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INVERSE LIMITS AND FULL FAMILIES

1 Introduction

Inverse limits, besides being of intrinsic interest to topologists, can often be

used to represent attractors of dynamical systems. For example, the inverse

limit space with a single full unimodal bonding map is homeomorphic to the

attracting set of Smale's horseshoe. Williams [36] and Block [8] were the first to

address the relationship between inverse limits and attractors and many others

have since followed (see, for example, [19], [34], [3],and [20]). These efforts have

generated an increasing interest in the topological properties of inverse limit

spaces with unimodal bonding maps.

Barge and Martin [1] were the first to show there is a strong relationship be-

tween the dynamics of the bonding map and the topology of the corresponding

inverse limit. Holte [19] utilized kneading theory to show that two unimodal

bonding maps with the same finite kneading sequence produce homeomorphic

inverse limits Work by Barge and Martin [1] showed that inverse limits corre-

sponding to unimodal maps with finite kneading sequences of different lengths

are not homeomorphic due to the fact that they have a different number of

endpoints. Only recently has it been shown that two inverse limits with bond-

ing maps having different kneading sequences of the same finite length are not

homeomorphic [30] (see also [6] and [23]).



Many of these results have been concentrated on the tent family,

if 0 < x <
TA= ,0 <A < 2

1 x) if < x < 1.

or the logistic family

f A(x) = Ax(1 40 <A < 4.

This is of no surprise as these two families are the most investigated and well

understood examples of one-parameter families of interval maps. An important

difference between the tent family and logistic family is that only the latter is

an example of a Full family (see §3.5).

Our interest in Full families is two fold. First, Full families are the context in

which Feigenbaum's celebrated Universality Theory was developed. Secondly,

apart from the logistic family, there is little in the literature concerning the

behavior of the corresponding inverse limit spaces as the parameter is varied.

We will see that in a Full family of Clunimodal maps there exists a convergent

sequence of parameter values

Ao < Ai < A2 < Acx,

2

such that the critical point corresponding to A, is periodic of period 2'. This is
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generally now referred to as the period doubling route to chaos. By investigating

the logistic family, Feigenbaum [16], equipped with only a pocket calculator,

made a remarkable discovery:

lim An+1 An
---- 6 -= 4.6692106

An+2 An+1

and is identical for all such systems undergoing this period doubling. Feigen-

baum went on to propose an explanation for the universality of 6 which was

inspired by the renormalization group theory in statistical mechanics. The

main results of this work deal with Feigenbaum's Universality Theory in the

topological setting of inverse limits.

As the dynamics of the logistic family are so well documented, it is only

natural (and inevitable) that the behavior of the inverse limits as the parameter

is varied be investigated. It was Barge and Ingram [4] who, relying on the

fact that maps from the logistic family have negative Schwarzian derivative,

revealed a number of striking features occur among the corresponding inverse

limits. Using kneading theory and the renormalization operator introduced

by Feigenbaum, we generalizes many of their results to Full families where a

negative Schwarzian derivative is not assumed.

Denoting the inverse limit with unimodal bonding map f by f) our

main results can be summarized as follows: For parameter value A such that fA

has kneading sequence below fA., lim(/, f),) is hereditarily decomposable with
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topological sin(!)-curves being the dominate subcontinua (Theorem 4.1). At

Ac,o, with a milder smoothness condition than a negative Schwarzian derivative,

we show that lim(/, fA,,o) is hereditarily decomposable and contains only three

topologically different subcontinua (Theorem 4.6 and Theorem 4.7). For param-

eter value A such that I), has kneading sequence above f, we show lim(/, fA)

contains an indecomposable subcontinuum (Theorem 4.4). As a new result even

for the logistic family we show the following: For each finite maximal sequence

AC there exists a sequence of parameter values

Acc < < ttl <

such that fi3O has kneading sequence AC and lim(/, f+1) is a ray limiting

on two homeomorphic copies of lim(/, ) intersecting in a common endpoint

(Theorem 4.2).

In developing the necessary tools to prove the above results, we also obtain

results applicable to inverse limits with unimodal bonding maps in general.

In Corollary 3.3, we show that two unimodal maps with the same periodic

kneading sequence produce homeomorphic inverse limit spaces if and only if the

cardinality of the sets of accumulation points of forward orbit of the critical

points are equal. In Theorem 3.9 we show that a decomposable core can always

be decomposed as the union of two homeomorphic subcontinua.



2 Background

2.1 Dynamical Systems

We begin with a brief and elementary introduction to needed terminology and

results in discrete dynamical systems. For a more detailed discussion the reader

is directed to [12], [9],.

If f : X > X is a mapping of a topological space X, the n-iterate of f is

defined inductively by

f0 idx

fl

fn+1 fn 0 f, > 1

If f is a homeomorphism then, for n > 0, we can define f = (f-lr. If f

is not invertible we define f'(y) = {x : fn(x) = y}. The forward orbit of

a point x E X is the set 0.1.(x) = {r(x) : n > 0} and the backward orbit

is the set Oi (x) = {f(x) : n > 01. The orbit of x is Of(x) = { fn (x)

n E Z} = Oi (x) U afF (x). A point x is called a periodic point of period n

if f(x) = x and fk (x) 4 x for 1 < k < n. If x has period one then it is

called a fixed point. If x is a periodic point of period n , then the forward

orbit of x, 0.1-(x) = fx, f (x) f2(x), fn-i(x)}, is called a periodic orbit. For

5
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C1 maps f : 11 > R with periodic point p of period n, we make the following

classification:

p is stable if 1(lnY (p)1 < 1,

p is unstable if 1( fnY (p)1 > 1,

p is neutral if 1( Pi)/ (p)1 = 1,

Notice that l(fn)I(P)1 = rink:ol rfk(P)) so the stability of a periodic point is

determined by the product of the derivatives along its orbit.

Theorem 2.1 [12, Proposition 4.4] Suppose p is a stable periodic point of pe-

riod n. Then there exist an open interval U containing p such that, for all

x E U, fnk(x) =p.
kK5o

Proof. Let g = fn. Since 1g' (p)1 < 1 there exist an E > 0 and a 0 < A < 1

such that g'(p)1 <A for all x E (p F, p+ 6). By the Mean Value Theorem, for

x e (p e , p 6), there exist a y between x and p such that

19(x) 131=1g/ (Y)11x Ax5

An induction argument gives gk(x) < Ak pl for k > 0. It follows that

k (x) = gk (x) p as k oo.
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Theorem 2.2 [12, Proposition 4.6] Suppose p is an unstable periodic point of

period n. Then there exist an open interval U containing p such that, for all

x E U {p}, there exists a k > 0 such that fnk(x) 0 U.

Proof. Let g = fn. Since g'(p)1 > 1 there exist an E > 0 and a A > 1 such

that 1g' WI > A for all x E (p E,p + E). By the Mean Value Theorem there

exist a y between x and p (x p) such that

Ig(x) -p1 = 19"(y)11x -p _ Ax -p > lx -p..

If Ig(x) IA > E we take k = 1. If Ig(x) IA < E we apply the mean value

theorem again and find

Ig2 (x) - PI ? A' I x - PI > Ix - 131.

If 1g2(x) pl > e we take k = 2. Repeating the argument if necessary, we

eventually find a k > 0 such that f'(x) ,---- gk (x) ct (p E, p + E).

If X is a metric space and f : X > X, then the w-limit set of the orbit of

x is the set

co(x) =-- {yEX:]a sequence nk , Do with f nic(x) ---+ O-

ff x lies in a periodic orbit then OHI (x) = w(x).
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Two maps f : X X and g : Y Y are topologically conjugate if there

exists a homeomorphism h : X Y such that hof goh. The homeomorphism

h is called a topological conjugacy. Note that ho f =go h implies ho fn = gn oh.

Thus, fn and gn are also topologically conjugate. An important and well known

feature of topologically conjugate maps is that they have the same dynamics

For our purposes we are mainly concerned with periodic points and limit sets

in a metric space setting.

Theorem 2.3 Let X and Y be metric spaces with, f : X > X, g : Y Y,

and h : X > Y a topological conjugacy between f and g. Then

x is a periodic point of period n for f if and only if h(x) is periodic point

of period n for g.

a sequence {x}>iin X converges to x in X if and only if the sequence

{h(xn)}i>i in Y converges to h(x) in Y.

