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Nonlinear Internal Waves on the Continental Shelf:
Observations and KdV Solutions

1. Introduction

Internal waves exist throughout the world's oceans wherever there is

stratification from the shallowest near-shore waters to the deepest oceans. Internal

waves are important to physical oceanographers because they transport momentum

and energy, horizontally and vertically, through the ocean, e.g. Munk (1981), Gill

(1982). They provide shear to turbulence which results in energy dissipation and

vertical mixing, e.g. Holloway (1991), Sandstrom & Elliott (1984). Biological

oceanographers are interested because the internal waves carry nutrients onto the

continental shelf and into the euphotic zone, e.g. Shea & Broenkow (1988),

Sandstrom & Elliott (1984), and Holloway et al. (1985). They are of interest to

geological oceanographers because the waves cause sediment transport on the shelf,

e.g. Cacchione & Drake (1986). Civil, hydraulic and ocean engineers are interested

because the internal waves generate local tidal and residual currents, e.g. Willmott

& Edwards (1987), which can cause scour on nearshore as well as offshore

structures, e.g. Osborne et al. (1978). They are also of interest to the navy because

of the ability of the waves to affect propagation of optic and acoustic signals.

This study is focused on the internal tide and subsequent evolution of

nonlinear waves. Internal waves in the ocean span the frequency spectrum from the
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buoyancy frequency, N, to the inertial frequency,f However, the internal, or

baroclinic, tide accounts for a large fraction of the energy contained in these waves.

The internal tide is generated by the interaction of barotropic tidal current with

topography and not directly by the gravitational attraction of sun and moon. The

properties and propagation of linear internal tide and waves have been treated in

detail by many investigators, see, for example, Garrett & Munk (1979), or the

monographs by Gill (1982), Lighthill (1978), or Apel (1987).

As the internal tide shoals, the nonlinear terms in the Navier-Stokes

equations become important. These tidal waves of finite amplitude may evolve into

packets of high frequency nonlinear waves. The equations describing these waves

are much more complex than the linear equations and few mathematical solutions

exist.

We are interested in nonlinear internal waves because they are a very

energetic part of the signal in time series that we have observed on continental

shelves and in the shallow ocean. We are guided by numerical solutions of

Korteweg-de Vries (KdV) type equations that incorporate both weak nonlinear and

weak dispersive effects.

The derivation of the Korteweg-de Vries (KdV) equation, and an extended

form of it, the eKdV, are reviewed and discussed in Chapter 2. The numerical

scheme used to run the model is discussed, as is the transformation of the

equations. Model runs and results are presented in Chapter 3 to explain the

transformation of the internal tide and the evolution of solitary-like waves on the



continental shelf. These results are compared with data and observations collected

at two sites: in the Mid Atlantic Bight, to the south of Massachusetts, during the

Coastal Mixing and Optics experiment (CMO), and near shore at Oceanside,

California, during the Littoral Optics Experiment (LOE) (Chapter 4). The CMO

data was collected at a mooring in July and August 1996, and the LOE experiment

conducted in October 1995. The location sites are further discussed in Chapter 4.

Chapter 5 contains a summary and conclusions of the work.

We conclude the introduction with a brief historical review of internal

waves, particularly nonlinear waves, and the work and events leading to the present

understanding of these waves.

Historical review Internal wave research has been an area of interest within the

physical oceanography community for decades. Gill (1982) gives several historical

examples of observations of internal gravity waves. The phenomenon of 'dead

water' experienced by Norwegian ships in certain coastal waters led V. Bjerknes to

give perhaps the first explanation of an ocean phenomenon in terms of internal

waves. A preface to Ekmants 1904 paper by V. Bjerknes reads:

The present investigation of "Dead-Water" was occasioned
by a letter in 1898 from Prof. Nansen asking my opinion on
the subject. In my reply to Prof. Nansen I remarked that in
the case of a layer of fresh water resting on the top of salt
water, a ship will not only produce the ordinary visible waves
at the boundary between the water and the air, but will also
generate invisible waves in the salt-water fresh-water
boundary below; I suggested that the great resistance



experienced by the ship was due to the work done in
generating these invisible waves.

Internal waves were subsequently observed during all the major

oceanographic expeditions of the early 20th century. Defant (1960), for example,

gives details of the observation of long internal waves while on anchor station 254

(3 1st of January to 2 of February 1927) during the "Meteor" expedition. The

series of papers by Ufford (1947a, 1947b, 1947c) gives details of the observation of

high frequency large amplitude internal waves in shallow water off the coast of San

Diego collected aboard the U.S.S. Beaumont, the E.W. Scripps and the U.S.S.

Democracy in 1942 and 1944.

Most of the work on internal waves in the 20th century has been focused on

linear internal waves but observations in coastal and near-shore waters regularly

contain nonlinear internal waves. That is not to say that nonlinear internal waves

are confined to the continental shelf and coastal seas, see for example Pinkel

(1979), Osborn & Burch (1980), and Fu & Holt (1984), but the vast majority of

observations of internal nonlinear and solitary-like waves in the oceans have been

in shallow regions and adjacent to the continental shelf and slope.

Surface solitary waves appear to have been first documented following their

chance observation by Russell in 1834:

I was observing the motion of a boat which was rapidly
drawn along a narrow channel by a pair of horses, when the
boat suddenly stopped - not so the mass of water in the
channel which it had put in motion; it accumulated around



the prow of the vessel in a state of violent agitation, then
suddenly leaving it behind, rolled forward with great
velocity, assuming the form of a large solitary elevation, a
rounded, smooth and well-defined heap of water, which
continued its course along the channel apparently without
change of form or diminution of speed. I followed it on
horseback, and overtook it still rolling on at a rate of some
eight or nine miles an hour, preserving its figure some thirty
feet long and a foot to a foot and a half in height. Its height
gradually diminished and after a chase of one or two miles I
lost it in the windings of the channel. Such in the month of
August, 1834, was my first chance interview with that
singular and beautiful phenomenon.

Russell was fascinated by the fact and the idea that a wave so steep did not

break but propagated away in one direction without becoming deformed. Thus the

great investigation of solitary and nonlinear waves was born. Russell made some

rather precise observations of solitary waves with the aid of experiments. Several

notable scientists of the latter part of the 19th century published papers describing

their work concerning solitary waves among whom are included Boussinesq (1872),

Kelvin (1887), and Rayleigh (1876). Korteweg and de Vries (1895) were the first

to develop a mathematical model for solitary waves when they approximated the

Navier-Stokes equations for small finite-amplitude waves. Though nonlinear

waves received lots of attention throughout the 20th century, the Korteweg-de Vries

(KdV) equation was put aside shortly after the work of Korteweg & de Vries since

solitary waves were just considered to be a relatively unimportant curiosity within

the field. Zabusky & Kruskal (1965) showed, using a computer simulation, that

upon collision two solitary waves which satisfied the KdV equation retained their
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shapes and propagation velocity after the collision. Zabusky & Kruskal coined the

term 'soliton' to describe these waves since they behaved in a somewhat particle-

like fashion.

An early documentation of the emission of internal waves of finite

amplitude from the baroclinic tide was made by Halpem (1971) when temperature

measurements were made at station T, 9 km west of Stellwagen Bank in

Massachusetts Bay. In this case, the internal tide steepens upon propagation over

Steliwagen Bank, which separates Massachusetts Bay from the broader continental

shelf. In the lee of the bank, an internal hydraulic jump is followed by several high

frequency, large amplitude oscillations. The process repeats itself at the M2 period.

These observations led to an experimental investigation by Lee & Beardsley (1974)

in which the propagation of the internal tide past Stellwagen Bank was imitated in a

laboratory tank with movable bottom topography. They also made a theoretical

investigation, following on the work of Benney (1966), wherein a Korteweg-de

Vries type equation for the stream function was derived for the wave and fluid

motion in the tank by a perturbation expansion using three small parameters

corresponding to nonlinear, dispersive and non-Boussinesq effects. The theoretical

investigation was carried out for the case of both weakly stratified shear flow and

also for the case of a two layer fluid. Their theoretical results led to a numerical

investigation which ultimately resulted in the conclusion that nonlinearity and

dispersion are important factors to explain the observations of Halpern. Haury,

Briscoe & On (1979) following up on the observations of Halpem, studied the
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passage of the same high frequency internal wave packets past Stellwagen Bank

and concluded that these waves seriously impact plankton distributions to an extent

that may effect primary production in Massachusetts Bay.

Sandstrom & Elliott (1984) investigated the links between horizontal and

vertical nutrient transport and mixing at the shelf break strip on the Scotian shelf.

