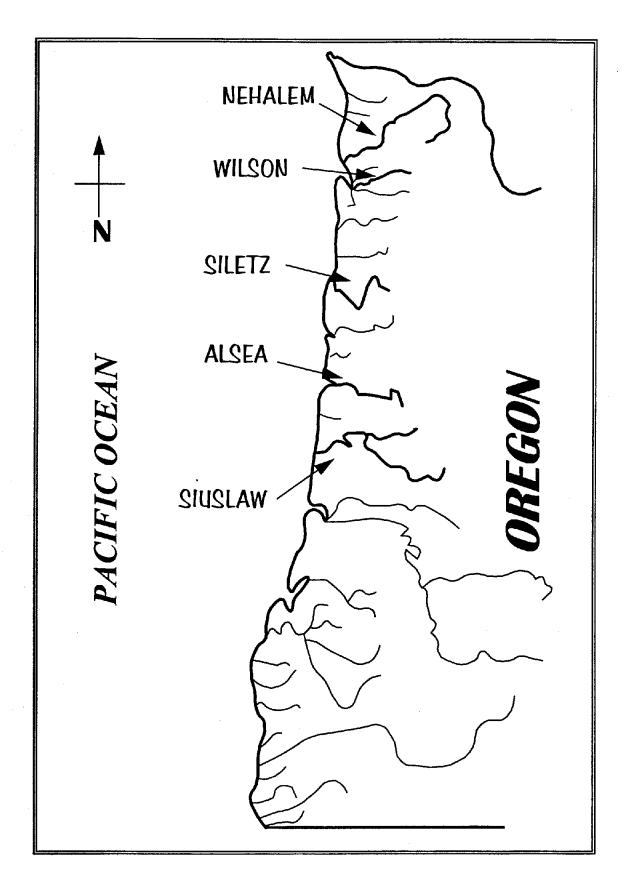
These abundance estimates are utilized by ODFW and the Pacific Salmon Commission to implement various management strategies. There are concerns that estimates based upon this method may be biased, leading to inaccurate stock size estimates. Specifically, it is questionable whether index counts (p_{ij}) accurately represent basin-wide spawner abundance. Standard index surveys are typically located in small to moderate-sized tributaries which are reliably used by spawning ChF and can be surveyed with relative ease. Furthermore, there is a general belief that the current database of available spawning habitat (M_j) is inaccurate. This database is derived primarily from recommendations from ODFW personnel and has not been verified.

(1)

Recognizing the disparity between the quality of the available data and the reliability of parameter estimates needed for management, we initiated a study aimed at improving ChF spawner abundance estimates. We choose to concentrate our initial efforts on improving estimates of the extent of available spawning habitat (M_j). A better understanding of the extent M_j would not only directly improve the accuracy of spawner escapement estimates, but provide a context for assessing the representativeness of standard index surveys and also provide a sampling frame for other survey designs. Our approach in improving values of M_j was to develop a practical and accurate means of inventorying coastal river basins for ChF spawning habitat. This was done through comprehensive inventories of coastal basins for physical habitat elements associated with ChF spawning sites. These inventories were conducted during the summer low-flow period to reduce disruption caused by freshets that occur frequently during the spawning season. Identification of ChF spawning habitat was based on adapting published descriptions of physical habitat associated with chinook spawning sites to summer flow conditions.

To validate this approach we conducted spawner distribution surveys during the subsequent spawning season. We used these surveys to evaluate our ability to accurately identify physical habitat used for spawning by ChF. The objective of these surveys were to:

- 1. verify whether chinook are utilizing the habitat units identified during the summer inventory.
- 2. determine if there was a correlation between density of spawners and scores of the quality of habitat units.
- 3. compare the density of spawners occurring in standard index streams to that in respective mainstem reaches and large tributaries.
- 4. identify discrepancies between the criteria used for the summer habitat inventory and the habitat utilized by ChF spawners.


This report describes the results of work completed during the first year of this study (1995). Included is a description of the protocol we developed to inventory spawning habitat, an evaluation of this protocol based on spawner distribution conducted the following fall, detailed descriptions of spawning habitat availability for the five basins that were inventoried, and recommendations for future survey modifications and needs.

METHODS

Spawning Habitat Inventory

Survey Targets

For our initial inventory, we targeted basins where demographic life history data and spawner index counts are being collected. These basins are essentially free of hatchery strays, so spawner distribution should not be affected by hatchery returns. Basins surveyed during 1995, from north to south were the: Nehalem, Wilson, Siletz and Siuslaw Rivers (Figure 1). Within each of these basins, those areas deemed, through the existing database, to contain

potential fall chinook spawning habitat were inventoried. Additionally, at the request of district staff, we inventoried the portion of the mainstem and North Fork Alsea River where spring chinook salmon are believed to spawn.

We based the portion of each basin where our surveys would be targeted on ODFW's database of ChF spawning distribution. This database was compiled from the partially unconfirmed judgment of coastal district biologists, coupled with stratified random coho spawner surveys conducted during 1990-1995, where at least four spawning chinook were observed. Prior to our surveys, we consulted district biologists to update the distribution of potential spawning habitat mileage for the five targeted basins. This resulted in the following mileage estimates of potential ChF spawning habitat to be inventoried:

Basin	Mainstem	Large Tributaries	Small Tributaries	Total
Nehalem	12.8	27.1	65.1	105.0
Wilson	34.3	0	37.9	72.2
Siletz	38.7	13.5	36.7	88.9
Siuslaw	50.7	32.1	131.3	214.1

Surveys were conducted on a reach by reach basis. A reach is defined as a segment of stream extending from its mouth or one stream junction to the adjacent stream junction or headwaters. Within each reach, we quantified the availability of habitat which was deemed suitable for use for spawning.

Criteria for Identifying Spawning Habitat

Suitability was based upon criteria derived from the literature. Physical characteristics determining spawning habitat are water depth, water velocity, substrate composition, and slope of the streambed. Throughout their range, ChF have been observed spawning in a wide range of conditions for each of these parameters. Values for these habitat components cited in the literature are determined during fall and early winter spawning flows. Interpreting these conditions in low summer flows was somewhat subjective.

Water depths in which chinook were observed to spawn include 30-460 cm (Chapman 1943), 28-41 cm (Briggs 1953) and 10-120 cm (Bovee 1978). Surveys conducted throughout Oregon by Smith (1973) and Thompson (1972) suggested a minimum spawning depth of 24 cm. Based upon these studies, a depth of 24-100 cm under spawning flows (with 30-60 cm considered optimal) was established for this inventory. These depth criteria calibrated to summer flows resulted in a depth range of a minimum of having a wet surface to a maximum of 80 cm, with 15-60 cm being considered optimal.

Water velocities conducive to ChF spawning in Oregon are reported to be 0.33-0.76 m/s (Smith, 1973) and 0.30-0.91 m/s by Thompson (1972). Studies outside of Oregon have produced values both similar, 0.30-0.76 m/s (Briggs 1953) and highly variable 0.37-1.89 m/s (Chapman et al. 1986). For this project, a range of 0.3-0.8 m/s was selected as representative of water velocities utilized by spawning Oregon coastal ChF. Calibrating these flows to summer

conditions was difficult. A measuring instrument was not utilized in the field, therefore visual estimations were made. The guidelines used by surveyors for interpreting suitable summer velocities ranged from a minimum velocity of perceptible water flow to a maximum of apparent surface turbulence but not dominated by whitewater.

Available estimates of the surface area of substrate used by ChF for redd construction are wide ranging. Chapman (1943) and Burner (1951) estimated redd area for ChF in tributaries of the Colombia River at 2.4-4.0 m² and 3.9-6.5 m², respectively. Conversely, Neilson and Banford (1983) found redd areas ranging from 0.5-27.5 m² in the Nechako River, B.C. Redd areas reported for the Hanford reach of the Columbia River were 2.1-44.8 m² (Chapman et al. 1986). The objective of this habitat inventory was to identify locations that received a high degree of utilization by spawning ChF. Therefore, separate criteria were used to denote minimum area of suitable habitat required for those streams < 20 m bankful channel width and those \geq 20 m. In the smaller streams, where ChF often spawn in smaller patches of gravel, a minimum of 4 m² surface area was used, while, in the larger streams we used 10 m² as the minimum surface area.

Another key component in identifying potential ChF spawning habitat is the composition of substrate. Due to their large size and high water flows in which they spawn, chinook are capable of spawning in larger substrate than most other salmonids. Thompson (1972) reported Oregon ChF spawning in gravel from 1.3-10.2 cm in diameter. Snake River ChF have been observed spawning in gravel ranging from 2.5-15.2 cm (Groves 1986). We used the following criteria for identifying suitable substrate. Within the minimum contiguous areas specified above, \geq 50% of the substrate needed to range from 2.0-15 cm in diameter.

A summary of the physical criteria used for the inventory and how they were applied as field measurements is listed in Table 1.

 Table 1. Physical criteria used to represent fall chinook spawning habitat in Oregon coastal streams.

Criteria	Depth	Velocity	Substrate size	Minimum area
Measured during spawning	24-100 cm	0.3-0.8 (m/s)	2-15 cm	4 m ² -(streams < 20 m wide) 10 m ² -(streams ≥ 20 m wide)
Visual Representation during summer flow	wet surface- top of thigh	minimum: visible flow, maximum: whitewater	≥ 50% golfball- softball sized within minimum area	same as above

In addition to the above criteria, two features are key in sites selected for redd construction by ChF spawners. Both the orientation and degree of slope of the substrate impact the likelihood that ChF will use an area. If gravel deposits are situated such that they slope parallel to the current rather than are bisected by it, they tend to be avoided. Similarly, if the lateral slope of the substrate is > 5% it jeopardizes the stability of the site and negates use (Conner et al. 1993). Many authors have emphasized the importance of subgravel flow in the choice of redd sites by chinook. This condition is often maximized at the interface between pools and riffles (Fig 2). The preference by salmonids to spawn in such "tailout" sites has been well documented (Briggs 1953; Chapman 1943). Stuart (1953) noted that downwelling currents occurred in such transitional areas and the gravel there was easy to excavate and relatively free of silt. Groot and Margolis (1991) state that: "provided the condition of good subgravel flow is met, chinook will spawn in water that is shallow or deep, slow or fast and where the gravel is coarse or fine". The physical criteria utilized in this inventory (Table 1) was designed to accommodate these features.

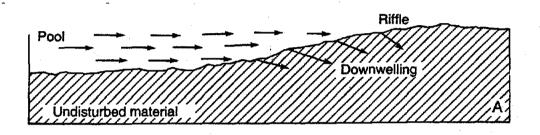


Figure 2. The pool-riffle interface creates the optimal downwelling conditions preferred by chinook salmon for spawning (taken from Groot and Margolis 1991).

Survey Procedure

The habitat inventory was conducted during a three month period beginning 27 June and terminating 26 September, 1995. This time frame was chosen to optimize viewing conditions of the habitat and navigability of the streams. Large tributaries and mainstem reaches were navigated through the use of inflatable kayaks. Smaller tributaries were surveyed by foot. The survey protocol employed was identical for both mainstem and tributary surveys. Each contiguous patch of substrate that met our criteria was designated as a *habitat unit*. Each targeted reach was surveyed to identify the presence of habitat units. In determining the upper distribution of ChF spawning habitat within each tributary stream, surveys were terminated 0.5 mile upstream of the last observed habitat unit. Mileage estimates for each reach surveyed were obtained by hip chain readings for foot surveys and through the use of a map wheel and 7.5 minute USGS topographic maps for floated surveys.

Inventories were conducted by a two person crew, with each member responsible for a specific set of duties. One person, the estimator, was responsible for estimating the surface area and substrate composition within each unit. The other member, the numerator, calibrated the estimator every fifth unit, identified the unit location and recorded the data. The two surveyors jointly determined the appropriate depth and velocity ratings and estimated the percent tailout in each unit.

6

The initial step upon designation of a unit was to determine its location either through use of a Global Positioning Satellite (GPS) Receiver or hip chain. The former was preferable, however, canopy closure in the smaller streams often inhibited the ability of GPS units to get a satellite reading. Locations were recorded as universal transmercator(UTM) coordinates or elapsed meters from the downstream boundary of the reach. These were later plotted on USGS 7.5 minute topographic maps. The unit locations were used in conjunction with data gathered from fall spawning surveys to evaluate the effectiveness of the protocol.

We estimated the surface area of each unit as the product of the visually estimated length and width that best represented the unit's configuration. Also at the location of each unit, the bankful channel width was estimated. Both of these values were calibrated by measuring the length and width of every fifth unit (beginning with the first) and developing relationships between measured and visually estimated distances. Estimates of surface area were used to determine the linear and area density of potential spawning habitat within each reach. Linear density was computed simply as the total m² of habitat units per mile of reach inventoried. Area density factors in variability in channel widths among reaches, and was calculated as follows:

$$\mathbf{D}_{j} = \frac{100\sum_{i=1}^{J} \mathbf{h}_{ij}}{\mathbf{r}_{j} \cdot \mathbf{c}_{j}}$$

where

(2)

D_i = density of potential habitat per area of channel for reach j

 $h_{ii} = m^2$ of potential habitat in unit i in reach j

$$\mathbf{r}_i = \mathbf{length} \text{ of reach } \mathbf{j}$$

c_i = **mean** width of channel for reach j

The substrate composition within each unit was broken into five categories: fines (silt or sand), pebble (≤ 2 cm), gravel (>2-15cm), cobble (>15cm) and boulder or bedrock. The relative percentages of each of these categories were visually estimated for each unit. An attempt was made to calibrate these estimates by pacing off the greater dimension of the unit (either the length or the width) and tallying the substrate category immediately in front of the lead foot. As with the surface area and channel width, this calibration was conducted on every fifth unit.

For each unit we rated the overall depth and velocity of the water. These ratings were used to provide a general judgment of the suitability of these features for ChF spawning. Higher rankings indicated higher suitability.

The velocity rating was determined according to the ensuing scale:

- 5 moderate and gradually increasing as it flows over unit (>50% must be in tailout)
- 3 velocity is moderate and constant (i.e. glide)
- 1 velocity is minimal (i.e. pool) or too fast for ideal conditions (i.e. riffle rapid)

If the unit encompassed portions which fell into more than one category an average score of 2 or 4 was given.

Depth ratings were recorded on the following scale:

4 - 10-60 cm (top of shoe - top of knee)

2 - 61-90 cm (top of knee - thigh deep)

2 - 0-9 cm (surface wet - top of shoe)

Again, it was acceptable to average scores from different portions of the unit.

The last variable of concern was an estimate of what percentage of the unit contains the downwelling conditions associated with tailouts at the pool-riffle interface. Given the importance of these areas in site utilization by spawning ChF, the larger this value the greater the suitability of the habitat within the particular unit. We rated the occurrence of this condition in each unit by estimating the proportion of the unit that was located in a tailout.

Based upon the values obtained for each of these habitat components, a cumulative score of spawning habitat quality was calculated for each unit. This was determined according to the following:

(3)

(4)

$$Q_{i} = \frac{\left[\left(2V_{i}\right) + \left(\frac{S_{i}}{10}\right) + \left(\frac{T_{i}}{10}\right)\right]}{3}$$

where

Q_i = habitat quality score for unit i

V_i = velocity rating for unit i

l

S_i = percent gravel in substrate for unit i

 T_i = percent of unit i in tailout

The rating of depth was omitted from this equation because the variability between units was insignificant and difficulties were encountered interpreting ideal spawning depths during low summer flows.

To rate the quality of spawning habitat for an entire reach, unit scores were averaged as follows:

$$Q_{j} = \frac{\sum_{i=1}^{j} Q_{i}}{n_{i}}$$

where

Q_j = average habitat quality for reach j n_i = number of units in reach j The overall suitability of a given reach for spawning or reach score (R_i) was calculated as:

 $\mathbf{R}_{i} = \mathbf{Q}_{i} \cdot \mathbf{D}_{i}$

(5)

Spawning Distribution Surveys

To verify habitat surveys, spawning surveys were conducted in a portion of the reaches surveyed during the summer. Due to stream levels and visibility conditions, the mainstem surveys were conducted during the early portion of the ChF spawning period, while the tributary surveys were performed in the latter part. Mainstem and large tributary surveys were conducted using inflatable kayaks, while smaller tributaries were surveyed on foot. In both cases, presence of spawners was determined through observation of live fish and/or redds. Upon detection, the location of the spawning site was recorded using GPS receivers (floated) or hip chains (walked). At each spawner site we recorded: (1) the number of live spawners and/or redds (2) the substrate composition of the redds and adjoining area, and (3) whether the spawning activity was associated with a tailout or not. Spawner and redd locations were plotted on topographic maps, and where possible these locations were cross referenced with summer habitat surveys.

RESULTS

Spawning Habitat Surveys

The Nehalem basin was surveyed in its entirety excluding two miles of the upper Salmonberry River that was inaccessible and two miles in Cronin Creek where access was denied. A total of 103 miles were inventoried, of which 95.5 were deemed to contain potential spawning habitat. We also completed our survey target in the Wilson basin. Of the 65.8 miles inventoried, 59 were classified as containing potentially suitable ChF spawning habitat. Due to time constraints, portions of both the Siletz and Siuslaw basins were omitted from the survey effort. Omissions in the Siletz Basin were limited to the Sams Creek drainage (~8.2 miles) and five tributaries not believed to be heavily used by ChF (~5.0 miles). In total, 80.5 miles of the Siletz Basin was surveyed of which 74.7 contained potentially suitable habitat. Approximately half of the Siuslaw basin was inventoried. This included the entire portion of the mainstem deemed suitable for potential ChF spawning, Lake Creek, the North Fork Siuslaw River subbasin, West Fork Indian Creek and the lower portion of Whittaker Creek. A total of 108.8 stream miles were inventoried in the Siuslaw of which 95.8 miles contained potentially suitable habitat. An additional 16.9 miles were inventoried in the mainstem Alsea River to identify key potential spawning areas for the depressed spring chinook stock in that basin.

A summary of the mileage inventoried and resultant ChF spawning habitat estimates in each of the basins is presented in Table 2. Because of problems in identifying all available habitat present in smaller tributaries, habitat estimates in tributaries are incomplete. ChF spawners were observed in several streams in which no suitable habitat was identified. Also, the ChF spawning distribution upper limit may be misrepresented. In some cases where no units were

identified in the upper 0.5 mile of a given stream, there was evidence of ChF spawning in cobble dominated substrates not identified as suitable.

	Fall Chinook Spawning Habitat			
	Target from database	Portion surveyed	Portion with habitat	Available habitat
River Basin	(miles)	(miles)	(miles)	(m²)
Nehalem				
Mainstem	12.8	16.6	15.5	9,002
North Fk. & Salmonberry R.	27.1	27.5	26.5	10,587
Tributaries	65.1	58.9	53.5	10,745
Total	105.0	103.0	95.5	30,334
Wilson				
Mainstem	34.3	31.2	28.0	23,544
Tributaries	37.9	34.6	31.0	7,663
Total	72.2	65.8	59.0	31,207
Siletz				
Mainstem	38.7	42.6	38.6	76,221
Drift Cr.	13.5	13.9	13.9	5,686
Tributaries	36.7	24.0	22.2	6,127
Total	88.9	80.5	74.7	88,034
Siuslaw				
Mainstern	50.2	50.7	42.5	16,560
Lake Cr. & North Fk.	32.1	31.6	27.3	16,326
Tributaries	131.3	26.5	26.0	9,218
Total	213.6	108.8	95.8	42,104
Alsea ^a				
Mainstem	32.0	14.6	14.6	20,483
North Fork Alsea R.	4.6	2.3	2.3	763
Total	36.6	16.9	16.9	21,246

Table 2. Summary of the 1995 inventory of coastal fall chinook spawning habitat.

^a Only a portion of estimated available spawning habitat was targeted for surveys.

The estimated amount of potential ChF habitat in each of the four target basins is presented in Figure 3. The results of the Alsea River inventory are omitted because of the limited area surveyed, precluding comparative analysis of the data. The information is subdivided into totals for mainstem reaches, large tributaries (subbasin level) and smaller tributaries. For each basin, estimates are made of (1) the total m² of potential habitat, (2) the density of habitat per linear mile of channel and (3) density of habitat per unit area of channel. A reach by reach summary of the inventory results is presented in **Appendix A**. Maps of the location of habitat units identified during the summer inventory are contained in **Appendix B**. The potential spawning habitat in the Nehalem (30,334 m²) and Wilson (31,207 m²) basins is nearly equivalent. However, tributaries and the North Fork contain the bulk of the habitat in the Nehalem (70%) and spawning opportunities in the mainstem Nehalem River are limited. Conversely, in the Wilson basin the majority of potential habitat is present in the mainstem. The Siletz basin was determined to have the greatest amount of potential ChF spawning habitat (88,034m²). The majority of the Siletz habitat is found in the mainstem (87%, 73% and 60% for the respective abundance units). Dependent upon annual flow regimes, much of this mainstem habitat may or may not be available for ChF spawners. In both the Siletz and Wilson the opportunities for spawning outside of the mainstem in low water years is limited. Within the Siuslaw basin, Lake Creek and the North Fork contained 38% of the habitat observed, However, the contribution of the tributaries to the amount of potential habitat in this basin would increase significantly with completion of the Siuslaw inventory.

The results derived from the ranking scheme developed to evaluate the relative quality of each habitat unit within the reaches are summarized in Figures 4-8. The Nehalem and Wilson basins have a high proportion of spawning habitat (51% and 61% respectively) that is of marginal quality (≤ 6.0). This is driven by the cobble dominated nature of the substrate in these two basins as compared to the Siletz and Siuslaw. The higher quality habitat within the Nehalem basin is in the North Fork Nehalem and Salmonberry River, while the mainstem and tributary habitat have a similar distribution in terms of quality (Figure 5). In contrast, there is a substantial discrepancy between the quality of habitat in the mainstem Wilson River and its tributaries, with habitat of higher quality being in the tributaries (Figure 6). This is largely due to the abundance of high quality habitat in the Little North Fork.

Figure 4 illustrates the Siletz basin contains not only the greatest amount of spawning habitat but it is also of the highest quality. Most of the superior habitat in this basin is found in the mainstem (Figure 7). Here, vast units were encountered with excellent gravel deposits and high tailout percentages. These conditions are commonly associated with large aggregations of spawning chinook. Such areas are present in the other basins but scarce by comparison.

The Siuslaw Basin also contains a high concentration of superior quality habitat with 60% scoring >6.1. The distribution of the quality of habitat among the mainstem, two major tributaries and smaller tributaries was similar (Figure 8). This may change upon completion of the inventory effort in the remainder of the tributaries. The mainstem Siuslaw does not contain a large amount of potential ChF spawning habitat, however, based on our rating scheme, most of the habitat is of high quality (63% > 6.0).

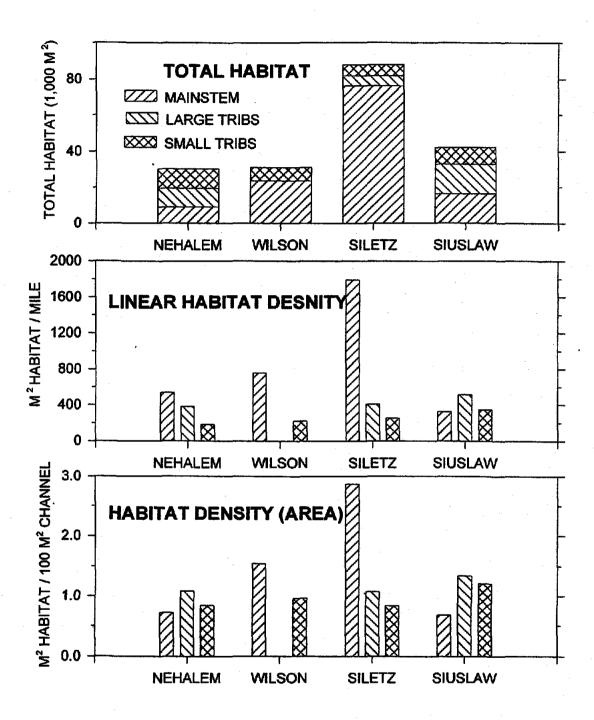
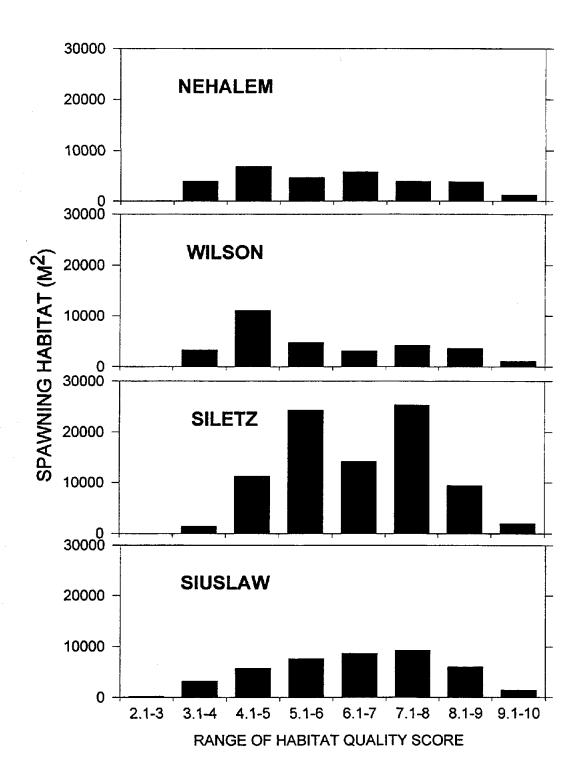
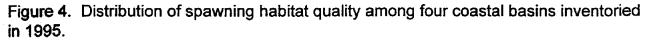




Figure 3. Distribution of fall chinook spawning habitat among mainstem, large tributary and small tributary reached inventoried in 1995. Habitat occurrence based on a: total area, b: density per linear mile of channel and c: density per 100 units of channel area.

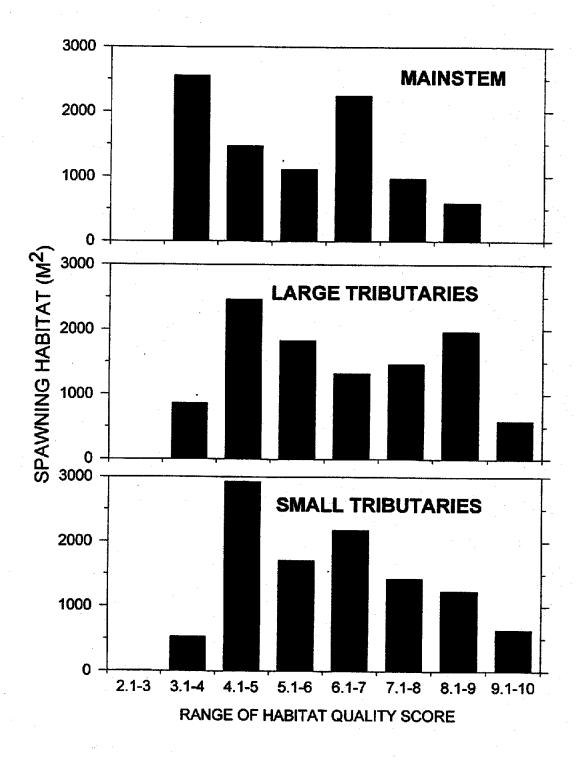


Figure 5. Distribution of spawning habitat quality within mainstem reaches, large tributaries and small tributaries of the Nehalem Basin, 1995.

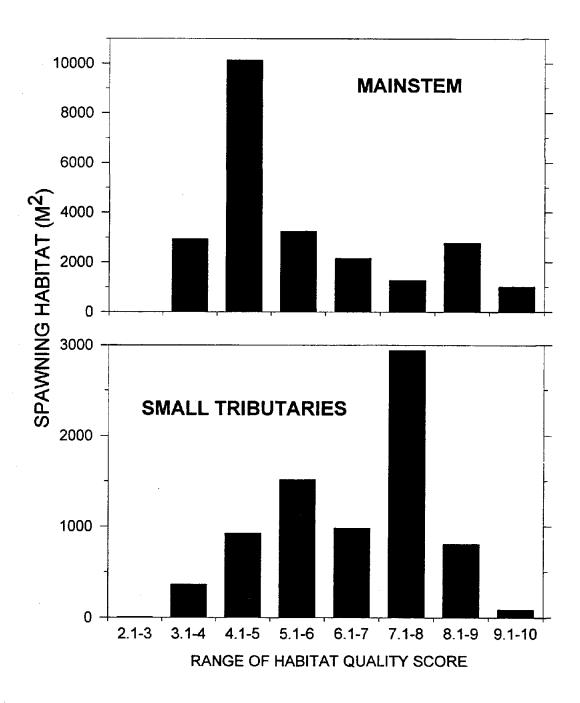


Figure 6. Distribution of spawning habitat quality within mainstem reaches and small tributaries of the Wilson Basin, 1995.

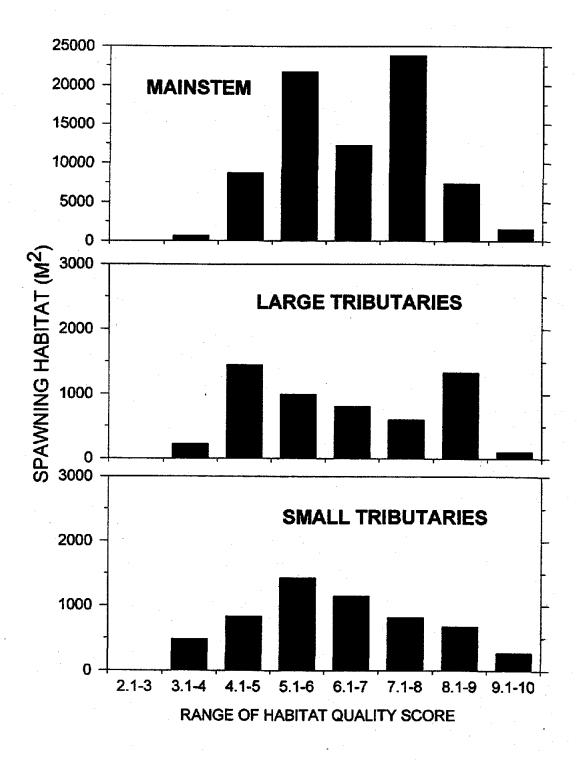


Figure 7. Distribution of spawning habitat quality within mainstern reaches, large tributaries and small tributaries of the Siletz Basin, 1995.

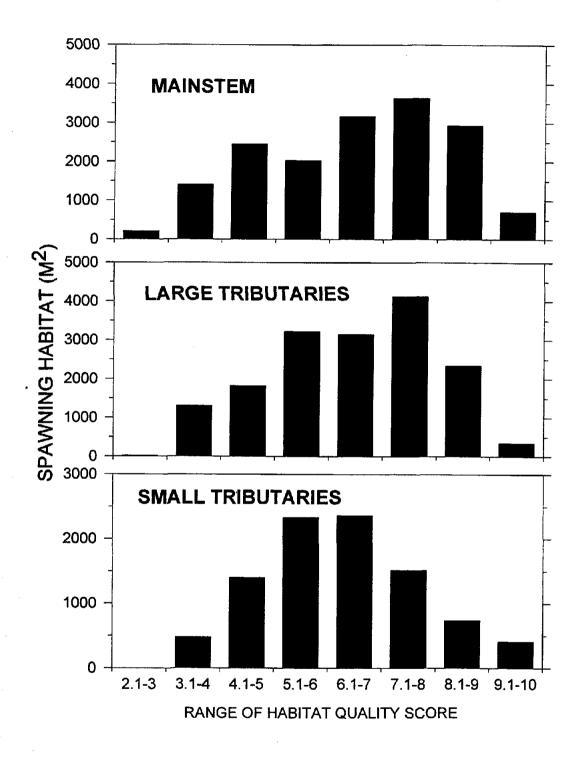


Figure 8. Distribution of spawning habitat quality within mainstern reaches, large tributaries and small tributaries of the Siuslaw Basin, 1995.

Spawning Distribution Surveys

Results of the spawning distribution surveys were mixed in terms of meeting the target objectives. Because of time constraints and variable flow levels, a limited number of surveys could be conducted and not all of these surveys were conducted during the peak ChF spawning period. Furthermore, in some cases, cross-referencing spawner locations with habitat units were confounded by differences in the method used to determine locations in the summer versus the fall spawning season. It was difficult matching locations gathered from hip chain readings with those obtained from GPS positions. This situation occurred in the North Fork Nehalem and Drift Creek (Siletz) surveys. In both of these streams, summer inventories were conducted on foot while the spawning surveys were floated. Both sets of locations were plotted on maps and lined up as closely as possible, but the data were only partially comparable. In interpreting the data from site verification surveys, spawners were assumed to be associated with identified habitat units if the GPS readings of the two locations were within 20 m of each other (typical margin of error for readings) in the floated surveys or within 10 m in the foot surveys. In most cases, it could be determined whether spawning sites were located in units, but if the spawning sites or units were clustered it was difficult to cross reference specific units.

A summary of the spawning distribution surveys conducted and the data gathered is presented in Table 3. For a more detailed account of the these surveys refer to **Appendix C**. In the tributaries, the inability to consistently link spawner locations with specific units hindered evaluation of the density of spawners in relation to the quality of units. Additionally, the mainstem surveys were not performed often enough to determine the relationship between the density of spawners and the density of units. Each survey would have to be conducted on several occasions to compare the density of spawners among units or reaches. The mainstem Siuslaw R., Siletz R. and Wilson R. surveys were conducted prior to the peak spawning period. Subsequent surveys likely would have revealed a higher density of spawners in the affected reaches. Conversely, the North Fork Nehalem R. survey was conducted after the spawning peak and high water periods had flattened old redds. This led to the survey suggesting under utilization by ChF.

The data presented in Table 3 shows that the summer inventory worked well in identifying potential sites for ChF spawning in reaches located in mainstems and larger tributaries. However, this was not the case for many of the smaller tributaries. Within the Nehalem basin, 83% of the spawner locations within the North Fork and Salmonberry River were located in units, while only 32% of the spawners were associated with units in the smaller tributaries. Clearly, we had problems capturing the range of suitable habitats utilized by ChF in smaller tributaries of the Nehalem basin. Particularly disconcerting was streams in which there was the poorest representation of spawners in units were standard index streams. These reaches annually have significant numbers of ChF spawners, yet the protocol employed identified very little potential habitat in each of these except in Humbug Creek.

Based upon observations made during spawning surveys, the most evident shortcoming in the protocol was the substrate composition. Throughout the portion of the Nehalem basin utilized by ChF, the substrate in the tributaries is cobble dominated. During the inventory of these streams, very few areas were observed that met the criteria of having > 50% golfball-softball sized gravel. However, observations made during spawning ground surveys suggest that ChF are capable of spawning in areas with < 50% of this substrate classification. Cursory observation of the redds indicates that they consistently are > 70% gravel, but the surrounding

 Table 3. Results of spawning distribution surveys conducted fall, 1995 to verify spawning habitat inventory.

	Timing	· ·	****	Percent of spawners		with >4 ers or redds
Survey location	of Survey	Spawners	Redds	or redds in units	Number	Percent in units
		Nehalem Ba			·	in drifto
	-			07	•	
East Humbug Cr.	P E	15	7	27	0	-
Humbug Cr.		19	7	15	0	-
Cook Cr. Little North Fork Nehalem R.	L P	, 6 0	7 5	0 80	0	-
Gods Valley Cr.	P	0 14	23	33	0 0	-
Sweethome Cr.	P	33	23	43		100
North Fork Nehalem R.	P	33 37	23 73	43 88	1 5	100 100
Salmonberry R.	Р	32	6	66	3	67
Samondeny R.	r	52	U	00	5	07
Total Tributaries	-	87	72	32	1	100
Total N. Fk. & Salmonberry R.	-	69	79	83	8	88
	١	Wilson Basin				
Little North Fork Wilson R.	Р	77	92	69	8	75
Cedar Cr.	E	14	23	70	ō	-
Wilson R. (Beaver CrDeadman Cr.)	Ē	6	44	80	2	100
Milson R. (Fox CrCedar Cr.)	Ē	9	74	69	5	80
Fotal Tributaries	-	91	115	69	8	75
Total Mainstem	-	15	118	73	7	86
		Siletz Basin				
Cedar Cr.	Р	11	38	67	2	100
Euchre Cr.	Р	26	70	55	5	60
Sunshine Cr.	L	3	17	21	0	-
Big Rock Cr.	Р	22	44	40	2	50
Drift Cr.	Ρ	61	82	85	7	100
Siletz R. (Hough CrTangerman Cr.)	Ε	57	90	95	7	100
Fotal Tributaries	-	62	169	51	9	67
Total Mainstem and Drift Cr.	-	118	172	91	14	100
	S	Siuslaw Basin	I			
Whittaker Cr.	Р	17	9	73	0	-
Nest Fk. Indian Cr.	Ρ	150	143	72	9	89
Lake Cr.	Р	236	151	93	8	88
Siuslaw R. (Waite CrWildcat Cr.)	Ρ	4	34	95	3	100
Siuslaw R. (Esmond CrClay Cr.)	E E	37	43	88	3	100
Siuslaw R. (Luyne CrOxbow Cr.)	E	5	12	94	0	-
Total Tributaries	_	167	152	84	17	88
Fotal Mainstem and Lake Cr.	-	282	240	85	6	100

^a P = survey during peak survey, E = survey prior to peak spawning, L = survey after peak spawning.

habitat was not. Personal observations indicate chinook are capable of creating their own microhabitat for spawning. With sufficient flow, during the excavation process the fines float downstream and the cobble is moved to the side creating a redd of relatively uniform substrate. In these areas, chinook seek out pockets between large cobble containing adequate subsurface flow and hydrological characteristics in which to build their redds. Identifying these pockets during the summer inventory would be extremely difficult.

Wilson basin mainstem and tributary spawning surveys contained similar numbers of spawners associated with habitat units. Similar to the Nehalem, most of the tributaries in this basin are cobble dominated. The high percentage of spawners in units in the Wilson River tributaries is probably attributable to the small number of surveys conducted (2). One of these surveys, the Little North Fork, is a large gravel rich tributary with the lower portion exhibiting characteristics typical of upper mainstem areas. If the tributary survey effort had been more intensive, it is likely the percentage of spawners associated with units would have decreased significantly. The Cedar Creek survey was conducted prior to the spawning peak, however, it was unique in that it was the one cobble dominated stream in which the spawner locations correlated well with the habitat units. Both mainstem surveys were conducted prior to the spawning peak, but in each case the relationship between spawner abundance and habitat units was strong (80% and 69%).

The Siletz basin spawning surveys generated dichotomous results similar to the Nehalem basin. The mainstem and Drift Creek surveys verified that in the larger streams spawners utilize the habitat units identified in the inventory. However, the cobble dominated tributaries again proved problematic. Sunshine Creek was particularly troublesome. Virtually no potential habitat was identified in this stream during the summer inventory. It is likely that the scenario previously described with the Nehalem took place here and to lesser extent in Euchre Creek as well.

Interpretation of the spawning survey results from the Siuslaw basin is complicated by the small number of tributary surveys conducted. The mainstem surveys were consistent with the other basins in having a high percentage of spawners associated with units. In the two upper surveys, the spawners observed were in units. However, there were many units of seemingly analogous habitat that were unutilized. This was partially due to the early timing of the surveys. Concerning the tributaries, the percentage of spawners in units was considerably higher than in the northern basins. This was driven by two factors. First, 96% of the observations were in either the West Fork of Indian Creek or Lake Creek, both of which are large streams that annually contain large aggregations of spawners. Second, the geomorphology of the Siuslaw basin is vastly different from the northern basins. The substrate of the Siuslaw is dominated by bedrock, gravel and silt, with comparatively little cobble. Therefore, the habitat inventory protocol better captured the range of habitat conditions utilized by spawning ChF in the Siuslaw tributaries than those in the other basins.

Despite the problems in identifying all the sites where ChF will spawn, if one targets only those locations where > 4 spawners were observed, then the correlation between spawner location and habitat unit increases significantly (Table 3). Of the 70 observations with > 4 spawners, 89% were located in habitat units. This suggests that while we failed to include all of the potential habitat in the inventory, we were successful in identifying those areas where there are high concentrations of spawners. Typically these are located in the mainstems and larger tributaries which tend to have more contiguous blocks of homogeneous spawnable substrate conducive to aggregate spawning.

One of the objectives of the spawning surveys was to evaluate the relationship between indexes of spawning habitat quality and spawner density. This analysis was done by comparing mean habitat quality scores between two ranges of spawner density. For those spawner locations in which specific unit identity could be determined, the habitat quality score was noted. Within each basin, the mean score was determined for all those units in which > 4 spawners were observed and all units in which 1-3 spawners were located. These comparisons failed to detect any differences between habitat quality scores associated with the two ranges of spawner density. This result infers that the protocol used in this study may need to be modified to more accurately rank the quality ChF spawning habitat.

DISCUSSION

The study was largely successful in gaining a better understanding of the quantity and distribution of ChF spawning habitat in the four targeted basins. Additionally, a framework was established upon which techniques can be refined to inventory potential ChF spawning habitat in coastal river basins. The inventory data facilitated improvement of the ChF spawning habitat database. Several mainstem reaches were identified that are currently in the database which contain no opportunities for chinook spawning. The same was true for several tributary reaches. However, given the problems encountered identifying the potential habitat in small tributaries, no tributary reaches could be eliminated. The inventory data were also useful for correcting errors in reach lengths.

The protocol developed for this study proved effective in gaining a quantifiable estimate of potential spawning habitat for mainstem and large tributary reaches with ≥ 20 m bankful channel widths. In such areas, the habitat units tend to be more dispersed and consist of more homogenous habitat. Habitat in these reaches commonly contains those attributes that one associates with "typical" ChF spawning habitat: uniform substrate dominated by large gravel, depth of 0.3-1.0 meters and tailouts with slightly increasing yet moderate velocity. The inventory was specifically designed to encompass these conditions. Those areas where ChF aggregate spawn tend to be in these habitats. This was substantiated by the spawning distribution surveys. Therefore, in low water years when the majority of ChF spawning occurs in these larger streams, this habitat inventory data, coupled with unbiased spawning surveys, could produce a representative escapement estimate.

Given the shortcomings that were revealed with the protocol in identifying habitat in the smaller tributaries, attempts to derive escapement estimates based upon the habitat inventory would be erroneous. The biggest problem with identifying the potential habitat in the tributaries was the substrate composition. When necessary, chinook will spawn in substrates containing less than 50% gravel. To rectify this discrepancy, the logical amendment to the protocol would be to change the substrate criteria to encompass a broader range of substrate size. However, frequently this change in survey protocol would identify much of the entire tributary as potential habitat. Thus, generating excessively liberal habitat estimates. Clearly, attempts to identify and quantify spawning habitat in the smaller tributaries is problematic. Therefore, it is questionable whether surveying these areas is a viable endeavor. Furthermore, annual ChF spawning distribution is dependent upon flow regimes affecting spawner access as well as habitat conditions.

One of the objectives of the study was to develop a ranking scheme to qualitatively evaluate the habitat that is present. This was conducted during the habitat inventory with seemingly favorable results. However, the results obtained from the spawning surveys demonstrated that attempts to correlate the density of spawners with the habitat quality of the units were not successful. There was little difference in the habitat quality between units containing high numbers of spawners and those containing low numbers. Given this result, and the problems encountered in scoring the various habitat components, attempts to rank the quality the spawning habitat are questionable.

Observations made while conducting spawning distribution surveys revealed noteworthy spawning behavior exhibited by ChF. Foremost among these, is their ability to utilize and manipulate a broad range of substrates to create their own microhabitat in which to deposit eggs. The use of cobble dominated substrates often leads to ChF spawning in small pockets of suitable habitat in many tributaries. Chinook were also observed spawning in higher velocities than anticipated. These areas were often associated with riffles downstream from tailouts. Several observations were made of chinook spawning in long riffles with considerable velocity. It is apparent that chinook are capable of spawning in a wide range of conditions providing subsurface flow is adequate. The availability of adequate subsurface flow appears to be the driving force behind site selection of spawning ChF. Unfortunately, this variable is difficult to conceptualize in the field. This results in ChF spawning in large aggregations in some sites, while seemingly analogous habitat is often void of spawners.

Apparently a prime factor in the distribution of coastal ChF in Oregon coastal river basins is the flow regimes during the October through mid December spawning period. During years with moderate fall flows, ChF spawners are well distributed throughout both the mainstems and tributaries. In years when there are early freshets and high fall flows, mainstem spawning is minimal, while the smaller tributaries receive high use. Conversely, when freshets are late and fall flows are low, access is often denied to the upper portions of basins and the smaller tributaries. In these years, mainstem spawning is widespread in the lower reaches. Thus, given the dynamic nature of ChF spawning distribution throughout the basins, the proportion of estimated potential spawning habitat in use annually could vary considerably. This greatly complicates attempts to estimate annual spawner escapement abundance based upon gross miles of potential habitat.

BASIN SUMMARIES

Nehalem River

Within the Nehalem basin, ChF are thought to utilize only that portion of the basin from Fishhawk Creek (near Jewell) downstream to the mouth for spawning. Above this point, the basin is believed to be used exclusively by summer chinook. In addition to the mainstem, ChF are distributed throughout the North Fork subbasin and the lower 12 miles of the Salmonberry River. Based upon the habitat inventory, 95.5 miles were designated as potential ChF spawning habitat. An additional four miles that were not inventoried, due to logistical problems, are believed to be suitable, yielding a total of 99.5 inhabitable miles. Within this area, limited opportunities exist for mainstem spawning. Spawnable mainstem miles totaled 15.5. However, district personnel believe 11 of these miles from Humbug Creek to Fishhawk Creek are used exclusively by summer chinook. This has not been confirmed. It is logical that given ChF use the Fishhawk drainage, they would to some degree spawn in suitable sites in the mainstem directly below this tributary. There is minimal potential habitat elsewhere in the mainstem, with the exception of a five mile segment directly above tidewater. Alternatively, random coho spawning surveys conducted from 1990-1994 suggest minimal use of the Fishhawk drainage by ChF (peak for the drainage was 8 ChF in Beneke Creek in 1993). This suggests that the upper distribution in the mainstem subbasin for all but a few ChF may be Humbug Creek. Current spawning surveys conducted in the Jewell area for summer chinook should be repeated on a regular basis during the ChF spawning period to clarify this matter.

The majority of tributaries throughout the Nehalem basin are cobble dominated. Based upon the habitat inventory, the tributaries with the greatest potential for ChF spawning are the lower six miles of Humbug Creek, the North Fork above Gods Valley Creek and the Salmonberry River from Buick Canyon to Belfort Creek (Table 4). Annual spawning surveys in these areas should be incorporated into the survey program. These surveys, coupled with surveys of the lower mainstem and North Fork in low water years would give an accurate representation of the level of spawning occurring annually outside of the standard index streams. The distribution of spawning in this basin probably does not vary considerably with the water year except in the level of spawning occurring in the lower mainstem and lower North Fork.

Conspicuous in their absence from Table 4 are three standard surveys: Cook, Soapstone and East Humbug Creeks. The first two streams are typical of the cobble dominated streams throughout the lower portion of the basin. East Humbug Creek has lower gradient and the substrate is more influenced by pebbles. It was the opinion of our survey crew that this tributary was better suited for coho than chinook. Although the habitat inventory data does not confirm this, it appears that, excluding mainstem and large tributary reaches, the standard surveys capture the majority of chinook spawning that occurs in the Nehalem basin during a typical year. Other streams inventoried that likely contain moderate numbers of spawners on an annual basis are: Lost Creek (mainstem), Cronin Creek, Coal Creek, Gods Valley Creek, Sweethome Creek and Little North Fork. Foley Creek in the lower basin is an anomaly. It is the one stream in which a significant amount of potential habitat was identified, that ChF use only sparingly. This may be related to the presence of chum salmon (*Onchorynchus keta*) in this stream. However, there are a number of streams on the north and central Oregon coast inhabited by both spawning ChF and chum. At present, the absence of ChF in Foley Creek remains speculative.

Overall, the lower Nehalem basin is relatively gravel poor and ChF here have both quantitatively and qualitatively fewer spawning opportunities than in the other three basins. It is likely that chinook spawner populations here are stable, but not as robust as elsewhere. In many cases, due to the substrate, they spawn in marginal habitat, yet spawning surveys indicate stable long-term trends in population abundance. Table 4. Nehalem Basin reaches with greatest potential for ChF spawning as determined by summer habitat inventory.

Reach	Lower Boundary	Upper Boundary	Spawning Potential Score ^a
		Mainstem	
Nehalem R.	Cow Cr.	Klines Cr.	15.70
Nehalem R.	Peterson Cr.	Anderson Cr.	10.75
Nehalem R.	Cook Cr.	Lost Cr.	10.33
Nehalem R.	Klines Cr.	Moores Cr.	7.53
	North Fork Neha	iem R. and Salmonber	ry R.
Salmonberry R.	Buick Canyon	Belfort Cr.	25.23
Nehalem R. N Fk.	Lost Cr.	Sweethome Cr.	18.76
Nehalem R. N Fk.	Unnamed Trib.	Grassy Lake Cr.	13.24
Nehalem R. N Fk.	Gods Valley Cr.	Lost Cr.	10.27
Salmonberry R.	Tank Cr.	Tunnel Cr.	8.76
Nehalem R. N Fk.	Sweethome Cr.	Fall Cr.	7.21
		Tributaries	
Humbug Cr.	Mcciure Cr.	Larsen Cr.	61.17
Humbug Cr.	Larsen Cr.	Big Cr.	18.62
Foley Cr.	E Foley Cr.	Crystal Cr.	17.13
Foley Cr.	Crystal Cr.	Dry Cr.	17.01
Humbug Cr.	Mouth	Cedar Cr.	12.57
Fishhawk Cr.	Beneke Cr.	Little Fishhawk Cr.	9.49
Lost Cr.	Mouth	Headwaters	9.10
Coal Cr.	Mouth	Coal Cr. W Fk	8.10

^a spawning potential score = habitat density X avg. habitat quality of units within reach (>7)

Wilson River

The Wilson River has numerous opportunities for mainstern spawning (28 miles) particularly the lower six miles above tidewater and the eight mile reach between Fox and Cedar Creeks. Above this point, the density of habitat decreases, however, there are still many areas of marginal-good mainstern spawning habitat up to the confluence of the Devils Lake and South Forks.

Similar to the Nehalem, the tributaries in the Wilson basin tend to be cobble dominated. The notable exception is the Little North Fork. This large tributary contains excellent spawning

habitat in the lower three miles. Due to access problems, it was not inventoried above this point, however, potential habitat is known to continue upstream. The 0.5 mile above the mouth is a standard survey which annually hosts large numbers of ChF spawners. While conducting a spawning survey above the standard survey, ChF were observed successfully excavating redds in cobble dominated substrates. On occasion these sites were chosen over seemingly superior adjacent habitat.

The other tributary in which large numbers of spawners are observed on an annual basis is Cedar Creek. This is a cobble dominated standard survey with numerous patches of marginal habitat dispersed throughout the lower two miles. Based upon the habitat inventory, two other sites were identified that contained significant quantities of gravel : the lower two miles of the Devils Lake Fork and 1.5 miles of the West Fork of the North Fork Wilson River (Table 5).

The mainstem North Fork Wilson River is similar to Cedar Creek in being cobble dominated with pockets of suitable habitat above Lester Creek. The level at which this stream is utilized by ChF spawners is unknown. It is recommended that this area is surveyed periodically during the spawning period to quantify use.

It is likely, the annual distribution of spawners in the Wilson basin is greatly influenced by fall stream flows. Given the relative shortage of habitat in the tributaries, there is probably a great deal of mainstem spawning regardless of the prevailing weather pattern. However, the reaches of the mainstem in which the majority of spawning occurs probably varies considerably.

