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The Relationship Between Vehicle Miles Traveled and 

Economic Activity 

I. INTRODUCTION 

Understanding the relationship between vehicle miles traveled (VMT), economic 

activity, and other determinant factors of the demand for driving is essential in the 

development of an efficient U.S. transportation system.  The idea that a transportation system 

can reduce VMT without reducing mobility or economic activity has recently been a 

controversial topic in transportation discussions.  This study explores this question through an 

analysis of the relationship between VMT and economic activity.  This is done through a 

statistical analysis of historic U.S. national and urban area VMT, gross domestic product 

(GDP), and personal income, followed by a more in-depth look at individual urban areas and 

key factors’ effects on the demand for VMT.   

The paper is organized as follows.  First a review of recent VMT reduction goals in 

the U.S. is shown and recent trends in VMT’s behavior over time are identified.  The next 

section introduces and explains the statistical methodology pursued in this study and discusses 

the two datasets: one national and the other a sample of urban areas included in the Texas 

Transportation Institute’s (TTI’s) Urban Mobility Report (UMR).  Results of Granger 

causality tests are presented for the national dataset for both the 1929-2009 time period and 

the 1949-2007 time period that was included in a recent similar study (Pozdena 2009).  Then 

the causality issue is explored in context to the business cycle and with a sample of 98 urban 
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regions.  The analysis is furthered by exploring derived demand of VMT in 87 urban areas in 

order to help interpret the rational for variations in the Granger causality results.  The study 

concludes with a summary of the primary results, implications for policy, and topics for future 

research in this area. 

A. VMT Reduction Goals 

Both the federal and state governments have proposed reducing VMT to achieve 

policy objectives. The Federal Surface Transportation Policy and Planning Act of 2009 set a 

directive to reduce national per capita VMT and to increase public transportation usage, 

intercity passenger rail services, and non-motorized transportation (Commerce Committee 

2009). 

 At the state level, the Washington state legislature adopted a direct mandate to reduce 

per capita VMT to 25 percent below 1990 levels by the year 2035 (Winkelman, Bishins and 

Kooshian 2009).  The Oregon state legislature mandated reductions in greenhouse gases 

(GHG) of 10% percent below 1990 levels by 2020 and 75% below 1990 levels by 2050 and 

expects the transportation sector to play a crucial role in the achievement of this goal (74
th
 

Oregon Legislative Assembly 2007).  

Considering that the U.S. transportation sector accounts for 27 percent of U.S. GHG 

emissions, 60 percent of which are from light-duty vehicles (Greene and Plotkin 2011) and 

that population is expected to increase.  Even with increases in fuel efficiency and alternative 

fuel use such GHG reduction targets are not likely to be met without some decrease in VMT 

(Gregor 2009).  
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VMT and measures of economic activity such as GDP, personal income, or 

employment, tend to move together leading to concerns that policies aimed at reductions in 

VMT will negatively impact economic activity (Pozdena 2009).  However, it has also been 

argued that demand for VMT is a derived demand, so that changes in income lead to changes 

in VMT and not the other way around.  Further, there are many other factors, such as the 

increased availability of transit, telecommuting, and on-line retail activity that provide 

substitutes to mobility, weakening any possible causal link from VMT to GDP (Puentes and 

Tomer 2008), (Litman 2010).   

Given that VMT reduction is a critical part of several transportation policies, it is 

essential that the relationship between VMT and economic activity be better understood.  If 

VMT reduction has an adverse impact on economic activity, alternative policy goals need to 

be considered.  It is also possible that the relationship between VMT and economic activity 

may differ between regions due to differing levels of congestion, transit availability, commute 

distances, and other factors, so that VMT reduction policies could have different impacts in 

different locations. 

B. VMT Growth and Economic Activity 

VMT in the U.S steadily increased between 1929 and the early 2000’s when VMT 

growth began to plateau, experiencing decreases after 2005.  The moderation in VMT growth 

has been noted by others (Polzin, Chu, and Toole-Holt 2004) and attributed to a variety of 

factors, notably the maturation of the transportation network and “saturation” of automobile 

travel in the latter part of the twentieth century relative to growth in earlier years.  FIGURE 1 

illustrates the upward growth trend in real GDP, real personal income and VMT over the 

1929-2009 time period. 
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FIGURE 1: U.S. National Real GDP, Real Personal Income and VMT (1929-2009)  

The Texas Transportation Institute (TTI) has been collecting and estimating VMT for 

urban areas since 1982 and finds that average daily VMT in urban areas has risen from just 

over 1.9 billion to over 3.7 billion in 2009, a 51 percent increase over a 28 year period.  The 

U.S. Department of Energy predicts VMT to increase by 59 percent between 2005 and 2030 if 

policies are not significantly altered (Gregor 2009). 

Prior to 2003 VMT grew at similar rates in urban and rural areas, VMT growth rates 

have since diverged, with urban area VMT continuing to grow whereas rural VMT has been 

falling (Puentes and Tomer 2008).  Thus, the recent policies that aim to curb VMT growth are 

more relevant for urban areas, where continued VMT growth is predicted, as those are the 

places where congestion and GHG emission mitigation is most obviously required.  

Most models that attempt to predict VMT for policy purposes use a variety of factors 

including demographics, automobile ownership, costs of driving, transit availability and real 

income as determinants of VMT demand (McMullen, et al. 2009), (Polzin, Chu, and Toole-
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Holt 2004).  The inclusion of real income is justified by economists because VMT demand is 

seen as a normal good, suggesting that the causal relationship runs from income to VMT 

demand (Puentes and Tomer 2008), (Litman 2010).  Thus, in a growing economy an increase 

in per capita real personal income would be expected to lead to growth in per capita VMT 

unless changes in the price of other factors such as fuel cost, car ownership, insurance costs, 

costs associated with congestion and transit availability have partially offset this effect. 

Conversely, VMT can also be considered as an input to production, moving labor, 

supplies and goods through commuting and freight transport resulting in additional economic 

activity, thus providing a means by which increases in VMT may lead to increases in income 

(Pozdena 2009).  Because VMT is used as a proxy for mobility, policies that exogenously 

enforce decreases in VMT, and thus restrict mobility of the work force, could have a negative 

impact on economic activity as measured by income.  The latter impact assumes that the 

decreasing VMT are not accompanied by offsetting levels of substitutes for VMT mobility 

such as increased use of alternative transport modes such as bicycling, transit, on-line 

retailing, or telecommuting (Puentes and Tomer 2008). 

Puentes and Tomer assert that the causation is from output to VMT; not the other way 

around.  They state that in modern times, decreases in VMT for large geographic regions will 

not be an indicator of declining economic activity.  Additionally, Litman argues that while 

increased wealth often increases energy use and vehicle travel, this does not mean that 

increases in vehicle travel will increase wealth or reductions in vehicle travel reduce wealth 

(Litman 2010). 

However, Pozdena contends that VMT significantly causes economic activity and that 

implementing VMT reduction to achieve GHG reduction mandates could have an adverse 
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impact on the economy.  He backs up these claims as he is the only one to employ a valid 

analytical econometric methodology to pursue this question, using pairwise Granger causality 

testing.  During the 1949-2007 time period, he reports significant bidirectional causality, 

meaning that VMT and the economy Granger “cause” each other.  Using impulse response 

functions, he estimates that a downward shock to VMT, such as one due to GHG regulation, 

would result in a reduction of GDP of 90 percent of the size of the VMT shock in the short run 

(2 years) and 46 percent of the size in the long run (20 years) (Pozdena 2009).  

Although Pozdena uses statistical techniques to examine this causal relationship, his 

paper does not provide alternative specifications to determine the robustness of his results.  As 

shown below, standard statistical tests can be used to select preferred model specifications.  In 

particular, the lag structures recommended by standard tests differ from those reported by 

Pozdena, which may affect his reported results.  Furthermore, results are also shown to be 

sensitive to the exact time period included in the statistical analysis.  
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II. METHODOGOLGY 

The purpose of this study is to more fully explore the relationship between VMT and 

economic activity as measured by GDP and personal income using time-series techniques and 

testing for Granger causality.  This study expands on previous work in several ways: 

 The study uses well established statistical techniques for testing for stationarity, 

cointegration and the selection of the appropriate lag structure in the time-series data. 

 The study tests for a structural change in the relationship between VMT and economic 

activity during the post WWII 1949-2007 time period. 

 The study examines the sensitivity of the Granger causality results to the stage of the 

macroeconomic business cycle. 

 Both national and urban area datasets are provided in this paper.  Furthermore, urban 

area results are broken down and reported by urban area size as defined by TTI. 

 Finally, demand for VMT is derived at the urban area level to provide additional 

rational to some of the variation in the Granger causality results for different areas. 

 

The Granger Causality methodology is first introduced along with the various tests 

that must be performed in order to deal with time-series data and model specification.  

A. Granger Causality 

Granger causality provides an analytical tool with which time precedence can be 

established between variables (Granger 1969).  Time precedence is one of the bases of 

causation; yet, due to Granger causality being defined in terms of predictability, it is not an 

acceptable definition of causation in its own right (Bunge 1959).  The identification problem 

of differentiating between correlation and causation needs economic theory and institutional 
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knowledge to be solved, but econometric testing through Granger causality can provide a good 

start (Stock 2001). 

The Granger test provides probability>  values for the F-statistics testing whether 

all the included lags of an endogenous variable in a vector auto-regression (VAR) are jointly 

significant.  The reduced form vector auto-regression model is shown below in the system of 

two equations.  

 

  

The null hypothesis is that the lagged variable’s coefficients are equal to zero, or in 

other words that past values of one variable do not help explain the other variable’s future 

movements.  Therefore, any probability>  result less than or equal to the significance level 

of five percent (0.05) affords the conclusion that the lagged variable Granger causes the 

dependent variable.  Where causality is defined as Y causing X if X can be better predicted 

using all available information rather than if the information apart from Y had been used 

(Granger 1969).  

B. Tests for Stationarity 

Since time-series data such as that shown in FIGURE 1 tend to trend upwards over 

time, they must be tested for stationarity and made stationary, usually using differences, prior 

to use in a vector auto-regression (VAR) model.  Data is said to be stationary when it displays 
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a stable and observable mean and variance over time (Dickey and Fuller 1979).  A stationary 

time-series is categorized as being integrated of order zero, written as I(0), or is said to have 

no unit roots; this quality in a time-series vector is a prerequisite for use in a standard VAR 

model.  Alternatively, nonstationary data features a shifting mean and variance over time.  

Unit root tests provide the order of integration of a variable.  A time-series that is categorized 

as integrated of order “P”, written as I(P), would need to be differenced “P” times to become a 

stationary process or I(0) (Hamilton 1994). 

An augmented Dickey-Fuller test with a null hypothesis that the variable contains a 

unit root and an alternative hypothesis that the variable was generated by a stationary process 

is applied to all time-series prior to use in the VAR.  MacKinnon approximate p-values of the 

augmented Dickey-Fuller test statistic that are less than or equal to the significance level of ten 

percent (0.10) indicate that the null hypothesis can be rejected, suggesting stationarity.  

C. Tests for Cointegration 

Cointegration is said to occur when some linear combination of two or more time-

series has a lower order of integration than the time-series have individually.  This can happen 

if the two time-series share a common stochastic drift.  If cointegration is present between two 

or more variables these variables should not be used in a standard VAR model (Engle and 

Granger 1987).  To test for cointegration an Engle-Granger cointegration test is applied that 

uses an augmented Dickey-Fuller test on the residuals of a regression featuring two possibly 

cointegrated variables.  Recall that all national variables are I(1), therefore if a linear 

combination of the two creates an I(0) time-series the two variables are defined as 

cointegrated. 
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D. Lag-Length Selection 

The lag-length selection for the VAR model is made through the use of the several 

tests found in the “Varsoc” command in the Stata 11.1 (64-bit) Data Analysis and Statistical 

Software Program.  Since Pozdena uses lags of four years, four years is used as the maximum 

possible lag-length tested for significance in this paper, although, prior studies on GDP 

consistently have used only one or two year lags for this type of VAR (Blanchard 2009).  Five 

test statistics are used to help determine the longest lag that continues to contribute to the 

explanation of a VAR.  Consequently, if three years is found to be the appropriate lag-length, 

lags of one, two, and three years all significantly explain the VAR and need to be included in 

the model specification. 