They made observations with the 'sawtoothing' Batfish during two cruises in

November 1980 and November 1981, respectively. Based on their observations

and theory, they found that the barotropic tide interacts with the continental shelf

and slope to generate a baroclinic response in the form of an interfacial wave. As

the fundamental internal mode crosses the shelf, the isopycnals are depressed and

steepening occurs due to nonlinear effects. Dispersive effects become important

during the process, and solitary waves can be formed once the dispersive effects

become comparable to the nonlinear effects. Microsructure activity occurred at the

base of the mixed layer due to the baroclinic shear which ultimately acts to

maintain the vertical nutrient fluxes necessary to sustain the observed primary

production on the shelf.

In a series of papers Holloway (1983, 1984, 1985, 1987) has reported on

and investigated the existence of large amplitude internal tidal waves at the shelf

break region of the Australian North West Shelf. As in the Scotian Shelf case, he

found that the internal tide is predominantly a first mode internal wave of large

amplitude. He also found that the wave steepens on its leading face as it crosses the

shelf break strip leading to the formation of an undular bore, or internal hydraulic



jump, on the forward face. A reverse internal hydraulic jump forms later in the

cycle, that is after the wave has propagated onto the shelf. These internal hydraulic

jumps are often followed by a packet of internal solitons. Holloway (1987) has

shown that a significant fraction of the baroclinic tidal energy is associated with

these internal hydraulic jumps and solitons, and that most of the baroclinic tidal

flux has been dissipated upon propagation past the shelf break onto the shelf.

Holloway et al. (1985) examined the transport and mixing of nutrients in this

continental shelf region and concluded that these internal tidal waves may cause a

significant flux of nutrients onto the continental shelf.

Winant (1974) discusses very high frequency large amplitude internal wave

oscillations observed in very shallow water off the Scripps Pier in San Diego,

California. These wave packets have super tidal frequency and are very complex.

Other examples of strongly nonlinear soliton formation include the packets

formed as a result of tidal flow over the Sill of Gibraltar and these solitons can be

seen to propagate into the Mediterranean Sea, see for example the photograph in

Figure 5.32 of the monograph by Apel (1987) or the paper by Farmer & Armi

(1988). Ivanov & Konyaev (1976) have investigated soliton formation over a sill in

the Caspian Sea.

Internal wave packets can also be observed by SAR (synthetic aperture

radar) where the internal wave packets appear as distinct linear wave packets of

varying intensity in SAR imagery. Packets of internal waves of tidal frequency

have been observed on continental shelves by this method. Perhaps the most



visible of these regions is the area of the SARSEX experiment, that is a 50 km box

to the east of the Hudson Canyon, inshore of the shelf break and the packets are

discussed by Gasparovic et al. (1988). Subsequent remote observations, for

instance from satellite, have made a strong case for the existence of these packets

of solitary waves throughout the world ocean, see Ape! & Gonzalez (1983), Apel &

Lin (1991).
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2. Theoretical Background

The Korteweg de Vries (KdV) equation is well known to be a suitable

physical model for describing weakly nonlinear advective effects and linear

dispersion in internal waves. It was originally developed by Benney (1966) and

extended to second order by Lee & Beardsley (1974). We begin this study by

briefly reviewing the derivation of the KdV equation following the procedure of

Lee & Beardsley (1974) and the discussion by Lamb & Yan (1996) but without

mean current. The KdV equation is derived from classical nonlinear long wave

theory using a two-parameter perturbation expansion in e and S which scale the

nonlinear and dispersive effects, respectively.

The two dimensional equations for an incompressible, inviscid Boussinesq

fluid are

p0(u, +uu +wu,)=-p 2.1

p0(w+uwww)=-p-gp 2.2

u+wO 2.3

pt+upx+wpz=o 2.4

where equations 2.1 and 2.2 are the momentum equations, equation 2.3 is the

continuity equation and equation 2.4 is the conservation of density. u is the
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horizontal velocity, w is the vertical velocity, p is the pressure deviation from

hydrostatic pogz, g is the acceleration of gravity, and the subscripts represent

derivatives with respect to x, z, and t. In the Boussinesq approximation the density,

Po is a constant and p = p(z) + p'(x, z, t). Cross differentiation between equations

2.1 and 2.2 leads to elimination of the pressure term resulting in the vorticity

equation

[p0(u +uu +wu)] -gp [p0(w +uw +ww)] =0. 2.5

Next, all variables are scaled as follows

x=Lx* z=Dz*
U

u=EUu* w=EUS%w*

p = p0(z)-- Cp*'(x,z,t)]

where D is the water depth, L is the horizontal scale, U is the horizontal velocity

scale, and asterisks indicate dimensionless quantities. The non-dimensional wave

amplitude is given by s, and 8= D2/L2. The continuity equation (2.3) permits us to

define a stream function by
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u=4( w=IJIx. 2.6

Introducing the dimensionless variables into the conservation equations for density

and vorticity (equations 2.4, 2.5) we have

+ eip. =0 2.7

(4c + C Vf ) P
2.8

+8(iç +er e4f41) 0

where the asterisks have been dropped for convenience. The boundary conditions

for a rigid level surface and bottom are

z=O 2.9

vi=O @ z=1. 2.10

The stream function and the perturbation density p'are expanded by the two

parameters e and 8, which are assumed small but not necessarily of the same

magnitude, as follows:

1(x,z,t)= 2.11
1=0 j=0
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p'(x,z,t)= 2.12
i=O j=O

Substituting equations 2.11 and 2.12 into equations 2.7 - 2.10, and searching for a

separable solution, the 0th order solution in e and 8 is assumed to have the form

°'°(x, z,t)= A(x,t)P°'°(z) 2.13

with the evolution of the amplitude A given by

4 =CA 2.14

and 4/0.0) (z) and C are eigenfunctions and eigenvalues of the vertical boundary

value problem

+ Pz Ø(OO) =0
C2

0(0.0) (o) (0.0) (i) =0

2.15

There are an infinite set of solutions Ca); however we will consider only

mode one solutions and for notational convenience set 0= 0(0.0) and C = Cj.

Without loss of generality the eigenfunction is normalized such that max 0 (z) = 1.
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Assuming a separable solution (product of a function of x, t and a function

of z) at l order in e and (5 the amplitude evolution equation becomes

4 = CA' + erAA + 5sA 2.16

with the l order stream functions given by

(x, z,t) = A2Ø"'° (z) 2.17

p°"(x,z,t)= AØ°"(z). 2.18

The constants r and s are found by satisfying the integrability conditions applied to

the boundary value problems that define the functions (z) and (0.1)

(z). The

function A is now replaced by B since the parameter of principal interest is the

vertical displacement of a streamline, rather than the amplitude of the stream

function. The relationship between B and A to lowest order, for given depth Zo, is

'(0.0)

B(x,t,z0)=
A(x,t)P(z0)

2.19
C

The evolution equation 2.16 is now redimensionalized and becomes the

KdV equation:
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+cj +a1111 +J3?7 =0 2.20

where 77 is the vertical displacement amplitude, dimensional c replaces C, D is the

dimensional depth, and a and $ are defined as follows:

D

1fc2()3dz

2.21
2)

fc()2dz
0

i

fc22dz

13_HJD . 2.22
2

jc(4z)2dz

Progressing to 2" order in e and 5 yields four additional terms to 2.20 and is

known as the fully extended KdV equation (feKdV). Often only the second-order

nonlinear term ('cubic nonlinearity') is added resulting in the dimensional extended

KdV (eKdV) equation

2.23
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where a1 is a complicated function of a, c, 0, and N, where N is the buoyancy

frequency.

Continuous stratification can support an infinite number of modes. For

simplicity we will consider wave propagation in a two-layer stratification which can

only support one mode. The justification for making this approximation is that

most of the energy in the ocean appears to be contained in the first mode anyway.

Also the shelf often has the appearance of a two-layer stratification: an upper

mixed layer separated from a weakly stratified bottom layer by a thin pycnocline.

The coefficients of the KdV and eKdV equations are greatly simplified for a two-

layer fluid and are written (e.g. Ostrovsky & Stepanyants, 1989)

=
/gAp

2.24
11 p h1+h2

2.25
2 h1h2

2.26

3c

8hh
(2

+ h22 + 6h1h2) 2.27

where 4p is the density difference between the upper and lower layers, and h1 and

h2 are the thickness of the upper and lower layers, respectively.
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We are interested in applying the KdV and eKdV equations to situations

where the coefficients vary spatially. This problem has been investigated for slowly

varying topography and stratification by Grimshaw (1979) and Pelinovsky et al.

(1977). The eKdV equation then has variable coefficients and an additional term:

i, +ci +(a+a> +$i --Qi =0 2.28

where the term in Q accounts for the horizontal variability of the ocean and is given

by

with

Mc3
3

2.29
M0c0

M=h2
. 2.30

The zero subscript indicates a constant value at a predetermined position. The

variable coefficient KdV equation is the same as the variable coefficient eKdV

equation but with a1 = 0.

