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ABSTRAC T

Research to examine the potential effects of small -

scale hydroelectric dams on fish communities in th e

Willamette River was divided into two aspects . The first

was to determine whether or not models of habitat assessmen t

based solely upon physiological tolerances would be suitabl y

accurate for prediction of impact . The second was to gathe r

physical and ichthyofaunal characteristics for unimpounde d

streams and for streams impounded by various types of small -

scale dams. By this approach, empirical information con-

cerning the impact of small-scale dams would be gathered ,

and the predictive capacity of the habitat suitabilit y

models would be evaluated concurrently .

We found that ecological processes such as interspe-

cific competition greatly limited the accuracy of habita t

models based solely on physical variables . A second facto r

emerged : distributional patterns of fishes in differen t

streams differed . We presumed that this may be caused by

different limiting factors of different systems which shif t

behavior in a nonadditive way . We developed a multivariat e

approach to define habitat selection, by denoting habita t

availability and habitat occupation based on microhabita t

characteristics .

The second aspect of the study was to survey a smal l

sample of sites impounded by small-scale dams and to



determine the types of impacts that could occur . I n

general, we found that the larger dams caused more negativ e

impact due to diminution of flow, a greater amount of sil-

tation, and a larger impounded area . Small dams in area s

subjected to low summer flows may be beneficial, offerin g

pool refuge for cutthroat trout . Predators of juvenil e

anadromous salmonid fishes are attracted to tailraces belo w

dams and may cause a bottleneck to seaward migration fo r

important sport and commercial fishes .
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FOREWOR D

The Water Resources Research Institute, located on th e

Oregon State University campus, serves the State of Oregon .

The Institute fosters, encourages and facilitates wate r

resources research and education involving all aspects o f

the quality and quantity of water available for beneficia l

use . The Institute administers and coordinates statewid e

and regional programs of multidisciplinary research in wate r

and related land resources . The Institute provides a ne-

cessary communications and coordination link between th e

agencies of local, state and federal government, as well a s

the private sector, and the broad research community at uni-

versities in the state on matters of water-related research .

The Institute also coordinates the inter-disciplinar y

program of graduate education in water resources at Orego n

State University .
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INTRODUCTION

The Concern

One hundred and twenty-eight dams have been propose d

for low-head hydroelectric energy generation (Oregon' s

Environment, 1980) . If all these sites came on line, it ha s

been estimated that they could generate more energy than a

typical nuclear power plant . River impoundments have ha d

profound impacts on the fauna both upstream and downstrea m

of the project (Holden, 1979 ; Vanicek et al ., 1970 ; Spenc e

and Hynes, 1971 ; Erman, 1973 ; Baxter, 1977) .

	

Presently, th e

habitat requirements of the fishes native to the Willamett e

River system are imperfectly known and the impacts of small -

scale dams on aquatic fauna have not been examined . Ther e

is serious concern that changes could greatly influence th e

establishment and reestablishment of anadromous salmoni d

stocks within the basin .

Habitat Assessment yodel s

Models of habitat assessment have been constructed fo r

two purposes, both of which are useful for estimating impact s

of small-scale hydropower impoundments . The first purpos e

is to quantitatively evaluate in a quick, efficent, an d

inexpensive manner, the capacity of a given geographica l

locale to support fish species of interest . The second i s

to predict the kinds of impacts on areas where perturbation s

from various proposed developments may result .
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There are two major types of models which have bee n

proposed for use : (1) the Incremental Methodology o f

the Instream Flow Group, U .S . Fish and Wildlife Servic e

(U .S .F .W .S .), and (2) aggregate models such as the Habita t

Suitability Index Model (HSI model) or the Fish Habita t

Index of the U .S . Forest Service (U .S .F .S .) . The differ-

ences between the two types of models are that (a) th e

Incremental Methodology depends on relatively few variable s

(flow, depth, and substrate) whereas the aggregate approache s

use many more variables, and (b) the means by which the y

derive habitat rankings are slightly different .

The models are similar in that habitat preferences ar e

described by curves that depict the relationship of specie s

performance to different independent variables . These ar e

called habitat-suitability curves by the Incremental Methodo-

logy (Bovee and Cochnauer, 1977), and the Suitability Inde x

curves by the HSI Model . Examples are shown in Figures 1 and 2 .

The habitat-suitability curves are combined with th e

Manning equation, which describes hydraulic processes, in a

computer program for Physical Habitat Simulation (PHABSIM) .

This simulates changes of fish habitat as altered by change s

in flow (Milhous, 1979) . The habitat is divided into a n

array of rectangular cells in this model . Each cell, C, i s

described as follows :

C i = fv(V i ) x fd(D i ) x fs(S i ) ,

where fv(V i ) = suitability weighting factor for th e

velocity of cell i ,

2
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fd(D i ) = suitability weighting factor for dept h

of cell i ,

fs(S 1 ) = suitability weighting factor fo r

substrate type of cell i .

The habitat rating of a reach is calculated by adding th e

product of the suitability ranking of each cell by the are a

of that cell . The equation of this weighted usable are a

(WUA) is given below :

WUA = E`C i A i ,

where Ai = the area of cell i ,

and

	

n = the number of cells in the reach in question .

The assumptions which are specific to the Incremental mode l

are (1) fish distribution is primarily governed by flow ,

depth, and substrate, (2) changes in the flow regime do no t

effect changes in channel morphology, (3) there is a positive ,

linear relationship between WUA and fish standing stock o r

habitat use (Orth and Maughan, 1982) .

The ranking of habitat quality is different in the HS I

methodology from that in the incremental method . Site -

specific data comprising measurements of various physica l

variables are used to generate a Habitat Suitability Inde x

from a number of models, including structural, patter n

recognition (multivariate statistical approaches), linea r

regression models, and written descriptions (U .S .F .W .S . ,

1981) . Habitat units (HU"s) are generated from the fol-

lowing equation :

Habitat area x HSI = HU .
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In the structural model, the field data are used to generat e

Suitability Indices (SI's), which range from 0 (unsuitable )

to 1 .0 (optimal) . An SI is derived for each variable b y

comparing the field measurement to an SI curve that is a

graphical presentation of performance by the species over a

range of values of that factor. A number of these SI rela-

tionships have been established . A value of HSI can b e

generated using different assumptions, the simplest of whic h

is to assume that the lowest SI value among those gathere d

represents the most limiting factor and cannot be compensate d

by high values of other factors . The other assumption is tha t

high values of some factors can compensate for low values o f

other factors and that a value of HSI can be obtained b y

taking the geometric mean of the environmental factors :

HSI = (SI1 x SI2 x . . .x STn) 1/ n

where n = number of measured variables .

Assumptions common to both the Incremental method an d

the HSI method are as follows :

(1) the models assume that physiological responses t o

environmental gradients are the only factors governin g

habitat selection ;

(2) habitat selection by each species is relativel y

fixed and not flexible ;

.(3) the factors are independent and do not interact ;

(4) biological interactions are relatively unimportan t

determinants of habitat quality ; an d

6



(5) hierarchical spatial and temporal relationships o f

the site are unrelated to habitat use by the organism .

These are assumptions that need to be tested . Certain spe-

cies inhabit a variety of habitats . Cutthroat trout (Salmo

clarki) and redside shiners (Richardsonius balteatus )

inhabit both lakes and streams (Lindsey and Northcote, 1963 ;

Scott and Crossman, 1973 ; Moyle, 1976), suggesting tha t

fishes are flexible in habitats occupied . There is evidenc e

to show that competitive interactions can affect distribu-

tions of species within a community (Andruszak and Northcote ,

1971 ; Werner and Hall, 1976 ; Werner, 1977) and evidence

which indicates that predation is a potent force affectin g

the distribution of species (Moyle, 1976 ; Stein, 1979 ; Zaret ,

1979) . However, the models may be robust if the biologica l

interactions act on a smaller spatial scale than the physica l

forces that physiologically limit the species of interest .

The stream continuum concept suggests that functional group s

of stream organismns, as exemplified by the stream insects ,

occupy different types of streams, roughly equivalent t o

stream order (Vannote et al ., 1980) .

	

Only Small (1975), an d

Schlosser (1982) have examined the distribution of strea m

fishes from a perspective similar to that of the concept o f

the stream continuum, but it is known that fish species ar e

added to the species pool downstream (Horwitz, 1978 ; Sheldon ,

1978) . This may be due to differences in physiological tole-

rance or to saturation of niches in increasingly more comple x

complex habitats along a stream gradient . This has not bee n

resolved .

7



Study Objective s

The objectives of our research were as follows :

(1) Build a data base from which the performance o f

various species to different physical factors can b e

ascertained ;

(2) Determine how each of the two models performs wit h

respect to predictive accuracy ;

(3) Examine biological mechanisms associated with th e

assumption of additive and independent properties so

we can determine how this assumption influences th e

accuracy of each model ;

(4) Improve habitat assessment approaches ; an d

(5) Estimate the impact of small-scale dams upon th e

fish fauna of the Willamette River drainage basin .

Organization of the Re p or t

The report consists of three main chapters . The first

two chapters address the adequacy of the current models t o

assess habitat quality and cover the first four objectives .