The five statistical tests for lag-lengths include the final prediction error (FPE), 

Akaike's information criterion (AIC), Schwarz's Bayesian information criterion (SBIC), the 

Hannan and Quinn information criterion (HQIC) and the Likelihood Ratio (LR).  For further 

description of the tests see Ivanov and Killen (2005).  In situations where all tests do not agree 

on lag-length AIC always selects the largest order, SBIC always selects the smallest and 

HQIC is somewhere in between (Lütkepohl 2005).  When this occurs, the HQIC’s selection is 

used in this analysis. 
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III. DATA 

A. National Data (1929-2009) 

The Bureau of Economic Analysis (BEA) provides annual U.S. GDP and personal 

income data from 1929 to the present (U.S. Department of Commerce 2011).  Both GDP and 

personal income are expressed throughout this study in terms of real 2005 dollars in order to 

control for inflation.  The Federal Highway Administration (FHWA) publishes annual 

estimates of U.S. national VMT over the same time period (U.S. Department of Transportation 

2011).  In this study six variables are explored at the national level; vehicle miles traveled 

(VMT), real gross domestic product (GDP), real personal income (PI), and the per capita 

forms of these three variables (VMTPC, GDPPC, PIPC).  TABLE 1 displays general 

summary statistics for the national data; providing mean, standard deviation, minimum, 

maximum, and percent annual growth from 1929-2009.  This is the same data used by 

Pozdena expect that he used the 1949-2007 sub-period. 

TABLE 1 National Data Summary Statistics (1929-2009) 

Variable Name Mean Std. Dev. Min Max 
% Annual 

Growth 

Daily VMT(000,000) 3,540  2,600   542   8,350   3.64% 

Daily VMTPC 15.21 8.03  4.16     27.94   2.45% 

Annual VMT(000,000) 1,250,000  920,000  198,000  3,050,000 3.64% 

Annual VMTPC 5,445    2,888    1,518    10,168 2.45% 

GDP(000,000) $5,160,000  $3,770,000   $716,000  $13,200,000  3.40% 

GDPPC $22,292     $11,228        $5,700       $43,800  2.21% 

PI(000,000) $4,260,000    $3,240,000    $594,000  $11,400,000  3.45% 

PIPC $18,261     $9,750        $4,730 $37,400  2.26% 

Population(000,000) 203  57.1  122  308  1.16% 
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B. Urban and Metropolitan Data (1982-2009) 

The data for urban areas has been collected and published by the Texas Transportation 

Institute (TTI) since 1982 for use in their annual Urban Mobility Report (UMR) (Texas 

Transportation Institute 2011).  From this dataset, average daily VMT on freeways and 

principal arterial roads is used as the urban area VMT variable for this study.  These VMT 

estimates are compiled by TTI from the Highway Performance Monitoring System (HPMS) 

database and other local transportation data sources and are put into per capita form using 

population estimates from the U.S. Census Bureau. 

Because urban area GDP data is unavailable, this study substituted metropolitan 

statistical area (MSA) personal income data for the MSAs that coincide with the TTI urban 

areas.  Note that at the national level correlation between personal income and GDP is .999 

making PI a good proxy for GDP.  See (U.S. Census Bureau 2010) and (Office of Budget and 

Management 2010) for urban area and MSA definitions.  Personal income, in real 2005 

dollars, is also from the BEA (U.S. Department of Commerce 2011). 

TTI collects detailed data on 100 individual urban areas in the U.S. and categorizes 

these urban areas into four population size groupings: very large (vlg), large (lrg), medium 

(med) and small (sml) (see Appendix A for categorical definitions and a list of urban areas in 

each group).  These groupings are important, as it is likely that VMT reduction policies will be 

implemented in larger urban areas first, because they have the largest GHG reduction potential 

and also suffer the worst congestion delays.  Thus, it is important to observe if variations in 

the size of an urban area affects the causal relationship between VMT and economic activity. 

Only 98 of these 100 urban areas were included in this study because two are not core urban 

areas inside a MSA, without this distinction personal income data is not available. 
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TABLE 2 provides summary average annual statistics for VMT, personal income (PI), 

and population variables in the 98 TTI urban areas for the period 1982-2009.  While both PI 

and PIPC are larger in more populated urban areas, the fastest growth in both PI and 

population comes from the smallest areas.  These 98 urban areas are incorporated into the 

study in several ways.  All 98 areas are given as one aggregate time-series, as well as four 

population size groupings, they are analyzed individually and are further refined into a 87 

urban area panel dataset in the derived demand chapter of this paper. 

TABLE 2 Sample Urban Area’s Daily VMT Summary Statistics (1982-2009) 

Variable Name Mean Std. Dev. Min Max 
% Annual 

Growth 

VMT 23,200,000 33,100,000  550,000    268,000,000    2.75% 

VMT (vlg) 83,600,000     52,900,000  24,000,000    268,000,000  2.55% 

VMT (lrg) 23,200,000     10,700,000    4,700,000    61,600,000  3.08% 

VMT (med) 10,000,000      4,288,686     1,720,000    26,100,000  2.89% 

VMT (sml) 4,914,278      2,563,854 550,000    11,800,000  2.96% 

VMTPC 16.50     3.84         5.50       29.51  1.32% 

VMTPC (vlg) 16.55     3.78        7.01       24.32  1.33% 

VMTPC (lrg) 16.72     3.34        8.01       23.86  1.52% 

VMTPC (med) 16.53     3.67        5.76       26.18  1.30% 

VMTPC (sml) 16.14     4.58         5.50       29.51       1.14% 

UA Pop. 1,436,062      2,267,139       95,000    18,800,000  1.34% 

UA Pop. (vlg) 5,416,923      3,962,287     1,430,000    18,800,000  1.20% 

UA Pop. (lrg) 1,366,139     510,278      365,000     3,048,000  1.54% 

UA Pop. (med) 592,735     164,021      170,000     1,100,000  1.57% 

UA Pop. (sml) 286,997     947,378       95,000      510,000  1.79% 

PI (000,000) $59,700  $95,300  $136,000  $959,000   2.70% 

PI (vlg) (000,000) $209,000  $45,700    $134,000    $282,000  2.67% 

PI (lrg) (000,000) $54,800    $12,900    $34,500    $74,700  2.83% 

PI (med) (000,000) $25,100     $5,030    $16,900    $33,100  2.48% 

PI (sml) (000,000) $13,600     $3,230    $8,750    $18,800  2.83% 

PIPC $31,204     $7,112       $11,822       $74,954  1.43% 

PIPC (vlg) $36,845     $4,577       $28,289       $44,396  1.48% 

PIPC (lrg) $32,174     $3,982       $25,039       $38,134  1.41% 

PIPC (med) $31,191     $3,618       $24,589       $37,022  1.41% 

PIPC (sml) $28,242     $3,306       $22,433       $33,333  1.34% 

MSA Pop. 1,730,465      2,396,915      111,106    19,100,000  1.24% 

MSA Pop. (vlg) 5,599,903     551,734     4,742,498     6,492,596  1.17% 

MSA Pop. (lrg) 1,681,714     196,184     1,376,848     2,004,722  1.40% 

MSA Pop. (med) 795,784     69,622    686,925    911,835  1.05% 

MSA Pop. (sml) 475,742     58,862    389,911    578,215  1.47% 
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IV. RESULTS 

Results are presented in five sub-sections.  First, U.S. national VMT, GDP, and PI 

data are analyzed for 1929-2009 and then for the 1949-2007 time period for comparison with 

Pozdena’s results.  Next, a Chow test is used to test for and confirm a structural break in the 

relationship between VMT and GDP in approximately 1982, the year in which the TTI data 

for urban areas became available.  The impact of the macroeconomic business cycle on the 

national Granger causality tests is then explored, followed by analysis of Granger causality for 

the sample of 98 U.S. urban areas.  Finally, each of the 98 urban areas is tested individually 

for Granger causality. 

A. National Results 

The augmented Dickey-Fuller test was used to test for the stationarity of logged 

variables from aggregate national 1929-2009 data.  Results shown in TABLE 3 indicate that 

all six national variables are integrated of order one, I(1), and thus are stationary as logged 

first differences.   

TABLE 3 Augmented Dickey-Fuller Test: National Data (1929-2009) 

Variable Name 
MacKinnon approximate p-value for Z(t) = 

Order of Integration 
Logged Levels Logged Differences 

VMT 0.6337   0.0000* I(1) 

VMTPC  0.6067   0.0000* I(1) 

GDP 0.8512   0.0000* I(1) 

GDPPC 0.8371   0.0000* I(1) 

PI 0.9094   0.0000* I(1) 

PIPC 0.9031   0.0000* I(1) 
* Represents statistical significance at 10% level (H1: stationarity) 
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TABLE 4 displays the MacKinnon approximate p-value for the augmented Dickey-

Fuller test statistic found in the Engle-Granger cointegration test.  Results indicate that that no 

cointegration exists between any of the relevant variable pairs because linear combinations of 

the variable pairs do not have lower orders of integrations than the individual I(1) variables. 

Thus, a standard reduced form VAR model may be applied to this national dataset. 

TABLE 4 Engle-Granger Cointegration Test using ADF: National Data (1929-2009) 

Variable Name 
MacKinnon approximate p-value for Z(t) = 

Cointegration 
Logged Levels Order of Integration 

VMT-GDP residuals 0.1690 I(1) No 

VMTPC-GDPPC residuals  0.1765 I(1) No 

VMT-GDPPC residuals 0.2032 I(1) No 

VMTPC-GDP residuals 0.1579 I(1) No 

VMT-PI residuals 0.1601 I(1) No 

VMTPC-PIPC residuals 0.1717 I(1) No 

VMT-PIPC residuals 0.1774 I(1) No 

VMTPC-PI residuals 0.1652 I(1) No 
No results statistically significant at the 10% level (Null hypothesis of no cointegration fails to be rejected)

   
The results of all five tests for lag structure were analyzed in TABLE 5.  Although not 

all test statistics agree on lag-length, the HQIC test indicated a two year lag-length in every 

regression at the national level.  Thus a two year lag-length is used; a choice consistent with 

past GDP time-series studies (Blanchard 2009), but not with Pozdena’s choice of two and four 

year lags (Pozdena 2009). 

TABLE 5 Lag-Length Selection Results: National Data (1929-2009) 
Regression Name Suggested Lag-Length (Test Abbreviations) 

VMT-GDP  2 lags* (LR, FPE, AIC, HQIC, and SBIC) 

VMTPC-GDPPC   2 lags* (LR, FPE, AIC, HQIC, and SBIC) 

VMT-GDPPC 2 lags* (LR, FPE, AIC, HQIC, and SBIC) 

VMTPC-GDP 2 lags* (LR, FPE, AIC, HQIC, and SBIC) 

VMT-PI** 2 lags* (LR, HQIC, SBIC) 3 lags (FPE, AIC) 

VMTPC-PIPC** 2 lags* (LR, HQIC, SBIC) 3 lags (FPE, AIC) 

VMT-PIPC** 2 lags* (LR, HQIC, SBIC) 4 lags (FPE, AIC) 

VMTPC-PI** 2 lags* (LR, HQIC, SBIC) 3 lags (FPE, AIC) 
* Represents the lag-length selected for use in the VAR 

**Represents that the variables were additionally tested using the longer lag-lengths; resulting in no significant 

changes in the Granger causality findings.
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The Granger causality results shown in TABLE 6 indicate economy activity 

consistently Granger causes VMT, but no statistically significant reverse causation from VMT 

to economic activity for the 1929-2009 time span.  These results are significant at the five 

percent level and robust across alternative measures of economic activity (GDP, GDPPC, PI 

and PIPC).  All Granger causality results presented in this study are taken from VARs with 

stable eigenvalues (see appendix C).  These results follow the rationale that VMT is a normal 

good and further suggest that as economic activity increases so does personal vehicle driving.  

However, they do not support the hypothesis that reductions in VMT would significantly 

impact economic activity. 

TABLE 6 Granger Causality: National Data (1929-2009) 

Regression Name 
Probability > Chi2 

VMT causes Economy Economy causes VMT 

VMT-GDP  0.138 0.034* 

VMTPC-GDPPC   0.158 0.028* 

VMT-GDPPC 0.147 0.026* 

VMTPC-GDP 0.148 0.037* 

VMT-PI 0.109 0.010* 

VMTPC-PIPC 0.181 0.013* 

VMT-PIPC 0.167 0.011* 

VMTPC-PI 0.119 0.011* 
* Represents statistical significance at 5% level. 

 

B. Testing for a Structural Break in the Dataset    

For direct comparison with Pozdena, Granger causality results for the 1949-2007 

period are provided in Panel (A) of TABLE 7.  Note that when Pozdena’s sub-period is used, 

the bi-directional result that he reports is also found in this study.  Thus, it appears that the 

results for Granger causality may be somewhat dependent on the specific time period 

considered.  Possible reasons for this difference are examined in the next section. 
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TABLE 7 Granger Causality: National Data-Structural Break at 1982 (1949-2007) 

Regression Name 
Probability >Chi2 

VMT causes Economy Economy causes VMT 

Panel A:  National Data (1949-2007) 

VMT-GDP    0.000*   0.000* 

VMTPC-GDPPC     0.000*   0.000* 

VMT-PI   0.000*   0.000* 

VMTPC-PIPC    0.000*   0.005* 

Panel B:   National Data (1949-1981) 

VMT-GDP   0.002*   0.000* 

VMTPC-GDPPC     0.000*   0.001* 

VMT-PI    0.001*   0.001* 

VMTPC-PIPC    0.001*   0.014* 

Panel C:   National Data (1982-2007) 

VMT-GDP  0.160  0.144  

VMTPC-GDPPC   0.221  0.202  

VMT-PI 0.411  0.172  

VMTPC-PIPC  0.455  0.242  

Panel D:   National Data (1982-2009) 

VMT-GDP    0.002* 0.120   

VMTPC-GDPPC     0.005*   0.216   

VMT-PI    0.002*   0.120   

VMTPC-PIPC    0.005*   0.216   
* Represents statistical significance at 5% level. 

