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ABSTRACT

The local predictability of the El Nifio-Southern Oscillation (ENSO) is examined by the analysis of the
evolution of small disturbances to an unstable 4.3-yr ENSO cycle in the Cane-Zebiak model forced by perpetual
July conditions. The 4.3-yr cycle represents the dominant near-recurrent behavior in this weakly chaotic regime,
so analysis of this single cycle gives useful insights into the dynamics of the irregular oscillation. Growing and
neutral time-dependent eigenmodes of the unstable cycle are computed. Disturbance growth analyses based on
these eigenmodes, and on singular vectors computed in the unstable-neutral subspace, suggest that there is a
predictability barrier associated with the growth phase of El Nifio conditions. This barrier arises because the
growth mechanism for disturbances to the cycle is nearly the same as the growth mechanism for the El Nifio
conditions themselves. The local amplification of disturbances during the growth phase is several times greater
than the eigenmode amplification associated with time-dependent (Flogquet) normal-mode instability of the cycle.
It is suggested that the existence of an ENSO predictability barrier tied to the growth phase of El Nifio conditions
is likely a robust result, independent of the particular model.

1. Introduction

Recent studies of El Nifio—Southern Oscillation’s
(ENSO’s) irregularity and hence limited predictability
have focused on two possible mechanisms: self-sus-
tained variability made irregular by low-order chaos
driven by the seasonal cycle (Tziperman et al. 1994,
1995; Jin et al. 1994; Chang et al. 1994), or damped
oscillatory behavior randomized by the amplification
of atmospheric noise through the nonnormal dynamics
of the equatorial Pacific (Farrell and loannou 1996;
Penland and Sardeshmukh 1995; Moore and Kleeman
1996, 1997). The limited length of time series from
presently available datais not sufficient to distinguish
between the two scenarios. It has been proposed that
ENSO may have been self-sustained (possibly cha-
otic) during some decades and damped during other
decades. It isimportant, therefore, to examine the de-
tailed predictability implications of each of the two
alternatives for ENSO'’s irregularity, in the hope that
differences between the two scenarios will eventually
arise that will be possible to verify by analyzing the
available data.
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A number of previous studies have addressed the sea-
sonal variability in ENSO’s predictability, also known
as the “‘spring barrier,” for model regimes in which
ENSO is damped, self-sustained, and chaotic (Webster
and Yang 1992; Torrence and Webster 1998; Weiss and
Weiss 1999; Xue et a. 1994; Chen et a. 1995; Moore
and Kleeman 1996; Chen et al. 1997). However, there
has been much less effort to study the variability of the
inherent ENSO predictability as function of the phase
within the ENSO cycle. That is, is ENSO more pre-
dictable during the growth phase of El Nifio warm
events, or during La Nifia events, etc.? By ‘“‘inherent
predictability”” we mean the limited predictability due
to the ENSO dynamics, rather than due to the limits on
the available data for initializing ENSO predictions.
Moore and Kleeman (1996) and Chen et al. (1997) have
examined this issue in a stable oscillatory regime by
calculating optimal amplification in two different inter-
mediate coupled ocean—atmosphere ENSO models.
Their results have been quite different, with Moore and
Kleeman (1996) finding that ENSO is least predictable
during its growth phase, and Chen et al. (1997) that the
maximum growth rate occurs at the transition from a
cold event to awarm event. The spatial structuresfound
in these two studies for the optimal perturbation patterns
are also quite dramatically different.

Here, we investigate the variability of ENSO's in-
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herent predictability along the ENSO cycle, for thefirst
time under the scenario (Vallis 1986; Tziperman et al.
1994; Jin et a. 1994; Chang et al. 1994) in which
ENSO'’s predictability is limited by low-order chaos.
We do this by analyzing results from the Cane-Zebiak
model (hereafter CZ model; Zebiak and Cane 1987)
whose irregular ENSO events have been shown to be
due to low-order chaos driven by the seasonal cycle
(Tziperman et al. 1994, 1995). The CZ model was also
shown to be dominated by low-order chaos even in the
absence of seasonal forcing (Tziperman et al. 1997),
which is the case analyzed in this work. This predict-
ability analysis in a chaotic regime poses a special
challenge as compared to the nonchactic case as the
model does not display a regular ENSO cycle which
may be easily analyzed as function of the ENSO phase.
Instead, the model solution appears to jump between
various unstable periodic solutions (orbits). Our anal-
ysis method here is based on extracting a single dom-
inant unstable periodic orbit from the chaotic ENSO
attractor (Tziperman et al. 1997) and analyzing the
predictability along this unstable orbit. A similar ap-
proach was taken by Samelson (2001) who analyzed
the growth of disturbances to stable and unstable, non-
linear periodic Rossby wave solutions in an idealized
model of baroclinic instability.

The main result of this paper isthat ENSO is least
predictable during the growth phase of warm El Nifio
events, even in the absence of seasonality in the model
forcing or specified background fields. Similar results
were found in a nonchaotic regime by Moore and
Kleeman (1996). We refer to this phenomenon as the
‘“‘growth-phase predictability barrier.”” We see this
growth phase barrier as complementing the ** spring
predictability barrier’” previously found in both cha-
otic and nonchaotic regimes. The spring predictability
barrier is believed to be a result of the seasonality in
the strength of the coupled ocean—atmosphere cou-
pling and thus strength of the coupled instability |ead-
ing to the development of ENSO events. We analyze
here the physical mechanism of the growth phase pre-
dictability barrier (with all seasonal information re-
moved from the model dynamics) and show that the
predictability is limited by essentially the same dy-
namics that are responsible for ENSO’s growth, ir-
respective of the seasonal cycle. Given that the growth
phase of ENSO islocked to the spring and early sum-
mer (Tziperman et al. 1998; Galanti and Tziperman
2000), we speculate that the spring predictability bar-
rier found in previous studies may be, at least par-
tially, amanifestation of the growth-phase barrier pro-
posed here, rather than a purely seasonal-related sig-
nal as previously suggested.