The first chapter examines the influence that interspecifi c

competition for space can have on the accuracy of predictin g

habitat quality for cutthroat trout . It demonstrates tha t

habitat use by a fish is not a fixed relationship to physica l

gradients. The second chapter also addresses the assumptio n

that habitat selection is an invarying response to physica l

gradients . It demonstrates that important physical variable s

related to habitat selection by redside shiners can chang e

8



seasonally, depending upon the availability of microhabitats ,

and reinforces the idea that fishes are flexible in habitat s

they select . The third chapter is an assessment of th e

distribution of Willamette River fishes inhabiting thre e

impounded streams in two different drainages and discusse s

the degree to which the dams influence the patterns of phy-

sical habitat and the species compositions involved . Th e

summary and conclusion integrates the findings of eac h

chapter and suggests means of improving habitat assessmen t

models so that they will be of more value to resourc e

managers .

9



TEST OF COMPETITION AND DRAINAGE-SPECIFI C

FACTORS ON HABITAT MODELIN G

Introductio n

If we are to assess the impacts of small-scal e

hydropower dams using the present models, we must examin e

carefully the assumptions of the models . All the previ-

ously discussed models assume that only physiologica l

responses to environmental gradients are necessary t o

predict the use of a particular habitat by a given specie s

of interest . We tested the accuracy of this assumption b y

examining the impact of competition for space, a biologica l

factor, by steelhead trout (Salmo gairdneri) and coho salmo n

juveniles (Oncorhvnchus kisutch) on the habitat use o f

cutthroat trout (Salmo clarki ciarki), a year-around nativ e

salmonid of the Willamette drainage .

Study Area s

Two tributaries of the Nestucca drainage provided a

natural experiment to examine competition for space by th e

three salmonid fishes . These are Bear Creek and Elk Creek ,

shown in Figure 3 . They are particularly suitable because

of natural barriers blocking the upper portion of each reac h

to one of the species . Below the barriers, all three specie s

were sympatric (living together) . Above the waterfall o n

Elk Creek, cutthroat trout were allopatric (isolated) fro m

11
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Figure 3 . Location Map of Bear and Elk Creek Drainages ,
Oregon
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steelhead trout, but found in sympatry with coho salmo n

planted above the barrier by the Oregon Department of Fis h

and Wildlife . Cutthroat trout above the log debris pile i n

Bear Creek were allopatric from coho salmon, but sympatri c

with steelhead trout . Thus above the barrier in each stream

system, the cutthroat trout was under less competitive stres s

than below the barrier and the impact of competition coul d

be observed .

Method s

Data gathered in cooperation with Bob House and Pau l

Bahne, Bureau of Land Management, were standardized in th e

HSI model format . The largest standing crop of cutthroa t

trout was found in the upper section of Elk Creek (0 .05 5

fish/m 2 ) . The Suitability Index (SI) was derived by dividin g

all other standing crops from other reaches by this value .

Suitability profiles, or bivariate Cartesian plots relatin g

variation in SI to different physical gradients were the n

constructed . One method of detecting competition was t o

compare the suitability profiles of cutthroat trout above an d

below the barriers . If competition did not cause a chang e

in habitat use, then the two profiles should be similar ,

given that differences in physical habitat were not a factor .

If competition is important, we should see that the profil e

above the barrier should be larger than that below the bar-

rier for every given factor .

13



A multivariate statistical means of discriminatin g

clusters for classification purposes was used to test whethe r

or not the sections of each creek differed in habitat qua-

lity . This tool was also used to determine the habita t

factors associated with different SI values for cutthroa t

trout . Four habitat classes were defined, each by an S I

interval, which is defined as the ratio of standing cro p

to the maximum standing crop obtainable . The classes ar e

defined as follows from least suitable to most suitable :

0 to 0 .24, 0 .25 to 0 .49, 0 .5 to 0 .74, and 0 .75 to 1 .0 .

Two habitat classifications were developed : one base d

on relationships between cutthroat SI values and physica l

habitat variables, and the other on combined physical an d

biological characteristics (i .e . densities of competitors) .

A classification results when a reach is assigned to a

particular class (e .g . 0 to 0 .25) because a certain set o f

rules is developed to relate habitat variables to habita t

class. Better classifications have a higher percent o f

correct assignments than poorer ones . Important variable s

are those that are given more weight in the classificatio n

scheme . The many variables are reduced to two dummy varia-

bles called canonical discriminant functions . Importan t

habitat variables contribute more to the dummy variable .

Result s

Figure 4 illustrates that the four sections of Bea r

Creek and Elk Creek are physically different from each other .

14
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The percent of the correct assignments of cases to thei r

correct classes was 92% . The first canonical function

contributed 91% of the variance . This separated out th e

differences between creeks, but was not sufficient to dif-

ferentiate between the sections within each creek . Thi s

canonical discriminant function is related to difference s

in discharge . Bear Creek was distinguished by a positiv e

loading for greater width of the wetted perimeter (0 .80) ,

stream grade (0 .26), percent stream shaded (0 .22) and a

substrate characterized by coarse gravel (0 .22) . Elk Creek

was characterized by a strong negative loading of th e

variable of channel width (-1 .37) and percent of large

boulders in the substrate (-0 .47) . Discrimination of th e

four sections became clearer with the addition of th e

second discriminant function which contributed 6% of th e

variation . The most important variable associated wit h

this function is stream gradient (-0 .41) . The results of

this test suggest that one must account for between-strea m

differences as well as competition effects . Within-stream

differences are relatively minor . Therefore, it will b e

possible to compare differences in habitat quality as du e

to the presence of competitors within a creek, but betwee n

creeks such comparison may not be fair .

_Table 1 shows that there is an increase in percen t

correct classification when each creek is evaluated sepa-

rately than when both creeks are combined into a singl e

model of habitat quality . It also reveals that the percen t

16



Table 1 . Percent correct assignment of various classes of habita t
using different models of habitat classification .

Stream Sections *

Combined year
Steel . Coho

see .Elk see .

70 78 69 -

72 78 74 - -

83 72 90 80

78 69 81 72

*Steel . sec. and Coho sec. columns refer to sections of both creek s
where steelhead and/or coho salmon are sympatric with cutthroat trout ,
respectively, but allopatric with each other .

Variable s
evaluated

physical only

both competitor s

steelhead competitors

who competitor

17



correct classification generally increases when the densit y

of competitors are included into the model of habita t

quality . Entering steelhead trout as a variable of th e

classification always increases the precision of the classi-

fication . In fact, the classification with the highes t

degree of accuracy is obtained in those sections wher e

cutthroat trout are sympatric with steelhead trout . On th e

other hand, densities of juvenile coho salmon, when con-

sidered as a variable of classification, do not alway s

increase its accuracy . Note that the values for assignin g

classes of cutthroat trout habitat correctly in Elk Cree k

when coho juveniles are entered as a biological variable i s

the same as that derived using only physical variables .

Juvenile coho salmon was an important variable in describin g

cutthroat habitats where two sections of stream within whic h

all three species were present (lower Elk Creek and lowe r

Bear Creek) were contrasted with one section of stream wher e

coho salmon were not present (upper Bear Creek) . The reaso n

that this contrast was done was to examine the increas e

ranges of the physical parameters in sympatric zones on th e

value of the classification . One will notice that in an y

classification wherein the Elk Creek system is considered ,

the increases in percentage of reaches properly classifie d

are not as great as those in Bear Creek .

Table 2 shows that the addition of steelhead trout a s

a variable was important . Age 0+ steelhead was the secon d

variable entered into the classification in the descriptio n

18



Table 2 . Variables entered sequentially into the stepwise discriminant
classification of habitat . *

Stream Section s
Variables Steel . Coho
evaluated Combined

	

Bear

	

Elk

	

sec . sec .

physical only wtwd

	

chwd -
%lb

	

%sit

	

%lb -
%slt

	

%cvr

	

%shd
%poo

	

%snd

	

%co b
%snd

	

%lb

	

%si t
%cob

	

%rif

	

- -
chwd
%shd

	

-
%rub

	

-

	

-

both competitors wtwd

	

chwd

	

chwd -
stO

	

stO

	

st1

	

-
%lb

	

%sit

	

%lb

	

- -
ehwd

	

%rif

	

%sit

	

- -
%slt

	

%cvr

	

%cob

	

- -
%cob

	

%snd

	

%shd
%poo

	

%lb

	

echo
%rub

	

%rub
%snd

	

-

	

- -

steelhead competitors chwd

	

ehwd

	

wtwd wtwd
stO

	

st1

	

stO pl b
%sit

	

%lb

	

chwd %si t
%rif

	

%sit

	

%sit %cob
%cvr

	

%cob

	

%rif st 1
%snd

	

%shd

	

%poo -
%lb

	

-

	

fl o
%rub

	

%cgv -

coho competitors -

	

ehwd

	

chwd

	

echo wtwd
%sit

	

%lb

	

wtwd %lb
echo

	

%shd

	

%sit %si t
%cvr

	

%cob

	

%poo %co b
%snd

	

%sit

	

%cvr -
%lb

	

-

	

flo -
%rub -

*ehwd = width of channel cross section, wtwd = width of the wette d

perimeter, %lb = percent large boulders ( >91 cm diam .), %cob = percent
cobble (15 to 30 cm diam .), %rub = percent rubble (7 .6 to 15 diem .) ,
%egv = percent coarse gravel (2 .6 to 7 .5 cm diam.), %snd = percent san d
(<0 .25 cm diam.), %sit = percent silt, %shd = percent stream shaded ,
%rif = percent riffle, %poo = percent pool, %cvr = percent cover, stO =
age 0 steelhead trout, st1 = age 1 steelhead trout, coho = juvenile coh o
salmon, steel . see . and coho sec . = sections of both creeks where steel-
head and coho salmon are sympatric with cutthroat trout, respectively ,
but allopatric with each other .
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of cutthroat habitat quality for Bear Creek, and for th e

sections of both creeks where cutthroat and steelhead trou t

were sympatric . Densities of age 1+ steelhead were importan t

in determining habitat quality for cutthroat trout when habi-

tats in Elk Creek were evaluated, but not when the habitat s

in sections of Elk Creek and lower Bear Creek were examine d

as a unit . Note that the physical variables important t o

the classification of habitat classes differs depending upo n

the degree to which the reaches of the Nestucca drainage ar e

lumped together .