Proof. (1) If x is a periodic point of period n for f, then gn(h(x)) h(x) and

g'(h(x)) h(fi(x)) h(x) for all 0 < i < n. Thus h(x) is periodic of period

n. Since f o 11-1 = 11-1 o g, we can use a similar argument to show h-1(y) is

periodic of period n if y is periodic of period n. (2) is clear.



2.2 Continuum Theory

We present here only the concepts necessary for the discussion following. The

reader is directed to [29] for more details. We begin with several definitions.

A continuum is a nonempty, compact, connected metric space. A subcontin-

uum is a continuum which is a subset of a space. When a continuum consists of

more than one point it is called nondegenerate. The most well known nondegen-

erate continuum is an arc: any space homeomorphic to / = [0, 1]. A continuum

is called decomposable if it can be expressed as the union of two proper sub-

continua; otherwise it is indecomposable. An arc is clearly decomposable. A

point x in a continuum X is an endpoint of X if for subcontinua H and K both

containing x then H is a subset of K or K is a subset of H.

For those new to continua theory, it may appear that all continua except

one-point continua are decomposable. However, in a certain sense most continua

are indecomposable [29]. Here are two important examples.

Example 1 The Brouwer-Janiszewski-Knaster (B-J-K) Continuum: Let K be

the classical middle-thirds Cantor set in I = [0, 1] . Let X0 be the union of all

semicircles in the upper half-plane with endpoints in K such that the endpoints

are symmetric with the line x For i = 1, 2, let Xi be the union of all

semicircles in the lower half-plane with endpoints in K such that the endpoints

symmetric with respect to the line x 2(53,). See Figure 1. Let X = U0 Xi- It

can be shown that X is indecomposable /25.1.

9



X 0

XI

Figure 1: Contruction of the Brower-Janiszkowski-Knaster Continuum

Example 2 Three endpoint indecomposable continuum: Let a, b, and c be three

points in the plane. Construct simple chains C1, C2, of open disks such that

the sets in Cn have diameter less than I and have closures contained in sets of

Cn_1, in the following manner: C1 is a simple chain from a to c passing through

b, C2 is a simple chain from b to c passing through a, and C3 is a simple chain

from a to b passing through c. See Figure 2. Now repeat this process. In general,

C3n+1 is a simple chain from a to c passing through b contained in C3n C32 is

a simple chain from b to c passing through a contained in C3n+1, and C3n+2 is a

simple chain from b to c passing through a contained in C3n+2 The intersection

(r_1(u0no_i c.) is the desired continuum with endpoints a, b, and c.

10



Figure 2: Construction of the Three-Endpoint Continuum

2.3 Inverse Limits

Let X0, X1,be a sequence of topological spaces. Suppose for each n > 0

there exists a continuous function fn : Xn+1 ÷ X.

xo jQ. X1 <fi n 171 Xn+1

The sequence of spaces and functions {Xn, fn} is called an inverse sequence.

The inverse limit of the inverse sequence {Xn, fn}, denoted by lim(Xn,,f.),

is the subspace of Fr 0 X, defined by

fn) (xo,x1,.) E X : fn(xn+i) = xn for all n >

The spaces X, are called factor spaces and the functions fn are called bonding

maps. Our use of inverse limit theory will often be in the setting where, for
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each n > 0, Xn is a specific metric space X and, for each n > 0, fr, is a specific

continuous function f. In this case, we will denote the inverse sequence by

{X, f} and the inverse limit by lim(X, f). For a more comprehensive treatment

of inverse limits the reader is referred to [15] or [13].

Example 3 Suppose {Xn, fn} is an inverse sequence with Xo D X1 D and

: Xn+.1 > Xn is the injection map. Then lim(X, fn) is hoineomorphic to

n°°n=0 nX The homeomorphism f n-0 Xn lim(xn,fn) is given by f (x) =--n=

(x , x ,

It is clear from this example that the inverse limit may be empty even though

the bonding maps are injections. To avoid this situation we have the following

theorem.

Theorem 2.4 [35, Theorem 29.11] If {Xn, fn} is an inverse sequence of com-

pact (nonempty) Hausdorff spaces, then the inverse limit lim(X, fn) is a com-

pact (nonempty) Hausdorff space.

The following well known theorem justifies our inclusion of continuum theory

in the background information.

Theorem 2.5 [29, Theorem 24] If {Xn, fn} is an inverse sequence of continua,

then the inverse limit lim(Xn, fn) is a continuum.
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Theorem 2.6 [4 Theorem 6.1] Suppose {Xn, fri} is an inverse sequence of

continua. If for each n, Kn is a subcontinuum of Xn and fri(Kn+i) Kn, then

fniKn±i) is a subcontinuum of lim(Xn, ,fn).

Proof. Follows directly from Theorem 2.5

For n = 0, 1,- let 7rn : fn) ÷ Xn denote the nth projection map.

Suppose K is a subcontinuum of a continuum lim(Xn, fn). Then Kn 7rn(K)

is a continuum (7rn is continuous) and fn(Kn+i) = K. We have therefore

proved the following result that every subcontinuum is the inverse limit of its

projections.

Theorem 2.7 If K is a subcontinuum of an inverse limit of an inverse sequence

{Xn,fn} of continua, then K = fnlici+i), where Kn = 7(K).

We will later see that complicated spaces can be formed using inverse limits

where the factor spaces and bonding maps are quite simple. As the next theorem

points out, if all the factor spaces are homeomorphic to a given space X, then

the inverse limit and X might be homeomorphic.

Theorem 2.8 [32, Proposition 20] Suppose {Xn, fn} is an inverse sequence.

If each Xn is homeomorphic to a given space X and each bonding map fn is a

hom,eomorphism, then lim(Xn, fn) is homeomorphic to X.

Proof. It suffices to show 7r0 : lim(Xn, fn) X0 is a homeomorphism.

Continuity of 7r0 is clear. The bijectivity of 7r0 follows from the assumption
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that each fn is a homeomorphism. It remains to show that 70 is an open map

(this is not true in general). Let U C fn) be a basic open set. Then

U = 7,2-1(W) for some n and some open set W C [10, Theorem 6.B.8]. Since

each fn is a homeomorphism, o irn-l(W) = fo o fi o o f_1 (W) which is

open in X0. Thus, 70 is an open map.

Given two inverse sequences {X, fri} and {Yn, gn}, there is a natural way to

map {Xn, fn} to {Yn,gn}. For each n > 1 suppose hn : Xri Yn is a continuous

function such that

hn 0 fn gn 0 hn+i

The collection of functions { hn} induces a function

tiLn(Xn, Li) -4 lil_n(Yn, gn)

in the following manner For each x (x0, xi, ) in lim(Xn, .f.), define

it(I) = (h0(x0),hi(xi),
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This can all be summarized in the following commutative diagram.

Xo A Xn Xn+1
° fn)

ho h1 hn hn±i

yo QY1 Yn gn Yn+i lim(Y, gn)

The equations

gn(hn+i (xn+i)) = hn(fn(xn+i)) = h(x)

guarantee that h(x) is an element of lim(Yn, gn).

Theorem 2.9 [35, Theorem 29.13] Let {X, f} and {Y, g} be inverse se-

quences. If hn : Xn Yn is a continuous function satisfying hn of n = gn 0 hn+i

for all n > 0, then the induced function-it : fn) --> gn) is contin-

nous. Moreover, if each fin is a homeomorphism, then Ii is a homeomorphism.

Proof. Suppose each hn is continuous. Let rn and denote the nth projec-

tion in Fr_o Xn and 1177_0 Yn, respectively. We then have

71 it(xo, x1,. .) = h(x) = hn 0 7,(xo, xi,

Thus 71-'0h, is continuous from which it follows that T-t, is continuous. Now suppose



that each hn is a homeomorphism. For each y = (yo, yi, ) c gn), let

x= (xo, xi, = (h0-1 (yo) hii(m.),

From the equation

f(x1) f.(ha1(Y.+1)) = h1(.9.(Y.+1)) = 1171 (Y.) = x.

we conclude that x E Li). Clearly h(x) = y. Thus, it is surjective.

The injectivity of rt follows from the injectivity of each fen. Since 1177,1 a g. =

fn a hn_Ifli for all n > 0, h : tim(Yn, gn) fn) given by (x_) =

(h,T1 (x0), hT1 (xi), is also a continuous bijection. Furthermore, it-1 :kw) =

x and h o it-1(y) = y. Therefore, it is a homeomorphism.

