AN ABSTRACT OF THE THESIS OF

$\frac{\text { Tsu-Ping Patrick Chuang }}{\text { (Name) }}$
for the Master of Science
Electric and
in Electronics Engineering presented on \qquad
SATELLITE MULTIPLICATION PACKAGE FOR A SMALL DIGITAL Title : COMPUTER
Abstract approved : Redacted for privacy
James H.JHetzog

This thesis is concerned with the design of an external multiplication package which can be utilized as an I/O device with a PDP-8/L computer. The multiplier and multiplicand are assumed to be 12 bit integers. The 24 bit product can be transferred back to the accumalator of computer 12 bits at a time. The control pulses for the operation are supplied by the computer through I/O transfer instructions.

The multiplication package was constructed on three printed-circuit cards, using only standard TTL IC chips. No other components were needed. It is simple, inexpensive and mich faster than the method of repeated addition which must ordinarily be used in the PDP-8. This paper also shows a division algorithm using the multiplier and trial-and-error. This method of division is faster than repeated subtraction.

Satellite Multiplication Package for A Small Digital Computer
 by

 Tsu-Ping Patrick Chuang

 Tsu-Ping Patrick Chuang}

A THESIS
submitted to
Oregon State University
in partial fulfillment of
the requirements for the
degree of
Master of Science
June 1972

Redacted for privacy

$\begin{aligned} & \text { Assopiate Pro fessor Af Electrical and } \\ & \text { Electronics Enginearing } \\ & \text { In charge of major }\end{aligned}$
Redacted for privacy Head of Department of Electrical and Electronics Engineering

Redacted for privacy

Dean of Graduate School

Date thesis is presented 3/15/72
Typed by Won-Ho Chuang for Tsu-Ping Patrick Chuang

ACKNONLEDGEMENT

The author wishes to express gratitude to Professor James H. Herzog for his initiation, advice and assistance in directing the deaign and writing of this thesis.

table of contents

I. INTRODUCTION 1
II. LOGIC DESIGN OF MULTIPLICATION PACKAGE 4
III. interfage with por-8/L and generation of ENABLE PULSES 9
IV. RESULTS 13
v. CONCLUSION 19
BIBLIOGRAPHY 20
APPENDIX A : I/O RACK TERMINALS 21
APPENDIX B : THE CARD/CHIP LAYOUT AND DETAILED CIRCUIT DESIGN 22

LIST OF FIGURES

Figure Page
1 Logic block diagram 4
2 R register, multiplicand bit 6
3 Register A, partial sum bit 7
4 MQ register, multiplier bit 8
5 The octal IOT instruction 9
6 Generation of enable pulses through device selectors 12
7 Flow chart for division 17
8 Detailed circuit diagram (I) 24
9 Detailed circuit diagram (II) 25

SATELLITE MULTIPLICATION PACKAGE FOR A SMALL DIGITAL COMPUTER

I. INTRODUCTION

The PDP-8/L small digital computer uses 12 bit words in its accumulator and memory. Its memory cycle time is 1.6 us. There are six memory reference instruction, one of them is an add instruction called " Two's Complement Add " (TAD). The multiplication ordinarily has to be done by repeated addition of the multiplicand. There are also problems with overflow. A 12-bit by 12-bit multiplication using this method has to use a double precision procedure in order to get the $24-$ bit product. It is obviously time consuming. A hardware 12-bit by 12-bit multiplication using the existing interface utility of PDP-8/L is very helpful to save programming time.

This hardware multiplication package is called " satelife ", because it is an external package which can be plugged into I/O rack of the PDP-8/L when needed.

A reasonable algorithm to consider for an external package is a shift and add algorithm. For a 12 bit multiplier, only 12 additions are required.

Here is an example utilizing a 4 bit multiplicand and 4 bit multiplier. The multiplicand is 13 ($=1101$), the multiplier is 11 ($=1011$). The result should be 143 ($=10001111$).

We start from zero partial sum. The $"$ Test/Add " means that the last bit of multiplier is tested. If it is "l", then add the multiplicand to partial sum. If it is " 0 ", then add nothing to partial sum. The " Shift Right " operation should shift both the partial sum and the multiplier, and drop the last bit (which was tested in the previous step) of multiplier. Repeat the " Test/Add " and " Shift Right " operations until every bit of the multiplier has been used. The most significant bits of product will be in the partial sum. The least significant bits of product will be in the original position of the multiplier.