Table 3 shows the variables influential in the canonica l

discriminant functions . Only two functions were needed t o

separate habitat classes . Only those variables that con-

tributed more than 50% of the most influential variable wer e

listed to simplify the presentation . Note the relativ e

contribution of competing species in the first canonica l

discriminant function . This indicates that competitors wer e

highly influential in the various classifications previousl y

discussed . By recalling the sign of this variable an d

relating it to the value of the canonical discriminant func-

tion at the group centroid (or group) mean for each of th e

habitat classes, one will appreciate how the habitat classe s

shift in pattern qualitatively . Table 4 shows that th e

worst habitat class is associated with the presence of th e

competitor . No sign was presented if the value of th e

canonical discriminant function was less than 0 .1 .

20



Table 3 . Variable loadings on canonical discriminant functions I and II . *

Stream Section s
Variables Steel . Coho
evaluated Combined Bear Elk

	

secs see.

physical
only

canonical
%slt(+ .63 )
%snd(+.50 )

canonical
%lb (+ .75)

discriminant
chwd(- .84 )
%rif(+.50 )

discriminant
%slt(+1 .25)

function I .
chwd(- .97 )
%cob(+.55 )
%shd(+ .55 )

function II .
%lb(+1 .01 )

%poo(- .88) %cvr(+ .54) -

both
competitors

canonical
%slt(+ .58 )
%cob(+ .42 )
%rub(+ .40 )
stO(- .64 )
wtwd(- .59 )

canonical
%slt(+ .64)

%snd(- .84 )

discriminant
%rif(+ .48 )
%rub(+ .40 )
sto(- .66 )
chwd(- .61 )

discriminant
%snd(+ .88)

function I .
chwd(+ .74 )
stl(+ .65 )
%slt(- .64 )
%cob(- .44 )

function II .
%lb(+1 .03 )

% poo(- .95) %slt(-1 .22) -

steelhead
competitors

canonical
-

discriminant
%rif(+ .48)

function I .
chwd(+ .81)

	

st0(+ .73) %slt(+ .62 )
%rub(+ .40 )
stO(- .66)

stl(+ .62)

	

ohwd(+ .55 )
%cob(- .52)

	

flo(+ .47)
%cob(+ .49)
%lb(+ .45 )

chwd(- .61 )
-

%cob(- .52)

	

%rif(- .58)
%slt(- .52)

wtwd(- .72 )
stl(- .67 )

canonical discriminant
%snd(+ .88)

function II .
%lb(+1 .07) %slt(+1 .14) %lb(+ .94 )

%slt(-1 .22) - %poo(- .98)

	

%eob(- .53 )

echo
competitors

canonical
-

discriminant
%rub(+ .40)

function I .
%shd(+ .55) eoho(+ .74)

	

%slt(+ .67 )
chwd(- .66)
eoho(- .52)

%cob(+.55 )
chwd(- .97)

wtwd(+.57)

	

%cob(+.49 )
-

	

wtwd(- .84)

canonical discriminant function II .
%slt(-1 .31) %lb(+1 .01) %slt(+1 .09) %lb(+ .95 )

%poo(- .89) %cob(- .52 )

*The key to the variables is the same as in Table 3 .
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Table 4 . Signs of canonical discriminant functions evaluated a t
group centroids . •

Stream section s

Variables evaluated Combined Bear Elk
Steel .
Sec.

Coho
See.

Habitat class 1234 121_ 1214 123 1234___

physical only
I . (68)-+++ (58)-++ (71)-+++

II . (21) -++ ( 442)

	

-+ (26)

	

-+

both competitor s
I . (75)-+++ (69)-++ (73)+---

II . (16) -++ (31)

	

+- (23) --+

steelhead competitor s
I. (69)-++ (77)+--- (82)+-- (82)-+++

(31)

	

+- (21) --+ (18)

	

- (18) --+II .

coho competitors
I. (62)-++ (71)-+++ (30)+-- (73)-+++

II . (38) +- (26)

	

-+ (30) -+ (27)

	

--+ .

*Parentheses enclose the variation to group classification attributable t o
that function, which is denoted in Roman numerals .
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Figures 5 and 6 are samples of Suitability Index curves .

Here, there is no attempt to fit an average line to the dat a

set . Instead, the extrema are connected because the capacit y

is considered biologically more important . The two curve s

depict the capacities in terms of standing crops of cutthroa t

trout in different reaches of stream . One set of reaches i s

in the area of sympatry, where the three species coexist, an d

the other is upstream . We suggest that the greater capaci-

ties of the sections of streams above the barriers reflec t

less interspecific competitive pressure on cutthroat trout .

Figures 7 and 8 show the relationship of current to SI pro -

files in the two sections . The same relationship holds .

Note also that the capacities in the two creeks are differen t

for each variable in each of the figures .

Discussio n

We conclude that the applicability of a general mode l

will be greatly influenced by two factors : each system may b e

limited by different physical characteristics, and that i n

turn may affect interspecific competition for space an d

resources within the system . This will considerably affec t

the distribution of the species of interest, in this case ,

cutthroat trout . The influence of competition is more obvi-

ous in Bear Creek . Elk Creek is less disturbed by logging

practices than Bear Creek, and perhaps resources are distri-

buted in such a way that competition is less intense . Fo r

instance, Elk Creek has larger pools than Bear Creek and tha t

factor may play a role in competition for space .

23



BEAR CREEK

• Performance below barrie r

* _Performance above barrie r

Capacity below barrie r

- Capacity above barrie r

1 .0_,

% Riffl e

Figure 5. 'Cutthroat Trout Suitability Index vs .
Riffles in Bear Creek
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Coho salmon juveniles prefer pool habitats (Nickelson ,

1976 ; Nickelson and Beidler, 1978 ; and Nickelson and Hafele ,

1978) . Allee (1974) found that coho salmon were competi-

tively dominant over steelhead trout . Juvenile steelhea d

trout inhabit riffles, but will inhabit pools when coh o

salmon are absent (Allee, 1974) . They are restricted to th e

heads of pools near the substrate and riffles when coh o

juveniles are present . Glova (pers . comm .) found that coh o

juveniles are competitively dominant over juvenile steelhea d

trout . It appears that the inclusion of steelhead trout a s

competitors generally has more influence than coho juvenile s

in the Nestucca system . However, where steelhead trout ar e

sympatric with cutthroat trout, and coho juveniles ar e

restricted from some sections (i .e . Bear Creek and lower El k

Creek), a clearer picture is obtained . We suggest that th e

following occurs . Coho salmon force steelhead to compete i n

riffles with cutthroat trout which inhabit riffles prefer-

entially to pools . Bear Creek is poorer habitat and so

competition is intense, the response to coho is sharply

marked because there is a large gradient of coho density .

Ordinarily, it is dangerous to presume the presence o f

competition just through the interpretation of statistica l

patterns (Li, 1975) . In this case there are supportiv e

observations and studies which reinforce the interpretatio n

and we stand on reasonably firm ground . Results of this stud y

suggest that the physical and the biological environmen t

interact in such a way that the two general approache s
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of habitat modeling previously discussed are inadequate .

Note that competitors are strongly associated with the wors t

class of habitat . Habitat may be unsuitable because o f

dominant competitors . This same conclusion was reached b y

Skud (1982) for marine fishes ; competition can mask response s

to environmental gradients by a species . Additionally ,

changes in the environment can alter the competitive rela-

tionship . A scheme of habitat analysis that allows th e

expression of regional characteristics of the physical an d

biological environment in its formulation of habitat qualit y

should be developed .

Im p lications for Small-scale Hydro power Develo pmen t

The first three objectives were addressed in this par t

of the study. We gained a larger understanding of the habi-

tat requirements of steelhead trout, cutthroat trout and coh o

salmon . We tested the assumptions of the HSI and Incrementa l

approaches to habitat assessment and have concluded that the y

will not be able to predict the impact of small-scale hydro -

power projects because they do not consider two importan t

factors . First, biological interactions were observed t o

have profound influences upon habitat suitability (the thir d

objective of the study) . An analogy for humans is that th e

presence of grizzly bears in the outback of Glacier Nationa l

Park influences the habitability of campsites . The second

factor is that between-drainage differences probably resul t

in different limiting factors on the population . These
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factors interact in a nonadditive manner because fishes ca n

make choices ; in a sense, they change strategies. If cove r

is more limiting than flow, flow will be the variable tha t

will contribute most to the explanation of habitat use . We

will explore in the next chapter how variations in habita t

(differences in habitat availability) affect habitats used .

Recall that neither flow, nor discharge, nor depth was foun d

to be a variable that weighted heavily in defining habita t

quality for cutthroat trout ; yet these are important vari-

ables to the Incremental Methodology .
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THE INFLUENCE OF AVAILABILITY UPON HABITAT SELECTIO N

Introductio n

This aspect of the study was designed to document an d

quantify habitat selection by fish during different seasons .