In the following, we present an eigenmode analysis
of the instability of an ENSO cycle (section 2), proceed
to a study of the predictability along the cycle, which
includes consideration of the nonnormal nature of the
dynamics (section 3), and conclude in section 4.
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2. Eigenmode analysis of ENSO-cycle instability
a. A 4.3-yr ENSO cycle

Whiletheirregularity of the standard CZ model, using
a seasonally varying specified background state, has
been shown to be driven by the seasonal cycle according
to the quasi-periodicity route to chaos (Tziperman et al.
1994, 1995), the model is also weakly chaotic with a
perpetual-July background state. Previous work has be-
gun to analyze these irregular oscillations in terms of
unstabl e periodic orbits (UPOs) associated with the cha-
otic attractor (Tziperman et al. 1997). These orbits are
exactly periodic solutions of the nonlinear model equa-
tions. When the model state approaches one of them,
the model oscillates in an approximately periodic fash-
ion for some time. Because the UPOs are also unstable,
the model state eventually departs from any such cycle,
and the model oscillations take on a significantly dif-
ferent character, until the nonlinear evolution eventually
brings the model solution near the given UPO once
again.

The UPOs are interesting and relevant physical ob-
jects whose dynamics may be directly analyzed. They
may closely approximate the evolution of the model
state for substantial intervals of time (whose extent de-
pends on the strength of the instability of the UPQs),
and present a convenient starting point for the study of
the irregular oscillations. The perpetual-July CZ model
is especially appropriate for the purposes of the present
study for two reasons. First, the lack of seasonality al-
lows us to differentiate predictability variations along
the ENSO cycle from seasonal predictability effects
studied previously. Second, the weakly chaotic nature
induced by this particular model background allows us
to extract and analyze the model UPOs more easily.

The CZ model with perpetual-July conditions has a
dominant near-recurrent behavior with a period of 4.3
yr. This behavior is associated with the existence of a
UPO with this same period. It has recently been shown
(Tziperman et al. 1997) that the departure of the model
state from this UPO can be inhibited by applying care-
fully chosen perturbations to a single model variable
(oceanic Kelvin wave amplitude) at a single point in
longitude (the western boundary of the Pacific Ocean)
that effectively stabilize the UPO, resulting in an es-
sentially periodic model oscillation that closely follows
the UPO of the original chaotic model (this procedure
amounts to a **control of chaos” in the CZ model).

Here, we analyze the dynamics and predictability of
this unstable 4.3-yr cycle. We use a long (100 000 yr)
time series of the amplitudes of the first six multivariate
empirical orthogonal functions (EOFs) of the CZ model
SST, thermocline depth, and zonal wind velocity fields.
The time series increment 6t is 1/3 of a month, equal
to the integration time-step of the CZ model. The mul-
tivariate EOFs are calculated from model covariances
during a 500-yr run, and model variables from a long
model run are then projected onto these multivariate
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EOFs to generate the long EOF amplitude time series.
This (standard) procedure avoids the unmanageably
large storage requirements that would be required to
compute EOFs from the long series directly. Before the
calculation of the EOFs, the SST, zonal wind and ther-
mocline depth fields were normalized to have the same
root mean squared variability, so that they would all
contribute equally to the multivariate EOFs. The EOFs
of the CZ model have been published elsewhere so we
do not show them here, but we do note that the structure
of the first EOF is basically that of a mature El Nifio
warming event, as this will feature in the following.

The UPO and its stability are investigated in the six-
dimensional phase space of the six EOF amplitudes.
Only six EOFs are necessary to describe the dominant
variability in this weakly chaotic, perpetual-July case;
more EOFswould be required for the case with seasonal
forcing (e.g., Xue et al. 1994). Not only do we need to
represent a simpler system (perpetual July) than the full
CZ model, but note also that we only need a represen-
tation of this simpler system around a single UPO,
which further reduces the required degrees of freedom.
Furthermore, the previous successful application of cha-
os control methods to the same perpetual-July model
using athree-dimensional, del ay-coordinate phase space
(Tziperman et a. 1997), also indicates that only a few
degrees of freedom are needed to represent the model
dynamics in this parameter regime. Certainly using six
EOFs, which is an optimally efficient representation of
the dynamics, should suffice if three suboptimal delay
coordinates were sufficient in the above mentioned cha-
os-control study. Overall, it seems that the properties of
the UPO identified in the present six-EOF-reduced rep-
resentation correspond to those of a true UPO of the
CZ model itself, so that no additional EOFs are needed
for our purposes.

To identify the UPO, we search for near recurrences
in the long time series. Let X(t) be the vector of the six
EOF amplitudes X;, j = 1, ..., 6 at time :

X(t) = [X.(0), Xo(0), .. ., Xe(t)]- D

Then X(t) may be regarded as a point in the six-di-
mensional phase space of EOF amplitudes. Given a pe-
riod p, we search for phase space points X(t) that return
to the same neighborhood after a period p, so that

IX(t + p) — Xl

= {2 [Xi(t + p) — Xi(t)]z} <e 2

for some small . When the number of such ‘‘near re-
turns’ is plotted as a function of p, the dominant UPOs
show up as peaks. There are two such dominant UPOs
in the perpetual July CZ model, atp = 4.3andp = 7.8
yr (Tziperman et al. 1997). The 4.3-yr UPO is approx-
imated in the present analysis by the single nearest re-
turn occurring near this period in the long time series.
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Amplitude time series, CZ EOFs 1-6 for UPO p, (p=155)
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FiG. 1. The 4.3-yr unstable cycle (UPO). Time series of EOF com-
ponents along the UPO: EOF 1 (thick solid line), EOF 2 (thick
dashed), EOF 3 (thick dash—dot), EOF 4 (thin solid), EOF 5 (thin
dashed), EOF 6 (thin dash—dot). The period of disturbance growth
identified in this study is indicated by the horizontal line labeled
“Unstable interval.” The approximate times of the El Nifio and La
Nifia maxima on the 4.3-yr cycle are labeled.

That is, the UPQO is represented by the time series seg-
ment from X(t) to X(t + p), where | X(t + p) — X(1)|
is the smallest occurrence in the entire time series. This
nearest return UPO has aperiod of n, = 155 time-series
pointsor p = n, 8t = 4.3 yr, in agreement with the result
obtained by searching for the period with the maximum
number of near returns. An alternate approximation to
the UPO based on averaging over the location of many
near returns is discussed below. The high dimension
(order 30 000 variables) of the CZ model prevents a
straightforward application of direct solution methods.