Corollary 2.1 Suppose f : X X and g : Y Y are topologically conjugate.

Then U.111(X, f) is homeomorphic to lim(Y, g).

Now consider the case where Xn = Yn = X and fn = gn f for all n > 0,

As suggested by the following diagram, the previous theorem states that the

induced function f is continuous.

X fX f WX,

I f f I

X 4 X WX,

16



We note that for x = (x0, xl, ), f(x) ( f (xo), xo, xl, . . .). In fact, we have

the following well known and important feature of inverse limits

Theorem 2.10 Let {x, f} be an inverse sequence. Then the induced function

Iis a homeomorphism.

Proof. It follows from Theorem 2.8 that f is continuous. Let x = (x0, xl, ) E

f). Then x' = (x1, x2, E lim(X, f) and f (x ) = x so that f is sur-

jective. If I(1) = (f (x0), xo, xi, ) = (f (Y0), Yo, , =1( then = y so

that Iis injective. Clearly 1=1(x) (x1, x2, is continuous.

Suppose J and K are two closed intervals with continuous functions f : J

J and g : K K. The following theorems are well known and will prove useful

in what follows.

Theorem 2.11 lim(J, f) is homeomorphic to lim(J,P) for all n > 1, where

fn= foof
n - times

Proof. Let n> 1. Define h : , f) fn) by h(I) = (x0, xn, x2.,

It is clear that h is continuous and bijective. Since lim(J, f) and lim(J, fn) are

compact metric spaces, h is a homeomorphism [35, Theorem 17.14].

The next theorem is actually a corollary to Theorem 2.8

Theorem 2.12 If f is a homeomorphism, then lim(J, f) is an arc.

17



Theorem 2.13 lim(J, f) = , f), where JI nno0=0 fn (J).

Proof. Note first that fly : J' J'. Clearly lian(J/ , f) f).

Let (xo, xi, ) E 41_1(J, f). It follows that xk E J' = r-r_o fn(J) for all

k > 0. Thus, (xo, xi, G li n(Y,f) and litn(J, f) C f ). Therefore,

f) f).

2.4 Unimodal Maps and Kneading Theory

A continuous function f : / / is called a unimoda/ map if f(0) = f(1) = 0

and there exist a c E (0, 1) such that f is strictly increasing on [0, c] and strictly

decreasing on [c, 1]. Obviously, we could use any closed interval [a, I)] in place of

I. Let x e / and define the itinerary of x by

L if 1(x) <

I(x) aoai ... where a = C if fi(x) = c

R if fi(x) > c

with the convention that 1(x) is of finite length if 1(x) = c for some i. Notice

that a unimodal map f induces a shift map a on sequences by I ( f (x)) = a(I(x)),

where o-(aoai ) = (t1c/2 (if I(f (x)) = C, a(I(x)) is undefined). If we define

an order on the symbols L, R, and C by L < C < R, then it can be extended

to an order on sequences as follows: If A = aoai ... and B = bob,. . are two

different finite or infinite sequences, there is a smallest integer i with a, b2.

18
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We call a finite sequence odd if it contains an odd number of R's and even

otherwise. We then define A B if, and only if, either ai <b2 and aoai a1

is even or cti > bi and aoai ai_1 is odd.

Theorem 2.14 [11, Lemma 11.1.2 and Lemma 11.1.3] Let f be unimodal with

x, y E I.

If I(x) --< I(y), then x < y.

If x < y, then 1(x) --< I(y).

An itinerary I(x) is said to be maximal if crn(I(x)) --< I(x) for all n > 0 for

which o-n(I(x)) is defined. The fact that 1(f (c)) is maximal and an(I(x))

I(f (c)) for all x E I and all n > 0 leads to the following definition, which is a

modification of the original ideas of Milnor and Thurston [28]. The kneading

sequence of a unimodal map f with critical point c, denoted k(f), is defined as

k(f) I(f (c)). A sequence aoai . is admissible if it is infinite and contains

only L's and R's or is a finite sequence of L's and R's ending with a C. A

natural question is whether it is possible to identify which admissible sequences

are realized as the itinerary of some x E I. The answer is provided by the

following theorem.
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Theorem 2.15 [11, Theorem 11.3.8.1 Let f be unimodal and assume A is an

admissible sequence satisfying

If k(f) is infinite then a(A) k(f) for all n> 0.

If k(f) = DC is finite with D even then a-72(A) -- (DL)" for all n> 0.

If k(f) = DC is finite with D odd then on(A) (DR)" for all n> 0.

Then there exists an x E I such that I(x) = A.

Theorem 2.15 shows that the map x -- I(x) is in this sense surjective.

However, two different points may have the same itinerary, as is implied by

Theorem 2.14.

Let I, = R, R = L, and 0 = C. For a finite sequence A of L's and R's and

admissible sequence B = bob]. define the *-operator as follows:

If A is even and B is infinite, A * B = AboAbi

If A is even and B = bobi bri_iC , A * B = AboAbi Abn_iAC,

If A is odd and B is infinite, A * B = AboAbi

If A is odd and B =---- bobi bri_iC , A* B = Ai;oAbi - Abn_i AC .

Lemma 2.16 [11, Lemma 11.2.6] If AiC and A2C and B is admissible, then

A1* (A2 * B) = A * B, where A= A1* A2C.
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As a result of this lemma we see there is no ambiguity in using the notation

(A*)n.B.

Theorem 2.17 [11, Corollary II.2.4] If AC and B are maximal, then A * B is

maximal.

Theorem 2.18 [11, Theorem 11.2.5] If AC is maximal then the map A* :

A * B is order preserving from the set of maximal itineraries to itself.

Proposition 2.1 Let B be infinite and admissible. If R * B = B then B is

nonperiodic.

Proof. Suppose R* B = B and B 001- nr° . Then (Rbokgi - Rin)°° =

(bobi bn)" so that B = (RL)". We arrive at a contradiction since R *

(RL)" (RL)". Therefore, B is nonperiodic.

The *-operator will be important when we consider the renormalization op-

erator R in §3.4.

2.5 Schwarzian Derivative

In this section we discuss an important tool introduced by Singer [33] in 1978

into the study of one-dimensional dynamical systems. In 1918, Julia asked the

question of how many stable periodic orbits a unimodal map can posses. Julia

was able to show for certain unimodal maps that are the restriction of analytic

functions, there can be at most one stable periodic orbit. However, Singer's

introduction of the negative Schwarzian provided the real breakthrough.



The Schwarzian derivative of a mapping f is defined by

Sf (X)ff/((:)) 32 (ffq(xl 2

For a unimodal map f with critical point c we say f has negative Schwarzian

derivative denoted by S f < 0 if S f (x) < 0 for all x E I {c}. We will call

the class of C3 unimodal maps with negative Schwarzian derivative S -unimodal.

This class includes the logistic family f A(x) = Ax(1 x) for 0 < A < 4 and

g(x) = A sin(7x) for 0 < A < 1. Singer was able to show that a unimodal map

f with negative Schwarzian derivative has at most one stable periodic orbit. One

reason for the utility of the Schwarzian derivative is the following fundamental

property:

S(f o g)(x) S f (g(x))(g' (x))2 Sg(x)

which can be verified by direct calculation and the chain rule.

Lemma 2.19 [33] If S f <0, then S fn <0 for all n > 1.

Proof. S fn(x) = 1I f(f(x))[(f)/ (x)12 .

Now suppose f and g are topologically conjugate unimodal maps with critical

points c and c', respectively. Note that h(c) c'. Since h must be order

preserving, x < c if and only if h(x) < c'. This results in ./(x) = I (h(x)).
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Figure 3: Non-conjugate unimodal maps with k(f) = k(g)

Therefore k(f) k(g). We see then that topologically conjugate unimodal

maps have the same kneading sequence.

The converse is not true, however, as the following example shows.

Example 4 Figure 3 shows the two unimodal maps f and g with fixed points

p and p' , respectively. Both f and g are chosen (drawn) so that k(f) = k(g) =-

RD'''. However, p is unstable (If' (p)1> 1) while p' is stable (1g' (1)1)1 < 1). Thus,

f and g cannot be topologically conjugate. However, lim(/, f) is homeomorphic

to lina(I , g) (See 0.1).