The Wilson is a relatively small basin, as such the total ChF spawner escapement would be expected to be less than in the other three basins inventoried. The abundance of high quality habitat well distributed throughout the mainstem and the large estuary for rearing partially compensate for the shortage of habitat in the tributaries. The two standard surveys, Little North Fork and Cedar Creek, are both accessible to chinook in most flow conditions, thus, they serve as good index sites to monitor trends in basin-wide spawner escapement. However, the abundance of habitat in the mainstem, coupled with the shortage of habitat in other tributaries, renders the standard surveys grossly inadequate as a tool to use in quantitatively estimating interannual spawner abundance. It is recommended that supplemental mainstem surveys be conducted annually to assist in this endeavor.

Table 5. Wilson Basin reaches with greatest potential for ChF spawning as determined by summer habitat inventory.

Reach	Lower Boundary	Upper Boundary	Spawning Potential Score ^a
	Mainstem		
Wilson R.	Beaver Cr.	Hughey Cr.	33.64
Wilson R.	Hatchery Cr.	Deadman Cr.	32.73
Wilson R.	Wilson R, N. Fk., Little	Mining Cr.	14.22
Wilson R.	Wilson R, N. Fk.	Ben Smith Cr.	10.40
Wilson R.	Deadman Cr.	Negro Jack Cr.	9.40
Wilson R.	Runyon Cr.	Wilson R., N.Fk.	7.92
Wilson R.	Fox Cr.	Muesial Cr.	7.07
•	Tributaries		
Wilson R., N. Fk. Little	Mouth	White Cr.	26.55
Wilson R., Devils Lake Fk.	Fern Rock Cr.	ldiot Cr.	8.03
Wilson R., N. Fk., W. Fk.	Wilson R., N. Fk., W. Fk., N. Fk.	Headwaters	6.89
White Cr.	Mouth	Headwaters	6.83
Wilson R., Devils Lake Fk.	Mouth	Fern Rock Cr.	6.81

^a spawning potential score = habitat density X avg. habitat quality of units within reach (>6)

Siletz River

The Siletz basin had the greatest spawning potential for ChF of the basins that we inventoried. This is due primarily to the vast amount of high quality habitat in the mainstem from tidewater (RM 22) up to Elk Creek (RM 63). Within this 40 mile stretch, the reach from Moonshine Park (RM 52) to 0.5 mile above the steel bridge (RM 57) is essentially void of habitat. In those reaches that contain spawning habitat, many large units with tailouts were observed, providing numerous opportunities for aggregate spawning.

Drift Creek contains a considerable amount of potential spawning habitat as well. The habitat is present in two blocks in this large tributary: the section extending two miles above tidewater and the section starting just below North Creek (RM 10) and extending to Smith Creek (RM 16). The former has good habitat, but it is probably only used in extreme low water years. The upper segment has exceptional habitat, and the spawning survey verified it is well used by ChF. Sampson Creek and its unnamed tributary have potential for high chinook use as well. Due to time constraints, only the lower mile was inventoried, but ChF habitat continues upstream. The Drift Creek subbasin contains as much habitat as the cumulative total for all other Siletz tributaries that were inventoried.

The habitat inventory suggests that aside from the areas mentioned above, those reaches with the greatest potential for ChF spawning are: Cedar Creek (lower mile), Euchre Creek (lower mile), Schooner Creek (lower two miles), Big Rock Creek (lower mile) and Rock Creek (the mile below Big Rock) (Table 6). Three of these sites are standard surveys, which like the Wilson, suggest these surveys are not representative of the tributary habitat basin wide. Thus, they are useful in generating escapement trends, but lacking in terms of utility for abundance estimates.

Several of the tributaries inventoried in the Siletz were cobble dominated similar to those in the Wilson and Nehalem. Notable among these is Sunshine Creek. This is a standard survey in which significant numbers of spawners are observed except in low water years. However, very little potential habitat was identified here. Again, the problem with identifying spawnable habitat in cobble dominated substrate is apparent. A similar situation was revealed in Buck Creek where ChF spawners were observed in a random coho survey in which little habitat was identified. Further cause for concern is the documented presence of spawners in streams that are not currently in the database (i.e. Palmer Creek and Savage Creek). This necessitates amendment of the inhabitable miles in the database. In years with early freshets of considerable magnitude this may be a widespread occurrence that significantly impacts spawner escapement estimates.

Those tributaries that were not inventoried in 1995 should be surveyed in the future to make coverage of the basin comprehensive. The most significant area that was omitted is the Sams Creek drainage. ChF are known to spawn in this drainage, however, the level of use and amount of potential habitat is unclear. The lower portions of Bentilla and Mill Creeks should be evaluated for their suitability for ChF spawning as well.

The copious amounts of high quality ChF spawning habitat identified in this inventory suggest that the Siletz basin annually has the largest population of ChF spawners among the basins surveyed. The distribution of ChF spawners in the Siletz basin is dependent upon the fall stream levels. During high water years, lower mainstem spawning is minimal while those tributaries with suitable habitat receive high use. Conversely, in low water years the mainstem is extensively used while many tributaries are rendered inaccessible. In most years ChF spawners are well distributed throughout the basin. With the vast majority of the potential habitat present in the mainstem, there is a need to implement annual mainstem spawning surveys to monitor escapement in this area. In conjunction, an upper Drift Creek survey should be incorporated into the district program to monitor escapement in this subbasin.

Concerning the standard surveys, both Euchre and Cedar Creeks are lower tributaries that are annually accessible to ChF. Therefore, they effectively represent the ChF spawner escapement trends throughout the basin. However, Sunshine and Big Rock Creeks, located in the upper basin, underestimate spawner escapement in low water years.

	Lower	Upper	Spawning Potential
Reach	Boundary	Boundary	Score ^a
		Mainstem	
Siletz R.	Ojalla Cr.	Thompson Cr.	67.93
Siletz R.	Thompson Cr.	Tangerman Cr,	52.53
Siletz R.	Hough Cr.	Reed Cr.	45.94
Siletz R.	Reed Cr.	Euchre Cr.	43.42
Siletz R.	Dewey Cr.	Mill Cr.	36.72
Siletz R.	Euchre Cr.	Ojalla Cr.	32.15
Siletz R.	Jaybird Cr.	Cedar Cr.	19.19
Siletz R.	Mill Cr.	Bentilla Cr.	18.83
Siletz R.	Cedar Cr.	Hough Cr.	14.91
Siletz R.	Buck Cr.	Sunshine Cr.	7.76
		Tributaries	
Schooner Cr.	Mouth	Erickson Cr.	16.48
Drift Cr.	North Cr.	Wildcat Cr.	12.19
Sampson Cr.	Mouth	Unnamed Trib.	8.31
Rock Cr.	Mouth	Big Rock Cr.	8.19
Cedar Cr.	Mouth	Headwaters	7.47
Drift Cr.	Gordey Cr.	North Cr.	7.18
Euchre Cr.	Mouth	Savage Cr.	4.82
Buck Cr.	Mouth	Buck Cr., E. Fk.	4.20

Table 6. Siletz Basin reaches with greatest potential for ChF spawning as determined by summer habitat inventory.

spawning potential score = habitat density X avg. habitat quality of units within reach (>4)

Siuslaw River

With only half of the Siuslaw basin inventoried, it is difficult to draw conclusions about the basinwide availability of ChF habitat. Time constraints precluded inventory of the entire basin. Priority was placed on the mainstem and large tributaries, where the least is known about the availability of ChF spawning habitat. Of those areas surveyed, Table 7 lists those reaches that were found to have the greatest potential for ChF spawning.

All the mainstem reaches within the ChF database were surveyed with revealing results. From the head of tide upstream to San Antone Creek (RM 36) the mainstem substrate is entirely bedrock with no spawning potential. Above this point are 42.5 spawnable miles containing 16,560 m² of potential habitat. The survey was not continued beyond Camp Creek, and it is likely spawning opportunities above here are minimal. However, an inventory of an additional five miles upstream to verify this should be undertaken. Throughout its length the Siuslaw River is dominated by bedrock. Interspersed with the vast stretches of bedrock are intermittent areas of gravel deposition. Significant among these areas are three segments: Waite Creek to Whittaker Creek (3 miles), Big Canyon Creek to Clay Creek (11 miles) and Luyne Creek to Bear Creek (8 miles). The district annually conducts supplemental spot surveys at several points within these areas. It is recommended that these be expanded to get a better estimate of the level of mainstem spawning.

The two other blocks inventoried in 1995 were Lake and Indian Creeks in the Lake Creek subbasin, and the North Fork subbasin. Lake Creek was inventoried from its mouth up to Fish Creek. The substrate from the mouth up to Deadwood Creek (5 miles), is entirely bedrock and cobble except for two sites between Indian and Deadwood Creeks. The habitat becomes increasingly more favorable as you progress upstream within the 12 miles above this point. The upper 0.7 mile is a standard survey which has the highest annual average density of spawners among all standard surveys, coastwide. Indian Creek, a major tributary of Lake Creek, was surveyed from the mouth up the West Fork. Within this section, the reach from Velvet Creek to Elk Creek has a considerable amount of excellent ChF spawning habitat. Here again, a supplemental spawning survey would be beneficial. Outside of this reach, the substrate is almost exclusively bedrock. The West Fork of Indian was also inventoried. There is good spawning habitat in this creek from the mouth up to Pyle Creek, with the best contained in the standard survey from Rogers Creek to Pyle Creek.

The North Fork subbasin was inventoried in its entirety. The mainstem from Russell Creek to Cedar Creek (10 miles) contains a large amount of moderate to excellent ChF spawning habitat dispersed throughout. The only other significant potential habitat identified in this subbasin is located in the lower two miles of McCleod Creek. It is impossible to interpret the spawning potential of the Siuslaw tributaries because so few were inventoried.

Alsea River

The inventory effort in the Alsea basin was minimal. Specifically, 17 miles of the upper mainstem and lower North Fork were surveyed to evaluate the potential spawning habitat available to both spring and fall chinook. The spring chinook population in the Alsea is depressed and of questionable stability. Better knowledge of the spawning distribution of this stock would improve our ability to make management decisions. The inventory revealed a considerable amount of high quality chinook spawning habitat throughout the survey area. Many of the units identified had characteristics favorable for aggregate spawning (excellent gravel deposits associated with large tailouts). In particular, the segments from Fall Creek to Digger Creek (2 miles), Benner Creek to Maltby Creek (6 miles) and from Mill Creek to the lower mile of the North Fork (2.5 miles) contain copious amounts of spawning gravel. While conducting the inventory, 13 spring chinook redds were observed, all within the above areas. Later surveys conducted by district personnel confirmed that ChF use this area extensively as well (ODFW 1995).

Table 7. Siuslaw Basin reaches with greatest potential for ChF spawning as determined by summer habitat inventory.

Reach	Lower Boundary	Upper Boundary	Spawning Potential Score ^a
		Mainstem	•
Siuslaw R.	North Cr.	Mill Cr.	24.88
Siuslaw R.	Haskins Cr.	Larue Cr.	18.73
Siuslaw R.	Big Canyon Cr.	Esmond Cr.	15.08
Siuslaw R.	Oxbow Cr.	Bear Cr.	14.33
Siuslaw R.	Luyne Cr.	Oxbow Cr.	13.92
Siuslaw R.	Trail Cr.	North Cr.	10.40
Siuslaw R.	Wildcat Cr.	Whittaker Cr.	9.66
	Lake Creek	and North Fork Si	uslaw R.
ake Cr.	Lamb Cr.	Fish Cr.	60.08
ake Cr.	Johnson Cr.	Hula Cr.	22.67
Siuslaw R, N. Fk.	Mcleod Cr.	Cataract Cr.	18.11
.ake Cr.	Deadwood Cr.	Johnson Cr.	17.92
.ake Cr.	Steinhauer Cr.	Greenleaf Cr.	17.56
Siuslaw R., N. Fk.	Drew Cr.	Wilhelm Cr.	14.70
Siuslaw R., N. Fk.	Porter Cr.	Cedar Cr.	13.49
Siuslaw R., N. Fk.	Russell Cr.	Mcleod Cr.	12.98
Siuslaw R., N. Fk.	Wilhelm Cr.	Porter Cr.	12.80
Siuslaw R., N. Fk.	Jim Dick Cr.	Russell Cr.	9.12
.ake Cr.	Greenleaf Cr.	Lamb Cr.	8.61
	Tr	ibutaries	
ndian Cr., W. Fk.	Rogers Cr.	Pyle Cr.	45.98
Condon Cr.	Mouth	Billie Cr.	22,49
ndian Cr., W. Fk.	Long Cr.	Rogers Cr.	11.98
ndian Cr.	Mouth	Velvet Cr.	9.84

^a spawning potential score = habitat density X avg. habitat quality of units within reach (>8)

RECOMMENDATIONS

Despite the problems encountered in identifying potential spawning habitat in tributaries with channel widths <20 meters, it is clear the standard survey streams are not representative of the available ChF habitat in each of the basins. This does not jeopardize their importance in providing an annual index of spawner escapement and evaluating trends in stock health. However, as the exclusive tool for estimating interannual spawner abundance their utility is limited. For example, extrapolating the number of peak spawners observed in Cedar, Euchre, Big Rock and Sunshine Creeks into a estimate for basin-wide abundance in the Siletz is inaccurate. The habitat in these surveys is neither representative of the majority of other tributaries nor of the mainstem. If an estimate of total spawner escapement is the goal, then an alternative method must be developed that incorporates the complete realm of ChF spawning habitat. In this context, continuation of the ChF habitat inventory in a modified format has merit.

The 1995 inventory had two major functions. First, it produced an accurate quantitative estimate of the potential ChF habitat present in the mainstem and large tributaries of four Oregon coastal basins. Second, it served as a template from which modifications can be made to improve its usefulness for future inventories. The first of these modifications is to restrict the surveys to those streams in excess of 20 meters channel width. In these streams the adopted protocol worked well, while in the smaller streams problems were encountered that compromised its usefulness. If the inventory was restricted to the larger streams, the surveys could be conducted exclusively with inflatable kayaks. This would expedite the survey effort, and facilitate coverage of more coastal basins. Using this approach, the prime survey period would be June - August, when flow conditions are optimal. By restricting the inventory to larger streams, location of habitat units could be obtained through the exclusive use of GPS receivers, thus, standardizing the data.

The most significant recommended modification of the protocol is the modification or elimination of the habitat qualification procedures. The spawning surveys conducted failed to show a relation between the estimated quality of the habitat with the density of spawners. It is difficult to discern whether this was a result of our rating system for the various parameters evaluated or due to the limited spawner density data recorded.

We recommend implementing annual spawning surveys of the mainstems and larger tributaries of coastal basins. This would increase the accuracy of the overall spawning survey program in terms of spawner escapement estimates. These surveys would be best accomplished by employing the use inflatabe kayaks or rafts. Results of spawning habitat surveys should be used to prioritize where surveys should be conducted. Other issues that need to be considered in conducting these surveys include calibrating abundance counts for variation in observation efficiency. Depending on the flow regime observation conditions in coastal basins can vary substantially from one year to the next. A mark-recovery procedure employing chinook carcasses such as that described by Boydstun (1994) should be considered as a means of calibrating counts.

In conclusion, current spawner escapement estimates based solely upon the standard index streams are in need of improvement. The habitat inventory will not enable generation of an accurate annual escapement estimate, but it will improve our knowledge of the basin-wide distribution of ChF habitat. A possible means of improving the escapement estimate would be to increase the sample size and representativeness of the spawning surveys. This could be

accomplished by integrating the data from those random coho surveys that are located within the ChF database with the standard surveys. Together, these would provide a estimate for those streams < 20m channel widths. In addition, the mainstem spawning surveys would be used in conjunction with the habitat inventory data to estimate escapement in those streams \geq 20m channel width.

ACKNOWLEDGMENTS

We wish to thank Mark Manning, Shawn Rapp, Tom Rippetoe for conducting the habitat inventories, and Cedric Cooney, Rick Klumph, Walt Weber, Leroy Fish, Tom Woods and the crew of seasonal spawning surveyors for assisting in conduction the spawner distribution surveys.

LITERATURE CITED

Bovee, K.D. 1978. Probability - of - use criteria for the family Salmonidae. U.S. Fish Widl. Serv. FWS/obs-78/07; Instream Flow Inf. Paper 4:80 p.

- Briggs, J.C. 1953. The behavior and reproduction of salmonid fishes in a small coastal stream. Calif. Dep. Fish Game Fish. Bull. 94:62 p.
- Boydstun, L.B. 1994. Analysis of two mark-recapture methods to estimate the fall chinook (Oncorhynchus tshawytscha) spawning run in Bogus Creek, California. Calif. Fish and Game. 80(1):1-13.
- Burner, C.J. 1951. Characteristics of spawning nests of Columbia River salmon. Fish. Bull. Fish Wildl. Serv. 61:97-110.
- Chapman, D.W., D.E. Weitcamp, T.L. Welsh, M.B. Dell, and T.H. Schadt. 1986. Effects of river flow on the distribution of chinook salmon redds. Trans. Am. Fish. Soc. 115:537-547.
- Chapman, W.M. 1943. The spawning of chinook salmon in the main Columbia River. Copeia 1943:168-170.
- Conner, W.P., A.P. Garcia, H.L. Burge, and R.H. Taylor. 1993. Fall chinook salmon spawning in free-flowing reaches of the Snake River. Pages 20-38 in D.W. Rondorf and W.H. Miller, editors. Identification of the spawning, rearing and migratory requirements of fall chinook salmon in the Columbia River basin. Annual report to Bonneville Power Administration, Contract DE-AI79-91BP21708, Portland, Oregon.
- Cooney C. X. and S.E. Jacobs. 1995. Oregon coastal salmon spawning surveys, 1995. Oregon Department of Fish and Wildlife, Ocean Salmon Management Information Report, Portland.
- Groot, C. and L. Margolis, 1991. Pacific salmon life histories. University of British Columbia Press, Vancouver, BC. 312-393.

- Groves, P.A. 1993. Habitat available for, and used by, fall chinook salmon within Hells Canyon Reach of the Snake River. Annual Report 1992. Environmental Affairs Department, Idaho Power Company, Boise, ID.
- Neilson, J.D. and C.E. Banford. 1983. Chinook salmon (*Onchorynchus tshawytscha*) spawner characteristics in relation to redd physical features. Can J. Zool. 61:1524-1531.
- **ODFW** (Oregon Department of Fish and Wildlife). 1991. Comprehensive plan for production **and management of Oregon's salmon and trout**: Coastal Chinook Salmon Plan. Oregon **Department of Fish and Wildlife**, Portland.
- **ODFW** (Oregon Department of Fish and Wildlife). 1995. Spring chinook spawning distribution **surveys**, Alsea and Siletz basins. Lincoln Fisheries Management District, Newport.
- Pacific Salmon Commission. 1985. First Annual Report. Pacific Salmon Commission, Vancouver, B.C.
- Smith, A.K. 1973. Development and application of spawning velocity and depth criteria for Oregon salmonids. Trans. Am. Fish. Soc. 102:312-316.
- Smith, C.J. and P. Castle. 1994. Puget Sound chinook salmon (Onchorhynchus tshawytscha) escapement estimates and methods - 1991. Wash. Dept. of Fish and Wildlife. Proj. Rep. Ser. No. 1.

APPENDIX A

Summaries of Inventories of Fall Chinook Spawning Habitat for Individual Stream Reaches

			UDDED	DELOU	CHANNEL	NUMBER		GUI				LINEAR	AREA	MEAN	
ID	REACH	LOWER	UPPER BOUNDRY	REACH	CHANNEL	OF UNITS	UNIT AREA	-		<u>COMPOSIT</u> GRAVEL		HABITAT Density	HABITAT	HABITAT SCORE	REACH
25840.0	COALCR	MOUTH	COAL CR, W FK	1,820.0	14.6	14	262.6	8.2	13.2	69.6	8.9	0.14	0.99	8.2	8.′
25841.0	COAL CR, W FK	MOUTH	HEADWATERS	1,260.0	11.8	2	6.3	10.0	7.5	60.0	22.5	0.00	0.04	5.9	0.2
25842.0	COAL CR	COAL CR, W FK	HEADWATERS	1,600.0	12.8	10	164.2	8.0	10.0	69.5	12.5	0.10	0.80	8.0	6.5
25853.0	NEHALEM R, N FK	HENDERSON CR	BOYKIN CR	600.0	27.4	2	146.0	7.5	17.5	70.0	5.0	0.24	0.89	5.1	4.6
25855.0	NEHALEM R, N FK	BOYKIN CR	UNNAMED TRIB	2,150.0	28.7	2	400.1	7.5	17.5	65.0	10.0	0.19	0.65	6.9	4.5
25857.0	NEHALEM R, N FK	UNNAMED TRIB	GRASSY LAKE CR	2,150.0	30.4	9	1,164.5	3.9	10.6	64.4	18.3	0.54	1.78	7.4	13.2
25859.0	NEHALEM R, N FK	GRASSY LAKE CR	COUGAR CR	900.0	31.2	0									
25861.0	NEHALEM R, N FK	COUGAR CR	TRAIL CR	600.0	27.8	0									
25863.0	NEHALEM R, N FK	TRAIL CR	SOAPSTONE CR	4,800.0	25.7	5	237.9	8.0	8.0	62.0	22.0	0.05	0.19	6.3	1.2
25864.0	SOAPSTONE CR	MOUTH	BUCHANAN CR	1,710.0	23.5	4	32.3	7.5	12.5	63.8	16.3	0.02	0.08	5.7	0.9
25865.0	BUCHANAN CR	MOUTH	HEADWATERS	868.0	10.8	3	26.7	5.0	8.3	56.7	30.0	0.03	0.29	7.4	2.1
25866.0	SOAPSTONE CR	BUCHANAN CR	JACK HORNER CR	850.0	27.8	0									
25871.0	NEHALEM R, N FK	SOAPSTONE CR	SALLY CR	3,100.0	17.5	2	71.5	2.5	10.0	67.5	20.0	0.02	0.13	7.0	0.9
25871.7	NEHALEM R, N FK	SALLY CR	GODS VALLEY CR	1,700.0	17.0	3	108.0	5.0	25.0	58.3	3.3	0.06	0.37	5.0	1.9
25872.0	GODS VALLEY CR	MOUTH	HEADWATERS	4,433.0	10.3	24	325.0	5.8	18.8	68.1	7.3	0.07	0.71	7.3	5.2
25873.0	NEHALEM R, N FK	GODS VALLEY CR	LOST CR	1,520.0	21.3	9	576.7	3.8	15.6	65.0	16.1	0.38	1.78	5.8	10.3
25874.0	LOST CR	MOUTH	HEADWATERS	250.0	6.2	0									
25875.0	NEHALEM R, N FK	LOST CR	SWEET HOME CR	2,090.0	18.9	17	1,215.1	6.2	13.5	62.9	17.5	0.58	. 3.08	6.1	18.0
25876.0	SWEET HOME CR	MOUTH	HEADWATERS	3,525.0	9.5	14	209.2	6.4	18.9	61.4	13.2	0.06	0.63	5.7	3.0
25877.0	NEHALEM R, N FK	SWEET HOME CR	FALL CR	1,620.0	20.6	9	435.3	2.8	15.6	58.9	22.8	0.27	1.31	5.5	7.
25878.0	FALL CR	MOUTH	HEADWATERS	1,420.0	8.6	2	84.6	5.0	22.5	67.5	5.0	0.06	0.69	5.0	3.
25879.0	NEHALEM R. N FK	FALL CR	NEHALEM R, LITTLE N FK	7,167.0	16.3	41	1,146.6	7.3	16.5	62.1	14.4	0.16	0.98	7.0	6.9
25880.0	NEHALEM R, LITTLE N FK	MOUTH	HEADWATERS	4,080.0	13.7	29	715.4	6.2	15.2	66.4	12.2	0.18	1.28	7.2	9.3
25887.0	FOLEY CR	MOUTH	DANIELS CR	968.0	11.4	2	30.3	17.5	27.5	55.0	0.0	0.03	0.28	6.9	1.9
25887.3	FOLEY CR	DANIELS CR	SCHOOL CR	180.0	12.2	0									

APPENDIX TABLE A-1. SUMMARY OF NEHALEM BASIN REACHES INVENTORIED FOR FALL CHINOOK SPAWNING HABITAT a/

ID	REACH	LOWER BOUNDRY	UPPER BOUNDRY	REACH LENGTH	CHANNEL WITH	NUMBER OF UNITS	AVERAGE UNIT AREA			OMPOSITI GRAVEL		LINEAR HABITAT DENSITY	AREA HABITAT DENSITY	MEAN HABITAT SCORE	REACH
25887.8	FOLEY CR	SCHOOL CR	E FOLEY CR	1,200.0	12.6	7	284.5	10.7	17.9	70.0	0.7	0.24	1.88	6.5	12.2
25888.0	E FOLEY CR	MOUTH	HEADWATERS	1,920.0	12.2	2	158.4	12.5	17.5	65.0	5.0	0.08	0.67	5.6	3.8
25889.0	FOLEY CR	E FOLEY CR	CRYSTAL CR	2,800.0	8.0	19	600.6	9.2	18.7	66.6	6.3	0.21	2.69	6.4	17.1
25891.0	FOLEY CR	CRYSTAL CR	DRY CR	1,880.0	8.8	15	451.6	6.0	19.0	64.3	10.3	0.24	2.74	6.2	17.0
25893.0	FOLEY CR	DRY CR	HEADWATERS	2,400.0	7.1	2	35.1	10.0	35.0	55.0	0.0	0.01	0.21	6.4	1.3
25900.0	NEHALEM R	PETERSON CR	ANDERSON CR	1,570.0	51.8	2	2,426.6	0.0	15.0	65.0	20.0	1.55	2.99	3.6	10.7
25902.0	NEHALEM R	ANDERSON CR	COOK CR	2,900.0	62.0	3	1 ,284 .1	6.7	16.7	63.3	13.3	0.44	0.71	5.5	4.0
25903.0	COOK CR	MOUTH	DRY CR	1,700.0	16.1	4 ,	114,6	3.8	18.8	65.0	12.5	0.07	0.42	7.9	3.3
25905.0	COOK CR	DRY CR	HARLISS CR	1,850.0	24.5	2	19.2	5.0	12.5	70.0	12.5	0.01	0.04	8.1	0.3
25907.0	COOK CR	HARLISS CR	PIATT CANYON	1,875.0	18.0	1	20.0	5.0	25.0	65.0	5.0	0.01	0.06	9.3	0.5
25909.0	COOK CR	PIATT CANYON	HANSON CR	150.0	18.0	0									
25911.0	COOK CR	HANSON CR	COOK CR, S FK	2,600.0	16.9	6	122.5	5.0	17.5	63.3	14.2	0.05	0.28	6.7	1.9
25912.0	COOK CR, S FK	MOUTH	HEADWATERS	750.0	9.6	0									
25913.0	COOKCR	COOK CR, S FK	COOK CR, E FK	1,330.0	13.1	0									
25914.0	COOK CR, E FK	MOUTH	HEADWATERS	810.0	9.6	0									
25915.0	COOK CR	CÓOK CR, E FK	HOEVETT CR	900.0	12.2	0									
25916.0	NEHALEM R	COOKCR	LOST CR	1,750.0	57.2	. 4	1,363.5	7.5	13.8	56.3	22.5	0.78	1.36	7.6	10.3
25917.0	LOST CR	MOUTH	HEADWATERS	5,200.0	12.6	39	968.2	3.2	15.5	66.5	14.5	0.19	1.48	6.2	9.1
25919.0	FALL CR	MOUTH	HEADWATERS	800.0	6.6	0									
25921.0	NELLOFF CR	MOUTH	HEADWATERS	830.0	6.2	0									
25927.0	SALMONBERRY R	MOUTH	HATCHERY CR	500.0	22.0	1.	23.3	10.0	20.0	60.0	10.0	0.05	0.21	6.7	1.4
25929.0	SALMONBERRY R	HATCHERY CR	BUICK CANYON	1,850.0	26.8	5	222.5	0.0	11.0	65.0	24.0	0.12	0.45	4.8	2.2
25931.0	SALMONBERRY R	BUICK CANYON	BELFORT CR	3,000.0	28.0	18	3,293.0	2.2	13.1	62.5	22.2	1.10	3.93	6.4	25.2
25933.0	SALMONBERRY R	BELFORT CR	PRESTON CR	1,050.0	25.3	4	260.2	2.5	10.0	58.8	28.8	0.25	0.98	5.3	5.2
25935.0	SALMONBERRY R	PRESTON CR	TANK CR	1,765.0	18.5	3	168.1	1.7	13.3	56.7	28.3	0.10	0.51	7.5	3.8

APPENDIX TABLE A-1 SUMMARY OF NEHALEM BASIN REACHES INVENTORIED FOR FALL CHINOOK SPAWNING HABITAT a/

APPENDIX TABLE A-1	SUMMARY OF NEHALEM BASIN REACHES INVENTORIED FOR FALL CHINOOK SPAWNING HABITAT a/

ID	REACH	LOWER BOUNDRY	UPPER BOUNDRY	REACH Length	CHANNEL WITH	NUMBER OF UNITS	AVERAGE UNIT AREA			COMPOSIT GRAVEL		LINEAR HABITAT DENSITY	AREA HABITAT DENSITY		REACH SCORE
25937.0	SALMONBERRY R	TANK CR	TUNNEL CR	996.0	22.0	4	268.7	8.8	11.3	63.8	15.0	0.27	1.23	7.1	8.8
25939.0	SALMONBERRY R	TUNNEL CR	SALMONBERRY R, S FK	2,160.0	23.7	8	510.3	7.5	12.5	65.0	15.0	0.24	1.00	6.9	6.9
25943.0	SALMONBERRY R	SALMONBERRY R, S FK	BATHTUB CR	560.0	21.3	2	33.4	Ż.5	7.5	72.5	10.0	0.06	0.28	8.1	2.3
25945.0	SALMONBERRY R	BATHTUB CR	SALMONBERRY R, N FK	1,917.0	22.3	9	165.2	6.7	8.9	60.0	24.4	0.09	0.39	7.3	2.8
25947.0	SALMONBERRY R	SALMONBERRY R, N FK	BELDING CR	1,780.0	16.4	11	140.8	6.8	11.8	67.3	14.1	0.08	0.48	7.6	3.7
25967.0	HUMBUG CR	MOUTH	CEDAR CR	2,768.0	15.9	18	912.3	6.4	13.6	60.6	18.6	0.33	2.07	6.1	12.6
25969.0	HUMBUG CR	CEDAR CR	MCCLURE CR	700.0	14.5	3	93.0	10.0	11.7	61.7	16.7	0.13	0.91	7.3	6.7
25971.0	HUMBUG CR	MCCLURE CR	LARSEN CR	253.0	15.7	4	305.5	8.8	8.8	61.3	21.3	1.21	7.69	8.0	61.2
25973.0	HUMBUG CR	LARSEN CR	BIG CR	3,385.0	17.9	19	1,609.5	8.9	12.6	59.7	18.7	0.48	2.65	7.0	18.6
25975.0	HUMBUG CR	BIG CR	ALDER CR	2,400.0	17.3	13	289.8	3.8	11.2	66.2	18.8	0.12	0.70	6.4	4.5
25976.0	ALDER CR	MOUTH	CEDAR CR	650.0	5.3	0									
25979.0	HUMBUG CR	ALDER CR	E HUMBUG CR	1,615.0	15.7	5	98.0	7.0	9.0	62.0	22.0	0.06	0.39	7.3	2.8
25980.0	E HUMBUG CR	MOUTH	HEADWATERS	3,350.0	10.5	4	45.9	5.0	3.8	62.5	28.8	0.01	0.13	7.2	0.9
25981.0	W HUMBUG CR	MOUTH	BEAVER CR	2,100.0	14.1	5	89.3	5.0	16.0	56.0	23.0	0.04	0.30	6.4	1.9
25982.0	BEAVER CR	MOUTH	DESTRUCTION CR	450.0	7.6	0									
25985.0	W HUMBUG CR	BEAVER CR	HEADWATERS	2,575.0	12.1	6	108.7	1.0	12.5	59.2	27.5	0.04	0.35	5.5	1.9
25986.0	NEHALEM R	HUMBUG CR	QUARTZ CR	2,820.0	36.9	3	733.7	10.0	6.7	60.0	23.3	0.26	0.71	5.6	4.0
25990.0	NEHALEM R	QUARTZ CR	OSWEG CR	1,650.0	36.9	0									
25992.0	NEHALEM R	OSWEG CR	GEORGE CR	5,000.0	29.5	4	525.1	8.8	6.3	71.3	13.8	0.11	0.36	6.1	2.2
25994.0	NEHALEM R	GEORGE CR	COW CR	1,610.0	40.8	1	64.5	10.0	10.0	65.0	15.0	0.04	0.10	7.9	0.8
25996.0	NEHALEM R	COW CR	KLINES CR	850.0	34.3	3	635.7	10.0	5.0	63.3	18.3	0.75	2.18	7.2	15.7
25998.0	NEHALEM R	KLINES CR	MOORES CR	1,000.0	56.9	3	619.7	3.3	15.0	61.7	20.0	0.62	1.09	6.9	7.5
26000.0	NEHALEM R	MOORES CR	BUSTER CR	2,000.0	71.9	6	919.0	5.0	11.7	68.3	15.8	0.46	0.64	5.9	3.8
26001.0	BUSTER CR	MOUTH	LITTLE ROCK CR	2,600.0	12.1	10	208.2	10.0	7.5	61.5	21.0	0.08	0.66	7.3	4.8
26003.0	BUSTER CR	LITTLE ROCK CR	WALKER CR	1,740.0	10.5	1	13.3	10.0	5.0	60.0	25.0	0.01	0.07	6.7	0.5

APPENDIX TABLE A-1 SI	SUMMARY OF NEHALEM BASIN REACHES INVENTORIED FOR FALL CHINOOK SPAWNING HABITAT a/
-----------------------	---

ID .	REACH	LOWER BOUNDRY	UPPER BOUNDRY	REACH LENGTH	CHANNEL WITH	NUMBER Of UNITS	AVERAGE UNIT AREA		BSTRATE C PEBBLE	OMPOSITI GRAVEL		LINEAR HABITAT DENSITY	AREA HABITAT DENSITY	MEAN HABITAT SCORE	REACH SCORE
26008.0	NEHALEM R	BUSTER CR	FISHHAWK CR	5,379.0	52.4	5	429.8	8.0	11.0	62.0	18.0	0.08	0.15	5.7	0.9
26009.0	FISHHAWK CR	MOUTH	BENEKE CR	1,120.0	24.0	4	201.2	1.3	11.3	62.5	25.0	D.18	0.75	7.5	5.6
26010.0	BENEKE CR	MOUTH	GILMORE CR	1,846.0	18.8	8	276.7	2.5	15.6	62.5	19.4	0.15	0.80	6.2	5.0
26012.0	BENEKE CR	GILMORE CR	WALKER CR	6,130.0	16.0	24	872.6	6.7	15.0	62.9	15.4	0.14	0.89	6.1	5.4
26013.0	WALKER CR	MOUTH	TRAILOVER CR	2,293.0	10.6	8	155.4	16.3	16.9	59.4	7.5	0.07	0.64	8.0	5.1
26019.0	FISHHAWK CR	BENEKE CR	LITTLE FISHHAWK CR	2,365.0	19.4	15	757.8	7.0	11.3	65.0	17.0	0.32	1.65	5.8	9.5
26020.0	LITTLE FISHHAWK CR	MOUTH	HEADWATERS	850.0	3.3 -	0									
26021.0	FISHHAWK CR	LITTLE FISHHAWK CR	ALDER CR	3,103.0	12.4	2	77.2	5.0	10.0	65.0	20.0	0.02	0.20	5.3	1.1

		LOWER	UPPER	REACH	CHANNEL	OF	AVERAGE UNIT	SU	BSTRATE	COMPOSIT	ION (%)	LINEAR	AREA HABITAT	MEAN HABITAT	REACH
ID	REACH	BOUNDRY	BOUNDRY	LENGTH	WITH	UNITS	AREA	FINES	PEBBLE	GRAVEL	COBBLE	DENSITY	DENSITY	SCORE	SCORE
25634.0	WILSON R	SLIDE CR	BEAVER CR	700.0	45.1	1	92.9	10.0	40.0	50.0	0.0	6.08	0.29	3.3	1.0
25636.0	WILSON R	BEAVER CR	HUGHEY CR	4,600.0	55.1	11	11,889.1	7.7	22.7	63.6	5.9	248.92	4,69	7.2	33.6
25640.0	WILSON R	HUGHEY CR	WILSON R, N FK, LITTLE	3,200.0	9.3	8	176.7	5.6	16.3	60.6	17.5	111.10	0.59	7.4	4.4
25641.0	WILSON R, N FK, LITTLE	MOUTH	WHITE CR	5,425.0	20.5	31	4,004.9	7.7	12.4	65.0	14.8	296.66	3.60	7.4	26.6
25642.0	WHITE CR	MOUTH	HEADWATERS	810.0	6.9	5	57.1	9.0	18.0	68.0	5.0	14.35	1.03	6.7	6.8
25643.0	WILSON R, N FK, LITTLE	WHITE CR	BLOWOUT CR	1,200.0	19.8	1	13.6	10.0	25.0	60.0	5.0	3.23	0.06	8.4	0.5
25646.0	WILSON R	WILSON R, N FK, LITTLE	MINING CR	2,666.0	37.5	10	2,248.6	6.0	16.5	60.0	19.4	145.35	2.25	6.3	14.2
25648.0	WILSON R	MINING CR	HATCHERY CR	500.0	42.8	1	108.4	0.0	20.0	60.0	20.0	4.14	0.51	3.7	1.9
25650.0	WILSON R	HATCHERY CR	DEADMAN CR	340.0	34.5	2	673.6	7.5	10.0	67.5	15.0	33.03	5.74	5.7	32.7
25652.0	WILSON R	DEADMAN CR	NEGRO JACK CR	1,700.0	50.4	5	1,225.8	9.0	8.0	65.0	18.0	74.26	1.43	6.6	9.4
25654.0	WILSON R	NEGRO JACK CR	SMITH CR	1,600.0	46.3	5	568.6	8.0	13.0	63.0	16.0	53.26	0.77	6.8	5.2
25656.0	WILSON R	SMITH CR	SLIDE CR	350.0	29.2	1	12.7	5.0	10.0	60.0	25.0	6.23	0.12	7.7	1.0
25658.0	WILSON R	SLIDE CR	FERN CR	400.0	29.2	0		0.0	0.0	0.0	0.0				
25660.0	WILSON R	FERN CR	ZIG ZAG CR	700.0	26.9	0		0.0	0.0	0.0	0.0				
25662.0	WILSON R	ZIG ZAG CR	KANSAS CR	2,700.0	24.9	3	130.6	8.3	13.3	71.7	6.7	23.18	0.19	7.2	1.4
25664.0	WILSON R	KANSAS CR	BEAR CR	1,650.0	42.8	3	645.9	5.0	13.3	65.0	15.0	28.25	0.91	5.2	4.8
25666.0	WILSON R	BEAR CR	FALL CR	1,750.0	41.7	1	64.2	5.0	25.0	60.0	10.0	3.17	0.09	5.9	0.5
25667.0	FALL CR	MOUTH	HEADWATERS	820.0	2.9	0		0.0	0.0	0.0	0.0				
25668.0	WILSON R	FALL CR	FOX CR	1,700.0	30.3	0		0.0	0.0	0.0	0.0				
25670.0	WILSON R	FOX CR	MUESIAL CR	4,300.0	30.5	9	1,508.5	3.3	21.1	58.9	16.7	52.78	1.15	6.2	7.1
25672.0	WILSON R	MUESIAL CR	KEENIG CR	1,000.0	33.0	3	186.4	0.0	13.3	65.0	21.7	16.98	0.57	6.6	3.7
25674.0	WILSON R	KEENIG CR	JORDAN CR	800.0	43.2	3	175.7	3.3	18.3	60.0	18.3	20.26	0.51	6.2	3.1
25675.0	JORDAN CR	MOUTH	HEADWATERS	8,470.0	15.1	12	135.5	5.0	17.9	53.3	23.8	34.61	0.11	5.0	0.5
25676.0	WILSON R	JORDAN CR	WOLF CR	1,500.0	36.7	3	195.0	11.7	13.3	65.0	10.0	18.27	0.35	7.2	2.5
25678.0	WILSON R	WOLF CR	CEDAR CR	4,850.0	39.0	11	1,187.6	5.5	12,7	66.4	15.5	94.70	0.63	6.6	4.1

APPENDIX TABLE A-2 SUMMARY OF WILSON BASIN REACHES INVENTORIED FOR FALL CHINOOK SPAWNING HABITAT a/

	· · · · · · · · · · · · · · · · · · ·	LOWER	UPPER	DEADI	CHANNEL		AVERAGE	6 117				LINEAR	AREA	MEAN	
ID	REACH	BOUNDRY	BOUNDRY	REACH LENGTH	WITH	OF UNITS	UNIT AREA		PEBBLE	<u>COMPOSITI</u> GRAVEL		HABITAT DENSITY	HABITAT DENSITY	HABITAT SCORE	REACH
25679.0	CEDAR CR	MOUTH	CEDAR CR, N FK	4,772.0	15.7	13	260.9	8.8	14.2	53.1	23.8	46.58	0.35	6.7	2.3
25679.7	CEDAR CR	CEDAR CR, N FK	HEADWATERS	1,210.0	9.2	3	17.7	10.0	10.0	55.0	25.0	8.70	0.16	4.8	0.8
25680.0	WILSON R	CEDAR CR	JONES CR	1,400.0	27.4	2	198.8	12.5	12.5	67.5	7.5	12.80	0.52	4.7	2.4
25681.0	JONES CR	MOUTH	HEADWATERS	800.0	1.0	0		0.0	0.0	0.0	0.0				
25682.0	WILSON R	JONES CR	RUNYON CR	1,700.0	29.2	0		0.0	0.0	0.0	0.0				
25684.0	WILSON R	RUNYON CR	WILSON R, N FK	600.0	30.4	2	277.8	5.0	7.5	55.0	32.5	16.19	1.52	5.2	7.9
25685.0	WILSON R, N FK	MOUTH	BEND CR	420.0	17.8	2	83.5	2.5	22.5	55.0	20.0	7.72	1.12	4.8	5.4
25687.0	WILSON R, N FK	BEND CR	MAX CR	1,000.0	18.1	3	104.6	13.3	8.3	53.3	25.0	11.21	0.58	4.9	2.8
25687.2	WILSON R, N FK	MAX CR	LESTER CR	296.0	17.8	1	61.0	0.0	10.0	50.0	40.0	3.17	1.16	3.3	3.9
25687.4	WILSON R, N FK	LESTER CR	WILSON R, N FK, W FK	2,492.0	21. 6	9	236.5	4.4	9.4	59.4	26.7	40.70	0.44	6.8	3.0
25688.0	WILSON R, N FK, W FK	MOUTH	WILSON R, N FK, W FK, N F	3,237.0	18.9	14	578.6	0.0	11.1	58.6	30.4	61.07	0.95	5.5	5.2
25688.3	WILSON R, N FK, W FK, N	MOUTH	HEADWATERS	1,805.0	6.9	0		0.0	0.0	0.0	0.0				
25688.7	WILSON R, N FK, W FK	WILSON R, N FK, W FK, N F	HEADWATERS	2,415.0	12.6	15	375.0	0.7	11.3	58.7	29.3	46.04	1.23	5.6	6.9
25689.0	WILSON R, N FK	WILSON R, N FK, W FK	HEADWATERS	4,483.0	16.0	11	269.1	4.1	11.4	55.0	29.5	35.31	0.38	6.0	2.2
25694.0	WILSON R	WILSON R, N FK	BEN SMITH CR	2,000.0	27.4	7	1,012.9	8.6	10.0	60.7	20.7	59.04	• 1.85	5.6	10.4
25696.0	WILSON R	BEN SMITH CR	MOORE CR	1,250.0	25.3	3	239.6	10.0	11.7	63.3	15.0	19.20	0.76	7.9	6.0
25698.0	WILSON R	MOORE CR	DOGCR	650.0	23.3	0		0.0	0.0	0.0	0.0				
25700.0	WILSON R	DOG CR	ELK CR	4,650.0	20.5	7	662.1	8.6	13.6	59.3	17.9	44.33	0.69	5.7	3.9
25701.0	ELK CR	MOUTH	ELK CR, W FK	1,360.0	13.5	4	55.7	2.5	12.5	60.0	25.0	9.91	0.30	6.4	1.9
25702.0	ELK CR, W FK	MOUTH	HEADWATERS	446.0	4.1	0		0.0	0.0	0.0	0.0				
25703.0	ELK CR	ELK CR, W FK	HEADWATERS	3,160.0	10.3	8	90.0	3.8	15.0	58.8	22.5	20.54	0.28	5.0	1.4
25704.0	WILSON R	ELK CR	WILSON R, DEVIL'S LAKE FK	650.0	19.5	2	62.4	5.0	17.5	52.5	25.0	6.35	0.49	4.1	2.0
25705.0	WILSON R, S FK	MOUTH	HEADWATERS	4,362.0	10.8	13	480.6	13.1	12.7	55.4	19.6	74.65	1.02	5.7	5.8
25706.0	WILSON R, DEVIL'S LAKE	MOUTH	FERN ROCK CR	2,073.0	15.1	9	274.0	7.8	14.4	69.4	8.3	36.86	88.0	7.8	6.8
25708.0	WILSON R, DEVIL'S LAKE	FERN ROCK CR	IDIOT CR	1,891.0	18.9	5	459.9	9.0	16.0	69.0	6.0	30.67	1.29	6.2	8.0

APPENDIX TABLE A-2 SUMMARY OF WILSON BASIN REACHES INVENTORIED FOR FALL CHINOOK SPAWNING HABITAT a/

ID	REACH	LOWER BOUNDRY	UPPER BOUNDRY	REACH LENGTH	CHANNEL WITH	NUMBER OF UNITS	AVERAGE UNIT AREA		BSTRATE C PEBBLE		ION (%) COBBLE	LINEAR HABITAT DENSITY	AREA HABITAT DENSITY	MEAN HABITAT SCORE	REACH SCORE
25709.0	IDIOT CR	MOUTH	HEADWATERS	1,000.0	2.2	0		0.0	0.0	0.0	0.0				
25710.0	WILSON R, DEVIL'S LAKE	IDIOT CR	DRIFT CR	1,400.0	18.0	2	105.8	7,5	15.0	70.0	7.5	9.00	0.42	6.3	2.6

APPENDIX TABLE A-2 SUMMARY OF WILSON BASIN REACHES INVENTORIED FOR FALL CHINOOK SPAWNING HABITAT a/

		LOWER	UPPER				AVERAGE					LINEAR	AREA	MEAN	Adap Phillippine
ID	REACH	BOUNDRY	BOUNDRY	REACH LENGTH	CHANNEL WITH	OF UNITS	UNIT		PEBBLE			HABITAT	HABITAT	HABITAT	REACH
25102.0	SILETZ R	JAYBIRD CR	CEDAR CR	950.0	44.7	3	1,321.5	3.3	30.0	66.7	0.0	44.83	3.11	6.2	19.2
25102.5	CEDAR CR	MOUTH	HEADWATERS	5,155.0	16.6	27	881.4	8.5	22.4	61.7	. 7.4	124.37	1.03	7.3	7.5
25102.6	SILETZ R	CEDAR CR	HOUGH CR	3,250.0	51.0	6	3,954.1	1.7	35.8	62.5	0.0	152.33	2.39	6.2	14.9
25102.8	SILETZ R	HOUGH CR	REED CR	1,375.0	43.4	3	3,979.3	3.3	15.0	66.7	15.0	91.46	6.67	6.9	45.9
25104.0	SILETZ R	REED CR	EUCHRE CR	1,500.0	43.4	5	3,792.4	2.0	28.0	63.0	7.0	121.41	5.63	7.5	43.4
25105.0	EUCHRE CR	MOUTH	SAVAGE CR	5,273.0	20.7	19	781.1	11.6	16.8	54.7	16.B	106.76	0.72	6.7	4.8
25109.0	EUCHRE CR	SAVAGE CR	HEADWATERS	500.0	18.8	0		0.0	0.0	0.0	0.0				
25110.0	SILETZ R	EUCHRE CR	OJALLA CR	6,150.0	40.4	18	11,336.7	0.6	22.2	65.6	11.7	311.41	4.57	7.0	32.2
25112.0	SILETZ R	OJALLA CR	THOMPSON CR	3,900.0	44.3	10	16,297.1	1.0	20.0	65.5	13.5	228.71	9.43	7.2	67.9
25114.0	SILETZ R	THOMPSON CR	TANGERMAN CR	3,825.0	41.3	13	14,438.5	3.5	18.1	61.9	16.5	254.86	9.14	5.7	52.5
25116.0	SILETZ R	TANGERMAN CR	DEWEY CR	6,525.0	43.8	11	3,165.1	5.9	19.5	65.0	9.1	123.30	1.11	6.3	7.0
25120.0	SILETZ R	DEWEY CR	MILL CR	950.0	51.9	2	2,687.4	2.5	12.5	72.5	12.5	53.28	5.45	6.7	36.7
25124.0	SILETZ R	MILL CR	BENTILLA CR	8,450.0	50.0	18	11,564.1	3.9	17.8	62.2	15.8	373.57	2.74	6.9	18.8
25126.0	SILETZ R	BENTILLA CR	SAMCR	350.0	45.7	1	38.3	5.0	15.0	70.0	10.0	4.00	0.24	4.8	1.2
25132.0	SILETZ R	SAMCR	ROCK CR	4,800.0	46.1	- 3	991.7	3.3	13.3	60.0	23.3	56.53	0.45	7.4	3.3
25133.0	ROCK CR	MOUTH	BIG ROCK CR	9,035.0	19.6	23	2,024.8	10.9	15.7	63.5	10.0	141.37	1.14	7.2	8.2
25134.0	BIG ROCK CR	MOUTH	FALL CR	4,200.0	17.0	14	288.6	11.1	15.4	56.4	. 17.1	51.01	0.40	5.8	2.3
25146.0	SILETZ R	ROCK CR	MILL CR	1,150.0	37.0	2	141.9	2.5	15.0	65.0	12.5	12.42	0.33	7.6	2.5
25152.0	SILETZ R	MILL CR	PALMER CR	5,600.0	40.4	6	204.1	6.7	13.3	60.8	19.2	20.32	0.09	6.3	0.6
25154.0	SILETZ R	PALMER CR	WILDCAT CR	2,350.0	25.1	1	51.8	0.0	20.0	60.0	20.0	2.20	0.09	4.4	0.4
25156.0	SILETZ R	WILDCAT CR	FALLS CR	4,250.0		0		0.0	0.0	0.0	0.0				
25158.0	SILETZ R	FALLS CR	BUCK CR	3,400.0	35.5	. 5	517.1	1.0	16.0	63.0	20.0	39.72	0.43	7.0	3.0
25159.0	BUCK CR	MOUTH	BUCK CR, E FK	687.0	16.0	5	87.2	10.0	26.0	56.0	6.0	15.96	0.79	5.3	4.2
25161.0	BUCK CR	BUCK CR, E FK	BUCK CR, S FK	800.0	13.3	0		0.0	0.0	0.0	0.0				
25164.0	SILETZ R	BUCK CR	SUNSHINE CR	900.0	45.7	2	371.1	2.5	12.5	65.0	20.0	18.47	0.90	8.6	7.8