The nearest-return approximation to the 4.3-yr UPO
is shown in Fig. 1. It is dominated by an oscillation in
the first EOF amplitude, corresponding to a full ENSO
cycle. Thisisasomewhat weak event, and it is different
from the observed ones in that the El Nifio and La Nifia
have roughly equal amplitudes, but otherwise this
ENSO cycle is reasonably representative of events in
the CZ model aswell asin reality (Neelin et al. 1998).
Maximum El Nifio conditions occur near 3.4 yr, and
maximum La Nifia conditions near 0.7 yr. The transition
from El Nifio to La Nifia is much more rapid than the
reverse. Zero crossings of the first EOF occur near 0.1
yr and 2 yr. The growth phase of El Nifio, which will
feature prominently in the following analysis, isroughly
the period from 2 to 3.4 yr. The p = 7.8-yr UPO cor-
responds to aless realistic ENSO cycle, which involves
a small-amplitude event followed by a large-amplitude
event, forming together a cycle that is roughly twice the
period of observed ENSO events. Since this cycle is
less realistic, we do not analyze it in detail, and expect
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that the lessons to be learned from the 4.3-yr cycle
would be more relevant to the observed events.

In the following, we focus on the analysis of this
single UPO. A qualitative examination of the original
time series indicates that the system spends at |east 25%
of the time in relatively small amplitude, nearly sym-
metric oscillations that resemble the 4.3-yr cycle (Tzip-
erman et al. 1997). It often undergoes afew such cycles
before leaving this UPO and oscillating in a manner that
is characteristic of the second dominant UPO. The dom-
inance of the 4.3-yr cycle, indicates that its consider-
ation may be sufficient to provide substantial insight
into the CZ chaotic dynamics. This is consistent with
previous experience for weakly chaotic systems, for
which much of the basic structure of the attractor can
often be obtained from the lowest-order cycle (e.g., Sa-
melson 2001). A more complete description would in-
clude analysis of the higher-order unstable cycles as
well, following the periodic orbit expansion theoriesthat
have been developed for low-order systems and have
begun to be extended to more complex systems (Artuso
et a. 1990a,b; Christiansen et a. 1997; Cvitanovic et
al. 2000; Zoldi and Greenside 1998). However, the high
dimension of the CZ model makes the search for higher-
order cycles challenging.

b. Sability analysis—Method

UPOs such as the 4.3-yr cycle shown above are per-
fectly periodic and hence (in principle) perfectly pre-
dictable solutions of the nonlinear model equations, cor-
responding to afull ENSO cycle. However, because the
UPOs are unstable, nearby model solutions do not re-
main near them for long periods of time, but instead
eventually depart to other regions of phase space. This
instability limits the predictability of the system.

The rate of departure from the UPO need not be, and
often is not, uniform along the UPO. In this and the
next section, we calculate the amplification rate of de-
viations of the model state from the UPO, as a function
of location along the UPO. To do this, wefit linear maps
to the local model dynamics along the UPO, and study
how small deviations from the UPO evolve under the
action of these local maps. We then use these results to
develop an estimate of predictability along the UPO.
Our analysis is essentially a simplified approach to the
standard problem of Floguet theory for analyzing the
stability of periodic solutions (Coddington and Levinson
1955); for geophysical applications, see, for example,
Jin et al. (1996), Strong et al. (1995), and Samelson
(2001).

Denote the nearest-return estimate of the 4.3-yr UPQO,
described in the previous subsection, by {Y (t,), k = 1,
..., n,}. For each point Y (t,) on the UPO, we identify
the subset of data points {X(t),j = 1, ..., J} inthe
long EOF amplitude time series X(t), for which the tra-
jectory begins within e of Y(t,) for somet,, and returns
to within & of the same point Y (t,) after atimeinterval
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equal to the UPO period p. That is, we identify those
points for which

IX(E) — Y < e,
X +p) — Y < e

Using this set of J near-return pairs [X(t;), X(t, + p)],
we fit a linear map M(t,) that maps the deviation of a
nearby state from Y (t,) into adeviation from Y (t,) after
atimeinterval equal to one period of the UPO. For each
pair, we want

and

Xi(tj + p) - Yi(tk) = 2:1 Mil(tk)[xl(tj) - Yl(tk)]' (3)

Defining &, = X(t; + p) — Yi(t) and b}, = X/(t;) —
Y, (t,) to be the jth deviation vectors, (3) may be written
asal, = 25_, M,bi,. Since (3) isto hold for all J near-
return pairs (typically J = 2000 here), the elements of
M are over-determined, and (3) cannot be satisfied ex-
actly for all j. We compute a least-square fit by mini-
mizing 7 = %, (&, — X, M;bi)?2 with respect to the
coefficients M,,. At the minimum of 4, we have 9.9/0M,,
= 0, which results in the equation,

Defining

A= 2 albl; B, = blby,
] ]

we get the equation for the linear map in the matrix
form A = M(t,)B, whose solution for M(t,) (accom-
plished using singular value decomposition) gives the
best-fit linear map. In order to improve numerical con-
ditioning, we carry out this procedure using EOF time
series X (t) that have been normalized by the difference
of their maximum and minimum values.

At each point t, on the UPO, we then solve the ei-
genvalue problem

M(t) u(t) = Au(ty) 4

for the eigenvalues A; and eigenvectors u;. The A; are
the characteristic Floquet multipliers and should in prin-
ciple be independent of t,. We normalize the u; so that
lujll = 1.

A second numerical estimate of the A; and u; can be
obtained from ‘‘partial-period” maps Mr(t,;t, + m),
which describe the evolution of linear disturbancesfrom
point t, on the UPO (1) to point t, + m on the same
UPO. We fit these partial-period maps MP using essen-
tially the same method as above. In this case, the initial
and final (base and image) points for the map are two
different points along the cycle, separated by an interval
of n,, points (time interval m = n,,6t < p). Thus, for
each pair with
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IX() — Yt <&, and

X + m — Y+ m <e,

we want
Xt + m) — Y(t, + m)

= 2 MR b+ mIX() — Yl )
in place of (3). Now the elements of M are over de-
termined, and again we obtain the map by aleast squares
fit. For a sequence of S points along the cycle, t,, . . .,
t,, we fit a sequence of Slinear maps that describe the
evolution of linear disturbances from point to point in
this sequence along the cycle. A composite full-period
return map Me(t,) may be computed by composing all
the maps in the sequence,

Me = Mp(tg; t,) X MP(ts ;; tg) X - -+ X MP(ty; t,)
X MP(t;; t,). (6)

We then can solve the equival ent of the eigenval ue prob-
lem (4) for Me. This gives a second estimate of the A,
and u..