If we limit our consideration to S-unimodal maps, then the kneading se-

quence is very close to being a complete invariant of its topological conjugacy

class. The theorem below is due to Guckenheimer [17], as stated in [11], and

shows that k(f) determines the topological conjugacy classes except for one case

in which information about the stable periodic orbits is needed.
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Theorem 2.20 [11, Theorem 11.6.3] Let f and g be S-unimodal maps with

k(f) = k(g) = a.

1. If a is finite then f and g are topologically conjugate.

2. If a is infinite and periodic of period T1 (a =- A", with 1,41 = n), then

there are two possibilities:

If A is odd, then f and g are topologically conjugate if and only if their

stable periodic orbits have the same period (n or 2n).

If A is even, then f and g are topologically conjugate if and only if

their stable periodic orbits (of period n) are both stable from one side

or stable from both sides.

3. If a is infinite and nonperiodic, then f and g are topologically conjugate.

We will be mainly interested in the third claim of the statement when we

consider infinitely renormalizable unimodal maps.



3 Inverse Limits with Unimodal Bonding Maps

3.1 Initial Results

Lemma 3.1 Let L: I > I be an order preserving homeomorphism with

L(f (c)) = g(c'). Then there exists an order preserving homeomorphism M

IJsuchthatLof=g0M.

Proof. Let go = 91104 and g1 = and define

M (x)

Then M: I" is a homeomorphism and

Since

(g o M)(x)

M is order preserving.

{(g(T1

0 L o f)(x), x E [0, c]

(gi-1 o L o f)(x), x E [c, 1]

{g

o (g6-1 o L o f)(x), x E [0, el

g o (gi-1 o L o f)(x), x E [c, 1]

{(L o f)(x), x e [0, c]

(L o f)(x), x E [c, 1]

M(0) = (gcT' o La f)(0) = gcT1 a L(0) = g'(0) = 0,

(L o f)(x).
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Since hi(f(c)) = g(c'), we can again apply the previous Lemma to obtain a

homeomorphism h2 : I --+ / and the commutative diagram

1 ho i hi .l h2

I ol ,q I

This process can be repeated indefinitely using the fact that h(fk(c)) = gk(c')

for all k > 0 to obtain homeomorphisms ho, h1, h2, and the commutative

26

Theorem 3.2 Let f and g be unimodal maps with critical points c and c', re-

spectively. If there exists an order preserving homeomorphism h : I > I such

that h(fk(c)) = gk(c') for all k > 0, then tim(/, f) and lim(I, g) are homeomor-

phic.

Proof. Let ho = h. By the previous Lemma there exists a homeomorphism

h1 : I --+ I" such that the following diagram commutes



diagram

f I

g I
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Theorem 2.9 shows that hm(/, f) and 4.1_n(/, g) are homeomorphic.

We note here that the above theorem also follows from the recent work of

Barge and Diamond [6, Lemma 1.4

Holte [19] has shown that if two unimodal maps f and g have the same

finite kneading sequence then hm(/, f) and hm(/, g) are homeomorphic. As a

corollary to the previous Theorem we obtain a different and easier proof of the

same result.

Corollary 3.1 [19, Corollary 1] Let f and g be unimodal maps with the same

finite kneading sequence. Then hm(/, f) and lim(/, g) are homeomorphic.

Proof. Let k(f) --= k(g) = aoai...an_iC. Then I(fi(c)) = I(gi(e))

I (gi (c')) = I (fi (c)). It follows that the sets {c, f (c), f2 (c), fn (C)} and

{ c', g (c') , g2 (c') , g' (c')} have the same ordering in I. Therefore, there exist

an order preserving homeomorphism h : / / such that h(fi(c)) = gi(c') for

i = 0, 1, , n. It then follows from Theorem 3.2 that lim(/, f) and g)

are homeomorphic.
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Using Theorem 3.2 we can obtain results when the orbit of the critical point

is more complicated. First we need a couple of helpful tools.

Theorem 3.3 [1 1 , Lemma 11.3.2] If f is unimodal and I(x) = (aoai an_ir°

then the sequence ffi(x)licto converges to a periodic orbit of period 71 provided

aoai is even and period n or 2n if aoai is odd.

Corollary 3.2 Let f be a unimodal map with critical point c such that k(f) =

(aia2 an)°°. Then lu.) f(c)1= n if a1a2 is even and lw f(c)1 n or 2n if

a1a2 an is odd.

Lemma 3.4 If f is a unimodal map with critical point c such that k(f) =

(aoai an_1)", then f(c) w f(c) for all i > 0.

Proof. First note that if xECOf (c) then x is on the periodic orbit of period n

or 2n of Theorem 3.3 above. Therefore c c,.)f(c) since k(f) is not finite Now

suppose fi (c) E C4.1 f (C) for some i > 0. Then fi(c) is on a periodic orbit of period

n or 2n. If fi (c) = fi+n (c) then I (fi(c)) = I (fi+n (c)) = (ajai±i ai±n_1)°°. It

follows that = ai+n_i for 0 < j < i. In particular, f1(c) and f i±n -1 (c)

are on the same side of c and f (fi -1(c)) = f (fi+n -1(c)) fi (c). Therefore,

f1(c) f i+n-1(c\) Similarly, f2(c) and f+2(c) are on the same side of

c with f (fi-2(c)) f (f2(c)) fi-1(C). Therefore, f i-2 (C) f2(e).

Inductively, we conclude that f (c) = fn+1 (c). Since c is the only value of x

for which f(x) = f (c) and f(fn(c)) = f (c), it must be true that fn(c) = c.



w9(c')1 (which is n or 2n).
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This is a contradiction of the assumption that c is not periodic. If f2(c) is on

a periodic orbit of period 2n, a similar argument shows that f2n (c) = f (c); a

contradiction. Thus, in either situation we arrive at a contradiction. Therefore

f(c) w f(c) for all i > 0.

Theorem 3.5 Let f and g be unimodal maps with critical points c and c',

respectively. Suppose k(f) = k(g) = (Rai 642_1)". Then there exists an

order preserving homeomorphism h : I such that h(fk(c)) = gk(c') for all

k > 0 if and only if 1(c) = I

Proof. First suppose that there exists an order preserving homeomorphism

h: I + Isuch that h( f k (c)) = gk (c' ) for all k > 0. Since x E wf (c) if and only

if h(x) E cog (c'), Ico1(c)1 = Iwg(c91.

Now suppose that Iw1 (c)1 = Iwg(c91 E {n, 24 For i = 1, , n let Ji and

be the smallest closed intervals containing { f (c) , fn+i (c), f2n±i, (0, } and

{gi(e), gn±i(c,), g2n±i, (cf) 1, respectively. Then c is not in the interior of J,

and c' is not in the interior of J. Therefore, fl ji and gl jf are homeomorphisms

into Ji mod(n)±1 and Ji'mod(n)±1 Furthermore, fi ji is strictly increasing if and only

if gi4, is strictly increasing. It follows that frji : Ji is strictly increasing if

and only if grj, : is strictly increasing. We also know that fInj1 is strictly

increasing if and only if Rai an_1 is even [11, page 68].



and
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First suppose Rai is even. Then finji andg are strictly increasing.

Therefore,

Pi
< < f3r1+1 (c) < f1 (e) < (c) <f(c)

< < g3n-4-1(g) < 92n4-1(g) < gn+1 (ci) < g(g)

Thus for 0 < j k, fin±l(c) < pcn+lic\
) if and only if gin±l(e) < gkn+1(ct.).

Since fi ji is strictly increasing if and only if g1 j,,, is strictly increasing, for 1 <

i < n and 0 < j k, fin±'(c) < fkn-Hz lc\) if and only if g" (ci) < glcrt+z (cf.).

Observe also that

lim f(c) = (pi ) and lim g(Cl) = )
j,00 j>CXJ

so that Icof (01 = iwg(e)1 = n. Thus the supposition 1c4.) = Iw9(c')1 is not

needed in this case. We conclude that the sets

fc, f(c), f2(c), ,Pi,P2, and fe,g(C1),g2(CI)) 74,112, ,pn'

have the same ordering in I and there exists an order preserving homeomorphism

h: I > / such that h(fk(c)) ---= gk(e) for all k> 0.



and

gn+1 (ct) < (c/) < g5n+1 (c/ ) < < g4n+1 (e) < g2n+1 (c/) < g(g)

Thus for 0 _< j k, f1(c) < f kn+1 c\) if and only if g' (c") < gkn±l(c/.).