Current models of habitat quality ignore selection pattern s

p er se (e .g . see Binns and Eiserman, 1979) . Present model s

are constructed from habitat use patterns, not preferences .

Variability in patterns of use along a physical gradient ma y

reflect that fish select habitats in a non-additive fashio n

and that they settle for the "best mix" of factors unde r

given circumstances, although these conditions may not b e

optimal . This aspect of fish behavior must be examine d

before we can develop an adequate model of habitat assessmen t

with which to predict impacts of small-scale dams on fish

communities. The redside shiner (Richardsonius balteatus )

was selected as target species for this study because it i s

a habitat generalist inhabiting lakes and streams (Scott an d

Crossman, 1973 ; Wydowski and Whitney, 1979) ; it is common i n

the Willamette drainage ; and changes to the habitat ca n

result in the shiner displacing economically important salmo-

nids (Reeves, Everest, and Hall, in preparation) .

The purpose was to restrict, although we could not eli-

minate, the influence of biological interactions on habita t

selection and to examine habitat factors as units or patches .

This was achieved by studying a number of reaches of a smal l
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stream where the number of species was constant . Habita t

factors comprise one dimension of the ecotope, the othe r

being niche (Whittaker et al ., 1973) . Niche dimension i s

similar in concept to the realized niche of Hutchinso n

(1958) . The habitat dimensions are formed from the numbe r

of factors which comprise the physicochemical environment .

Habitat units are homogenous patches of different qual-

ities (Fretwell and Lucas, 1970 ; Fretwell, 1972) . The theor y

of habitat distribution proposed by Fretwell (1972) suggest s

that animals can assess patch suitability and select from th e

array that is available . Differences in distribution o f

habitats then, result in differences in species density ove r

a given area . Likewise, the degree of environmental patchi-

ness and dynamic resource availability can affect habita t

utilization patterns (Dueser and Shugart, 1978) . It is only

recently that the process of habitat selection has bee n

examined for fishes (Finger, 1982 ; Smith and Li, 1983) .

Study Area

Greasy Creek is a small, fourth order stream located 1 2

kilometers west of Corvallis, Benton County, Oregon (shown i n

Figure 9) . Greasy Creek is a major tributary to the Mary s

River system of the Willamette drainage basin, and originate s

on the southern slope of Marys peak . Starting at an eleva-

tion of 150 meters, Greasy Creek flows eastward 13 kilometer s

through a narrow agricultural valley to its confluence wit h

the Marys River near Philomath . The total drainage area o f
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Figure 9 . Location Map of Greasy Creek, Oregon



the stream is approximately 100 square kilometers .

Greasy Creek receives an annual precipitation of 17 5

to 200 cm, most of it falling as rain between October an d

May . Impervious sedimentary formations and shallow soil s

in the upper watershed provide little volume of wate r

storage and little capacity for buffering stream discharge .

Stream flow therefore closely follows the rainfall pattern .

Mean daily discharge varies from less than 5 cfs in lat e

summer to over 100 cfs during winter freshets . Storm event s

result in mass substrate movement, tree fall, streamban k

erosion, formation of debris jams, and high turbidities .

Wide fluctuations in streamflow are thus characteristi c

during winter months while severe water shortages charac-

terize summer periods. Main channel water temperature s

seasonally range from a recorded maximum of 23 .5 C in Augus t

to a minimum value of 3 C during December and January .

Twelve species of fishes were found in Greasy Creek ,

which only five were abundant : redside shiner, speckled dac e

(Rhinicthys osculus), reticulate sculpin (Cottus verplexus) ,

torrent sculpin (C . rotheus), and cutthroat trout .

Method s

Ten sites were selected along a longitudinal gradient .

Each site was representative of the available reaches alon g

the gradient . Each was 20 m in length and comprised a

straight and meandering reach .
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Surveys were conducted during three different discharg e

regimes : 1) summer low flows (August-September), 2) winte r

high flows (January-March), and 3) decreasing transitiona l

flows (May-July) . Summer and transitional habitat use wa s

enumerated by snorkeling along transects . This is a rapid ,

effective, method that has minimal disruptive effects o n

fish behavior (Northcote and Wilkie, 1963 ; Goldstein, 1978) .

A comparison of snorkling and seining techniques was con -

ducted to ensure reliability of the estimates . Observation s

were made in midday between 1000 and 1500 hr, to maximiz e

illumination . Biel observations were made in a supportin g

study to note changes in day/night activities and potentia l

differences in habitat use .

During the winter, snorkling was not feasible becaus e

of poor water clarity, high water velocities and low tem-

peratures . Stunning fish by electroshocking was the onl y

effective sampling technique .

Focal sampling was employed during the snorkling sur-

veys . Fish were observed for 1 to 3 minutes to estimat e

the focal point or location where a fish spends most of it s

time (Wickham, 1967 ; Bovee and Cochnauer, 1977) . Shiner s

were categorized into two groups, young (less than 25 mm TL) ,

and adults (greater than 24 mm TL) . Coded markers wer e

placed at each sighting location and measurements of sub-

strate composition, depth, current velocity, parameter s

considered by Gorman and Kar (1978) to be most importan t

to microhabitat specialization of stream fishes, were take n
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at those loci . Forms of instream cover (any submerged objec t

that increases relief), overhead cover (objects which in -

crease shade, including tree canopy and undercut banks) ,

and stream turbulence were quantified at these sites, a s

the distribution of stream fishes has been positively corre-

lated with different forms of cover (Boussu, 1954 ; Butle r

and Hawthorne, 1968 ; Lewis, 1969 ; Bustard and Narver, 1975) .

Habitat availability was determined by measuring thos e

variables while mapping transects of 2 m gridded interval s

of the entire study section . Mapping of available habita t

was conducted less than 2 14 hr after focal sampling to ensur e

that changes of stream habitats would be minimal . Data from

focal samples (use) and mapping (availability) collected fo r

each season were separately pooled and analyzed .

At the beginning of each sampling period, air tempera-

ture, water temperature, and dissolved oxygen were recorde d

with a temperature/oxygen meter (Yellow Spring, model 54A) .

Pilot tests showed that these parameters did not vary durin g

the sampling period . Substrate composition was visuall y

estimated, size classes were based on the Wentworth Particl e

size Scale . Depth of the water column was measured with a

graduated staff . Surface, bottom, and mean water (0 .4 o f

the depth measured from the stream bottom) flow was measure d

with a Marsh-McBirney electronic current meter (model 201) .

A discriminant function analysis and classification wa s

used to derive an unbiased basis for weighting the relativ e

importance of each habitat variable to group differentiatio n
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of habitat type (Klecka, 1975) . It was used as a statistica l

tool to describe available and occupied habitat types and no t

as a predictive model p er se . A stepwise approach was use d

to determine which variables contributed most effectively t o

habitats selected by different life-stages of the shiner .

Variables were incorporated or eliminated from the classifi-

cation based on the Wilks lambda statistic . This techniqu e

maximizes overall group differences (Klecka, 1975) . Th e

particular discriminant procedure used was considere d

"unbiased" because the computer was programmed to randoml y

select 75% of the original cases from each group for th e

analysis and ensuing discriminant functions . The remainin g

cases were reserved to test the classification ; thus, th e

test was independent of circularity . The classification wa s

considered sufficient to describe group differences when th e

percentage of correct classifications was 75% .

This technique is not restricted by the assumption o f

independence among variables . Assumptions and limitation s

of multivariate statistical techniques in empirical and eco-

logical studies are discussed by Green (1971, 1980), Morriso n

(1976), and Pimentel and Frey (1978) . Pimentel and Frey (1978 )

suggest that discriminant methods are robust ; the analysi s

should be valid even if data are not multidimensional normal .

Result s

Summer Habitat s

Summer habitats were characterized by low stable flows ,

clear water and water temperatures ranging from 12 .5 to 22 .0 C
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in the main channel . Most of the sampling occurred betwee n

15 and 18 C and dissolved oxygen values were at or nea r

saturation . Shiners occurred in all study sections . Young-

of-the-year (YOY), fish born that year, were highly aggre-

gated (mean group size = 18 ± 9) and occuped shallow areas o f

slow water and small particle substrates . Adults were foun d

in areas of faster, deeper water, higher surface turbulence ,

a greater proportion of gravel, cobble, and undercut bank s

(see Table 5) . Group size was typically smaller than YO Y

(9 ±6) . Adults were found at all depths, whereas YOY wer e

found near the surface . Most shiners of the same age-grou p

occupied similar habitats throughout the 24-hr cycle .

Variables important to the discriminant function separa-

ting life stages were mean water velocity and depth at foca l

points (see Table 6) . Adults had higher positive loading s

on both variables, reflecting faster, deeper microhabitats .

The percentage of correct classifications of independen t

cases was 93% .

YOY selected slower waters with less gravel and bedrock ,

and more instream cover than was generally available (se e

Table 7) . A value of 75% suggests selection for these habi-

tats and this discriminant classification is weak . Adul t

shiners selected microhabitats which were deeper, had mor e

cobble and surface turbulence than was generally availabl e

(see Table 8) . A classification value of 81% suggests stron g

preference for these habitats .
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Table 5 . Habitat variables measured at summer locations of redsid e
shiners and corresponding available stream habitats .