APPENDIX TABLE A-3 SUMMARY OF SILETZ BASIN REACHES INVENTORIED FOR FALL CHINOOK SPAWNING HABITAT a/

ID	REACH	LOWER BOUNDRY	UPPER BOUNDRY	REACH LENGTH	CHANNEL WITH	NUMBER OF UNITS	AVERAGE UNIT AREA	<u>SUI</u> FINES	BSTRATE C	OMPOSITI GRAVEL		LINEAR HABITAT DENSITY	AREA HABITAT DENSITY	MEAN HABITAT SCORE	REACH SCORE
25165.0	SUNSHINE CR	MOUTH	DEER CR	2,873.0	33.1	3	55.1	5.0	13.3	60.0	21.7	8.44	0.06	4.3	0.2
25167.0	SUNSHINE CR	DEER CR	FOURTH OF JULY CR	1,450.0	20.1	0		0.0	0.0	0.0	0.0				
25172.0	SILETZ R	SUNSHINE CR	HOLMAN CR	2,400.0	28.8	2	449.0	0.0	12.5	62.5	25.0	26.12	0.65	6.3	4.1
25174.0	SILETZ R	HOLMAN CR	ELK CR	4,000.0	33.0	5	920.0	4.0	20.0	59.0	17.0	52.65	0.70	6.3	4.4
25176.0	SILETZ R	ELK CR	FALLS CR	2,100.0	27.0	0		0.0	0.0	0.0	0.0				
25235.0	DRIFT CR	GORDEY CR	NORTH CR	2,400.0	26.2	39	3,229.8	6.5	22.8	64.4	5.4	254.14	1.00	7.2	7.2
25237.0	DRIFT CR	NORTH CR	WILDCAT CR	4,475.0	22.6	24	1,943.0	7.3	15.2	60.4	16.3	167.27	1.92	6.4	12.2
25239.0	DRIFT CR	WILDCAT CR	SAMPSON CR	4,021.0	21.4	12	447.5	6.7	15.8	58.8	18.8	43.70	0.52	6.0	3.1
25240.0	SAMPSON CR	MOUTH	UNNAMED	1,018.0	22.4	4	335.4	7.5	17.5	53.8	21.3	19.79	1.47	5.7	8.3
25241.0	UNNAMED	MOUTH	HEADWATERS	822.0	18.4	3	73.0	11.7	20.0	53.3	15.0	12.08	0.48	6.6	3.2
25243.0	DRIFT CR	SAMPSON CR	SMITH CR	1,401.0	15.4	3	65.2	6.7	13.3	56.7	23.3	12.08	0.30	6.0	1.8
25253.0	SCHOONER CR	MOUTH	ERICKSON CR	3,916.0	14.9	31	1,469.2	10.6	23.5	56.8	8.8	184.17	2.51	6.6	16.5
25255.0	SCHOONER CR	ERICKSON CR	SCHOONER CR, N FK	2,595.0	14.1	5	132.5	12.0	22.0	58.0	8.0	17.95	0.36	6.7	2.4

APPENDIX TABLE A-3 SUMMARY OF SILETZ BASIN REACHES INVENTORIED FOR FALL CHINOOK SPAWNING HABITAT a/

10	REACH	LOWER	UPPER	REACH	CHANNEL	OF	AVERAGE			OMPOSIT		LINEAR HABITAT	AREA HABITAT	MEAN HABITAT	REACH
ID		BOUNDRY	BOUNDRY	LENGTH	WITH	UNITS	AREA	FINES	PEBBLE	GRAVEL	COBBLE	DENSITY	DENSITY	SCORE	SCORE
24014.0	SIUSLAW R, N FK	MORRIS CR	CONDON CR	875.0	20.0	0		0.0	0.0	0.0	0.0				
24015.0	CONDON CR	MOUTH	BILLIE CR	2,435.0	15. 6	× 17	1,483.7	9.7	22.4	60.3	7.6	110.56	3.91	5.8	22.5
24017.0	CONDON CR	BILLIE CR	UNCLE CR	1,127.0	15.5	7	147.3	8.6	19.3	60.0	12.1	37.21	0.84	6.6	5.5
24018.0	UNCLE CR	MOUTH	HEADWATERS	1,944.0	11.9	5	77.6	8.0	15.0	55.0	22.0	22.84	0.34	5.3	1.8
24019.0	CONDON CR	UNCLE CR	HEADWATERS	710.0	14.5	0		0.0	0.0	0.0	0.0				
24020.0	SIUSLAW R, N FK	CONDON CR	JIM DICK CR	2,950.0	18.4	1	18.0	5.0	25.0	70.0	0.0	4.11	0.03	9.5	0.3
24022.0	SIUSLAW R, N FK	JIM DICK CR	RUSSELL CR	600.0	17.8 -	. 4	122.8	10.0	26.3	62.5	1.3	21.91	1.15	8.0	9.1
24024.0	SIUSLAW R, N FK	RUSSELL CR	MCLEOD CR	2,700.0	18.7	12	786.2	10.4	25.0	62.5	2.1	79.86	1.56	8.3	13.0
24025.0	MCLEOD CR	MOUTH	HEADWATERS	4,717.0	12.7	25	618.5	6.8	20.2	63.6	9 .0	85.41	1.03	6.6	6.8
24026.0	SIUSLAW R, N FK	MCLEOD CR	CATARACT CR	2,118.0	19.5	14	1,059.1	7.5	25.4	60.7	6.4	111.36	2.56	7.1	18.1
24028.0	SIUSLAW R, N FK	CATARACT CR	DREW CR	4,581.0	18.8	11	600.5	5.4	17.1	52.9	16.3	63.15	0.70	6.3	4.4
24030.0	SIUSLAW R, N FK	DREW CR	WILHELM CR	900.0	18.8	4	391.6	8.8	15.0	53.8	22.5	28.63	2.31	6.4	14.7
24031.0	WILHELM CR	MOUTH	HEADWATERS	1,673.0	11.5	4	41.4	6.3	23.8	58.8	11.3	9.15	0.21	6.0	1.3
24032.0	SIUSLAW R, N FK	WILHELM CR	PORTER CR	2,230.0	19.0	12	743.2	6.3	22.1	60.8	10.8	70.81	1.76	7.3	12.8
24033.0	PORTER CR	MOUTH	HEADWATERS	2,110.0	10.7	8	75.0	9.4	16.3	60.6	13.8	17.07	0.33	7.3	2.4
24034.0	SIUSLAW R, N FK	PORTER CR	CEDAR CR	4,500.0	16.6	28	1,451.9	5.7	22.3	60.7	11.4	146.10	1.94	7.0	13.5
24036.0	SIUSLAW R, N FK	CEDAR CR	ELMA CR	892.0		0		0.0	0.0	0.0	0.0				
24119.0	SIUSLAW R	COUNT CR	CAMP CR	1,625.0	43.4	0		0.0	0.0	0.0	0.0				
24121.0	SIUSLAW R	CAMP CR	OLD MAN CR	1,050.0	43.4	0		0.0	0.0	0.0	0.0				
24123.0	SIUSLAW R	OLD MAN CR	LAKE CR	500.0	43.4	0		0.0	0.0	0.0	0.0				
24124.0	LAKE CR	MOUTH	INDIAN CR	3,850.0	37.9	0		0.0	0.0	0.0	0.0				
24125.0	INDIAN CR	MOUTH	VELVET CR	2,575.0	23.9	1	82.4	10.0	30.0	55.0	5.0	5.11	0.13	4.2	0.6
24127.0	INDIAN CR	VELVET CR	ELK CR	8,400.0	23.8	22	3,269.6	9.8	20.7	60.2	7.5	166.09	1.63	6.0	9.8
24129.0	INDIAN CR	ELK CR	CREMO CR	4,800.0	25.8	3	125.2	5.0	20.0	61.7	11.7	11.12	0.10	7.8	0.8
24131.0	INDIAN CR	CREMO CR	INDIAN CR, W FK	1,700.0	24.2	1	26.6	10.0	25.0	60.0	5.0	4.18	0.06	9.1	0.6

APPENDIX TABLE A-4 SUMMARY OF SIUSLAW BASIN REACHES INVENTORIED FOR FALL CHINOOK SPAWNING HABITAT a/

ID	REACH		UPPER BOUNDRY	REACH	CHANNEL	NUMBER OF UNITS	AVERAGE UNIT AREA		BSTRATE (LINEAR HABITAT DENSITY	AREA HABITAT DENSITY	MEAN HABITAT SCORE	
		BOUNDRY	BUUNDKI		1 1111			FINES	PEBBLE	GRAVEL	COBBLE	DENSIT	DEN 511 1	JUKE	SCORE
24132.0	INDIAN CR, W FK	MOUTH	LONG CR	2,944.0	13.7	12	209.2	7.1	18.3	62.5	12.1	39.44	0.52	6.7	3.4
24134.0	INDIAN CR, W FK	LONG CR	ROGERS CR	3,682.0	14.3	21	963.3	7.1	22.1	61.7	9.0	99.20	1.83	6.5	12.0
24136.0	INDIAN CR, W FK	ROGERS CR	PYLE CR	1,910.0	14.8	18	1,811.4	8.6	20.6	63.6	7.2	146.40	6.41	7.2	46.0
24150.0	LAKE CR	INDIAN CR	GREEN CR	3,000.0	42.1	3	582.8	5.0	15.0	66.7	13.3	20.20	0.46	6.3	2.9
24152.0	LAKE CR	GREEN CR	DEADWOOD CR	1,250.0	34.0	0		0.0	0.0	0.0	0.0				
24182.0	LAKE CR	DEADWOOD CR	JOHNSON CR	2,400.0	23.9	7	1,671.4	5.7	20.0	66.4	5.7	65.36	2.91	6.2	17.9
24184.0	LAKE CR	JOHNSON CR	HULA CR	1,000.0	29.2	3	922.8	0.0	23.3	68.3	8.3	29.90	3.16	7.2	22.7
24186.0	LAKE CR	HULA CR	ALMASIE CR	2,200.0	28.4	6	142.6	4.2	24.2	62.5	8.3	23.73	0.23	6.9	1.6
24188.0	LAKE CR	ALMASIE CR	CHAPPELL CR	550.0	29.9	1	45.8	5.0	20.0	60.0	10.0	3.11	0.28	3.7	1.0
24190.0	LAKE CR	CHAPPELL CR	WILCUT CR	1,750.0	30.8	2	127.1	5.0	12.5	67.5	15.0	9.64	0.24	3.7	0.9
24192.0	LAKE CR	WILCUT CR	NELSON CR	450.0	35.5	1	31.5	5.0	25.0	60.0	10.0	7.39	0.20	6.1	1.2
24198.0	LAKE CR	NELSON CR	WHEELER CR	1,600.0	27.0	2	207.7	10.0	20.0	67.5	2.5	14.07	0.48	6.4	3.1
24200.0	LAKE CR	WHEELER CR	STEINHAUER CR	2,200.0	26.1	6	316.2	6.7	22.5	57.5	12.5	24.63	0.55	6.3	3.5
24202.0	LAKE CR	STEINHAUER CR	GREENLEAF CR	3,400.0	23.6	13	2,153.4	5.0	16.9	60.0	16.5	126.51	2.68	6.5	17.6
24204.0	LAKE CR	GREENLEAF CR	LAMB CR	2,060.0	21.9	8	635.8	10.6	19.4	61.9	6.9	35.88	1.41	6.1	8.6
24206.0	LAKE CR	LAMB CR	FISH CR	2,570.0	19.9	18	4,315.8	7.2	17.5	68.1	6.9	134.15	8.44	7.1	60.1
24236.0	SIUSLAW R	LAKE CR	BRUSH CR	2,600.0	35.6	0		0.0	0.0	0.0	0.0				
24240.0	SIUSLAW R	BRUSH CR	TILDEN CR	1,100.0	35.6	0		0.0	0.0	0.0	0.0				
24242.0	SIUSLAW R	TILDEN CR	BARBER CR	3,900.0	35.5	4	301.9	10.0	22.5	55.0	10.0	17.91	0.22	4.2	0.9
24244.0	SIUSLAW R	BARBER CR	PATCR	1,400.0	39.2	0		0.0	0.0	0.0	0.0				
24246.0	SIUSLAW R	PATCR	BEECH CR	750.0	39.2	0		0.0	0.0	0.0	0.0				
24248.0	SIUSLAW R	BEECH CR	SAN ANTONE CR	850.0	34.0	0		0.0	0.0	0.0	0.0				
24250.0	SIUSLAW R	SAN ANTONE CR	SMITH CR	2,625.0	42.2	7	917,8	7.1	20.7	67.9	3.6	31.81	0.83	6.0	5.0
24252.0	SIUSLAW R	SMITH CR	MEADOW CR	1,750.0	35.6	2	180.9	7.5	22.5	60.0	10.0	8.22	0.29	7.7	2.2
24254.0	SIUSLAW R	MEADOW CR	ROCK CR	1,400.0	39.5	1	68.5	10.0	30.0	60.0	0.0	3.12	0.12	7.7	1.0

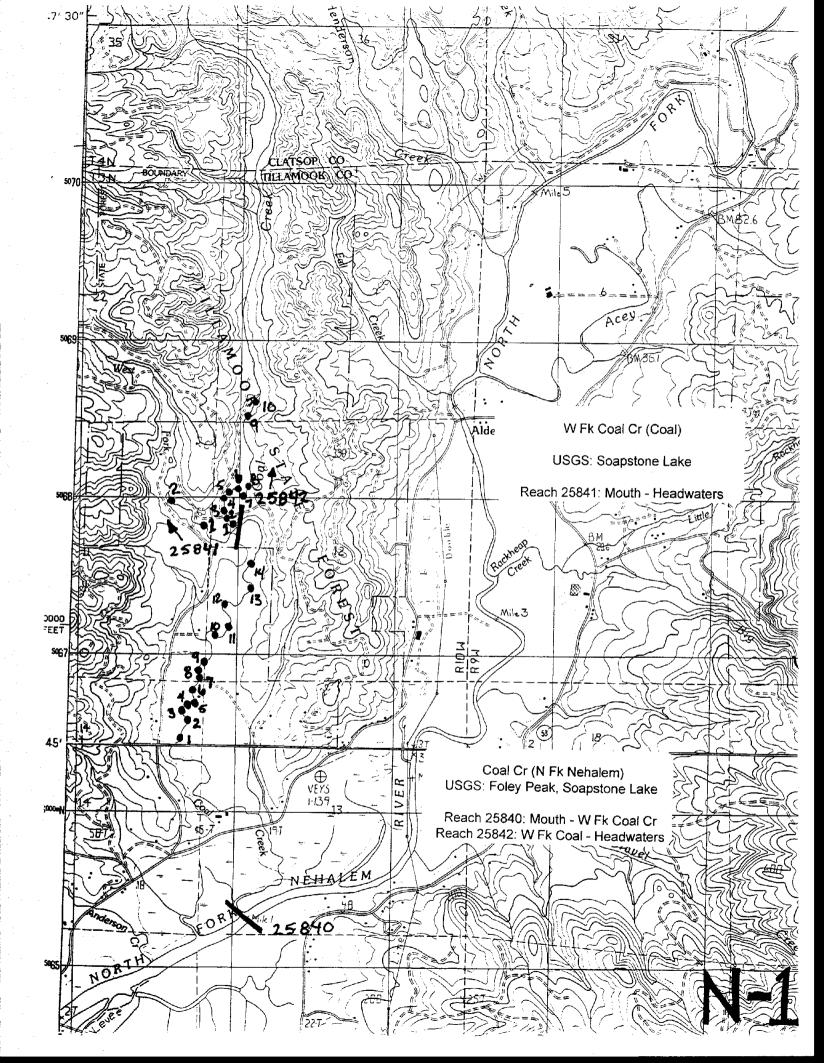
4.

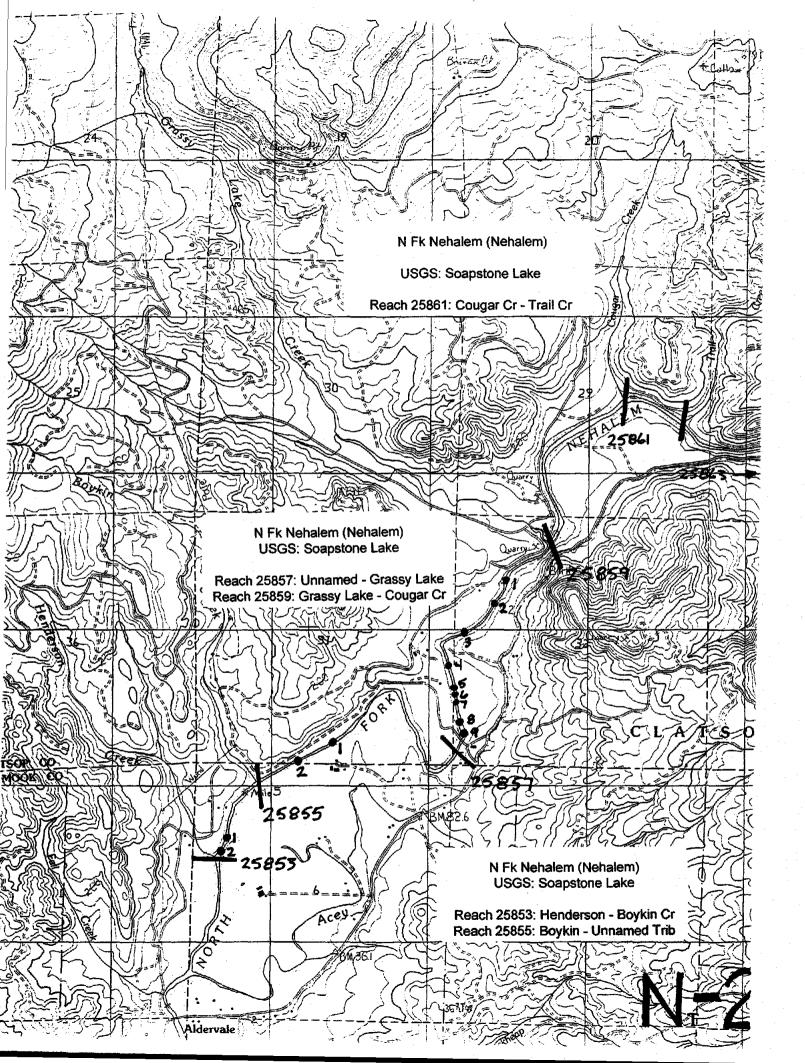
APPENDIX TABLE A-4 SUMMARY OF SIUSLAW BASIN REACHES INVENTORIED FOR FALL CHINOOK SPAWNING HABITAT a/

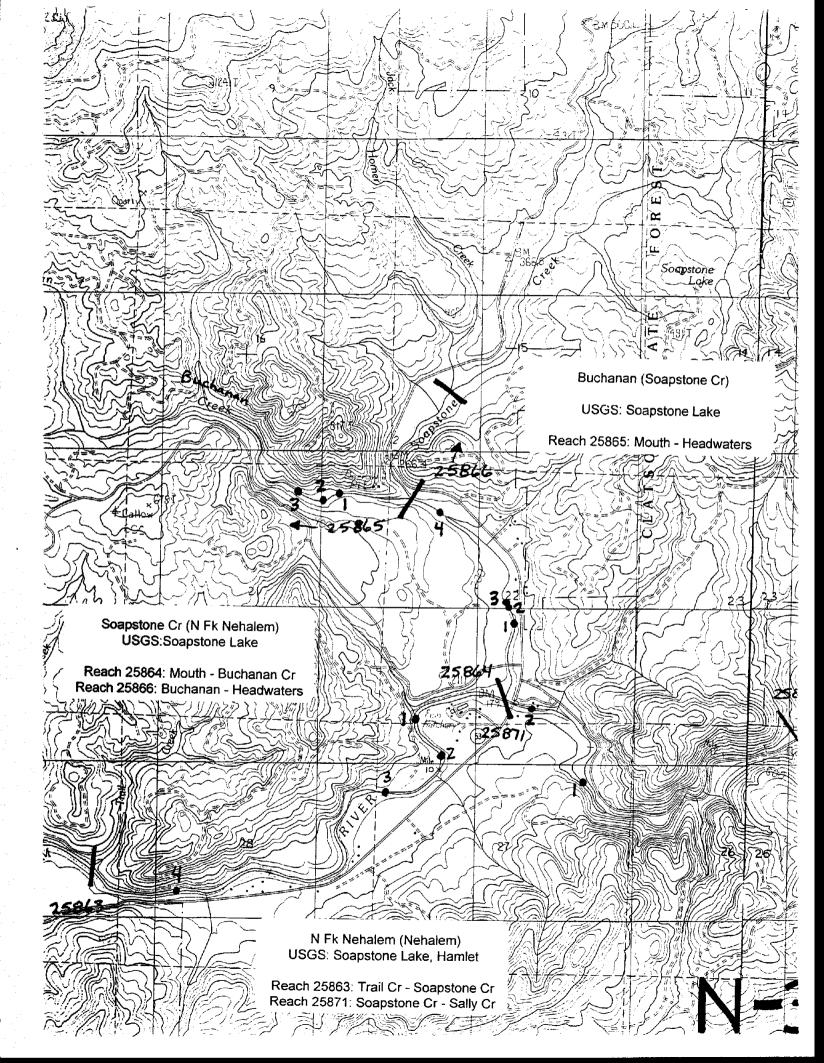
D	REACH	LOWER BOUNDRY	UPPER BOUNDRY	REACH LENGTH	CHANNEL WITH	NUMBER OF UNITS	AVERAGE UNIT AREA		ISTRATE C Pebble			LINEAR HABITAT DENSITY	AREA HABITAT DENSITY	MEAN HABITAT SCORE	REACH SCORE
24256.0	SIUSLAW R	ROCK CR	TURNER CR	2,250.0	37.6	8	853.6	7.5	20.0	63.1	7.5	34.74	1.01	6.2	6.3
24260.0	SIUSLAW R	TURNER CR	WAITE CR	800.0	32.5	0		0.0	0.0	0.0	0.0				
24262.0	SIUSLAW R	WAITE CR	WILDCAT CR	5,500.0	50.0	14	1,977.7	7.5	15.7	60.7	14.3	94.40	0.7 2	6.6	4.7
24300.0	SIUSLAW R	WILDCAT CR	WHITTAKER CR	2,550.0	34.0	5	1,273.5	10.0	17.0	62.0	11.0	47.01	1.47	6.6	9.7
24301.0	WHITTAKER CR	MOUTH	BOUNDS CR	1,623.0	16.8	8	318.3	2.5	18.1	65.0	14.4	31.72	1.17	5.2	6.0
24304.0	SIUSLAW R	WHITTAKER CR	WOLF CR	8,100.0	35.7	8	1,202.1	4.4	22.5	60.6	11.3	60.87	0.42	6.8	2.8
24346.D	SIUSLAW R	WOLF CR	BIG CANYON CR	1,700.0	21.9	2	91.7	0.0	35.0	65.0	0.0	6.21	0.25	6.1	1.!
24348.0	SIUSLAW R	BIG CANYON CR	ESMOND CR	2,050.0	23.3	10	1,502.0	4.5	20.0	63.5	10.5	48.23	3.15	4.8	15.1
24360.0	SIUSLAW R	ESMOND CR	CEDAR CR	1,800.0	20.0	4	254.6	7.5	23.8	58.8	10.0	21.44	0.71	6.5	4.0
24362.0	SIUSLAW R	CEDAR CR	FAWN CR	625.0	19.5	0		0.0	0.0	0.0	0.0				
24363.1	SIUSLAW R	FAWN CR	PUGH CR	4,350.0	17.9	4	418.4	13.8	15.0	55.0	12.5	36.04	0.54	6.1	3.
24363.3	SIUSLAW R	PUGH CR	TRAIL CR	2,050.0	4.1	5	13.4	7.0	23.0	61.0	9.0	20.88	0.16	5.3	0.1
24363.5	SIUSLAW R	TRAIL CR	NORTH CR	2,260.0	19.6	7	675.8	5.7	20.0	65.7	8.6	54.65	1.53	6.8	10.4
24364.0	SIUSLAW R	NORTH CR	MILL CR	1,075.0	23.7	8	772.8	3.8	28.1	64.4	3.8	72.77	3.03	8.2	24.
24366.0	SIUSLAW R	MILL CR	COLLINS CR	400.0	23.9	4	479.6	6.3	20.0	62.5	11.3	19.62	5.02	6.8	33.
24368.0	SIUSLAW R	COLLINS CR	HASKINS CR	790.0	23.9	1	58.9	5.0	25.0	70.0	0.0	7.10	0.31	8.8	2.3
24370.0	SIUSLAW R	HASKINS CR	LARUE CR	725.0	23.9	3	488.1	6.7	21.7	63.3	8.3	24.35	2.82	6.6	18.
24372.0	SIUSLAW R	LARUE CR	CLAY CR	3,100.0	25.7	10	648.8	10.0	20.0	62.0	8.0	56.78	0.82	7.6	6.
24374.0	SIUSLAW R	CLAY CR	EDRIS CR	1,325.0	22.7	2	172.0	10.0	20.0	65.0	5.0	8.80	0.57	5.8	3.
24376.0	SIUSLAW R	EDRIS CR	BURNTWOOD CR	1,700.0	25.8	4	196.1	8.8	20.0	60.0	8.8	20.08	0.45	7.6	3.
24378.0	SIUSLAW R	BURNTWOOD CR	BIERCE CR	2,800.0	20.5	2	687.6	10.0	17.5	65.0	7.5	15.63	1.20	4.9	5.9
24380.0	SIUSLAW R	BIERCE CR	JOHNSON CR	2,875.0	21.3	8	252.8	8.1	18.1	61.9	11.9	36.02	0.41	6.0	2.8
24382.0	SIUSLAW R	JOHNSON CR	LUYNE CR	2,750.0	17.6	3	83.6	10.0	25.0	63.3	1.7	15.74	0.17	6.1	1.0
24384.0	SIUSLAW R	LUYNE CR	OXBOW CR	7,000.0	20.8	28	2,721.5	5.9	20.5	65.2	7.3	211.96	1.87	7.4	13.
24390.0	SIUSLAW R	OXBOW CR	BEAR CR	675.0	18,4	2	213.2	7.5	20.0	67.5	5.0	25.70	1.71	8.4	14.3

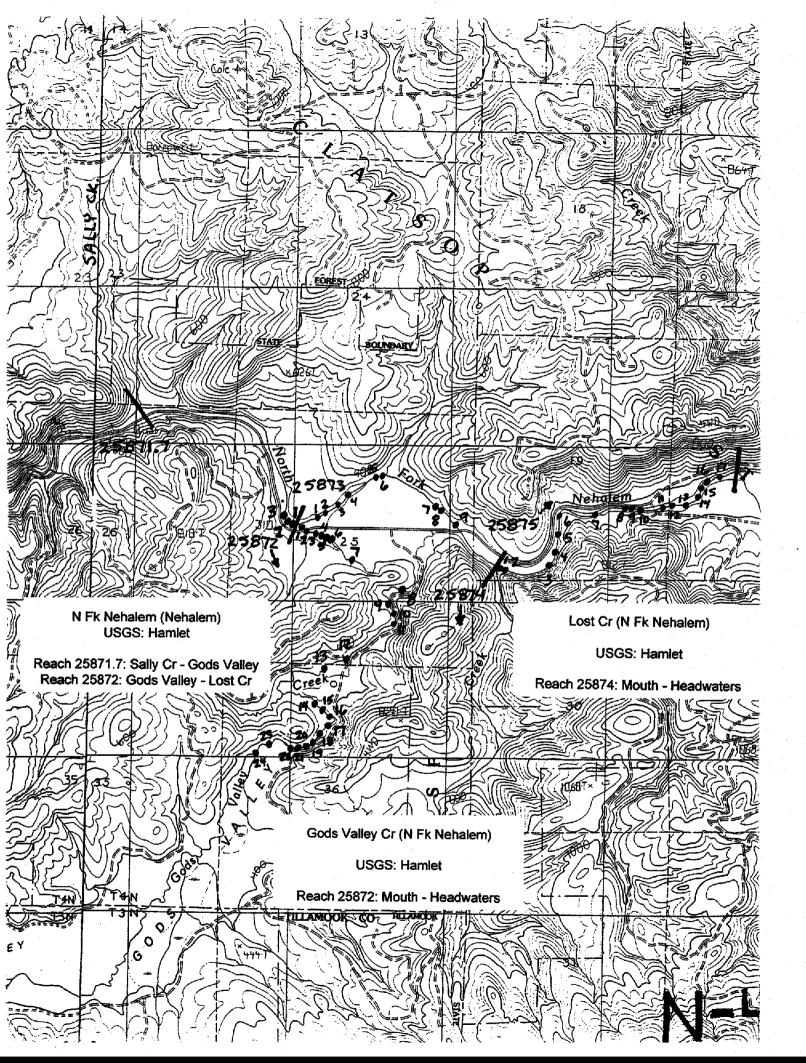
APPENDIX TABLE A-4 SUMMARY OF SIUSLAW BASIN REACHES INVENTORIED FOR FALL CHINOOK SPAWNING HABITAT a/

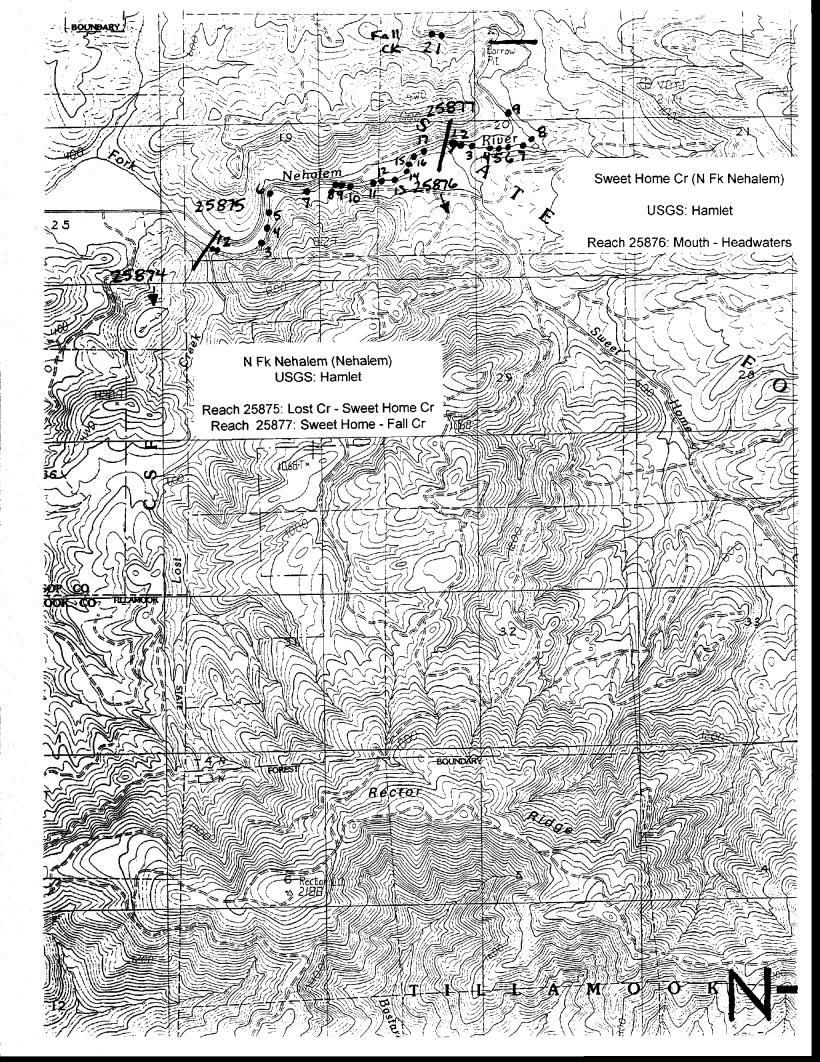
ID	REACH	LOWER BOUNDRY	UPPER BOUNDRY	REACH LENGTH	CHANNEL WITH	NUMBER Of UNITS	AVERAGE UNIT AREA		ISTRATE C PEBBLE		<u>on (%)</u> Cobble	LINEAR HABITAT DENSITY	AREA HABITAT DENSITY	MEAN HABITAT SCORE	REACH SCORE
24394.0	SIUSLAW R	BEAR CR	HAIGHT CR	1,900.0	20.0	0		0.0	0.0	0.0	0.0				
24398.0	SIUSLAW R	HAIGHT CR	CAMP CR	2,500.0	20.0	2	66.2	15.0	17.5	55.0	12.5	19.48	0.13	8.2	1.1

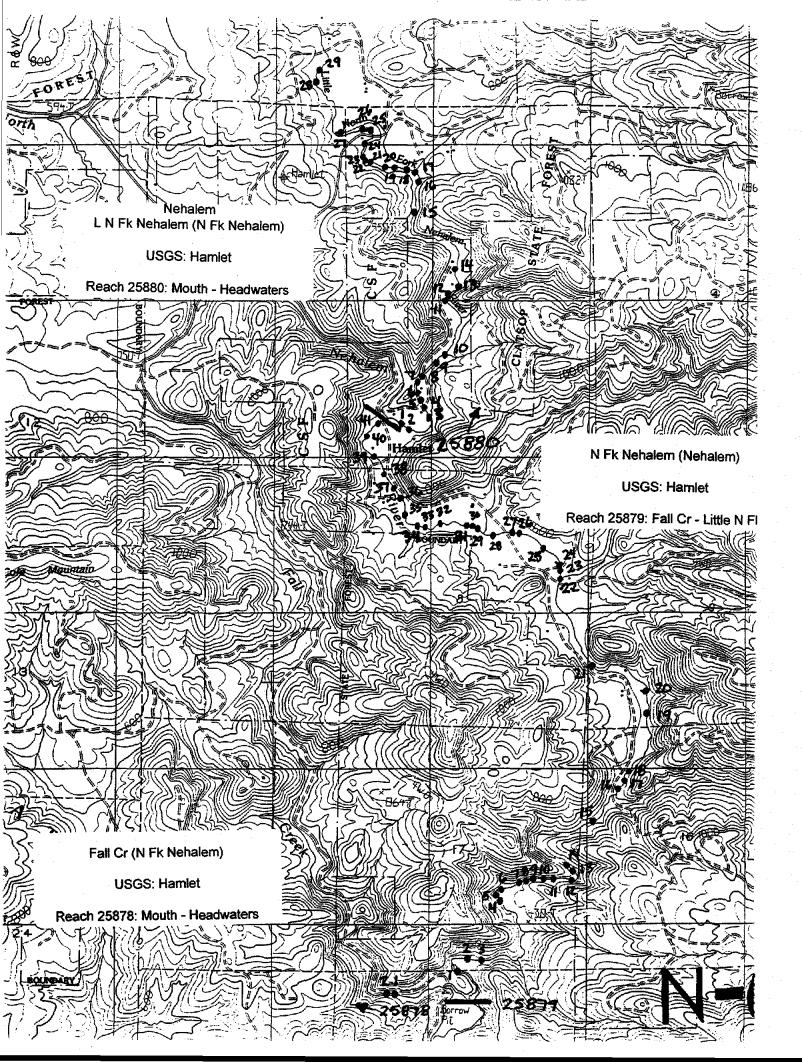

APPENDIX TABLE A-4 SUMMARY OF SIUSLAW BASIN REACHES INVENTORIED FOR FALL CHINOOK SPAWNING HABITAT a/

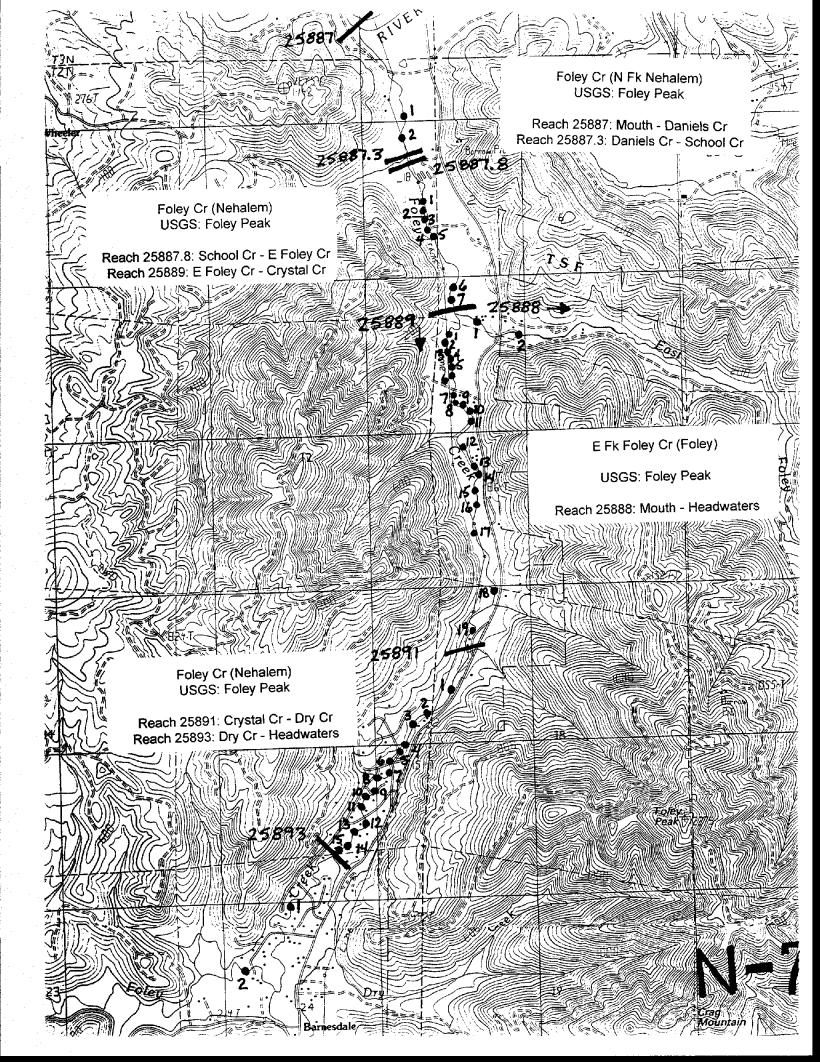

APPENDIX TABLE A-5 SUMMARY OF ALSEA BASIN REACHES INVENTORIED FOR FALL CHINOOK SPAWNING HABITAT a/
--

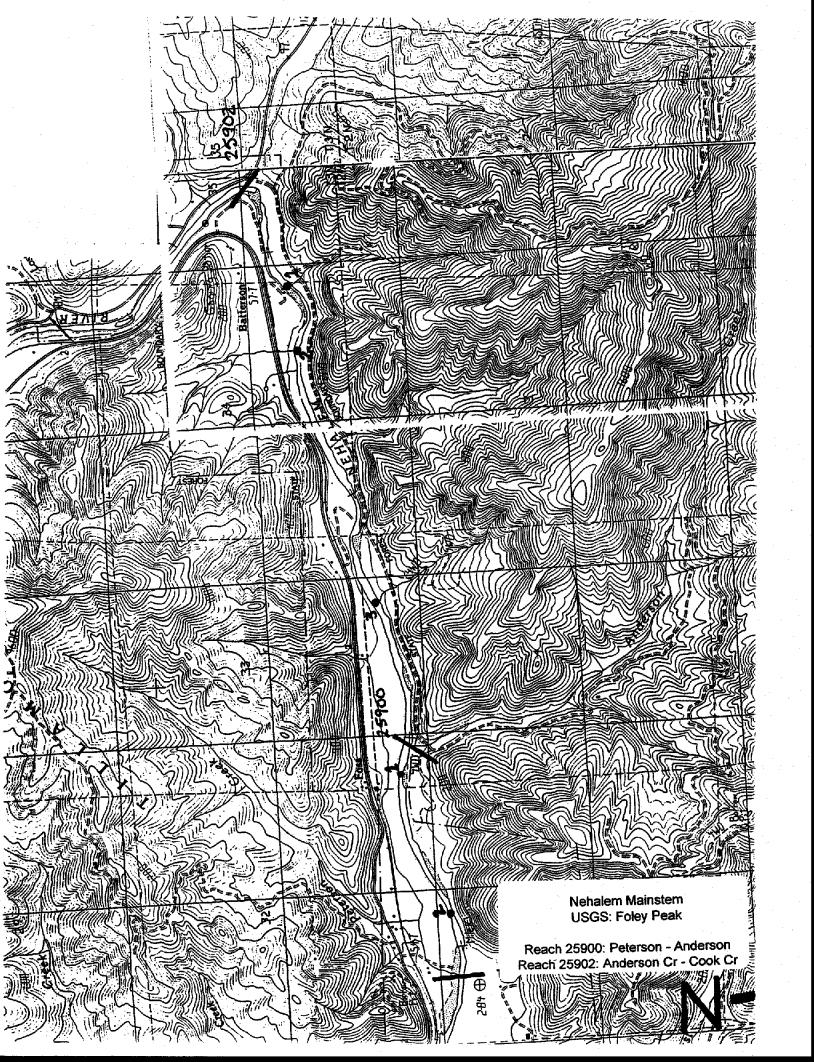

ID	REACH	LOWER BOUNDRY	UPPER BOUNDRY	REACH LENGTH	CHANNEL WITH	NUMBER OF UNITS	AVERAGE UNIT AREA	<u>SUI</u> FINES	BSTRATE (OMPOSITI		LINEAR HABITAT DENSITY	AREA HABITAT DENSITY	MEAN HABITAT SCORE	REACH
24810.0	ALSEA R	FALL CR	DIGGER CR	3,750.0	30.6	9	2,840.7	5.6	15.6	66.7	11.7	0.76	2.48	7.4	18.4
	ALSEA R	DIGGER CR	BENNER CR	3,850.0	29.8	6	2,971.2	6.7	25.0	60.8	5.8	0.77	2.59	7.3	18.8
24814.0	ALSEA R	BENNER CR	SULMAN CR	5,100.0	28.6	14 ⁻	3,565.8	8.6	17.9	65.4	6.1	0.70	2.44	7.7	18.9
24820.0	ALSEA R	SULMAN CR	NARROW CR	3,450.0	30.3	18	5,289.5	7.5	16.4	66.9	9.4	1.53	5.05	7.7	39.1
24822.0	ALSEA R	NARROW CR	MALTBY CR	700.0	26.0	4	955.7	1.3	18.8	66.3	12.5	1.37	5.24	8.1	42.3
24824.0	ALSEA R	MALTBY CR	SCHOOLHOUSE CR	2,450.0	24.3	6	2,255.9	2.5	16.7	67.5	13.3	0.92	3.78	6.7	25.3
24826.0	ALSEA R	SCHOOLHOUSE CR	MILL CR	2,150.0	24.6	8	1,463.9	2.5	13.8	65.0	18.8	0.68	2.77	7.4	20.6
24830.0	ALSEA R	MILL CR	ROBERTS CR	250.0	23.3	1	188.9	0.0	15.0	75.0	10.0	0.76	3.25	5.0	16.2
24832.0	ALSEA R	ROBERTS CR	CATHCART CR	1,000.0	26.0	4	1,377.6	2.5	11.3	68.8	17.5	1.38	5.29	6.2	32.6
24834.0	ALSEA R	CATHCART CR	ALSEA R. N FK	700.0	19.9	4	336.8	2.5	12.5	67.5	17.5	0.48	2.42	7.0	17.0
24835.0	ALSEA R, N FK	MOUTH	KIGER CR	1,850.0	19.1	10	532.3	5.0	13.5	61.0	22.5	0.29	1.51	6.7	10.1
24837.0	ALSEA R, N FK	KIGER CR	HONEY GROVE CR	500.0	19.9	3	136.6	3.3	16.7	56.7	23.3	0.27	1.38	5.5	7.6
24839.0	ALSEA R, N FK	HONEY GROVE CR	SEELEY CR	1,250.0	17.4	2	93.9	7.5	17.5	65.0	10.0	0.08	0.43	8.3	3.6

