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Let be a real-valued function defined on I [0,1].

We assume that (1) ?(°) = 0, '(1) = p, an integer 2,

(2) C2[O,1], and (3) '(x) >0 for xCI. The

function may be used to define a generalization of the

ordinary base-p expansion, as follows. For x [0,1), put

a1 = [(x)], r1 = (x) - a1. For n 1, an+1 =

rn+1 = (r) - an+1. The terms {a} comprise the

expansion; the rn are the remainders. In 1957, Alfred

Rnyi introduced an additional, technical hypothesis on

thereby bringing ergodic theory into play and proving the

existence of a measuiable function h such that, for almost

all xEI, the sequence of remainders is distributed with

density h.



The present paper pursues two basic goals: one isto

identify more clearly the class of functions satisfying

Rnyi's technical hypothesis; the other is to determine

how smoothness conditions imposed on are reflected in h.

Examples of results are: R6nyi's hypothesis is shown to be

met if '(x) > 1 for all xI; if further p is analytic

on I, so is h



SOME RESULTS IN THE ERGODIC THEORY

OF GENERALIZED EXPANSIONS OF REAL NUMBERS

INTRODUCTION

This paper shall be concerned with a class of

functions defined on the closed unit interval I = [0,1],

which are continuous, strictly increasing, and satisfy the

boundary conditions o(0) = 0, 9(1) = p, an integer 2.

Such a function may be used to associate with each x

[0,1) an infinite sequence {an of integers in the

following way. Take a1 to be the greatest integer in

and let r1 = (x) - a1 be the remainder. Now r1

lies in [0,1), and so we may iterate:

=

Generally, for n 1,

- [(r)] , r = -
If the reader will convince himself that the choice

(1) (x) = px

leads to the ordinary expansion of a number to base p,

then he will begin to understand what S6ichi Kakeya had in

mind when he introduced this "generalized expansion" scheme

in 192k. [1]. Actually, Kakeya construed the function

somewhat more generally: while required to be strictly

monotonic, it could be either increasing or decreasing, and

the upper limit of its range could be +co. The motivation

for this was the fact that the special case



(2)

leads to the development of a number as a simple continued

fraction; Kakeya wanted to unite this phenomenon with the

base p expansion corresponding to (1) in a single

generalization.

Now in order that the generalization be precise, it is

necessary that we be able to retrieve a number x from its

associated expansion {a1,a2,... . Let f denote the

function inverse to ;
then we have

+(a ri)) = (a + +(a+r)" )).

We denote the final expression more simply by

[ a. , ].

What is wanted is that

x ,
an].

To obtain a convenient formulation of this requirement, we

use the notion of an interval of rank n, by which is meant

a set of t satisfying an inequality of the form

[a1, [ a,2 a±I].

The elements belonging to this interval are characterized

by having a1 through a as the first n terms of their

expansions. I is partitioned by
pfl intervals of rank n,

and the longest of these, I will say, has length L. The

condition



(3)

guarantees that two different x's won't have identical

expansions. For choose n so that An is smaller than the

difference between these x's. Then the expansions cannot

agree for the first n terms. Thus (3) states compactly

that the expansions generated by p are unique, a function

for which this is true I shall call generative. Kakeya

proved that generativity would obtain on the hypothesis

that '(x) > 1 for almost every x E I.

Kakeya's paper seems to have gone unnoticed by Western

mathematicians. In 1914 B.H. Bissinger [2] generalized the

continued fraction by considering decreasing functions

other than (2), two years later, C.J. Everett [3]

generalized (1) by considering just that class of functions

I have described in my opening paragraph. By the way,

Everett showed that there are generative functions with

slopes numerically smaller than 1.

Kakeya's scheme opens the door to the question as to

whether or not the integers that enter these generalized

expansions make their appearance with certain well-defined

frequencies. Thus, Borel showed early in this century that

each of the digits O,l,2,...,p-1 would occur with frequency

1/p in the base p expansion of almost every number x. An

analogous result holds for the continued fraction, and has

a colorful history.