For convenience in solving the equation, we use a transformation used by

Pelinovsky & Shavratsky (1976) of the space and time variables x and t to variables

land s given by



s=f-4L-_t, l=x. 2.31
c(x)

The transformed eKdV is

where

!
+4ç =0 2.32

ç =11ji). 2.33

18

The transformation scales time so that disturbances traveling at the linear speed, c,

remain at constant s. The system is often referred to as a slowness coordinate

system. Because varies relatively slowly in 1./c compared to s, terms such as c'

are neglected relative to . The transformed KdV equation is the same as the

transformed eKdV equation with aj = 0 such that

' + +4 =0. 2.34

Important solutions of the KdV and eKdV equations are waves of

permanent form. One family of these waves are the solitary waves. There is a

strong tendency for a long but otherwise arbitrary initial condition to evolve into a
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train of solitary waves (e.g. Lee & Beardsley, 1974; Drazin & Johnson, 1989). The

solitary wave solution for the KdV equation in (1, s) space for constant parameters

is given by (Zhou & Grimshaw, 1989)

where

c-V l+cs I
=flosech2[_c 2.35

A

J

V=c+?J.Q 2.36(a)

A2 = --. 2.36(b)
all0

The solitary wave is a single 'bump' propagating at speed V without change in form

nonlinearity being balanced by dispersion (Figure 2.1). The amplitude, is

inversely proportional to the square root of the width, 4- higher amplitudes imply

narrower widths. The solitary waves can be either waves of elevation (flo > 0, a>

0) or waves of depression (lb <0, a < 0). Since the product ai0 is always greater

than zero, KdV solitary-like waves always travel with wave speed greater than c.

For future use, it is useful to consider the difference between the magnitude of the

nonlinear and dispersive terms:



a
x=

Ic
I

C
2.37 (a)

20

and the analytical values of these terms for =ijosech2(), where is the argument

given in equation 2.35, are:

a 2a
T1Tl =--1rn0sech2() 2.37(b)

c cA

= 8--ii (sech2() tanh())(2sech2() - tanh(). 2.37 (c)
c cL

Note that for sech2() the nonlinear term is for the most part larger than the

dispersive (Figure 2.1).

The solitary wave solution to the eKdV equation has a more complicated

analytical form (Stanton & Ostrovsky, 1998):

c-V c-Vl+cs l+csav=------ tanh +c -tanh -a 2.38
2a1
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Figure 2.1. (a) KdV 'sech2' wave with amplitude of -1 m, where the wave
argument value is shown on the abscissa and parameter values are calculated from
Case 1 model runs (h1 = 50 m, h2 = 150 m, g4p/p = .014 mIs2, see Chapter 3). The
amplitude of these waves is reduced to 42% of its maximum value when the
argument is 1 (continued).
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Figure 2.1(b). The difference of the absolute values of the nonlinear and
dispersive terms, , in the KdV equation for the tsech2l wave shown in (a).
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where v is a nonlinearity parameter between zero and one, and the other parameters

are

aV=c 2.39(a)
6a1

2 24a1$
a2v2

2.39(b)

1 11+v1
I. 2.39(c)4 [1vj

The shape of the "tanh" eKdV solitary wave is similar to the "sech2" KdV solitary

waves for small amplitude (Figure 2.2). As amplitude increases the eKdV solitary

waves become thicker than the KdV solutions. Unlike the sech2 solitary wave, the

tanh wave has a maximum amplitude, which is given by cila., (e.g. Stanton &

Ostrovsky, 1998).

For our application we assume sinusoidal tidal forcing at the boundary 1=0

= a0 sin(os) 2.40

where ao is the tidal amplitude and w is the frequency of the internal tide, with

periodic conditions
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Figure 2.2. eKdV 'tanh' wave for several values of the nonlinear parameter, V. The
parameter values are calculated from Case 1 model runs (h1 = 50 m, h2 = 150 m,
gzp/p = .014 mIs2, see Chapter 3). The limit of the wave amplitude, a/a1 is
approached as v 1 and the waves become more square-like.



25

1 2i =ç(s,l). 2.41s+,l
U)

We employ the same finite difference scheme as Holloway et al. (1997) to

solve the eKdV equation (2.34) numerically. The eKdV equation in this form is

wntten as:

çn+l
çn1

1
,-fl Sfl

2A1
+

c32 (
+ J+1 J-1

2s

j+2 '+ + 2']_
j-2

2-
c3 2(i.$)3

2.42

where Al and us are the grid resolution spacing values in space and time,

respectively. For the first step the temporal difference ( 7'
''

) /2A1 is

replaced by ( j' J° ) IA1, where 1° is the value of the initial wave form. The

finite difference scheme is a central difference method, (e.g. Lapidus & Pinder,

1982), which was first developed for the KdV equation by Berezin (1987), and for

the variable coefficients KdV equation by Pelinovsky et al. (1994). The difference

scheme for the generalized KdV equation remains numerically stable provided

31
2 1<1 2.43

2(Al) )
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(e.g. Holloway et al., 1997). Note that we use values of us = 55s and ui = 10 m

throughout this work.
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3. Two-Layer Model

We are interested in modeling the evolution of the internal tide as it

propagates shoreward from the shelf break. Since the greatest oceanic signal is the

first internal mode, the stratification of the continental shelf I slope region is

modeled as a two-layer fluid. This approximation greatly simplifies the problem;

the numerical scheme is much less complex for the two-layer case than the

continuously stratified case, and the results are easier to interpret. Using the two-

layer model, we will explore the propagation of the internal tide over various types

of topography. These include the simplest case of flat bottom with level interface,

progressing to realistic topography with sloping interface. All of these cases will be

run within the quadratic nonlinear framework of the KdV equation. The results

will then be compared with the eKdV model results.

For the KdV equation (2.20) and the eKdV equation (2.23) to be valid, the

leading two terms must constitute the primary balance. The nonlinear and

dispersive terms can become important, but the assumptions leading to the KdV

and eKdV equations are violated if either of the nonlinearity or dispersion terms

approach the magnitude of the leading terms. Nonlinear transformation of the

internal tide leads to the generation of nonlinear waves which tend to become

solitary-like in form as the dispersive term becomes important.

We begin by discussing the coefficients of the KdV and eKdV equations for a two-

layer fluid. Throughout this chapter the density difference between the layers is
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chosen to be a constant: gLtp/p = .014 mIs2, a representative value for the Coastal

Mixing and Optics (CMO) experiment. The linear phase speed, c, is then a

function of h1 and h2 only (equation 2.24, Figure 3.1). The values of c are

symmetric about the line h1 = h2, this is immediately obvious from the parameter

for the effective or harmonic depth contained within the phase speed (Apel, 1987)

h'=
h1h,

h1 + h1

3.1

Lines of constant total water depth are perpendicular to the line h1 = h2. For a

given total water depth, the speed is greatest when h1 = h2 and the speed decreases

as the difference in layer thickness increases. Starting at a point on the line h1 = h2

and keeping the thickness of one of the layers constant, the speed of the wave

decreases exponentially as the thickness of the other layer decreases.

The coefficient a is also a function of h1 and h2 only (equation 2.25, Figure

3.2). The values of crJc are anti-symmetric about the line h1 = h2, where a/c = 0.

Starting at a point on the line h1 = h2 and keeping the thickness of one layer

constant, the value of a °° exponentially as the thickness of the other layer

decreases. The absolute value of cilc changes least rapidly when h1 h2. When

the thick layer is larger than the thin layer by at least a factor of 2 to 3, then cilc is

relatively insensitive to the thickness of the thick layer, that is when h2 >> h1, then

Ia/cl 3/2h1 and is not a function of h2. The parameter a/c is also important
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Figure 3.1. Linear wave speed, c, as a function of the depth of the upper layer, h1,
and lower layer, h2. Also shown are the values for level bottom (Cases 1 - 4),
sloping bottom (Cases A and B) and realistic slope and stratification (LOE and
CMO).
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Figure 3.2. KdV quadratic nonlinear parameter, a, divided by the linear wave
speed, c, as a function of the depth of the upper layer, h1, and lower layer, h2. Also
shown are the values for level bottom (Cases 1 4), sloping bottom (Cases A and
B) and realistic slope and stratification (LOE and CMO).
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Figure 3.3. KdV dispersion parameter, /3, divided by the linear wave speed, c, as a
function of the depth of the upper layer, h1, and lower layer, h2. Also shown are the
values for level bottom (Cases 1 - 4), sloping bottom (Cases A and B) and realistic
slope and stratification (LOE and CMO).
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because when multiplied by the amplitude, 11, it represents the ratio of the nonlinear

to the linear terms in the KdV equation (equation 2.20).

The coefficient of the dispersive term, /3, divided by c is also a function of

h1 and h2 only (equation 2.27, Figure 3.3). The values are symmetric about the line

= h2. The value of /3./c for any given water depth is a maximum when the

individual layer depths are equal, h1 = h2. The parameter value decreases as either

one of the layers becomes small. The interpretation of Figure 3.3 as a ratio of terms

is complicated. Unlike Figure 3.2 the derivatives do not cancel and the ratio cannot

be simplified.