Young shiners

	

Adult shiners

	

Available
Variable

	

(n=327)

	

(n=125)

	

(area=1575 m2 )

Depth

	

31 .4cm ± 6 .7

	

55 .7= 1 8 .8

	

34 .3cm + 2 . 3
(% ± 95% CI)

	

-

Mean Velocity

	

5 .4cm/sec ± 1 .7

	

20 .0cm/sec 1 5.5

	

16 .5cm/sec ± 1 . 7
(x ± 95% CI)

Substrate Composition (% occurrence )

Sand/silt/clay

	

46 .4 23 .6 25 . 1

Small Gravel

	

17 .6 33 .3 38 . 9

Gravel

	

8 .5 21 .5 16 . 2

Cobble

	

3 .6 4 .7 4 . 2

Rubble

	

1 .9 0 .0 0 . 9

Boulders

	

5 .9 4 .6 1 . 8

Bedrock

	

6 .0 2 .4 6 . 0

Woody Debris

	

10 .1 9 .9 6 . 9

Cover Forms (% occurrence)

88 95Instream 100

Overhead 39 58 54

Undercut Banks 11 25 1 1

Surface Turbulence 11 46 32
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Table 6 . Variable loadings and unbiased classification results for
habitat discrimination by life stages .

Loadings
Classification

Variables Young

	

/ Adults Wilk's Lambda (% )

Summer

Depth 0 .115 0 .215
0 .411 93 . 3

Mean velocity 0 .120 0 .404

Winter

Depth 0 .100 0 .148 0 .763 86 . 1

Transitional

Depth 0 .503 1 .91 2

Mean velocity 0 .195 0 .771
0 .323 95 . 2

Sand/silt/clay 0 .863 0 .31 2

Small Gravel 0 .354 1 .230
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Table 7 . Variable loadings and unbiased classification results for
habitat selection by young red side shiners .

Loadings
Classification

Variables Young

	

/ Adults Wilk's Lambda (% )

Summer

Mean Velocity -0 .009 0 .052

Small Gravel 0 .031 0 .066
0 .722 73. 5

Boulders 0 .058 0 .078

Instream Cover 44 .099 41 .682

Winter

Turbulence -0 .098 3 .989

Small Gravel -0 .001 0 .067 0 .385 90 . 2

Mean Velocity 0 .005 0 .047

Transitional

Depth 0 .032 0 .11 8

Small Gravel 0 .017 0 .098 0 .430 89 . 1

Woody Debris 0 .087 -0 .009

4 1



Table 8 . Variable loadings and unbiased classification results for
habitat selection by adult redside shiners .

Loadings
Classificatio n

Variables Young

	

/ Adults Wilk e s Lambda (% )

Summer

Depth 0 .175 0 .093

Gravel 0 .107 0 .065 0 .638 80 . 2

Turbulence 2 .937 1 .957

Winter

Depth 0 .137 0 .08 8

Mean Velocity 0 .021 0 .060 0 .466 88 . 0

Small Gravel -0 .043 0 .00 0

Transitional

Depth 0 .198 0 .101 0 .618 82 .8
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Winter Habitat s

Marked seasonal changes in stream habitats were observe d

during the 9-week period of 17 January to 19 April 1981 . In-

termittent floods and high stream flows modified previousl y

available habitats and created new habitats by channel ex-

pansion and deepening . Winter habitat availability coul d

not be predicted from summer low flow surveys . Main -

channel water temperatures were stable, ranging from 4 .5 C

to 8 .0 C . Dissolved oxygen values were always at or nea r

saturation .

Classes of discrete habitat were observed, rather tha n

focal points because of the marked patterns and due to th e

difficulty of sampling (see Table 9) . Only five study site s

could be sampled ; fish were located in just three of them .

When shiners were not located in a sampling section, the y

were usually observed a short distance upstream or downstream

of it in association with cover ,

Both YOY and adult shiners selected discrete mierohabi-

tats corresponding to increased stream flows and lowere d

water temperatures . YOY occurred primarily in backwate r

areas including sidepools and quiet water areas (see Tabl e

7) . Adults were associated with a greater variety of habita t

types, especially areas where bank failures and backwate r

areas were present . Both YOY and adult fish were locate d

in areas with minimal water velocity, containing substrate s

dominated by very small particles (sand, silt, or elay) an d

woody debris (see Table 10) . All shiner microhabitats wer e
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Table 9 . Stream habitat types selected by redside shiners during winter
periods.

Numbers (% of total )
Young

	

Adults
Habitat Types (n=278) (n=280 )

Undercut banks 0 (0) 21 (7 .5)
(with tree roots or woody debris )

Root wads 0 (0) 36 (12 .9 )
(provided by a fallen tree )

Fallen trees 65 (23 .4) 16 (5 .7 )
(without root wads present )

Bank failure 37 (13 .3) 106 (38 .0 )
(with debris accumulation )

Backwater areas 176 (63 .3) 101 (35 .9 )
(including quiet sidepools)
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Table 10 . Habitat variables measured at winter locations of redsid e
shiners and corresponding available stream habitats .

Young Shiners

	

Adult shiners

	

Availabl e
Variable

	

(n=222)

	

(n-119)

	

(area=1060m2 )

Depth

	

54 .8cm ± 2 .8

	

83 .0cm ± 4 .6

	

51 .3cm ± 3 . 3
(x ± 95% CI )

Mean Velocity

	

2 .2cm/sec ± 0 .2

	

4 .1cm/sec ± 0 .5

	

47 .8cm/sec ± 4 . 6
( ± 95% CI)

Substrate Composition (% occurrence )

Sand/silt/clay

	

57 .5 63 .5 26 . 8

Small Gravel

	

0 .0 3 .5 39 . 0

Gravel

	

0 .0 2 .2 17 . 3

Cobble

	

0 .0 0 .2 4 . 2

Rubble

	

0 .0 0 .0 0 . 3

Boulders

	

0 .0 0 .0 0 . 0

Bedrock

	

18 .0 5 .4 5 . 1

Woody Debris

	

24 .5 25 .2 7 . 3

Cover Forms (% occurrence)

100 99Instream 100

Overhead 86 92 4 4

Undercut Banks 14 27 1 1

Surface Turbulence 0 8 66
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ususally associated with both instream and overhead cove r

forms .

Habitat segregation among life stages. was distinct, a s

adults utilized deeper areas containing undercut banks an d

surface turbulence to a greater extent than did the YOY .

Adults were distributed accerding to the location of roo t

masses and debris in the water column . Young shiners alway s

occurred near the surface .

Similar-sized shiners were found together . The largest

were found deeper with cover for any particular type o f

structure than smaller ones . Mean group size for YOY wa s

large when compared to adult groups (37 ±22 vs . 8± 3) . Al l

adult shiners were inactive, extremely dark in coloration ,

and appeared thin or emaciated . Shiners remained closel y

associated with winter microhabitats until stream flow s

decreased and main channel temperatures rose about 9-10 C .

The difference between YOY and adult habitats could b e

statistically distinguished with a single variable (se e

Table 6) . Adult shiners inhabited deeper water than youn g

fish, as reflected by a higher positive loading on depth o f

adult habitats. We inferred from the statistic that 86% o f

the cases were properly classified that adults and juvenile s

preferred different habitats .

Negative loading values for the variables of surface tur-

bulence, percent small gravel, and mean water velocity (se e

Table 7) suggest that YOY select areas of low turbulence ,
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slow water and small gravel . The classification value o f

90% denotes habitat selection by YOY .

Loading values for the variables of depth, mean wate r

velocity and percent small gravel suggest selection by adul t

shiners for deep, slow water (see Table 8) . Strong selectio n

is suggested by a correct classification of 88% of habitat s

placed in the correct class .

Habitats During Transitional Period s

The transitional period, occurring from 10 May to 1 5

July 1981, was characterized by decreasing flow and increas-

ing water temperatures. April 1 14 was the first day whe n

recorded temperatures exceeded 10 C in the main channel . Th e

water temperatures ranged from 10 .0 to 17 .5 C during thi s

sampling period . Dissolved oxygen was always saturated an d

water clarity was very good (1-2 m visibility) . Fish wer e

found in all 5 sampling sites examined . Size of YOY range d

from 24 to 28 mm and most adults exceeded 60 mm in tota l

length . Focal sampling and stream mapping were completed o n

1 July and newly emerged YOY were first seen in shallo w

margins of the stream on 15 July .

YOY shiners inhabited shallow margins of the strea m

where the substrate was characterized by small gravel an d

sand particles, by woody debris, and by slow water (see Tabl e

1 1) . Mean group size was 22 ± 17 . Adult shiners wer e

brightly colored, and found in small groups of 1 to 5 fish ,

with 3 being the typical number of similar sized fish in deep ,

fast water running over gravel substrates (see Table 11) .
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Table 11 . Habitat variables measured at during periods of changin g
discharge between seasons (transitional habitats) .