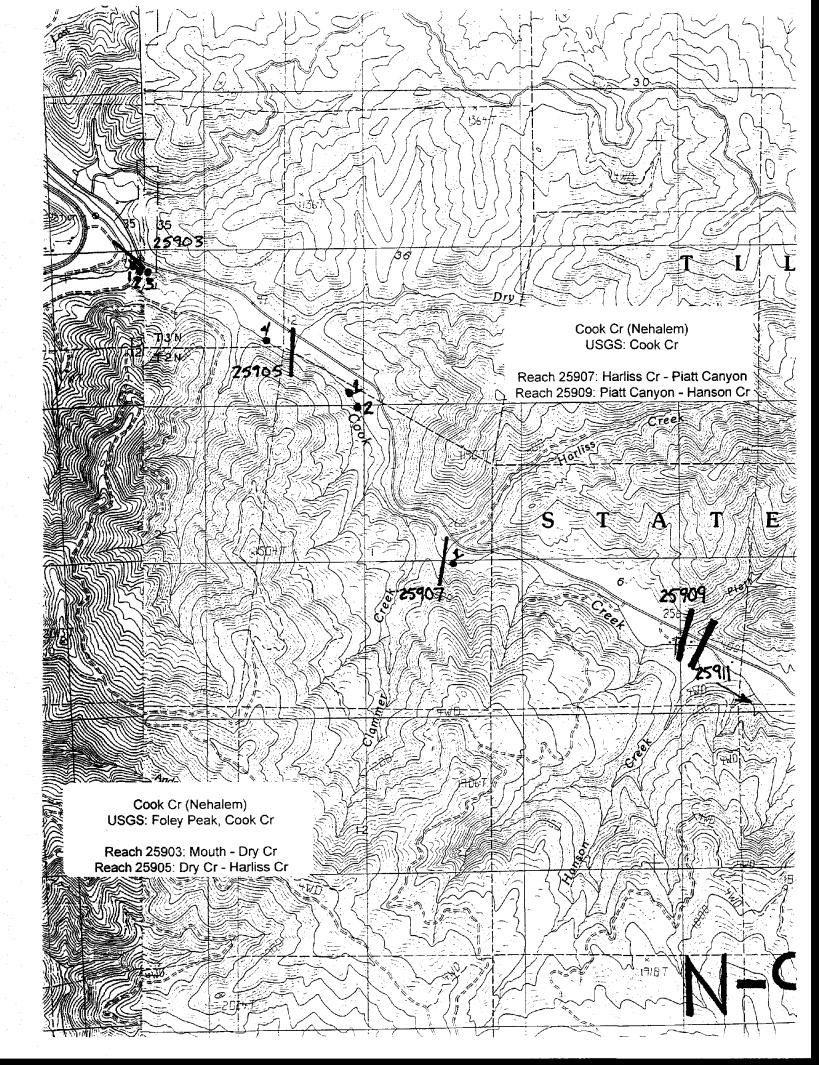

APPENDIX B

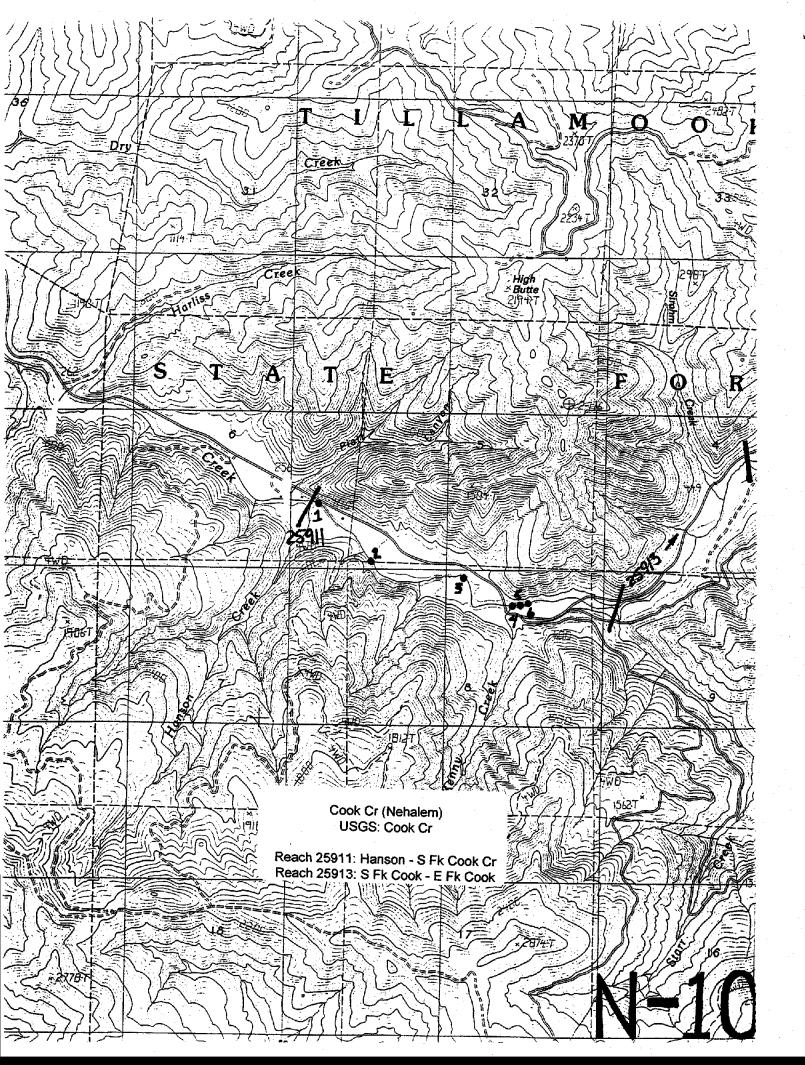

Maps Depicting the Locations of Fall Chinook Spawning Habitat Units

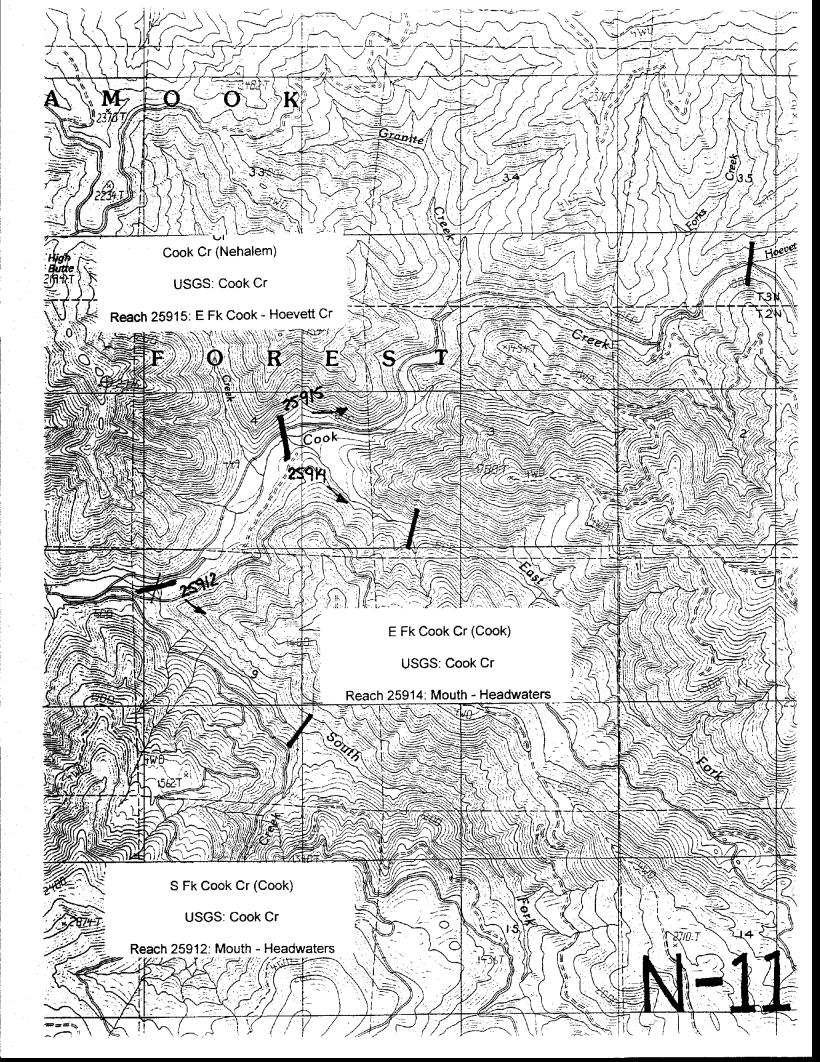


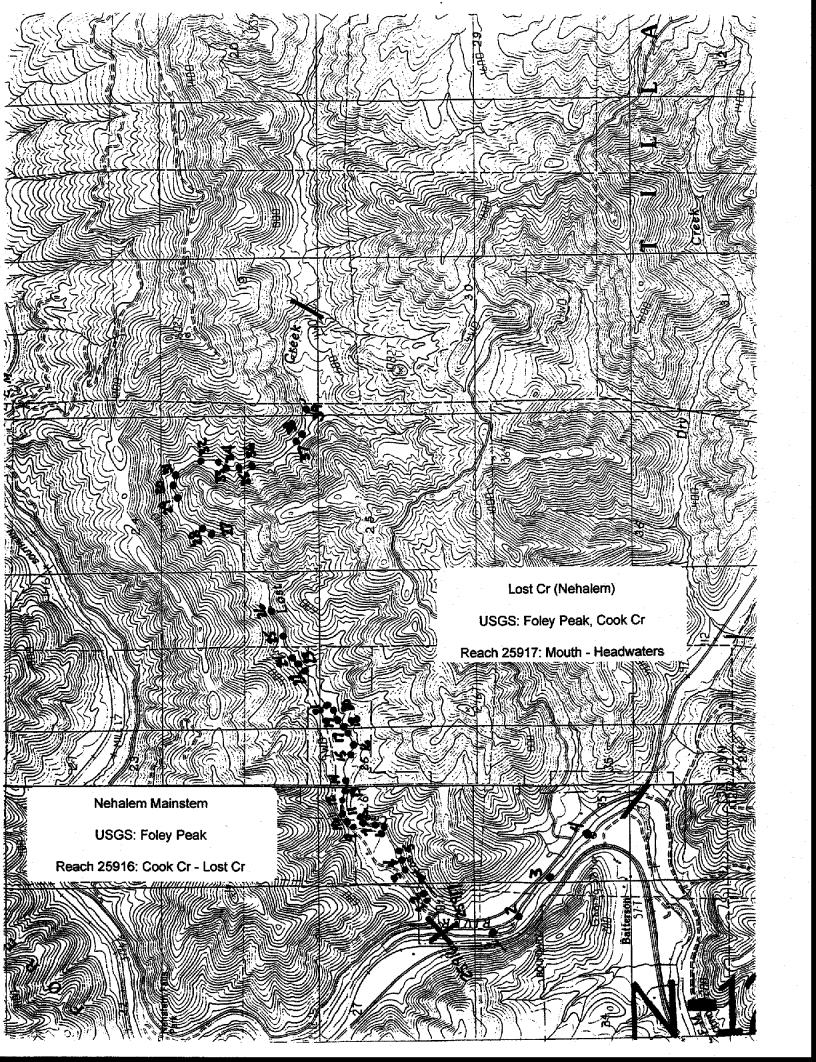


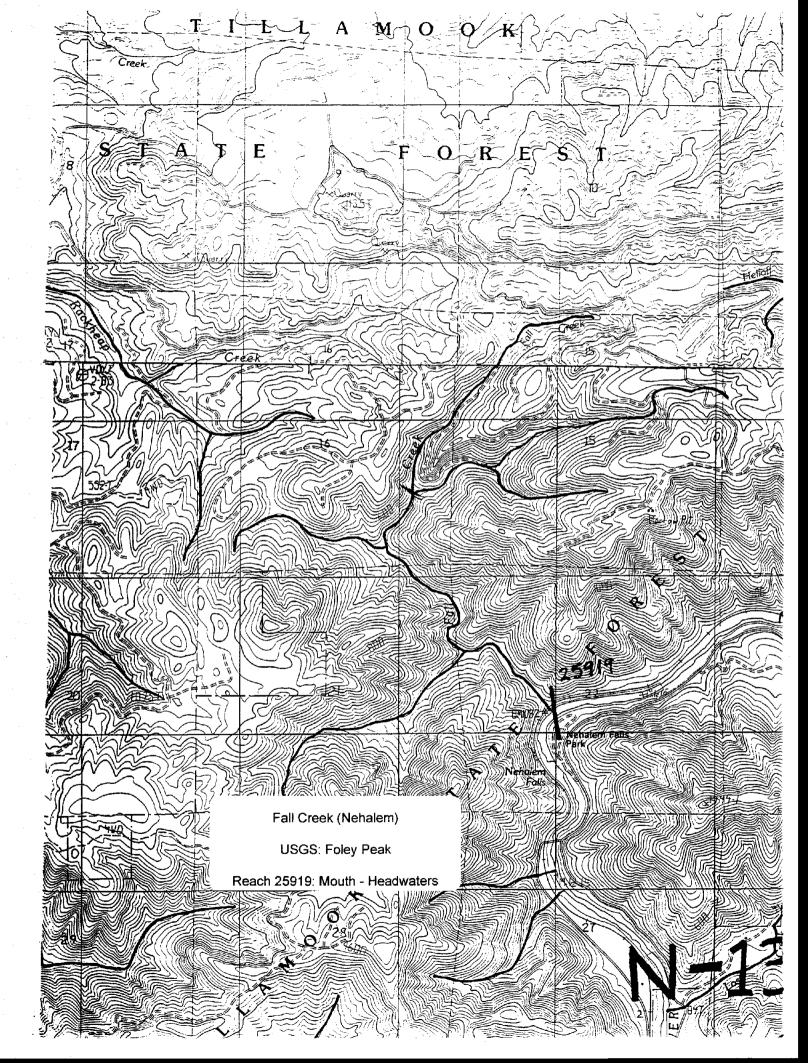


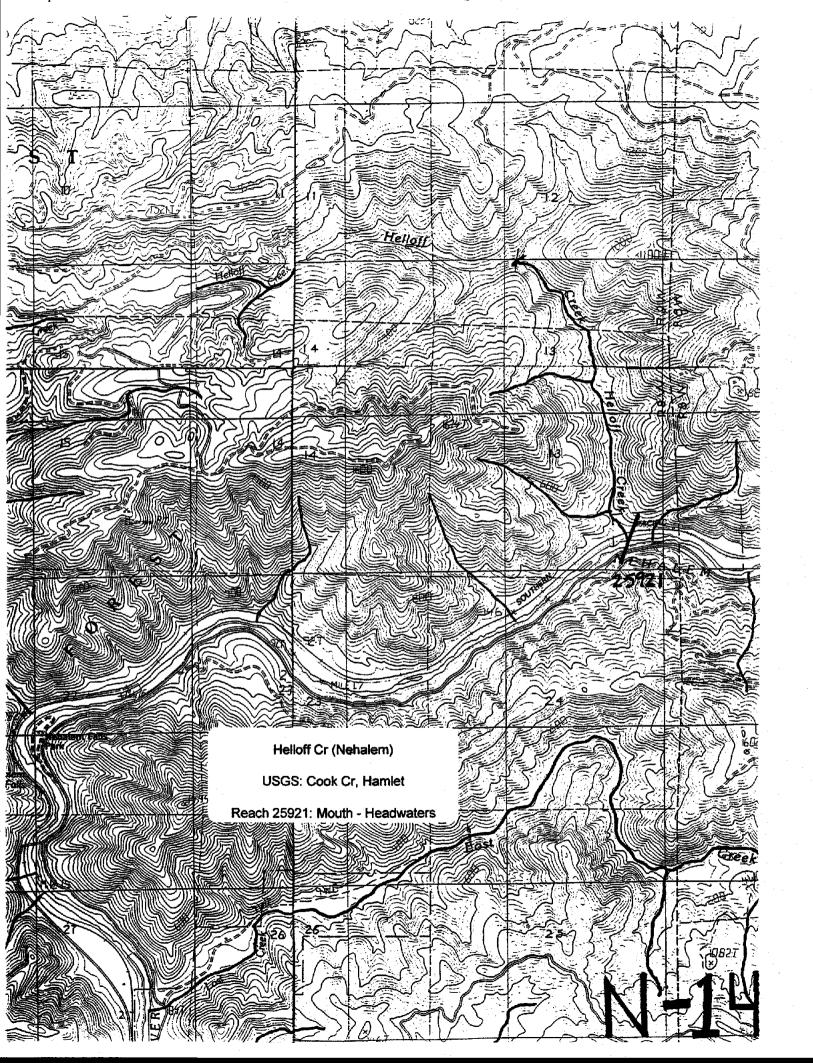


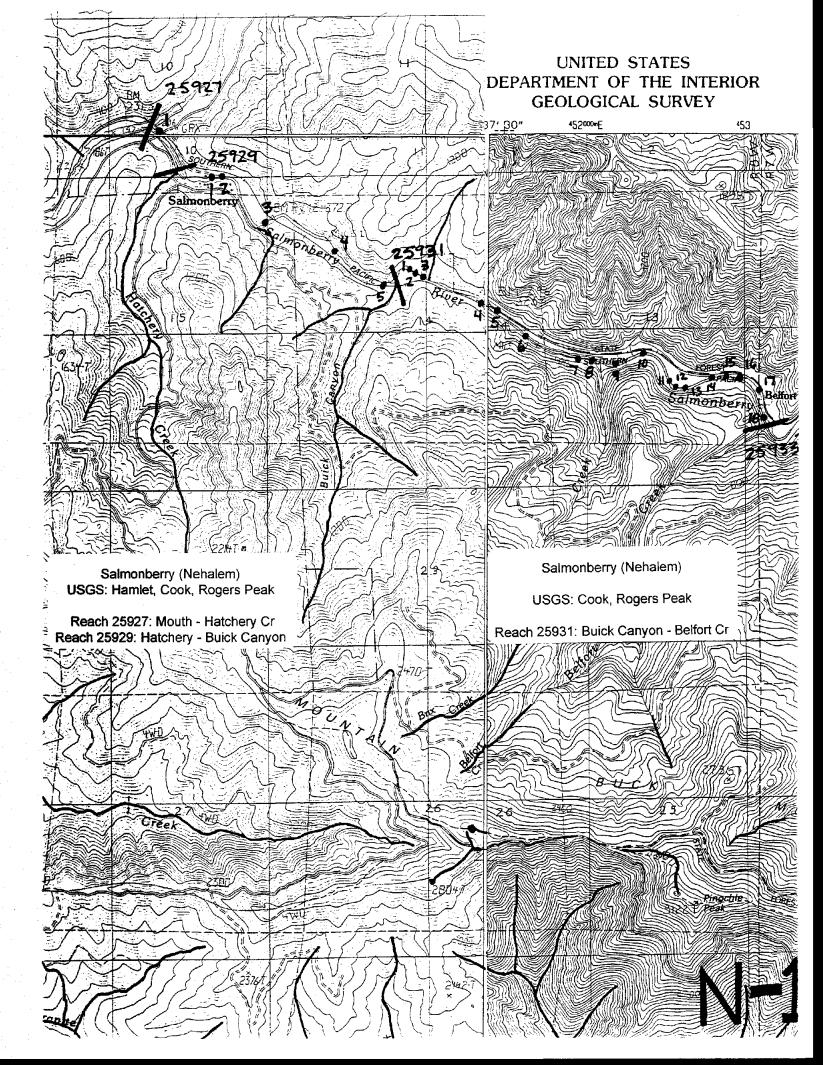


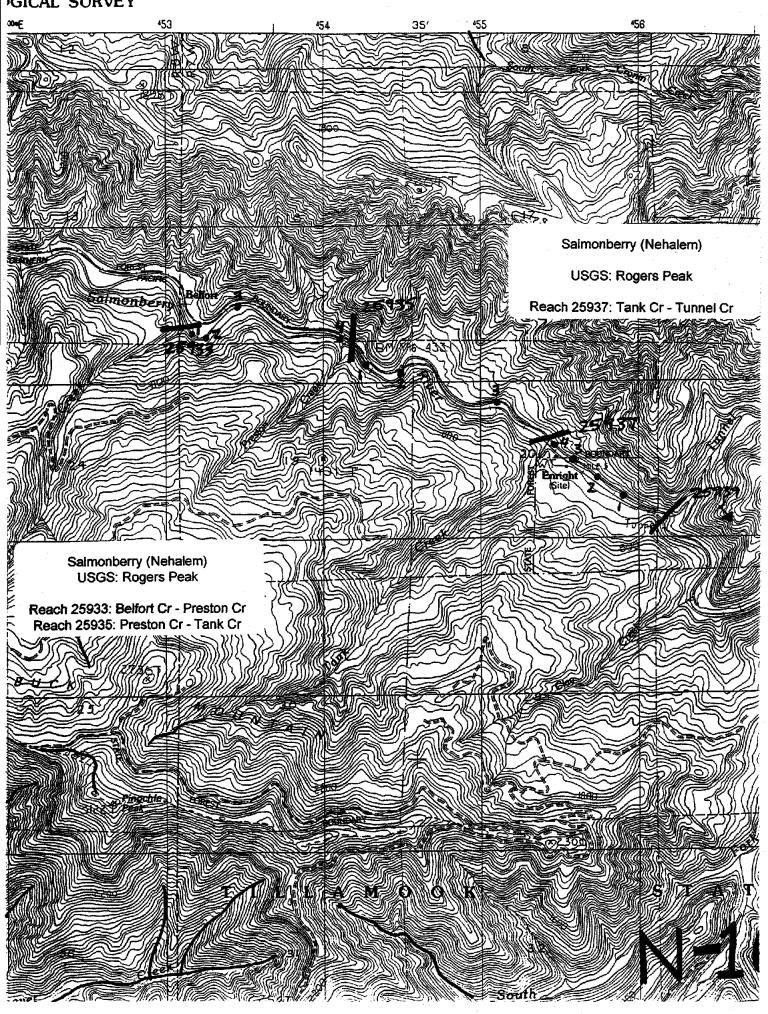


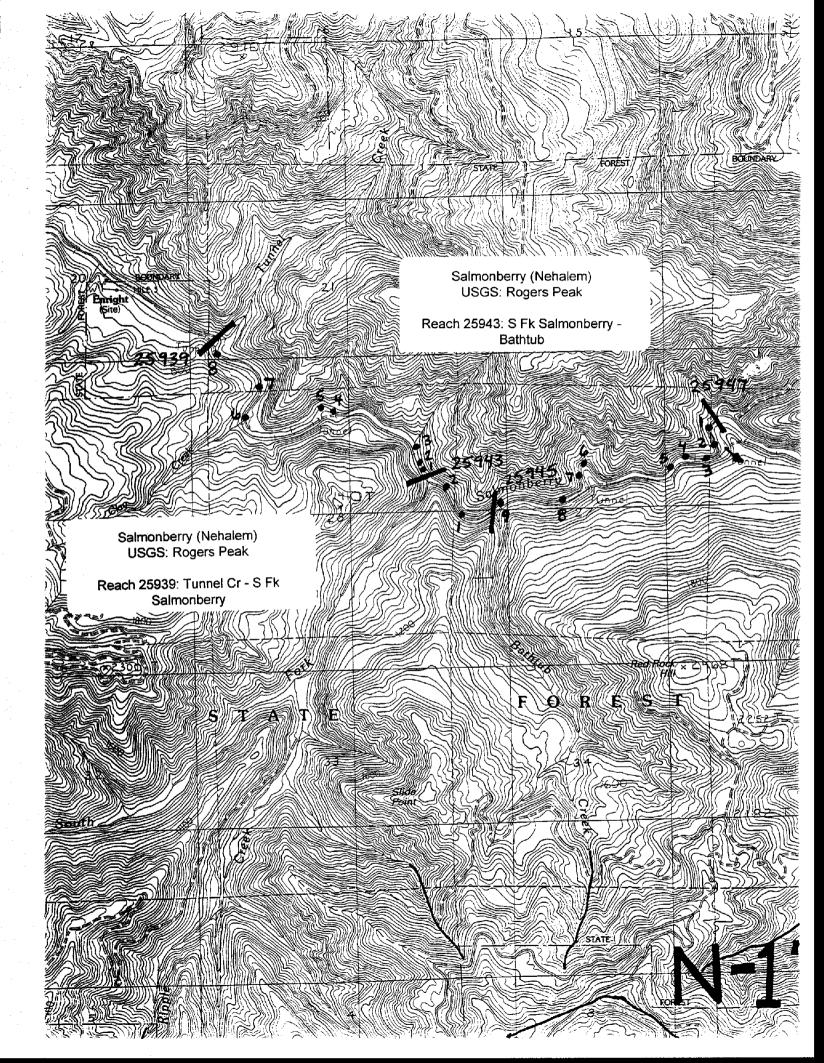


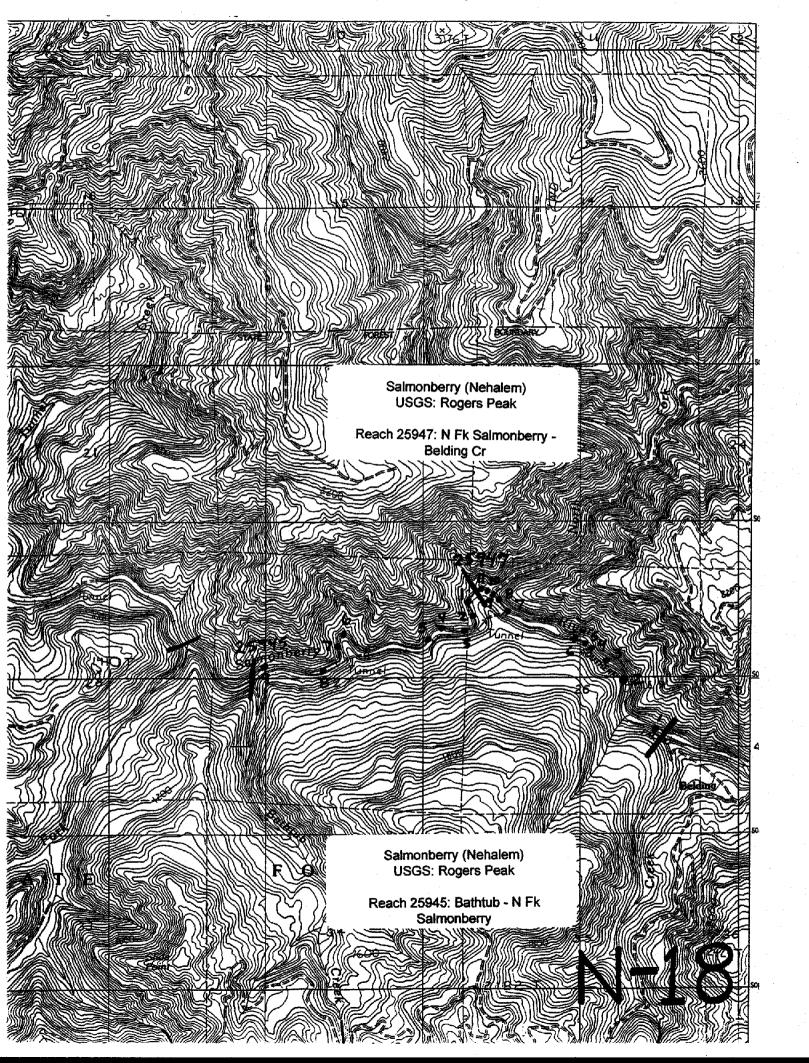


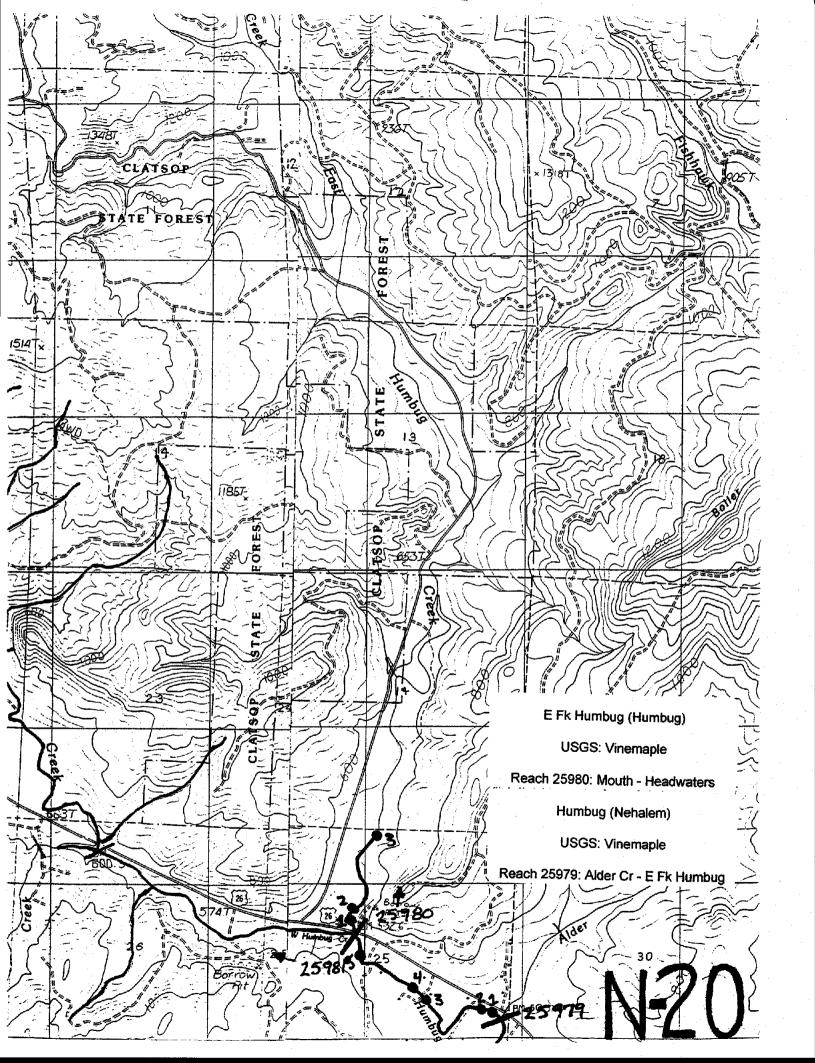




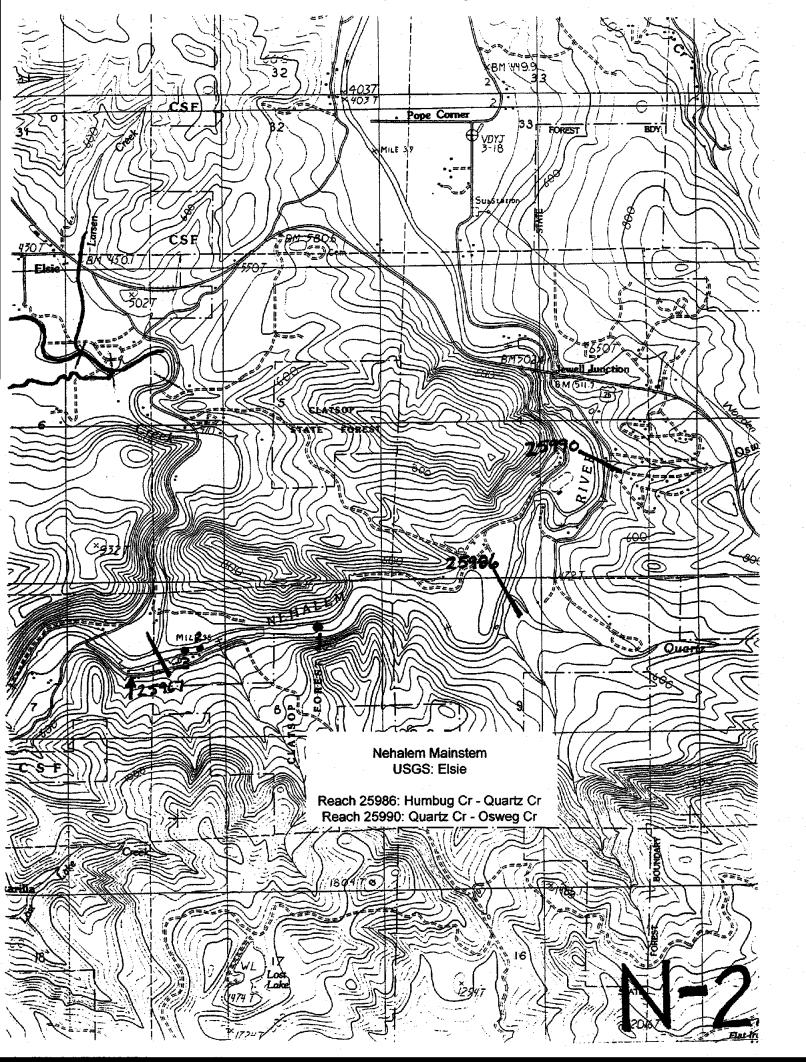


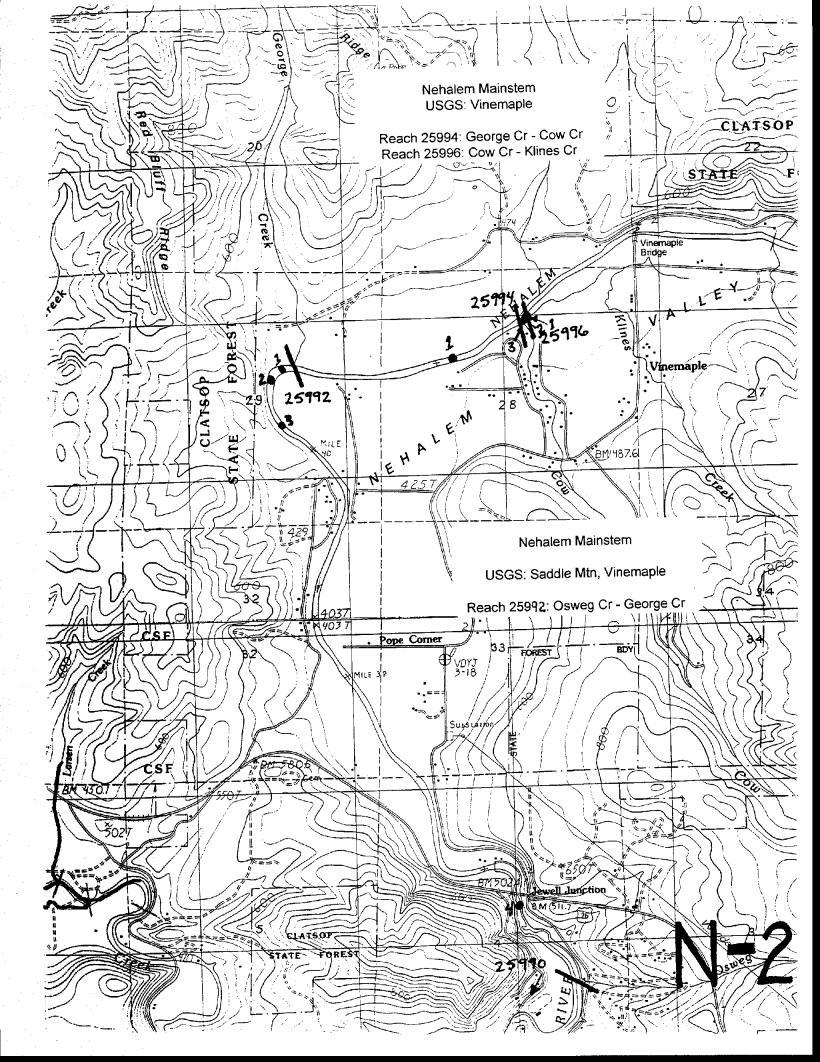


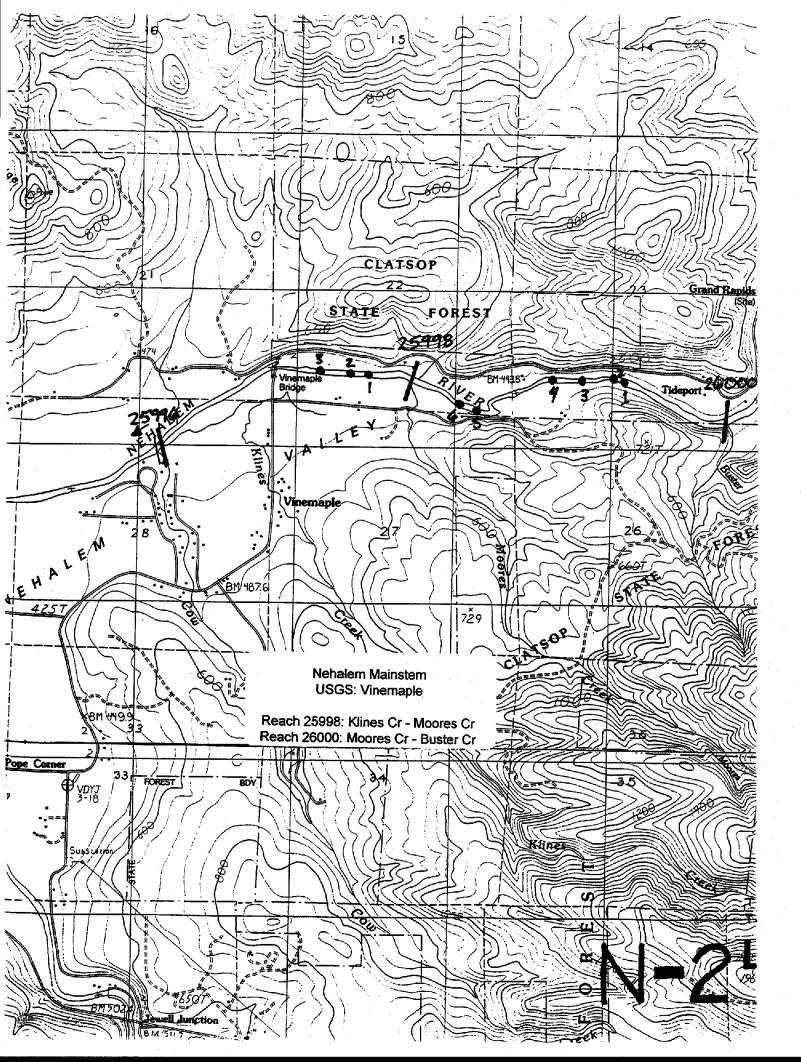


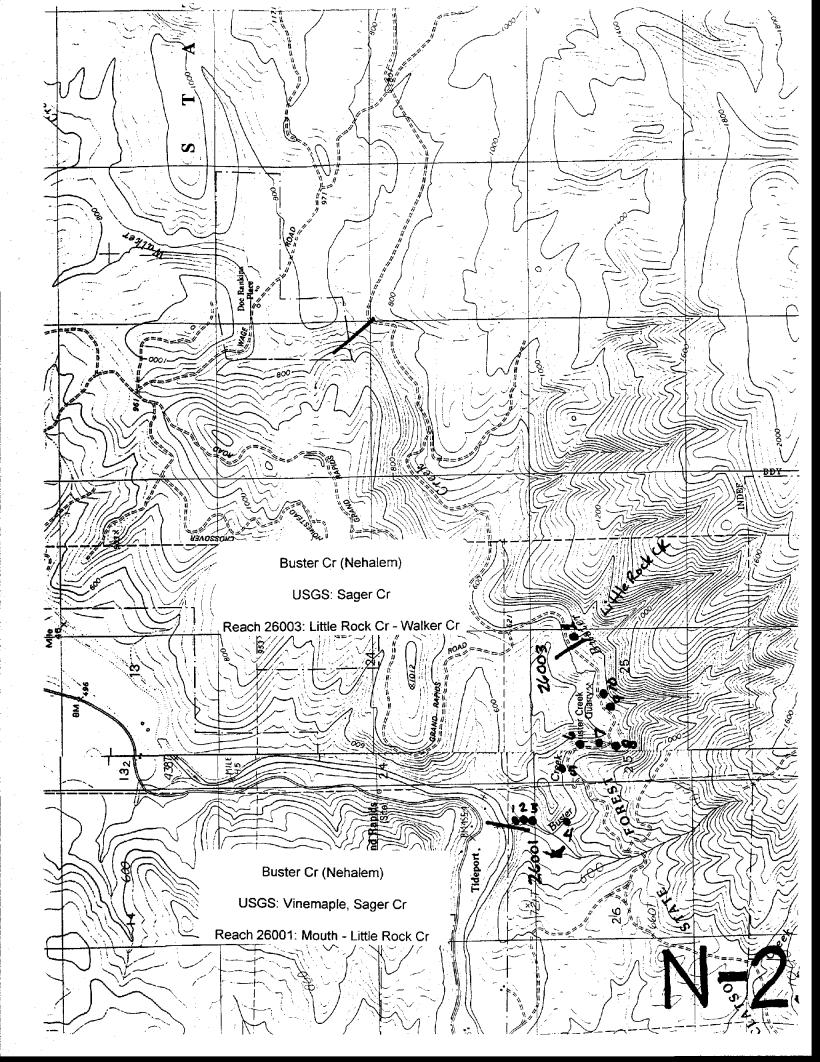

T OF THE INTERIOR GICAL SURVEY

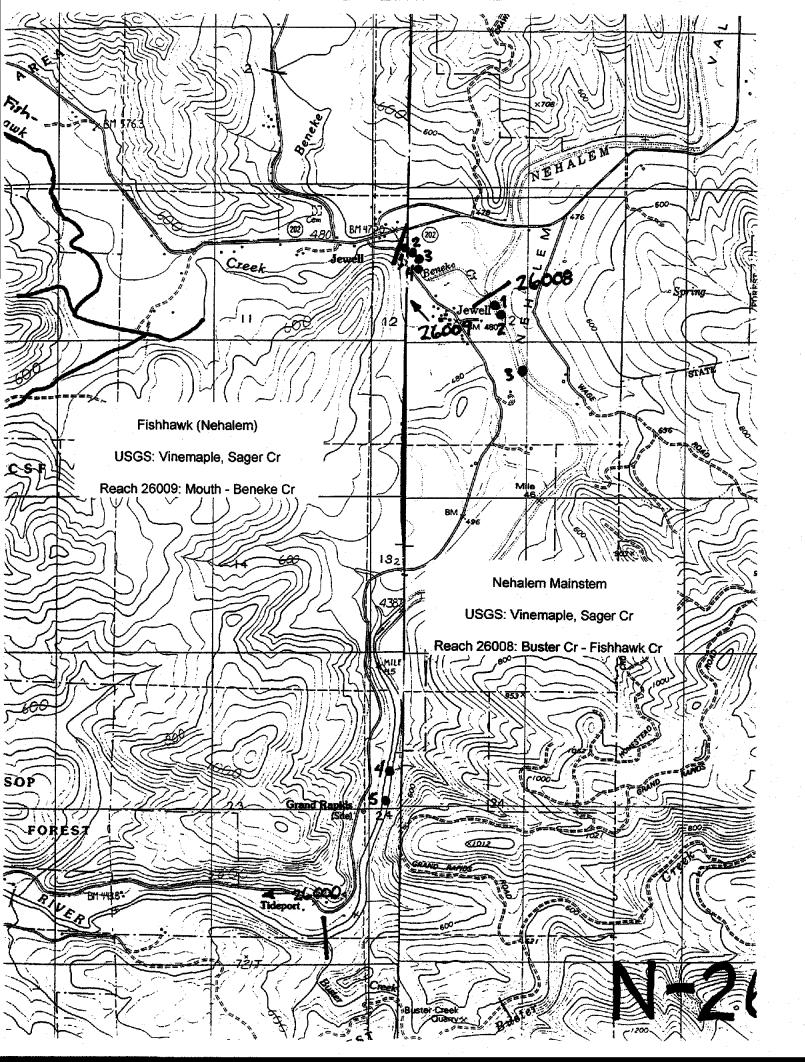