The coefficient of the cubic nonlinear term, a1, when divided by c is also a

function of h1 and h2 only (equation 2.27, Figure 3.4). The value of a1 is always

negative and is symmetric about the line h1 = h2. For a given water depth, the

magnitude of a1 is least when h1 = h2. The value of a1 -* - as either one of h1

orh2 40.

It is also useful to calculate the ratio a/a1 (Figure 3.5). The relative

importance of the quadratic to cubic nonlinearity is given by a/a. For a given

water depth cubic nonlinearity is most important when h1 h2, i.e. when the

magnitude of a is small. The magnitude of the quadratic nonlinear term is much

greater than that of the cubic nonlinear term when the water depth of one layer is

much greater than the other and in this case the eKdV model is very similar to the

KdV model.
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Figure 3.4. eKdV cubic nonlinear parameter, a1, divided by the linear wave speed,
c, as a function of the depth of the upper layer, h1, and lower layer, h2. Also shown
are the values for level bottom (Cases 1 - 4), sloping bottom (Cases A and B) and
realistic slope and stratification (LOB and CMO).
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Figure 3.5 Quadratic nonlinear parameter, a, divided by the cubic nonlinear
parameter, a1, as a function of the depth of the upper layer, h1, and lower layer, h2.

Also shown are the values for level bottom (Cases 1 - 4), sloping bottom (Cases A
and B) and realistic slope and stratification (LOE and CMO).
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We note that the effective depth, h', is the inverse of the parameter M

(equation 2.30) contained in Q. For level bottom with horizontal interface the

values of h1 and h2 are constant and Q = 1 everywhere which means that the

horizontal variability term vanishes, and the canonical KdV is the valid model.

We begin with the solutions of the KdV equation. The eKdV model

solutions are discussed in section 3.2.

3.1 The Korteweg de Vries (KdV) Model

Using the KdV equation, we first investigate 4 cases with level bottom for

different combinations of h1 and h2. We then progress to constant sloping bottom,

first with a horizontal interface and then with a sloping interface. Finally, we make

model runs with realistic topography at the sites of the Coastal Mixing and Optics

experiment (CMO) and the Littoral Optics Experiment (LOE).

3.1.1 Level Bottom

We begin by examining the evolution of the internal tide over a level

bottom. We also choose a level interface (h1 and h2 constant). This simple fluid

arrangement is instructive when developing an intuitive feel for the generation and

propagation of internal wave packets. A level bottom is also a good approximation

for the continental shelf where the total water depth changes slowly in the
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horizontal. Four cases with different upper and lower layer thickness were selected

to look at the effects of different relative magnitudes of a and /3 (Table 1). The first

case, with h1 = 50 m and h2 = 150 m, was chosen because these are reasonable

values of upper and lower layer depth on outer continental shelves.

Case h1 h2 a'c /3/c a /3 c (12/3/a)"2

1 50 150 .02 1250 - .0145 906 0.725 628

2 40 85.7 - .02 571 - .0124 353 0.618 362

3 80 93.8 - .0021 1250 - .0016 972 0.777 2041

4 65.1 115.1 - .01 1250 - .0076 954 0.763 1227

Table 1. KdV parameter values for Cases 1 -4.

The results of Case 1 are shown in Figures 3.6 and 3.7. A sinusoidal internal tidal

amplitude of 5 m was used as the forcing at 1 = 0 (equation 2.40). As it propagates,

the internal tide steepens on the trailing edge or "back face" of the sine wave and a

shock-like front forms at about 1 50 km. At this stage we also see the beginnings

of undulations developing behind the shock-like front. By 75 km a pack of

nonlinear solitary-like waves has begun to form. It is evident at 100 km that the

solitary-like waves of depression are rank ordered with the largest amplitude first.
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The first three waves at 100 km are compared with the sech2 solitary wave-form in

Figure 3.8. Using the values of a, j3 and c, the shape of the solitary wave (equation

2.36) is determined by a single parameter, the amplitude, which is subjectively

adjusted for best fit. The subjectively chosen sech2 fits with offset are exact

solutions of the KdV equation albeit with modified velocity given by:

3.2

where i - i is the wave amplitude and ij0. is the low frequency interface offset

(Zabusky & Kruskal, 1965). The smaller amplitude trailing waves appear more

symmetric and sinusoidal in shape compared to solitary waves. Figure 3.7 is a

contour plot of displacement showing propagation of the internal tide in (l,$) space.

The transformation to s and 1 space results in a wave of speed c following a line of

constant s. A solitary wave with phase speed V> c will appear at smaller value of s

for increasing 1 along the propagation path, i.e. will curve to the left as the tide

progresses vertically up the plot along a maximum / minimum. The maxima and

minima of the nonlinear waves travel at different speeds with the leading one (at

smallest s) traveling fastest. Since a given solitary-like wave may vary in amplitude

and offset as it propagates in 1, we also expect the track of the wave to curve in s

and 1 space. The trailing sinusoidal-like waves travel with wave speed less than c,

indicating that dispersion is important. An interesting observation is that some of
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the minima of the nonlinear waves initially travel with wave speed less than c and

eventually travel with speeds greater than c (for example see the 7th minimum in

Figure 3.7).

Figure 3.9 shows the difference between the magnitudes of the nonlinear

and dispersive terms, (Figure 2.1 (b)), for Case 1 at various distances in 1. At 100

km we see the balance changing over the tidal period. The leading waves at the left

have the shape expected for a sech2 solitary wave (Figure 3.8). The trailing waves

to the right appear more sinusoidal in shape, and are relatively more dispersive than

a sech2 wave. Upwards of twenty waves have formed when the internal tide has

traveled 160 km. The leading six to seven waves travel with speed greater than c

and have a nearly sech2 form. The trailing waves travel slower than c as expected

for waves that are more dispersive.

For Case 2 we choose h1 and h2 such that cilc = .02 as in Case 1, but the

value of fl/c is less than half that of Case 1. Since the ratio of the dispersive

coefficient to the nonlinear coefficient has been reduced by more than half, we

expect Case 2 to be more nonlinear, that is we expect the internal tide to steepen

sooner, and nonlinear internal waves to form at smaller 1. Figures 3.10 and 3.11

show that the internal tide evolves similarly to that for Case 1. However, as

expected, the shock-like front and subsequent undulations appear at smaller values

of! than for Case 1. Comparing Figures 3.6 and 3.10, the internal tide is more

nonlinear at 1 =50 km for Case 2 than it is for Case 1. Also, a greater number of
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solitary waves have formed in Case 2 by 1 = 100 km. and they are more closely

spaced.

Figure 3.12 is a plot of the difference between the magnitudes of the

nonlinear and dispersive terms, , for Case 2. It appears that more of the leading

waves have sech2 form at 165 km in Case 2 when compared to Case 1. For Case 2,

a few more of the leading waves travel with speed greater than c compared with

Case 1; the remaining waves have speed less than c, and disperse from the leading

waves as 1 increases.

For Case 3 we choose /3/c = 1250, as in Case 1, but with a/c = .002 1, a

factor of ten less than the value used in both Case 1 and Case 2. As a result, we

expect the internal tide to be much less nonlinear. Indeed the internal tide steepens

slowly and even by 1 = 200 km solitary-type waves have not been generated (Figure

3.13). We expect the internal tide would continue to steepen as it propagates, and

eventually form a nonlinear wave packet.

For Case 4 the nonlinearity parameter is half that used in Case 1, a1c =

.Oland (3/c is the same value (Table 1). We expect the resultant internal tide to be

more nonlinear than Case 3 but less so than either of Cases 1 or 2. The internal tide

steepens slowly and the first wave of depression begins to form when I = 100 km

(Figures 3.14, 3.15). Fewer nonlinear waves have formed at this point than in

either Case 1 or Case 2. By 1 = 200 km only two or three solitary-like waves have

formed. The rest of the oscillations travel with speeds less than c. This is
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demonstrated in Figures 3.16, and 3.17 where comparisons with sech2 solitary

waves are made.