Thé eigenvalues and eigenvectors of M and the com-
posite return map Me should in principle be equal, but
this is never exactly the case for these fitted maps. We
find the composite return map fits generally to be more
stable than the full-period return map fits, and primarily
use these in the following. In the following we take n,,,
= 9, corresponding to a partial-period map interval of
m = n,,6t = 3 months. In that case, the sequence t,,
..., tyconsists of 17 points (S = 17); the last interval
(t, t;) has map interval n,, = 11 instead of 9, to close
the n, = 155 cycle. We have computed fits for many
different values of n.,, and found n., = 9 to provide an
optimal combination of fit stability and temporal reso-
lution.

Finally, note that the unstable and stable eigenvectors
of thefull period return map definelocal approximations
to the unstable and stable manifolds of the UPO. That
is, a perturbation to the tragjectory along the direction
in phase space of the unstable eigenvector leads to an
exponentially growing departure of the disturbancefrom
the UPO. A perturbation along the stable manifold, on
the other hand, results in an exponential decay of the
disturbance. Each UPO must have at |least one unstable
(IA;] > 1) eigenvector, one neutral (A; = 1) eigenvector
that is everywhere tangent to the UPO itself (since two
solutions that differ only in their initial phase along the
UPO will have exactly the same phase difference after
one oscillation period), and (since the CZ model is a
dissipative system) at least one stable (|A;| < 1) ei-
genvector.

¢. Stability analysis—results

The composite return maps Me(t,) consistently show
a single unstable eigenvalue A, = —1.8 (with corre-
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sponding eigenvector u,), a ‘‘neutral” eigenvalue A,
that is close to its expected value of one (eigenvector
u,), and four smaller eigenvalues (Fig. 2a). The neutral
eigenvector u, is nearly tangent to the UPO, as it must
be. The unstable eigenvector u, is roughly tangent to
the large-scale transverse structure of the attractor (Fig.
3), as expected for relatively simple attractor geome-
tries; physically this means that if the model ocean—
atmosphere state is changed by adding a small distur-
bance with the physical structure of the unstable eigen-
vector, the result is a perturbed state that would even-
tually arise naturally as the system evolved in time, or
at least is very close to such a state. That is, the dis-
turbance does not push the model ocean and atmosphere
into an inaccessible or “artificial” state that would not
normally occur except during transient adjustment from
specific initial conditions. Along with the unstable and
neutral eigenvectors, the algorithm produces four stable
(A; < 1) eigenvectors. In contrast to the unstable and
neutral vectors, these estimates of stable vectors are not
reliable, for reasons discussed below. Consequently, we
do not consider the stable vectors further.

The components of the unstable and neutral eigen-
vectors correspond, by (1), to amplitudes of the first six
EOFs of the CZ model. These components vary smooth-
ly as afunction of location along the cycle (Fig. 4). The
first EOF component dominates both the unstable and
the neutral eigenvectors over most of the cycle. The
second EOF component of the unstable eigenvector is
large during the La Nifia maximum (t = 0.5 yr), and
the second and third EOF components of the neutral
eigenvector are large during both the La Nifia and El
Nifio (t = 3.5 yr) maxima. Since A, < 0, the unstable
eigenvector components change sign after one cycle, as
indicated in Fig. 4a by the opposing signs of the com-
ponentsat t = 0 and t = 1556t. The unstable and neutral
eigenvectors are nearly parallel where both eigenvectors
are dominated by the first EOF component, and nearly
orthogonal near the La Nifia and El Nifio maxima (Fig.
4c). The similarity of the unstable and neutral eigen-
vectors during most of the El Nifio growth phase (1.5~
3.5 yr) suggests that the mechanism for unstable dis-
turbance growth is essentially the same as the mecha
nism for growth of El Nifio conditions in the basic os-
cillation. The dynamics and physical structure of these
eigenvectors are discussed further below (section 2d).

The map-fitting procedure producesreliabl e estimates
of the unstable and neutral eigenvectors and eigenval-
ues. We have tested the reliability and convergence of
these estimates, and their dependence on the number of
EOFs amplitudes used in the fit and on other fitting
parameters, by comparing the eigenvalues and eigen-
vectors of the composite return map Me¢ along the cycle
for many different fits (e.g., Fig. 2), and by comparing
the eigenvectors at points along the cycle to the distri-
bution of nearby phase-space points on the attractor
from the EOF time series X(t) (e.g., Fig. 3). As men-
tioned above, the eigenvalues A; should be independent
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Fic. 2. Floquet multipliers A; vs time along the UPO for three

different sets of map fitting parameters. The resultsin (a) are for the

composite full-return maps constructed from the corresponding par-

tial-period maps, which provide the best estimates of the unstable
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Poincare section: UPO p, (p=155), CZ EOFs 1-6, m=9, ]=100
-0.65 \ " T .

-1 . I ! .
6.2 6.4 6.6 6.8 7 7.2
EOF1

Fic. 3. Projection in the EOF 1-EOF 2 plane of Poincaré section
of attractor normal to the UPO in Fig. 1 at time t, = 996t = 2.75
yr. The UPO intersects the plane at the solid circle. The projection
of the unstable Floquet eigenvector v, isindicated by the thick solid
line. The projection of the neutral eigenvector v, with equal ampli-
tude, which would vanish if v, were exactly equal to the true neutral
eigenvector, is indicated by the thin solid line.

of t,. Their dependence on t, arises from the map-fitting
procedure and thus serves as a qualitative measure of
the reliability of the fits.