Young shiners

	

Adult shiners

	

Availabl e
Variable

	

(n=66)

	

(n=72)

	

(area=1016m2 )

Depth

	

20 .8cm 1:4 .5

	

76 .5cm ± 2 .8

	

39 .3cm ± 2 . 7
(1 ± 95% CI )

Mean Velocity

	

3 .2cm/sec ± 1 .1

	

41 .0cm/sec ± 6 .2

	

43 .9cm/sec ± 3 . 8
(i± 95% CI)

Substrate Composition (% occurrence )

Sand/silt/clay

	

63 .6 21 .9 16 . 9

Small Gravel

	

1 .4 51 .2 51 . 0

Gravel

	

6 .8 15 .3 15 . 5

Cobble

	

0 .0 2 .0 4 . 0

Rubble

	

0 .0 0 .0 1 . 0

Boulders

	

0 .0 2 .5 3 . 3

Bedrock

	

0 .0 1 .3 2 . 9

Woody Debris

	

28 .2 5 .8 5 . 4

Cover Forms (% occurrence)

100 99Instream 100

Overhead 9 47 34

Undercut Banks 0 14 9

Surface Turbulence 0 71 65
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Presence of adults was associated wtih surface turbulenc e

and overhead cover .

Statistical separation of YOY and adult shiners wa s

based on the following variables : depth, relative proportion s

of sand, silt, and clay ; small gravel ; and mean water velo-

city (see Table 6) . Loading values reflect YOY preferenc e

for substrates of small particle sizes, and shallow, slo w

water in contrast to the preferences of the adults. Th e

habitats used by different life stages is very distinct a s

suggested by the classification value of 92% .

The discriminant analysis for habitat selection indi-

cated that YOY preferred shallower areas with more wood y

debris and less small gravel in the substrate than i s

generally available in the typically available habitat (se e

Table 7) . The classification value was 89% .

Adult shiners selected deep water as revealed by th e

single variable, discriminant function (see Table 8) . 83 %

of the cases were properly classified by this function .

Discussio n

Redside shiners inhabited a variety of Greasy Cree k

habitats and exhibited different behaviors depending on th e

size of the fish, the array of habitats available, an d

seasonal shifts in habitat availability. Both YOY and adul t

shiners were selective in habitats occupied throughout th e

year . Variables of the greatest statistical significance i n

distinguishing selected from available habitat varied wit h

season and life stage .
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Throughout the year, depth was the most important vari-

able in describing habitat selection . Habitat for YOY

shiners changed seasonally and comprehensive description s

depend upon larger arrays of variables, the relative im-

portance of which also changed seasonally . The lowest

classification value for habitat selection by YOY wa s

recorded during the summer period . This value of 74% may

be indicative of weak habitat specialization or that habita t

usage was proportional to habitat availability . These

results are especially interesting because YOY used simila r

stream habitats throughout the year regardless of the arra y

of habitat types available . The changing availability o f

stream microhabitats through seasons resulted in the variet y

of selection variables chosen for analysis .

Past studies relating distribution of stream fishe s

with habitat variables have not measured the availability o f

microhabitats (e .g . Binns and Eiserman, 1979 ; Orth an d

Maughan, 1982) . These studies considered the relationshi p

of habitat variables to habitat quality as a fixed pattern .

Recently, a few studies have considered the problem of habi-

tat availability (Finger, 1982 ; Smith and Li, 1983) but di d

not treat it in a multivariate approach . As demonstrated i n

the present study, there are more inclusive assumption s

pertaining to habitat selection : 1) habitats differ i n

availability, 2) habitats differ in basic suitability, an d

organisms use the most suitable habitats available to them .

Therefore, fishes may occur in high densities in areas tha t
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are suboptimal, but the best of that available . If stream

habitats are subject to dynamic flux, factors influencin g

habitat selection will change, as witnessed by seasona l

changes in habitat selection .

The analytical results of this study suggest that fou r

components of stream habitat (depth, current velocity, sub-

strate composition, and various forms of cover) acting alon e

or together provided enough information to describe th e

seasonal habitats of the redside shiner in Greasy Creek, t o

differentiate habitats occupied by different life stages, an d

to document the degree of habitat selection occurring . Th e

numbers of redside shiners in Greasy Creek were less tha n

those observed in larger streams or reported for lake sys-

tems in British Columbia (Lindsey and Northcote, 1963) . Th e

availability of large, deep pools and lake-like habitats ma y

be limiting in Greasy Creek and other small streams . Withi n

the larger strreams examined, adult shiners exhibited bot h

aggregating behavior associated with pools and territoria l

behavior associated with faster, shallower water . Youn g

shiners in larger streams occupied both stream margins an d

large pools with adults. Therefore, we do not suggest tha t

the derived discriminant functions provide a model of redsid e

shiner habitat selection which can be applied to every strea m

inhabited by this species . We believe that the selectio n

pattern may vary from stream to stream, depending upon th e

availability of habitats and other factors which impose limi-

tations upon the population .
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This part of the study is autecological and is incom-

plete in the sense that species distributions cannot b e

explained completely by physicochemical factors . Biologica l

factors, that include interactions among species, competi-

tion, diseases, and predation may exclude fishes fro m

habitats which are physiologically tolerable . Additional

stream observations and laboratory "removal" experiment s

should help evaluate the importance of biological inter-

actions to habitat selection by redside shiners . These

biological interactions can be incorporated to define th e

ecotype which describes the full range of adaptations t o

external factors concerning both niche and habitat (Whitake r

et al ., 1973) . Expansion of the present model to incorporat e

niche parameters is the next step for greater comprehensio n

of habitat selection by the redside shiner ,

Imp lications for Small-Scale Hydro power Developmen t

This part of the study addressed the first three objec-

tives. Objective 1 was to increase the understanding o f

habitat requirements for important fish species in th e

Willamette drainage . The redside shiner is common in th e

drainage and can be an important competitor to steelhea d

trout juveniles if flows decrease and water temperature s

increase (Reeves, Everest, and Hall, in preparation) . W e

found that depth, not flow, was the most important variabl e

influencing habitat selection for adult redside shiners, an d

that a host of factors, the number and weighted importance o f
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Which change seasonally, influenced the selection of habitat s

by the juveniles. This finding addresses objective 2 : th e

Incremental Method of the Instream Flow Group is inadequat e

to predict habitat quality for the redside shiner . We hav e

found that describing important habitats by describin g

important use patterns in relation to availability is ver y

instructive and indicates that this technique should b e

incorporated in the next generation of habitat models . Thi s

satisfies objective 3 .
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DISTRIBUTION OF RESIDENT FISHES ABOVE AND BELO W

SMALL IMPOUNDMENTS IN TWO STREAM SYSTEM S

Introductio n

We did not believe we could predict the impact o f

small-scale hydroelectric dams using either of the habita t

assessment approaches because evidence from the first part s

of our study suggested they were faulty . Ideally, use of th e

models would have made impact assessment logistically easie r

because they demand physicochemical data samples without th e

corresponding biological inftormation . We decided to assess

the impacts of small-scale dams by direct measurement . There -

fore, the objective of this part of the study was to documen t

changes in species composition of resident fishes and change s

of associated physical habitat characteristics at differen t

sites along the longitudinal gradient of streams impounde d

by small-scale dams . We ha hoped to pair unimpounde d

streams as study controls for similar types of impounde d

streams . Unfortunately, the distribution of the small -

scale dams did not allow this type of study design . We

sampled systematically along the longitudinal gradient o f

the stream at different distances away from the dam . W e

expected species richness to increase downstream, presumabl y

because the habitat would be more stable and more divers e

(Sheldon, 1968 ; Horwitz, 1978 ; Schlosser, 1982) . When we

observed discontinuities in the longitudinal gradient o f
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either species composition or physical habitat, we inferre d

an impact by the dam .

Study Area s

This part of the report covers two stream systems, on e

draining from the Coast Range and the other from the Cascad e

range : the Rock Creek drainage and the Calapooia River ,

respectively . These are shown in Figure 10 . This provide d

two contrasts because the streams from the Coast Range ten d

to be "flashier," more subject to quick variation in dis-

charge, than streams from the Cascades .

The Rock Creek drainage is located 5 miles west of th e

city of Philomath, Oregon (see Figure 10) . The study are a

lies within the City of Corvallis Watershed . Two forks o f

Rock Creek were examined, the North Fork and the South Fork .

Both forks are spring fed, have similar gradients, a s

determined from USGS 15-minute topographic maps, are im-

pounded, and are subject to potential colonization by th e

same kinds of species . The South Fork has a concrete diver-

sion dam 0 .5 m high . The North Fork is impounded by a large

earth-filled storage dam . This is the source of the domesti c

water supply of the city of Corvallis, by means of a trans -

mission line from the dam .

The major differences between the two streams are th e

nature of the impoundments on them and the management poli-

cies applied to them . Water is diverted from the South For k

dam to the larger impoundment on the North Fork . Depositio n
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If

Figure 10 . Location Map of Rock Creek and Calapooia Rive
r

dams
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of stream materials behind this small dam during the sprin g

and early summer necessitates periodic clearing with a

backhoe to remove deposited fines and gravels . The spoil s

are deposited below the dam in the channel . Copper sulfat e

is applied irregularly through the years to control nuisanc e

algae in the impoundment behind the North Fork dam . Th e

outflow of the North Fork dam extends approximately 90 m ,

joining the South Fork to form Rock Creek proper . Th e

municipality plans to retrofit bulb turbines in the dis-

charge line to generate hydroelectricity from these dams .

The Calapooia River is impounded approximately 8

miles upstream from Brownsville (see Figure 10) . The da m

is a wood and concrete structure approximately 3 m i n

height . Timber is harvested in the Calapooia headwater s

near King Camp and the drainage has been mined extensivel y

for gold .

Method s

Each stream was sampled along a longitudinal gradient .