 

In the early part of the twentieth century, the highway system was in its infancy.  

Following WWII, highway building accelerated, especially after the initiation of the interstate 

highway system in 1956 and its completion in the 1970s.  The year 1982 is selected to 

subdivide the sample period for two reasons.  First, it is reasonable assume that most of the 

long term location and development impacts from the investment in the interstate highway 

system were complete by that date.  In comparing the periods pre- and post-1982, it can be 

seen that public road mileage grew at an annual percentage rate of .50% during the (1949-

1981) time period, but only at a rate of .19% from (1982-2007).  This dissimilarity, combined 

with lower real fuel prices, may have caused a larger induced travel demand impact in the 

earlier period.  Since the more recent period is more directly relevant for prospective 
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policymaking, it is important to know if there has been a change in the relationship between 

VMT and economic activity. 

Second, the national level of aggregation may conceal important differences in the 

relationship between economic activity and VMT at the urban area level, at which most 

policies are likely to be formulated and implemented.  The TTI data used to explore the 

relationship in urban areas were only available on an annual basis from 1982 to the present. 

A Chow test was used to test for a structural break in the post-WWII national data 

using the 1949-1981 and 1982-2007 as the sub-periods (see Hamilton (1994) for a discussion 

of this technique).  The resulting F-statistic(2, 55) of 74.07 suggests a significant improvement 

in the model’s fit by splitting the sample at the year 1982 rather than pooling the data from 

1929-2009 (Dougherty 2007).  This confirms the hypothesis of a structural change in the 

relationship between VMT and GDP at the national level in 1982.   

This study re-examines Granger causality results for the pre- and post- 1982 periods, 

and report the results in Panels (B) and (C) of TABLE 7.  As noted above, bi-directional 

causality is found between VMT and GDP for the whole 1949-2007 period.  However, when 

the sample is split into the pre-and post-1982 periods, bi-directional result is found for the 

1949-1982 period, but the post-1982 period finds no significant causal relationship.  This 

suggests that VMT is not a major determinant of economic activity in the latter period. 

As an interesting aside, Appendix D features a similar impulse response analysis to 

Pozdena’s using the data and methodology from this paper for the periods 1929-2009 and 

1982-2009.  It finds economic activity to have a much smaller response to the exogenous 

shock of VMT, and shows the response to dissipate after only ten years, contrasting the 20 

year significant long-run effect found by Pozdena.   
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C. Impact of the Business Cycle on the VMT/Economic Activity Relationship 

It should be noted that the results reported above are sensitive to the years included in 

the study.  When the dataset is expanded to include 2008 and 2009 (years not included in 

Pozdena’s study set), and the Granger causality results are updated, there is a surprising 

change.  Now for the 1982-2009 period there is significant uni-directional Granger causation 

flowing from VMT to economic activity, see Panel (D) in TABLE 7.   Typically the addition 

of only two years would not be expected to completely change the significance of the Granger 

causation, but the two years added were both in the heart of an economic recession (known to 

be caused by the financial crisis and not an exogenous drop in VMT). 

To examine the hypothesis that the causal relationship between VMT and economic 

activity might be affected by the business cycle, the National Bureau of Economic Research’s 

(NBER’s) dating for peaks and troughs in the business cycle between 1929 and 2009 is used 

to create two subsamples: data for years are categorized as downturns if they occur during the 

time between a peak and a trough, and upturns if they occur during the time between a trough 

and a peak (The National Bureau of Economic Research 2011).  This analysis shows that 

during economic downturns VMT Granger causes economic activity or bi-directional 

causation is seen, but during economic upturns only economic activity Granger causes VMT, 

see TABLE 8.  

This explains why the addition of the years 2008 and 2009, two economic downturn 

years, completely changed the output.  It is also interesting to note that changes in VMT are 

often used by macroeconomic forecasters as one indicator of turning points in the business 
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cycle---although every large macroeconomic cycle has generally accepted causes other than 

exogenous reductions in VMT. 

TABLE 8 Granger Causality: National Data Structural Break with Economic 

Downturns (1929-2009) 

Regression Name 
Probability >Chi2 

VMT causes Economy Economy causes VMT 

National Data: During Economic Downturn (n=16 out of the years from 1929-2009) 

VMT-GDP    0.002* 0.159 

VMTPC-GDPPC     0.005* 0.183 

VMT-PI    0.007*   0.003* 

VMTPC-PIPC    0.003*   0.026* 

National Data: During Economic Upturn (n=62 out of the years from 1929-2009) 

VMT-GDP  0.113   0.000* 

VMTPC-GDPPC   0.140   0.000* 

VMT-PI  0.064   0.001* 

VMTPC-PIPC  0.217   0.002* 
* Represents statistical significance at 5% level. 

 

D. Urban Area Results (1982-2009) 

The same methodology that was applied to the national level dataset is used again for 

the urban area dataset.  First data is aggregated over all 98 urban areas in the study and 

examine Granger results.  The urban areas are then divided into the TTI urban size sub-groups 

to see if there is a difference in the relationship observed between VMT and economics 

activity depending on urban area size.  

TABLE 9 displays the order of integration for the aggregate urban area variables and 

the population size groupings for the 1982-2009 dataset.  It show that VMT and VMTPC data 

are I(0) and thus regressed as levels, while all but one of the PI and PIPC variables are I(1) 

and are regressed as first differences.  The one exception is the aggregate sample of 98 areas 

PI variable which was found to be I(2), and requires second differencing for stationarity.  
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As is noted in the bottom of TABLES 9 and 10 the urban area results were checked 

for robustness through the use of a more stringent five percent significance level for the 

augmented Dickey-Fuller test and through the incorporation of longer lag-lengths than 

HQIC’s suggestion.  The Probability>  results for these robustness checks are not 

presented in the final Granger analysis in TABLE 11, but it should be noted that in no 

circumstance did VMT significantly Granger cause economic activity due to these changes.  

Yet, in the VMTPC-PIPC regression, economic activity did significantly Granger cause VMT 

when either longer lags were used or when a five percent significance level was used in the 

augmented Dickey-Fuller test. 

TABLE 9 Augmented Dickey-Fuller Test: 98 Urban Area’s Data (1982-2009) 

Variable Name 
MacKinnon approximate p-value for Z(t) = 

Order of Integration 
Logged Levels Logged Differences 

VMT   0.0000* 0.9863 I(0) 

VMTPC   0.0000* 0.9352 I(0) 

PI 0.1573 0.1168 I(2) 

PIPC*** 0.1875   0.0612* I(1) 

VMTPC(vlg)   0.0000* 0.8732 I(0) 

VMTPC(lrg)   0.0000* 0.9604 I(0) 

VMTPC(med)   0.0000* 0.6215 I(0) 

VMTPC(sml)   0.0068* 0.3900 I(0) 

PIPC(vlg)*** 0.1571   0.0937* I(1) 

PIPC(lrg)*** 0.1568   0.0962* I(1) 

PIPC(med) 0.1970   0.0251* I(1) 

PIPC(sml) 0.1806   0.0245* I(1) 
* Represents statistical significance at 10% level. 

***Represents that the variables were additionally tested using the 5% significance level for the ADF. 

 

Since the VMT variables are stationary and do not share the same order of integration 

as the PI variables, they cannot be cointegrated.  Hence, similarly to the national data, the 

standard VAR model can be applied here.  The urban area tests indicate a two year lag-length 
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in every regression except VMTPC-PI, for which a third year was indicated and used, see 

TABLE 10.  As before, when not all tests agree on lag-length the HQIC result is used.  

TABLE 10 Lag-Length Selection Results: 98 Urban Area’s Data (1982-2009) 

Regression Name Suggested Lag-Length (Tests Abbreviations) 

VMT-PI  2 lags* (LR, FPE, AIC, HQIC, and SBIC) 

VMTPC-PIPC** 2 lags* (HQIC, SBIC) 4 lags (LR, FPE, AIC) 

VMT-PIPC 2 lags* (LR, FPE, AIC, HQIC, and SBIC) 

VMTPC-PI 3 lags* (LR, FPE, AIC, HQIC) 1 lag (SBIC) 

VMTPC(vlg)-PIPC(vlg) 2 lags* (LR, FPE, AIC, HQIC, and SBIC) 

VMTPC(lrg)-PIPC(lrg)  2 lags* (LR, FPE, AIC, HQIC, and SBIC) 

VMTPC(med)-PIPC(med)**  2 lags* (FPE, AIC, HQIC) 4 lags (LR) 1 lag (SBIC) 

VMTPC(sml)-PIPC(sml)** 2 lags* (HQIC, SBIC) 3 lags (LR, FPE, AIC) 
* Represents the lag-length selected for use in the VAR 

**Represents that the variables were additionally tested using the longer lag-lengths. 

 

Granger causation at the urban area level for medium, large, and very large urban 

areas exhibits no significant causation in either direction, as shown in TABLE 11.  While the 

aggregate urban VMTPC-PI regression shows economic activity to Granger causes VMT, and 

the small urban area grouping shows significant reverse causation flowing from VMT to the 

economy.  Note that this table reports the 1982-2009 results which, for the national sample 

(see TABLE 7), actually exhibited reverse causation from VMT to economic activity.  Thus, 

there seems to be a difference in the relationship between VMT and economic activity in 

larger urban areas as compared to smaller, more rural areas such as is seen in the national 

aggregation and the small urban area population grouping.  
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TABLE 11 Granger Causality: 98 Urban Area’s Data (1982-2009) 

Regression Name 
Probability > Chi2 

VMT causes Economy Economy causes VMT 

VMT-PI  0.524 0.357 

VMTPC-PIPC*** 0.116 0.101 

VMT-PIPC~ 0.151 0.454   

VMTPC-PI 0.111   0.002* 

VMTPC(vlg)-PIPC(vlg)*** 0.197 0.552 

VMTPC(lrg)-PIPC(lrg)*** 0.067 0.359 

VMTPC(med)-PIPC(med)** 0.368 0.125 

VMTPC(sml)-PIPC(sml)**   0.042* 0.462 
 * Represents statistical significance at 5% level. 

**Represents that the variables were additionally tested using the longer lag-lengths; resulting in no significant 

changes in the Granger causality findings. 

***Represents that the variables were additionally tested using the 5% significance level for the ADF; resulting in 

no significant changes in the Granger causality findings. 

~Represents that testing using a 5% significance level for the ADF leads to PIPC uni-directionally significantly 

Granger causing VMTPC. 

 

E. Individual Urban Areas 

This section takes the 98 urban areas from the above analysis and separates them in 

order to study each area as an individual time-series.  TABLE 12 shows Granger causation 

between VMTPC and PIPC in individual urban areas from 1982-2009.  In looking at the 98 

urban areas individually it was found that only nine showed uni-directional reverse causation 

from VMTPC to PIPC at the five percent significance level.  These areas are diverse both 

geographically and in terms of population size making it hard to ascertain a pattern or theory 

as to how these nine areas differ from the other 89.  

The areas that find reverse causation include Anchorage, AK, Birmingham-Hoover, 

AL, Buffalo-Niagara Falls, NY, Denver-Aurora-Broomfield, CO, McAllen, TX, Miami-Fort 

Lauderdale-Pompano Beach, FL, Poughkeepsie-Newburgh-Middletown, NY, Provo UT, and 
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Virginia Beach-Norfolk-Newport News, VA-NC.  Additionally, significant bi-directional 

causation is found in Oklahoma City, OK and Portland-Vancouver-Hillsboro, OR-WA. 