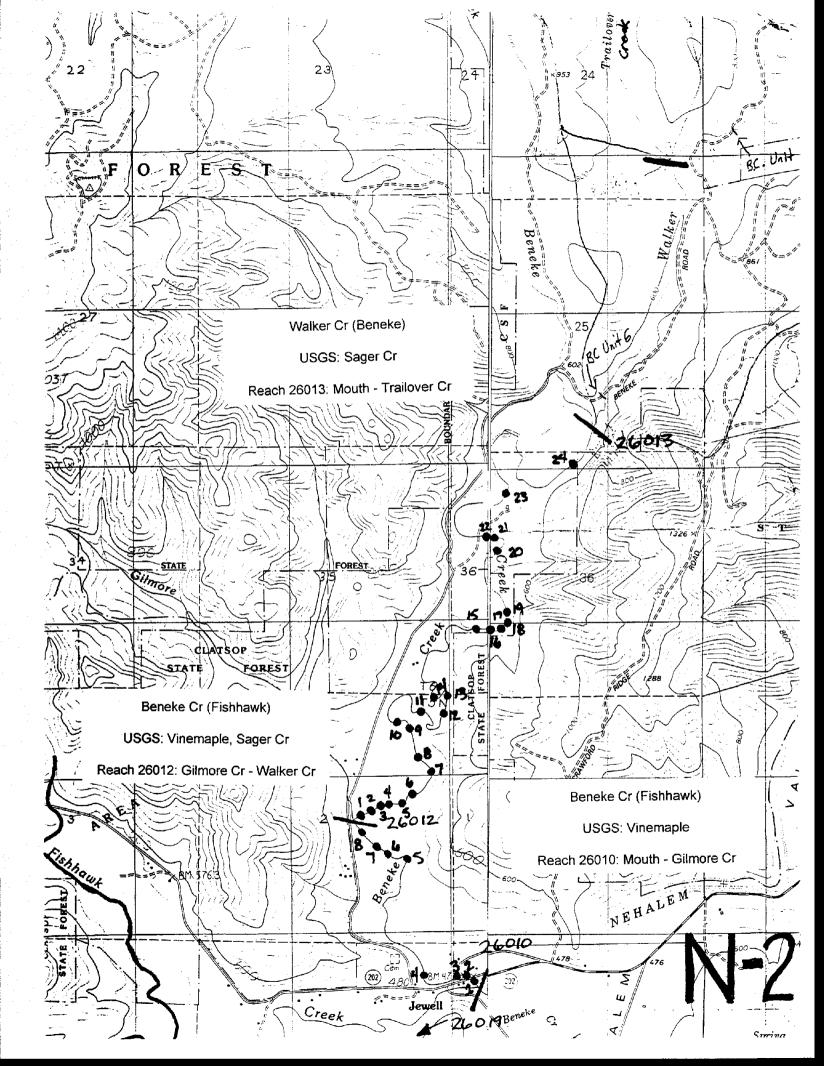


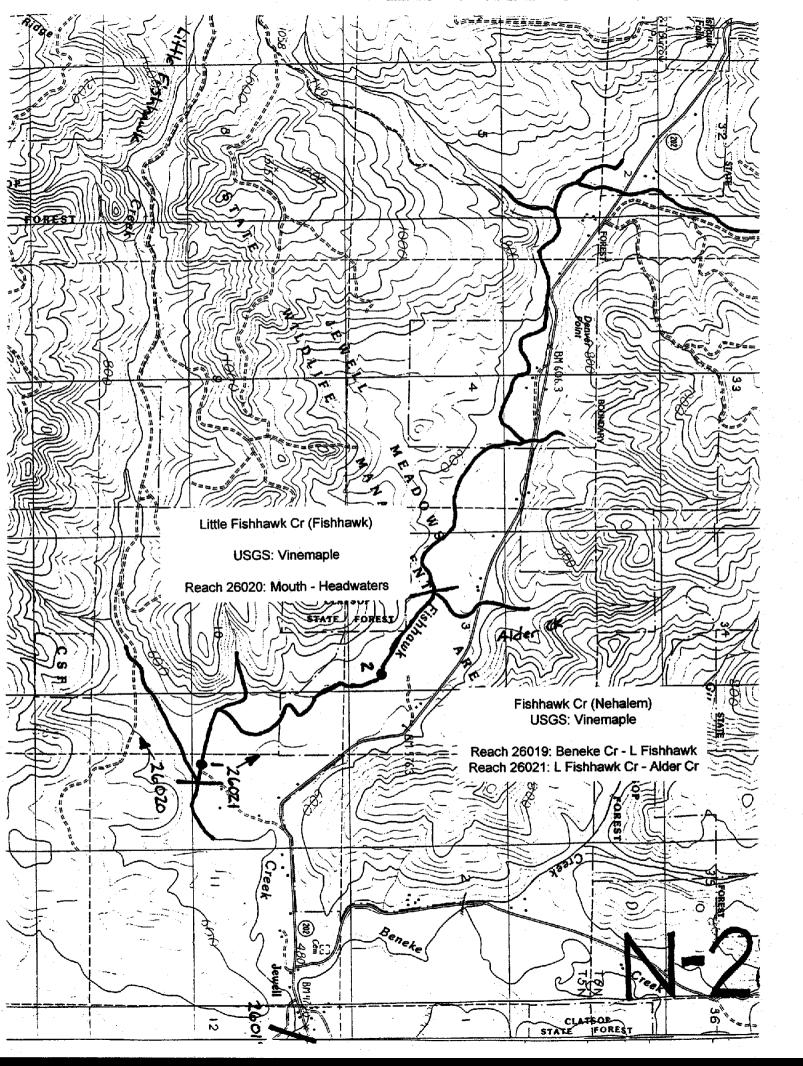


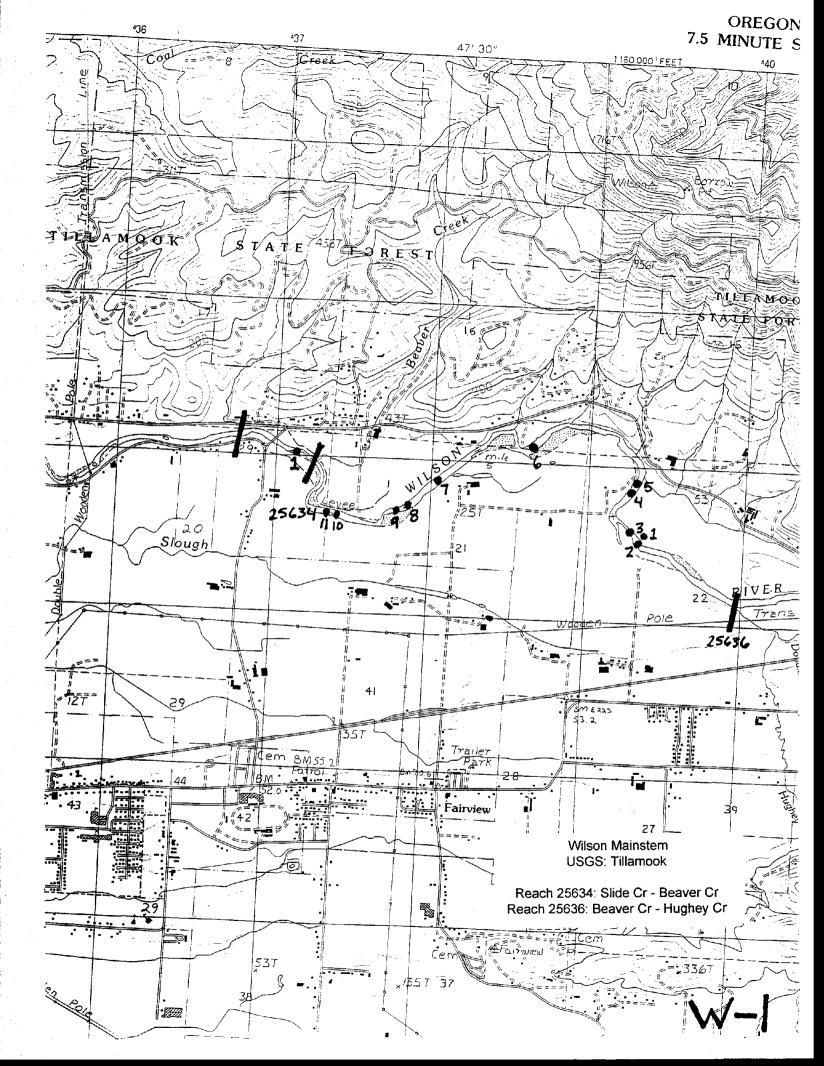


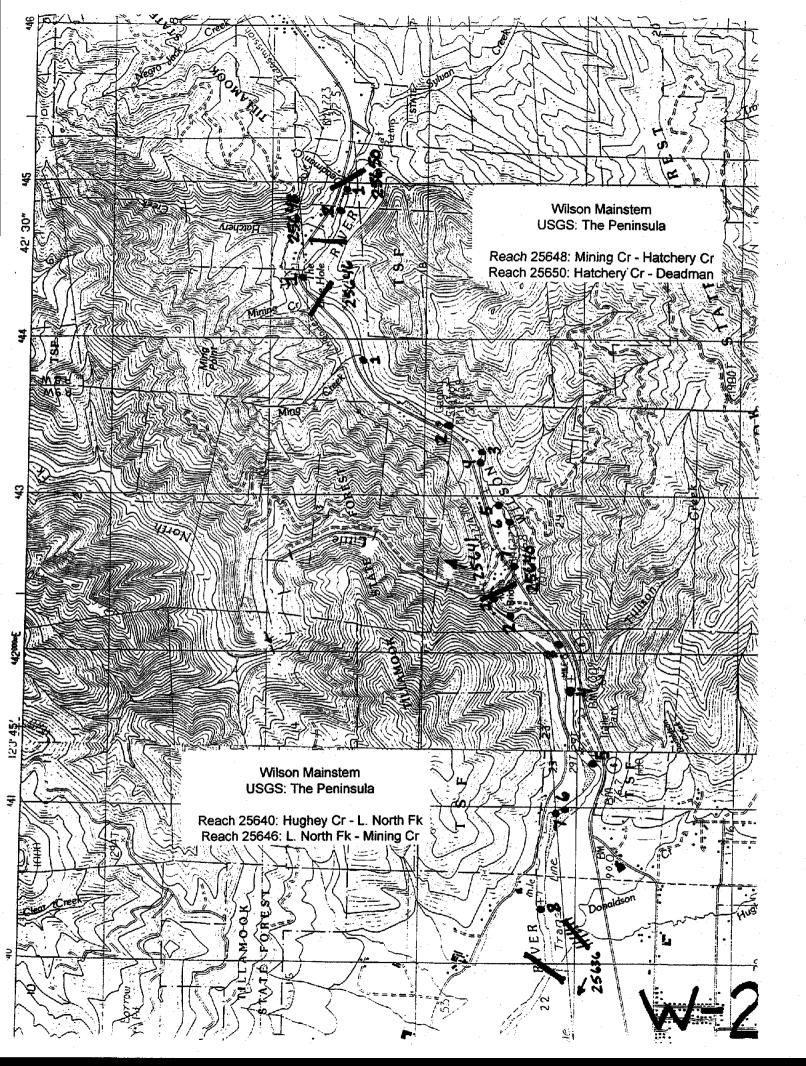


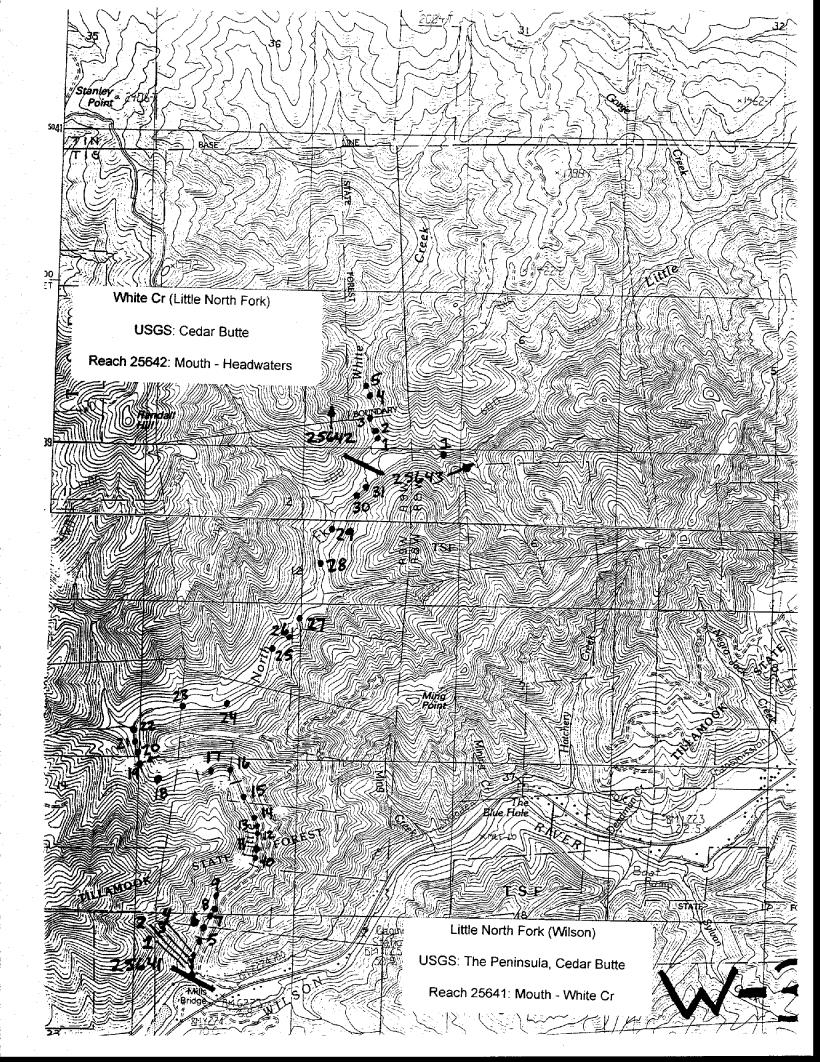


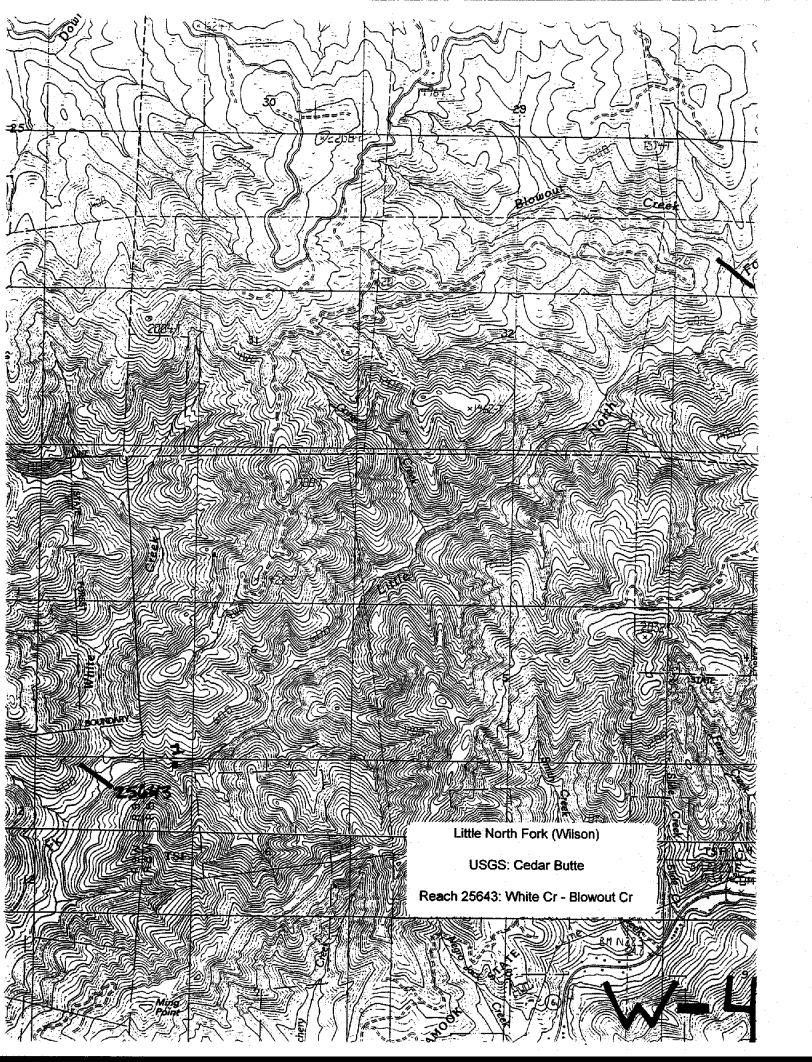


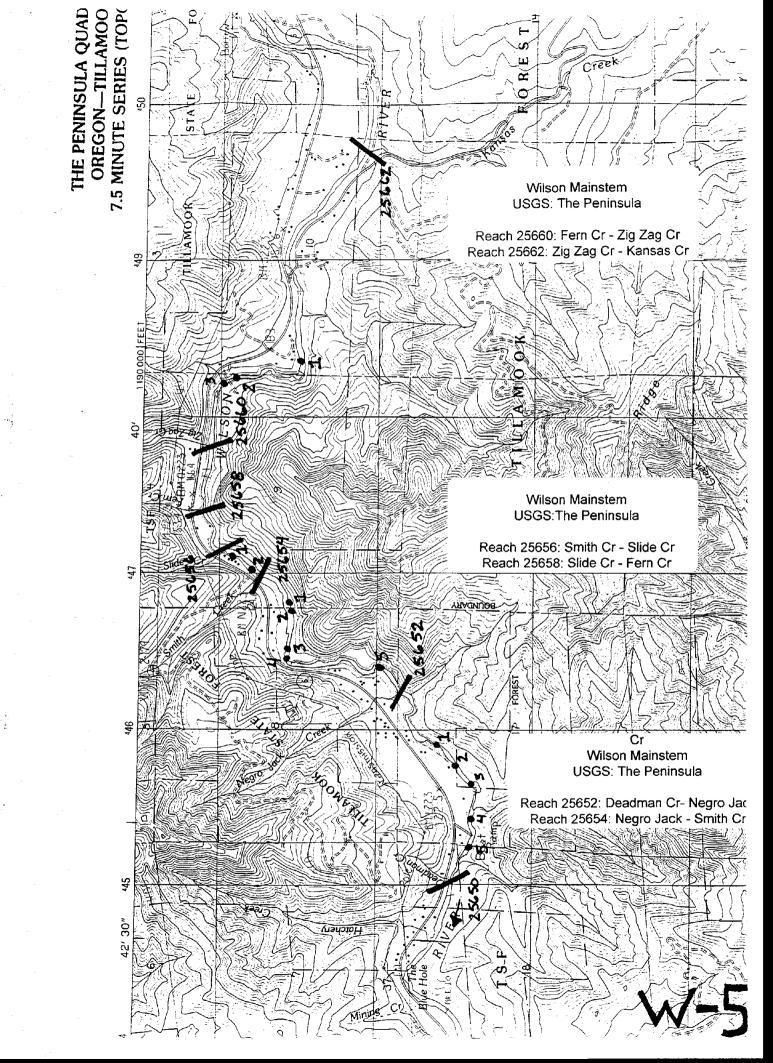


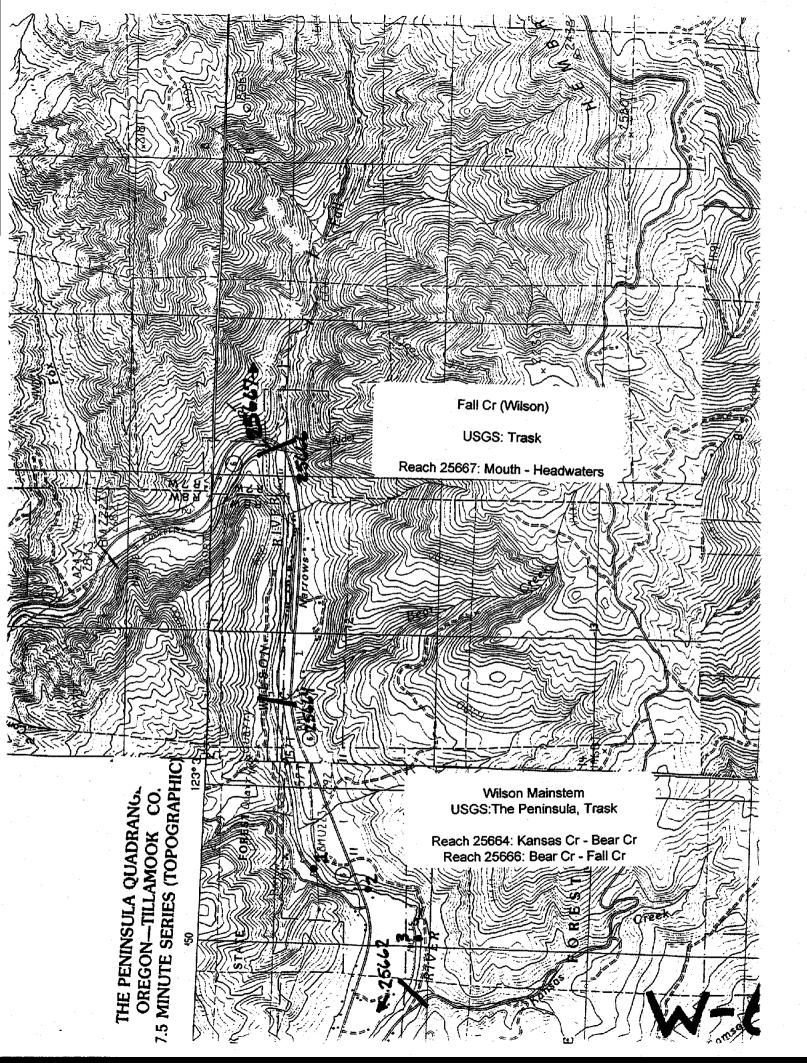


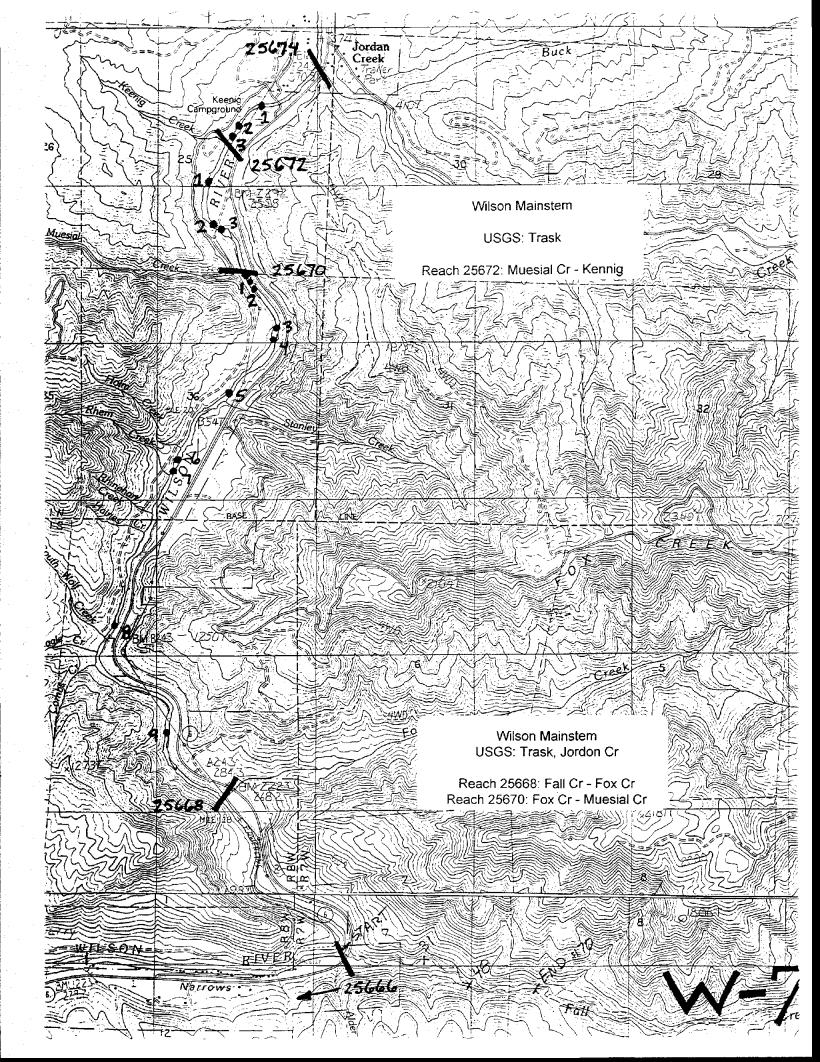


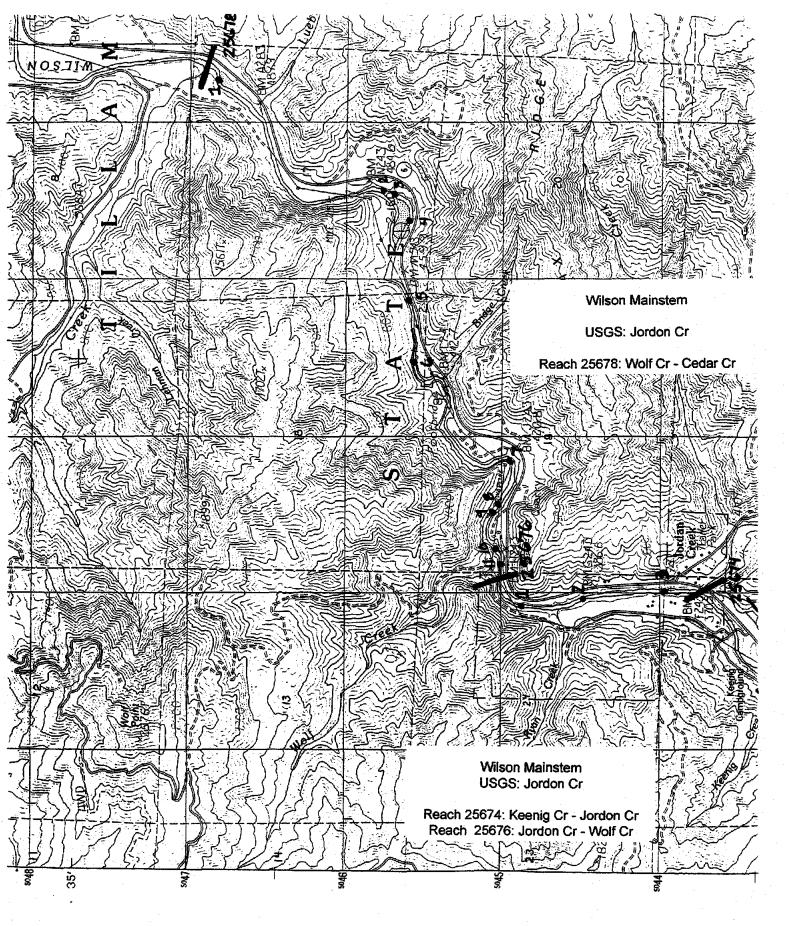


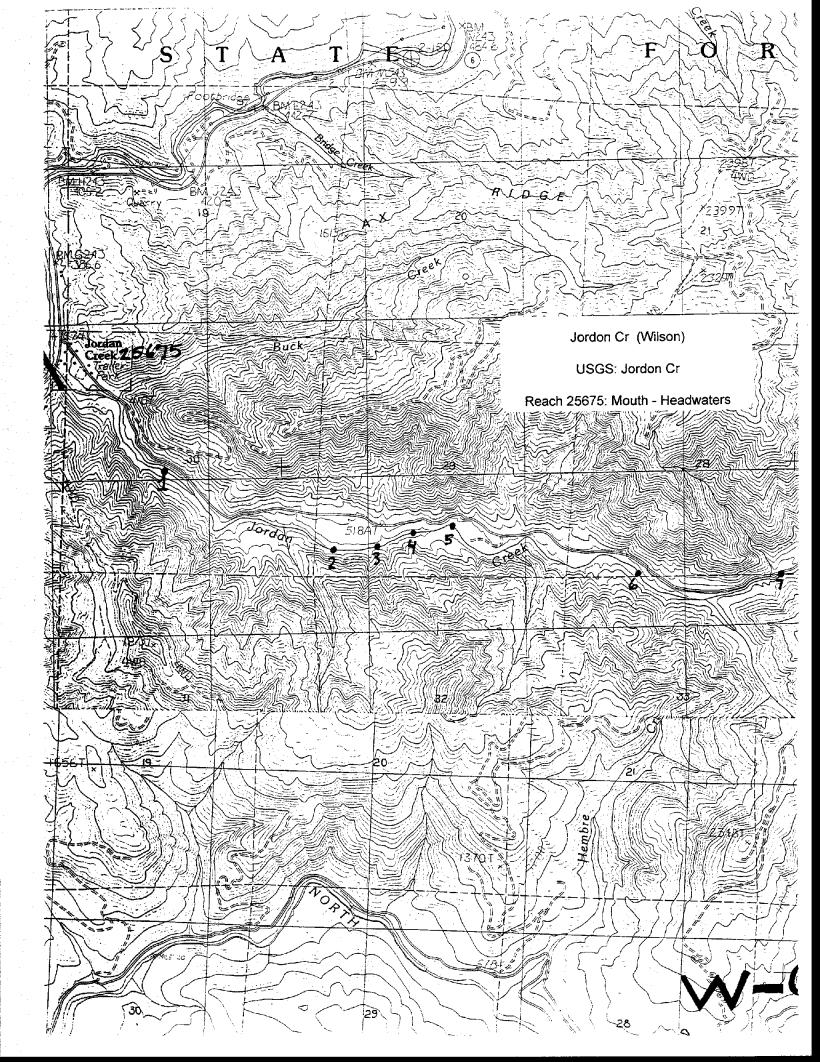


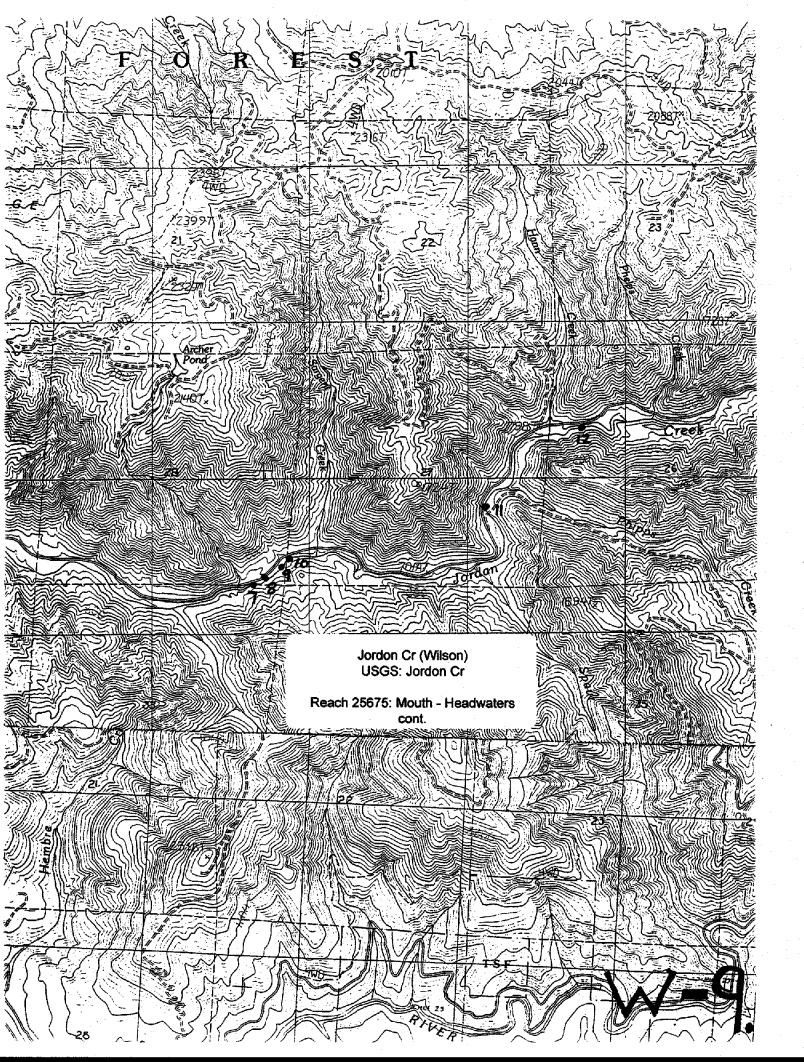


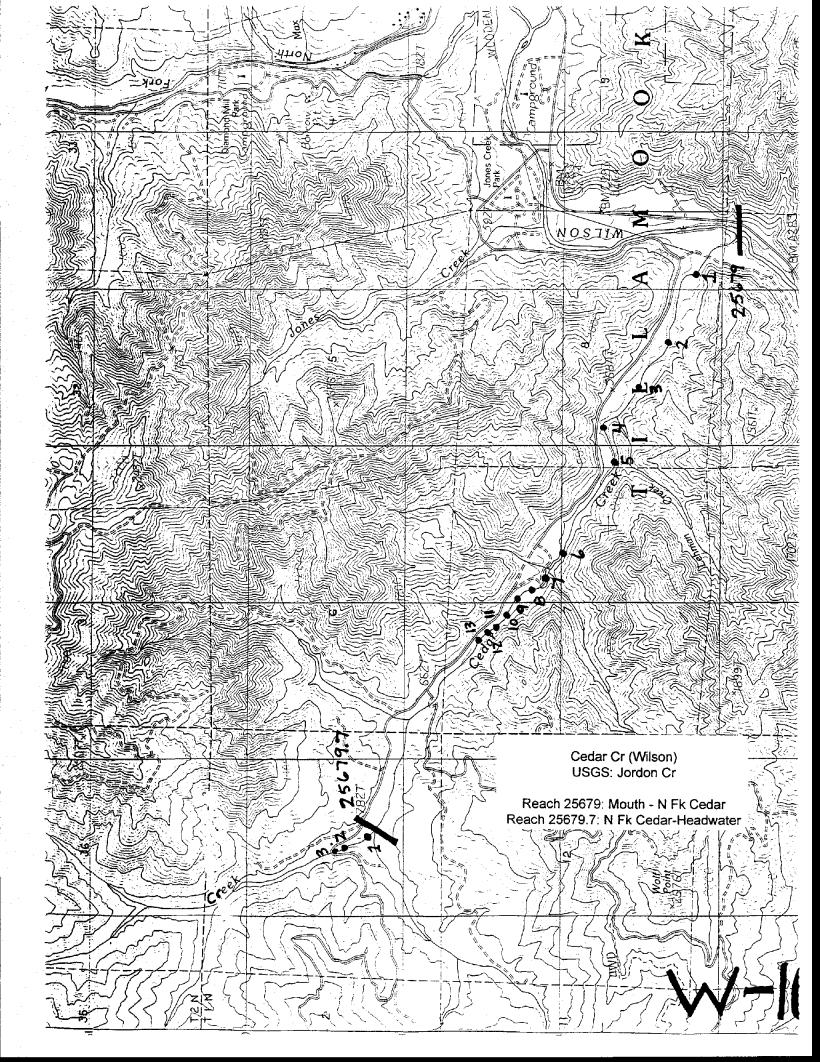


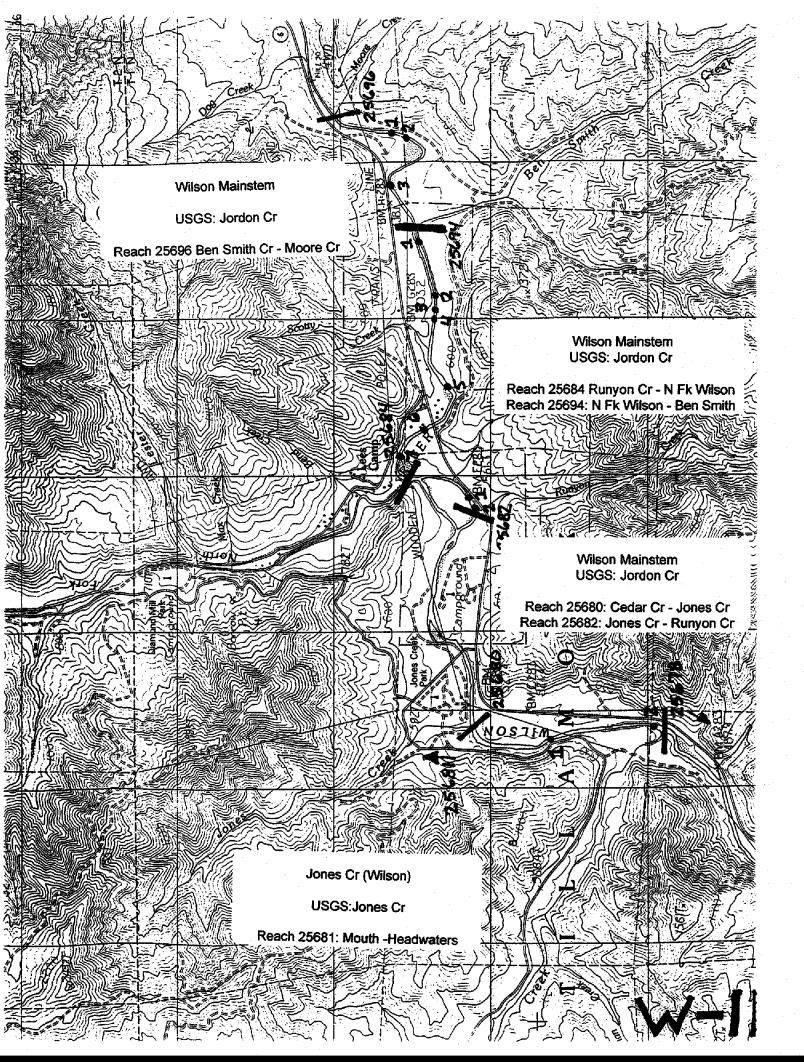




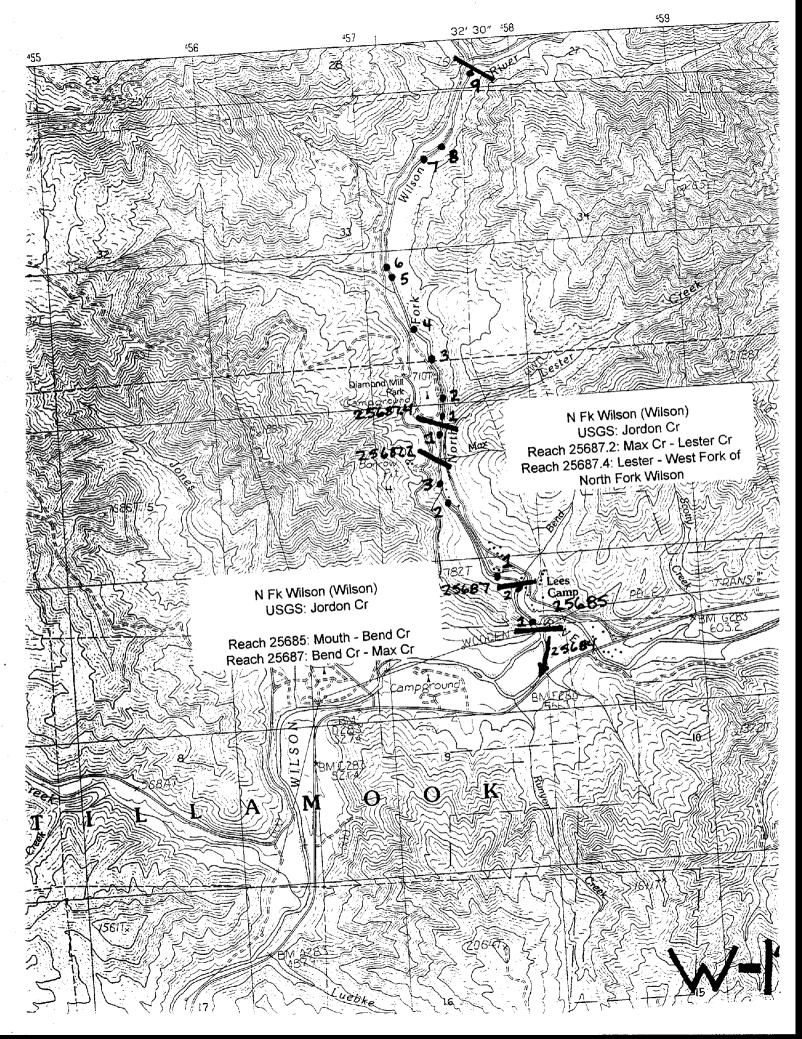


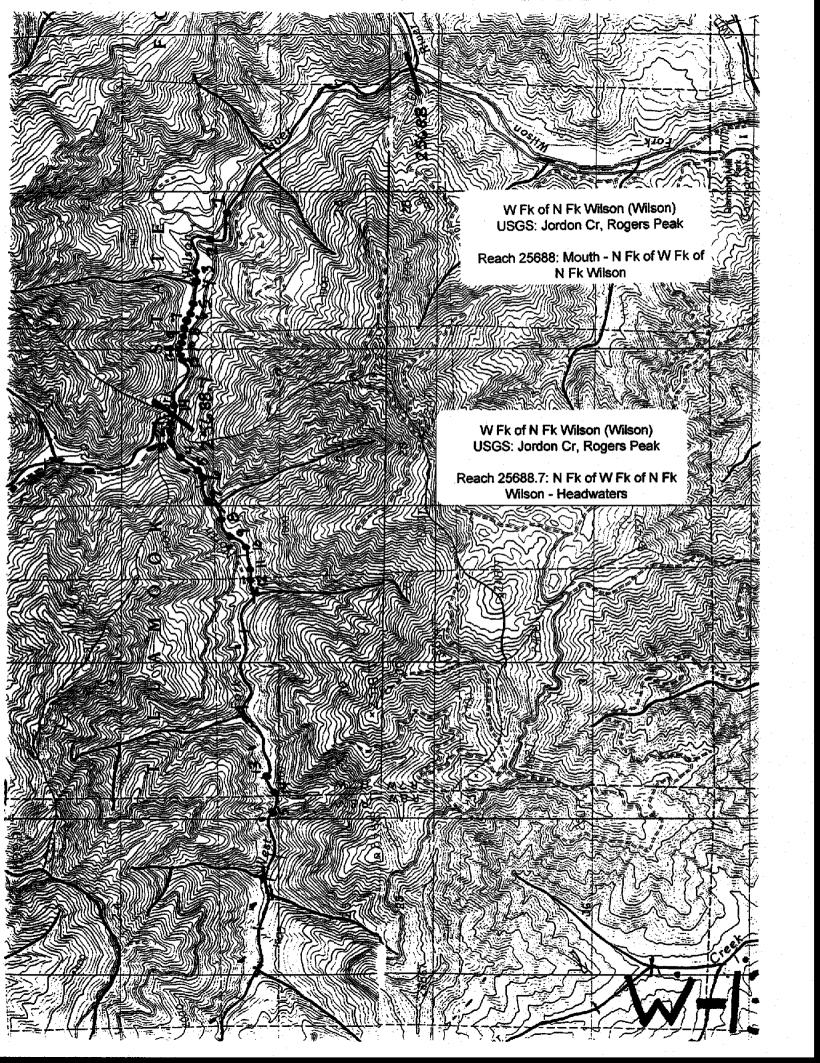


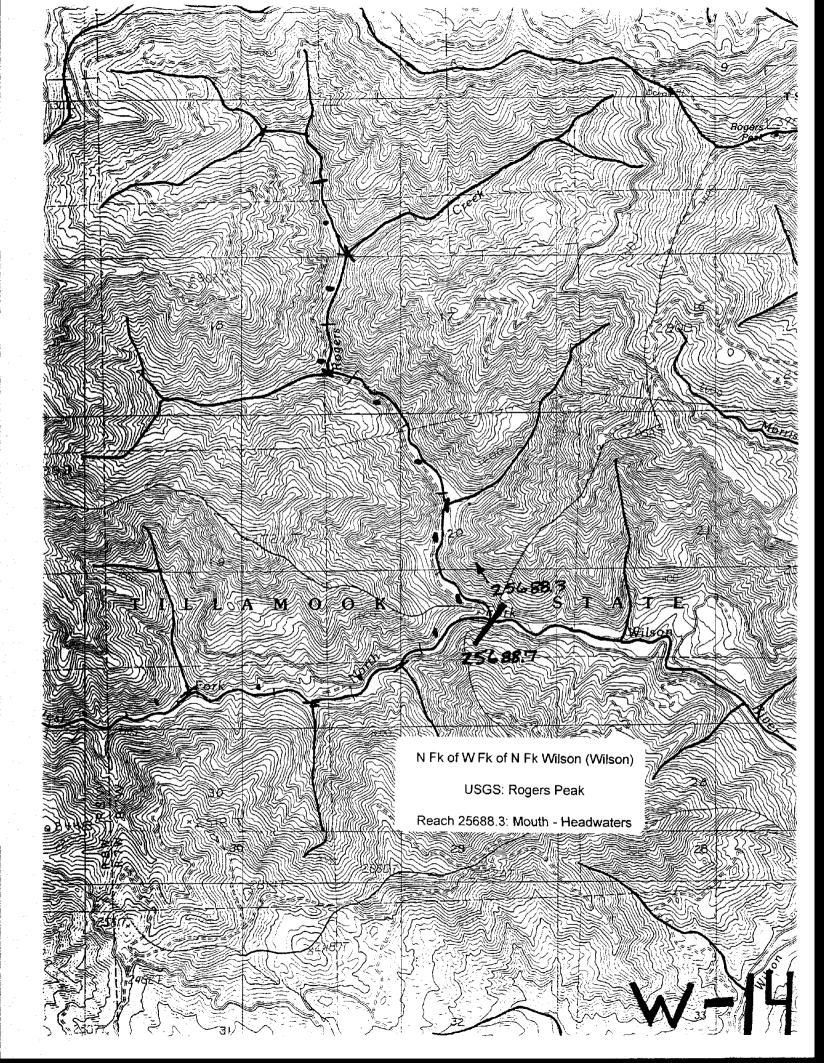


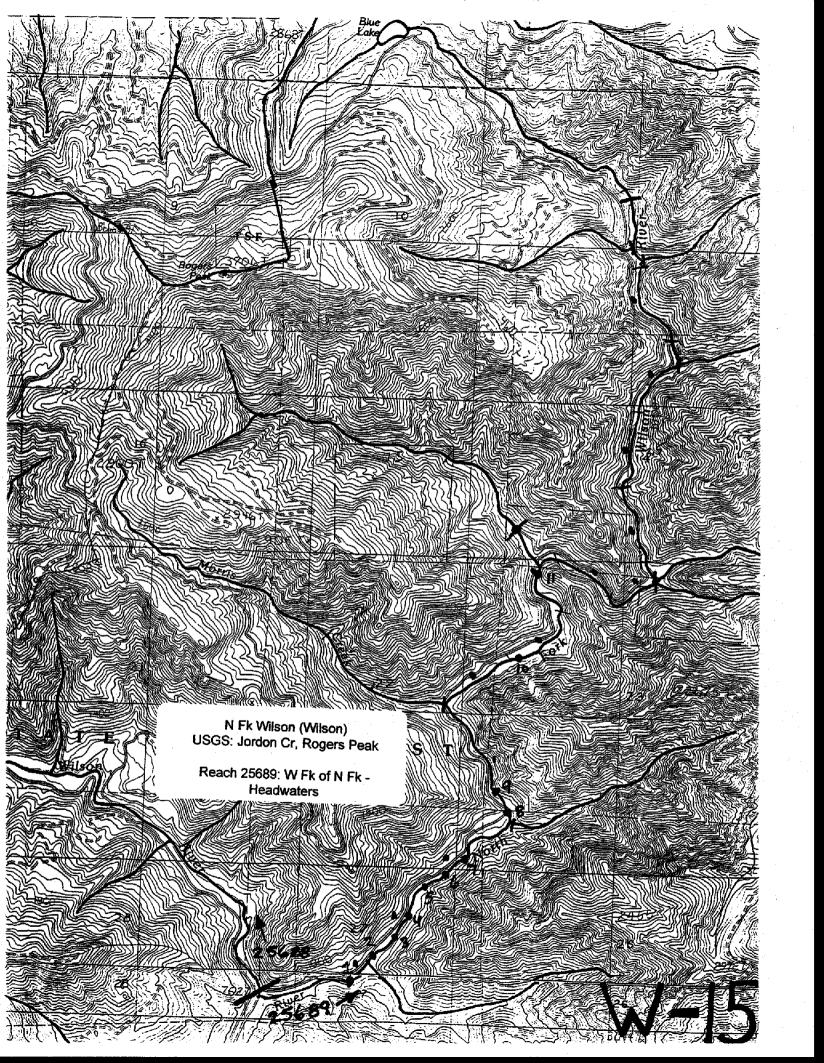

.

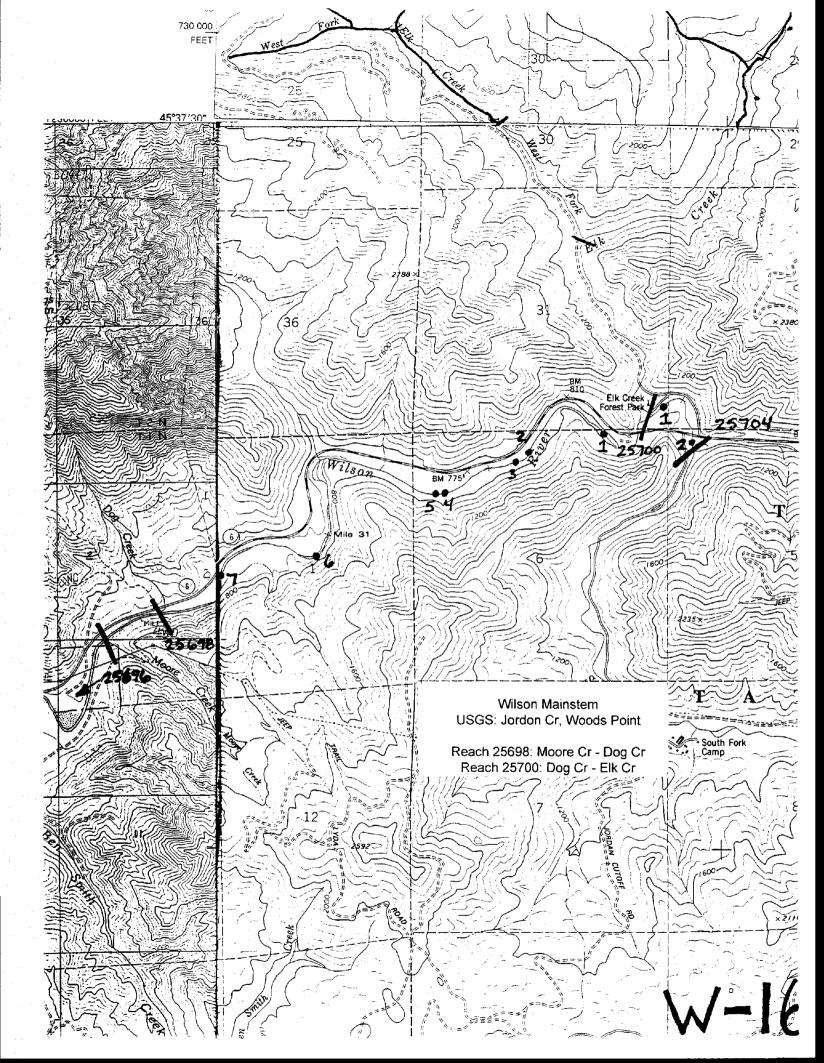
...