For the South Fork of Rock Creek, sampling stations wer e

established at distances of 450 m, 200m, 100 m, and 10 m

above the diversion dam and at 50 m, 250 m, and 600 m belo w

this diversion . Four sites were sampled on the North For k

of Rock Creek : 150 m and 50 m above the reservoir and 10 m

and 50 m below the impoundment dam . The sampling station s

were approximately 25 m long and were adjusted slightly s o

that the best representative sites would be sampled . Esti -
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mates of fish density in the Rock Creek drainage wer e

assessed using the DeLury Method because of the basin' s

small size (Ricker, 1958) . Sections were blocked off a t

the upstream and downstream margins of the reach to b e

sampled . Three to five passes were made with an electro-

shocker (Coefeldt model BP-3) . Fishes were identified ,

counted, weighed, and measured after each pass . All fish

were held in buckets until the sampling was finished ; the y

were then released back into the stream .

Because of its large size, the Calapooia could not b e

sampled in the same way . Study sites were approximatel y

50 to 100 m in length . The study sites were 32 km, 27 km ,

18 .5 km, 3 .2 km and 0 .4 km above the dam and 4 in, 7 in, 8 in ,

and 300 m below the dam . The fishes were enumerated b y

visual observation, using the snorkling techniques previ-

ously described, in all microhabitats except shallo w

riffles where electroshocking techniques were used to gathe r

relative frequencies of fishes .

Measurement of microhabitats available were don e

slightly differently in each system because of size . In th e

Rock Creek drainage, physical characteristics of the samplin g

sites were recorded along a series of cross-sectional tran-

sects spaced 2 m apart . In the Calapooia River, we sample d

micrphabitat patches, defined by us as homogenous sections o f

stream with respect to substrate, current velocity, surfac e

turbulence, and depth . We made physical measurement of those
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Table 13 . Summary of selected physical parameters at study sites above
and below Brownsville Dam (Calapooia River) .

Distance
from dam

Patch
length

Mean
width

Surface
arRa

Mean
depth

Mean water
velocity

Site Transect (m) (m) (m) (m) (cm) (cm/sec )

1 a 32000 116 22 1012 55 2 2
b 75 26 1950 80 5 0

2 a 27400 60 16 960 132 3
b " 12 25 300 23 6 0
c " 50 13 650 223 5

3 a 18500 24 20 480 62 2 0
b " 18 19 342 26 56

4 a 3200 21 13 273 39 50
b " 33 8 26 11 81 37
e " 28 11 308 80 110
d 28 17 1176 100 22

5 1 a 400 400 15 6000 2896 5

6 2 s 11 22 6 132 78 36
b 8 11 22 2112 90 1 9
c 7 11 14 154 47 7 3
d 8 5 13 65 73 70
e 7 1 7 7 31 6 3

7 a1 300 1 13 13 40 82
a2 " 1 13 13 25 2

1 reservoi r

2plunge pool

6 1



Table 14 . Substrate composition at study sites on the Calapooia River . *

Presence of
% Substrate composition instream cove r

Site Transect A B C D E F G

	

H

	

I

	

J

	

K

1 a 10 43 47 -

	

-

	

-
b 30 70

	

-

	

-

	

-

	

-

2 a 28 3 3 3 22 3 33

	

-

	

+

	

-
b 13 37 27 23 -

	

-
c 27 33 3 3 33

	

+

	

+

	

-

3 a 23 10 7 12 25 23
b 2 5 13 18 6 5

4 a 10 42 22 27
b 17 3 13 6 6
e 14 2 2 5 11 33 3 3
d 10 47 22 8 7 2

5 1 a 100 +

	

+

6 2 a 34 37 28

	

-

	

+

	

+

	

-
b 27 7 66

	

-

	

-
c 2 17 80 +

	

-
d 16 10 37 37 -

	

-

	

-
e 2 13 28 53 +

	

+

	

+

7 a 1 99
a2 13 15 25 47 +

* A = sand, silt, clay ; B = small gravel < 2 .5cm ; C = large gravel 2 .5-7 .5cm
D = cobble 7 .5-15cm ; E = rubble 15-30cm; F = boulder > 30cm ; H = woody
debris ; I = undercut banks ; J = root wads and boles ; K = rooted vegetation .

1 reservoi r

2plunge pool
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Table 15. Patterns of substrate distribution above and below small-scale
dams on the north fork and the south fork of the Rock Creek
drainage .

Distance from Substj' a ,tg
Location Site Dam (meters) A B C D E F G

	

H

N. Fork Rock Cr . la 10 below 11 17 20 30 22 0 0

	

0

" 2a 30 below 12 21 36 27 4 0 0

	

0

3a inlet 150 above 40 26 14 5 2 0 13

	

0

4a 150 above 9 23 50 8 3 1 6

	

0

S . Fork Rock Cr . lb 600 below 4 20 14 18 32 0 12

	

0

" 2b 400 below 2 15 18 23 37 0 0

	

0

" 3b 200 below 10 15 15 17 30 13 0

	

0

4b 50 below 13 28 22 19 18 0 0

	

2

51) 10 above 39 4 2 3 0 42 0

	

0

6b 100 above 6 15 28 28 20 3 0

	

0

" 7b 200 above 14 12 15 14 35 4 0

	

0

IT 8b 450 above 6 19 21 27 26 0 1

	

0
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ameters along several transects across the width of eac h

patch ; the number varied in relation to its size .

The following procedures were common to the samplin g

programs for the Rock Creek Drainage and the Calapooi a

River. Each transect was sampled at three loci : 0 .25, 0 .50 ,

and 0 .75 of the wetted width of the channel . At each locus ,

the following physical parameters were measured : substrat e

composition ; water velocity at the surface and the geometri c

mean velocity ; depth ; and instream and overhead cover . Tem-

perature and dissolved oxygen were measured at 1200 hr . ± 1

hr . Percent substrate was visually estimated using a viewin g

box . The Wentworth Scale was used to classify particle sizes .

Water velocity was measured using an electromagnetic flow

meter (Marsh-McBirney model 201) . Water temperature an d

oxygen were measured using a YSI model 544A meter .. .

Result s

The physical data are summarized in Tables 12, 13, 14 ,

and 15 . The common pattern to be noted is the large amoun t

of fines deposited in the reaches just above the dam (sit e

5a in Table 14, and sites 3a and 5b in Table 15) . This i s

accompanied by a decrease in the average mean velocity i n

those sections. In the South Fork of Rock Creek, thi s

extended downstream because of diverted water .

Five species of fishes were found in Rock Creek : cut -

throat trout, riffle sculpin, Piute sculpin (C . beldingii) ,

the reticulate sculpin, and specled dace . The most obviou s
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Table 16 . Density estimates of resident fishes made above and below small -
scale dams on north and south forks of the Rock Creek Drainage . *

Species

	

Site

	

Location

North Fork _

Catch

	

Time

	

Pop .Est .

	

#/m

2 0.1 6Salmo clarki la 10m below dam 0 .02
1 2"

2a 50m below dam 8 0
.2

3
3a 50m above inlet 2 0 .01 2 0 .0 l
a 150m above inlet 3 0 .01 3 0 . 0

n
South Fork

12 0 .04 1 ; 0 .28below dam
" 2b

AOOm
400m below dam 12 0 .04 15 0 .35

" 3b 200m below dam 15
0 .09

18 0 .28
" b 50m below dam
n 10m above dam 25 4 seine hauls 25 0 .1 7
n
"

6b
7b

100m above dam
200m above dam

1 9
11

0 .05
0 .05

26
11

0 .05
0 .1 0

" b 450m above dam 7 0 .01 7 0 .08

North Fork
Cottus rotheus la 10m below dam 1 0 .003 NA 0 .02

2a 50m below dam 1 0 .001 NA 0 .0 1
" 3a 50m above inlet 2 0 .01 NA 0 .02
TI a 150m above inlet 6 0 .02 7 0 .08

n lb
South Fork

7 0 .02 0 .1 2600m below dam
n 400m below dam

10
10 0 .23

n 200m below dam 0 .01 NA 0 . 0
IT

1b
3 0 .14 0 . 0

n
b
5b

50m below dam
10m above dam NA ANi NA

"
66b

100m above dam 6 0 .02 NA 0 .0 1
t l

n 8b
200m above dam
450m above dam 33 0 .004 NA

0 . 0
0 . 0

North Fork
Cottus beldingii la 10m below dam 1 0 .003 NA 0 .0 2

2a 50m below dam 0 - NA -
" 50m above inlet 1 0 .01 NA 0 .0 1
IT

4a
a 150m above inlet 7 0 .02 9 0 .0 9

South Fork

n
600m below dam 4 0 .01 4 0 .07

n
n

2b
3b

400m below dam
200m below dam

1
0

0 .03 1
NA

0 .0 2

" b 50m below dam 0
" 5b 10m above dam 0 NA
" b 100m above dam 4 0 .01 NA 0 .0 1
" 7b 200m above dam 0 .02 NA 0 .0 3
n b 450m above dam 5 0 .01 NA 0 .06

North For k
Co'ttu uerple

	

,s la 10m below dam 8 0 .03 NA 0 .1 4
2a 50m below dam 0 .02 12 0 .20

n 3a 50m above inlet 24 0 .26
1T a 150m above inlet 9 0.03 N1 A

South Fork
lb 600m below dam 5 0 .02 7 0 .04

" 400m below dam 0 .0 1 0 .02
" 200m below dam 1 0 .04 NA 0 .0 2
n

~b
b 50m below dam 0

n 5b 10m above dam 0
" 6b 100m above dam 0
"
"

7b
b

200m above dam
450m above dap

0
0 .01 NA 0 .00

*NA = Not applicable

65



qs tJAI(PE,)

bs
WI

0

n
a(4nr)

Pa z-40 o'P

(Ps)

Pa r
acts..