TABLE 12 Granger Causality: Individual Urban Areas (1982-2009) 

Regression Name 

Probability >Chi2 

VMTPC causes 

PIPC 

PIPC causes 

VMTPC 

Akron, OH  0.379 0.949 

Albany-Schenectady-Troy, NY  0.746 0.182 

Albuquerque, NM  0.288 0.903 

Allentown-Bethlehem-Easton, PA-NJ  0.749 0.177 

Anchorage, AK    0.000* 0.298 

Atlanta-Sandy Springs-Marietta, GA  0.068 0.498 

Austin-Round Rock-San Marcos, TX  0.257 0.243 

Bakersfield-Delano, CA  0.621 0.773 

Baltimore-Towson, MD  0.967 0.304 

Baton Rouge LA 0.224   0.041* 

Beaumont-Port Arthur, TX  0.095 0.308 

Birmingham-Hoover, AL    0.043* 0.440 

Boise ID 0.301 0.078 

Boston-Cambridge-Quincy, MA-NH  0.073 0.116 

Boulder, CO  0.220 0.282 

Bridgeport-Stamford-Norwalk, CT  0.128 0.332 

Brownsville-Harlingen, TX  0.121 0.256 

Buffalo-Niagara Falls, NY    0.013* 0.498 

Cape Coral-Fort Myers, FL  0.205   0.006* 

Charleston-North Charleston-Summerville, SC  0.878 0.573 

Charlotte-Gastonia-Rock Hill, NC-SC  0.247 0.155 

Chicago-Joliet-Naperville, IL-IN-WI  0.159 0.819 

Cincinnati-Middletown, OH-KY-IN  0.723 0.388 

Cleveland-Elyria-Mentor, OH  0.392   0.045* 

Colorado Springs, CO  0.964 0.085 

Columbia, SC  0.531 0.324 

Columbus, OH  0.663 0.354 

Corpus Christi, TX  0.068 0.737 

Dallas-Fort Worth-Arlington, TX  0.486 0.189 

Dayton, OH  0.312 0.152 

Denver-Aurora-Broomfield, CO    0.006* 0.368 

Detroit-Warren-Livonia, MI  0.116 0.497 

El Paso, TX  0.063 0.989 

Eugene-Springfield, OR  0.510 0.385 

Fresno, CA  0.445 0.583 

Grand Rapids-Wyoming, MI  0.612 0.136 

Greensboro NC 0.539 0.817 

Hartford-West Hartford-East Hartford, CT  0.798 0.090 

Honolulu, HI  0.938 0.072 
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Houston-Sugar Land-Baytown, TX  0.889 0.531 

Indianapolis-Carmel, IN  0.292 0.992 

Jackson MS 0.425 0.788 

Jacksonville, FL  0.322 0.832 

Kansas City, MO-KS  0.966 0.083 

Knoxville, TN  0.773 0.677 

Laredo, TX  0.199 0.146 

Las Vegas-Paradise, NV  0.060 0.288 

Little Rock-North Little Rock-Conway, AR  0.063 0.271 

Los Angeles-Long Beach-Santa Ana, CA  0.987 0.967 

Louisville-Jefferson County, KY-IN  0.242 0.519 

Madison, WI 0.192   0.017* 

McAllen, TX   0.003* 0.756 

Memphis, TN-MS-AR  0.303 0.064 

Miami-Fort Lauderdale-Pompano Beach, FL    0.000* 0.655 

Milwaukee-Waukesha-West Allis, WI  0.894 0.524 

Minneapolis-St. Paul-Bloomington, MN-WI  0.084 0.646 

Nashville-Davidson-Murfreesboro-Franklin, TN  0.593 0.942 

New Haven-Milford, CT  0.093 0.353 

New Orleans-Metairie-Kenner, LA  0.247   0.000* 

New York-Northern New Jersey-Long Island, NY-NJ 0.086   0.002* 

Oklahoma City, OK    0.017*   0.031* 

Omaha-Council Bluffs, NE-IA  0.731 0.597 

Orlando-Kissimmee-Sanford, FL  0.583 0.684 

Oxnard-Thousand Oaks-Ventura, CA  0.100 0.069 

Pensacola-Ferry Pass-Brent, FL  0.543 0.636 

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD  0.435 0.828 

Phoenix-Mesa-Glendale, AZ  0.956 0.476 

Pittsburgh, PA  0.187 0.217 

Portland-Vancouver-Hillsboro, OR-WA    0.029*   0.029* 

Poughkeepsie-Newburgh-Middletown, NY    0.000* 0.983 

Providence-New Bedford-Fall River, RI-MA  0.697 0.117 

Provo UT   0.022* 0.395 

Raleigh-Cary, NC  0.259 0.131 

Richmond, VA  0.820 0.511 

Riverside-San Bernardino-Ontario, CA  0.826 0.869 

Rochester, NY  0.262   0.019* 

Sacramento-Arden-Arcade-Roseville, CA  0.629 0.219 

Salem, OR  0.491   0.009* 

Salt Lake City, UT  0.258 0.323 

San Antonio-New Braunfels, TX  0.473 0.770 

San Diego-Carlsbad-San Marcos, CA  0.311 0.237 

San Francisco-Oakland-Fremont, CA  0.558 0.292 

San Jose-Sunnyvale-Santa Clara, CA  0.052 0.964 

Sarasota-Bradenton FL 0.206 0.640 

Seattle-Tacoma-Bellevue, WA  0.910 0.756 

Spokane, WA  0.337 0.173 

Springfield, MA  0.479 0.877 
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St. Louis, MO-IL  0.551   0.022* 

Stockton CA 0.381 0.090 

Tampa-St. Petersburg-Clearwater, FL  0.222 0.322 

Toledo, OH  0.301 0.708 

Tucson, AZ  0.371 0.776 

Tulsa, OK  0.801 0.329 

Virginia Beach-Norfolk-Newport News, VA-NC    0.012* 0.364 

Washington-Arlington-Alexandria, DC-VA-MD-WV  0.626 0.123 

Wichita, KS  0.888 0.745 

Winston-Salem NC 0.242 0.371 

Worcester MA 0.861 0.442 

Urban Areas (Observations per panel) 98 (25) 98 (25) 

Count of Significant Urban Areas at the 5% level 11 11 

Percent of Areas that are Significant at the 5% level 11.22% 11.22% 
* Represents statistical significance at 5% level (H1: Granger causation). 
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V. DERIVED DEMAND 

A. Introduction 

The Granger causality results make it clear that there is significant variation in the 

findings depending on the areas analyzed.  For example, during the time span from 1982-2009 

reverse causation is found at the national level and in the small urban area population size 

grouping, but is not found for the sample of 98 urban areas, the very large, large, or medium 

urban area population size groupings or for a strong majority of the individual urban areas.  If 

one takes into consideration that the national level sample includes rural and urban areas it 

becomes apparent that only the less densely populated regions are finding reverse causation.  

Thus, further exploration of the determinants of VMT in various urban areas is 

necessary for better understanding of how VMT may depend on other factors, such as the 

availability of alternative transportation modes, fuel price, road infrastructure, population 

density, and employment levels in certain industries.  The evaluation of such factors should 

reinforce the deduction that VMT could be causally related to economic activity in less 

populated areas due to the prevalence of these factors in smaller areas.   

If VMT reduction policies are implemented in areas where VMT cannot be substituted 

with other modes, then overall mobility would be reduced, leading to negative economic 

ramifications.  Alternatively, the same policies in larger urban areas that feature more 

alternative modes of transportation might not have the same influence.  The purpose of the 

following chapter on VMT demand is to help shed light on this and other VMT relationships 

at a more micro level.   
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i. Variable Selection and Expected Relationship with VMT 

Prior to delving into the results of these models, reasoning is established for the 

presence of each independent variable included in the  model.  Independent variables included 

should have a direct effect on the demand for average daily freeway and arterial vehicle miles 

traveled per capita in urban areas.  The dependent variable of interest in this paper is VMT, 

but most studies use VMT per capita (VMTPC) (Noland and Cowart 2000), (Fulton, et al. 

2000).  

Economic theory suggests some basic determinants of demand for a product:  price, 

income, and population (when more than one consumer is considered).  Average annual state 

gasoline prices in real 2005 dollars (RFC), is used to represent the price or marginal cost of 

driving.  Although there are certainly other components that attribute to VMT’s price such as 

insurance, wear and tear on the vehicle, driving time, etc., the price of gasoline is a large 

component and the data is easily available here.  Additionally, the real price of fuel (RFC) has 

been used in other studies as a proxy for the price of driving (McMullen, et al. 2009), (Fulton, 

et al. 2000), and (Noland 2001).  Price elasticities of demand for driving are expected by 

economic theory to be negative and are found in other studies to range from –0.17 to –0.05 in 

the short-run, and –0.63 to –0.10 in the long-run (Goodwin, Dargay and Hanly 2004).  

Since VMT is usually considered to be a normal good, higher incomes are expected to 

result in more driving and thus VMT, ceteris paribus.  Accordingly, personal income per 

capita (PIPC) is included as an indicator of the average incomes in urban areas.  Positive 

income elasticities of demand are found consistently in the literature and range from 0.05 to 

0.62 in the short-run, and 0.12 to 1.47 in the long-run (Goodwin, Dargay and Hanly 2004).  
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Another possible determinant of VMTPC in urban areas is population density; as more 

spread out populations are expected to feature the more driving, ceteris paribus.  Population 

density (DENSITY) is expected to be correlated to VMTPC, as various papers which analyze 

smart growth, urban growth boundaries, and mixed development demonstrate that more dense 

cities development allow for shorter routes, more one stop shopping, and more walking and 

biking options, reducing the need for vehicle travel (Winkelman, Bishins and Kooshian 2009), 

(Frank and Pivo 1995), and (Litman 2010).  

To incorporate VMT substitutes (substitutes for driving) into the model, transit 

passenger miles traveled per capita (PMTPC) is included as an explanatory variable and is 

anticipated to have a negative elasticity, as found in Pushkarev and Zupan (1980) and 

Holtzclaw (1991).  Transit ridership in an urban area should be correlated with lower VMT 

levels as transit availability presents the consumer an alternative to driving.   

This study additionally incorporates industry employment mix variables, adding a new 

wrinkle to the typical VMT derived demand model.  These variables indicate the percent of an 

urban area’s economy that is employed in certain industries, allowing for direct evaluation of 

the VMT intensity of industries during the production, distribution and sales processes.  For 

instance, it is plausible that an industry sector like construction, which requires large amounts 

of movements of labor and supplies, may be more VMT-intense than an industry sector such 

as finance, which allows for money, advice, and services to take place either over the phone, 

fax or internet, instead of requiring driving. 

Finally, the most challenging variable to consider is that relating to the highway 

investment in an urban area, as usually measured by lane miles (LM) or lane miles per capita 

(LMPC).  The literature suggests that LM is not truly exogenous in respect to VMT or VMTPC.  
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It has been demonstrated that increases in VMT increase the demand for road capacity and can 

lead to more lane miles being built.  Moreover increases in lane miles of highway will reduce 

the cost of driving and induce more VMT, leading to a significant simultaneity bias (Noland 

2001), (Fulton, et al. 2000) (Goodwin 1996), and (Pells 1989).  

ii. Multicollinearity Test 

To reduce multicollinearity it was decided to define variables in per capita terms, 

notably, PIPC, LMPC, and PMTPC.  Note that, industry employment variables are defined as 

ratios of employment in that industry to total employment.  These changes help reduce 

multicollinearity from the otherwise large, consistent growth trend and cross-sectional 

collinearity.  Finally, the exclusion of population as an independent variable further eradicates 

excessive collinearity. 

The “Collin” command in the Stata 11.1 (64-bit) Data Analysis and Statistical 

Software Program computes several collinearity diagnostic measures including variance 

inflation factor (VIF), tolerance, eigenvalues, condition index, and R-squared.  In the VIF and 

condition number tests any results greater than 10 are interpreted to contain significant 

collinearity.  The final arrangement of variables, finds no VIF greater than 10, a mean VIF of 

only 1.75, and a condition number of 3.62.  Therefore, the regression does not suffer from 

collinearity when specified in this manner.  

The final set of explanatory variables described above is listed and defined here; these 

variables will make up the  matrix in the following model specification equation: 

 , freeway and arterial lane miles per capita for urban area i in year t; 

 , personal income per capita in real 2005 dollars for the relevant MSA i in year t; 
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 , state average price of fuel in real 2005 dollars for urban area i in year t; 

 , transit passenger miles traveled per capita for urban area i in year t; 

 , the number of residents per square mile of urban area i in year t; 

 , , , ,  (industry employment variables), the 

percent of total employment that resides in an industry in the relevant MSA i and year t; 

 , the ratio of public employees to private sector employees in MSA i in year t. 

 

B. Methodology 

i. Standard OLS Model 

The econometric specification for the VMTPC equation is estimated here as: 

log(  c + + +  +  

Where: 

  is the average daily freeway and arterial vehicle miles traveled per capita 

for urban area i in year t; 

 c is a constant term for the entire sample; 

  is the group specific fixed effect for urban area i; 

  is the time specific fixed effect for year t; 

  is the coefficient of the k
th
  explanatory variable; 

 is the value of explanatory variable k for urban area i and year t. 

 is the error term of a random variable for urban area i in year t, assumed to be 

normally distributed with mean zero. 
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The model transforms all variables (except for the fixed effect dummies) into natural 

logarithms, making the coefficients easily interpreted as elasticities and to help avoid 

heteroskedasticity.  Note that the group-specific fixed effect  can be defined as regional 

grouping , or TTI population size grouping  instead of urban area  (see Appendix A for 

categorical definitions and a list of urban areas in each group).  These different group-specific 

fixed effects allow for interpretation of important relationships between VMTPC and region or 

population size, but provide less total information because they incorporate a smaller number 

of less specific dummy variables. 

ii. Distributed Lag Model 

 The distributed lag model, as used in Noland and Cowart (2000), is written as: 

log(  c + + +  * log(  +  +  

Where all specifications are identical to the previous fixed effects model, except for 

the inclusion of  , the one year lagged value of average daily freeway and arterial 

vehicle miles traveled per capita for urban area i in year t-1, and that T=27 for the distributed 

lag model, instead of T=28 as seen previously. 