For directly fitted full-period return maps M(t,), we
find that this dependence is strong along certain seg-
ments of the cycle when only three or four EOF time
seriesare used in thefitting procedure (Fig. 2b). A stable
estimate of the leading eigenvalue A, can be obtained
from a full-period map with five or six EOFs, but ad-
ditional, spurious eigenvalues then arise (Fig. 2c). The
main difficulty in using the full-period maps is that the
cycle is sufficiently unstable that initially nearby points
often have moved far from the cycle after one period,
and so must be discarded during the fitting procedure.
This reduces the number of points available for the fit,
and forces the fit to depend more on very nearby points
that move very slowly, increasing its susceptibility to
contamination from noise from a number of sources,
including our imperfect estimate of the cycle itself. To
obtain a stable estimate of the second eigenvalue A ,, it
is necessary to use the composite partial-period maps
Me(t,) and five or six EOFs (Fig. 2a). The stability of
these eigenval ue estimates along the cycle (Fig. 2a), and
for moderate changes in fitting parameters, and the ap-

P

and neutral eigenvectors and eigenvalues. The results in (b) and (c),
for directly fitted full-return maps, are shown for comparison, to
illustrate the variations along the cycle that can arise in the computed
eigenvalues, indicating noise in the fitting procedure. In (a), m = 9
(partial-period maps with 3-month mapping interval), 6 EOFs; in (b),
m = 155 (full-period maps), 3 EOFs; and in (c), m = 155 (full-
period maps), 6 EOFs.
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(a) parent absence of noise in the eigenvector component

EOF components of unstable EV, p, {p=155), m=9 time series (Fig. 4) suggests that these fits are reliable,
and that a five- or six-dimensional phase space is suf-
ficient to represent the perpetual July CZ model dynam-
ics around the UPO.

The difficulty in estimating the stable eigenvectors
arises entirely from the distribution of phase-space
points X(t) near the attractor (Fig. 3), which isin turn
a result of the model dynamics. Because the attractor
iscompressed along the stabl e eigenvectors, the distance
along the stable eigenvector of the points X(t) from the
attractor is always essentially zero, that is, small enough
that it is dominated by noise. Thus, these points do not
show anumerically significant contraction along the sta-
ble eigenvectors over the mapping intervals. Conse-
quently, empirical map-fitting procedures of the present
type cannot be used to estimate reliably the correspond-
ing contraction rates and directions, and thus the stable
eigenvalues and eigenvectors.

EOF components of EV

3. Local predictability
a. Eigenvector amplification

In order to study local predictability along the cycle,
we use the partial-period maps, M P, to compute thelocal
amplification of linear disturbances over different seg-
ments of the cycle. We compute local amplificationsin
two ways. First, in this section, we compute the local
amplification of disturbances along either the unstable
or the neutral eigenvectors of the full-return composite
maps, which are the directions of the unstable and neu-
tral manifolds of the UPO. Second, in the next section,
we compute singular vectors (optimal disturbances; e.g.,
Farrell and loannou 1996) for disturbances in the sub-
space spanned by the unstable and neutral vectors. We
have excluded the stable vectors from these analyses
because of the unreliability of the stable-vector fits (sec-
tion 2c¢), and because the relatively narrow distribution
(c) of points along the stable vector on the attractor indi-

Angle between unstable and neutral EVs, p, (p=155), m=9 cates that these directions are not Sampled by the natural

EOF components of EV

901 evolution of the model and do not represent accessible
80 phase space directions in which prediction errors may
develop. Clearly an addition of noise to the system may
701 change this by sampling also these stable directions, but
sol we restrict the analysis in this paper to the purely de-
0 terministic dynamics of the CZ model, and focus on the
£50 case in which the only error relevant to the prediction
3 problem is the error in the specification of the initia
240r position of the state on the attractor.
<
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Fic. 4. EOF components of eigenvector vs point along cycle for
m = 9 for (a), the unit unstable eigenvector u,; and (b), the unit
neutral eigenvector u,. The components are EOF 1 (thick solid line),
. EOF 2 (thick dashed), EOF 3 (thick dash—dot), EOF 4 (thin solid),
Year EOF 5 (thin dashed), EOF 6 (thin dash—dot). (c) The angle across
(u; - uy,), in degrees.
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We compute the local amplification of the unstable
eigenvector over 3-month (n,, = 9, m = 94t) intervals
along the UPO as follows. At each point t, aong the
UPO, we compute the image u*(t, + m) = Mru,(t,) of
the eigenvector u,. Then, since |lu,|| = 1, the norm of
the image u* gives the 3-month amplification factor,
[lu*|/]u, (t )]l = |lu*| asafunction of t,. In general, the
results of the local predictability analysis can be ex-
pected to depend on which norm is chosen. We use
primarily the standard Euclidean norm | - || in the EOF
amplitude phase space, as in (2). The standard norm is
based directly on the EOFs, and so provides a natural
guantification of significant physical variability. Other
choices are also possible, and could lead to different
results, as discussed below. We have examined the sen-
sitivity of our results to the choice of norm and found
that results with other physically motivated norms are
roughly consistent with those obtained using the stan-
dard Euclidean norm.

The results for the amplification factors ||u*|| show
that disturbances along the unstable eigenvector are am-
plified over 3-month intervals primarily during the pe-
riod 1.5-3.5 yr (Fig. 5d). For the UPO itself, this period
corresponds closely to the growth phase of El Nifio
conditions (Fig. 1). There is also a brief period of am-
plification of the unstable vector during the La Nifa
maximum, near 0.7 yr (Figs. 5a,1), and a brief period
of very weak amplification near 1.4 yr. Disturbances
along the neutral eigenvector grow rapidly, over 3-
month intervals, during the period 3.2—4 yr, the maxi-
mum and early decay phase of El Nifio conditions, and
less rapidly during 1.7-2.2 yr the early El Nifio onset
phase. There are also two short intervals of weak neu-
tral-disturbance growth following the La Nifia maxi-
mum.

The cumulative linear growth of unit-norm distur-
bances along the unstable or neutral eigenvectors during
the course of a complete cycle of the UPO may be
estimated by computing products of these 3-month am-
plification factors from succeeding maps along the se-
guencest,, . . ., ts of points defined above (Figs. 5b,c).
Disturbances along the unstable eigenvector that areini-
tially of unit amplitude during the first two years of the
cycle all amplify by a factor of 3-5 by year 3.5, with
disturbance growth occurring primarily during years
1.5-3.5, the growth phase of El Nifio conditions. During
most of the rest of the cycle, a persistent decay of the
disturbance occurs, so that the full-period disturbance
amplification at any point on the UPO is |A;| = 1.8;
the final points of each curve are the full-period am-

—

Fic. 5. (@) Local 3-month amplification of the unstable (solid line)
and neutral (dashed) eigenvectors along the UPO for the standard
norm. (b) Cumulative disturbance growth along UPO for initia dis-
turbances u, . (c) Cumulative disturbance growth along UPO for initial
disturbances u,.

JOURNAL OF THE ATMOSPHERIC SCIENCES

VOoLUME 58

(a)

Three-month unstable/neutral EV amplification, m=9
2.5 ‘ . : . ‘ . . .