In summary, in Cases 1, 2 and 4, we have employed a relatively large factor

of a'c with the result that internal solitary waves are formed as the internal tide

propagates and steepens along a flat bottom. For Case 2 the nonlinearity parameter

is the same as Case 1 with a reduced dispersive parameter. This results in the

internal tide becoming nonlinear sooner and forming more solitary waves at the

same 1. In Case 4 the nonlinearity parameter has been reduced by a factor of two

compared to Case 1 with the same dispersive parameter. This results in the internal

tide being less nonlinear and solitary-like waves forming at greater 1. In Case 3 the

nonlinearity parameter is reduced by a factor of 10 from Case 1 with the result that

the internal tide steepens very slowly. No internal solitary waves have formed by

200 km. The leading solitary-type waves have evolved from the transforming

internal tide with wave speed which appears to be always greater than the linear

speed, c. All of the waves which are formed after the leading solitary-type waves

are more symmetric and sinusoidal and travel with speed less than the linear wave

speed thereby dispersing from the leading waves. Some of these waves later

change form becoming more nonlinear and solitary-like and ultimately traveling at

wave speed greater than the linear wave speed.
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3.1.2 Constant Bottom Slope

We next investigate the propagation of the internal tide onto a constant

bottom slope. We present two cases of stratification: a constant upper layer

thickness (Case A) and a sloping interface (Case B). Both cases are possible on

continental shelves. The starting layer thickness we have used at 1 = 0 is the same

as Case 1 for a flat bottom, i.e. h = 50 m and h2 = 150 m. We have chosen a

bottom slope of 1/1000, that is the total depth changes from 200 to 0 m over a

distance of 200 km.

We first investigate the case of constant sloping bottom with constant upper

layer thickness (Case A). The value of c decreases in shallow water (Figures 3.1

and 3.18). The nonlinear parameter a 0 as h2 hj at water depth of 100 m.

Seaward of this depth, where h2> h1, a <0 and solitary waves are waves of

depression; shoreward of this depth, where h2 < h1, a> 0 and solitary waves only

exist as waves of elevation. The value of $ - 0 as the product h1h2 +0. Since

the magnitude of a is initially relatively large we expect the sinusoidal internal tide

to transform rapidly resulting in the formation of several nonlinear waves (as

previously seen for the flat bottom cases). Since a -+ 0, these waves may not be

so nonlinear as to violate the weakly nonlinear constraint on the KdV model.

However, since the value of a rapidly increases for 1> 100 km. we expect the
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waves of elevation to become highly nonlinear thereby possibly violating the

weakly nonlinear condition.

Figures 3.19 and 3.20 show the internal tide signal for Case A at different

values of 1, i.e. at different water depths. The internal tide steepens and rapidly

becomes nonlinear, resulting in the generation of a shock-like front and subsequent

undulations by 1 50 km. Shoaling further, the internal tide becomes more

nonlinear with the oscillations starting to resemble solitary waves by 1 = 70 km.

However, unlike Cases 1, 2, and 4, the waves never develop into mature internal

solitary waves as the magnitude of a continually decreases. By 1= 90 km the

waves resemble a symmetric, dispersive packet, as further evidenced by Figure

3.21. Initially the relatively large magnitude of a resulted in the rapid steepening of

the internal tide, so much so that the Case A tidal signal at 1 = 50 km resembles

those of both Case 1 and Case 2 for flat bottom. However, as the value of a

approaches zero the nonlinear waves are prevented from developing into solitary

waves, since higher order terms (neglected in KdV) become of order a or larger and

thus cannot be ignored thereby rendering the KdV model invalid in this

neighborhood. At 1= 100 km the packet certainly looks symmetrical about a

horizontal axis, that is to say the waves are neither polarized as waves of depression

nor elevation. This is due to the fact that KdV solitary waves cannot exist when a

= 0. At 115 km the waves have switched polarity; they have become waves of

elevation, a result of a having become positive. This transition can be seen in

Figure 3.22 where the leading waves are compared with sech2 solitary form.



56

looc

I

2:004681012
distance (km x 10)

Figure 3.18. Case A (constant sloping bottom with level interface, h1 = 50 m) KdV
parameter values for quadratic nonlinear parameter, a, dispersion parameter, j3,
linear phase speed, c, horizontal variability factor, Q, and depth.
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Beyond 100 km the waves rapidly approach solitary waves of elevation since the

value of a becomes large quickly.

As the tide propagates into shallow water the leading face of the internal

tide steepens but, unlike cases 1 4, the decreasing magnitude of the nonlinear

parameter, a, causes this steepening to slow down and there is virtually no change

in the wave slope steepness between 70 and 90 km. The rate of change of the slope

of the leading face changes sign when a becomes positive and the slope steepens

rapidly. The back face of the internal tide slackens at the same time. The

steepening of the leading wave will lead to the formation of a second shock-like

front (or a "reverse hydraulic jump" as has been described by Holloway et al.,

1997).

Figure 3.20 gives a clear picture of the wave speed. The leading solitary-

type wave initially travels with speed very slightly greater than c but becomes

slower than c at 1 90 km. The second solitary-type wave also has initial speed

greater than c but becomes slower than c when 1 80 km. All of the other waves

travel with phase speed less than c. For values of 1> 100 km all waves travel with

speed less than c, a result of the large negative offset for solitary waves of elevation

(Zabusky & Kruskal, 1965).

Figure 3.21 is a plot of the difference between the magnitudes of the

nonlinear and dispersive terms, (non-dimensional), for Case A. The leading

waves are slightly more nonlinear than dispersive when 1 70 km but become less
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so as I approaches 100 km. When a = 0 (1 = 100 km) the value of the nonlinear

term is zero and the waves look like a dispersive packet. Since a> 0 for 1> 100

km. the nonlinear term is again a factor and the waves become a hybrid by I = 115

km interchanging back and forth across the length of the wave between being more

nonlinear and dispersive.

For Case B with constant sloping bottom and sloping upper layer, we also

begin in 200 m water with h1 = 50 m and h2 = 150 m. For this case the bottom

slope is again 1/1000 and the interface slope is chosen to be 1/4000 with the result

that both layers will disappear simultaneously at 200 km. The values of the KdV

parameters are shown in Figure 3.23 and Figures 3.1 to 3.5. The magnitude of a

increases from 1 = 0 all the way to the shallowest water, unlike Case A where cx

passes through zero. As a result, we expect the internal tide to become nonlinear

sooner than for Case A, and any solitary waves to remain as waves of depression.

We do, however, expect the waves to become unstable, a result of the increasing

magnitude of the nonlinear parameter combined with the decreasing value of the

dispersive parameter. This combination of events will result in the wealdy

nonlinear, wealdy dispersive KdV becoming invalid at 1 = 95 km. Figure 3.24 is a

plot of the internal tide for Case B at several values of I. The internal tide steepens

rapidly and a shock-like wave, followed by undulations, has evolved from the

transforming tide by 1=40 km. The internal tide continues to steepen and several

nonlinear waves have formed by l = 55 km. These leading nonlinear waves mature
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into rank ordered solitary waves by 65 km. Figure 3.25 shows that most of the

solitary waves eventually travel at a phase speed greater than c.

Figure 3.26 is a plot of for Case B. The waves are more nonlinear than

dispersive and the increasing value of the nonlinear parameter combined with the

diminishing value of the dispersive parameter leads to the model becoming

numerically unstable.

3.1.3 Realistic topography and stratification

We next proceed to the transformation of the internal tide for the case of

realistic topography. The KdV model was run for two separate cases. Realistic

topography was constructed from observations made during the Coastal Mixing and

Optics (CMO) and the Littoral Optics Experiment (LOE) field experiments.

The first case we investigate is at the CMO site in the Mid Atlantic Bight.

Cli) profiles were made across the continental shelf from shallow water to beyond

the continental slope. T. Boyd (personal communication) has analyzed these data

and the time series collected from the central mooring of the experiment located in

69 m of water. Boyd & Levine (1999) have concluded that the internal tide is

primarily a first mode internal wave, further justifying our choice of a two

layermodel. An upper layer thickness of 25 m is a representative average value for

the duration of the experiment (July and August 1996). The line 'CMO' in Figures

3.1 - 3.4 shows the values that the KdV parameters take as the internal tide
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propagates across the continental shelf. Since the upper layer, h1, is constant, the

'CMO' line will be straight, but since the total depth does not vary linearly in 1, the

value of h2 does not change linearly along this line. Figure 3.27 shows the values

of the KdV parameters as a function of 1. Though undulating, the bottom

topography is similar to the constant sloping bottom cases. Recall that we chose an

upper layer depth of 50 m for Case A (Figure 3.19), whereas here we have chosen

h1 = 25 m. The nonlinear coefficient, a; starts out negative with relatively large

magnitude. The magnitude decreases, similar to Case A, changing sign after 1 =

100 km before rapidly increasing in value. The value of the dispersion coefficient,

$, decreases similar to Case A and is near to zero at 100 km. The linear wave

speed, c, and the horizontal variability parameter, Q, are similar to Case A.

The model results are shown in Figures 3.28 and 3.29 for a tidal forcing of

amplitude 2 m at 180 m water depth. The internal tide evolves similarly to Case A

(Figures 3.19 and 3.20). A shock-like front has formed on the back-face of the

internal tide at 1=40 km. Several nonlinear waves have formed by 1 = 60 km

(mooring location) with the leading 4- 5 waves appearing like solitary waves of

depression and the trailing waves looking more like a dispersive packet. Several

more waves have formed by 80 km but the number of solitary-like waves seems to

have been reduced to the leading two waves. All of the trailing waves do appear as

a dispersive packet since the magnitude of a has decreased. More waves continue

to form but by 100 km the packet is nearly non-polarized, not unlike Case A.