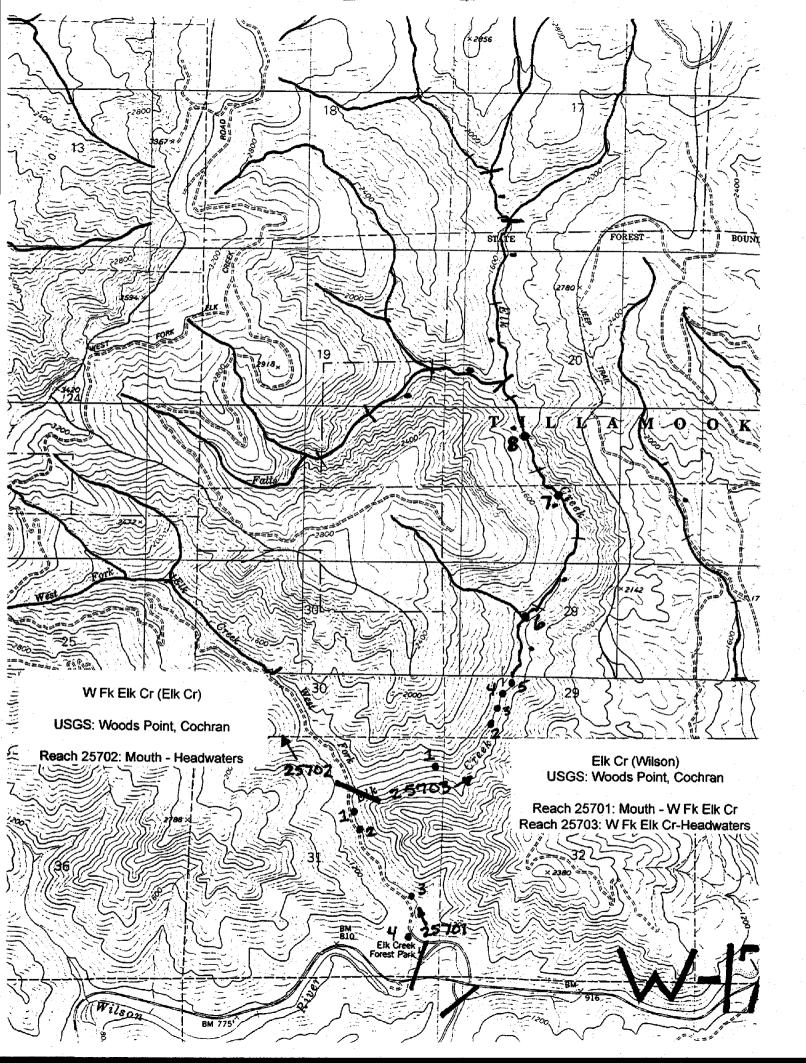


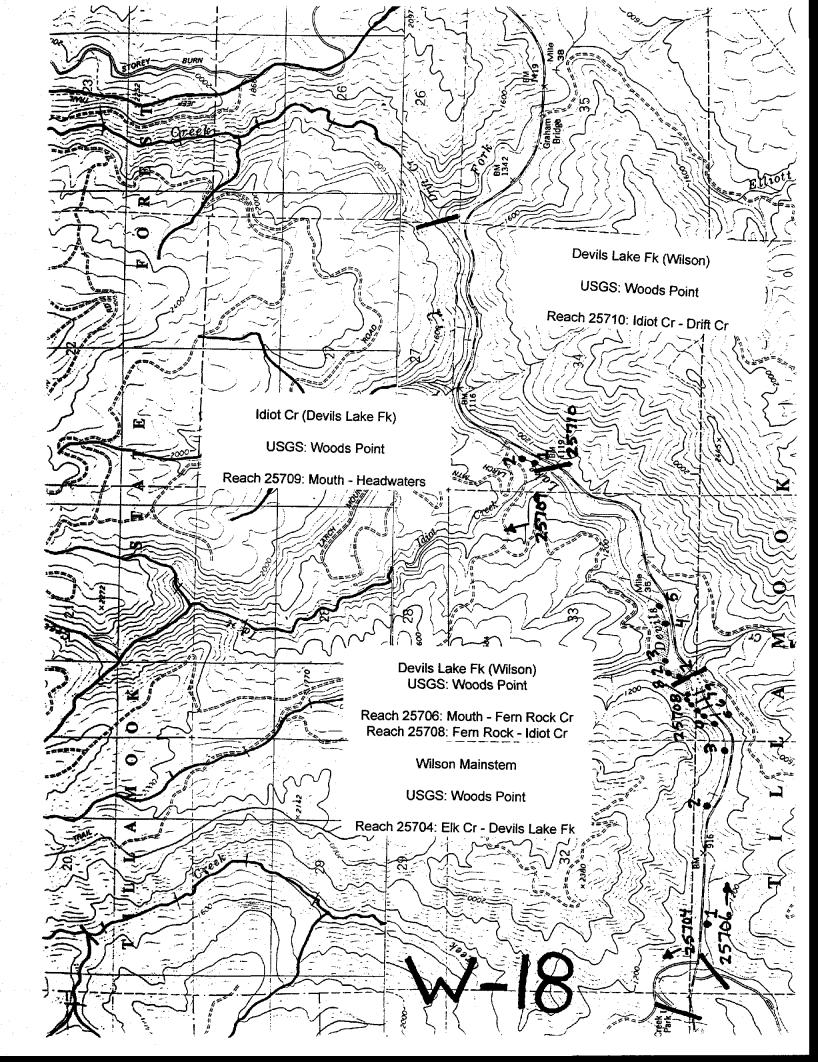


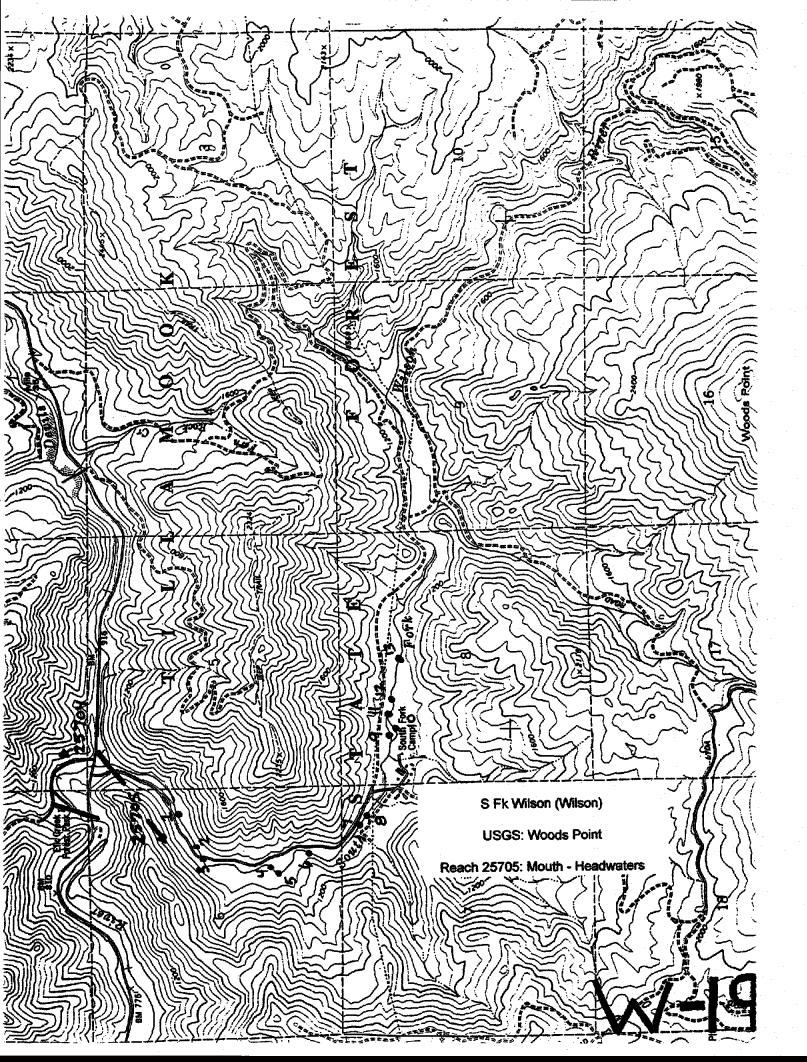


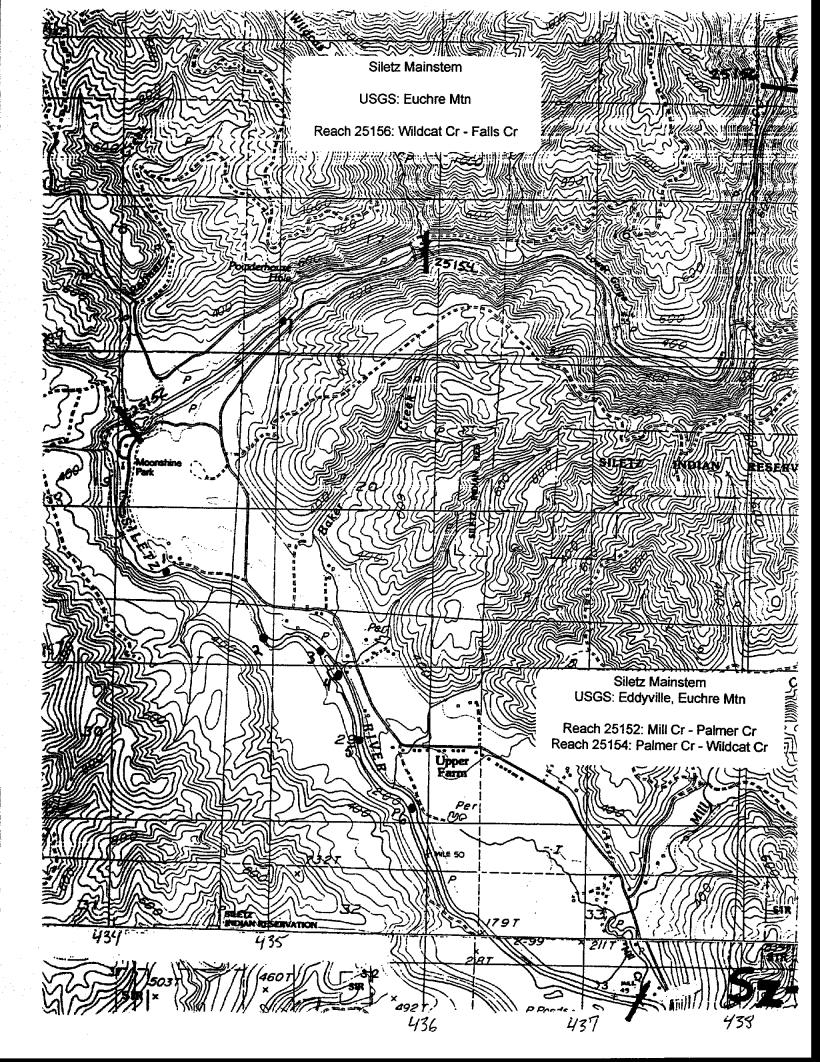


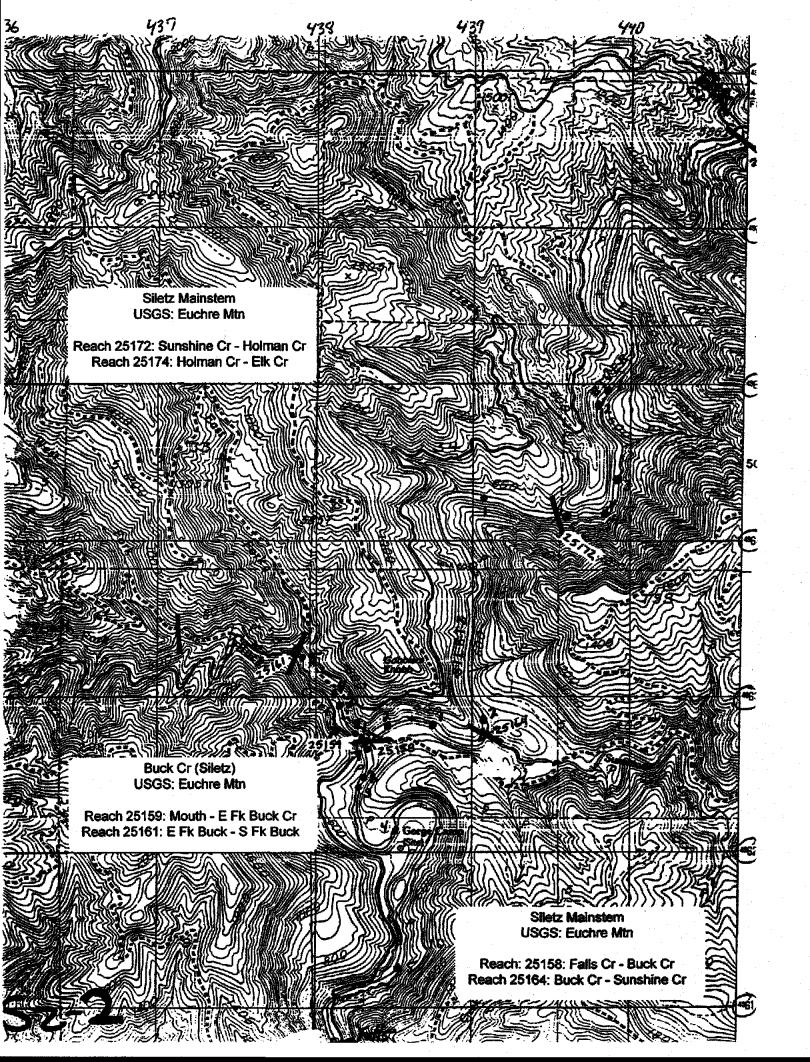

7.5 MINUIT

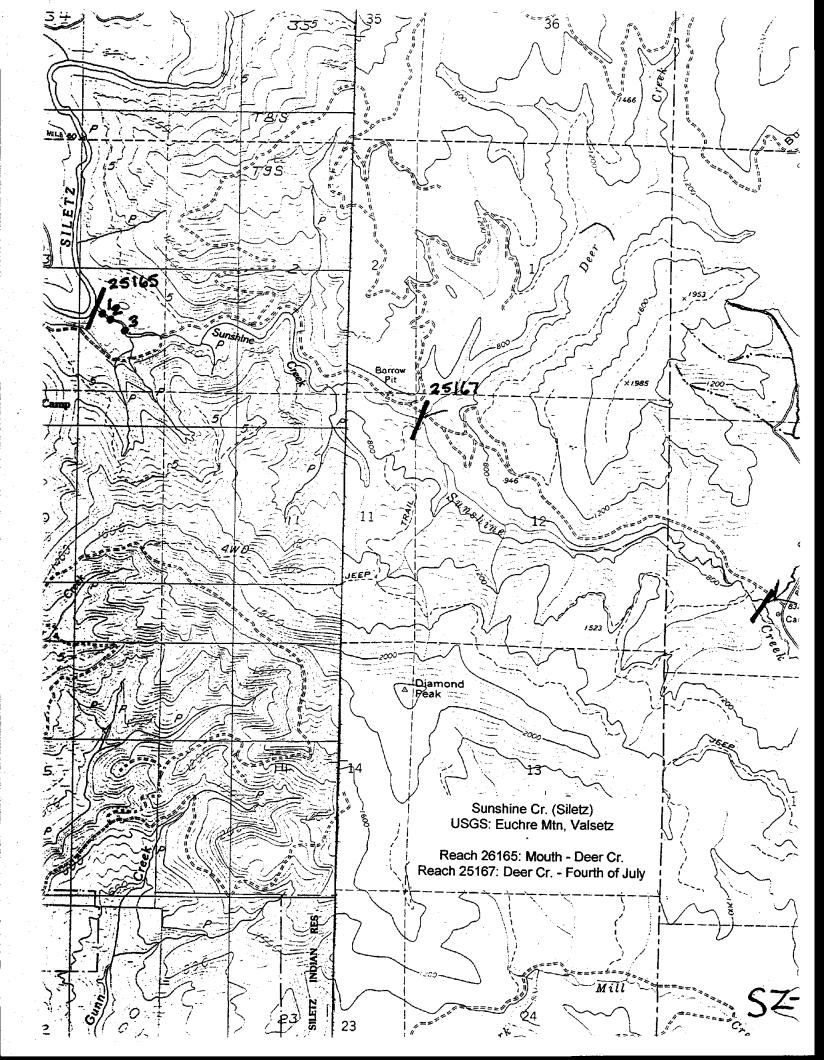


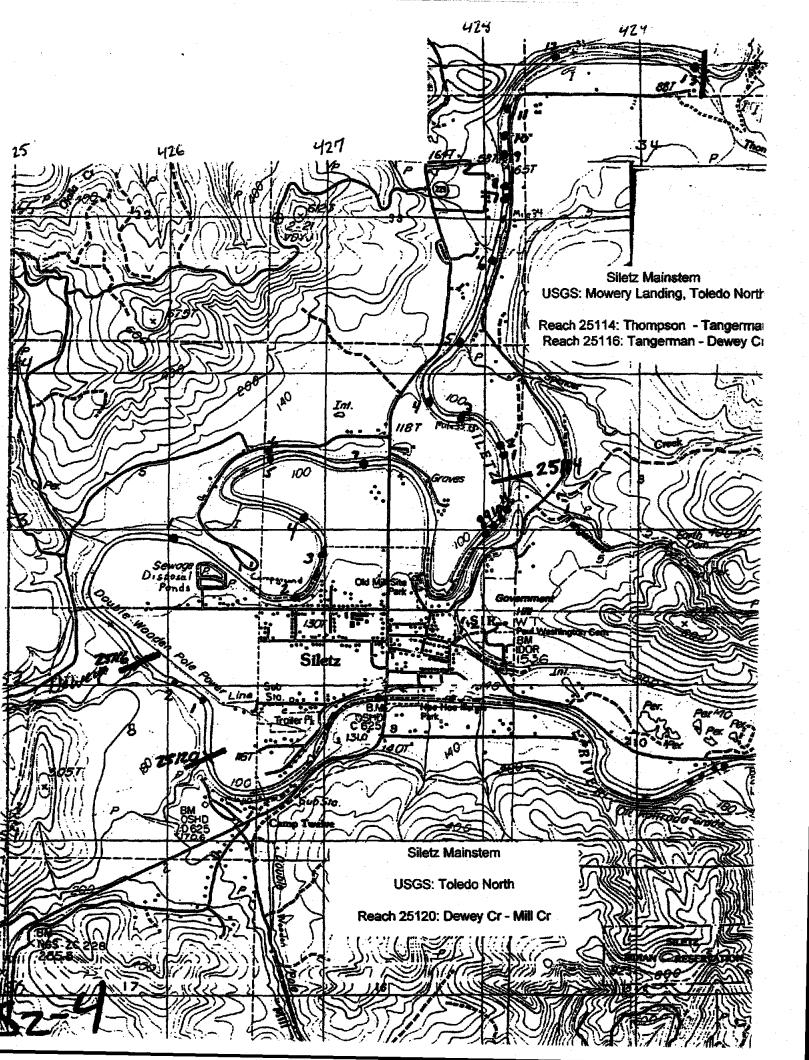


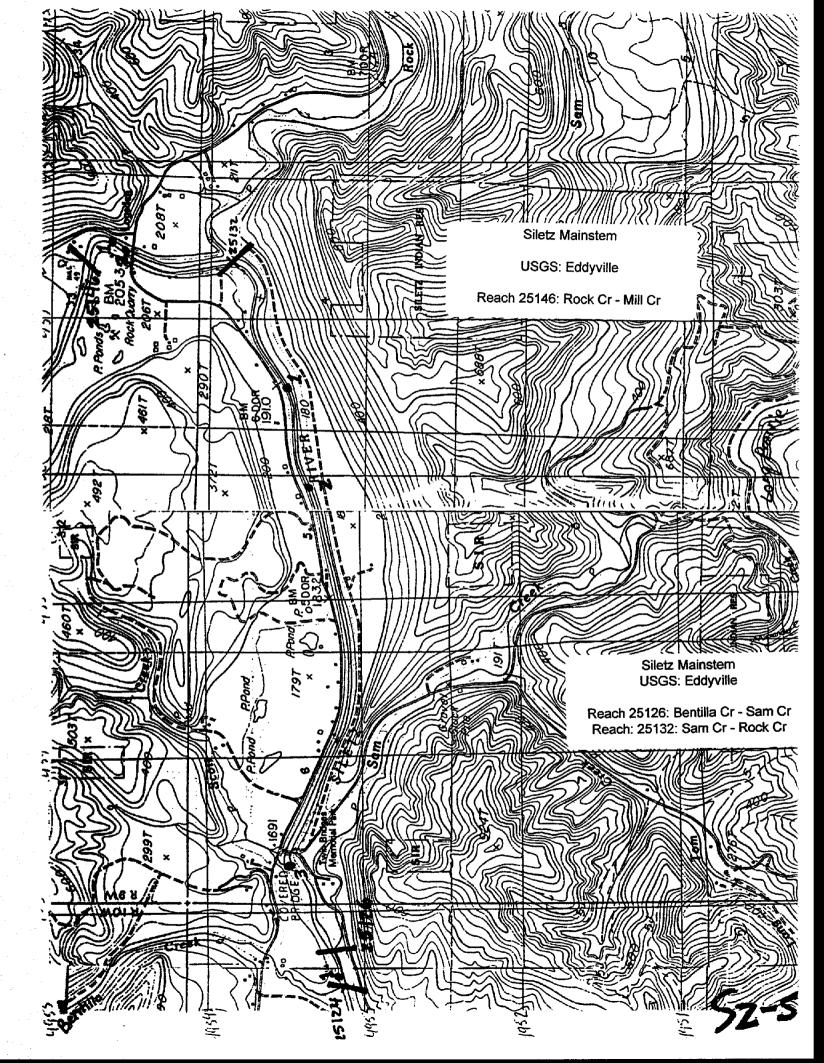


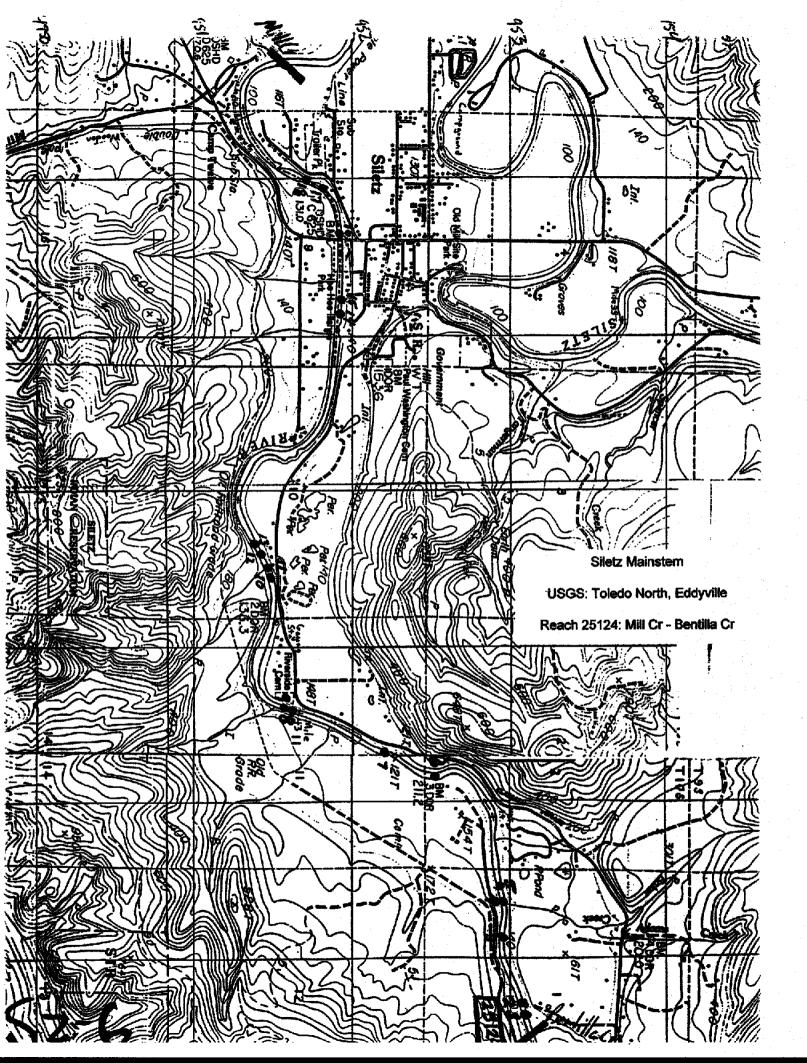


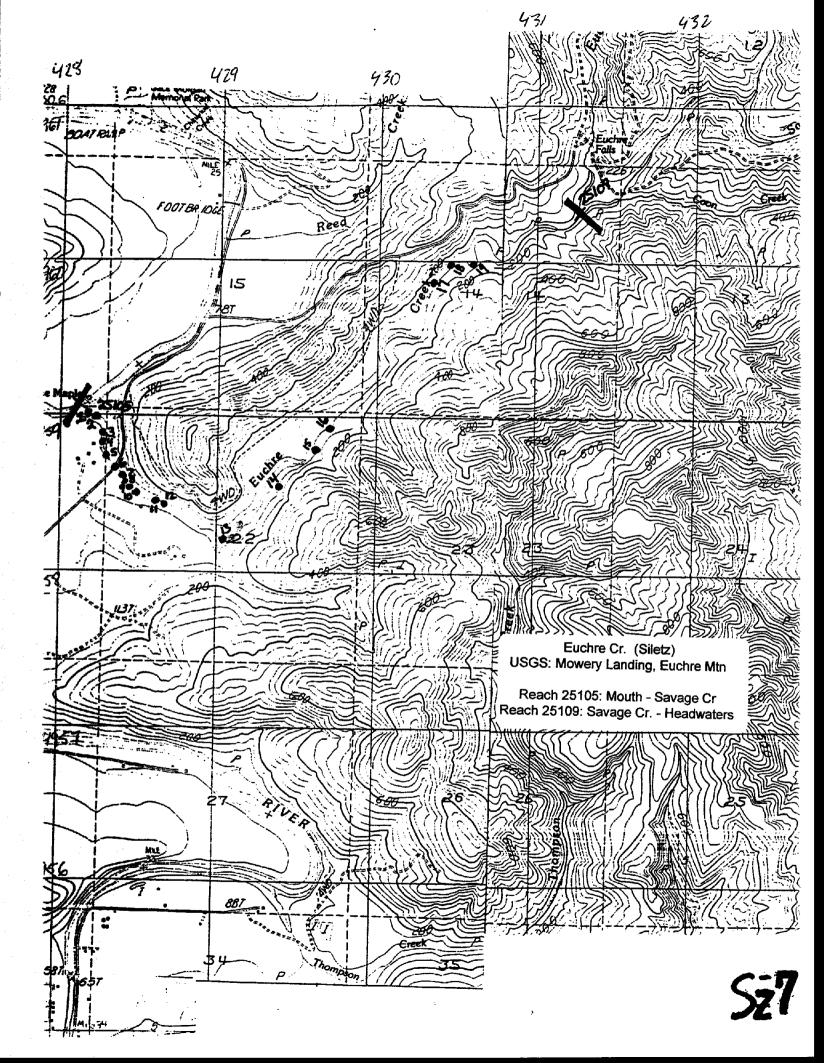


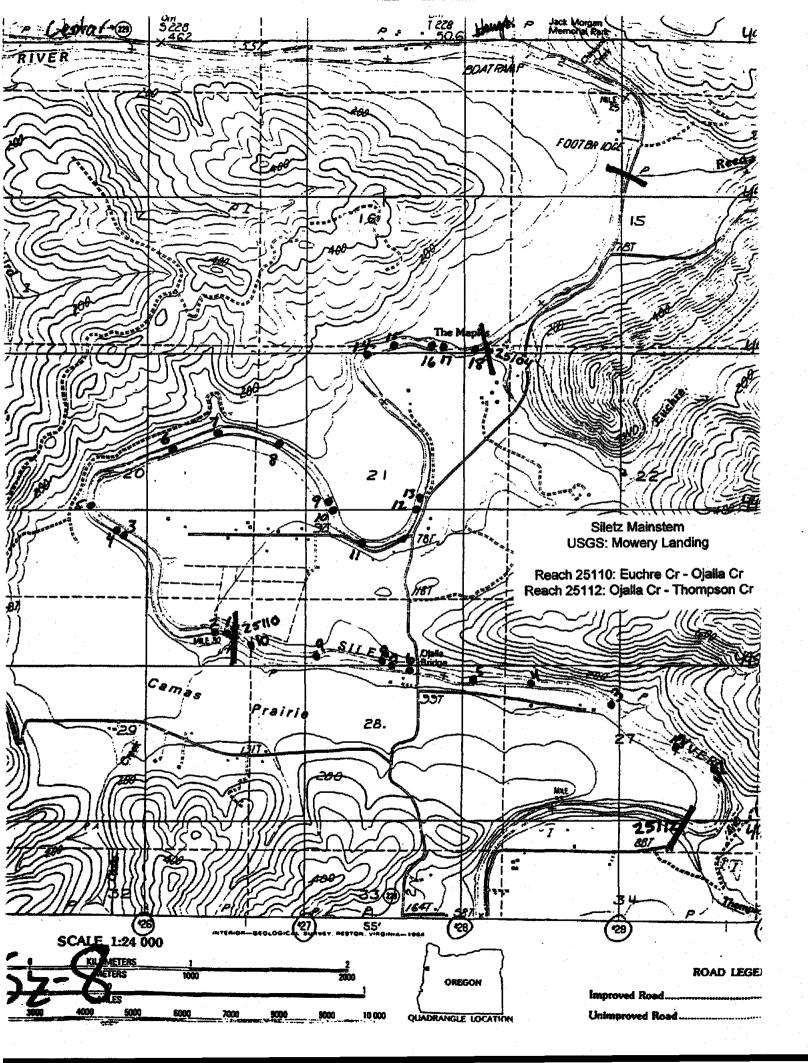


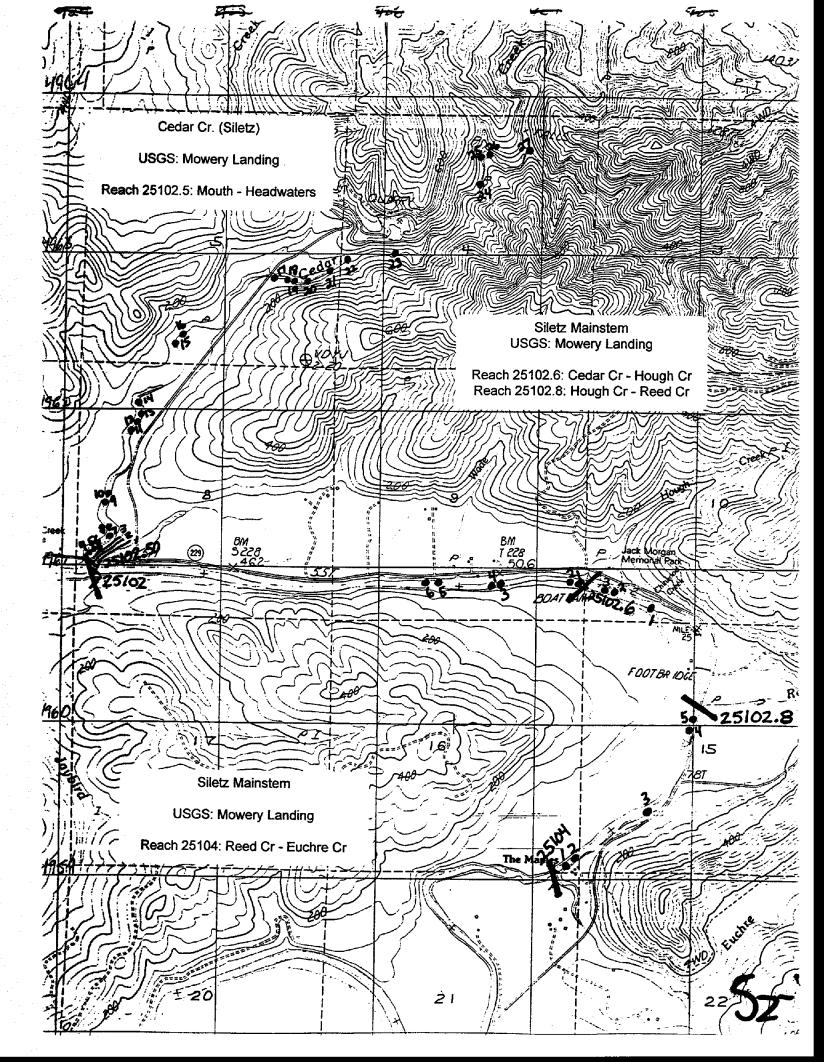


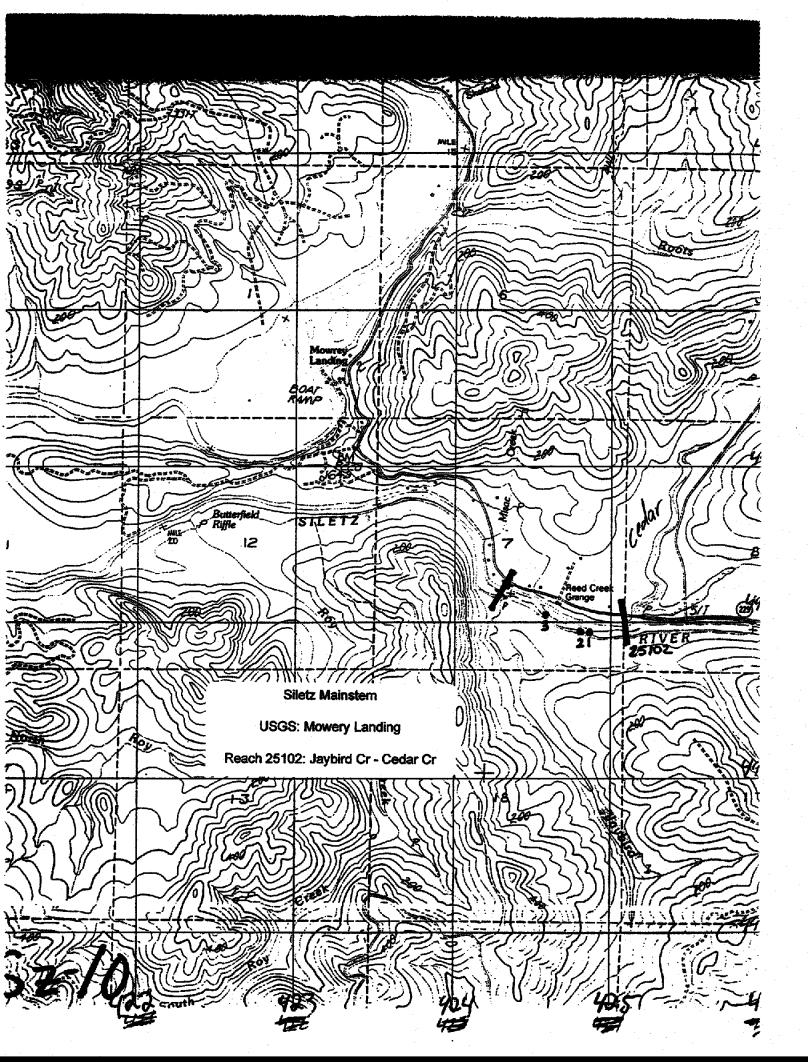


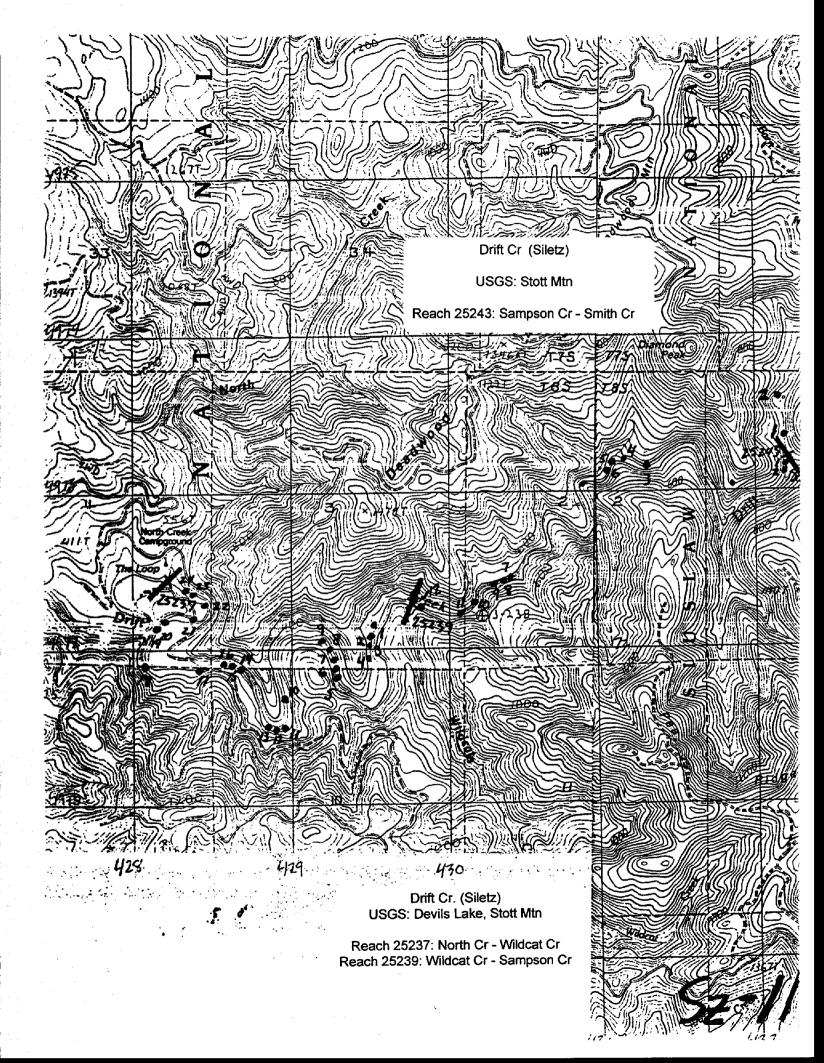


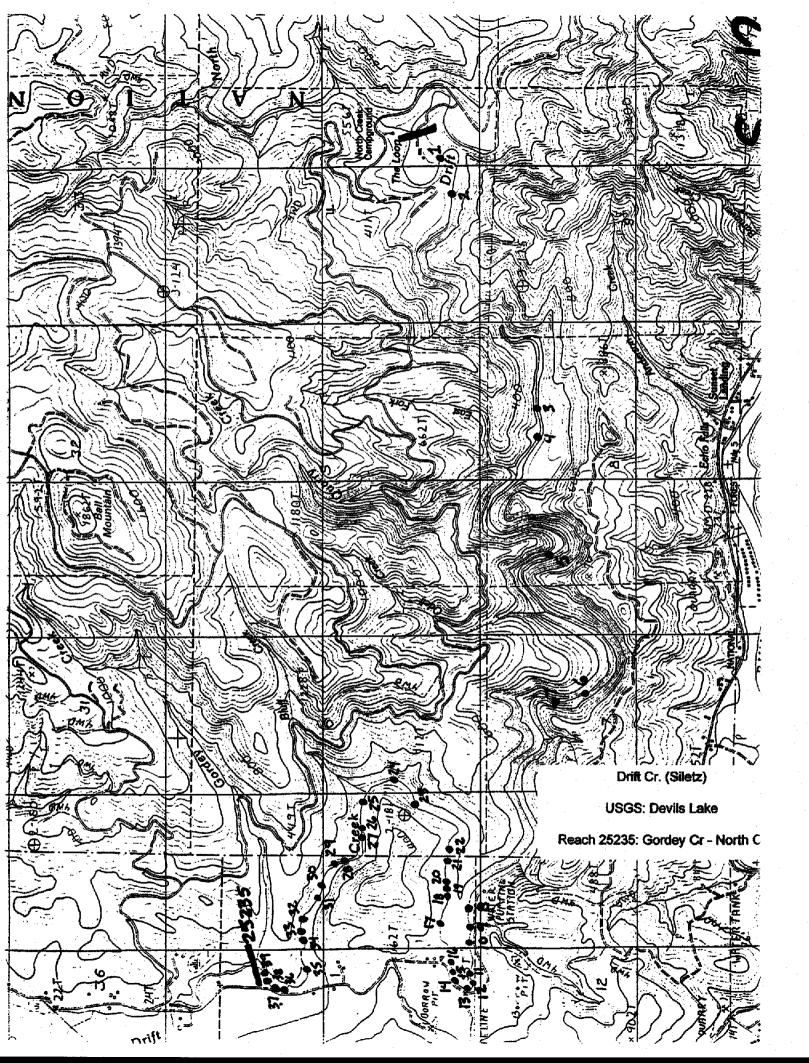


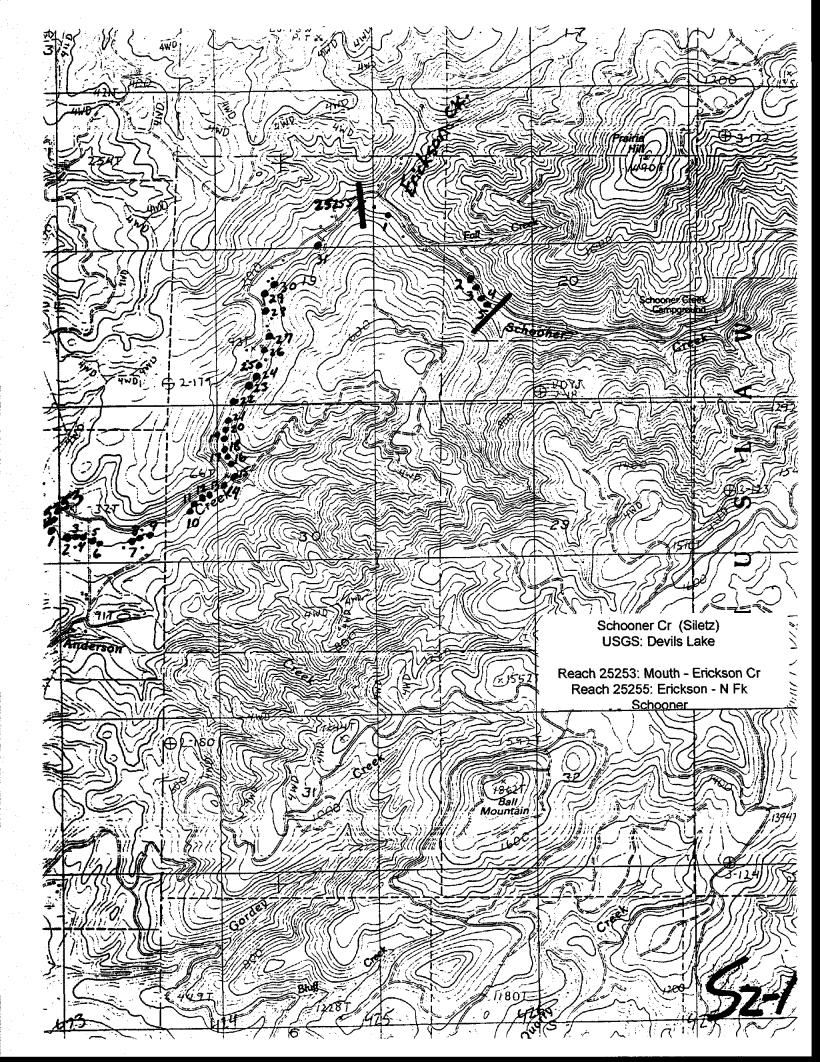


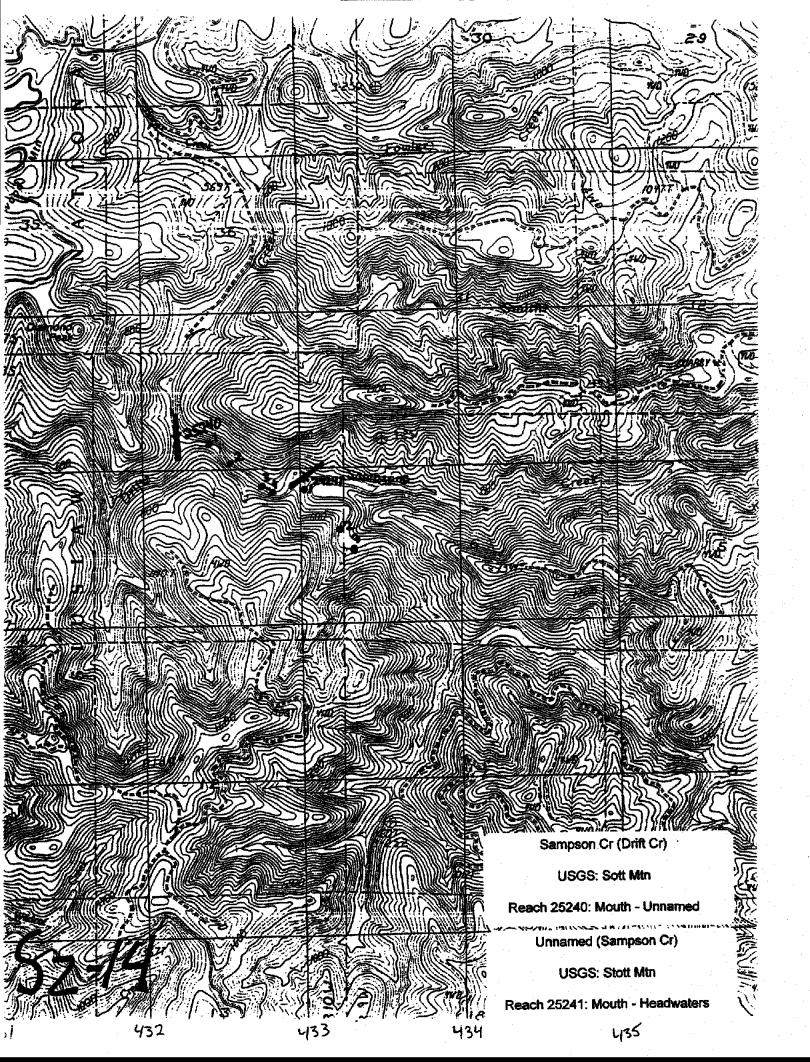


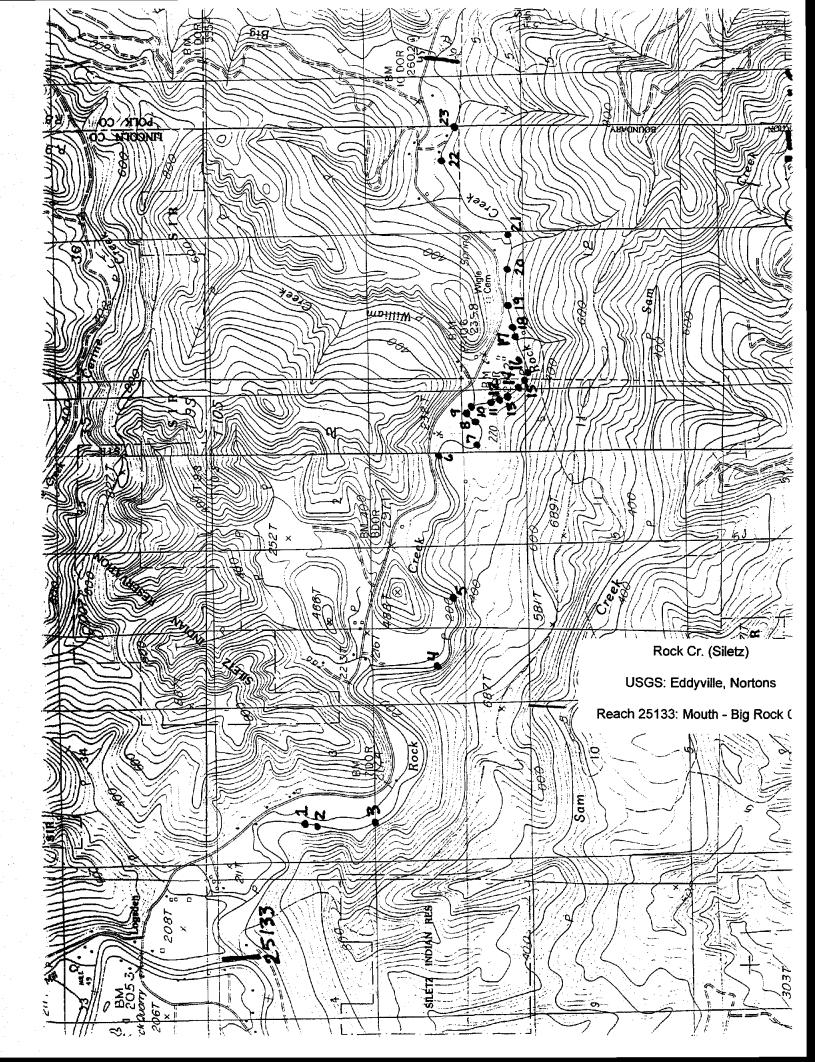


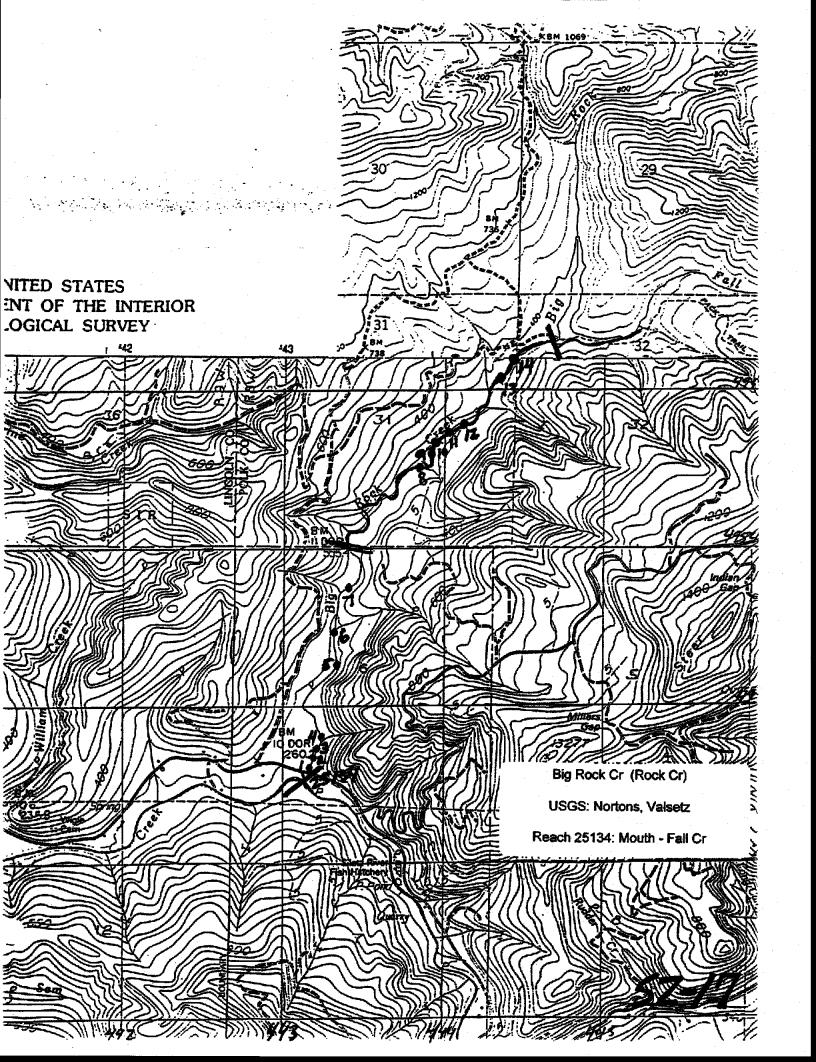




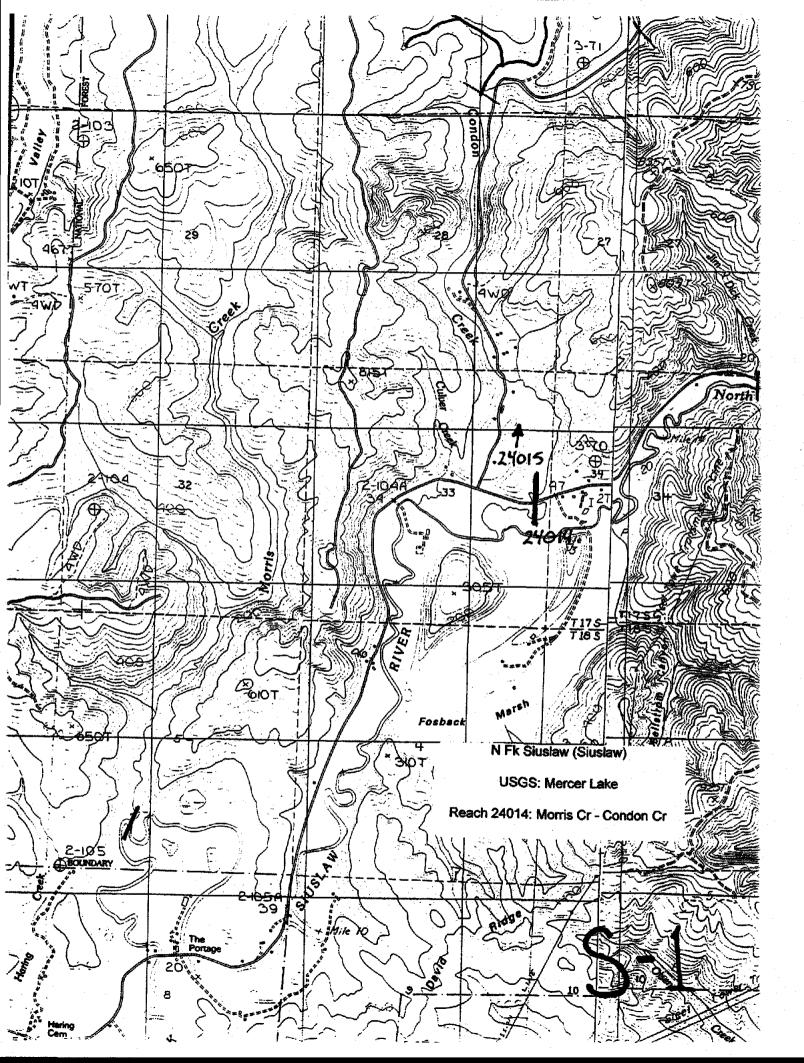


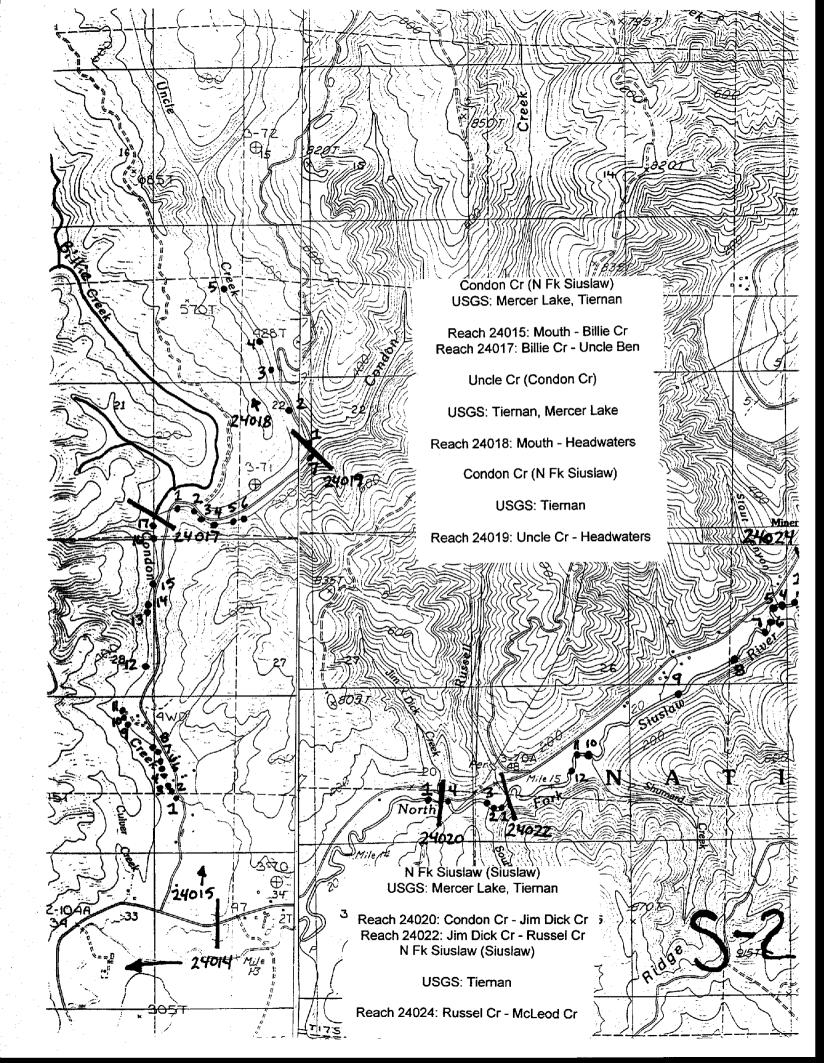


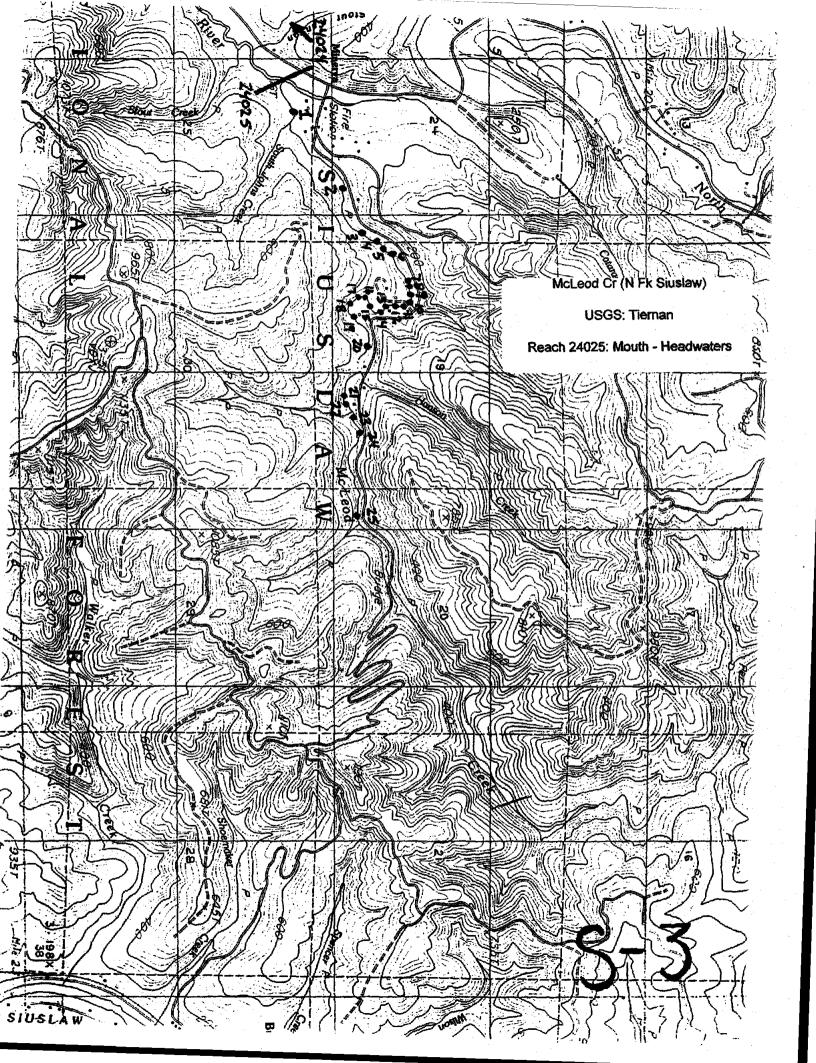


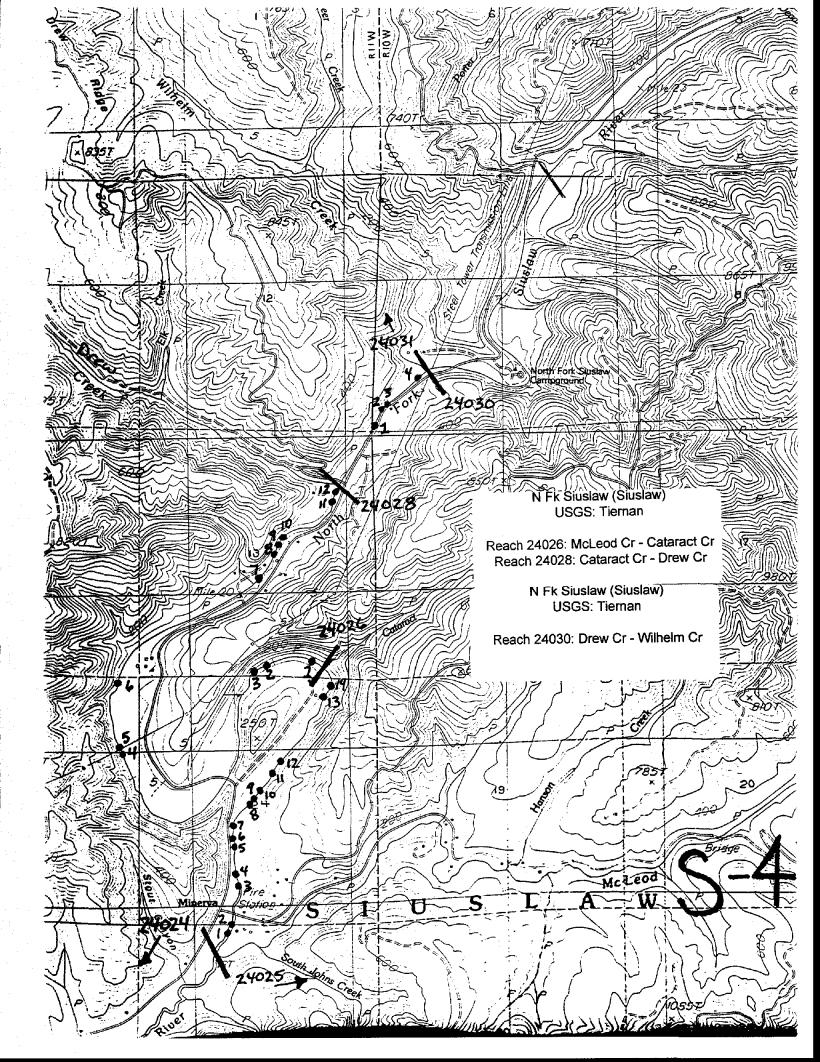


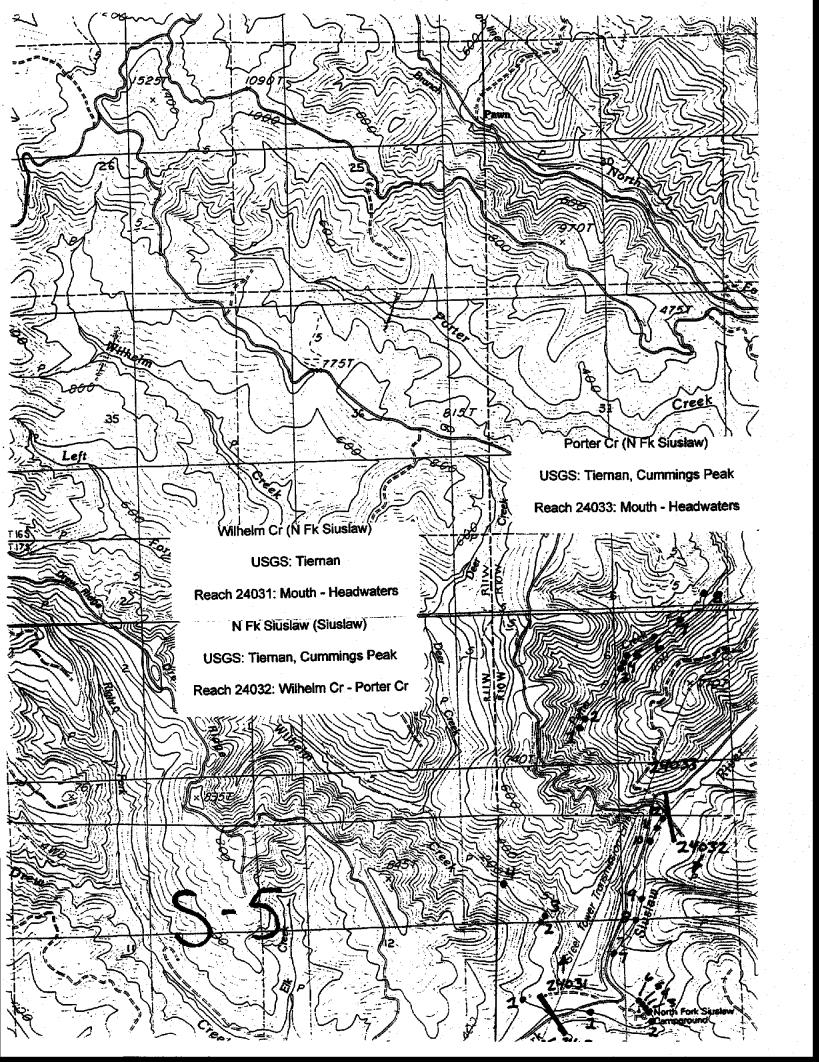


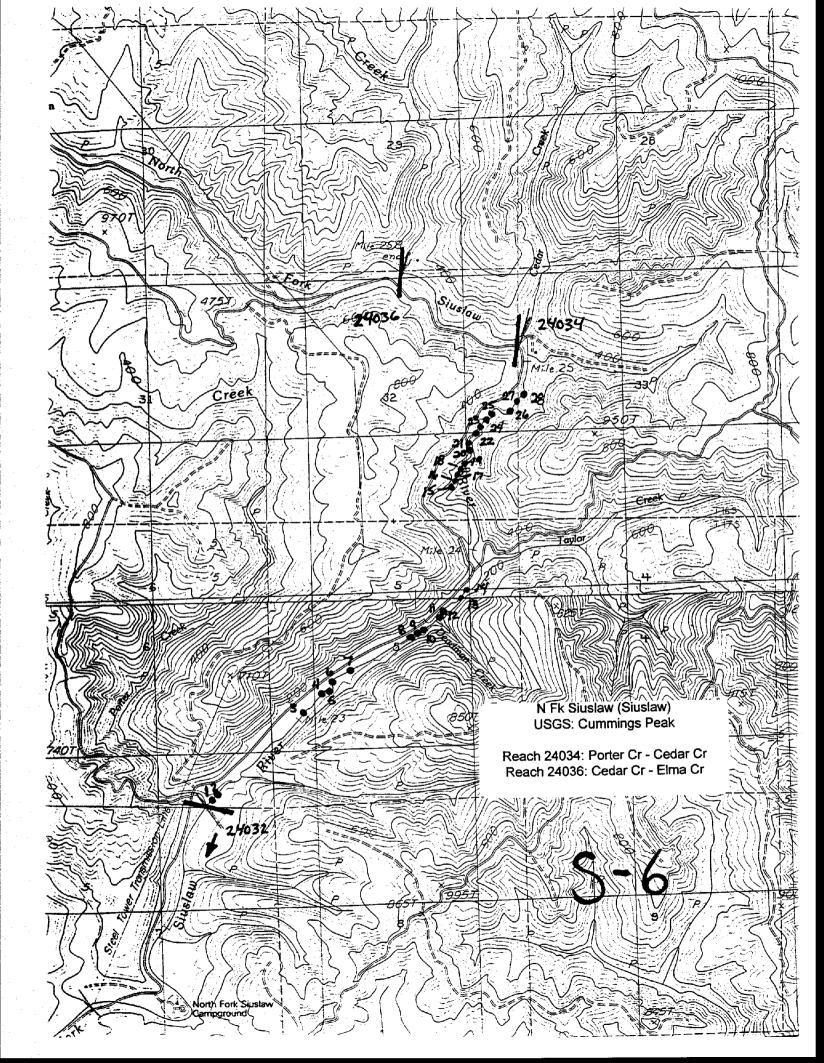


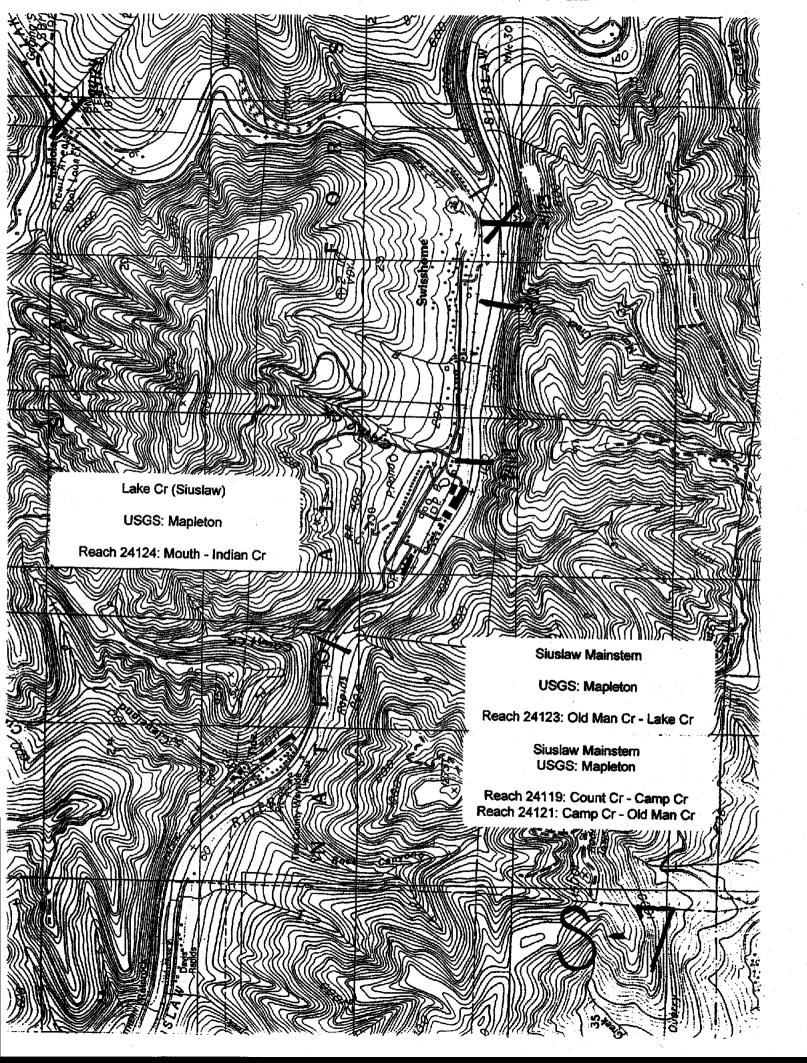


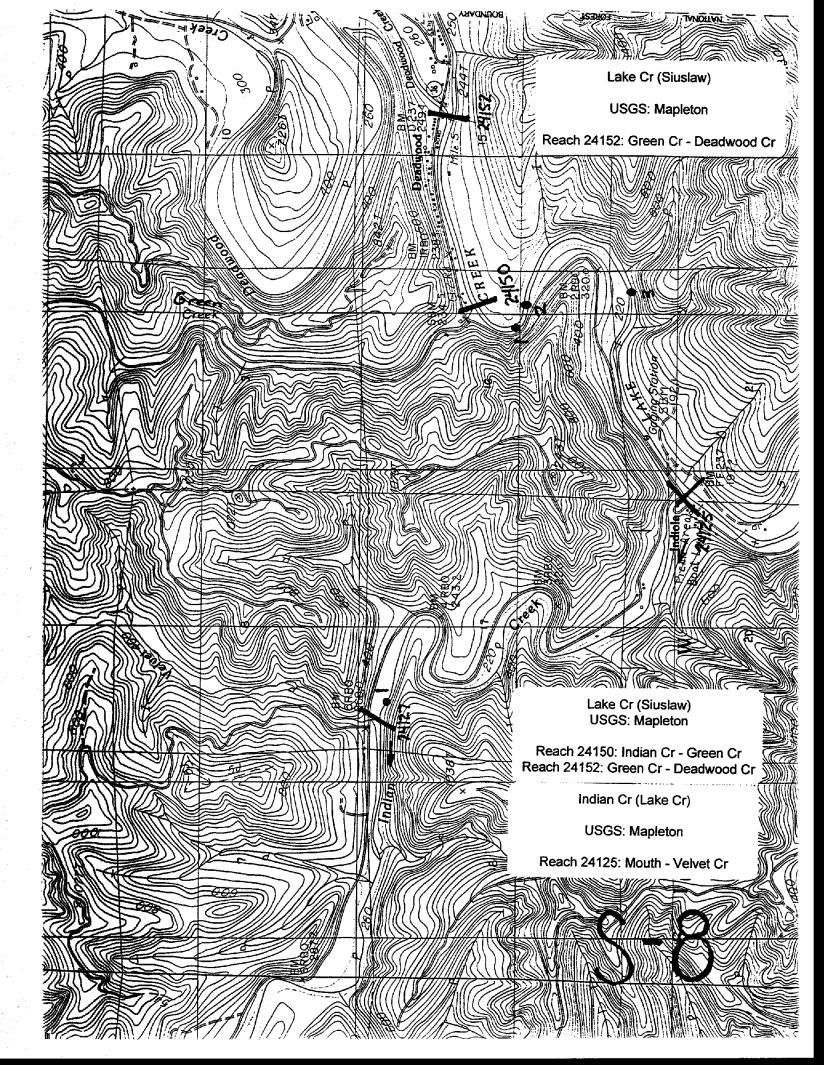


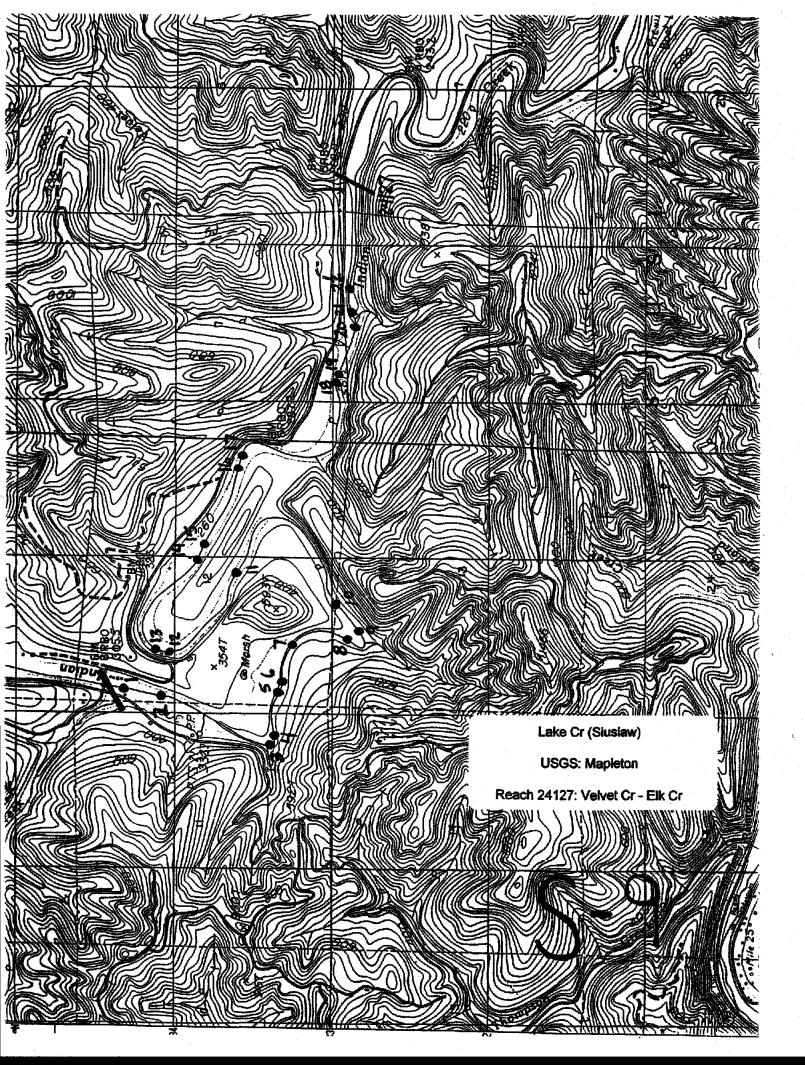


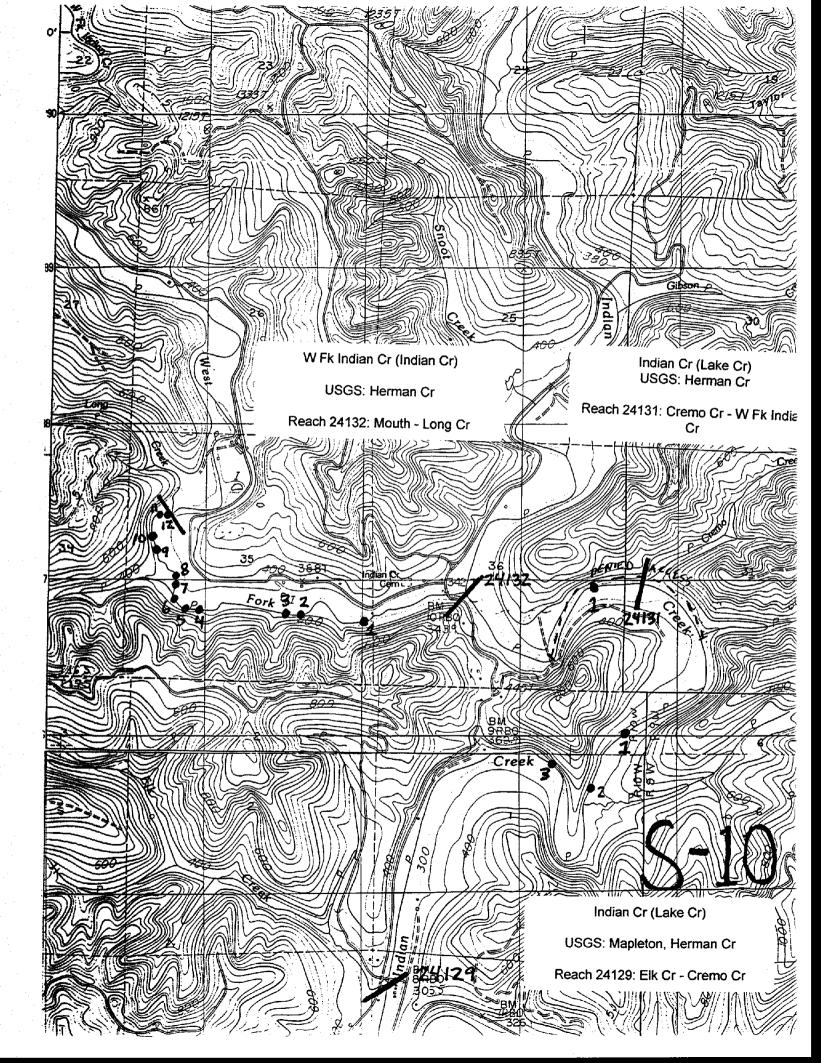


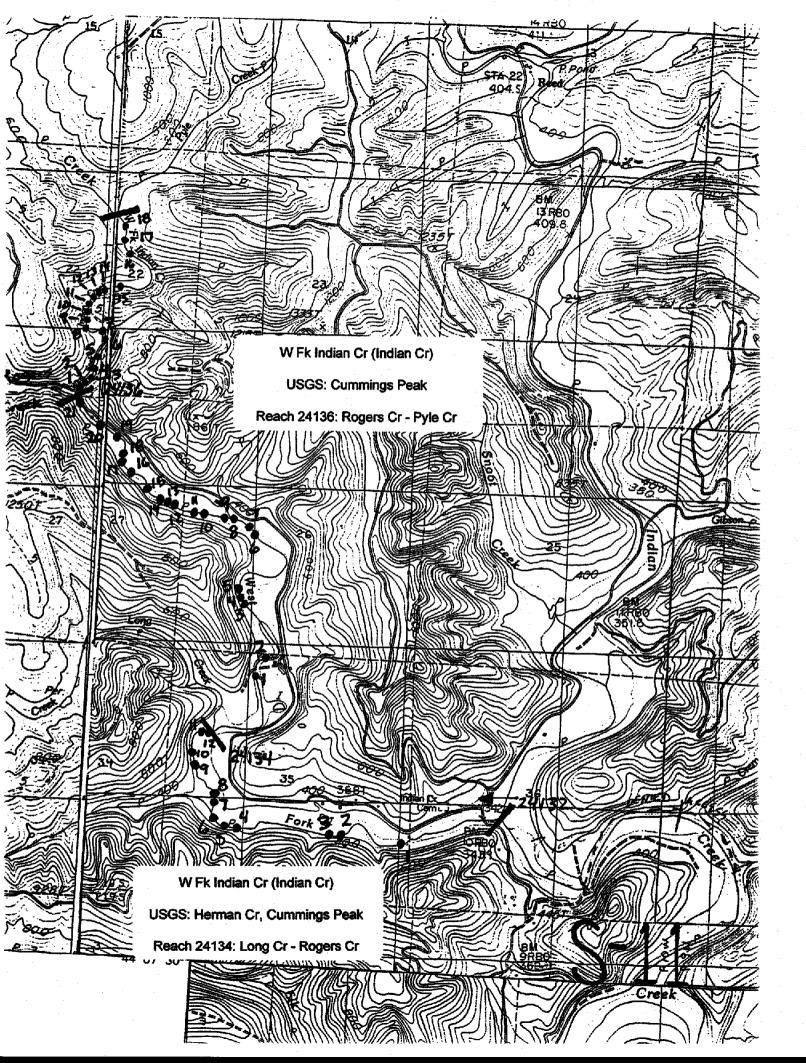


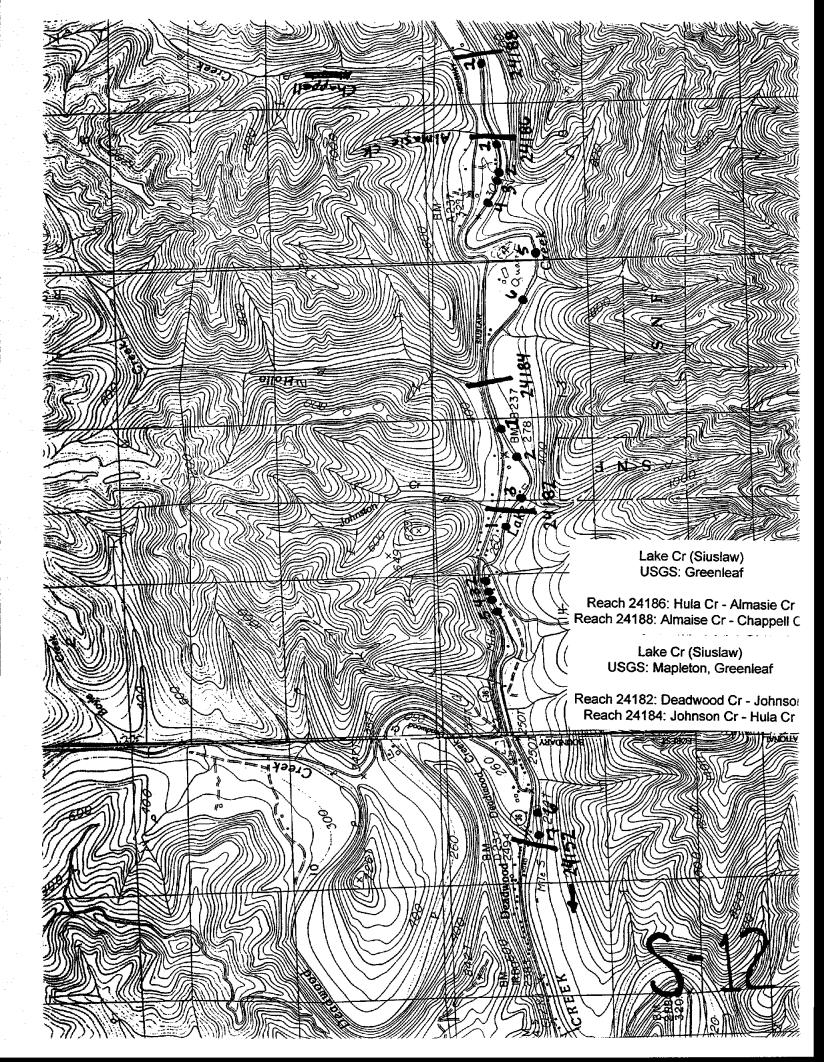


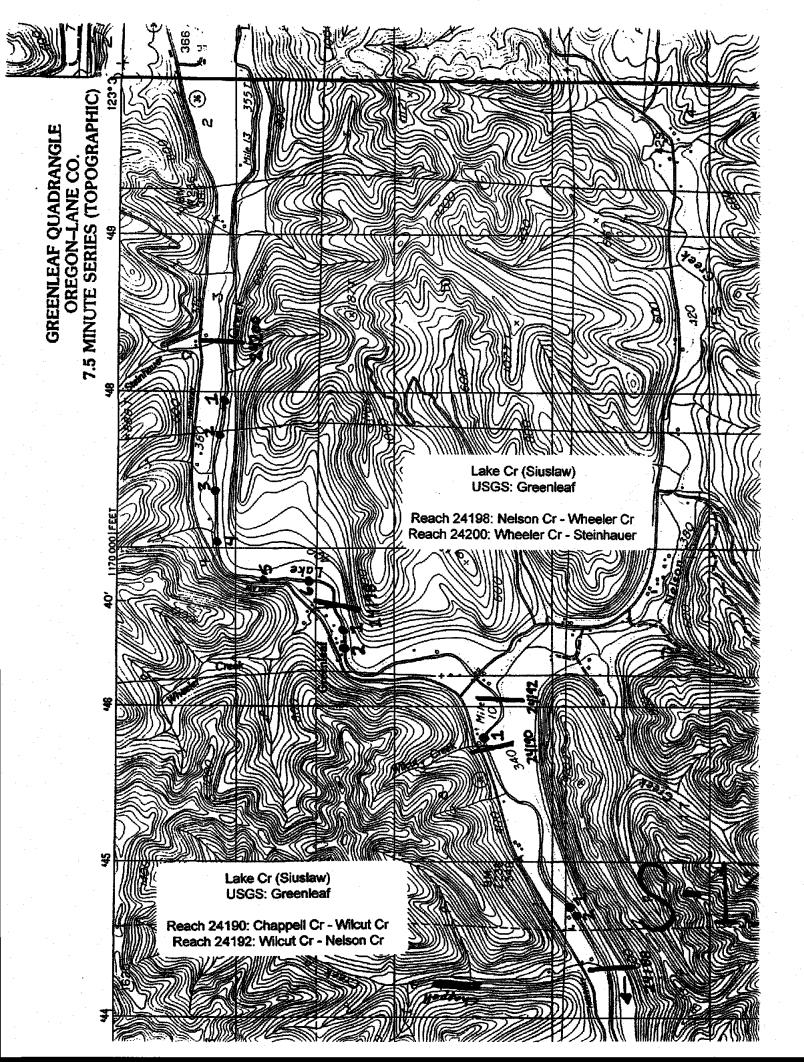


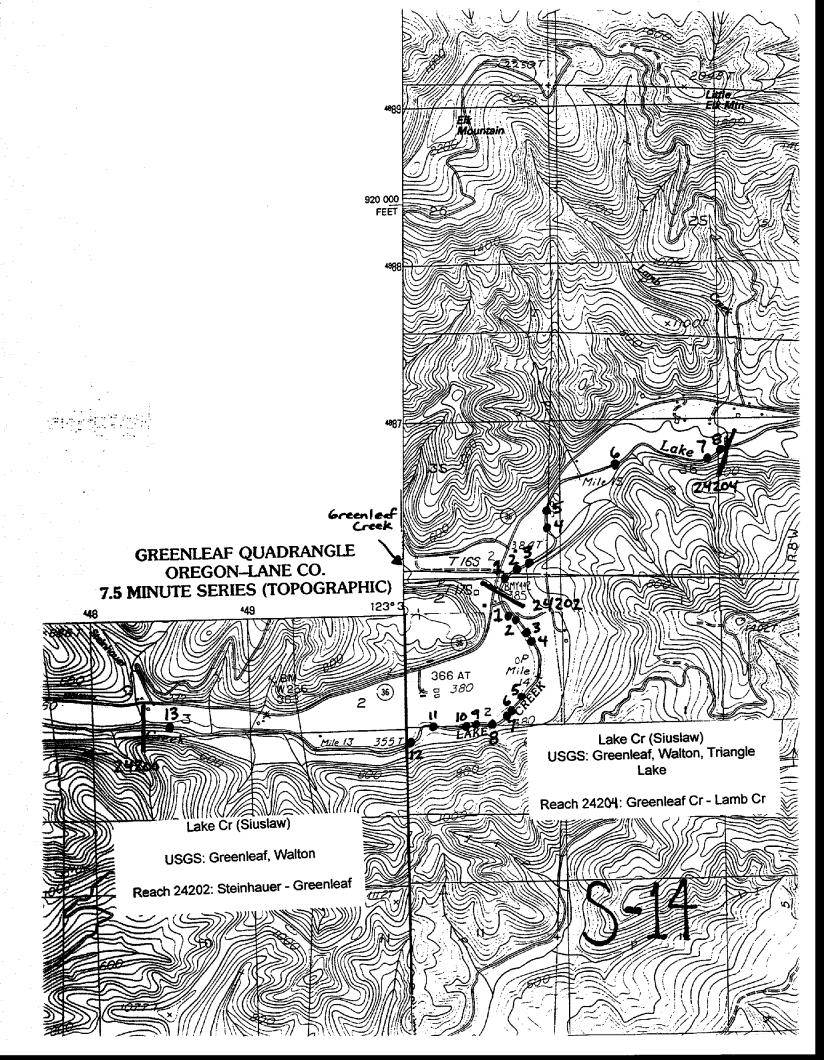