Note that either lim f2(c) = pi

period n, or lim f2in+i(c) = Pi P2
i-400
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Now suppose Rai is odd. Then fInj, and gr% are strictly decreasing.

Therefore,

f 71+1 (c) < f3n-1-1. (c) < f5n+1(c) < < f4n+1(c) < f2n+1 (c) < f (c)

f(2j+l)(c) with pi periodic of

= lim f(2j+1)n±i(c) with pi periodic of

period 2n and fn (pi) = 192. Similarly for g. It follows that if 1(4,f = Iwg (cf ,

then there exists an order preserving homeomorphism h : / such that

h(fk(c)) = gk(e) for all k> 0.

As a corollary, we can classify inverse limits with a single unimodal bonding

map having periodic kneading sequence by looking at the forward orbit of the

critical point.

Corollary 3.3 Let f and g be unimodal maps with critical points c and c', re-

spectively. Suppose k(f) k(g) = (Rai ctri_1)00. Thenlim(I , f) and lim(/, g)

are homeomorphic if and only if lw f(c)1=Iwg(e)1.

Proof. Suppose lu.)f (c) = (c ). By Theorem 3.5, there exists an order
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preserving homeomorphism h : / / such that h(fk(c)) = gk(c1) for all k > 0.

Therefore, tim(/, f) and I ri(/,g) are homeomorphic by Theorem 3.2. Now

suppose Pf(c)1 Iwg(e)l- Then, using [3, Theorem 2.1], one can show that the

number of endpoints of lim(/, f) and lim(/,g) are not the same. However, an

endpoint is a topological invariant. Therefore, lim(/, f) and lim(/,g) are not

homeomorphic.

We now provide an example showing why it is necessary to require ao = R.

First note that ao L implies k(f) = k(g) = L" and lw f(c)1= Iwg(c')1= 1.

The example also shows that the converse is not true.

Example 5 Let f (x) = x(1 x), g(x) = x(1 x), and h(x) = 2(1 x). Since

f < g() < and h() = k(f) = k(g) = L' and k(h) = C. In fact,

lcv f(1)1 = Iwg(1)1= koh(D1 with w f() = {0}, wg() = {}, and wh(D =

We also have nn7-0 fn(I) {0}, nogn(I) [0, A], and nc77-0 h(I) '1]

It follows from Theorem 2.12 and Theorem 2.13 that l -n(/, f) is a point while

both tu_n ( / , g) and ,h) are arcs.

It is well known that for f4(x) = 4x(1 , f) is homeomorphic to the

B-J-K continuum of Example 1 in 2.2. It follows from Theorem 3.2 that, for

any full unimodal map f (f(c) = 1), 411_(/, f) is homeomorphic to the B-J-K

continuum.



3.2 Bennett's Theorem and the Core

In this section we present a theorem by Ralph Bennett that has proven to be

very valuable in the study of inverse limits on arcs. We begin with a definition.

A topological ray is a locally compact, connected set R containing a point p

such that R p is connected and if q is a point in R distinct from p then R q

is the union of two mutually separated connected nonempty sets.

Theorem 3.6 [22, Theorem 2.15] If al, a2, a sequence of arcs in a con-

tinuum X with a common endpoint p such that al c o2 C , R ,n7-1

and no point of cen lies in R an+i, then R is a topological ray.

Bennett's Theorem as stated here appears in [21] and is a slight generaliza-

tion of his original theorem in [7].

Theorem 3.7 (Bennett) Suppose f is a mapping of the interval [a, b] onto

itself and d is a number between a and b such that

f bp C [d , b]

fi[,d] is monotone and

there is a positive integer k such that fk ([a, d]) = [ab].

Then lim(/, f) is the union of a topological ray R and a continuum K

such that R R = K.

Before exploring how Bennett's Theorem applies to inverse limits with uni-

modal bonding maps, we first consider the case where f (c) < c.
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Proposition 3.1 If f (c) < c then lim(/, f) is either an arc or a point.

Proof. Suppose f (c) < c. and let p be the largest fixed point in [0, ci. If p 0

then J 0 P(I) = [0,p], fw is a homeomorphism, and lim(/, f) is an arc

by Theorem 2.12 and Theorem 2.13. If p = 0 then J = 1-r1) 0 fi (I) = {0} and

f) = {(0, 0, )} by Theorem 2.13.

Now suppose f (c) > c. If f2(c) > c choose d and b of Bennett's The-

orem to be equal to c and f (c), respectively. There are two possibilities:

J = 0 fi([c, f(c)]) is either an interval or a point. If J is a point then

K = li naf2(c), PO], f) is a point and Um(/, f) is an arc. If J is an in-

terval then K = lim(V2(c), f(c)b f) is an arc and lim(/, f) is a topological

ray limiting onto an arc, i.e. a topological sin()-curve. There are only two

other cases which we need to consider: f2(c) < c with either f3(c) < f2(c) or

f2(c) < P(c). Bennett's Theorem does not apply when f3(c) < f2(c) since

f af2(c), f (OD [f2(c), f (c)]. If f3(c) f2(c), then the ray in Bennett's The-

orem is replaced by an arc. When f2(c) < f3 (c) and there is a fixed point in

[13(c), c), then fk([0, f2(c)]) [0, Pc)] for all k > 0 and Bennett's Theorem

does not apply.

This leaves us with the case when f2 (c) < f3 (c) and there are no fixed points

in [f3(c), c). We then have f ([ f2 (c) , f (c)]) [ f2 (c), f (c)] and can use Bennett's

Theorem with [a, 1)] = [0, f (c)] and d = f2(c). The continuum K is equal to

limaf2(c), f (c)1, f) and is called the core of li_r_n(/, f).
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Figure 4: Topological ray limiting on an arc.

Example 6 Let f be a unimodal maps with k(f) = RC. Then f2(c) = c and

fl[f2(,),f(c)] is a homeomorphism Thus, by Theorem 2.12 the core of W_-n(/,f) is

an arc and by Bennett's Theorem, lim(/, f) is a topological sin()-curve. See

Figure 4.

Now that we have reduced the study of lina(I , f) to a study of the core, we

can focus our attention on the nature of the core.

Theorem 3.8 [.1, Theorem V Suppose f is a unimodal map and q is the first

fixed point for f2 in [c, f (c)]. If f af2(c), f (c)]) = [f2(c), f (c)], then the core of

Um(/, f) is indecomposable if and only if r(c) < q.

In the course of Ingram's proof it is observed that if f (c) > q then
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thilaf2(c), f Hi, f) 4M(If2(C), f (0], f) U talaq) f (C)], f)



§2.2.
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More importantly to us is how the two pieces of the core are related. Recall

that p is the fixed point for f in (c, f (c)).

Theorem 3.9 Suppose the core of f) is decomposable. Then the core is

the union of two homeom,orphic subcontinua intersecting in a point or an arc.

Proof. Let q be the first fixed point for f2 in [c, f (c)]. Then f3(c) > q and

li ngf2(c), f (c)1, f) is the union of lim([f2(c), f (g)], f2) and li nGq, f (c)1, f2).

Note that fi[f (q), AO] is a homeomorphism onto [f 2 (c), It follows that fIff(q),f(01

is topologically conjugate to fiff2(c),q] via fl[f(q),f(c)j. Thus, li n([f2(c), f (q)], f2)

is homeomorphic to lim([q, f (e)], f2). Furthermore,

timuf2(c), f f2) n
lirn([q, f (c)], f2) 1011( [f (q), q], f2)

produces an arc if q p or a point otherwise.

Example 7 Let f be as shown in Figure 5 with f3(c) = p. Then accord-

ing to Theorem 3.9, the core of lim(/, f) is the union of the two homeomor-

phic subcontinua 1im([f2(c), f (q)1, f2) and m([q, f (c)], f2). However, because

.f3(c) = p, we can also decompose the core as the union of lim([f2(c),73], f2)

and Ulu&, f(c)J, f2) 4_131af 2 (c), 73], f2) and Urn( p, f (c)}, f2) are homeomorphic

and, in fact, they are homeomorphic to the B-J-K continuum of Example 1 in



Figure 5: Decomposition of the core

3.3 Renormalization

As the previous example shows, if f3 (c) > p then we can write the core as

the union of limaf 2 (c), f 2) and iirn(iP, f (c)i,f 2), where lima f2 (C)) .12) is

homeomorphic to lim(y, f (c)] , f2). In this section we introduce the renormal-

ization operator on the space of unimodal maps that allows us to study the

nature of inverse limits with unimodal bonding maps using kneading theory.