Beyond 1 = 125 km the value of a becomes large, and the waves reverse polarity
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Figure 3.27. CMO experiment site (with flat interface, h1 = 25 m) KdV parameter
values for quadratic nonlinear parameter, a, dispersion parameter,

fi, linear phase
speed, c, horizontal variability factor, Q, and depth. The CMO mooring location is
shown by the black vertical line at 60 km in the depth diagram.
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and rapidly develop into mature solitary waves of elevation. The results show that

the CMO case and Case A are similar, though more solitary waves have formed for

the CMO case. This is due to the fact that at the CMO site the value of a is initially

twice that of Case A. The internal tide becomes unstable beyond I = 130 km. This

is a result of the increasing value of the nonlinearity parameter combined with the

vanishing dispersion parameter. Figure 3.29 is a plot of the evolution of the

internal tide as it propagates over the continental shelf, increasing in 1. The leading

solitary-like waves initially travel with speed very slightly greater than c, as in Case

A (Figure 3.20). The waves slow down to travel at speed c where 1 90 km and a

is very small. The speed of the waves then becomes slightly slower than c but more

complicated than Case A, due to the undulating topography.

Figure 3.30 is a plot of the difference between the magnitudes of the

nonlinear and dispersive terms, , for the CMO case. The leading 2 to 3 three

waves are initially more nonlinear than dispersive but the diminishing magnitude of

a leads to the waves becoming more dispersive-like and the waves begin to slow

down. The negligible value of a between 1= 100 km and 1= 115 km results in the

waves behaving very much like a dispersive packet and they travel with wave speed

slightly less than c. The increasing value of a after it passes through zero, leads to

the nonlinear term becoming almost the same order of magnitude as the dispersive

term before the model becomes numerically unstable shortly beyond 1 130 km.

Next, we solve the KdV equation using the topography and stratification as

observed at Oceanside, California in October 1995 during the Littoral Optics
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Experiment (LOE) (Figure 3.31). The depth varies from 130 to 20 m over a

distance of 5 km, yielding a slope of 1/100, about 10 times greater than the slope

at the CMO site. Seaward of the steep slope region the depth remains

approximately constant before arriving at the Gulf of Santa Catalina when the water

depth rapidly increases to several hundreds of meters. The water depth again shoals

at the open ocean end of the Gulf where it reaches the Outer Santa Barbara Passage

before the open ocean is encountered. Current meter records made during the LOE

experiment show that a large amount of tidal energy at Oceanside is contained at

the tidal harmonics, particularly the 4th, which may be a result of the complex

topography introduced above. We run this case with sinusoidal boundary condition

and period three hours, representative of the 4 harmonic of the semi-diurnal tide.

The internal tide is propagated inshore from 131 m water. Note that a lot of energy

is contained in the tidal harmonics and is comparable to the fundamental period,

particularly during the spring tide period.

The KdV parameters do not change much in the flat region (Figures 3.1 -

3.4, 3.31). The value of a is large in this flat region due mainly to the facts that h1

<<h2, and that h1 is small; here we have chosen h1 = 8 m a reasonable choice based

on CTD casts. It is also noteworthy that /3 and c are small here. Nonetheless, we do

expect the internal tide to become very nonlinear off the slope since the magnitude

of a is very large there. Figure 3.32 (a) is a plot of the 4th harmonic of the internal

tide as it propagates onto the shelf from the Gulf of Santa Catalina. A close up of

these results is shown in Figure 3.32 (b). The 4th harmonic steepens rapidly on the
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back face as it propagates in along the relatively flat bottom. A shock-type wave of

depression followed by nonlinear undulations is formed within the transforming

internal tide between 1 9.5 and 11.5 km. A packet of solitary waves begins to

develop shortly after. Figure 3.32 (b) shows that the leading waves are waves of

depression but they rapidly change polarization to waves of elevation since the

nonlinear parameter, a, changes sign at 1 12 km. The evolving waves are formed

very closely together, an indication of relatively strong nonlinearity.

Upon comparing results of the CMO and LOE cases, the most striking

difference is that the internal tide steepens much sooner for the LOE case.

Although the ratio of upper to lower layer depth, h1/h2, is initially small for both

cases it is a factor of two less for the LOE case. This factor directly results in the

magnitude of a for the LOE case being twice that for the CMO case over the

leading 10 km of propagation and is the reason for the emission of nonlinear waves

much sooner in 1 for the LOE case.

3.2 The extended Korteweg - de Vries (eKdV) model

All of the model runs in section 3.1 were also made using the

extended Korteweg-de Vries (eKdV) equation which includes the cubic

nonlinearity term. The ratio of the nonlinear parameters a/a1 for all cases is shown

in Figure 3.5 (this ratio is also the theoretical maximum for the solitary wave

solution to the eKdV solution). The ratio of the quadratic to cubic nonlinear terms
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site of the current meter data used in Chapter 4.
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in the eKdV equation depends upon the displacement height, ? and is given by

a'(a). For flat bottom Cases 1, 2 and 4, the maximum amplitude 170 is - 18 m for

the KdV numerical solution. Figure 3.5 shows that a/a1 >40 for Case 1, and

therefore the nonlinearities result predominantly from the quadratic nonlinear term.

For Cases 2 and 4 the magnitude of a/a1 is just over 20 m, and both the quadratic

and cubic nonlinear terms will be important.

For the case of sloping bottom with horizontal interface, Case A, the ratio

a/a1 goes through zero, the value when h1 = h2, and we expect the cubic nonlinear

term to be important. The results of this model run are shown in Figure 3.33. The

internal tide evolves in a similar way to the KdV case (Figure 3.19). A shock-type

wave is followed by several nonlinear oscillations on the back face of the internal

tide at I = 50 km. The internal tide in both frameworks look similar at 70 km with

several nonlinear waves of depression having formed. The KdV solitary-like waves

flip polarity at 100 lan due solely to the fact that achanges sign there.

For the CMO case, comparison of KdV and eKdV models shows a more

significant difference than for Case A. Figure 3.34 shows the KdV and eKdV

model results for a 4 m internal tide having propagated 60 km to a water depth of

69 m. The leading KdV model solitary wave arrives at the CMO central mooring -

.1 tidal period ahead of the leading eKdV model solitary wave. The reason the

KdV and eKdV models are so different at the CMO site when compared to Case A

is due to the fact that the magnitude of a1 is greater at the CMO site. Though the
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magnitude of a is less in Case A, the fact that the magnitude of a1 is so small when

compared to a means the addition of the cubic nonlinear term does little to change

the KdV results. This is not true at the CMO site where the greater magnitude of a1

is the reason for the difference between the KdV and eKdV frameworks,

particularly as the internal tide propagates into shallower water and the magnitude

of the ratio c,1a1 is much greater for case A (see Figure 3.5). Comparing the

leading waves from the eKdV and KdV solutions reveals a fundamental difference

in wave form; the KdV waves are taller and thinner (Figure 3.34 (c)). Solitary type

solutions to the KdV (sech2) and to the eKdV (tanh) are fitted to the leading waves

(Figure 3.35). The leading wave in the KdV model is very well approximated by a

sech2 wave. The lead wave in the eKdV model is neither well approximated by

sech2 nor tanh, but appears to be a hybrid of the two. Fits of sech2 and tanh waves

were made by subjectively choosing values of o and v, respectively, while using

the value of KdV and eKdV parameters for 69 m water depth. Note that the

amplitude of the tanh wave is limited at a/a1. Increasing v only serves to make the

waves wider ('thicker') once the value of v is close to one (Figure 2.2). The

amplitude and width of the leading waves of the packet are also compared in Figure

3.36. The width is defined as the time it takes the wave to pass a fixed point, as

measured at 42% of the amplitude. Results from a range of different tidal

amplitudes are also shown. For reference the dotted lines represent sech2 and tanh

for the local values of parameters h1, h2, and gzpIp. For KdV the leading wave of
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thicker than the trailing ones which are all approximately equal in width. For eKdV

the leading wave has larger amplitude and is thicker than the trailing waves. For

the KdV model with 4 m amplitude all the waves fall on the same spot on the sech2

curve. For the eKdV model with 4 m amplitude, the waves appear on the 'thick'

side of the sech2 curve with the lead wave the most removed from the KdV

theoretical curve. The same is true for amplitudes of 5 m and 6 m. The eKdV

model waves appear to be evolving toward the theoretical eKdV 'tanh' curve. Note

the 2 m tide has amplitude greater than the second wave, and the amplitudes of

subsequent waves decrease in a rank ordered fashion. The leading wave is slightly

that the amplitude of many of these waves exceeds maximum tanh wave amplitude

of 9 m as determined by the local parameters at the CMO site.