Gauss stated in 112 in a letter to Laplace (see

Appendix III of Uspensky's book on probability [LtJ) that

1(t), the distribution function of the nth remainder rn

of the continued fraction expansion (2), would converge as

n-cc to a limiting distribution function (t), given

explicitly by

=

But we do not possess his proof. It was only in the late

1920's that one was supplied: first, by R.0. Kuz'min [51

and then independently by Paul Lvy. Work on continued

fractions was carried on into the thirties by Khinchifl and

by Lvy, and their books [6], [7] give readable accounts.

Among many results, we find the assertion that the

continued fraction expansion of almost every x will contain

the integer k a proportion of times given by

(+
))

(On Gauss' result, the right hand side represents the

limiting probability, as n-oo, of the appearance of k as

the nth term. However, we cannot pass immediately from

this to the assertion just madebecauSe the terms a1,

are not statistically independent.)

Alas, this and many other very exciting results

depended on special features of the function 1/x, and they

provide no useful clue as to how such results might be



extended to Kakeya's setting. Fortunately, there was

another development taking place in the thirties: ergodic

theory. The application of ergodic ideas to the continued

fraction may be found in a lengthy paper of 1940 by Doeblin

[s]; a more prominent display is given in the 1951 paper

of Ryll-Nardzewski [91. For a thrilling narrative account

of this work, I recommend chapter 5 of Mark Kac's Carus

monograph [10]; for further mathematical details, see

section 4 of chapter 1 of the excellent book by

Billingsley [11].

What is important here is not the relative ease with

which hard-won results of Khinchin could flow be recaptured

by ergodic methods, but that such methods made possible the

generalization from continued fractions to the domain of

Kakeya's expansions. The decisive step was taken in 1957

by Alfred Rnyi [12]. Rnyi worked with a class of

functions satisfying conditions borrowed from Bissinger and

Everett, and resembling somewhat Kakeya's, except that in

the case of decreasing cp the derivative cf2'(x) (should it

exist) was allowed to equal 1 on certain intervals, chosen

so as not to disturb the generativity of the function p.

But in order to obtain results from ergodic theory, Rnyi

was forced to impose on cp a certain very technical

condition (which I shall always refer to as Rnyi's

condition). Let t be a real variable, and define



It now follows from the ergodic theorem that if F is any

Lebesgue integrable function on I, then for almost every x,

Hx,±) -
d ii a2

where x = [a1,a2,...,a]. Rnyi's condition posits that

there exist a constant C l, not depending either on n or

on x, such that

H(xt)
(4)

On the strength of this hypothesis, Rnyi proceeds to show

First There exists a probability measure V,

equivalent to Lebesgue measure on I, invariant with respect

to the transformation

T x t (x) - [x)]

This means that for any (Lebesgue-) measurable set Ec1,

v(T'E) = v(E)

Second Let be the associated invariant

distribution,

(t) =

Then the density h(t) = '(t) (which I shall refer to as

the invariant density) satisfies the inequality

C
C,

the constant being the same as in (4).

Third: The transformation T is ergodic.



F(Tx) = F dv S F(t)k(±d.

Since T11x = we obtain the frequency of the integer k

by choosing, as F, the characteristic function of the

interval [f(k),f(k+l)).

The focus of the present study is the subclass of

those functions described at the outset which are

generative and which in addition satisfy Rnyi's condition.

Such functions I will say belong to the class of Rnyi

functions. I wish to show something of what the elements

of 1P. look like. The immediate obstacle is the apparent

awkwardness of R6nyi's condition.

Rnyi himself verifies in three cases: the base p

expansion (1), which is trivial, the continued fraction

case (2), for which special formulas are conveniently

available; and in the case of the function

(i+x)1, l-eI '. 2.

The latter case involves inversion of (5), and

verification of (4) through a bit of manipulative

virtuosity. But there is no indication as to how one might

proceed with (5) replaced by

yn(j7(X) - (x) - I + '

yet (6) does in fact give a function every bit as much an



element in R. as does (5).