The renormalization operator was used by Feigenbaum [16] to explain the uni-

versal transition of a class of one-parameter maps from simple to complicated

dynamics.

Suppose f is unimodal and satisfies f3(c) > p. From Theorem 3.8 we con-

clude that the core of tim(/, f) is decomposable. In fact, Theorem 3.9 shows

that the core decomposes into two homeomorphic subcontinua intersecting at a
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Figure 6: Renormalization of f.

common endpoint of a ray. For the discussion following refer to Figure 6. Let p

be the fixed point for f greater then c, r E f-1(p) with r < c, and s E f-1(r)

with .s > c. By looking at f2 we see that there is an interval on which f2 is

unimodal but upside-down. This observation motivates the following definition.

The renormalization of f, denoted Rf, is defined by Rf = h o f2 o h-1 where

h: [r, --> I is a linear homeomorphism such that h(r) = 1 and h(p) = 0. In

order for this definition to make sense we need f (c) > c and f2 ([r, p1) C [r, p].

For a more detailed discussion the reader is referred to [12].

Theorem 3.10 Let f be a unimodal map with Rf defined. Then

I. : I --> I is a unim,odal map with critical point h(c),

2. if S f <0, then SRf < 0.
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Proof. Follows inductively from Theorem 3.11
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Proof. The proof of the first statement is clear. For the second statement

recall that Rf = ho f2 oh', where h: [r, p] I is a linear homeomorphism such

that h(r) 1 and h(p) = 0. Since h is linear, Sh Sh-1 0. Let x E I {h(c)}

A direct calculation shows that SR f (x) = S f2 (h-1(x))(h-1(x))2 which must be

negative since S f2(h-1(x)) <0 and (h-1 (X))2 > 0.

Note that Rf : I -4 I is topologically conjugate to f2 restricted to [r,p].

It follows that li n(/, 12f) is homeomorphic to lim([r,p], f[2,,p1) by Corollary 2.1.

The reason for studying the core using tiLM/, Rf) instead of lim( [ r, p], f1)

is because we can use the power of kneading theory with Rf. The following

theorem is actually a corollary to Theorem 3.9.

Theorem 3.11 If f is unimodal with Rf defined, then the core of , f) is

the union of two copies of lim(/, Rf) intersecting in a point.

Proof. Note f2 ([r, q]) [ f 2 (c), f (c)]. Thus,

linlaf 2 (C)) f (c)], 1) = s], f fr,s1) = th=n([r f)) U 81, f[2p,,,i)

with Iii_n([r,p], f.1) homeomorphic to 4n(13, s], f [2p, s1) .

Corollary 3.4 If f is unimodal with Rn f defined for some n > 0, then, for

0 < i < n, the core of lim(I, Rif) is a ray limiting on the union of two copies

of R2+1 f ) intersecting in a point for 0 < i < n.
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The next result shows that the kneading sequence of a renormalizable map

is restricted. Recall that p is the fixed point for f greater than c, r E f-1(p)

with r < c, and s e f1(r) with s > c (see Figure 6).

Proposition 3.2 If f is renormalizable then k(f) = R* B for some admissible

sequence B. If k(f) = R* B for some admissible sequence B < RL" then f is

renormalizable.

Proof. Suppose f is renormalizable. Then f (c) E [p, s] and f2 ([p, s]) c [p , s].

Thus, f2i+1(c) E [p, s] for all i > 0. If f 271+1 (C) f (c) for some (smallest) n

then f 2n (c) = c. Therefore, either f2j+1(c) > c for all i > 0 or f2i±l(c) > c

for 0 < i < n with f2(c) = c. Either k(f) = Ra2Ra4 infinite, in

which case B = Lici 6 Or k(f) = Ra2Ra4 a2(n_i)RC, in which case

B = -(14 a2(n-1)C

Now suppose k(f) R * B for some admissible sequence B < RL". We

need to show that f2([r,p]) C [r , p] . It suffices to show f2 (c) > r. We assume

f2(c) < r. Then c < fn(c) for all n > 3 so that B = RL"; a contradiction.

Therefore, f2(c)> r.

If nf is renormalizable, i.e. V f exists, then one can show that f4i+2 (c) > c

for all i > 0 or f42(c) > c for 0 < i < n with f4(c) = c for some n > 0.

Inductively, if f is infinitely renormalizable f exists for all n > I) then k(f)

is completely determined. The following proposition shows how the kneading

sequences of f and Rf are related.



Figure 7: Topological ray limiting on two sin()-curves.

Proposition 3.3 [14 If f is unimodal with Rf defined and k(f) = a1a2

then k(f) = a-2-a-3 In particular, k(f) R * k(R.f)-

Knowing how the kneading sequence is changed by R is useful in identifying

inverse limits as the following examples demonstrate.

Example 8 If f is unimodal with k(f) = RLRC = R* RC, then k(f) = RC

by Proposition 1. Example 1 showed that lina(I, Rf) is a sin(!)-curve. Thus,

f) is ray limiting on two sin()-curves intersecting at the endpoints of

their rays. See Figure 7.
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Example 9 Suppose k(f) = R*n * lic° for some n > 0 and. Then Rn+if

exists and k(Rn f) = R°°. If Iwf(c)I = 2n then tw,,,,f(c)I = 1 and liM(/, Rnf) is
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an arc. By Theorem 3.11 lim(/, f) is the union of a ray limiting on a pair of

rays intersecting a common endpoint each limiting on a pair of rays ... limiting

on 2n-1 topological sin(!)-curves. If lw f(c)1 2n+1 then koRn f(c)1 = 2 and

Urn(/,Rf) is a topological sin(!)-curve. Again by Theorem 3.11, lim(I , f) is

the union of a ray limiting on a pair of rays intersecting a common endpoint

each limiting on a pair of rays ... limiting on 2' topological sin()-curves. We

will see later that this example is the model for all kneading sequences below the

sequence (R*)".

3.4 Full Families

Let C represent the class of Clunimodal maps and let -UA : a < A < 01

represent a curve in C continuous in the Cl topology. More precisely, the map

f), is a map from [a, /3] to C such that

urn { sup (I f (x) f0(x)1 + f(x) A0(x)1)} =0.
A'Ao 0<x<1

Theorem 3.12 [11, Theorem I11.1.1] Let {fA : a < A < Of be a curve in

C continuous in the C1 topology. For every maximal sequence A satisfying

k( f a) <A <k(fp) there exists a jt E (a, 0) such that k(f = A.

We say that {f), : a < A < /3} is a Full family if k(fa),------ LC.° and fo(cfp) = 1.

If S(fA) <0 for all a < A <3, we call ffA : a < A < 01 a S-Full family. For

convenience we sometimes write {fAl for {fA : a < A < 0}. The logistic family
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{f),(x) = Ax(1 x), 0 < A < 4} is an example of a S-Full family. For more

details on Full families the reader is referred to [11]. To simplify the discussion

that follows we assume there are no intervals on which A k( f A) is constant.

Theorem 3.13 [11, Proposition 111.1.4 In a Full family UA : a < A < 01

every maximal sequence of the form R- occurs as the kneading sequence for

some A E [a, 0].

Theorem 3.14 [31, Theorem 1.11 If fA is a Full family then there exists pa-

rameter values

a < Ai < A2 < A3 < A/3 < Al2 < < 0

such that cc, is periodic of period 2, Rn fAir, is full unimodal, and lim An =
n>co

urn A.
n>oo

The limiting parameter value A,, lim An = lim Anf is called the Feigen-
n-400 n>oo

baum, value.

Lemma 3.15 Let If A} be a Full family with sequences {An} and {A} as above.

Then

k(fk) =- RC and k(f) = (R*)niRC = R * k(f,) for all n> 1,

k(f) = RLR and k(fA,n) = (R*)Th RLR" = R*k(f1) for all n > 1,

k(f) = urn k(fA) = (R*)'RC is nonperiodic.
n-4co
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Proof. (1) Follows directly from [11, Lemma.2.12]. (2) Let n > 1 and

suppose nnfAi, is full unimodal. Then k(Rnfv) = Rif'''. Repeatedly applying

Proposition 3.4 results in

R * k(Rf = (R*)2k(R2 f = (R*)Thk(Rn f

= (R*)2RL" = (R*)n-lRLR = R*

(3) R* k(fAc) k(f),,,,) so that k(f) is nonperiodic by Proposition 2.1.