The distributed lag model differs from the basic model by incorporating a lagged 

value of the dependent variable (VMTPC) on the right-hand side of the equation.  This 

methodology allows for the calculation of long-term and short-term elasticities, where the long 

term elasticities are calculated as ε  , where  are the short-run elasticities (found in the 

regression’s coefficients), and  is the coefficient of the one year lag of VMTPC.  The model 

assumes an exponential lag structure that shows short-run impacts to be greatest and to 

diminish exponentially over time (Noland and Cowart 2000).  



33 
 

iii. Two-Stage Least Squares Model 

To deal with the endogeneity problem noted above for lane miles (LMPC), a two-

stage least squares (2SLS) model is used, requiring the selection of an appropriate 

instrumental variable.  Following Noland and Cowart’s (2000) methodology and available 

data, urban land area (ULA) is selected as the instrument of choice.  The first and second 

stages of the 2SLS model are written as: 

(1) log(     c + +  +  +  * log( ) +  

(2) log(  c + +  +  +  * log  +  

Where all specifications are identical to the model already specified expect that  no 

longer includes the endogenous variable, (LMPC),  is the square miles of land area 

within urban area i in year t, and  is the predicted estimate of LMPC within urban area 

i in year t taken from the first stage regression.  Again all variables are again given as natural 

logarithms. 

As is expressed in the above set of equations, to incorporate 2SLS into the model, 

urban land area (ULA) is added to the first stage, which predicts LMPC using all available 

instruments.  Then, the predicted estimate  is applied to the VMTPC equation in the 

second stage, removing the simultaneity bias.   

An appropriate instrumental variable must be both relevant, in that it is significantly 

related to the endogenous variable being instrumented, but also exogenous in that it is not 

correlated with the error term in the explanatory equation.  Exogeneity ensures that the 

instrument’s only influence on the dependent variable is through its effect on the endogenous 
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variable and that it should not be an independent variable of the model in its own right (for 

further details on 2SLS and instrumental variables, see Greene (2008)). 

Econometric tests are performed to see if the model supports the use of ULA as an 

instrument.  First, a Durbin-Wu-Hausman test for endogeneity of LMPC is performed.  Next, 

tests are applied to determine the relevance of the instrument.  Finally, the exogeneity of the 

instrument itself, ULA, is examined.  

A Durbin-Wu-Hausman test for endogeneity uses the null hypothesis that the possible 

endogenous regressor, LMPC, is exogenous.  It compares estimates from the corresponding 

2SLS and OLS regressions to see if differences between the two estimates are statistically 

significant.  With ULA as the instrument in the 2SLS model, the Durban-Wu-Hausman test 

gave a statistically significant  test statistic equal to 38.64.  Thus, the null hypothesis 

is rejected, suggesting that LMPC is endogenous, indicating the use of a method such as 2SLS.  

Next, a highly significant negative t-statistics is found for ULA in the first stage of the 

2SLS, implying that ULA is sufficiently related to LMPC to make it “relevant” and appropriate 

for use in the 2SLS. Additionally, ULA has a fairly low correlation with VMTPC of 0.32, 

which indicates its exogeneity and that it does not need to be included in the model in its own 

right.  Hence, ULA is used as an instrument, because through a survey of the literature on this 

simultaneous relationship between lane miles and vehicle miles traveled no clearly exogenous 

instrument is found to be more relevant than urban land area
1
. 

                                                           
1
  Previous works have noted difficulty in finding an appropriate instrumental variable, saying “all 

the variables that may correlate with lane miles also tend to be correlated with VMT” (Noland 2001).  

Hansen and Huang (1997) also were unable to locate an appropriate instrument for their analysis. 
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C. Data 

From the introduction and methodology of this chapter it is clear that a much more in-

depth dataset is required for derivation of VMT demand than in the Granger causality analysis.  

This chapter uses the same data sources as the urban sample for the Granger causality 

analysis.  However, only 87 of the 98 urban areas in the Granger sample are used because 

some areas were not included in the 2007 UMR, and hence did not have annual data on two 

key variables needed in this analysis, urban land area (ULA) and population density 

(DENSITY).  The data used in this chapter is considered “panel data”, as it incorporates both 

time-series and cross-sectional variation, whereas all previous data in this paper were purely 

time-series. 

The panel data displays every urban area’s specific DENSITY, LMPC, RFC, and 

PMTPC, which are all from the 2010 UMR (Texas Transportation Institute 2011).  The source 

for PIPC and the industry employment statistics is BEA for the 87 associated MSAs (U.S. 

Department of Commerce 2011).   

TABLE 13 present summary statistics for the variables used in this chapter.  These 

statistics do not exactly match those found in TABLE 3 because this table only includes data 

for 87 of the 98 urban areas used previously.  On average between 1982 and 2009, an 

individual in these 87 urban areas drove over 16 miles a day on freeways and arterial roads, 

was a passenger on 124 miles of public transit annually, earned an average annual income of 

nearly $32,000 in real 2005 dollars, and paid nearly $2 a gallon for gas in real 2005 dollars. 
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TABLE 13 Sample of 87 Urban Area’s Summary Statistics (1982-2009) 

Variable Name Mean Std. Dev. Min Max 

Vehicle Miles Traveled 

(VMT)  
25,450,000 34,580,000 550,000 265,290,000 

Vehicle Miles Traveled Per 

Capita (VMTPC) 
16.44 3.83 5.50 29.51 

Urban Area Population 

(POPu) 
1,572,530 2,369,525 95,000 18,768,000 

Population Density 

(DENSITY) 
2,244 898 989 5,767 

Urban Land Area 

(ULA) 
643 659 25 4,810 

Lane Miles  

(LM) 
3,450,211 4,125,103 175,000 27,020,000 

Lane Miles Per Capita 

(LMPC) 
2.52 0.61 1.21 5.03 

Real Fuel Cost  

(RFC) 
$1.96 $0.54 $1.11 $3.72 

Transit Pass. Miles of 

Travel (000,000) (PMT) 
457 1,905 1.40 21,699 

Transit Pass. Miles of 

Travel Per Capita (PMTPC) 
124.30 148.72 1.97 1163.95 

Personal Income (000,000) 

(PI)* 
$65,373 $99,722 $1,364 $958,964 

Personal Income Per Capita 

(PIPC)* 
$31,613 $7,014 $11,822 $74,954 

MSA Population* 

(POPm) 
1,883,582 2,502,117 111,106 19,069,796 

Public Private Employment 

Ratio (PUB)* 
18.66% 7.56% 8.24% 58.71% 

Percent Finance-Ins.-Real 

Estate Employment (FIN)* 
8.34% 1.87% 0.34% 17.76% 

Percent Construction 

Employment (CON)* 
5.68% 1.36% 2.95% 14.85% 

Percent Manufacturing 

Employment (MANU)* 
10.91% 5.40% 1.01% 32.06% 

Percent Wholesale 

Employment (WHOLE)* 
4.51% 1.21% 1.83% 9.26% 

Percent Retail Employment 

(RETAIL)* 
14.88% 3.15% 7.46% 27.54% 

*Represents that statistics are from MSAs and not UAs 

Only the percent industry employment variables have missing data. Number of missing observations is: 

Finance-Insurance-Real Estate=8, Construction=45, Manufacturing=14, Wholesale=85 and Retail=9.
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D. Results  

 The inclusion of “two-way’ fixed effects which applies dummy variables to both an 

observation’s group (urban area) and time period (year) provides a static coefficient estimates 

for the entire sample, while dynamically shifting the constant term for each observation.  This 

allows unmeasured or unknown cross-sectional (urban area) and time-series (year) factors to 

be explained through the fixed effects’ coefficients and reduces any remaining bias due to 

omitted variables that are inevitably left out of the model (Dougherty 2007)
2
. 

The fixed effect coefficients in this study control for potential omitted variables, such 

as the number of women in the workforce, car ownership, population growth, climate, the 

existence of driving alternatives not measured by the PMTPC transit variable such as 

walking/biking paths, telecommuting, along with other unknown or unmeasured factors.  

F-statistics are used to test the significance of the fixed effects, with the null 

hypothesis that the fixed effects are not jointly significantly related to VMTPC.  First a 

comparison is made between a standard OLS model and a model with group-specific effects, 

resulting in a significant F-statistic of F(86, 2267) = 104.72.  Then, the model with only the 

group-specific effects is compared to a model with group and time-specific or “two-way” 

effects fixed model, resulting in a significant F(27, 2240) = 23.94.  Both results allow for a 

rejection of the null hypothesis and support the use of “two-way” fixed effects in the model 

estimation (Greene 2008). 

                                                           
2 Two models are considered in setting up the panel data: random effects and fixed effects.  A rejection 

of the Hausman test confirmed that a random effects estimator is not consistent with the fixed effects 

coefficients, and is thus not efficient (Dougherty 2007).  Additionally, the Breusch and Pagan 

Lagrangian Multiplier test for random effects confirmed that the model does not meet a primary 

assumption of a random effects model because the variance of error term “u” does not equal zero 

(Breusch and Pagan 1980).  Thus, a fixed effects model was selected, similarly to Noland (2001), 

Fulton, et al. (2000) and other papers in the literature on VMT’s derived demand. 
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i. Standard OLS Results 

TABLE 14 displays the model with four sets of different industry employment 

variable specifications, ordered in columns from (A) to (D).  Column (A) only includes the 

public private employment ratio (PUB) and no other industry sector variables.   This 

specification gives a large significantly positive coefficient and produces the largest R-squared 

of the four regressions, but fails to provide in-depth examination of specific industries effects 

on VMTPC.  Column (B) comprises all five of the percent industry employment variables; of 

which only construction (CON) is positively significantly correlated with VMTPC, and only 

manufacturing (MANU) is negatively significant.  Column (C) omits the insignificant industry 

employment variables found in Column (B), leaving only construction and manufacturing; 

doing this increases the R-squared by about one percent.   

Column (D) integrates percent wholesale employment (WHOLE) in the place of 

MANU, and has a much larger R-squared than Column (C).  Although, WHOLE takes on the 

expected sign, it does not become significant until the simultaneity bias is removed, as shown 

in the 2SLS model results. 

LMPC, PIPC, RFC and PMTPC all give expected signs and are statistically 

significant at the five percent level in all four columns of TABLE 14.  Whereas, the DENSITY 

coefficient sign varies between regressions and is not found to be statistically significant in 

any of the four columns, this is likely attributable to DENSITY’s strong correlation with 

LMPC, which is known to feature a strong simultaneity bias.   
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TABLE 14 Fixed Effects Model with Varying Employment Mix Variables 

“Dependent Variable: VMTPC” (1982-2009)  

Variable Name 

(A) 

UA & Year 

Effects 

(B) 

UA & Year 

Effects 

(C) 

UA & Year 

Effects 

!(D) 

UA & Year 

Effects 

Lane Miles Per Capita 

(LMPC) 

.4902* 

(27.47) 

.4865* 

(27.88) 

.4941* 

(29.15) 

.4994* 

(28.10) 

Personal Income Per Capita 

(PIPC) 

.3127* 

(9.68) 

.1358* 

(3.97) 

.1606* 

(4.82) 

.2487* 

(7.38) 

Population Density 

(DENSITY) 

-.0087 

(-0.55) 

.0198 

(1.26) 

.0162 

(1.05) 

-.0152 

(-0.96) 

Real Fuel Cost 

(RFC) 

-.1231* 

(-3.96) 

-.1431* 

(-4.67) 

-.1351* 

(-4.46) 

-.1263* 

(-4.02) 

Transit Pass. Miles Travel 

Per Capita (PMTPC) 

-.0193* 

(-4.08) 

-.0189* 

(-4.04) 

-.0194* 

(-4.23) 

-.0176* 

(-3.70) 

Public Private Employment 

Ratio (PUB) 

.0663* 

(3.49) 
   

Percent Finance-Insure-Real 

Estate Employment (FIN) 
 

.0074 

(0.70) 
  

Percent Construction 

Employment (CON) 
 

.0697* 

(4.59) 

.0607* 

(4.09) 

.0338* 

(2.22) 

Percent Manufacturing 

Employment (MANU) 
 

-.1636* 

(-12.19) 

-.1659* 

(-12.72) 
 

Percent Wholesale 

Employment (WHOLE) 
 

-.0113 

(-0.63) 
 

-.0061 

(-0.33) 

Percent Retail Employment 

(RETAIL) 
 

-.0521 

(-1.43) 
  

Constant 
-.6953* 

(-1.98) 

.5619 

(1.45) 

.4066 

(1.08) 

-.0340 

(-0.09) 

Number of Urban Areas 87 87 87 87 

Number of Years 28 28 28 28 

Number of Total Obs. 2436 2344** 2422** 2361** 

R-squared 0.5577 0.3958 0.4055 0.5529 
* Represents statistical significance at the 5% level. 