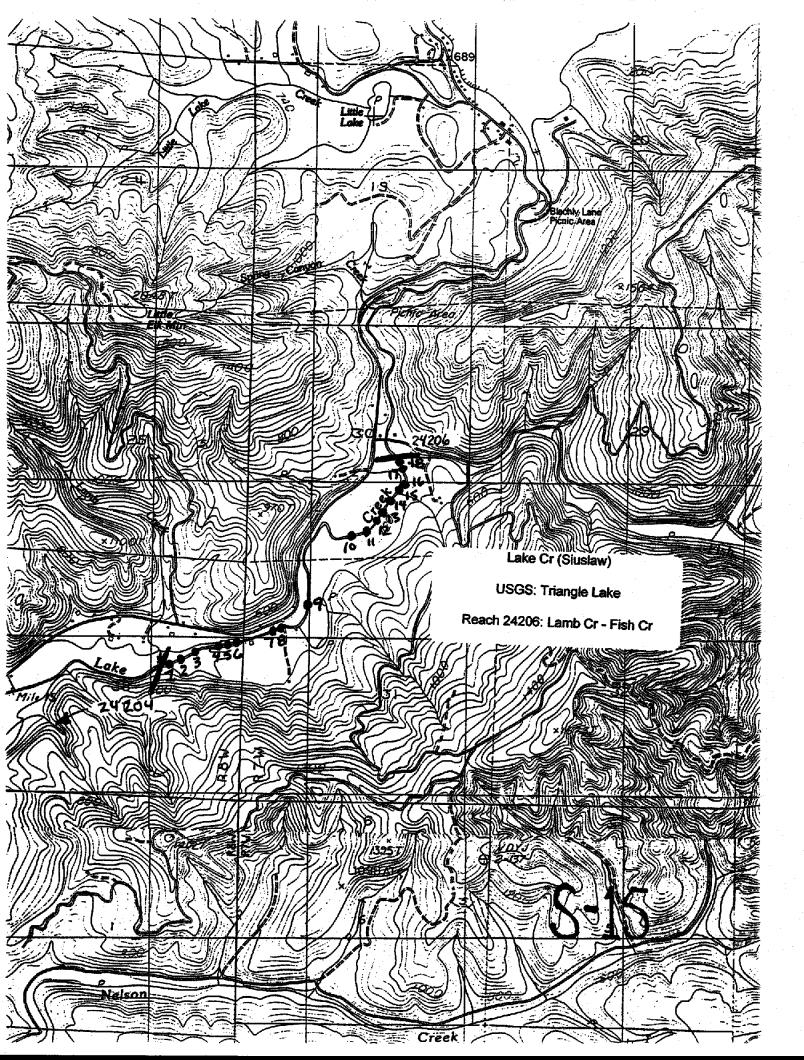


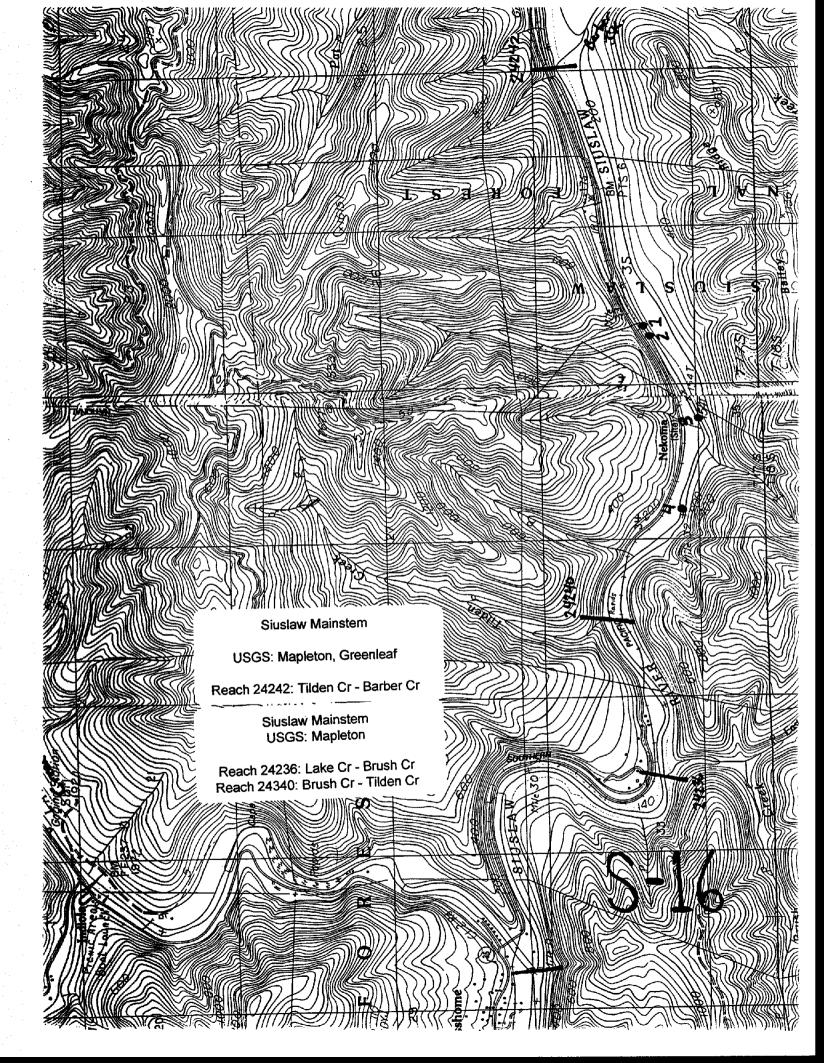


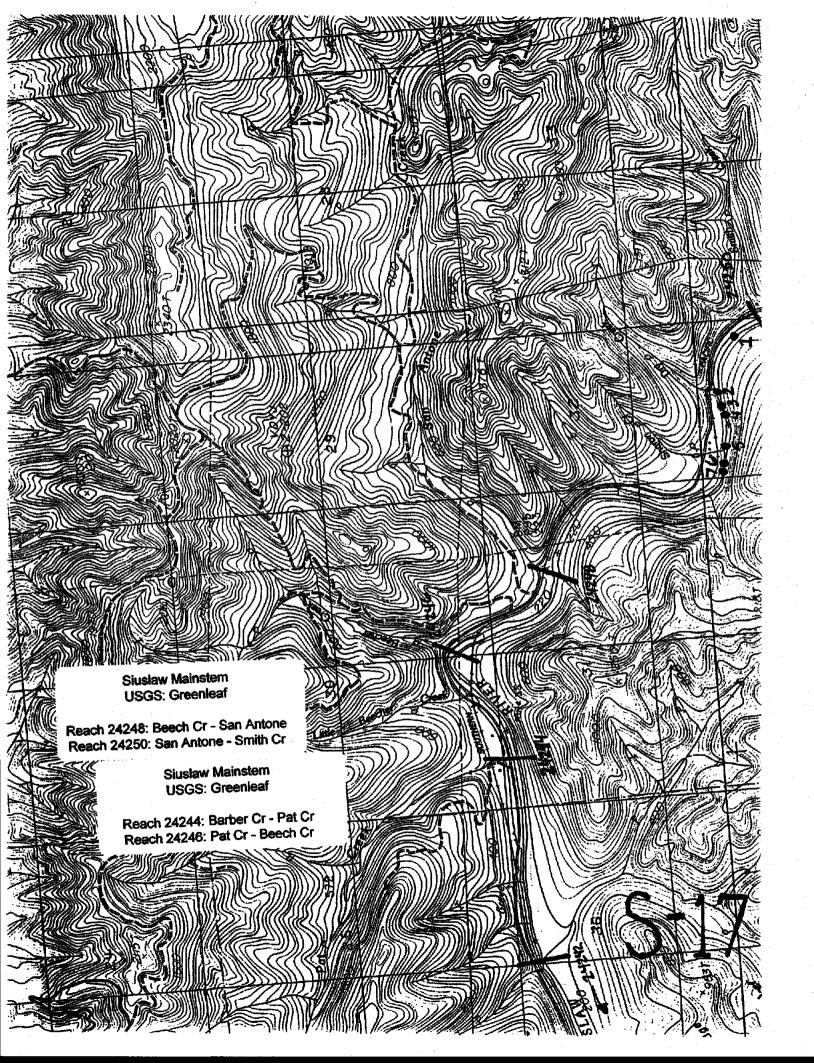


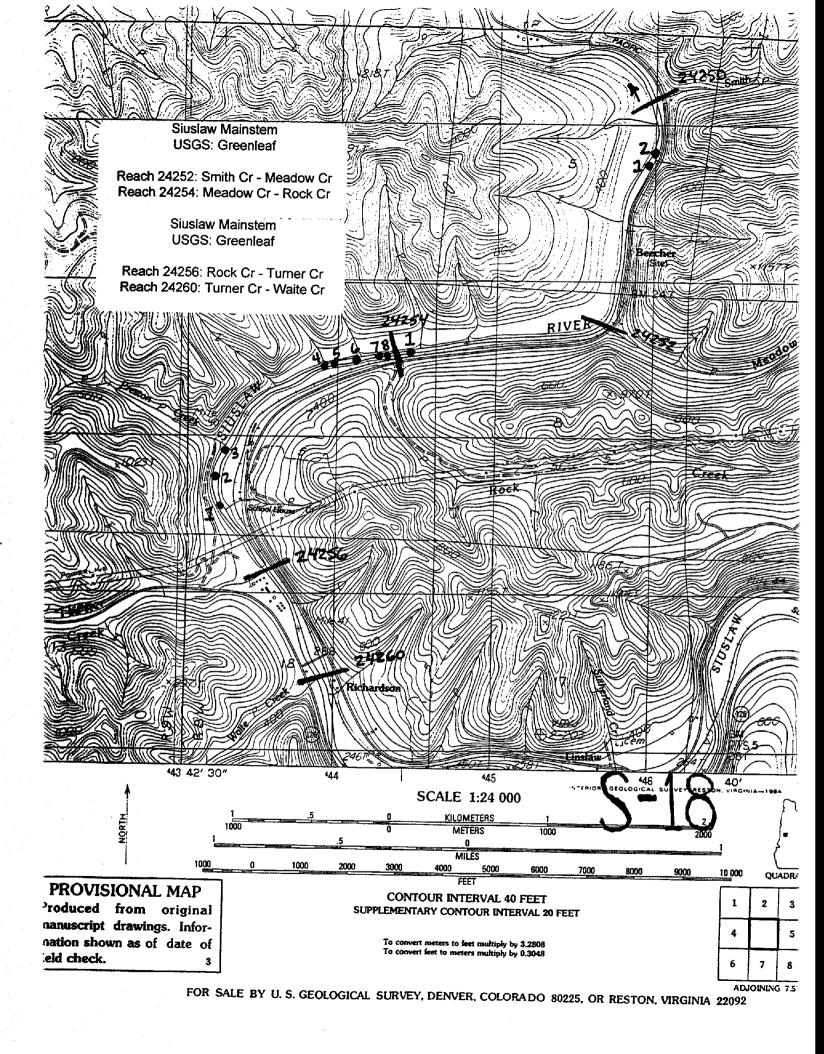


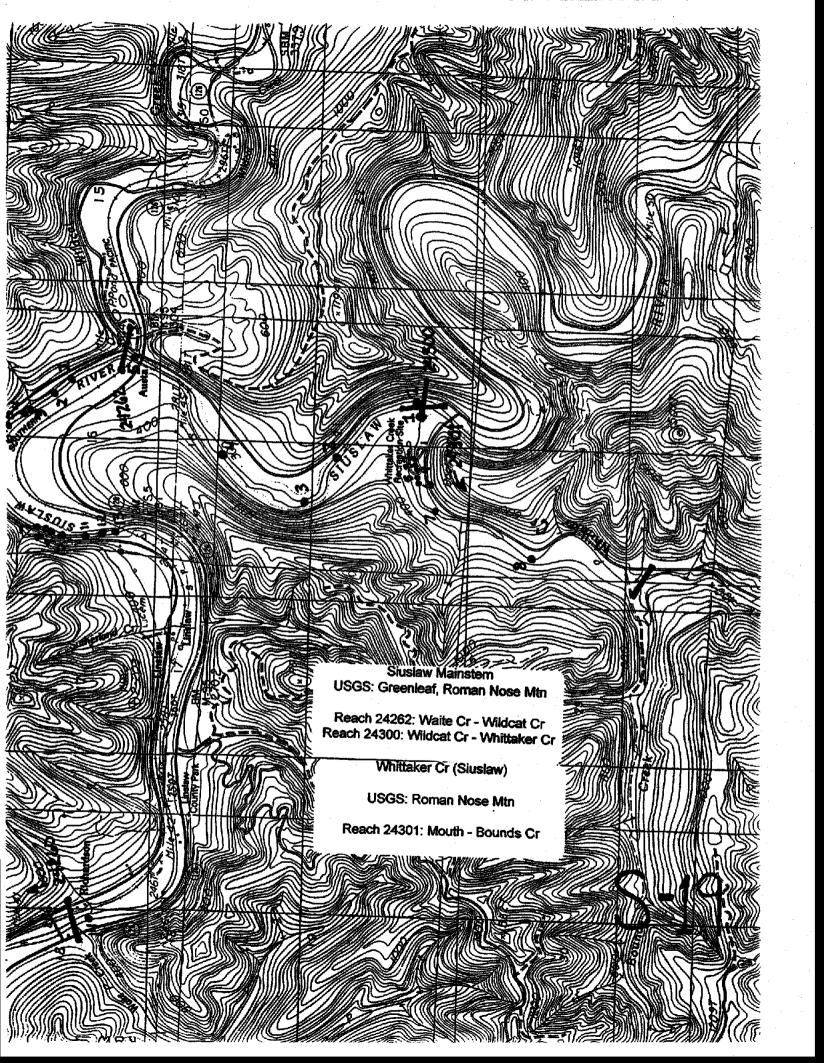


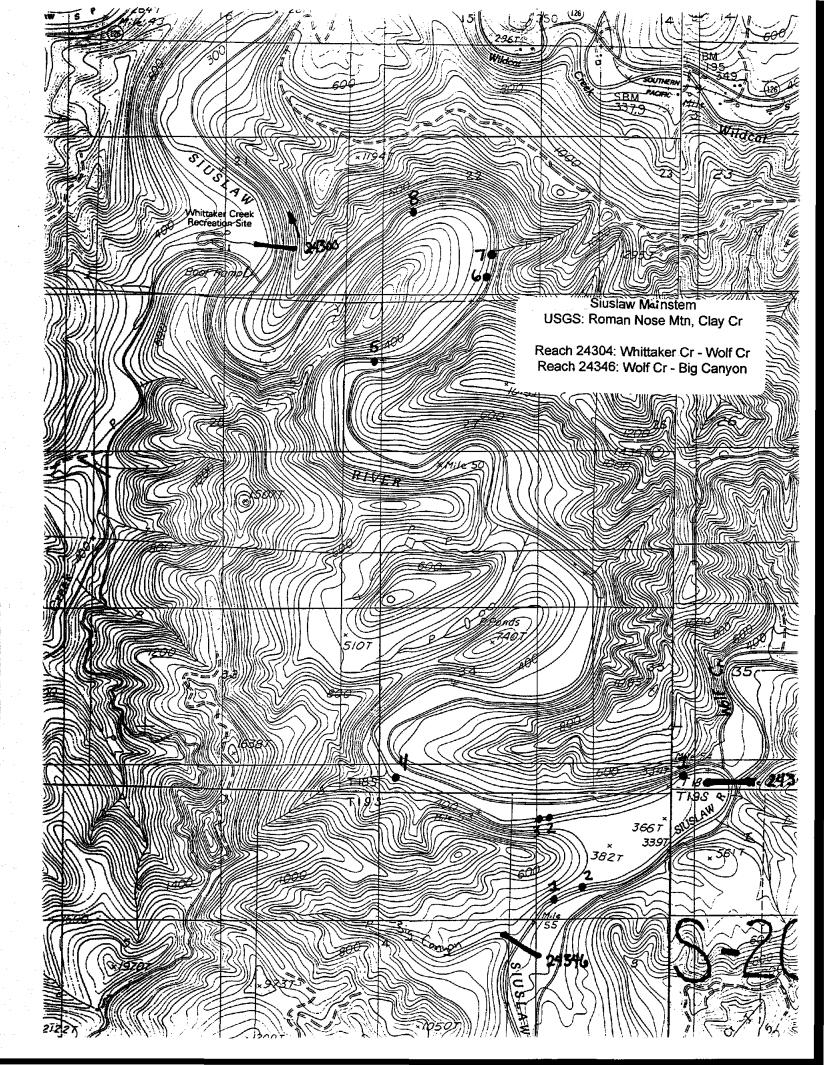


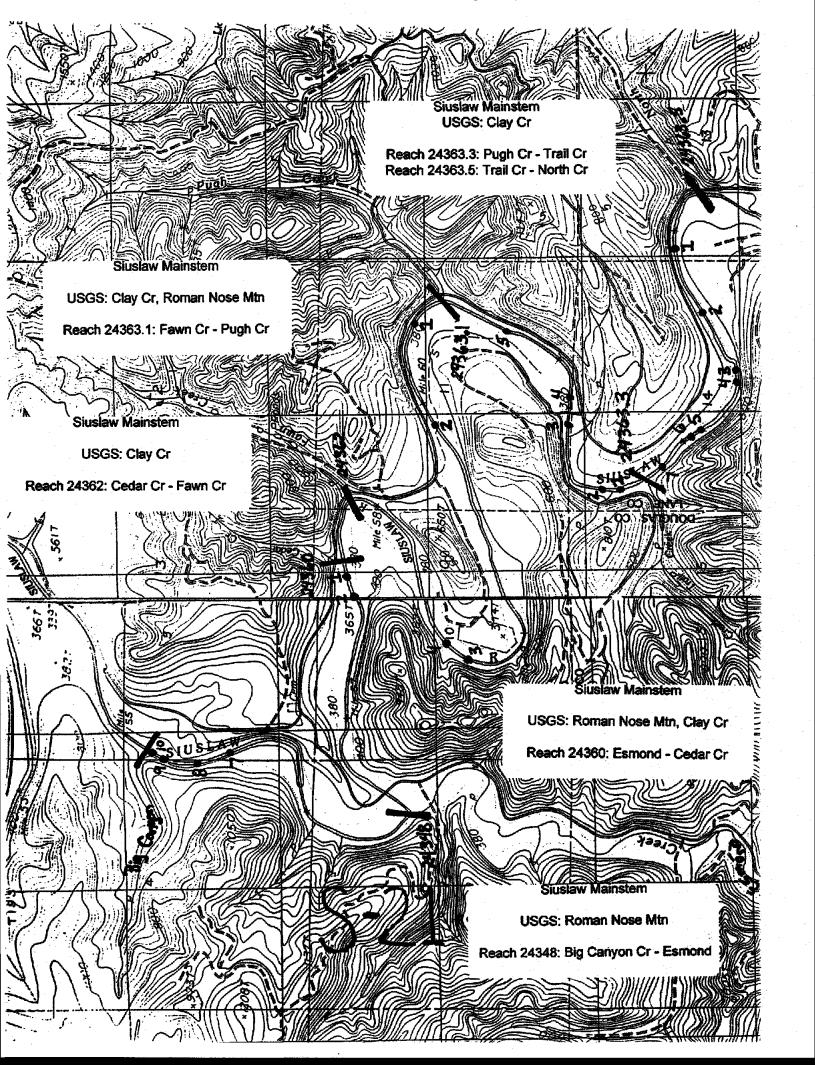


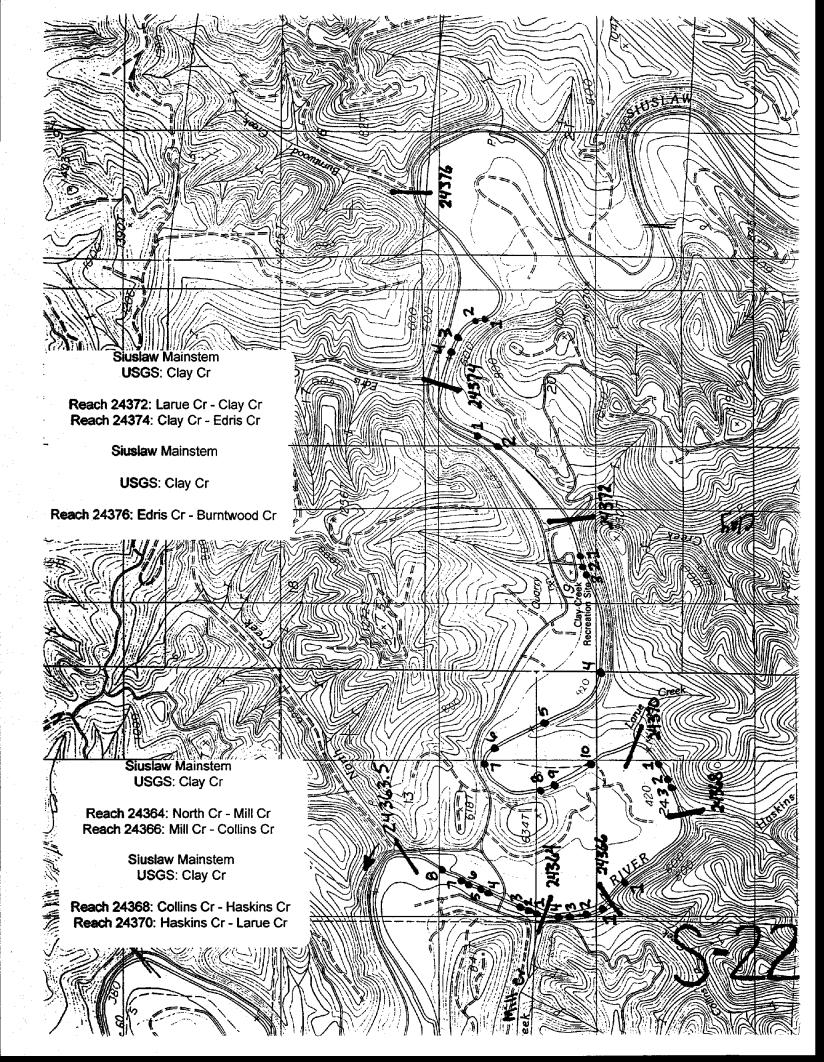


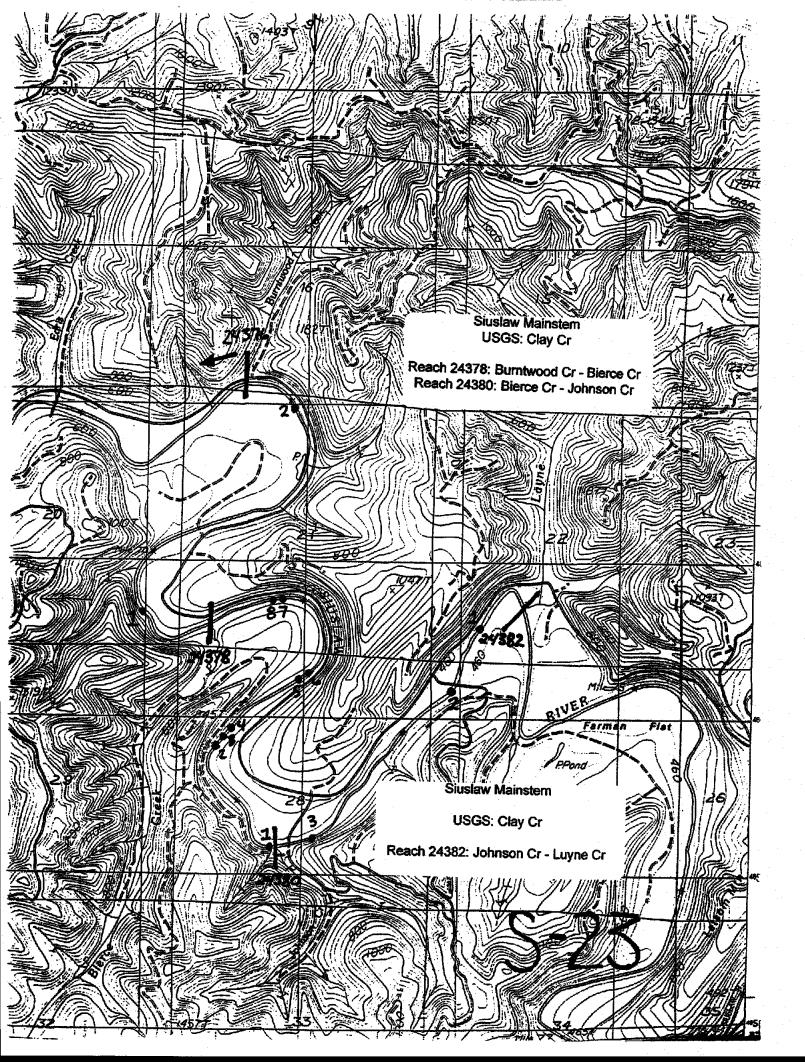


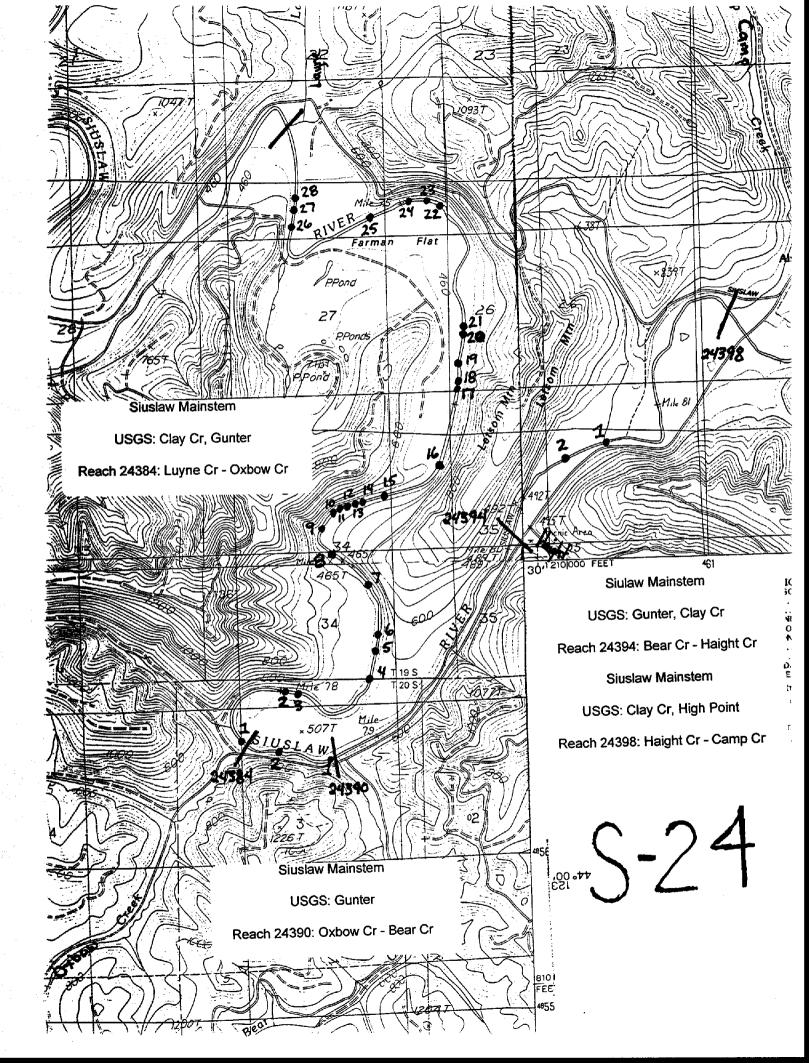


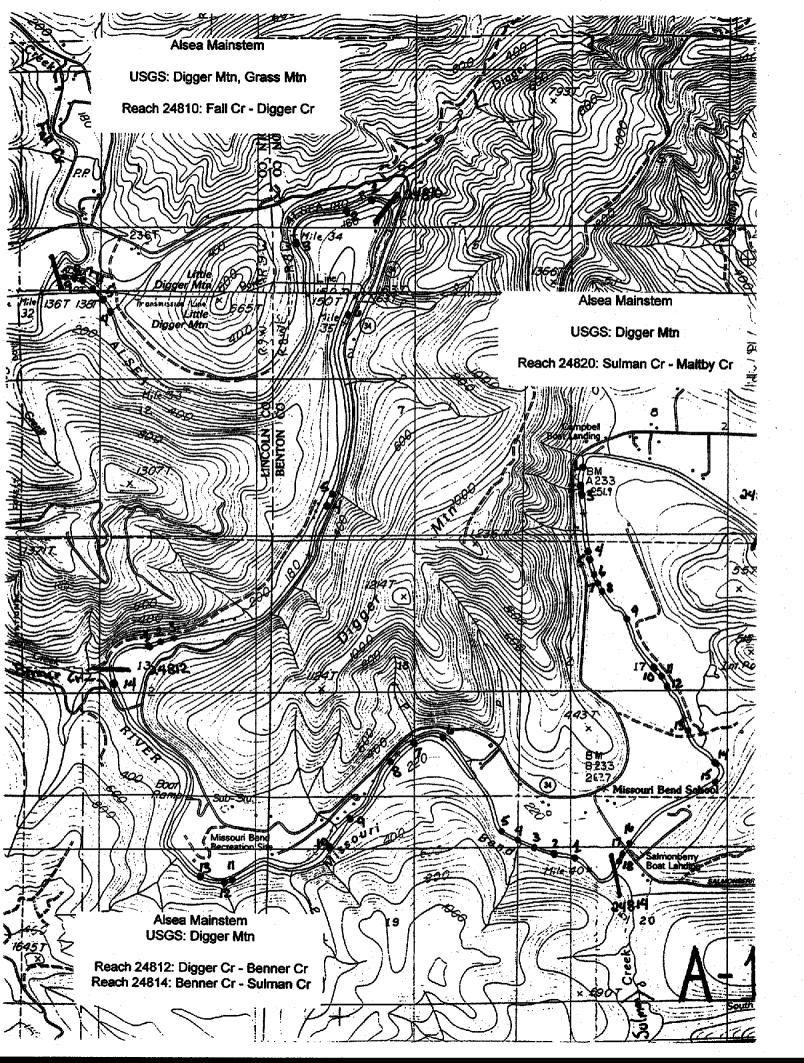


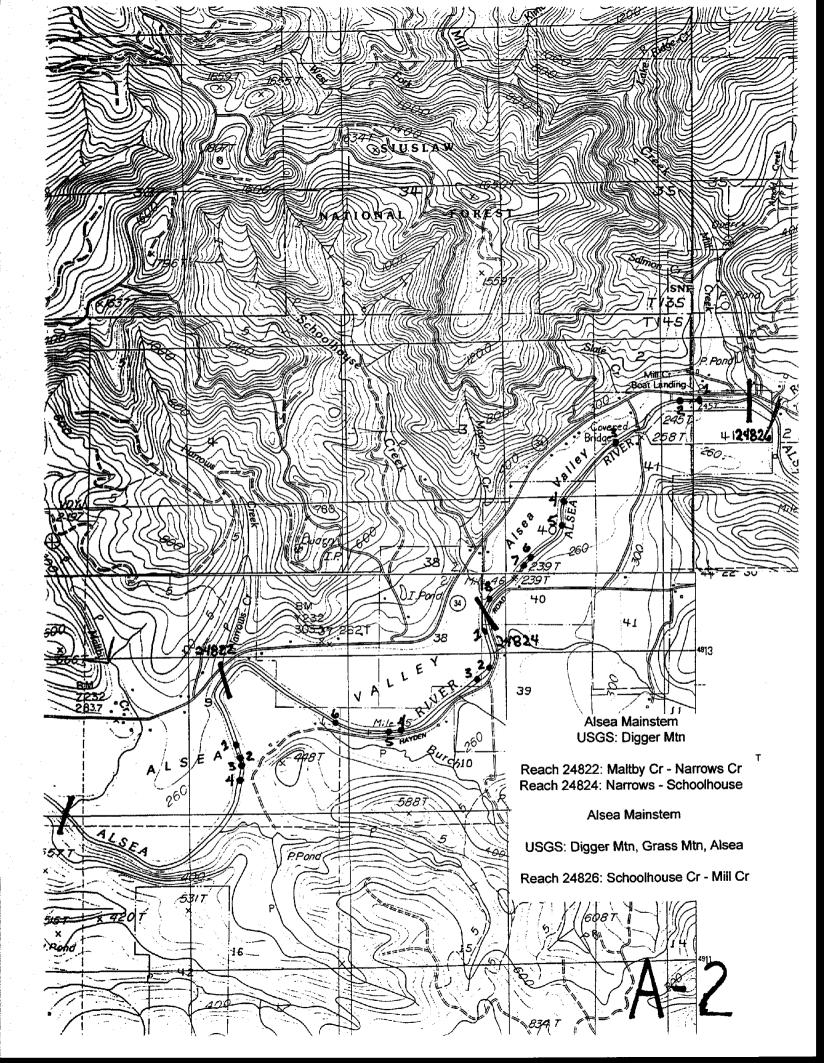


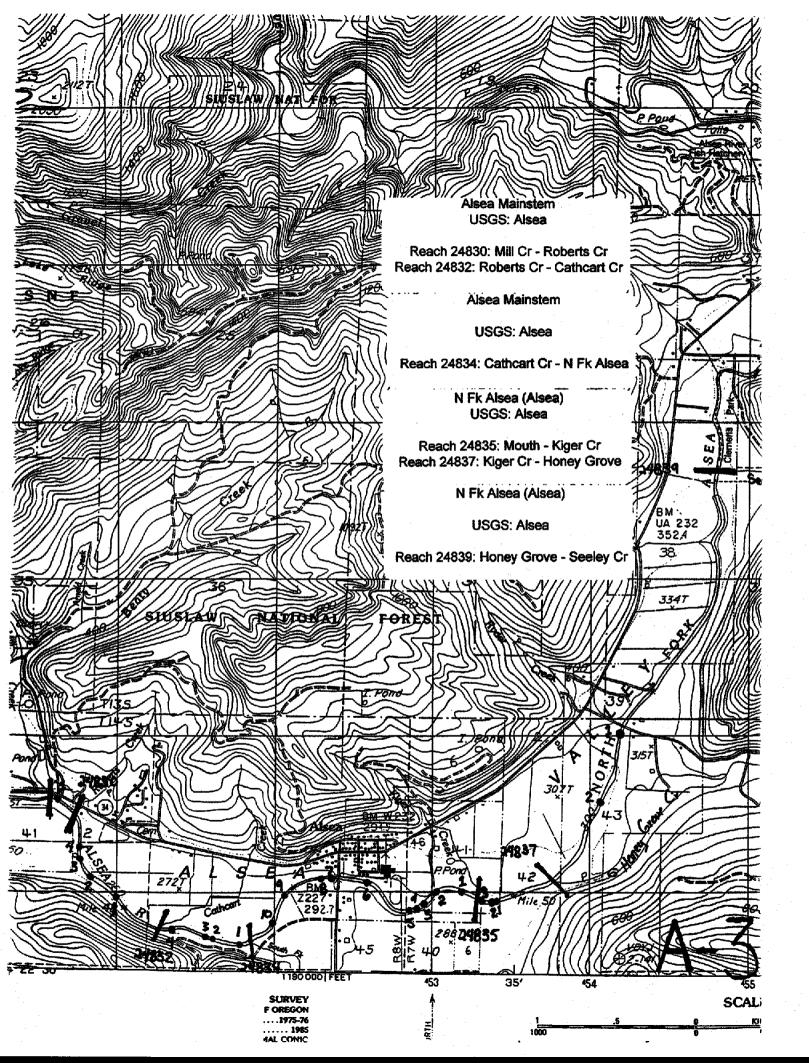












APPENDIX C

Results of Spawning Distribution Surveys

REACH # :	25980	LOWER BOUND:	MOUTH		SURVEYORS:
REACH:	E HUMBUG CR	UPPER BOUND:	HEADW	ATERS -	
ASIN:	NEHALEM RIVER	SURVEY LENGTH (M):	1720	VISIBILITY:	0
SUBBASIN:	MAIN STEM	DATE:	11/22/9	PEAK CODE:	
		MAINSTEM/TRIB:	т		

COMMENTS:

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
		507	1	3	40	N	N	
•		679	2	4	40	Y	Y	3
		793	1	1	50	N	N	
		918	1	4	30	N	N	
		1264	1	2	20	Y	N	
		1600	1	1	50	Y	N	

REACH # :	25967	LOWER BOUND:	MOUTH		S	URVEYORS:	
REACH:	HUMBUG CR	UPPER BOUND:	CEDAR C	R			
ASIN:	NEHALEM RIVER	SURVEY LENGTH (M):	1361	VISIBILITY:	0	•. •	
SUBBASIN:	MAIN STEM	DATE:	11/16/9 I	PEAK CODE:			
COMMENTS		MAINSTEM/TRIB:	т				

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS
		- 25	1	. 1	50	······································	• ••••• ••• ••• •••
		• 165	1	3	40	Y	Y 2
		177	1	10	50	Y	N
		190	1	2	30	Y	• N
		725	3	3	60	Y	N. A. A.