4 Main Results

4.1 Introduction

The main results of this paper deal with the inverse limits using bonding maps

at the above parameter values. For all A with k(fA)< k(fAc,o) we show lim(/, fA)

is hereditarily decomposable. If k(fA)> k(f) then lim(/, fA) contains an inde-

composable subcontinuum. At the Feigenbaum value we show that, under some

smoothness conditions, lim(/, fAcx,) contains only three topologically different

subcontinua. See [4] for similar results involving the logistic family.

4.2 Below the Feigenbaum Value

Proposition 4.1 Suppose f is unimodal with k(f) = BC with IBC 1 = 2' for

some n > 1. If g is unimodal with k(g) E {(BL)°°, (BR)°°1 and wg(cg)1 = 2,

then lim(/, g) and lim(/, f) are homeomorphic.

Proof. We use induction on the length of B. For n ,---- 1, we must have

k(f) = RC so that , f) is a topological sin()-curve. If k(g) = R" with

Iwg(cg)j= 2, then the core of ,g) is an arc so that I n(/, g) is a topological

sin()-curve. If k(g) (RL)°° with Ico9(c9)1 = 2 then k(g) R°° with

IcyRg(cg)1= 1 so that lim(/, ng) is an arc. Thus, the core of lim(/,g) is the union

of two arcs intersecting in an endpoint. It follows that the core of lim(I ,g) is

an arc and lim(/, g) is a topological sin(!)-curve. Therefore the claim is true
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for n = 1. Suppose the claim is true for n > 1. Let Ik(f)1= 1/30 = 2n+1 with

B = b1b2 b2n+i_1. Suppose also that k(g) e -{(BL)", (BR)'} with wg(cg)1 =

2n+1. It follows from [11, Theorem 11.2.9 and Lemma 11.2.12] and Proposition

3.4 that Rf and Rg exist with Ik(34)1= 1g2I4 -g2n+1-2C1 = 2n and k(Rg) E

{ (1;21;4 '6-2n+1_2 /J)°° (7;2-g4 -g.2.+1-2R)"}. Furthermore, IwR9(c9)1 = 2n since it

was assumed that Pg(cg)1 2n+1. By the induction hypothesis, Rg) and

Rf) are homeomorphic. From Bennett's Theorem and Theorem 3.11 we

conclude that Ib_n(/,g) and lim(/, f) are homeomorphic. Therefore, the claim

is true for n + 1.

Theorem 4.1 Let {f A} be a Full family with sequence {An} as in Theorem

3.14. Then lim(I , IA,) is a topological sin()-curve and the core of fAn+i)

is the union of two copies of 1 -n,(I , fx) intersecting in a point. Furthermore,

for each n there exist an En such that for all A E (An En) An + E n) fA)

and im(/, fAn) are homeomorphic.

Proof. Let n > 1. Since RfAn exists, it follows by Theorem 3.11 that

the core of lim(/, fAn+,) is the union of two copies of lim(/, RfAn,i) intersecting

in a point. Noting that k(RfAn+,) = k(fAn) and is finite, we then conclude

using Corollary 3.1 that 1 11(1, Rf+,) is homeomorphic to lim(/, fA). That

fA,) is a topological sin( )-curve follows from Example 6.

We now prove the second claim using an argument similar to [11, Lemma

111.1.3]. Let n > 1 and k(fAn) = BC. From Lemma 3.15 (1) we conclude
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IBC 1 = 2. By the argument of [24, Theorem 16.4.2], there exists En > 0

such that, for all A E (An En, An + 5,,), there exists SA > 0 with, for all

X E [c), SA, cA ± 6A],

/f,(fA(x)) = B ... ;

l(frY(x)i <

I fr (x) _ cAl < 64.

Let A E (An En, An HE En). If fr (cA) = cA then k(f) = BC. So now

suppose fr(cA) - cA = a > 0. Let x E 2a]. Since 2a < SA, we have

lir (x) _ fr (c) I.< lx-2 by (2). Therefore,

1
fA2n(x) _> fr(cA) - -Ix - cAl > a + GA - -I-1(2a) = GA

2 2

and

fr (x) fr... .. (cA) + Ix cAl < a + cA + (2a) ---- GA + 2a.

It follows that fr ([cA, 2a]) C (cA, 2a). Thus k(fA) = (BR)°°. A similar argu-

ment shows k(fA) --= (BL)°° if fi'(cA) - cA = a <0.

By Proposition 4.1, it remains to show that lwf,(cA)1 = 2. This follows

directly from the above argument since, in either case, fr : [GA, 2a] -- [cA, 2a]

and fr : [2a, GA] -> [2a, cA] are contraction mappings by (2).
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It follows that lim(/, fAn) is a ray limiting on the union of two rays inter-

secting in a common endpoint each limiting on the union of two rays ... limiting

2n-1 sin(1) curves. We should also point out that for any parameter value

A with k(f),) < k(f) there exist an n such that lim(/, fA) is homeomorphic

to lim(/, fAn). This is true because the possible kneading sequences that can

occur below k(fAc) are limited [11, Lemma 11.2.12]. Thus we have a complete

classification for 1:=(/, fA) with k(fA) < k(f)

If we restrict ourselves to S-Full families, then not only is li_m(/, RfA,,)

homeomorphic to lim(/, f,), but the dynamics of fA acting on Um(/' fA)

is identical to the dynamics of Rf A, acting on lim(/, RfAn+,). This is not

generally the case for Full families.

In Theorem 3 of [4], Barge and Ingram were able to identify all possible

inverse limits occurring with a single bonding map chosen from the logistic

family and below the Feigenbaum value. As the next example shows, their

results follow from Proposition 4.1 and Theorem 4.1.

Example 10 Consider f(x) = Ax(1 x) for 0 < A < 4. Note that eh, =

for all A. As we have already discovered, there is an increasing sequence of

parameter values

A0 <A1 <A2 <

which the logistic map f has periodic critical point of period 2. These
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values are in fact unique since the map A k(f A) is monotone [27, Theorem

10.1 and Corollary 1]. It is well documented that there also exists an unique

sequence of period-doubling bifurcation values {K}72>0 such that An < Ain < An+1

(see [11]). This sequence is such that, for all A E (Ain, )4+11, lwfx (Di = 272.

Furtherm,ore, for k(fAn) --= BC, k(f A) = (BL)°° for A E(A4, An) where A-1 =

0 and k(f A) = (BR)°° for A E (An, A72-I-1). By Proposition 4.1, Um(I, f) and

lirn(I, fp) are homeomorphic for all A, ,a E (Ain) Ain]. By Theorem 4.1, , fA)

is a topological sin(!)-curve for all A E (A0, AP] and, for all A E (Ain, A'n+1],

the core of fA) is the union of two copies of fn) intersecting at a

common endpoint of a ray for any iE

4.3 Above the Feigenbaum Value

Theorem 4.2 Let {fA} be a Full family with the sequence {A'n} from Theorem

3.14. Then the core of , f,>') is the union of two B-J-K continua intersect-

ing in a common endpoint of a ray and the core of lim(/, f') is the union of

two copies of f) intersecting in a common endpoint of a ray.

Proof. Recall from Theorem 3.14 that Rnf4 is full-unimodal. By Theorem

3.11, the core of im(/, f) is the union of two B-J-K continua intersecting at a

common endpoint of a ray. Corollary 3.4 completes the proof.

We note that since A'n is on the boundary of where Rnf, exists, we cannot

hope to get results equivalent to the second part of Theorem 3.14.
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The following result is known. We include it for completeness.

Theorem 4.3 Let {fA} be a Full family with BC > k(f) a maximal se-

quence. Then there exists a decreasing sequence {N} converging to Acc such

that k(f1) -= (R*)ThBC. Moreover, there exists an m > 1 such that Airri±n+1 <

ian < Yin+7, for all n > 1.

Proof. First note that (.1?*)n BC is maximal [11, Corollary 11.2.4] and

k(fA..) = (R*)"BC. Since (R*)'BC < R * BC < R * (RL)°° =

there exists an m > 1 such that

k(f),+,) = (R*)n+1 (RL,)°° <R * BC < (R*)m(RL)°° = k(f4,).