To learn more about the evolution of a sine wave to waves with sech2 and

tanh form, we ran the model with constant parameters (flat bottom) using values at

the mooring site. The runs were made with initial tidal amplitudes of 1, 2 and 4 m

in both KdV and eKdV frameworks and the width vs. amplitude for the first and

second wave in each packet is plotted at various increments of 1 (see Figure 3.37).

The KdV waves grow in amplitude with approximately constant width before

turning to hug the theoretical KdV line. They then decrease in amplitude but

increase slightly in thickness. Though the KdV model waves continue to evolve,

most of them can be well approximated as being 'sech2' waves alter - 100 km (as

has previously been shown for Case 1 and case 4). For the eKdV case, the waves

are initially close to the theoretical sech2 KdV curve. The waves move slowly
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Figure 3.37. Evolution of the width vs. amplitude of the two leading waves of the
KdV and eKdV solutions for flat bottom (h1 25 m, h2 = 44 m) with same
parameters as at the CMO site. Results for initial tidal amplitudes of 1, 2, and 4 m
are shown. A value is plotted every 10 km for the 1 m tide beginning at 160 km
and the lines run from 160 km to 260 km. A value is plotted every 20 km for the 2
m tide beginning at 80 km and the lines run from 80 km to 200 km. A value is
plotted every 20 km for the 4 m tide beginning at 40 km and the lines run from 40
km to 100 km. The theoretical width vs. amplitude for sech2 and tanh waves is also
shown (dotted lines). The width is calculated at 42% of the total amplitude.
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towards the theoretical eKdV tanh curve, ultimately decreasing in amplitude and

increasing in thickness. The last points have been plotted after the internal tide has

propagated - 240km. It appears that these waves are evolving toward tanh form,

but take a long time to mature. Also, the amplitudes of the waves are greater than

the theoretical eKdV maximum but their magnitudes decrease as the tide evolves.

Another investigation to explore the evolution in the eKdV model (constant

parameters) was made using an initial condition of a sech2 wave, the solitary wave

solution to the KdV equation. Sech2 amplitudes of 4 m, 7 m, 9 m, and 13 m (Figure

3.38) were chosen. The sech2 waves are rapidly transformed to tanh waves, e.g. the

4 examples plotted reach the theoretical eKdV curve after the wave has propagated

of order 10 km. A sech2 wave evolves much more rapidly to the tanh form, when it

is all alone (Figure 3.38) than when it is part of a packet of waves (Figure 3.37).

The reason for this has not been thoroughly investigated, but provides caution for

treating a packet as a group of non-interacting waves.
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4. Observations of Nonlinear Internal Waves

The data to be presented and discussed were collected during two field

experiments: the Coastal Mixing and Optics experiment, on which we shall mainly

focus, and the Littoral Optics Experiment. The locations of the two field

experiments are shown in Figure 4.1.

The CMO experimental field program was conducted to increase our

understanding of the role of vertical mixing processes in determining the mid-shelf

vertical structure of hydrographic and optical properties. The field program was

conducted on a wide shelf so as to reduce the influences of shelf break and

nearshore processes. The data we discuss was collected from the CMO Central

Mooring in July and August 1996, a time when a strong thermocline is present as a

result of large-scale surface heating. The data is available in the data report by

Boydetal.,(1997).

The goals of the LOE experiment were to understand which regions in the

nearshore environment have the highest optical variability and which forcing

mechanisms are responsible for this variability. The objectives of the study were to

determine: the vertical variability in optical properties over time scales of a few to

10 days; the effect of the total water depth on the optical variability; and the portion

of the optical variance associated with internal waves, tides, surface waves and

mixing. The data we discuss was collected at the LOE Optical Mooring in October
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1995, a time when the water column can be approximated by a two-layer fluid.

Details and results of the experiment are available in the report by Zaneveld &

Pegau (1997).

4.1 Observations during the Coastal Mixing and Optics Experiment

The Central Mooring of the CMO experiment was located at 400 29.50' N

70 030 46' W in water depth of 69 m. A total of 24 temperature recorders and 5

conductivity sensors were distributed along the mooring. Currents were measured

at 14 depths from an ADCP placed a few meters above the bottom.

Boyd & Levine (1999) have calculated the first mode internal wave

amplitude from the velocity time series from the 29 July to the 31 August (year day

210 245, Figure 4.2). The dominant barotropic tidal signal in the Mid Atlantic

Bight is semi-diurnal, (Figure 4.3 (a)), and is strongest over the period day 241 -

245 (Figure 4.4) during spring tide. A semi-diurnal signal is apparent in the first

mode record, particularly during the spring tide period.

A spectrum of the first mode amplitude (Figure 4.5) shows a peak of energy

at the lower tidal frequencies and also at high frequencies. Much of the high

frequency energy is due to bursts or pulses of high frequency nonlinear internal

waves that occur for a short period during the semi-diurnal tidal cycle. These

nonlinear internal waves propagate towards shore (to the north) across the

continental shelf to the south of Martha's Vineyard. The energy at high frequency
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is greater over the period day 241 245 during spring tide (Figure 4.5 (b)). There

is a clear maximum in energy at 2 cpd over this period, and a significant amount of

energy is also contained at 4 cpd. The energy rapidly drops for frequencies greater

than 4 cpd but there is a significant increase in energy at - 50 cpd and at - 90 cpd.

To help interpret these observations, we compare them with the two-layer

eKdV model using the CMO parameters. Since we do not know where the internal

tide is generated or its amplitude, the model was run assuming a sinusoidal internal

tide at distances of 24 km, 48 km and 60 km seaward of the mooring site. Three

initial amplitudes of 2 m, 4 m and 6 m were used at each distance. Figure 4.6

shows the internal tide as it appears at the CMO mooring site for these nine cases.

In all cases, the leading face of the periodic sinusoidal wave slackens (or flattens) as

the internal tide propagates shoreward. This is followed by a steepening of the back

face which develops into a shock-like front. The shock-like front is followed by

oscillations which subsequently evolve into a packet of solitary-like waves.

This same pattern can often be seen in the observed time series of the first

internal mode. Figures 4.7,4.8 and 4.9 show several individual jumps at the CMO

mooring. Figure 4.7 shows first modes which best match the model results of

Figure 4.6. Some features of the observations compare well with the model. The

slackened leading face of the tide is always followed by a steep - almost shock like

front followed by several highly nonlinear short period waves. Although not rank

ordered, the largest amplitude wave in the observed packet is always at or near the

jump. The model results (Figure 4.6) show that the amplitude of the jump is greater
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for larger initial condition, and that the amplitude of the jump decreases with

distance from the point of generation. Although nonlinear waves continue to

evolve, their amplitudes decrease as they propagate shoreward from their

generation point, and they become 'thicker', i.e. they become more tanh like.

Though the observed waves have amplitudes greater than the tanh limit for local

eKdV parameters, they nonetheless fit the shape of several model waves at the

CMO site (since several of the model waves also have amplitude greater than the

theoretical eKdV limit).

There are also many features of the observations that are not found in the

model. Figures 4.7 (f) and (g) differ in that the packet that follows the shock-like

front, persists until the end of the tidal period, and the waves are spread apart from

each other. Figure 4.7 (c) shows two packets of solitary-like waves whichpass the

mooring site over a tidal period. The leading slackened face is followed by a

shock-like front and a packet of solitary waves. The trailing face then slackens to

assume a slope similar to the leading face but a second shock-like front, followed

by a packet of solitary waves, passes before the end of the tidal period.

Another common observation that is not found in the model results is a

'drop' in amplitude before the jump that occurs at the beginning of the wave

packet. Figure 4.7 (h) shows that the first internal mode drops between 243.5 and

243.6 but the slackening slope is restored before the arrival of the jump and packet

of solitary waves. Similar drops also occur in Figures 4.7 (b) and (e), Figure 4.8 (a)

and (i). Another phenomenon observed is that the slope of the leading face of the
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tide changes sign before the packet in several of the examples in Figure 4.8. In

Figure 4.8 (h) the low frequency slope changes sign at day 236. The solitary waves

appear as usual ahead of the trailing, low frequency signal. The signal becomes

even more complicated when both a 'drop' and low frequency slope change are

present, e.g. Figure 4.8 (d). In this case, the slope of the leading slackening low

frequency signal changes sign at day 242.5 and is followed by a packet of four

solitary waves. The low frequency signal is restored before the passage of a jump

followed by a packet of five large solitary waves. The trailing face retains the slope

of the low frequency signal. Figure 4.9 shows a series of jumps which are more

complex than those in Figures 4.7 and 4.8, though they retain the basic structure of

the model results over the tidal period.