Part of the difficulty in characterizing the members

of I -- indeed, of characterizing the generative functions

-- stems from the level of generality assumed. Yet it has

seemed to me perfectly natural to inquire: among the class

of everyday functions that are differentiable, say, which

are the members of I? I have not hesitated to impose such

conditions of differentiability as might be needed to

render the question accessible to the methods of classical

analysis.

To be specific, I intend to deal with what I shall

call the class ,A. of admissible functions. By definition,

if and only if these conditions are met:

(0) = 0, (l) = p.

,k (2): ço has two continuous derivatives on I =

[0,1].

>0 on I.

In requiring the continuity of the second derivative, the

second of these conditions is stronger than it need be, and

I have made it so principally to simplify the exposition.

It would do as well to have the second derivative piecewise

continuous. In fact, the interested reader will have no

trouble in verifying that all the theorems remain correct

with LA(2) replaced by

A (2'): cp' absolutely continuous, np"
essentially



bounded, on I.

I will show quite explicitly that the requirement of

boundedness is crucial.

In Part 1 I examine elements of } for membership in

Thus in Theorem 1 I show there is an auspicious

subclass J41cA whose elements are always in R: LA1

consists of the functions in }I whose derivative remains

> 1 on I. Observe that this dispatches (5) and (6) with

equal ease. If the derivative can assume values 1,

things are inherently more complicated, and the remainder

of the section is devoted to a cursory exploration of the

possibilities. It is shown, for example, that an

admissible function cp may definitely fail to belong to i/?

by virtue of the derivative p' being equal to 1 at a

single point. On the other hand, membership in need not

be spoiled by having ' take on values 1. Thus, I

extend Everett's nice result that there exist generative

functions having arbitrarily small slope on an interval of

length arbitrarily close to 1: I show that there are

functions of the same description in

Part 2 is concerned with the following sort of

question: given that one imposes certain smoothness

conditions on j2, what then can be concluded about the

invariant density, h? Rnyi shows that it is bounded away

from 0 and from oo, and that it is measurable. But is it

continuous? Can we say when it must be differentiable?
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As a means of approaching such issues, I begin by

proving an analogue of the Gauss-Kuz'min theorem: if

1(t) denotes the distribution of the nth remainder

rn = T x,

then converges uniformly to the invariant distribution

as n-oo. For the ideas of this proof I am indebted to

Billingsley [11], who develops them in connection with the

continued fraction; I have merely noted that the same

ideas could serve in the more general setting of Rnyi.

Using this result, I am able to show that, at least for a

certain well defined subset of the auspicious class

the differentiability of is indeed inherited by h so

that, in particular, h is infinitely differentiable on I if

(p is.

As a final result, I show that analytic elements of

A1 give rise to analytic invariant densities, h.

For the convenience of both reader and writer, I post

here the following list of definitions, notations, and

elementary formulas upon which the text shall repeatedly

draw.

The class of admissible functions: if and only if:

(J4(1): (p(0) = 0, (p(1) = p, an integer 2.

E c2[o,1].



(p'(

The auspicious subclass A1 p E j41 if and only if

and '(x)>l forxEl.

Expansion notation: f is the function inverse to p. Let

n be a positive integer, and let us momentarily regard

as formal variables. We adopt the notation

+(+ +f( )) =

(except when n = 1 or 2, in which case I simply write

things out the long way). The )'s must take values such

that f does not receive an argument out of its domain.

This will always be the case in the text, where typically

will have some value in [O,pJ, while the other k's are

integers between 0 and p-i.

Fundamental intervals: For a given n, let ai,a2,...,an be

given, where each a1 is one of the integers O,i,2,...,p-l.

The interval whose endpoints are

and [ai,a2,...,an+1]

is called an interval of rank n. I is partitioned by pfl

such intervals, the largest among them having length A11.

The collection of all intervals of rank 1,2,3,... is called

the set of fundamental intervals.