It follows from Theorem 3.12 that there exists pq E (A;72+1, A) such that

= R * BC. (Note that pl. is not necessarily unique. If we would like

a unique prescription we could take ft1 to be the infimum or supremum over all

E (A1, A) such that k(ft,i)= R* BC.) By [11, Theorem 11.2.5],

(R*)"1±2(RL)" < (R*)2 < (R*)m+1(RL)00 .

Again by Theorem 3.12, there exists p2 E A1) such that k(f122) -=

(R*)2BC. Continuing in this manner we obtain a sequence {itn} with the

desired properties.
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This leads to an interesting observation: Given any maximal sequence BC

with sequence fl guaranteed by Theorem 4.3, we have a similar situation as in

Theorem 4.2 with the B-J-K continua replaced by Iii n(1, fp) where k(fp) = BC.

Example 11 Let {fA} be a Full family with BC = RLC . Theorem 4.3 guaran-

tees a decreasing sequence {an} ---* A. Let p, > A', be such that k(f ) = RLC .

By Corollary 3.1, li -n.(I , fp) is the three endpoint continuum of Example 2 in

§2.2. Therefore, lim(.1. , fan) is a ray limiting on the union of two rays intersect-

ing an endpoint each limiting on two rays ... limiting on 2n copies of the three

endpoint continuum.

Unlike the case where every inverse limit with bonding map having kneading

sequence less than k(f) contains copies of sin( )-curves, we are unable to clas-

sify all inverse limits occurring with bonding map from above the Feigenbaum

value. Perhaps the broadest statement we can make is the following.

Theorem 4.4 Let {fA} be a Full family with Feigenbaum value A00 . Then for

all A with k(fA) > k(fA), Iim(/, fA) contains an indecom,posable continuum.

Proof. If k(fA)> k(f),,,) then there exists a smallest n such that IV f does not

exist. Thus, there exists an interval [a, b] containing the critical in its interior

such that [a, b] C fr ([a ,b]). The result follows from [9, Lemma 3] and [1,

Corollary 11].



4.4 The Feigenbaum Value

In this section we identify the inverse limit occurring at the Feigenbaum value

under certain smoothness conditions. Noting that k(Rf) = k(f),00), we would

like to conclude lim(/, f),0,0) is homeomorphic to RfA. ). However, k(fAco)

is infinite and nonperiodic so we cannot use Corollary 3.1. By limiting ourselves

to S-Full families we can apply Theorem 2.20 to conclude is topologically

conjugate to f. In addition, if {fA} and {gp}are S-Full families with Feigen-

baum values A,, and ,u, respectively, then k(f) = k(gp.) so that fAcx, and

are topologically conjugate. We arrive at the following conclusions.

Proposition 4.2 If {fA} is a S-Full family with Feigenbaum value Acc, then

lim(/, f) is horneomorphic to li_r_n(/, RnfAc) for all n > 1.

Proof. Let n > 1. By Proposition 3.2 and Lemma 3.15, k(Rn f),) = k(f)

is infinite and nonperiodic with SRnfAo.. <0. It follows from Theorem 2.20 and

Corollary 2.1 that I n(1-, fAo.) is homeomorphic to RnfAeo).

Theorem 4.5 Suppose {fA} and {g1} are S-Full families with Feigenbaum val-

ues Acx, and p, respectively, then lim(I, f),) is homeomorphic to lim(/,g).

Proof. Follows from Theorem 2.20, Corollary 2.1 and Lemma 3.15.

In considering only S-unimodal maps we are also forcing the dynamics of

: lim(/, fAca.) UM.(1-, fA..) and : gpoo) , gpoo) to be
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identical. Of course two bonding maps need not be topologically conjugate in
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order to produce homeomorphic inverse limits (see Example 4). Also, requiring a

negative Schwarzian derivative is very restrictive and unnatural: it implies that

If' cannot have a local maximum and is not preserved under smooth coordinate

changes It is well known that for an infinitely renormalizable unimodal map

f with S f < 0, w(c) is a Cantor set. However, w(c) is a Cantor set even if

S f .A 0 provided there are some smoothness requirements in a neighborhood of

the critical point. This is what is needed to extend the results of Theorem 4.5

to a larger class of functions.

Following [27], we call a critical point c for a C2 map f non-flat if there exists

a C2 local diffeomorphism 0 with 0(c) = 0 such that f (x) = +10(x)la + f (c) for

some a > 2. For example, any C2 map f which is Ck+1 in a neighborhood of c

with f(k)(c) 0 for some k > 2 implies c is non-flat [26].

Theorem 4.6 Suppose f and g are infinitely renormalizable, C2 unimodal maps

with non-flat critical points. Then-n(I , f) is homeomorphic toIiii_n(/, g).

Proof. Let c and c' be the critical points for f and g, respectively. For a, b E I,

[a, b] will denote the smallest closed interval containing a and b, while (a, b) will

denote the interior of [a, b]. The sets

,f(c) = n Uffi (e), 1+2' (c)] and wg(e') = n u[g ( /), i+2-(e)]
n=1 i=1 n=1 i=1

are Cantor sets [27, Theorem 6.2, p. 156, and Proposition 4.5, p. 2421, [18, page

346]. Because k(f) = k(g) is infinite and nonperiodic, I(fi(c)) = I (gi(e))



I (fl (c)) = I (gi (c1)) for all i j > 0. It follows that the sets {c, f (c), f2(c),

and {c', g(c'), g2 (c'), have the same ordering in I. We construct an order

preserving homeomorphism h :I I with h(r(c)) = gi (c') for all i > 0 as

follows.

Let

An =U[1(c), fi+2n (c)] and u[gi(c/), 9,i+2n (c/)]

i=1 i=1

and define h1 : I ÷ I as the (unique) order preserving piecewise-linear home-

omorphism such that h(Ai) = B1. Since A3 C A2 C A1 and B3 C

B2 C B1 are such that An_1 An and Bn_1 Bn consist of 2' open intervals,

one interval from each of the interiors of [f (c), fi+2' (c)] and [gi (c') gi±2n (c')]

1 < i < 2n, we can inductively define hn : I - I as h(x) h_1(x) for all

x An_1 An and hn is order preserving piecewise-linear on An_1 An such

that hn(An_i An) = Bn_1 B. Each hn is continuous and hn( ft (c)) gi(c')

for 0 < i < 2n. Using the fact that the diameters of [fi(c), fz+2 n (c)] and

[gi(c'), gi±2n (c')] + 0 as n co, we conclude hn converges uniformly to a con-

tinuous function h, which is onto and h(fi(c)) = gi(c') for all 0 <i. It remains

to show that h is one-to-one. If h is not one-to-one it must be monotone on

some interval [x, M. Since w (c) is perfect and h(f (c)) h(17 (c)) for all i j,

f (c) (x, y) for all 0 < i. Therefore, there exist some i j and k > 0

such that [x , y] C [f2 (c), (c)] and 11 (c), f (c)] n Ak = {f (c), fi (c)}. But h
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was constructed so that h restricted to [1(c), f (c)] is equal to hk restricted

[fi(c), f (c)]. Since hk is a homeomorphism h(x) h(y). It follows that h is

an order preserving homeomorphism. Therefore, by Theorem 3.2, lim(/, f) is

homeomorphic to lim(/, g).

Since every member fA from the logistic family has S f < 0 and non-flat

critical point, we see that the inverse limits considered in Theorem 4.5 and

Theorem 4.6 are homeomorphic. This is an important observation since Theo-

rem 4.5 does not follow as a corollary to Theorem 4.6. (We do not know whether

S f < 0 implies f has non-flat critical point). We now turn our attention to the

topological properties of the inverse limits of the previous theorem. Recall that

if f is infinitely renormalizable with S f <0, then 411(i, f) and 4m(/, RnfAc..)

are homeomorphic for all n > 1. Thus the core of lim(/, rif) consists of two

copies of lim(/, f) intersecting at a common endpoint of a ray. This suggests

some restrictions on the types of topologically different subcontinua of Iim(/, f).

That this is the case was observed by Barge and Ingram [4, Theorem 7] for the

logistic family. Thus, the result also applies to the inverse limits considered in

Theorem 4.5 and Theorem 4.6.

Theorem 4.7 [4, Theorem 7,1 For the logistic family {fA(x) = Ax(1 x), 0 <

A <4} with Feigenbaum value A, is is hereditarily decomposable and

contains only three topologically different subcontinua: arcs, copies of f

or the union of two copies of fAo) intersecting in a point.
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