**Represents smaller R-squared due to missing observations from BEA employment statistics. 

! Represents the optimal specification; to which other models can be compared. 
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All regressions in TABLE 15 include the same independent variables as Column (D) 

of TABLE 14, but with varying results for alternative ways of grouping and defining the fixed 

effects.  For instance, Column (B) uses regional groupings for urban areas in the eastern, 

central, and western part of the U.S.; so that western is omitted as the control group (see 

Appendix A for a list of urban areas in each group).  The negative coefficients on both the 

central and eastern regional dummies indicate that ceteris paribus, VMTPC is higher the more 

western the urban area regional grouping.  This could be due to smaller population density of 

western urban areas or larger land areas and distances between major cities along with a 

number of other regional factors (see discussion of possible omitted variables on pg. 37). 

Column (C) uses population size groupings for very large, large, medium, and small 

urban areas as fixed effects; so that medium is omitted as the control group (see Appendix A 

for categorical definitions and a list of urban areas in each group).  The coefficients exhibit a 

linear upward trend; such that VMTPC is found to be higher the larger the population size 

bracket an urban area falls into, ceteris paribus. 

Column (A) is included to show a regression with no group-specific fixed effects.  It 

is apparent that the R-squared is much smaller and the coefficients are quite different in 

Column (A) when compared to Column (D) (which uses the standard urban area fixed effects). 

Column (D), similarly to all other regressions that feature urban area and yearly fixed effects, 

does not report fixed effects coefficients for each individual urban area and year for the sake 

of brevity (see Appendix B for urban area and yearly fixed effects’ coefficients from the most 

refined model).  TABLE 15 shows that the use of urban area-specific fixed effects and yearly 

fixed effects provides the best fit for the model, as indicated by the R-squared of 

approximately 0.94. 
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TABLE 15 Fixed Effects Model with Varying Group Effects  

“Dependent Variable: VMTPC” (1982-2009)  

Variable Name 

(A) 

No Group-

Specific 

Effects 

(B) 

Regional & 

Year Effects 

(C) 

Population 

Size & Year 

Effects 

!(D) 

UA & Year 

Effects 

Lane Miles Per Capita 

(LMPC) 

.4974* 

(28.37) 

.4709* 

(27.27) 

.5065* 

(29.67) 

.4994* 

(28.10) 

Personal Income Per 

Capita (PIPC) 

.5363* 

(28.25) 

.5413* 

(28.15) 

.4351* 

(21.60) 

.2487* 

(7.38) 

Population Density 

(DENSITY) 

.0408* 

(3.40) 

-.0120 

(-0.94) 

.0084* 

(0.70) 

-.0152 

(-0.96) 

Real Fuel Cost 

(RFC) 

-.1681* 

(-3.32) 

-.4547* 

(-8.00) 

-.0450* 

(-0.88) 

-.1263* 

(-4.02) 

Transit Pass. Miles Travel 

Per Capita (PMTPC) 

-.0274* 

(-5.52) 

-.02667* 

(-5.51) 

-.0461* 

(-8.73) 

-.0176* 

(-3.70) 

Percent Construction 

Employment (CON) 

.2460* 

(15.01) 

.1883* 

(10.80) 

.2310* 

(14.01) 

.0338* 

(2.22) 

Percent Wholesale 

Employment (WHOLE) 

.1324* 

(9.54) 

.1581* 

(11.40) 

.0699* 

(4.90) 

-.0061 

(-0.33) 

Central Region  

(CENTRAL) 
 

-.0918* 

(-8.57) 
  

Eastern Region 

(EASTERN) 
 

-.1079* 

(-10.89) 
  

Very Large Population 

Size (VLG) 
  

.0874* 

(6.73) 
 

Large Population Size 

(LRG) 
  

.0588* 

(6.71) 
 

Small Population Size 

(SML) 
  

-.0806* 

(-8.37) 
 

Constant 
-2.216 

(-9.83) 

-1.561 

(-6.48) 

-1.254 

(-5.38) 

-.0340 

(-0.09) 

Number of Urban Areas 87 87 87 87 

Number of Years 28 28 28 28 

Number of Total Obs. 2361** 2361** 2361** 2361** 

R-squared 0.6372 0.6552 0.6630 0.9386 
* Represents statistical significance at the 5% level. 

**Represents smaller R-squared  due to missing obs. from BEA employment statistics. 
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ii. Distributed Lag Results 

TABLE 16 presents a distributed lag regression output and provides the calculated 

long-run elasticities for the independent variables.  The long-run elasticities found in Column 

(B) are closely comparable to the coefficients from the standard fixed effects model (Column 

(D) from TABLES 14 and 15), which are labeled in TABLE 16 as Column (D) for 

comparison.  Alternatively, the short-run elasticites, which are found in the distributed lag 

regression’s coefficients, and shown in Column (A) are considerably smaller.   

Recall the long term elasticities are calculated as ε  , where  are the short-run 

elasticities (found in the regression’s coefficients), and  is the coefficient of the one year lag 

of VMTPC.  We find a very inelastic price elasticity in the short-run of -.0263 (the RFC 

coefficient in TABLE 16), while the long-run price elasticity is   , which is 

very close to the value of -.1263 (found in the standard fixed effects model in Column (D)).   

Thus, the long run price elasticity found here is approximately five times larger than 

the short run elasticity of demand for VMTPC, as compared the Noland and Coward (2000) 

who found the long term price elasticity to be about 3.5 times as large as the short run 

elasticity.  Note that the larger R-squared in the distributed lag model is simply an artifact of 

the strong relation between VMTPC and its lag and does not necessarily reflect a superior 

design. 
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TABLE 16 Distributed Lag Model “Dependent Variable: VMTPC” (1982-2009)  

Variable Name 

(A)  

Distributed Lag 

Model with UA & 

Year Effects 

(B) 

Long Run 

Elasticities from 

(A) 

!(D) 

UA & Year Effects 

Lagged VMTPC One Year 

(L1_VMTPC) 

.7961* 

(66.65) 
  

Lane Miles Per Capita 

(LMPC) 

.1050* 

(8.71) 
.5150 

.4994* 

(28.10) 

Personal Income Per 

Capita (PIPC) 

.0498* 

(2.44) 
.2442 

.2487* 

(7.38) 

Population Density 

(DENSITY) 

-.0210* 

(-2.24) 
.1030 

-.0152 

(-0.96) 

Real Fuel Cost 

(RFC) 

-.0263 

(-1.47) 
-.1290 

-.1263* 

(-4.02) 

Transit Pass. Miles Travel 

Per Capita (PMTPC) 

-.0038 

(-1.33) 
-.0186 

-.0176* 

(-3.70) 

Percent Construction 

Employment (CON) 

.0104 

(1.15) 
.0510 

.0338* 

(2.22) 

Percent Wholesale 

Employment (WHOLE) 

.0024 

(0.22) 
.0118 

-.0061 

(-0.33) 

Constant 
.1888 

(0.80) 
 

-.0340 

(-0.09) 

Number of UAs 87  87 

Number of Years 28  28 

Number of Total Obs. 2344**  2361** 

R-squared 0.9673  0.5529 
* Represents statistical significance at the 5% level. 

**Represents smaller R-squared due to missing observations from BEA employment statistics. 

! Represents the optimal specification; to which other models can be compared. 

 

iii. Two-Stage Least Squares Results 

This sections depicts the instrumental variable two-stage least squares model that 

corrects for the endogeneity of LMPC.  The varying Columns (A) through (D) are to the exact 

same specification as the columns presented in the original fixed effects model in TABLE 14.   

TABLE 17 shows the first stage of the 2SLS model, with LMPC as the dependent 

variable being explained by the instrument, ULA, and all the other exogenous variables in the 



44 
 

equation.  In all four columns, ULA takes on a negatively significant coefficient.  Additionally, 

in the first stage, one can see that DENSITY is strongly negatively correlated to LMPC.  This 

relation explains why the DENSITY coefficient in the standard fixed effects model is biased 

away from its true negative value, shown in the second stage of the 2SLS.  

TABLE 17 2SLS Model with Varying Employment Mix Variables  

First Stage “Dependent Variable: LMPC”, Instrument: ULA” (1982-2009)  

Variable Name 

(A) 

2SLS with 

UA & Year 

Effects 

(B) 

2SLS with 

UA & Year 

Effects 

(C) 

2SLS with 

UA & Year 

Effects 

!(D) 

2SLS with 

UA & Year 

Effects 

Urban Land Area 

(ULA) 

-.3948* 

(-21.67) 

-.4112* 

(-22.27) 

-.4226* 

(-23.07) 

-.4128* 

(-22.25) 

Personal Income Per Capita 

(PIPC) 

.0705* 

(2.05) 

.0041 

(0.11) 

-.0282 

(-0.76) 

.0407 

(1.12) 

Population Density 

(DENSITY) 

-.4108* 

(-19.27) 

-.4023* 

(-18.48) 

-.4448* 

(-20.97) 

-.4176* 

(-19.20) 

Real Fuel Cost 

(RFC) 

-.1428* 

(-4.34) 

-.1260* 

(-3.75) 

-.1505* 

(-4.50) 

-.1199* 

(-3.55) 

Transit Pass. Miles Travel 

Per Capita (PMTPC) 

-.0009 

(-0.17) 

.0016 

(0.31) 

.0020 

(0.40) 

.0027 

(0.53) 

Public Private Employment 

Ratio (PUB) 

.1904* 

(9.59) 
   

Percent Finance-Insure-Real 

Estate Employment (FIN) 
 

-.0299* 

(-2.57) 
  

Percent Construction 

Employment (CON) 
 

-.0080 

(-0.48) 

-.0161 

(-0.98) 

-.0223 

(-1.36) 

Percent Manufacturing 

Employment (MANU) 
 

-.0623* 

(-4.22) 

-.0552* 

(-3.82) 
 

Percent Wholesale 

Employment (WHOLE) 
 

-.1002* 

(-5.10) 
 

-.0937* 

(-4.76) 

Percent Retail Employment 

(RETAIL) 
 

-.1016* 

(-2.53) 
  

Constant 
6.048 

(13.79) 

5.704 

(11.86) 

7.000 

(14.94) 

5.809 

(12.18) 

R-squared 0.1506 0.1315 0.1504 0.1484 
* Represents statistical significance at the 5% level. 

! Represents the optimal specification; to which other models can be compared.  
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The second stage regressions are presented in TABLE 18.  It is noticeable that now all 

variables in the optimal model specification in Column (D) are significant at the five percent 

level and have the expected sign.  The model reported in column (D) is considered to be the 

preferred model for three reasons.  First, there is no longer a bias due to simultaneity, second 

because all coefficients are significant and consistent with expectations of economic theory.  

Finally this variable specification has the largest R-squared of any of the four 2SLS models, 

indicating the best econometric fit.  The 2SLS correction significantly decreased the LMPC 

elasticity from .4994 in the standard OLS model down to .2524 in the 2SLS.  This smaller 

result is more comparable to the LMPC elasticites found in the literature (Noland 2001), 

(Fulton, et al. 2000). 

Column (D) in TABLE 18 is the final model used to calculate elasticities for this 

study.  In consequence, a 10 percent increase in personal income per capita (PIPC) correlates 

with close to a 2.6 percent increase in VMTPC due to the coefficient of .2524.  LMPC behaves 

similarly, with a 10 percent increase in lane miles per capita resulting in just over a 2.6 percent 

increase in VMTPC.  RFC, DENSITY, and PMTPC all show significantly negative elasticities 

of -.1542, -.0431, and -.0228, respectively.  