11



The condition of generativity: a function EA is

generative if and only if 0 as n -oo,

The transformation T: This is the p-to-i map of I onto

itself defined by

The special assignment at x = 1 is not essential, but I

adopt it in order to simplify the statement of certain

theorems later on.

Rényi's condition: Let

Hcx,t [a, ,

where x = [a1,a2,...,a], each of the a's being an integer

from 0 to p-i. Rnyi's condition is that there exist a

constant C such that, for any choice of n and x,

S'r H (xt)
tEl

(7)

cp LA

H (%,)
tEl

The class R of Rnyi functions: p G if and only if:

(x) - [(x)1 -for o

or xl

c-p is generative, 50 satisfies Rnyi's condition.

12



=0

or explicitly by

(11) =
>L'

where the summation is taken over all x = [a1,

each a ranges independently from 0 to p-i.

Invariant measure, distribution, and density: The

13

The iterated distributions and densities: Let denote

Lebesgue measure on I. For n = 0,1,2,... I define the nth

iterated distribution n
by

() - ([eI r=Tx±1) - (T[ot1)

The iterated densities Sn are the derivatives

S-t)

The may be written out explicitly as

-I

= a] }
a=o ao ao

or recursively, by

'0(t')

= (+c+t) - () or IO.

The Sr., may be described recursively by

= S(kt) kt or VO

a as



invariant measure v is a probability measure on I, whose

existence is guaranteed for a function cp such that

for an arbitrary measurable set E c I,

v(TE) = v(E)

The invariant distribution is defined by

= -v( [o,tJ) ± El,

and the invariant density h is defined almost everywhere on

Iby

Rnyi has shown:

(12)

kt)



PART 1

I-low do we suppose that Archimedes would have

calculated the decimal expansion of ? That is --

assuming he knew analytic geometry. The answer is obvious:

first he would connect the origin to the point (1,10) with

a straight line. Then he would place a compass point at

(-1,0) and adjust the pencil to meet (0,1). The arc

brought down from this point would, of course, hit the x-

axis at - 1. Now the fun begins. A vertical erected at

this intercept crosses the line y lOx between y 4 and

y = 5; Archimedes calls out "IV" to his scribe, and sets a

pair of dividers to record the remainder. Then placing one

point of the instrument at the origin, he marks off the

remainder on the x-axis, and proceeds to the next digit.

"For what has been done once, can always be repeated."

This is ideal geometry: lines with no thickness, settings

with no error to grow tenfold at each repetition. We may

imagine our friend Archimedes continuing indefinitely to

call out the digits of : 1.LF1421356...

Now let me thicken the plot. Enter a mischievous

spirit: in an instant, the line segment joining the origin

and (1,10) disappears, and is replaced by an arc of an

extremely large circle -- to be specific, a circle of

radius 10100, with its center below the horizontal axis, in

15
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the fourth quadrant. Now if Archimedes were to sight along

this "line" by making his eye colinear with the origin and

(1,10), then he would certainly detect the upward bulge

that betrays the work of a rascal. But since he has no

reason to do this, I shall suppose that the change goes

completely unnoticed, Archimedes continuing to read off his

digits by use of the arc that stands now in place of the

line y = lOx.

What happens? As the reading of the digits continues,

there will be at first no discrepancy to give evidence of

the fraud. Then suddenly the digits will go "bad". But

will they be obviously bad? Could one tell by looking at

them that they were bad? The answer is "Yes", provided we

suppose that AJ is a "normal" number -- in which all the

digits occur with equal frequency -- and that the scribe is

mi1e Borel. For Borel would be bound to notice, over the

aeons, a slight but persistent preponderance of 9's over

0's. This is because the arc is concave down; were it

concave up, with the center in the second quadrant, it

would be the smaller digits that would be favored in the

expansion.