REACH # :	25931	LOWER BOUND:	BUICK C	ANYON	SURVEYORS:
REACH:	SALMONBERRY R	UPPER BOUND:	BELFOR	TCR	
ASIN:	NEHALEM RIVER	SURVEY LENGTH (M):	1451	VISIBILITY:	0
SUBBASIN:		ÆR DATE:	11/21/9	PEAK CODE:	
COMMENTS:		MAINSTEM/TRIB:	т		

(ÛTM)	UPSTREAM (M)	NUMBER REDDS	LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS	UNIT #
••	29	1.	· · · · · · · · · · · · 7 - ·			N	
	46	1	8	30	Y	Y	4
	250	1	4	50	Y	N	
	800	1	3	50	Y	Y	8
	1200	2	10	50	· Y	Y	9
		29 46 250 800	29 1 46 1 250 1 800 1	29 1 7 46 1 8 250 1 4 800 1 3	29 1 7 40 46 1 8 30 250 1 4 50 800 1 3 50	29 1 7 40 Y 46 1 8 30 Y 250 1 4 50 Y 800 1 3 50 Y	29 1 7 40 Y N 46 1 8 30 Y Y 250 1 4 50 Y N 800 1 3 50 Y Y

REACH # :	25907	LOWER BOUND:	HARLISS CR -		SURVEYORS:
REACH:	COOKCR	UPPER BOUND:	PIATT CANYON		MANNING
ASIN:	NEHALEM RIVER	SURVEY LENGTH (M):	1866 VISIBILITY:	2	
SUBBASIN:	MAIN STEM	DATE:	11/19/9 PEAK CODE:	L	
COMMENTS:		MAINSTEM/TRIB:	Ţ		

PREVIOUS SURVEY HAD 24 CHF

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
		26	· 1		70	N	N	
		487	2	3	50	Ŷ	· N	
		503	1		50	· Y	N	
		597	1	1	30	Y	N	
		654	· 1	, †	70	Y	N	
		1029	1	1	70	Y	N	

REACH # :	25880	LOWER BOUND:	моитн			SURVEYORS:
REACH:	NEHALEM R, LITTLE	N UPPER BOUND:	HEADW	ATERS		HODGSON
ASIN:	NEHALEM RIVER	SURVEY LENGTH (M):	1850	VISIBILITY:	1	
SUBBASIN:	NORTH FORK	DATE:	11/16/9	PEAK CODE:	P	
COMMENTS:		MAINSTEM/TRIB:	т			

PRIME CONDITIONS, LACK OF FISH PUZZLING, REPORTS OF FISH EARLIER, OLD REDDS INDISTINGUISHABLE

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
		500	1		70	N	Y	5
		1427	3		70	Y	Y	14
		1715	1		70	Y	N	0

REACH # :	25879	LOWER BOUND:	LOWER BOUND: FALL CR			SURVEYORS:			
REACH:	NEHALEM R, N FK	UPPER BOUND:	NEHALE	M R, LITTLE N FK		HODGSON,WEBER			
ASIN:	NEHALEM RIVER	SURVEY LENGTH (M):	7167	VISIBILITY:	2				
SUBBASIN:	NORTH FORK	DATE:	11/17/9	PEAK CODE:	Ρ				
COMMENTS:		MAINSTEM/TRIB:	М						

PRIME CONDITIONS, MINIMAL SPAWNING, OLD REDDS INDISTINGUISHABLE

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
446300	5073600		1	. 1	70	Y	Ŷ	1
446550	5073900		5	1	70	Υ ^Λ Υ	Y	5
446552	5073941		6		70	Y	Y	-6
446500	5074300		2		70	, Y .	Y	12
446910	5075910		5	2	65	Y	Y	-27
446897	5076099		2		70	Y	Y	-28
445850	5076550	•	2		60	Y	Y	37
445793	5076780		2	2	70	Ŷ	Y	38
445700	5076900		3	3	65	· Y	Y	39
445720	5077200		1		70	Y	N	o

REACH #:	25877	LOWER BOUND:	SWEET HOME CR -				SURVEYORS:
REACH:	NEHALEM R, N FK	UPPER BOUND:	FALL CR				HODGSON,WEBER
ASIN:	NEHALEM RIVER	SURVEY LENGTH (M):	1620	VISIBILITY:		2	
SUBBASIN:	NORTH FORK	DATE:	11/17/9	PEAK CODE:	Ρ		
COMMENTS:		MAINSTEM/TRIB:	м				

PRIME CONDITIONS, MINIMAL SPAWNING, OLD REDDS INDISTINGUISHABLE

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
445880	50728 50		2		60	N	Y	1
446380	5072800		2		60	Y	Y	6
446360	50728 30		2	3	50	Y	N	0
446350	5072850		3	1	60	Y	Y	7
446324	5073289		1	1	60	N	N	0

REACH # :	25876	LOWER BOUND:	MOUTH				SURVEY	SURVEYORS:		
REACH:	SWEET HOME CR	UPPER BOUND:	HEADWATERS					HODGSON		
ASIN:	NEHALEM RIVER	SURVEY LENGTH (M):	1700	VISIBILITY:		2				
SUBBASIN:	NORTH FORK	DATE:	11/16/9	PEAK CODE:	P					
		MAINSTEM/TRIB:	т							

COMMENTS:

MAINSTEWTRIB:

MOST FISH SPAWNING, SURVEY BEGAN ~.75MILE ABOVE MOUTH DUE TO HIGH WATER & GRADIENT

								1
GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
		1055	1	1	70	Y	Y	5
		1075	5	5	60	, . Y	Y	6
		1125	4	7	55		e ma Y a	7
		1160	1	•	40	Y	· Y	8
		1315	1	3	50	N	N	
		1450	1	1	55	Y	N S	
		1525	1	1	40	Ŷ	N	×
		1575	. 1	. 1	60	Y	N	
		1635	1	4	50	N	N	
		1650	3	7	40	N	N	
		1910	1	2	60	N	N	
		2230	2	1	50	N	N	
		2270	1		60	N	N	
						х.		

REACH # :	25875	LOWER BOUND:	LOST CR			SURVEYORS:		
REACH:	NEHALEM R, N FK	UPPER BOUND:	SWEET HOME CR				HODGSON,WEBER	
ASIN:	NEHALEM RIVER	SURVEY LENGTH (M):	2090	VISIBILITY:		2		
SUBBASIN:	NORTH FORK	DATE:	11/17/9	PEAK CODE:	Ρ			
COMMENTS:		MAINSTEM/TRIB:	М					

PRIME CONDITIONS, MINIMAL SPAWNING, OLD REDDS INDISTINGUISHABLE

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
445000	5072660		2	2	60	N	Y	8
445058	507 2666		15	17	75	Ŷ	Y	10
445400	50 72620		3		60	Y	Y	14
445447	5072 570		3	1	40	N	N	o
445467	5072 576		10	3	60	Y	Y	-15
						<u> </u>		

REACH # :	25873	LOWER BOUND:	GODS V	SURVEYORS:							
REACH:	NEHALEM R, N FK	UPPER BOUND:	LOST CR					HODG	SON,V	WEBER	
ASIN:	NEHALEM RIVER	SURVEY LENGTH (M):	1520	VISIBILITY:		2					
SUBBASIN:	NORTH FORK	DATE:	11/17/9	PEAK CODE:	Ρ						
COMMENTS:		MAINSTEM/TRIB:	М			·					
	ITIONS, MINIMAL SPA	WNING, OLD REDDS IN	DISTINGL	NSHABLE				•.			
											_

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
442110	5072530		1		60	N	Y	1

REACH #:	25872	LOWER BOUND:	MOUTH			SURVEYORS:		
REACH:	GODS VALLEY CR	UPPER BOUND:	HEADWATERS				HODGSON	
ASIN:	NEHALEM RIVER	SURVEY LENGTH (M):	1850	VISIBILITY:		2		
SUBBASIN:	NORTH FORK	DATE:	11/16/9	PEAK CODE:	Ρ			
COMMENTS:		MAINSTEM/TRIB:	т					

HIGH WATER, SOME FISH & REDDS UNDOUBTEDLY MISSED IN LOWER PORTION

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
		340	3	3	60	Y	Y	6
		365	3	2	65	YW	N	0
		410	3	1	70	Y	N	0
		500	1		50	Y	N	0
		630	3	2	60	Y	N	0
		1010	1	1	40	Y	Y	-9
		1070	3		50	N	Y	-10
		1190	1		55	Y	Y	-11
		1340	2		55	Y	N	0
		1370	2	2	50	N	N	0
		1450	1	1	40	Y	N	0
		1665	0	2	40	Y	Y	-12

REACH # :	25871.7	LOWER BOUND:	SURVEYORS:					
REACH:	NEHALEM R, N FK	UPPER BOUND:	GODS V	ALLEY CR		HODG	SON,WEBE	R
ASIN:	NEHALEM RIVER	SURVEY LENGTH (M):	1700 VISIBILITY:		2			
SUBBASIN:	NORTH FORK	DATE:	11/17/9	PEAK CODE:	P			
COMMENTS:		MAINSTEM/TRIB:	М					
PRIME COND	ITIONS, MINIMAL SP/	AWNING, OLD REDDS IN	DISTINGU	ISHABLE				

REACH # :	25679	LOWER BOUND: MOUTH				SURVEYORS:	-
REACH:	CEDAR CR	UPPER BOUND: CEDAR CR, N FK				HODGSON, VAN DYKE	
ASIN:	WILSON RIVER	SURVEY LENGTH (M):	4940	VISIBILITY:	1		
SUBBASIN:	MAIN STEM	DATE:	11/3/95	PEAK CODE:	Е		
COMMENTS.		MAINSTEM/TRIB:	т				

COMMENTS:

UNIT #	REDDS IN UNIT	REDDS IN TAILOUT	GRAVEL(%)	NUMBER LIVE	NUMBER REDDS	DISTANCE UPSTREAM (M)	GPS Y (UTM)	GPS X (UTM)
1	Y	Y	50		3	245		·
	N	Y	40		1	534		
	N	Y	30		1	655		
2	Y	Y/N	50	4	2	850		
3	Y	Y	70	2	1	1228		
	Ν	N	40		1	1270		
5	Y	Y	65	4	2	1642		
	N	N	45		1	1662		
8	Y	Y	50	2	2	2447		
9	Y	Y	60	1	1	2527		
	N	Y	65		1	2750		
12	Y	Y/N	70		2	2950		
	N	N	30		1	3047		
	N	N	30	1	4	3960		

REACH # :	25678	LOWER BOUND:	WOLF C	R			SURVEYORS:	
REACH:	WILSON R	UPPER BOUND:	CEDAR	CR			HODGSON, KLUMPH	
ASIN:	WILSON RIVER	SURVEY LENGTH (M):	4850	VISIBILITY:		1		
SUBBASIN:	MAIN STEM	DATE:	11/2/95	PEAK CODE:	Ε			
COMMENTS:		MAINSTEM/TRIB:	М					

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER · LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
438800	5036240		2		75	Y	N	
439186	5035729		2		65	N	N	
453280	5045200		5		70	Y	Y	10
453550	504 5120		11.	2	70	Y	Y	8
453580	5045094		2	1	70	N	N	
453614	5044967		1		40	Y	N	
454480	50456 11		2		.70	Y	Ŷ	6
454800	5045630		5		75	Y	Y	5
455323	5045759		2		55	Y	Ŷ	.4
455494	5045789		3		55	Y	Y	3
456063	5046750		1		50	N	N	
456242	5046760		3	- -	60	* Y ,	Ŷ	1

REACH # :	25676	LOWER BOUND:	JORDAN CR	-			SURVEYORS:
REACH:	WILSON R	UPPER BOUND:	WOLF CR				HODGSON, KLUMPH
ASIN:	WILSON RIVER	SURVEY LENGTH (M):	1500 V	ISIBILITY:		1	
SUBBASIN:	MAIN STEM	DATE:	11/1/95 PE/	AK CODE:	Ε		
COMMENTS:		MAINSTEM/TRIB:	М				

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
4527 27	50448 40		2		60	N	N	
452877	504 5000		3		65	Y	Y	1

REACH # :	25672	LOWER BOUND:	MUESIAL CR				SURVEYORS:
REACH:	WILSON R	UPPER BOUND:	KEENIG	CR			HODGSON, KLUMPH
ASIN:	WILSON RIVER	SURVEY LENGTH (M):	1000	VISIBILITY:		1	
SUBBASIN:	MAIN STEM	DATE:	11/2/95	PEAK CODE:	Е		
COMMENTS:		MAINSTEM/TRIB:	М				

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
452450	5042510		2		75	N	Y	3
452294	5043045		2	1	60	Y	Y	1

REACH # : 25674 LOWER BOUND: KEENIG CR SURVEYORS: REACH: WILSON R UPPER BOUND: JORDAN CR HODGSON,KLUMPH ASIN: WILSON RIVER SURVEY LENGTH (M): 800 VISIBILITY: 1 Ε SUBBASIN: MAIN STEM DATE: 11/1/95 PEAK CODE: MAINSTEM/TRIB: M COMMENTS:

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
452685	5043660		2	1	. 65	Y	Y	1
452873	5043700		2		70	Y	Ν-	
452869	5043790		3		60	N	N	

REACH # :	25670	LOWER BOUND:	FOX CR			SURVEYORS:	
REACH:	WILSON R	UPPER BOUND:	MUESIA	L CR		HODGSON, KLUMPH	
ASIN:	WILSON RIVER	SURVEY LENGTH (M):	4300	VISIBILITY:	1		
SUBBASIN:	MAIN STEM	DATE:	11/1/95	PEAK CODE:	Е		
COMMENTS:		MAINSTEM/TRIB:	м				

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
452242	5039200		5	1	40	Y	N	
452050	5039550		2		70	Y/N	Y	9
451700	5040200		5	2	80	Y	Y	8
452060	5041080		3	1	65	Y	N	
452142	5041210		3		65	Y	Y	6
452720	5042033		1		65	Y	Y	4

REACH # :	25650	D	LOWER BOUND:	HATCHE	RYCR	รเ	JRVEYORS:
REACH:	WILSON	IR	UPPER BOUND:	DEADM	N CR		HODGSON, KLUMPH
ASIN:	WILSON	I RIVER SUI	RVEY LENGTH (M):	340	VISIBILITY:	1	
SUBBASIN:	MAIN ST	TEM	DATE:	11/1/95	PEAK CODE:	E	
COMMENTS: LOW USE DUI	E TO HIGI	HWATER YEAR	MAINSTEM/TRIB: ?	М			
GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)		NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT UNIT #

444881	50365 83	3	70	Y	Y	2

- - -

REACH # :	25648	LOWER BOUND:	MINING	CR		SURVEYORS:			
REACH:	WILSON R	UPPER BOUND:	HATCHE	ERY CR			HODGSON, KLUMPH		
ASIN:	WILSON RIVER	SURVEY LENGTH (M):	500	VISIBILITY:		1			
SUBBASIN:	MAIN STEM	DATE:	11/1/95	PEAK CODE:	E	•			
COMMENTS:		MAINSTEM/TRIB:	м						
LOW USE DUI	E TO HIGH WATER '	YEAR ?							

REACH # :	25646	LOWER BOUND:	WILSON	R, N FK, LITTLE			SURVEYORS:
REACH:	WILSON R	UPPER BOUND:	MINING	CR			HODGSON, KLUMPH
ASIN:	WILSON RIVER	SURVEY LENGTH (M):	2666	VISIBILITY:		1	
SUBBASIN:	MAIN STEM	DATE:	11/1/95	PEAK CODE:	Ε		
COMMENTS:		MAINSTEM/TRIB:	м				

LOW USE DUE TO HIGH WATER YEAR ?

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
442680	50 35530		4		65	Y	Y	10
443190	5035700		7		65	Y	Y	6
443404	50 35730		3		55	Y/N	N	
443476	503 5908		2		70	Y/N	Y	5
444040	5036442		1		80	N	Y	3
444245	50 36587		13	6	80	Y/N	Y	2

REACH # :	25641	LOWER BOUND:	MOUTH			SURVEYORS:			
REACH:	WILSON R, N FK, LIT	TL UPPER BOUND:	WHITE (CR				HODGSON	
ASIN:	WILSON RIVER	SURVEY LENGTH (M):	1600	VISIBILITY:		1	•	ан ал байнаан ал байнаа Сайнаан ал байнаан ал ба	
SUBBASIN:	LITTLE NORTH FOR	K DATE:	11/ 1/9 5	PEAK CODE:	E				
COMMENTS:		MAINSTEM/TRIB:	τ						

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
		45	3	2	75	N	Y	2
·		115	2	. 3	70	Y	Y	. 17
		168	3	2	. 60	N	N	
		180	13	9	65	Y	N	
		209	5	7	60	N	N	
		325	8	12	80	N	Y	5
		399	1	1	20	N	N	
		410	2	3	40	N	Y	18
		415	10	11	50	Y	Y	6
		475	7	7	60	Y	Y.	7
		570	4	0	75	Y	, Y	8
		622	18	12	60	Y	Ŷ	9
		670	5	1	60	Y/N	Ŷ	19
		681	3	3	45	• N	N	
		725	2	· 1 ·	65	N	N.	
		750	1		65	Y	Y	20
		830	1		70	Y	· N	· ·
		1180	· . 1		40	· Y	N	
		1330	1	2	40	5 Y	Y	23
		1570	2	1	40	Y	Ŷ	24

REACH # :	25641	LOWER BOUND:	MOUTH				SURVEYORS:
REACH:	WILSON R, N FK, LITTL	UPPER BOUND:	WHITE C	R			
ASIN:	WILSON RIVER SU	RVEY LENGTH (M):	1600	VISIBILITY:		0	
SUBBASIN:	LITTLE NORTH FORK	DATE:	12/8/95	PEAK CODE:	Ρ		
COMMENTS:		MAINSTEM/TRIB:	т				

	45 115 168 180 209	3 2 3 13	2 3 2	75 70 60	N Y	Y Y	2
· ·	168 180 209	3	2		Y	Y	
	180 209			£0.		•	17
	209	13		00	N	N	
			9	65	Y	N	
		5	7	60	N	N	
	325	8	12	80	Ν	Y	5
	399	1	1	20	N	N	
	410	2	3	40	N	Y	18
	415	10	11	50	Y	Y	6
	475	7	7	60	Y	Y	7
	570	4	0	75	Y	Y	8
	622	18	12	60	Y	Y	9
	670	5	1	60	Y/N	Y .	19
	681	3	3	45	N	N	
	725	2	1	65	N	N	
	750	1		65	Y	Y	20
	830	1		70	Y	N	
	1180	1		40	Y	N	
	1330	1	2	40	Ŷ	Y	23
					•		

REACH # :	25640	LOWER BOUND:	HUGHE	YCR		SURV	EYORS:	
				•				· · · · ·
REACH:	WILSON R	UPPER BOUND:	WILSON	IR, NFK, LITTLE		HO	DGSON,KLU	MPH
ASIN:	WILSON RIVER	SURVEY LENGTH (M):	3200	VISIBILITY:	1			
SUBBASIN:	MAIN STEM	DATE:	11/1/95	PEAK CODE:	E			
COMMENTS		MAINSTEM/TRIB:	M	· · ·			·	

LOW USE DUE TO HIGH WATER YEAR ?

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
441710	5034990		2		65	Y	Y -	4
441940	5034900		4		70	N	N	
442050	5035090		- 2		70	N	۲. ۲	3
442150	5035780		3.	and the second sec	70	Y	N.	

REACH # :	25636	LOWER BOUND:	IND: BEAVER CR			SURVEYORS:
REACH:	WILSON R	UPPER BOUND:	HUGHEY CR			HODGSON, KLUMPH
ASIN:	WILSON RIVER	SURVEY LENGTH (M):	4600	VISIBILITY:	1	
SUBBASIN:	MAIN STEM	DATE:	11/1/95	PEAK CODE:	Е	
COMMENTS:		MAINSTEM/TRIB:	м			
LOW USE DUE TO HIGH WATER Y		EAR ?				· · · · · ·

GPS X (UTM)	GPS Y (UTM)	DISTA UPSTREA		NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS TAILO		REDDS - IN UNIT	UNIT #
COMMENTS:			MA	INSTEM/TRIB:	M					
SUBBASIN:	DRIFT C	REEK		DATE:	11/6/95	PEAK CODE:	P	•		÷
ASIN:	SILETZ	RIVER	SURVE	Y LENGTH (M)	: 850	VISIBILITY:	- 1			
REACH:	DRIFT C	æ	U	PPER BOUND:	SMITH C	R			HODGSON,	JACOBS
REACH # :	2524	3	LC	WER BOUND:	SAMPS	ON CR	SURVEYORS:			

432200	4973210	-	1		60	Ŷ	N	
432240	4973300		1	1 .	60	Y	N	
432223	4973450		2	1	80	Y	YN	1

REACH # :	25239	LOWER BOUND:	WILDCA	T CR			SURVEYORS:
REACH:	DRIFT CR	UPPER BOUND:	SAMPSO	ONCR			HODGSON, JACOBS
ASIN:	SILETZ RIVER	SURVEY LENGTH (M):	4021	VISIBILITY:		1	
SUBBASIN:	DRIFT CREEK	DATE:	11/6/95	PEAK CODE:	Ρ		
COMMENTS:		MAINSTEM/TRIB:	м				

GOOD SURVEY

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
430177	4972368		1		75	Y	Y	11
430300	4972400		5	4	65	Y	Y	-9
430320	4972420		1		70	Y	N	
430340	4972440		1		65	N	Y	-8
430350	4972460		1	1	65	N	N	
430380	4972480		1	1	55	N	N	
431326	4973170		4	7	70	Y	Y	6
431320	4972980		3	1	55	Y (1N)	Y	5
-30			3	2	70	N	N	
431520	4972000		4	4	55	N	Y	3
432017	4973000		2		40	N	N	
432180	4973150		5	2	50	Y/N	Y	2
432190	4973150		5	6	80	Y (1N)	Y	1

REACH # :	25237	LOWER BOUND:	NORTH	CR			SURVEYORS:	
REACH:	DRIFT CR	UPPER BOUND:	WILDCA	TCR			HODGSON, JACOBS	
ASIN:	SILETZ RIVER	SURVEY LENGTH (M):	3100	VISIBILITY:		1		
SUBBASIN:	DRIFT CREEK	DATE:	11/6/95	PEAK CODE:	P			
COMMENTS:		MAINSTEM/TRIB:	М					,

GOOD SURVEY

GPS X (UTM)	gps y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
428660	4971820		3		75	Y	Y	16
428715	4971780		7	4	75	Y	Y	15
428950	4971700		8	10	50	Y/N	Y/N	13
428900	4972000		2		40	· N	N	•
429050	4972100		1		70	Y	N?	
429100	4972100		6	6	60	N	Y	9
429143	4972065		2	1	60	· Y	Y	8
429220	4972000		1		75	. Y	N	
429280	4971950		8	8	65	Y	Ŷ	7
429450	4971700		3	1	. 70	Y	Y	5
429515	4972230		1	1	65	Y	Ŷ	1

REACH # :	25165	LOWER BOUND:	MOUTH	-			SURVEYORS:
REACH:	SUNSHINE CR	UPPER BOUND:	DEER CI	R			MANNING
ASIN:	SILETZ RIVER	SURVEY LENGTH (M):	1935	VISIBILITY:		1	
SUBBASIN:	MAIN STEM	DATE:	12/7/95	PEAK CODE:	Ł		
COMMENTS:		MAINSTEM/TRIB:	т				

SURVEY CONDUCTED ON 12/7 AND 12/19, BOTH TIMES AFTER PEAK

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
		27	2		65	N	N	
		50	3		45	N	Y	2
		530	1		50	Y	Y	3
		607	1		40	N	N	
		770	1		40	N	N	
		810	1	1	45	Y	N	
		1045	2		50	N	. N	
		1372	2		45	Y	N	
		1444	1	1	55	Y	N	
		1788	2		55	Y	N	
		1877	1	1	60	Y	N	

REACH # :	25134	LOWER BOUND:	MOUTH			SURVE	YORS:	
REACH:	BIG ROCK CR	UPPER BOUND:	FALL CR	•			MANNI	٧G
ASIN:	SILETZ RIVER	SURVEY LENGTH (M):	1908	VISIBILITY:	·	1		
SUBBASIN:	ROCK CREEK	DATE:	11/21/9	PEAK CODE:	P			÷.
COMMENTS		MAINSTEM/TRIB:	т				•	

_	GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
	. د.		52	3		70	Y	· · · · · · · · · · · ·	ريې د و اردوسوه
			96	3	· .	70	Y	N N	
			160	1		55	Y	Y	. 1
			200	1		65	N	Y.	2
			245	3	2	75	N	N	
			320	1	•	65	Y	n Y	3
			475	2		75	Ŷ	Y	4
			550	1		75	Y	N	
			595	2	1	65	N	N	
			642	3	1	75	Y	N	
			727	3	1	60	Y	N	
			835	6	4	60	Y	N	
			866	2	1	60	,Y	• •	•
			1075	3	2	55	Y	Y	7
			1716	2	1	80	N	N	
			1730	7	8	75	N	Y C	7
			1775	1	1	30	. N	N	

REACH #:	25116	LOWER BOUND:	TANGER	RMAN CR		SURVEYORS:
REACH:	SILETZ R	UPPER BOUND:	DEWEY CR			HODGSON, JACOBS
ASIN:	SILETZ RIVER	SURVEY LENGTH (M):	1200	VISIBILITY:		2
SUBBASIN:	MAIN STEM	DATE:	10/30/9	PEAK CODE:	Е	
COMMENTS:		MAINSTEM/TRIB:	м			
LOW USE DUE TO HIGH WATER Y		YEAR ?				

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
428190	4953190		7	3	75	Y/N	Y	10.11

REACH # :	25114	LOWER BOUND:	THOMP	SON CR		SURVEYORS:
REACH:	SILETZ R	UPPER BOUND:	TANGER	RMAN CR		HODGSON, JACOBS
ASIN:	SILETZ RIVER	SURVEY LENGTH (M):	3825	VISIBILITY:	2	!
SUBBASIN:	MAIN STEM	DATE:	10/30/9	PEAK CODE:	Ε	
COMMENTS:		MAINSTEM/TRIB:	М			

LOW USE DUE TO HIGH WATER YEAR ?

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
428407	4956103		3		75	· · · Y	Y	12
428050	4954750		23	18	55	Y	Y	6
427660	4953830		8	2	60	Y/N	Y	4

REACH # :	25112	LOWER BOUND:	OJALLA	CR			SURVEYORS:
REACH:	SILETZ R	UPPER BOUND:	THOMP	SON CR			HODGSON, JACOBS
ASIN:	SILETZ RIVER	SURVEY LENGTH (M):	2800	VISIBILITY:		2	
SUBBASIN:	MAIN STEM	DATE:	10/30/9	PEAK CODE:	Е		
		MAINSTEM/TRIB:	м				

COMMENTS:

LOW USE DUE TO HIGH WATER YEAR ?

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
427550	4956950		2		75	N	Y	6
427934	495 6893		7	8	70	Y	Y	5
428330	4956880		9	10	70	Y	Y	4
429000	4956640		8	4	70	Y	Y	3
429650	4955980		4	4	60	Y	N	

REACH #:	25110	LOWER BOUND:	EUCHRI	E CR			SURVEYORS	:
REACH:	SILETZ R	UPPER BOUND:	OJALLA	CR			HODGSO	N, JACOBS
ASIN:	SILETZ RIVER	SURVEY LENGTH (M):	2000	VISIBILITY:		2	*	
SUBBASIN:	MAIN STEM	DATE:	10/30/9	PEAK CODE:	Е			
COMMENTS:		MAINSTEM/TRIB:	М					

LOW USE DUE TO HIGH WATER YEAR ?

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
428109	4958904		2		75	Ŷ	Ŷ	18
427900	4958950		2		70	Y.	Y	17

REACH # :	25105	LOWER BOUND:	монтн			SURVEYORS:
NEAVILY .	20100	LOHER BOOHD.	MOOTH			SORVETORS.
REACH:	EUCHRE CR	UPPER BOUND:	SAVAGE	CR		MANNING
ASIN:	SILETZ RIVER	SURVEY LENGTH (M):	217 1	VISIBILITY:	1	
SUBBASIN:	MAIN STEM	DATE:	11/21/9	PEAK CODE:	Р	
COMMENTS:		MAINSTEM/TRIB:	т			

UNIT #	REDDS IN UNIT	REDDS IN TAILOUT	GRAVEL(%)	NUMBER LIVE	NUMBER REDDS	DISTANCE UPSTREAM (M)	GPS Y (UTM)	gps X (UTM)
	N	N	70		2	85		
2	Y	Y	60		2	115		
	N	· Y	70		2	185		
3	Y	N	75		1	225		
4	Y	Y	65	1	3	255		
	N	Y	65	3	7	430		
	Ν	N	60	3	1	456		
	N	Y	70	1	2	532		
8	Y	Y	65		1	587		
ç	Y	Y	65	2	5	655		
10	Y	Y	65	2	2	708		
11	Y	N	60	4	8	818		
12	Y	N	55		1	867		
	N	Y	45		2	905		
	N	Y	65		4	1100		
	N	Y	50	2	3	1193		
	N	Y	50		1	1282		
13	Y	Y	60		3	1370		
	N	Y	65		1	1473		
	N	Y	70		1	1550		
	N	Y	55		3	1680		
	N	Y	70		5	1828		
15	Y	N	55	8	10	1950		

	05404			-			A	
REACH # :	25104	LOWER BOUND:	KEED C	R			SURVEYORS:	
REACH:	SILETZ R	UPPER BOUND:	EUCHRE	E CR			HODGSON, JACOBS	
ASIN:	SILETZ RIVER	SURVEY LENGTH (M):	1500	VISIBILITY:		2		
SUBBASIN:	MAIN STEM	DATE:	10/30/9	PEAK CODE:	Ε			
COMMENTS:		MAINSTEM/TRIB:	м					

LOW USE DUE TO HIGH WATER YEAR ?

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
429038	4960201		3	5	80	N	Y	5
428347	4959029		9	3	75	Y	Ý.	1

REACH # :	25102.8	LOWER BOUND:	HOUGH	CR			SURVEYORS:
REACH:	SILETZ R	UPPER BOUND:	REED CI	R			HODGSON, JACOBS
ASIN:	SILETZ RIVER	SURVEY LENGTH (M):	1375	VISIBILITY:		2	
SUBBASIN:	MAIN STEM	DATE:	10/30/9	PEAK CODE:	E		
COMMENTS:		MAINSTEM/TRIB:	м				

LOW USE DUE TO HIGH WATER YEAR ?

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
4284 26	4960942		3		80	Y	Y	2.3

REACH # :	25102.5	LOWER BOUND:	MOUTH				SURVEYOR	S:
REACH:	CEDAR CR	UPPER BOUND:	HEADW	ATERS				MANNING
ASIN:	SILETZ RIVER	SURVEY LENGTH (M):	1600	VISIBILITY:		2		
SUBBASIN:	MAIN STEM	DATE:	11/21/9	PEAK CODE:	Ρ			•
COMMENTS:		MAINSTEM/TRIB:	T.					

VISIBILITY POOR

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
		50	1		60	Y	Ŷ	
		200	3		50	·N	Y	7
		275	1		65	Y Y	N	
		350	3		70	N	$\mathbf{Y}^{\mathbf{r}}$	7
		395	1	. 1	60	N	Y	8
		445	2	1	65	N	N	
		615	ຸ1		70	· N ·	Y	S
		650	3	2	65	N	Y	10
		955	2		50	'N	, Y 1	11
		1075	7	4	60	Y	Y	13
		1166	3	1	65	Ŷ	N	
		1440	3	1	55	N	. N	
		1515	3	, 1 -	50	N	N	
		1560	5		65	N	Y ·	14

REACH # :	24384	LOWER BOUND:	LUYNE	CR			SURVEYORS:
REACH:	SIUSLAW R	UPPER BOUND:	OXBOW	CR			HODGSON,WOODS
ASIN:	SIUSLAW RIVER	SURVEY LENGTH (M):	7000	VISIBILITY:		2	
SUBBASIN:	MAIN STEM	DATE:	10/27/9	PEAK CODE:	Ε		
COMMENTS:		MAINSTEM/TRIB:	М				

GPS X (UTM)	GPS Y (UTM) (DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
458900	4860150		2	1	80	Y	Y	25
459537	4859270		2	1	65	Y	Y	20
459470	4859244		3	1	60	Y	Y	19
458601	4858300		1		60	N	Y	10
458590	4858080		2	1	75	Y	Y	8
458888	4857590		1		70	Y	N	
458443	4857160		1	1	65	Y	Y	3

REACH # :	24372	LOWER BOUND:	LARUE	LARUE CR			SURVEYORS:
REACH:	SIUSLAW R	UPPER BOUND:	CLAY C	R			HODGSON, FISH
ASIN:	SIUSLAW RIVER	SURVEY LENGTH (M):	3100	VISIBILITY:		2	
SUBBASIN:	MAIN STEM	DATE:	10/27/9	PEAK CODE:	Ε		
COMMENTS:		MAINSTEM/TRIB:	M				an a
WATER DARK	, SURVEY EARLY FO	DR UPPER RIVER					

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
453030	4861677		3	. 1	65	Y	Y	6

REACH # :	24370	LOWER BOUND:	HASKINS CR -				SURVEYORS:
REACH:	SIUSLAW R	UPPER BOUND:	LARUE	CR			HODGSON, FISH
ASIN:	SIUSLAW RIVER	SURVEY LENGTH (M):	725	VISIBILITY:		2	ī
SUBBASIN:	MAIN STEM	DATE:	10/27/9	PEAK CODE:	Е		
COMMENTS:		MAINSTEM/TRIB:	м				

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
452907	4860590		2	2	65	Y	Y	2

REACH # :	24368	LOWER BOUND:	COLLIN	S CR	SURVEYORS:				
REACH:	SIUSLAW R	UPPER BOUND:	UPPER BOUND: HASKINS CR				HODGSON, FISH		
ASIN:	SIUSLAW RIVER	SURVEY LENGTH (M):	790	VISIBILITY:	2				
SUBBASIN:	MAIN STEM	DATE:	10/27/9	PEAK CODE:	Е				
COMMENTS:		MAINSTEM/TRIB:	м						
WATER DARK SURVEY FARLY FOR		OR LIPPER RIVER							

REACH # :	24366	LOWER BOUND:	MILL CR				SURVEYORS:
REACH:	SIUSLAW R	UPPER BOUND:	COLLINS	S CR			HODGSON, FISH
ASIN:	SIUSLAW RIVER	SURVEY LENGTH (M):	40 0	VISIBILITY:		2	
SUBBASIN:	MAIN STEM	DATE:	10/27/9	PEAK CODE:	Е		
COMMENTS:		MAINSTEM/TRIB:	М				
WATER DARK	SURVEY EARLY FO	OR UPPER RIVER					

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	redds In Unit	UNIT #
452000	4861130		1	1	60	Y	Y	2

REACH # :	24364	LOWER BOUND:	NORTH	CR -		SURVEYORS:
REACH:	SIUSLAW R	UPPER BOUND:	MILL CR			HODGSON, FISH
ASIN:	SIUSLAW RIVER	SURVEY LENGTH (M):	1075	VISIBILITY:	2	
SUBBASIN:	MAIN STEM	DATE:	10/27/9	PEAK CODE:	Ε	
COMMENTS:		MAINSTEM/TRIB:	м			

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
452178	4861800		6	2	65	Y	Ŷ	6
452100	4861400		12	12	70	Y	Y	2.3

REACH # :	24363.5	LOWER BOUND:	TRAIL C	R			SURVEYORS:
REACH:	SIUSLAW R	UPPER BOUND:	NORTH	CR			HODGSON, FISH
ASIN:	SIUSLAW RIVER	SURVEY LENGTH (M):	2260	VISIBILITY:		2	
SUBBASIN:	MAIN STEM	DATE:	10/27/9	PEAK CODE:	Е		
COMMENTS:		MAINSTEM/TRIB:	М				

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
450700	4862550		1	3	55	Y	Y	7
451700	4862270		2	. 3	60	Y	Y	2

REACH # :	24363.3	LOWER BOUND:	PUGH CR		SURVEYORS:
REACH:	SIUSLAW R	UPPER BOUND:	TRAIL CR		HODGSON, FISH
ASIN:	SIUSLAW RIVER	SURVEY LENGTH (M):	2050 VISIBILITY:	2	
SUBBASIN:	MAIN STEM	DATE:	10/27/9 PEAK CODE:	Ε	
COMMENTS:		MAINSTEM/TRIB:	M		

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
451500	4863450	-	1	1	50	Y	Y	5
450550	4862850		. 1	2	70	Y	Y	2
450500	4862750		2	2	50	· Y	Y	1

REACH # :	24363.1	LOWER BOUND:	FAWN C	R			SURVEYORS:	
REACH:	SIUSLAW R	UPPER BOUND:	PUGH C	R			HODGSON, FISH	
ASIN:	SIUSLAW RIVER	SURVEY LENGTH (M):	4350	VISIBILITY:		2		
SUBBASIN:	MAIN STEM	DATE:	10/27/9	PEAK CODE:	Ε			
COMMENTS		MAINSTEM/TRIB:	М					

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
451600	4864100		1	<u>.</u>	60	Y	Y	1
450000	4864100		4	2	60	N	N	
450500	4864700		1	1	65	Y	N	0

REACH # :	24362	LOWER BOUND:	CEDAR	CR		SURVEYORS:
REACH:	SIUSLAW R	UPPER BOUND:	FAWN C	R		HODGSON, FISH
ASIN:	SIUSLAW RIVER	SURVEY LENGTH (M):	625	VISIBILITY:	2	
SUBBASIN:	MAIN STEM	DATE:	10/27/9	PEAK CODE:	E	
COMMENTS:		MAINSTEM/TRIB:	М			
WATER DARK	, SURVEY EARLY F	OR UPPER RIVER				•

REACH # :	24360	LOWER BOUND:	ESMON	D CR			SURVEYORS:
REACH:	SIUSLAW R	UPPER BOUND:	CEDAR	CR			HODGSON, FISH
ASIN:	SIUSLAW RIVER	SURVEY LENGTH (M):	1800	VISIBILITY:		2	
SUBBASIN:	MAIN STEM	DATE:	10/27/9	PEAK CODE:	Е		
COMMENTS:		MAINSTEM/TRIB:	М				

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER Live	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
450000	4864500		6	5	70	Y	Y	1
448620	4864400		1	2	50	Y	Y	4
448850	4864600		1	1	40	Y	N	
448900	4864600		2	1	60	Y	Y	3
449820	4864450		1	1	70	Y	Y	2

REACH # :	24301	LOWER BOUND:	MOUTH		•	SURVEYOR	RS:
REACH:	WHITTAKER CR	UPPER BOUND:	BOUND	S CR			CANNON
ASIN:	SIUSLAW RIVER	SURVEY LENGTH (M):	600	VISIBILITY:	0	1	
SUBBASIN:	MAIN STEM	DATE:	11/20/9	PEAK CODE:			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
COMMENTS:		MAINSTEM/TRIB:	т				

GPS X GP (UTM) (U	S Y DISTANCE (TM) UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
	94	1	1	85	Y	N	
	124	1	1 1	90	Y	N	
	238	1	2	70	Y	N	
• •	360	1	1	80	Y	Y .	3
	380	4	8	80	Y	Y	4
	410	1	. 4	75	Y	Y	5

REACH # :	24206	LOWER BOUND:	LAMB C	2			SURVEYORS:	
REACH:	LAKE CR	UPPER BOUND:	FISH CR					RAPP
ASIN:	SIUSLAW RIVER	SURVEY LENGTH (M):	915	VISIBILITY:		2		
SUBBASIN:	LAKE CREEK	DATE:	11/15/9	PEAK CODE:	Ρ			
COMMENTS:		MAINSTEM/TRIB:	т					

WATER HIGH

UNIT #	REDDS IN UNIT	REDDS IN TAILOUT	GRAVEL(%)	NUMBER LIVE	NUMBER REDDS	DISTANCE UPSTREAM (M)	GPS Y (UTM)	GPS X (UTM)
	N	Y	60		1	7		
	N	Y	55	9	7	42		
	N	N	55		1	128		
10	Y	Y	65	9	13	213		
11	Y	Y/N	65	55	44	290		
12	Y	Y/N	70	75	39	401		
13	Y	Y	60	33	17	518		
14	Y	N	70	19	6	591		
	N	N	55	2	2	673	. •	
15	Y .	N	60	2	2	683		
16	Y	Y	70	9	6	693		
	N	N	75	3	2	788		
17	Y	N	65	7	2	806		
	N	N	65	1	1	845		
18	Y	Y	70	12	8	865		

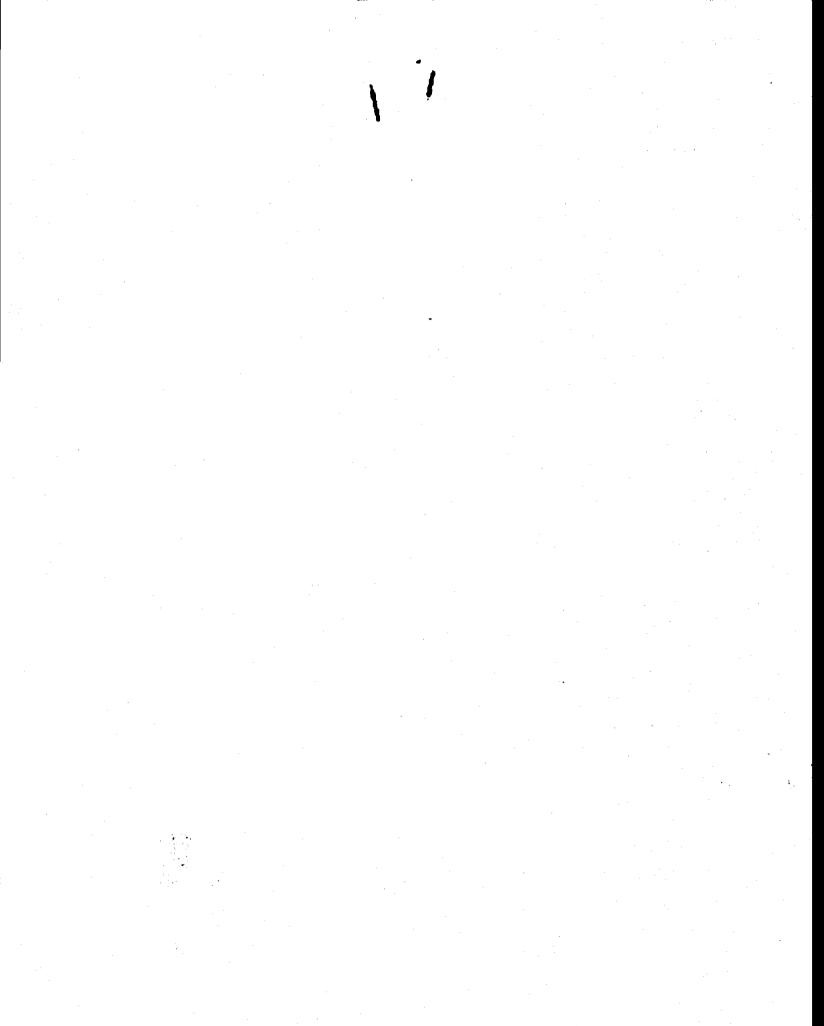
REACH # :	24262	LOWER BOUND:	CR -		SURVEYORS:			
REACH:	SIUSLAW R	UPPER BOUND:	WILDCAT CR				HODGSON,WOODS	
ASIN:	SIUSLAW RIVER	SURVEY LENGTH (M):	3000	VISIBILITY:		2		
SUBBASIN:	MAIN STEM	DATE:	10/26/9	PEAK CODE:	Е		• • • • • • • • •	
COMMENTS:		MAINSTEM/TRIB:	M					

WATER HIGH, HARD TO DISTINGUISH INDIVIDUAL REDDS, PEAK FOR LOWER RIVER?

	REDDS IN UNIT	REDDS IN TAILOUT	GRAVEL(%)	NUMBER LIVE	NUMBER REDDS	DISTANCE UPSTREAM (M)	GPS Y (UTM)	GPS X (UTM)
Y .	Y	N	65	2	10		4872410	446416
Y	Y	Y	60	1	1		4872580	446410
Y	Ŷ	Y/N	70		. 8		4872620	446410
T Y	Y	Y/N	70		7		4872620	446410
Y	Y	N	75		3		4872650	446400
N	N	N	75	1	1		4872720	446450
Y A	۲	Y	65		2		4872750	446450
Y	Y	Y	65		2		4872800	446450

REACH # :	24136	LOWER BOUND: ROGERS CR				SURVEYORS	3:
REACH:	INDIAN CR, W FK	UPPER BOUND:	PYLE CF	२			RAPP
ASIN:	SIUSLAW RIVER	SURVEY LENGTH (M):	1910	VISIBILITY:		2	
SUBBASIN:	LAKE CREEK	DATE:	11/15/9	PEAK CODE:	Ρ		
COMMENTS		MAINSTEM/TRIB:	т				

COMMENTS:


UNIT	REDDS IN UNIT	REDDS IN TAILOUT	GRAVEL(%)	NUMBER LIVE	NUMBER REDDS	DISTANCE UPSTREAM (M)	GPS Y (UTM)	GPS X (UTM)
		N	70	3	3	1		
	Y	Y	60		1	37		
	N	Y	75	2	1	80		
	Y	Y/N	75	2	2	170		
	Y	Y	65	2	1	268		
	N	Y	65	1	1	311		
	Y	N	70	2	2	324		
	Y	Y/N	75	34	19	365		
	Y	Y	70		1	562		
1	Y	Y	65	1	1	628		
	N	Y	70	10	4	640		
-	Y	Y/N	75		3	651		
	Y	Y	60		1	730		
	N	N	. 70	2	2	740		
	Y	Y	75	7	2	775		
	Y	Y	60	8	2	840		
	Y	Y	65	1	2	989		
	N	N	60	3	2	1000		
	N	N	60	2	1	1010		
	N	N	70	1	1	1040		
	N	N	75		1	1187		
	N	Y	55		1	1600		
	Y	Y	60		1	1788		
	Y	Y	60	2	2	1885		

REACH # :	24 132	LOWER BOUND:	MOUTH			SURVEYORS:
REACH:	INDIAN CR, W FK	UPPER BOUND:	LONG C	R		HODGSON, COONEY
ASIN:	SIUSLAW RIVER	SURVEY LENGTH (M):	2840	VISIBILITY:	2	
SUBBASIN:	LAKE CREEK	DATE:	11/17/9	PEAK CODE:	Р	
COMMENTS:		MAINSTEM/TRIB:	т			

WATER HIGH, SOME FISH AND REDDS UNDOUBTEDLY MISSED

GPS X (UTM)	GPS Y (UTM)	DISTANCE UPSTREAM (M)	NUMBER REDDS	NUMBER LIVE	GRAVEL(%)	REDDS IN TAILOUT	REDDS IN UNIT	UNIT #
		560	2		70	Y	N	
		1210	7	4	65	N	Y	-2
		1300	1	1	60	N	N	
		2380	1		65	Y	N	
		2410	1	1	65	N	N	
		2480	• 6	10	65	Y	Y	10
		2550	1		65	N	N	