Amplification factor

Disturbance amplitude
w IS

N

Y

N
T

Disturbance amplitude
W




1 DECEMBER 2001

plifications discussed above. For random initial distur-
bances along the unstable eigenvector at random points
along the UPO, the local amplification will in the mean
tend to result in preferential appearance of finite am-
plitude disturbances and disruption of the basic periodic
cycle during the growth phase of El Nifio conditions.
We refer to the corresponding local loss of predictability
as the growth-phase predictability barrier.

The cumulative linear growth of disturbances along
the neutral eigenvector is dominated by rapid amplifi-
cation by afactor of 3-5 during the period immediately
following the El Nifio maximum (Fig. 5c). During most
of the rest of the cycle, the neutral disturbances decay.
The full-period neutral disturbance amplification factor
is A, = 1, as above. The amplification of disturbances
along the neutral vector following the EI Nifio maximum
is a second mechanism for local predictability loss. If
theinitial disturbance is sufficiently large, nonlinear ef-
fects may lead to a disruption of the basic cycle in this
case also. To linear order, the growth of perturbations
along the neutral vector represents a phase shift along
the cycle, and the corresponding linear loss of predict-
ability is in the timing of events, rather than in the
essential character of the oscillation. From a practical
point of view, predictability of the timing of ENSO
events is just as important as that of the amplitude of
the cycle, so theloss of predictability along the direction
of the neutral vector is important. We find the neutral
vector predictability to be especially small during the
El Nifio termination phase, indicating that this mecha-
nism may limit our ability to predict the timing of the
termination of ENSO events.

The first EOF amplitude dominates both the unstable
and neutral eigenvectors of the maps representing the
linearized dynamicsduring the 4.3-yr UPO (Fig. 4). This
first EOF has the spatial structure of a mature El Nifio
event, indicating that the growth mechanism of the dis-
turbance is likely to be similar to that of the mechanism
due to which the mature El Nifio develops. Another
indication that the disturbances grow due to a similar
physical mechanism as the El Nifio event itself is as
follows. The neutral eigenvector is proportional to the
rate of change along the UPO itself, and so directly
represents the dynamics of the 4.3-yr oscillation. During
much of the period of disturbance growth (e.g., 1.5-3
yrin Fig. 1), the unstable eigenvector isroughly parallel
to the neutral eigenvector (Fig. 4c).

This similarity of the unstable and neutral eigenvec-
tors during the growth phase, which itself is coincident
with the growth phase of El Nifio conditions during the
4.3-yr cycle, suggests that the dominant physical mech-
anism driving the growth of perturbations to the ENSO
cycle is nearly the same mechanism that is responsible
for the growth of El Nifio conditions themselves. As a
simple example of how this can occur, consider alinear
system undergoing exponential growth: the difference
between two solutions will grow exponentially at ex-
actly the same rate, and by the same mechanism, aseach
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solution itself. The growth of disturbancesin the present
case is clearly more complex than the simple exponen-
tial example. During the later part of the El Nifio growth
phase (2.5-3 yr), the unstable vector continues to am-
plify whilethe neutral vector decays (Fig. 5a). However,
examination of the eigenvectors (Figs. 4a,b) suggests
that the sustained growth of the unstable vector during
this period occurs because the unstable vector retains
the phase relationship between EOFs 1-3 that supports
growth of both vectors near year two. It isthis extended
period of growth, not a second distinct instability mech-
anism, that allows the unstable vector to overcome the
decay that it suffers over most of the rest of the cycle,
and achieve net growth over one full period.

b. Sngular vectors

In this section, we extend the local predictability anal-
ysis to include the possibility of rapid transient growth
associated with nonnormality of the disturbance dynam-
ics. In the previous section, we analyzed local predict-
ability along the UPO by separately computing the local
amplification of disturbances along the unstable and
neutral eigenvectors of the full-period return maps.
These eigenvectors are not orthogonal in the standard
norm (Fig. 4c). Thus, as is generally the case for non-
normal systems, the transient growth of disturbances
consisting of superpositions of these two eigenvectors
can exceed the rate of growth of either eigenvector
alone. Since both eigenvectors are locally tangent, in a
general sense, to the model’s attractor (Fig. 3), their
superpositions lie on, or very close to, the attractor.
These superpositions can therefore be interpreted as er-
rorsin the specification of theinitial position of the state
on the attractor, and so are appropriate for consideration
in the context of the deterministic prediction problem
we study here.

We compute the disturbance that grows most rapidly
for a given time interval by singular vector (optimal
growth) analysis in which, for each optimization inter-
val, the combination of the unstable and neutral vectors
that amplifies most rapidly is calculated by solving an
eigenvalue problem. We restrict the optimal growth
analysis to the subspace spanned by the unstable and
neutral vectors because these are the only eigenmodes
for which we have reliable estimates. In general, stable
modes often contribute importantly to singular vector
structure, and we anticipate that the same would be true
here if a more general singular vector calculation were
carried out. Thus, the results of our singular vector cal-
culation must be interpreted cautiously and with these
restrictions in mind. On the other hand, it could be ar-
gued that the present restriction on singular vector struc-
ture is appropriate for the study of predictability when
the variability is dominated by the dynamical evolution
of the model. In that case, the system state will always
remain on the attractor, and since stable eigenvectors
typically point away from an attractor, model states that
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are reached by superpositions of general stable and un-
stable modes are likely to lie off the attractor and should
be excluded from consideration. Such states can be
reached through external forcing or reinitialization, but
not through the deterministic evolution of the model.

We calculate singular vectors for the 3-month (n,, =
9) partial-period maps Mp, in the subspace of the un-
stable (u,) and neutral (u,) eigenvectors of the com-
posite full-period return map Me, as follows. Let x(t,)
be a general unit-norm disturbance at time t,. Then the
linear image at time t, + m of this disturbance is y(t,
+ m) = MP(t;t, + m)x(t). To find the disturbance
whose norm grows fastest over the 3 months, we max-
imize the square of the final-time norm,

Iyl = yT-y = xT(MP)TMPX, (7)

with respect to x, subject to the constraint ||x|| = 1. This
yields the standard singular-vector eigenvalue problem,

Lx = a?x, and L = (Mr)TMp, (8)

where the eigenvalues « are the singular values, and the
eigenvectors x are the singular vectors. To restrict to the
subspace spanned by u, and u,, we require that

X(t) = cuy(t) + cu,(ty), 9

where ¢, and c, are constants, chosen such that ||x| =
1 but otherwise arbitrary. Then (8) can be rewritten as
an eigenvalue problem with the same singular values,

L.c=a2c, and L,= (UTU)"'UTLU, (10)

where ¢ = [c,, c,] isthe eigenvector, and U = (u,, u,)
isthe matrix whose columns are the unstable and neutral
vectors. We solve the 2 X 2 matrix eigenvalue problem
(10) using standard numerical methods, for each point
t, aong the UPO. Since we use the same norms for the
initial and final disturbances, the singular values o may
be interpreted as amplification factors, and compared
directly to the eigenvector amplification factors com-
puted in the preceding section.