Very well, now what is to be made of all this? We

start with a line segment y = lOx (or y = px, more

generally) with x going from 0 to 1. Now, while holding

the endpoints fixed, we effect some smooth distortion of

the segment, giving a curve y = p(x). We suspect that
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small distortions will have small effects upon the

behaviour of the expansions, and it is even suggested to

our intuition that quite noticeable distortions

(corresponding to decidedly nonlinear 'p(x) ) may not

impair the qualitative character of the resulting

expansions. By "qualitative character" I mean to embrace

two things: (a) the uniqueness of expansions, for

representing numbers, and (b) the statistical regularity of

the various digits. Thus, while we know that the digits

will not continue to be equally likely, we feel that new

"distorted" probabilities must have evolved from the

former, equal ones.

The mathematical question at issue, then, is to see

how freely our (x) can be chosen, without our losing the

qualities expressed by (a) and (b). As regards the former

of these qualities -- that which I call generativity -- a

very satisfying answer has been given by Kakeya. He

instructs us to look at the slope, for the lines y = px

tend to be steep, all slopes 2. Kakeya says: Any

smooth deformation will not destroy generativity provided

the slope is always kept greater than 1. (The trouble that

can occur with slopes less than 1 is real; the reader may

wish to explore this for himself by attempting to

geometrically construct the fundamental intervals for a

function like '(x) = 2x2.)

But what about question (b)? That is the point of the



following theorem: to show that Kakeya's answer again

applies.

Theorem 1: LJ41

Proof: Since '(x) is continuous on a closed interval, it

attains therein a maximum and a minimum value; in

particular, the minimum value is strictly greater than l

Equivalently, we may say of f'(x) that

0 < c 4or all x E Co,p].

Let me use this now to show that

for all n. First, a typical interval of rank 1 has length

-

for some 0 (a1,a11), by the mean value theorem. Thus A1

fi . Proceeding inductively, we assume LIk <pk for

1 < n. An interval of rank n will have length given by

(a1 + [a i..., a+i j - a, + i)

= +'(e) ( a+ -

and the result is shown.

On the strength of our hypotheses, we see that
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can be expressed as the product of n fractions, each having

the form

[b, b, bkt1)
k .(13)

kzJ)
The case where k = 0 corresponds to the factor

(14)

In the general term displayed in (13), the arguments of f'

differ by a number dk not larger in magnitude than Lk. By

the mean value theorem, we may rewrite this fraction as

'( 6+ [b,...k+tZJ) + (&) dk

c'(Lb,bkta1)
f" is continuous on [O,p], and so there exists an M such

that If"(x)I M for all x [O,p]. Thus (14) can be

rewritten as

Ht) = f1(a+ a+t]) f'(a {a3,, a+t) +'( a+t)

will actually assume its sup and inf at two points t1 and

t2 belonging to I. Now the number

Cx,
(x)



M Mkwh lEkI :: -;-

Putting all this together, we have

v1-,

Cx)
ki

The product on the right hand side converges as n-oO, by

virtue of the convergence of the geometric series

Therefore Rnyi's condition holds with the constant

c=
k=

Now we know that we are safe as long as the slope

stays > 1. But having gotten this far, it becomes

compelling to ask if the "boundary" of allowable slope is

real or imagined. We may argue that it must be real, since

it is so for the more basic question of generativity --

still we want to know just what it is that goes wrong when

slopes get 1. To that end, consider as a simple example

the function

M

20

(16) = x + x2

(15) + Ek
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Since p' (x) = 1 + 2x, we see that the slope is bigger than

1 except when x 0; here the function bravely sticks its

toe in the water to see what happens. I would recommend

that the interested reader try playing with this on a desk

calculator; after studying the pattern of remainders for a

while, certain things begin to appear. For one, the

succession of remainders is not always haphazard, as might

be expected. We note that any occurrence of a small

remainder will initiate an entire "run" of small

remainders, each slightly larger than the last. This

regularIty is most pronounced when we encounter an r which

is quite close to zero; for then we have r+i = Tr =

+ r, where it is clear that the increase is hardly

perceptible. From this point on, the successive remainders

will gradually build themselves back up by ever increasing

increments -- the process at this stage is certainly not

"random". The randomness will reappear when the greatest

integer function comes back into play, and this will happen

when the sequence of remainders has sufficiently escaped

the vicinity of the origin to first enter the interval

[f(1),1). As the increments have all the while been

increasing in size, the exact place of this first landing

in [f(1),1) will be completely unpredictable; that is, we

observe, at this occasion, the generation of a new

remainder, "truly" random in I, After this, the successive

remainders will continue to bounce "more or less" freely
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over I, until again one happens to land near the origin.