Following the above algorithm, the logic circuit design will he in Chapter II. Chapter III talks about the interface and generation of enable pulses. Chapter IV will supply a multiplication sample program and a division sample program using this hardware maltiplication. Detailed circuit design will be supplied in the appendix.

II. LOGIC DESIGN OF MULTIPLICATION PACKAGE

According to the multiplication algorithm in the previous chapter, there must be three registers (each 12 bits in length) to hold the multiplicand, multiplier and partial sum. These will be called $R, M Q$ and A register respectively. A hardware adder is also needed. The simplified register layout is shown on Fig.1.

Register Layout and Information Flow

Fig.1. Logic block diagram.

Procedure

(1) Clear all registers. Load multiplier into accumulator of PDP-8/L.
(2) From accumulator, transfer maltiplier to R register first, then to MQ register. (R register is the only channel to accept the information coming from accumulator of PDP-8/L.)
(3) Load multiplicand into accumulator, and from there transfer to R register.
(4) Perform the Test-Add-Shift Right operation. This is done by hardware. The last bit of multiplier enables the addition of the R and A register. The 13 -bit sum is sent to A register and MQ11 as shown. The "Shift Right" is done by actual circuit connections. A clock pulse is needed to transfer the information in A and $M Q$ register from the $J K$ master side to $Q \bar{Q}$ slave side.
(5) Repeat step 4, 12 times (or simply say, 12 clock pulses).
(6) Return the twelve most significant bits of product in A register to accumulator.
(7) Return the twelve least significant bits of product in $M Q$ register to accumulator.
(1) R Register

R register uses $R S$ flip-flops which are made from two 2-input NAND gates (type SN7400N) as shown in Fig. 2. It is loaded from the corresponding bufferred accumulator bit of $\mathrm{PDP}-8 / \mathrm{L}$. Its output is sent to the MQ register or to the adder.

RS flip-flop truth table

S	R	$Q(t+1)$
0	0	$?$
0	1	1
1	0	0
1	1	$Q(t)$

Fig. 2. R register, multiplicand bit.
(2) ARegister

Register A uses JK master-slave flip-flops (SN7476N). The typical stage is shown on Fig. 3. It is loaded from the sum bits of the adder. There are thirteen sum bits in the output of adder. Only the twelve most significant bits are loaded into A register. The " Shift Right " operation is done by this kind of actual connections.

Fig. 3. Register A, partial sum bit.
(3) MQ Register

Register $M Q$ also uses JK flip-flops (SN7476N). The typical stage is shown on Fig. 4. It is loaded from the R register. Its output is sent to the master side of next stage or to the corresponding bit of accumalator.

Fig. 4. MQ register, multiplier bit.

(4) Adder

The adder uses three 4-bit full adders (SN7483N). It adds the R and A register. The 13 -bit sum is sent to the A register and MQ11, as mentioned before.

III. INTERFACE WITH PDP-8/L AND GENERATION OF ENABLE PULSES

Programmed Transfer

There are three basic methods for the transfer of information between I / O devices and the PDP-8. The method used here is called "Programmed Transfer", in which instructions are included at some point in the program to accept or transmit information. Thus, programmed transfers are program initiated and are under program control. This method uses the accumulator as the buffer, or storage area in the computer, for all data transfers.

The octal operation code "6" is used to specify an input/output transfer (IOT) instruction. The typical octal IOT instruction is like the one in Fig. 5.

Fig. 5. The octal IOT instruction

Device Selection and I/O Rulses

The device selection code is transmitted to all peripheral equipment (like the Teletype and this hardware multiplier) whenever the IOT instruction is executed. Each IOT instruction may generate as many as three sequential pulses (each 0.8 us in length, seperated by 0.1 us. Total I/O instruction time is 4.25 us).