The pattern of leading 3-month amplification factors
(singular values) for the standard norm (Fig. 6a) is
broadly similar to the 3-month eigenvector-amplifica-
tion patterns examined in the previous section (Fig. 5a,
also shown again in Fig. 6a). There is, again, strong
disturbance growth during and immediately after the El
Nifio growth phase, from 1.5-4 yr. Significant differ-
ences in the patterns are also apparent. The leading sin-
gular value is several times larger than the unstable

—

FiG. 6. (a) Leading 3-month singular value (thick solid line) in the
unstable-neutral subspace (span of u, and u,) along the UPO for the
standard norm. The local amplifications from Fig. 5a of the unstable
(thin solid) and neutral (dashed) eigenvectors are shown for com-
parison. (b) The u, (solid line) and u, components of the leading 3-
month singular vector along the UPO for the standard norm. (c)
Cumulative disturbance growth along the UPO for initial disturbances
equal to the leading 3-month singular vector.
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eigenvector amplification over the entire El Nifio growth
phase. This enhanced disturbance amplification arises
from the nonorthogonality of the unstable and neutral
eigenvectors during this period, (Figs. 6b, 4c; Moore
and Kleeman 1996, 1997). At the El Nifio maximum
(3.5yr), the leading singular vector is dominated by the
neutral eigenvector (Fig. 6b), and the leading singular
value is essentially equal to the neutral eigenvector am-
plification. The leading singular value is always at least
as large as the largest eigenvector amplification, as it
must be, and an amplifying singular vector (singular
value greater than one) isfound during almost the entire
cycle, with exceptions only near 0.5, 1, and 1.5 yr. The
cumulative amplifications of initial unit-amplitude dis-
turbances corresponding to the 3-month singular vectors
at each time along the UPO are shown in Fig. 6¢. These
are computed as above (Fig. 5¢) by computing succes-
sive images of the initial disturbance using the partial-
period maps MP. They again emphasize the tendency
for sustained disturbance growth during the El Nifio
growth phase.

Our calculated amplification factors are substantially
smaller than those computed by Moore and Kleeman
(1996) for the LaNifia—El Nifio transition period in their
intermediate-complexity coupled model. Note, however
that besides the fact that our analysis appliesto achaotic
model regime and theirsto aregular oscillation, welimit
the subspace of optimal perturbations to the neutral and
unstable vectors only. Much larger amplifications might
be obtained if stable vectors were included.

Chen et al. (1997) found the temporal structure of the
singular values in their model to depend quite sensi-
tively on the basic state about which predictability was
studied (be it seasonal cycle, or ENSO with or without
a seasonal cycle included in the model dynamics). The
spatial structure of the singular vectors they found was,
in contrast, very robust, and quite dramatically different
from both the very small scale structure found by Moore
and Kleeman (1996) and in particular from the structure
of the ENSO mode itself. Their calculation of optimal
structures which, unlike ours, was not restricted to lie
on the model attractor, resulted in large-scale zonal
structures that are not realizabl e during the normal mod-
el ENSO evolution. This strengthens the motivation for
our procedure of limiting the analysis to the subspace
of the stable and neutral vectors, which spans the states
accessible by the deterministic model dynamics in the
absence of external noise. On the other hand, despite
the differences in model formulation, basic-state, and
methodol ogy, the dependence of leading singular value
on ENSO phase found by Chen et a. (1997) is roughly
consistent with the present results: their leading singular
values are largest during the transition to the growth
and decay phases of El Nifio but some tendency for
disturbance growth persists throughout the growth
phase. Our results suggest that, despite the large number
of degrees of freedom that in principle contribute to the
singular vector calculation, the corresponding amplifi-
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cations may be traced to the influence of only two
modes: the unstable and neutral modes, or in the stable
case examined by Chen et al. (1997), the neutral and
| east-stable damped modes. This hypothesisis supported
by the structure of the *‘final-time” disturbances into
which the singular vectors computed by Chen et al.
(1997) evolve, which closely resemble the present EOF
1, the dominant component of both the unstable and
neutral modes in our calculations. In addition, we can
hypothesize on the basis of our results that in the study
of Chen et al. (1997), the disturbance growth during the
transition to the growth phase is primarily related to the
|east-stable damped mode, while that found during the
transition to the decay phase is primarily related to the
neutral mode.

As discussed above for the local amplification anal-
ysis of the eigenvectors, the singular vectors depend on
the choice of norm, and substantialy different results
could be obtained for substantially different norms. For
other physically reasonable norms we have examined,
the results are somewhat different from the results for
the standard norm, but not drastically so, indicating that
the growth-phase barrier may be a reasonably robust
result.

4. Conclusions

When the CZ-intermediate-coupled ENSO anomaly
model is run with a specified perpetual July background
climatology, it exhibits sustained, weakly chaotic
ENSO-cycle oscillations (Tziperman et al. 1995, 1997).
During extended periods, the model statetendsto follow
approximately an unstable, nonlinear, exactly periodic
4.3-yr cycle (UPO). In the present study, we have an-
alyzed the time-dependent modes of linear stability of
this cycle, and inferred local predictability properties
from this analysis. The analysis is based on linearizing
the dynamics around the 4.3-yr cycle in a reconstructed
phase space based on the multivariate EOF amplitudes.
We can then interpret these results with regard to pre-
dictability of ENSO as a function of the ENSO phase.
It should be noted that our analysis focuses entirely on
this single, lowest-order cycle. Some of the conclusions
could be modified by analysis of higher-order cycles.
However, examination of the origina EOF time series
and previous experience with other weakly chaotic mod-
els suggests that substantial insight into the model dy-
namics can be obtained from the analysis of this single
cycle.