Let me contrast this now with the kind of behaviour to

be expected from a Rnyi function. Suppose that (16) is a

function in ci?, and let h be the invariant density. The

ergodic theorem says that for almost every x, the sequence

or remainders

(17) r1, r2, r3

is distrIbuted on I with density h. What is more, we know

from the inequality (12) that h is (essentially) bounded

away from 0 and from 00, and this means that the terms of

(17) cannot start piling up excessively in any one section

of I. Yet we have just seen how the remainders for (16)

are detained in the vicinity of the origin; it is, in

fact, on this account that the function (16) is excluded

from f. I will prove this rigorously later on, but for

now let me continue in this informal vein and offer a rough

argument which I myself find more convincing than the

proof.

Let us visualize the sequence (17) through the agency

of a "particle" which appears in succession at the

appropriate locations in I. We notice that a single visit

to a neighborhood lying just to the right of f(1) is

followed by a sojourn in the vicinity of the origin; this

suggests comparing h at f(1) with h at 0. To initiate the

precise (as opposed to qualitative) argument, we agree to



(19)
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measure the degree to which a particle finds itself

trapped, by the number of steps it takes to double its

distance from the origin: in precise terms, I define N( E )

to be the smallest positive integer k for which T'E. 2E.

I use 6 here to suggest that we are interested in what

happens for starting positions that are close to the

origin. Thus a will be small, and therefore we have

Ta = a + T(za) Za +

If x should lie between a and 2 a, then the increment it

acquires from action by T will lie between and 1

this gives us the estimate, valid for sufficiently

small,

(1) LiE

Now let us consider the two minute intervals

= [a, zeJ j [4

(The significance of the second of these will be clear in a

moment.) For almost every x E I, the sequence of remainders

r11 = Tnix must dip into these two intervals so that the

ratio of visits to J0 by those to J1 must approach, as a

limit,

S h J



and if we do not worry about the possibility of h being

discontinuous, we see that for small ., (19) is sensibly

the same as

(o) J) z (o)

21F

In any case, it is clear that the expression (19) remains

finite as 6 - 0. However, the verdict of (1) won't allow

this. For whenever the particle should enter J1, it is

straightaway whisked by T to [0, E] , and so must remain in

J0 for at least N( £ ) steps. Thus, according to (1), the

degree to which J0 is favored over J1 must increase without

bound as E - 0, and here the contradiction is revealed.

By the way, this argument does not address itself to

the question of the digits in the expansions generated by

(16). Whether the 0's and l's appear with statistical

regularity is something that I do not know, though I

suspect that they do. I should point out that questions

which arose in consideration of the digits have served

principally to focus attention on the succession of

remainders. The center of gravity of the problem has

shifted now, with the transformation T (carrying each

remainder into the next) and the density h being the

objects of mathematical interest. What the heuristic

argument given above does show is that the density h

belonging to (16) must either become infinite at 0, or
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vanish at f(1). Although this does not preclude regularity

for the digits themselves, it does represent a genuine

departure from the behaviour that characteristically

attends the use of Rényl functions. For this class ?. of

functions is intended to bear a kind of topological kinship

to the linear variety y(x) = px for which the densities h

are always uniform; the h resulting from a Rnyi function

must be "quasi-uniform" in the sense implied by the

inequality (12).

In what follows, I would like to explore the pathology

of admissible functions which do not belong to the

auspicious class }t1. In the first place, I shall consider

functions whose derivative assumes a minimum value of 1

at a finite number of points; ultimately, the question of

smaller slopes will be taken up.