Finally, CON has an elasticity of .0332, meaning that a 10 percent increase in the 

percentage of an urban area’s work force that is employed in the construction industry 

corresponds to a 0.3 percent increase in VMTPC.  The same change in MANU corresponds to a 

decrease in VMTPC of about 0.4 percent, possibly due to manufacturing’s comparatively less 

vehicle intense production, distribution and sales processes. 
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TABLE 18 2SLS Model with Varying Employment Mix Variables  

Second Stage “Dependent Variable: VMTPC”, Instrument: ULA” (1982-2009) 

Variable Name 

(A) 

2SLS with 

UA & Year 

Effects 

(B) 

2SLS with 

UA & Year 

Effects 

(C) 

2SLS with 

UA & Year 

Effects 

!(D) 

2SLS with 

UA & Year 

Effects 

Predicted Lane Miles Per 

Capita ( ) 
.2753* 

(6.14) 

.2684* 

(6.36) 

.3315* 

(8.31) 

.2524* 

(5.80) 

Personal Income Per Capita 

(PIPC) 

.3425* 

(10.14) 

.1424* 

(4.02) 

.1630* 

(4.79) 

.2630* 

(7.47) 

Population Density 

(DENSITY) 

-.0343* 

(-2.03) 

-.0026 

(-0.16) 

-.0077 

(-0.47) 

-.0431* 

(-2.52) 

Real Fuel Cost 

(RFC) 

-.1534* 

(-4.71) 

-.1687* 

(-5.26) 

-.1591* 

(-5.07) 

-.1542* 

(-4.67) 

Transit Pass. Miles Travel 

Per Capita (PMTPC) 

-.0247* 

(-4.96) 

-.0237* 

(-4.83) 

-.0231* 

(-4.87) 

-.0228* 

(-4.53) 

Public Private Employment 

Ratio (PUB) 

.1207* 

(5.44) 
   

Percent Finance-Insure-Real 

Estate Employment (FIN) 
 

-.0004 

(-0.04) 
  

Percent Construction 

Employment (CON) 
 

.0716* 

(4.55) 

.0595* 

(3.93) 

.0332* 

(2.09) 

Percent Manufacturing 

Employment (MANU) 
 

-.1742* 

(-12.44) 

-.1724* 

(-12.88) 
 

Percent Wholesale 

Employment (WHOLE) 
 

-.0436* 

(-2.24) 
 

-.0411* 

(-2.06) 

Percent Retail Employment 

(RETAIL) 
 

-.0774* 

(-2.04) 
  

Constant 
-.4738* 

(-1.30) 

.7233 

(1.80) 

.7300 

(1.87) 

.1920 

(0.47) 

Number of Urban Areas 87 87 87 87 

Number of Years 28 28 28 28 

Number of Total Obs. 2436 2344** 2422** 2361** 

R-squared 0.5348 0.3251 0.3736 0.5339 
* Represents statistical significance at the 5% level. 

**Represents smaller R-squared due to missing observations from BEA employment statistics. 

! Represents the optimal specification; to which other models can be compared.  
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VI. CONCLUSIONS 

The relationship between VMT growth and growth in economic activity is complex.  

This study uses time-series techniques and Granger causality to provide insight into these 

casual relationships.  Historic national level data shows significant uni-directional Granger 

causation from economic activity to VMT from 1929-2009; a result consistent with the 

concept that VMT is a normal good.  This differs from Pozdena’s (2009) results that found bi-

directional causation at the national level.  Pozdena’s bi-directional results are shown to be 

valid for the 1949-2007 and 1949-1982 periods, but during the time period of interest for 

prospective GHG and transportation system efficiency policymaking, 1982-2009, bi-

directional causation is not found and significant variation is seen in the results between 

national and urban area data.  

The causal relationship between VMT and GDP is found to be dependent on the 

macroeconomy and the stage of the business cycle.  VMT tends to lead or cause economic 

activity in downturns, confirming the use of VMT related measures as indicators of turning 

points in the macroeconomic business cycle.  However, in macroeconomic upturns uni-

directional causation is seen flowing from economic activity to VMT growth.  Although a 

majority of the findings suggest that policies designed to reduce VMT may be used without 

the threat of compromising national economic activity, results were found to differ for urban 

and non-urban geographic areas.   

For very large, large, and medium size urban areas, no significant causal relationship 

was found between VMT and economic activity.  Only for small urban areas and the national 
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sample, which includes rural areas, was some reverse causation found; a result consistent with 

the hypothesis that smaller urban areas are still in the stage of growth where there is 

substantial feedback from increases in VMT and personal income.  It is also possible that 

smaller urban areas lack the transit alternatives available in larger areas that help mitigate 

negative impacts from exogenous reductions in VMT.   

Thus, the derived demand analysis is applied to explore the relationship between 

VMT and economic activity on a more micro level to determine where potential adverse 

impacts might arise and how policy could be formulated to mitigate those impacts.  Multiple 

factors were found to significantly contribute to the demand for VMT in urban areas including 

lane miles, personal income, population density, fuel cost, transit use, and the percent of 

employment in the construction or wholesale sectors.  Both transit use and population density 

are negatively related to VMTPC, reinforcing why smaller, less dense areas with less transit 

may not be able to provide substitutes for VMT, leading to a causal relationship with 

economic activity.   

With all these factors held constant, per capita VMT is found to be higher the more 

western and the larger the population size of an urban area.  However, VMT reduction policies 

should methodically examine each of these factors on an area by area basis.  This study does 

not imply that VMT reductions can universally be introduced into a transportation system 

without reducing mobility or economic activity, but suggests that in under normal 

circumstances in well-developed urban areas, it is reasonable that GHG related VMT 

reduction policies would not result in significant drops in economic activity. 
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Appendix A. Urban Area Population Size and Regional Groupings 

 

TABLE A.1 Urban Areas Population Size Groupings (98 TTI Urban Areas) 

Group 
Population 

Grouping 
List of UAs (alphabetical) 

Very 

Large 

(vlg) 

More than 

3 million 

Atlanta GA, Boston MA-NH-RI, Chicago IL-IN, Dallas-Fort Worth-

Arlington TX, Detroit MI, Houston TX, Los Angeles-Long Beach-

Santa Ana CA, Miami FL, New York-Newark NY-NJ-CT, 

Philadelphia PA-NJ-DE-MD, Phoenix AZ, San Diego CA, San 

Francisco-Oakland CA, Seattle WA, Washington DC-VA-MD 

Large   

(lrg) 

Between 1 

and 3 

million 

Austin TX, Baltimore MD, Buffalo NY, Charlotte NC-SC, Cincinnati 

OH-KY-IN, Cleveland OH, Columbus OH, Denver-Aurora CO, 

Indianapolis IN, Jacksonville FL, Kansas City MO-KS, Las Vegas 

NV, Louisville KY-IN, Memphis TN-MS, Milwaukee WI, 

Minneapolis-St. Paul MN, Nashville-Davidson TN, New Orleans LA, 

Orlando FL, Pittsburgh PA, Portland OR-WA, Providence RI-MA, 

Raleigh-Durham NC, Riverside-San Bernardino CA, Sacramento CA, 

San Antonio TX, San Jose CA, St. Louis MO-IL, Tampa-St. 

Petersburg FL, Virginia Beach VA 

Mediu

m 

(med) 

Between 

1/2 and 1 

million 

Akron OH, Albany-Schenectady NY, Albuquerque NM, Allentown-

Bethlehem PA-NJ, Bakersfield CA, Baton Rouge LA, Birmingham 

AL, Bridgeport-Stamford CT-NY, Charleston-North Charleston SC, 

Colorado Springs CO, Dayton OH, El Paso TX-NM, Fresno CA, 

Grand Rapids MI, Hartford CT, Honolulu HI, McAllen TX, New 

Haven CT, Oklahoma City OK, Omaha NE-IA, Oxnard-Ventura CA, 

Poughkeepsie-Newburgh NY, Richmond VA, Rochester NY, Salt 

Lake City UT, Sarasota-Bradenton FL, Springfield MA-CT, Toledo 

OH-MI, Tucson AZ, Tulsa OK, Wichita KS 

Small 

(sml) 

Less than 

1/2 

million 

Anchorage AK, Beaumont TX, Boise ID, Boulder CO, Brownsville 

TX, Cape Coral FL, Columbia SC, Corpus Christi TX, Eugene OR  

Greensboro NC, Jackson MS, Knoxville TN, Laredo TX, Little Rock 

AR, Madison WI, Pensacola FL-AL, Provo UT, Salem OR, Spokane 

WA, Stockton CA, Winston-Salem NC, Worcester MA 
Each population size grouping includes 15, 30, 31, and 22 urban areas respectively from largest to smallest.
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TABLE A.2 Urban Areas Regional Groupings (98 Urban Areas) 
Group List of UAs (alphabetical) 

Western 

Albuquerque NM, Anchorage AK, Bakersfield-Delano CA, Boulder CO, 

Colorado Springs CO, Denver-Aurora-Broomfield CO, Eugene-Springfield 

OR, Fresno CA, Honolulu HI, Las Vegas-Paradise NV, Los Angeles-Long 

Beach-Santa Ana CA , Oxnard-Thousand Oaks-Ventura CA, Phoenix-Mesa-

Glendale AZ, Portland-Vancouver-Hillsboro OR-WA, Riverside-San 

Bernardino-Ontario CA, Sacramento-Arden-Arcade-Roseville CA, Salem 

OR, Salt Lake City UT, San Diego-Carlsbad-San Marcos CA, San 

Francisco-Oakland-Fremont CA, San Jose-Sunnyvale-Santa Clara CA, 

Seattle-Tacoma-Bellevue WA, Spokane WA, Tucson AZ. 

Central 

Atlanta-Sandy Springs-Marietta GA, Austin-Round Rock-San Marcos TX, 

Beaumont-Port Arthur TX, Birmingham-Hoover AL, Brownsville-Harlingen 

TX, Cape Coral-Fort Myers FL, Corpus Christi TX, Dallas-Fort Worth-

Arlington TX, El Paso TX, Houston-Sugar Land-Baytown TX, Jacksonville 

FL, Kansas City MO-KS, Laredo TX, Little Rock-North Little Rock-

Conway AR, Miami-Fort Lauderdale-Pompano Beach FL, Minneapolis-St. 

Paul-Bloomington MN-WI, New Orleans-Metairie-Kenner LA, Oklahoma 

City OK, Omaha-Council Bluffs NE-IA, Orlando-Kissimmee-Sanford FL, 

Pensacola-Ferry Pass-Brent FL, San Antonio-New Braunfels TX, St. Louis 

MO-IL, Tampa-St. Petersburg-Clearwater FL, Tulsa OK, Wichita KS 

Eastern 

Akron OH, Albany-Schenectady-Troy NY, Allentown-Bethlehem-Easton 

PA-NJ, Baltimore-Towson MD, Boston-Cambridge-Quincy MA-NH, 

Bridgeport-Stamford-Norwalk CT, Buffalo-Niagara Falls NY, Charleston-

North Charleston-Summerville SC, Charlotte-Gastonia-Rock Hill NC-SC, 

Chicago-Joliet-Naperville IL-IN-WI, Cincinnati-Middletown OH-KY-IN, 

Cleveland-Elyria-Mentor OH, Columbia SC, Columbus OH, Dayton OH, 

Detroit-Warren-Livonia MI, Grand Rapids-Wyoming MI, Hartford-West 

Hartford-East Hartford CT, Indianapolis-Carmel IN, Knoxville TN, 

Louisville-Jefferson County KY-IN, Memphis TN-MS-AR, Milwaukee-

Waukesha-West Allis WI, Nashville-Davidson-Murfreesboro-Franklin TN, 

New Haven-Milford CT, New York-Northern New Jersey-Long Island NY-

NJ-PA, Philadelphia-Camden-Wilmington PA-NJ-DE-MD, Pittsburgh PA, 

Poughkeepsie-Newburgh-Middletown NY, Providence-New Bedford-Fall 

River RI-MA, Raleigh-Cary NC, Richmond VA, Rochester NY, Springfield 

MA, Toledo OH, Virginia Beach-Norfolk-Newport News VA-NC, 

Washington-Arlington-Alexandria DC-VA-MD-WV  
Each regional grouping includes 24, 26 and 37 urban areas respectively from west to east. 
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Appendix B. Coefficients for the Group and Yearly Fixed Effects 

 

TABLE B.1 Coefficients for the Group and Yearly Fixed Effects from TABLE 3-

Column (D) (1982-2009) 

Variable Name (Fixed Effects) Coefficients T-Statistics 

Yearly Fixed Effects 

1983 0.0110 1.09 

1984 0.0102 0.94 

1985 0.0322* 2.77 

1986 0.0146 0.82 

1987 0.0286 1.57 

1988 0.0475* 2.45 

1989 0.0645* 3.46 

1990 0.0757* 3.66 

1991 0.0938* 4.56 

1992 0.1118* 5.28 

1993 0.1256* 5.63 

1994 0.1300* 5.37 

1995 0.1488* 6.56 

1996 0.1637* 7.57 

1997 0.1586* 6.68 

1998 0.1444* 5.32 

1999 0.1583* 6.1 

2000 0.1888* 9.27 

2001 0.1874* 8.65 

2002 0.1833* 7.58 

2003 0.2005* 8.85 

2004 0.2351* 12.59 

2005 0.2560* 14.99 

2006 0.2550* 14.76 

2007 0.2689* 15.53 

2008 0.2733* 15.52 

2009 0.2218* 12.94 

Urban Area Fixed Effects 

Albany-Schenectady-Troy, NY  0.0456* 2.32 

Albuquerque, NM  0.1933* 9.91 

Allentown-Bethlehem-Easton, PA-NJ  0.0854* 4.37 

Anchorage, AK  -0.0309 -1.43 

Atlanta-Sandy Springs-Marietta, GA  0.4055* 19.27 

Austin-Round Rock-San Marcos, TX  0.1980* 10.11 

Bakersfield-Delano, CA  -0.0195 -0.88 

Baltimore-Towson, MD  0.2719* 11.24 

Beaumont-Port Arthur, TX  0.0678* 2.91 

Birmingham-Hoover, AL  0.2714* 14.11 

Boston-Cambridge-Quincy, MA-NH  0.2174* 9.31 

Boulder, CO  -0.0535* -2.10 
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Bridgeport-Stamford-Norwalk, CT  0.1234* 4.33 