We found unstable and neutral eigenmodes of the 4.3-
yr cycle that have time-dependent spatial structure. We
also found that, consistent with recent studies that focus
on the nonnormal aspects of ENSO dynamics, (Farrell
and loannou 1996; Penland and Sardeshmukh 1995;
Moore and Kleeman 1996, 1997; Chen et al. 1997) the
time-dependent eigenmodes were not orthogonal (in a
standard norm, based on the EOF amplitudes). Conse-
quently, we analyzed the local growth of linear distur-
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bances using singular vectors (optimal disturbances;
Farrell and loannou 1996) as well as eigenmodes.

Both the eigenmode and the restricted singular vector
analyses we have performed suggest that thereis a pre-
dictability barrier associated with the growth phase of
El Niflo conditions. That is, ENSO’s predictability is
smallest during the growth phase of El Nifio conditions
in the equatorial east Pacific. This is our main result,
and we termed this variation of predictability along the
ENSO cyclethe growth-phase predictability barrier. The
implication is that ENSO will be least predictable ex-
actly at the time when its predictability is of most in-
terest from a practical point of view, during the devel-
opment of El Nifio conditions. These results are roughly
consistent with those of Moore and Kleeman (1996) who
have analyzed a nonchaotic, periodic, self-sustained
ENSO solution in another intermediate coupled ENSO
model.

The growth-phase predictability barrier evidently
arises because the growth mechanism for disturbances
to the cycle is nearly the same as the growth mechanism
for the El Nifio conditions themselves. In our phase-
space representation, both the basic state (the nonlinear
4.3-yr periodic solution whose predictability we ex-
amine) and the disturbances to the basic state are rep-
resented by the EOF amplitudes. The first EOF ampli-
tude dominates both the unstable and neutral eigenvec-
tors of the maps representing the linearized dynamics
during the 4.3-yr UPO (Fig. 4). This first EOF has the
spatial structure of a mature El Nifio event, indicating
that the growth mechanism of the disturbance is likely
to be similar to that of the mechanism due to which the
mature El Nifio develops. Other indications that the dis-
turbances grow due to a similar physical mechanism as
the El Nifo event itself have been identified as well.

The absence of a second instability mechanism for
the disturbances essentially requires disturbance growth
to occur during the growth phase of the basic cycle,
leading to the growth-phase predictability barrier. This
reasoning does not explain why a second predictability
barrier does not arise in connection with the growth of
La Nifa conditions, during the opposite phase of the
cycle. The physical origin of thisasymmetry most likely
lies in the asymmetry in the physical processes respon-
sible to the growth of El Nifio and La Nifia. While both
are manifestations of the coupled ocean atmospheric
instability, there are some instability-enhancing pro-
cesses that are active only during El Nifio, such as heat-
ing in the central Pacific that depends on the absolute
sea surface temperature being above some threshold
(Moore and Kleeman 1996).

The finding that the most rapidly growing perturba-
tions have the same structure and physical mechanism
as the mature El Nifio conditions seemingly contradicts
a recent estimate of the optimal disturbances in another
intermediate ENSO model (Moore and Kleeman 1997)
where the optimal structures seemed concentrated in the
west Pacific. On the other hand, several additional stud-
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ies have recently evaluated the optimal structures of the
equatorial Pacific, and many of these have come up with
optimal structures that are centered in the east Pacific,
consistent with our finding (that is based on quite a
different approach) here. The restriction of the singular
vectors in our case to the unstable-neutral subspace
could also have significantly affected their spatial struc-
ture.

A number of previous studies have analyzed the sea-
sonal dependence of ENSO predictability, often finding
the spring predictability barrier (Webster and Yang
1992; Torrence and Webster 1998; Weiss and Weiss
1999; Xue et al. 1994; Moore and Kleeman 1996). The
spring predictability barrier has been explained in terms
of the seasonal dependence of the air—sea coupling pro-
cess, due to the seasonal movement of the Intertropical
Convergence Zone and other factors. The spring is also,
of course, the period when the El Nifio growth phase
tends to occur (Tziperman et al. 1998; Galanti and Tzip-
erman 2000). A statistical analysis of the spring pre-
dictability barrier from predictability studies based on
actual observed ENSO eventsislikely toinclude springs
from both El Nifio years and non—El Nifio years. It is
well understood that the seasona background of the
equatorial Pacific results in a springtime predictability
barrier. However, one wonders to what degree the spring
predictability barrier found in analyses based on ob-
served ENSO events may actually be a manifestation
of the growth-phase predictability barrier. To find out,
one might perform a study of the seasonal predictability
separately for El Nifio years and non—El Nifio years.

The CZ model using a perpetual July background is
clearly a highly simplified representation of the ENSO
dynamics. The restriction to a nonseasonal model in the
present study was essential for the objectives of this
study, in order to be able to differentiate predictability
dependence on the phase of the ENSO cycle from the
predictability dependence on the phase of the seasonal
cycle. Additionally, a chaotic attractor is composed of
an infinite set of UPOs, and we have restricted our anal-
ysisto asingle, though dominant, UPO of the CZ model.
We feel that the main result reported here—the existence
of an ENSO predictability barrier that is tied to the
growth phase of El Nifio conditions—is likely to be
robust. This belief is based on our identification of the
physical mechanisms that limit the predictability during
the growth phase. That the physical mechanism limiting
predictability along a nonlinear periodic solution is es-
sentially the same mechanism driving the oscillation
itself, isaresult that depends primarily on the weakness
of the large-scale instabilities of the ENSO cycle, rel-
ative to the strength of the interactions associated with
the evolution of the cycleitself. [A similar situation has
recently been described in an analysis of the predict-
ability of baroclinic waves in a weakly nonlinear chan-
nel model (Samelson 2001)].

These general characteristics of the model ENSO cy-
clearelikely to be more robust than the particular model
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we investigate. In any case, analyzing predictability
along additional UPOs and extending our approach to
the seasonally forced case areimportant future stepsthat
will help to put our results in a more general context.
One of our objectives was to find a predictability signal
that might differentiate the chaotic regime of ENSO
from the nonchaotic one. However, the rough corre-
spondence between our results with those of Moore and
Kleeman (1996) who analyzed a regular, nonchaotic os-
cillation indicates that we need to keep looking for such
a differentiating signal in order to understand whether
the observed irregularity of El Nifio arises primarily
from stochastic forcing or from low-order chaos.
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