When executing the $1 / 0$ instruction, one or two or all of the three IOP terminals (see appendix A, I/O rack) will generate positive pulse. For example, when executing " 6 XXI ", only the IIOP 1 " terminal will generate a positive pulse (logic 1). There is no pulse generated from "IOP 2 " or "IOP 4" terminal. Same for "6Xx2" (only "IOP 2" terminal will be logie 1) and "6xx4" (only "Iop 4" terminal will be logic 1). But when executing " $6 \times x 7$ ", all of the three IOP terminals will generate positive pulse. When executing "6XX6", both "IOP 2" and "IOP 4" terminal will generate positive pulse.

These three I / O pulses are further gated by a device selector (a 6-input NAND gate). Figure 6 shows the details for generating nine enable pulses associated with device selectors 30,31 and 32 (octal value). Some of these enable pulses are negative, as required co clear and preset the $J K$ flip-flops.

Required IOT instruction

The following IOT instructions are used to perform multiplication. Three octal device codes (30, 31 and 32) are used. Where 6307 and 6306 are combination instructions.

Proposed New Mnemonic Code	IOT Inst.	$\begin{aligned} & \text { Comments } \\ & \text { (positive or negative pulse needed) } \end{aligned}$
CAM	6301	Clear A and MQ register (-)
CRR	6302	Clear R register (-)
TFR	6304	Transfer contents of accumalator of PDP-8/L (AC) into $R(+)$
CRI	6307	Clear $M Q$ and R, transfer $A C$ into R (a combination of CAM, CRR and TFR)
RIN	6306	Clear R and transfer $A C$ into R (a combination of $C R R$ and $T F R$)
MQI	6311	Transfer contents of R into $M Q(+)$
AOT	6312	Transfer contents of A register to PDP-8/1 accumulator (+)
MQO	6314	Transfer contents of $M Q$ register to PDP-8/L accumalator (+)
CLK	6327	Supply three clock pulses to A and MQ register (+)

Interface Logic Design Note
The output circuitry from the PDP-8 contains TTL IC chips, 7400 series. Their standard fan-out is ten loads. In order to save some fan-out capability to other external package, it is better take only one load from each output terminal (see appendix A) to this package. The circuit shown on Fig. 6 has taken care of this.

Fig. 6. Generation of enable pulses through device selectors

IV. RESULTS

A 12-bit by 12-bit hardware multiplier has been implemented using fifty-five IC chips on three printed-circuit cards. Each card is 5.5 inches by 4.5 inches. The total cost of IC chips is around $\$ 30.00$.

This package plugs directly into the I/O rack of the PDP-8/L and operates under program transfer mode. A program or subroutine is required.

The associated program for multiplication is shown on the next page where a sample octal machine language program was actually run and the whole program was cut from the paper of Teletype printer. The programmer using this package has to follow the basic program in order to get the product. But he can arrange the program so that his own program job can be done more efficiently.

The list of IC chips and a sample division program using the multiplication package are shown on following pages.

The Sample Program for Multiplication

\$
(Remark: Use the proposed new mnemonic codes.)

The IC chips used in this package are shown as below:

T. I. IC series	Number of chips	Approximate price
SN7400N	25	\$ 0.20 ea.
SN7404N	6	\$ 0.20 ea .
SN7405N	2	\$ 0.30 ea.
SN7410N	1	\$ 0.20 ea.
SN7416N	2	\$ 0.20 ea.
SN7417N	1	\$ 0.20 ea.
SN7430N	3	\$.0.20 ea.
SN7476N	12	\$ 1.00 ea.
SN7483N	3	\$ 3.00 ea.
Total :	55 chips	\$29.20

A Sample Program for Division by Using Multiplication Package

The integer division $C / D=Q+R / D$, where $C \geq D$, can be done by the following trial-and-error method. The maximum octal value for quotient Q is 7777. So let's ery $Q=100,000,000,000$ (i.e., assign the possible most significant bit to l). If the product of $Q x D$ is smaller than or equal to the dividend C, then the "l" stays in that bit position. Otherwise change the "l" to a "O". Then try the next most significant bit to see if it is a binary "I" (i.e., $\operatorname{try} Q=X 10,000,000,000$ where X has been found by previous trial), and so on, up to the last bit. After twelve trials, the quotient Q is found and the remainder $R=C-Q \times D$.