Brownsville-Harlingen, TX  -0.2388* -7.75 

Buffalo-Niagara Falls, NY  -0.1715* -9.30 

Cape Coral-Fort Myers, FL  0.0078 0.32 

Charleston-North Charleston-Summerville, SC  0.2498* 10.63 

Charlotte-Gastonia-Rock Hill, NC-SC  0.1560* 8.08 

Chicago-Joliet-Naperville, IL-IN-WI  -0.0639* -2.65 

Cincinnati-Middletown, OH-KY-IN  0.1714* 9.29 

Cleveland-Elyria-Mentor, OH  0.1187* 5.91 

Colorado Springs, CO  -0.0068 -0.30 

Columbia, SC  0.2414* 12.88 

Columbus, OH  0.2909* 15.14 

Corpus Christi, TX  0.0829* 3.64 

Dallas-Fort Worth-Arlington, TX  0.3127* 16.60 

Dayton, OH  0.1972* 10.65 

Denver-Aurora-Broomfield, CO  0.2369* 11.33 

Detroit-Warren-Livonia, MI  0.2904* 13.76 

El Paso, TX  0.0837* 3.44 

Eugene-Springfield, OR  0.1067* 5.20 

Fresno, CA  0.0884* 3.99 

Grand Rapids-Wyoming, MI  0.1482* 7.96 

Hartford-West Hartford-East Hartford, CT  0.1206* 5.96 

Honolulu, HI  0.2807* 8.77 

Houston-Sugar Land-Baytown, TX  0.3109* 15.54 

Indianapolis-Carmel, IN  0.3995* 21.87 

Jacksonville, FL  0.3323* 18.00 

Kansas City, MO-KS  0.3001* 15.58 

Knoxville, TN  0.3702* 19.13 

Laredo, TX  -0.2578* -8.36 

Las Vegas-Paradise, NV  0.1278* 4.56 

Little Rock-North Little Rock-Conway, AR  0.2979* 16.06 

Los Angeles-Long Beach-Santa Ana, CA  0.4855* 17.51 

Louisville-Jefferson County, KY-IN  0.3435* 17.24 

Memphis, TN-MS-AR  0.1323* 7.05 

Miami-Fort Lauderdale-Pompano Beach, FL  0.2039* 9.39 

Milwaukee-Waukesha-West Allis, WI  0.0660* 3.27 

Minneapolis-St. Paul-Bloomington, MN-WI  0.2218* 11.13 

Nashville-Davidson-Murfreesboro-Franklin, TN  0.3823* 20.86 

New Haven-Milford, CT  0.1754* 9.28 

New Orleans-Metairie-Kenner, LA  0.0033   0.14 

New York-Northern New Jersey-Long Island, NY-NJ -0.0532 -1.75 

Oklahoma City, OK  0.2532* 13.55 

Omaha-Council Bluffs, NE-IA  0.0098 0.49 

Orlando-Kissimmee-Sanford, FL  0.3457* 17.89 

Oxnard-Thousand Oaks-Ventura, CA  0.3603* 16.78 

Pensacola-Ferry Pass-Brent, FL  0.1496* 6.99 

Philadelphia-Camden-Wilmington, PA-NJ-DE  0.1114* 4.82 

Phoenix-Mesa-Glendale, AZ  0.2234* 11.42 
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Pittsburgh, PA  0.0687* 3.53 

Portland-Vancouver-Hillsboro, OR-WA  0.2500* 11.39 

Poughkeepsie-Newburgh-Middletown, NY  0.2694* 14.23 

Providence-New Bedford-Fall River, RI-MA  0.0100 0.51 

Raleigh-Cary, NC  0.2412* 12.70 

Richmond, VA  0.1755* 9.55 

Riverside-San Bernardino-Ontario, CA  0.3578* 15.84 

Rochester, NY  -0.1383* -7.26 

Sacramento-Arden-Arcade-Roseville, CA  0.3740* 15.65 

Salem, OR  0.2981* 15.63 

Salt Lake City, UT  0.0992* 4.28 

San Antonio-New Braunfels, TX  0.2328* 11.52 

San Diego-Carlsbad-San Marcos, CA  0.2878* 13.22 

San Francisco-Oakland-Fremont, CA  0.4770* 19.17 

San Jose-Sunnyvale-Santa Clara, CA  0.3984* 14.00 

Seattle-Tacoma-Bellevue, WA  0.4073* 14.65 

Spokane, WA  0.3381* 15.71 

Springfield, MA  -0.0155 -0.77 

St. Louis, MO-IL  0.0514* 2.78 

Tampa-St. Petersburg-Clearwater, FL  0.1738* 8.70 

Toledo, OH  0.0241 1.34 

Tucson, AZ  0.1879* 7.90 

Tulsa, OK  0.1333* 7.14 

Virginia Beach-Norfolk-Newport News, VA-NC  0.1668* 7.65 

Washington-Arlington-Alexandria, DC-VA-MD  0.2757* 9.14 

Wichita, KS  -0.0654* -3.49 
Base year and area: 1982 and Akron, OH. 

* Represents statistical significance at the 5% level.
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Appendix C. Stability of the VAR Model 

A post-estimation test is applied to observe the stability of the VAR model. 

Eigenvalues less than or equal to one are considered to be stable.  TABLE C.1 shows the 

stability of the 14 aggregate VAR regressions described throughout the paper (four national 

regressions, six urban area regressions).  All regressions were found to have “modulus” 

eigenvalues less than one, and thus satisfy the stability condition for a VAR.  The stability of 

the regressions is also presented graphically in FIGURE C.2, which shows the unit circle 

graphs of the same eigenvalues from TABLE C.1.  Eigenvalues are represented by dots on the 

graphs below, it is quickly apparent that none lie outside the unit circles in any regression and 

that all regressions are stable. 
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TABLE C.1 Stability of Eigenvalues 

Regression Name Eigenvalue Modulus 

National Data (1929-2009) 

VMT-GDP  

.3670302 +  .5666678i 

.3670302 -  .5666678i 

.213231 +  .1729945i 

.213231 -  .1729945i 

.675147 

.675147 

.274581 

.274581 

VMTPC-GDPPC   

.3523781 +  .5678486i 

.3523781 -  .5678486i 

.2258035 +  .1902826i 

.2258035 +  .1902826i 

.668298 

.668298 

.295288 

.295288 

VMT-PI  

.386013 +  .5729198i 

.386013 -  .5729198i 

.2173896 +   .164387i 

.2173896 +   .164387i 

.690828 

.690828 

.272546 

.272546 

VMTPC-PIPC  

.3532957 +  .5679065i 

.3532957 -  .5679065i 

.2276286 +  .1871313i 

.2276286 +  .1871313i 

.668832 

.668832 

.294674 

.294674 

Aggregated  Subsample of UA’s and Associated MSA’s Data (1982-2009) (n=98) 

VMT-PI  

.9173188 + .09394279i 

.9173188  - .09394279i 

-.496322 

.17858 

.922117 

.922117 

.496322 

.17858 

VMTPC-PIPC  

.8973181 

.6931843 +  .3733022i 

.6931843  -  .3733022i 

-.3695244 

.897318 

.787311 

.787311 

.369524 

Urban Subsample Divided into Population Groupings (1982-2009) (n=98) 

VMTPC(vlg)-PIPC(vlg)  

.8831655 

.7010097 +  .3111598i 

.7010097 -  .3111598i 

-.3236217 

.883166 

.766965 

.766965 

.323622 

VMTPC(lrg)-PIPC(lrg)  

.872843 

.7905867 +   .283594i 

.7905867 -   .283594i 

-.3983964 

.872843 

.839912 

.839912 

.398396 

VMTPC(med)-

PIPC(med)  

.8902946 

.5018687 +  .3658767i 

.5018687  -  .3658767i 

-.2982423 

.890295 

.621078 

.621078 

.298242 

VMTPC(sml)-PIPC(sml)  

.9140482 

.5340066 +  .3280137i 

.5340066 -   .3280137i 

-.4276883 

.914048 

.626702 

.626702 

.427688 
* Represents eigenvalues greater than one (*: do not satisfy stability condition).
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FIGURE C.2 Unit Circle Graphs for Stability of Eigenvalues  

National Data (1929-2009) 

VMT vs. GDP  VMTPC vs. GDPPC  

VMT vs. PI  VMTPC vs. PIPC 

 

Aggregated Subsample of UA’s and Associated MSA’s Data (1982-2009) (n=98) 

VMT vs. PI 

 

VMTPC vs. PIPC 
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Urban Subsample Divided into Population Groupings (1982-2009) (n=98) 

VMTPC(vlg)-PIPC(vlg) 

 

VMTPC(sml)-PIPC(lrg) 

 

VMTPC(med)-PIPC(med) 

 

VMTPC(sml)-PIPC(sml) 
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Appendix D. Impulse Response Analysis 

Impulse response functions describe how a variable reacts over time to an exogenous 

shock or impulse.  In this study the impulse will represent a negative shock to total VMT 

resulting from a policy passed in order to reduce GHGs or other externalities caused by excess 

driving.  Accordingly, the one unit exogenous shock is placed on VMT, and the impulse 

response had by GDP or PI is observed, starting at the time of the shock and lasting as long as 

twenty years into the future.  

FIGURE D.2 presents graphs of the impulses responses of economic activity after a 

one unit positive shock in VMT.  Due to time restraints and lack of impulse response function 

programming experience the exogenous shock to VMT is positive and not negative, as would 

be ideal in the simulation of a GHG policy.  Yet, the impulse responses can be inverted in 

order to rudimentally forecast economic activity.  What is more important to witness than the 

direction of the forecast, is the scale of the response, and that in every regression by the ten 

year mark almost all variation has subsided; contrasting Pozdena’s finding that a downward 

shock to VMT, would result in a reduction of GDP of 90 percent of the size of the VMT shock 

in the short run (2 years) and 46 percent of the size in the long run (20 years) (Pozdena 2009). 

TABLE D.1 support the conclusion that GHG policies will not likely have large 

adverse effects on the economy due to VMT reduction by providing short-run (2 year), mid-

run (10 year), and long-run (20 year) impulse response estimates derived from FIGURE D.2.  

At the national level, the impulse response functions report that a downward shock to VMT 

would result in an increase of GDP of .05 percent of the size of the VMT shock in the short 

run (2 years) and have no effect in the long run (20 years).   
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FIGURE D.1 Impulse Response Function Graph (0-20 yr. post exogenous VMT shock) 

National Data (1929-2009) 

VMT vs. GDP 

  

VMTPC vs. GDPPC 

 

VMT vs. PI 

  

VMTPC vs. PIPC 

  

Aggregated Subsample of Urban Area’s Data (1982-2009) (n=98) 

VMT vs. PI 

  

VMTPC vs. PIPC  
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Urban Subsample Divided into Population Groupings (1982-2009) (n=98) 

VMTPC(vlg)-PIPC(vlg) 

 

VMTPC(lrg)-PIPC(lrg)  

 

VMTPC(med)-PIPC(med)  

 

VMTPC(sml)-PIPC(sml)  

 

All variables specified in stationarity form. 
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TABLE D.2 Impulse Response Functions (0-20 years post an exogenous VMT shock) 

National Data (1929-2009) 

Step VMT-GDP VMTPC-GDPPC VMT-PI VMTPC-PIPC 

2 year -.000371 -.000567 -.000972 -.001638 

10 year .000415 .000372 .000427 .000303 

20 year -7.5e-06 -4.9e-06 -.000011 -4.7e-06 

Aggregated Subsample of 98 Urban Area’s Data (1982-2009) (n=98) 

Step VMT-GDP VMTPC-GDPPC VMT-PI VMTPC-PIPC 

2 year - - .003427 .005963 

10 year - - .000212 -.000837 

20 year - - -.000448 -.000171 

Urban Subsample Divided into Population Groupings (1982-2009) (n=98) 

Step 
VMTPC(vlg)-

PIPC(vlg) 

VMTPC(lrg)-

PIPC(lrg) 

VMTPC(med)-

PIPC(med) 

VMTPC(sml)-

PIPC(sml) 

2 year .007119 .008274  .002605  .003022  

10 year -.001277  -.002425  -.000119 -.000211  

20 year -.000151 .000046  -.000057  -.000071  
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