It shall be necessary first to forge some tools, the

principal one being already implicit in the proof of

Theorem 1. By examining the final stages of the argument

-- in particular, the inequality in (15) -- we see that a

much more general'result may be inferred; namely,

00

Theorem 2:



(20)

The condition

00

is quite interesting, for it embraces the requirement (3)

of generativity, but goes on to say what further is

required for membership in 8L. The function in (16) is

generative according to Kakeya, from which we infer that

while the must approach 0, they somehow fail to do so

sufficiently rapidly for the series in (20) to converge.

My fascination with (20) lead me quite early to a

fairly instructive error, which I proceed now to describe.

When I first began my study of these problems, I made use

of an electronic calculator to experiment with various

functions p. It was in this way that I observed the

behaviour of (x) = x + x2 already discussed, At the

time, however, I was not quite sure whether this function

belonged to R. or not. I noticed that the delays

encountered near the origin were much more severe with the

function

(21) = %

than with the c70 of (16), and I formed the idea that the

order of contact of with the line y = x must play a

decisive role. To take an exaggerated case, consider the

function

26
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92( )= X± e

If one should here encounter a remainder as small as

then the analogue of (1) for this function shows that more

than e24/1O 2 billion iterations would be required to

reach .2; and this is more of a life-sentence than a

delay. Thus I was prepared to believe that (22) did not

belong to i?, while (16) and (21) ... maybe.

It was about this time that I found a way to relate

the order of contact between x) and y = x with the way

in which the L\1 approached 0. Consider an admissible

function cp0(x) whose derivative is equal to 1 at the

single point x = 0, and suppose that (x) 0 for x 0.

Then it can be shown -- I do so in the appendix -- that

(20) will be met provided the integral

j (-X dx

E °

remains finite as E - 0 from above. Here again I found

the suggestion that a function of the type considered

might indeed have a chance to be in if only the curve

y = 0(x) could "pull away" sufficiently fast from the

line y = x. For example, the integral in (23) remains

finite if
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where s is a fixed constant lying strictly between 1 and 2.

In this event z2x does converge, and for a while I

believed that the function in (24.) was a bona fide member

of ó. But arguments already advanced show that this

cannot be so; where lies the error? Simply here:. in

taking s in (24.) to be less than 2, the second derivative

is caused to explode at x = 0 (although I must say, it did

so very quietly). Thus the function is not admissible, and

Theorem 2 cannot be applied. For all that, we do make one

modest gain: we see that the boundedness of the second

derivative is indeed a crucial requirement.

While the attack on the series appearing in (20) has

yielded very little, it turns out that a direct and

elementary estimate of the individual terms t proves

fruitful, The following simple result is the natural

companion of Theorem 2.

Product lemma: For each n, there exists a (0,1) such

that

(25)
= Li

!(TkI)

Proof: For a certain choice of the a's, we have



where ' =

Ca, a, .., a+i ] - [ a,, a2, a]

a+t
t=

for some t* (0,1), by the mean value theorem. Thus

= P( a, + {a', a+t *) 2+ +I(a+t*)

Fl

k=i
= I I

T)
,a2,... ,a+t*].
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Observe how consideration of (20) and (25) together

leads to an easy rederivation of Theorem 1. But of far

greater interest is the way in which (25) sheds light on

the question of what happens when takes values 1.

What is to me quite remarkable is that formula (25) directs

us to a consideration of sequences of the form

(26) T, T,
We refer to (26) as the orbit of under T. This is

nothing new; the sequence of remainders (17) is an orbit

under T, and it is on this very basis that ergodic theory

can be applied. But formula (25) does not come from

ergodic theory; it is purely classical. Still it speaks

to us of orbits, saying, "If you want to make A small,
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see to it that the orbit of
j
spends most of its time

where the slope p' is bigger than 1." We must take this

to be a statement about orbits in general, since the ' in

(25) is different for every n, and never explicitly known

anyway.