The flow chart and symbolic language program are shown on following pages. A glossary is supplied here for better understanding.

Glossary

C: dividend
D: divisor
Q: quotient
R : remainder
CTC: Two's Complement of C
TRY: first value to try (here is 4000_{8})
K: variable trial value
$\overline{\mathrm{K}}$: one's complement of K variable
A: most significant part of product $Q x D$, a 12 -bit number
MQ: least significant part of product $Q \times D$, a 12-bit number

Fig. 7. Flow chart for division

Symbolic Program for Division

*200			
START,	CLA ClL	C,	XXXX
	TAD C	D,	XXXX
	CIA	Q,	0000
	DCA CTC	R,	0000
	TAD TRY	CTC,	0000
	DCA K	TRY,	4000
	TAD TRY	K,	0000
MULT,	DCA Q	A,	0000
	$\begin{aligned} & \text { JMG MULTY } \\ & \text { TAD A } \end{aligned}$	MQ,	0000
	SZA		
	JMP ERROR		
	TAD MQ		
	SPA		
	JMP ERROR	MULTY,	0000
	TAD CTC		TAD Q
	SNA		IOT +307
	JMP ZERO		IOT+311
	SPA		CLA CLL
	JMP SHIFT		TAD D
ERROR,	CLA CLL		IOT+306
	TAD K		IOT +327
	CMA		IOT+327
	AND Q		IOT +327
	DCA Q		IOT+327
SHIFT,	CLA CLL		CLA CLL
	TAD K		IOT+312
	RAR		DCA A
	SNA		IOT +314
	JMP OUT		DCA MQ
	DCA K		JMP I MULTY
	TAD K	\$	
	TAD Q		
	DCA Q		
	JMP MULT		
ZERO,	DCA R JMP END	(Remark: $0 \leq 5 \leq 37778$,)	
OUT,	JMS MULTY		
	TAD MQ		
	CIA		
	TAD C		
	DCA R		
END,	HLD		

V. CONCLUSION

The 12-bit by 12-bit multiplication package is used under program control of PDP-8. When we look at the sample program for multiplication previously supplied, we can see that the total operation time is 115.35 us (or about 32 memory cycle times.).

For the division program which uses the hardware multiplier, the maximum program time required is about 800 memory cycle times. The average program time will be about 700 memory cycle times. It is faster than the usual repeated subtraction routine method which requires 700 memory cycle times when the quotient is around 53 (decimal). When the quotient is greater than 53 , more than 700 memory cycle times will be needed.

It is possible to modify this package in hardware, in order to do the hardware division. Mainly, a one bit operation code register, hardware compare gating circuit and shift left opexation gating circuit will be added.

Supplied in appendix B, the detailed circuit design and the card/chips layout are very helpful if something is wrong in this package.

1. Digital Equipment Corporation. Small computer handbook. Maynard, Massachusetts, 1970.
2. Digital Equipment Corporation. Introduction to programming. PDP-8 Family. Maynard, Massachusetts, 1970.
3. Texas Instruments Incorporated. The Integrated Circuits Catalog for Design Engineers. 1971.

APPENDICES

APPENDIX A: I/O RACK TERMINALS

NOTE: $11=$ most significant bit (equal to bit position assignment 00)
$00=$ least significant bit (equal to bit position assignment li)

Outputs from PDP-8/L are positive logic. Inputs to PDP-8/L are negative logic.

All gates are Texas Instruments Series 7400 TTL
Logic "I" 20.4 volts
Logic "O" ≤ 0.4 volts

APPENDIX B

THE CARD/CHIP LAYOUT AND DETAILED CIRCUIT DESIGN

There are three cards, namely Card I, Card II and Card III. Each card has twenty chip positions. In the diagram blow, the type of chip follows by a position number.

Card II

7416 (非)	7405 (\#19)	7405 (非17)

Gating of R to adder

In order to pin-point the terminals of the chips from the detailed circuit diagram, here are some examples.

$\downarrow^{\text {This terminal }}$ is at 13 th pin of chip III4. 13 D III 4
-This inverter is on Card III, 倨 chip. This JK flip-flop is on Card II, \#8 chip.

Fis. 8. Detailed circuit diagram (I)