0
0

0
0

N O OO O O

%O .- to 0o1- O .- 000 0 0 O

0 .-CON 0 0 ON
m

CO
0

0 00 00 o M

N N O OD C-0 0 O M O 0
C o
0

cu WI

M

'.O 1-O .- 0 i- OO O 0 0

N ti WI
O

O M 0-O O O

MOO
co O
O co

N
O

CO
O
O

CV Ul
0 0 t

O`
0

I-
0

O

ti
0 0

	

0 0 ti0
0 WI ONO 01

	

-N

	

ti N
I ~D O 0

	

ON ON
. .

	

. 1.D

N
O 0 .. ON 1 N coO 0 0 O

	

O \p M0 0 LA

cd .o N p 0

	

W .0

	

C i .O 0 'O

	

CO

	

CU .0 0 b

	

W NN

I- N

	

M

66



Total Number

a'

	

0

w

0

CD

0
1-D c

cr
c/s f'r
o
C `s
a-• Co

C'r
Pis

o H
`s ' S
7C o
]o cr
0
o t y
c' CD

Co
o co
Z
fD co.
cD

co
sc. cD

Fab
Co
er
•s
cD
Co

m
a
a

A
er

UI

N

O

e
e

d0 A
• O

Number / m2

67



Number

b

	

ew

	

O

	

O

	

O

	

(71

UI

N

.ilft

cn
a

N

7d C
q CD

0
7C co

n

	

1 3

CD CD

(D co

	

3 13

Cb
w Ms

CD

a

	

m
0

ri

CD

E31

0

IP ( P3
_ gr e a

11111111

	

I
M

aIIIIIIIIIIIIIII1111

I

III

68



Number

C L7+

5
1

////77MM// /Z.

MI C1
q cD tai

q O. co

f] c*

	

, 2
fD co

	

8 0
l7 b
w Go
8 c1

m
w

ur

0

O
to
cc.
CD

E
0
M

0

rt.

11111111111111111111111 1

itd//////i
11111111111 1

t

69



impacts in the South Fork of Rock Creek are : (1) that th e

sculpins are not found in the impounded reach of the Sout h

Fork, but are found above and below that section (see Tabl e

16 and Figures 11, 12, and 13), and that the impact of th e

dam extended at least 50 m downstream . In the North Fork ,

greater numbers of the reticulate sculpin were found in th e

reach 50 m above the inlet . This section was c'haracterize d

by a high percentage of silt, which suggested that it i s

aggrading and is poor habitat for sculpins . The speckle d

dace is found only below the earth-filled dam on the Nort h

Fork of Rock Creek and in the confluence of the two forks .

Interestingly, the small 0 .5 m dam on the South Fork of Roc k

Creek supported the highest density of cutthroat trout ,

acting as a refuge during the low-flow summer period becaus e

the creek was dimninished in size and pool habitat wa s

limited . In contrast, the numbers of cutthroat trout de-

clined and were at their lowest densities just 50 m from th e

impoundment in the North Fork (see Figures 11, 12, and 13) .

Only sculpins were found in the impoundment of the larg e

earth-filled dam .

The most significant impact of the dam on the Calapooi a

River was the seeming lack of fishes in the impoundment be -

hind the dam (see Table 17) . We had observed redside shiner s

in 1980, but no fishes in 1981 during the four transect s

conducted . The second impact was an increase of adul t

squawfish in the tailrace below the dam . There was also a

decrease in cutthroat trout and an increase in the number s
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of redside shiners and speckled dace below the dam . We

cannot determine whether this was due to longitudinal strea m

effects such as a shift in species composition that woul d

naturally occur due to the position of that reach withi n

the stream system (i .e . Schlosser, 1982) or to the dam itself .

Discussion

The structure of the communities was different above an d

below the dams. Although more work needs to be done, w e

suggest the following . Dams may have fewer detrimenta l

impacts if placed higher up in a drainage . This is for two

reasons. The first reason is that fewer species are foun d

in the headwaters than are found further downstream ; specie s

of fishes are abstracted from the system as one goes up th e

stream to the headwaters . Therefore, fewer species will b e

impacted . Willamette drainage fishes found highest up in th e

system are cutthroat trout and different species of sculpins .

The second reason is that dams at high elevations are no t

going to impact as many migrating fishes, especially ana-

dromous salmonids . In these small systems, the impact of a

few widely dispersed small-scale dams found near the head -

waters may only be local . Some of the impacts may b e

beneficial, offering refuge for cutthroat trout in the natur e

of pools during the low summer flows . We do not know wha t

the cumulative impact of numerous small dams may be, but th e

interception of gravels and organic materials is a subjec t

area that should be examined . From casual observations o n
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the South Fork of Rock Creek, the decision of whether t o

dredge out the impoundment periodically may be critical .

Local impacts include a reduced number of native fishe s

in the impoundment itself . The larger embayments, North For k

of Rock Creek and the Brownsville Dam on the Calapooia River ,

supported low densities of native fish . This should no t

surprise us, as all the native fishes have evolved i n

streams . The attraction of large squawfish to the tailrac e

area below a dam raises an issue on dams downstream in th e

larger streams, such as the South Santiam and McKenzi e

rivers . Buchanan et al . (1981) suggest that squawfish

predation below dams may be a bottleneck on migratory juve-

nile salmonid fishes. This is a negative impact .
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SUMMARY AND CONCLUSIONS

We do not believe that the current generation of fis h

habitat models are adequate to predict how dams will chang e

habitat quality for many species . This is unfortunat e

because, if reliable, these approaches would save time ,

money, and labor in determining good sites from bad site s

from a biological point of view and might suggest mitigatio n

measures . We observed from our studies that interaction s

among species could affect species distributions not pre-

dicted by models that rely entirely upon physical character-

istics of habitat . Our work suggested that differences i n

habitat diversity among streams might limit species differ-

ently in various stream systems because the availability o f

microhabitats would differ . We found the concept o f

defining selection and availability in habitat models to b e

a quite useful approach and might be useful in a regional ,

hierarchical classification of stream systems as advocate d

by Warren (1979), and Warren and Liss (1983) .

We suggest that the impacts of single small-scale dam s

may be highly localized . We found that the physical factor s

which changed were the large amonts of silt building up i n

the reaches above the dam and in the area of impoundment an d

the reduction in water flow . The impacts of the dams may b e

related to location and size . There may be less impact o n

dams higher up in the watershed because fewer fishes inhabi t
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headwaters (Sheldon, 1968 ; Small, 1975 ; Schlosser, 1982) .

Near King Camp in the upper reaches of the Calapooia, onl y

cutthroat trout, and the Piute sculpin are present out of th e

total Willamette fish fauna . In the headwaters of Greas y

Creek, only the cutthroat trout, the reticulate sculpin, th e

Piute sculpin and the torrent sculpin are found . In th e

upper reaches, small impoundments may increase pool refuge s

during the summer low flow . We caution that small stream s

and intermittent streams are important . Summer steelhea d

prefer to use intermittent and small streams to spawn in th e

Umpqua, the Rogue, the Smith and the Trinity Rivers (T .

Roeloffs, pers . communication) . Here the point is mad e

that high-elevation sites will interfere less with fis h

migrations than will lower-elevation sites . There were few

fishes inhabiting the impoundment itself . This make s

intuitive sense, as native fishes of the Willamette drainag e

are adapted to free-flowing conditions . As a consequence ,

the larger the impoundment, the greater will be the amoun t

of habitat lost . This can lead to another undesirable con-

dition : the introduction of exotic fish species that ar e

lake dwellers, in an attempt to mitigate fish losses .

Exotics have often caused more problems than they hav e

solved (Moyle, 1976 ; Zaret, 1979 ; Li and Moyle, 1981) . W e

have observed the concentration of squawfish in tailrac e

areas at the Brownsville Dam, a dam at lower elevation o n

a high-order stream . Squawfish concentrations below dam s

may form a significant bottleneck to the survival o f
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migrating juvenile salmonid fishes in the Willamette Rive r

(Buchanan et al ., 1981) .

We need to survey more systems with a study design t o

accomodate our new view of habitat models . We now conceiv e

microhabitat to be homogenous units of substrate, flow ,

depth, and turbulence which are similar to runs, riffles ,

and pools, except that we define them statistically, no t

typologically . We envision that some systems might hav e

types of microhabitats that are unavailable in othe r

systems and that this would result in a community differ-

ent in character from the others . In essence, we ca n

cluster the patches of microhabitats based upon physica l

properties, using cluster analysis, and classify the m

statistically using discriminant function analysis . W e

can ordinate the species composition found in thes e

patches, thus defining the kinds of communities tha t

inhabit the different microhabitats . We can then rank th e

suitability of various species to different microhabitat s

as they are arranged longitudinally within the stream .

This can be done for redside shiners and cutthroat trout ,

two ecologically important species for which standing-cro p

estimates were easy to obtain . In this way, we can observ e

the effect of differences of habitat diversity betwee n

stream systems on habitats selected by different specie s

and can more carefully dissect confounding patterns of th e

abiotic and biotic environment on habitat quality .
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Figure 9 . Location-Map of Greasy Creek, Oregon
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