To examine the details of the wave packets themselves, the width vs.

amplitude was estimated for each wave from all events during the period day 210 -

245 (Figure 4.10). These waves are plotted along with the leading two waves from

six of the nine model runs shown in Figure 4.6. Also shown are the theoretical

relations for solitary waves for the eKdV and KdV equations using CMO site

parameters. The observed nonlinear waves vary greatly in amplitude and width,

generally having amplitudes of between 5 and 25 meters, and widths of between

200 and 600 seconds. Larger amplitude observed waves are well approximated by

model runs with large initial amplitude, particularly the 4 m model. The 6 m model

run from 24 km seaward of the CMO site is also a very good match for several of

the observed waves. A large fraction of observed waves with amplitude less than
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15 m, and particularly less than 10 m, are much 'thinner' than model waves with

similar amplitudes. However, it seems reasonable to say that the observed waves

are a good fit to the model waves.

While some features of the observations are reproduced in the model, there

are many differences. The eKdV model used here is highly idealized. There are

many effects that have not been included. These include bottom and internal

friction, earth's rotation and mean shear. Given these limitations, we conclude that

the observations are reasonably well matched by the model.

4.2 Observations during the Littoral Optical Experiment

We have conducted a preliminary investigation into nonlinear signals in the

time series record at the Littoral Optics Experiment site. The bottom onshore

velocity record at the site, 1 m above bottom in 17 m water, for the duration of the

experiment (13 days: day 288 - 301) is shown in Figure 4.11 and a shorter period (3

days: day 298 - 301) is shown in Figure 4.12). Figure 4.13 shows the cross-shelf

section of the density field for a particular day and is typical of the midday

stratification at the site for this time of year. Note the velocity record of Figure 4.11

was made 1 m above bottom at the site marked 'OM' in Figure 4.13. The cross

section shows that the stratification is well approximated by a two-layer fluid; an

upper mixed layer separated from a weakly stratified bottom layer by a thin

thermocline. The period day 298 - 301 corresponds to spring tide in the semi-
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diurnal tide and we note there is a diurnal inequality in the two semi-diurnal

signals. There is a lot of activity in the bottom current meter record during this

period, for example there are four jump-like features during the half-day period day

300.5 301. This is in contrast to other periods, for example day 293 - 295 when

there are few, if any, jumps. A simple first mode analysis was made to relate the

current meter time series to oscillations of the interface. It is easily shown that

positive jumps in the bottom current meter time series correspond either to onshore

propagation of solitary waves of elevation, or offshore propagation of solitary

waves of depression. Nonlinear internal waves have been remotely sensed at this

location and are well known to propagate onshore (Pegau, personal

communication). We conclude that the positive jumps in velocity correspond to

internal solitary waves of elevation which propagate toward shore. The wave fronts

are very steep and are followed by very nonlinear oscillations and are spaced very

closely together. The fourth in the series of jumps during the period day 300.5 -

301 is followed by a reverse jump which can occur when the nonlinear parameter

of the KdV equation changes sign, that is when the layer depths are approximately

equal. This feature is a fairly prominent occurrence over the duration of the

experiment.

The use of the 4th harmonic of the semi-diurnal internal tide in the model

runs allows for a good comparison to be made between model results and

observations during the spring tide period. The four internal jumps during the

period day 300.5 - 301 appear at approximately three-hour intervals and usually
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generate two to three large and very high frequency oscillations. The model

generates a similar number of waves which switch polarization at the site

corresponding to current meter location. The reverse hydraulic jump at day 301

shows the KdV parameters at the 'OM" site may be well matched by model

parameters. There are also other periods of activity when the model results are a

reasonable fit to the observations.
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5. Conclusions

Observations of highly nonlinear internal waves contained in the first mode

time series on the mid-continental shelf and in current meter records in shallow

water have led us to investigate the transformation of the shoaling internal tide.

Observations were made in the mid-continental shelf at the site of the Coastal

Mixing and Optics Experiment (CMO), and in very shallow water, at the site of the

Littoral Optics Experiment (LOE). An existing model based on generalized KdV

and eKdV equations has been simplified for use in a two layer ocean, which is

representative of realistic stratification. The model accounts for weakly nonlinear

and dispersive properties of the internal tide. Earth's rotation, internal dissipation,

bottom friction, and internal shear are not included. The internal tide was forced

with a periodic sinusoidal boundary condition and allowed to propagate shoreward.

The model was first run within a KdV framework with realistic continental

shelf parameters. The internal tide steepens on its back face as it propagates

shoreward. Nonlinear waves evolve from the internal tide after the back face forms

a shock-like front. The waves appear as a rank ordered packet with the leading

waves traveling fastest, since they are the most nonlinear. The leading waves

usually travel faster than the linear wave speed, C; the trailing waves usually travel

slower than c. The lead waves nearly fit solitary wave form for local KdV

parameters ("sech2"). The trailing waves tend to be thinner than the local sech2

waves and are relatively more dispersive than the leading waves.
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The transformation of the internal tide is dependent upon the ratio of the

nonlinear to linear terms, cnl/c, in the KdV equation: for greater values of this ratio

the internal tide steepens sooner and nonlinear waves are emitted sooner. The

amplitude of the jump and subsequent waves is dependent upon the initial tidal

amplitude: larger tidal amplitudes imply larger jump and nonlinear wave

amplitudes. For a fixed nonlinear parameter, a, the internal tide becomes nonlinear

sooner upon decreasing the value of the dispersive parameter, /3.

The nonlinear waves are waves of depression when the nonlinear parameter,

a, is negative, and waves of elevation when it is positive. If a packet of waves of

depression propagates into a region where a> 0, then the minima, or troughs, of

the waves of depression become maxima, or peaks, of the waves of elevation.

All of the model runs made within the KdV framework were also made within

the eKdV framework which includes a cubic nonlinearity term scaled by a1. The

results may or may not be similar, depending upon the ratio of the two nonlinear

terms, cila1 i. If this ratio is large (greater than one) the cubic nonlinear term is not

important and the KdV and eKdV results are similar. If the ratio is of order one or

less the eKdV may evolve differently from the KdV. For most of the model runs

made the model results were similar in both frameworks. However, there are some

significant differences to the waves that cross the shelf using CMO parameters.

The modeled leading waves at the CMO mooring site were much 'thicker' than

sech2 waves with local KdV parameters, but they had not quite developed into

solitary wave solutions of the eKdV equation ("tanh").
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To understand better the evolution of waves toward tanh form in an eKdV

framework, without the complications of varying parameters, model runs were

made using constant eKdV parameters representative of the CMO site. Upon

formation, the leading waves of the packet are similar to sech2 waves. The waves

become "thicker" and tend toward the tanh form upon further propagation, but

never reach the theoretical tanh curve in our limited domain. To try to understand

why the evolution of waves from being close to sech2 waves to being close to tanh

waves was so slow, the internal tide was forced with a sech2. The evolving sech2

rapidly moves to the theoretical tanh curve for all amplitudes. We conclude that

the interaction between the solitary like-waves in a packet slows them from

evolving into exact solitary "sech2" or "tanh" waves.

Model runs with varying initial amplitudes and generation regions were

made to help interpret the observations made at the CMO site. Some features of

the observations compare well with the model. The leading face of the internal tide

steepens to form a shock like front. Nonlinear high frequency waves evolve shortly

after the appearance of the jump. Although not rank ordered, the wave of

maximum amplitude is always close to the jump. Some features of the

observations are not found in the model. Nonlinear waves can be very widely

spaced and persist over a tidal period. The amplitude of the observed waves often

'drops' before the arnval of the jump. The leading face may change slope before

the arrival of the jump.
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Individual observed waves were examined and the details compared to

model waves. The observed nonlinear waves vary greatly in amplitude and width,

generally having amplitudes of between 5 and 25 meters, and widths of between

200 and 600 seconds. Larger amplitude waves are well approximated by waves

evolving from large amplitude model waves. A large fraction of smaller amplitude,

particularly less than 10 m, observed waves are thinner than model waves of similar

amplitude. We conclude that the observed waves are a good match to modeled

waves given the highly idealized eKdV model used, and the fact that we have

neglected friction, rotation and mean shear.

A preliminary analysis was made using data collected during the LOE

experiment. Highly nonlinear oscillations were recorded in the bottom current time

series. A simple first mode analysis showed that the observed jumps corresponded

to nonlinear waves of elevation which propagate on shore. The activity observed

varied greatly between spring and neap tide with observations of at least four

nonlinear jumps followed by packets of closely spaced nonlinear oscillatory being

recorded within a tidal period at spring tide. For this reason, the internal tide was

modeled using the 4th harmonic as forcing. The internal tide steepened rapidly, as

a result of the large amplitude of the nonlinear parameter, and nonlinear waves of

depression evolved after the harmonic propagated between 10 and 12 km. The

nonlinear parameter changed sign at this value of 1 and the waves switched polarity

very rapidly. The model waves of elevation are similar to the observed waves. The
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observed waves of elevation are often followed by reverse hydraulic jumps, an

indication that the layer depths are similar, such as is the case where the model

waves of elevation become nonlinear.
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