Let us see now what bearing this has on the question

of an admissible function whose derivative takes a

minimum value of 1 at a single point, x0. In the case of

the functions (16), (21), and (22), we have x0 = 0 -- and

this is always an invariant point under T. That means that

we cannot get favorable estimates from (25), and although

we could neither conclude from this that p does belong

to R., it is suffIcient to point a suggestive finger at the

source of the trouble. For suppose, on the other hand,

that x0 were not an invariant point under T; that is, Tx0

x. Then although the orbit of could land right on

top of x0, it couldn't just remain there. If we try now to

get a useable estimate from (25), we see that this is not

quite enough; to bound the factors of (25) away from 1, we

must further concern ourselves with the possibility of an

orbit passing arbitrarily close to x0. To get a hold on

this, we suppose that we can cover x0 with a small open

interval G which is disjoint from its image under T. Thus:

x G > Tx G. Outside of G we must have y' bounded

below by some number strictly larger than 1. Then we may

be sure that at least every second factor in (25) is



with the result that

From this we see that (20) is satisfied, so that rp I? by

Theorem 2.

Now we understand that the examples (16), (21), and

(22) are somewhat fortuitous: they fail to be in not

because they all have slopes of 1 at a given point, but

rather because this point happens to be invariant under T.

I have said that x0 = 0 is always invariant; the same

applies to x0 = 1, for however we define T at 1, we can

never get a neighborhood of 1 to be disjoint from its image

under T. Thus the definition of T on page 12 is phrased so

as to make the invariance of 1 explicit, and the advantage

thereby gained is that a non-invariant point may always be

embedded in a "noninvariant" open set, as required in the

argument above.

Let me present that argument now as a formal principle.

Theorem 3: cp }1, co'(x) Ta 1 on I. Let U =

{ x : 5o'(x) = 1 } and let G be an open set in I that

covers U. Suppose there exists an N such that for every

x G, Tkx GC for some k N. Then e

Proof: Let = inf p'(x) over all x GC; then p a 1.
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Suppose p = 1. By the continuity of p', and the fact

that Gc is closed, there must be a point X0 Gc at which

the infimum p = 1 is assumed. But then x0 U, which is a

contradiction. Thus 1. Now the product lemma can be

invoked as before: since no point can remain in G under

repeated operation by T for more than N steps, we have

LN+I

and the conclusion follows.

Let me now suppose that the set U contains at most a

finite number of points. Then the following theorem, which

gives a necessary and sufficient condition for membership

in IJ, should seem perfectly natural in light of the

previous discussions.

Theorem 4: p E 4, ' ) 1 on I. Suppose the set U on

which p'(x) = 1 consists of finitely many points. Then çü

if, and only if, U contains no orbit under T.

Proof: The "if" part of this theorem can be gotten from

Theorem 3: it is only a question of constructing the set

G. Suppose U to consist of the points

(27) xl, ... X



and suppose further that the points

(2a) Tx1, Tx2, ... TX

are all distinct from those of U. Put

E = 4tIVLX.
2,j

and let B = sup p'(t). With x. as midpoint, construct antI 1

open interval of length E/2B. The image of G1 under T

cannot have length exceeding E/2, from which we see that

the set

is necessarily disjoint from its image under T.

Of course it could happen that certain terms in (2)

equal certain other terms in (27). For example, suppose

x2 = Tx1 and x3 = Tx2

but that Tx3 does not belong to U (we have to get out of U

in m or fewer steps, since otherwise U contains an orbit).

For simplicity, suppose also that no other such

duplications occur. Let be the smallest distance

between the distinct points among (27) and (2) combined.

Center about x1 an open interval of length E/2B3, and

let and G3 be the successive images of under T. The

points x, ... Xm get covered by intervals of length

I
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a/2B; then we can say that any point in G = UG must

escape G under one, two, or three applications of T. Thus

Theorem 3 can be applied with N = 3; and we see that the

argument is general.

This brings us to the "only if" part of the theorem.
Recall that in our earlier discussion of how a function
might fail to belong to , we found that there were

circumstances under which the invariant density h could not

remain simultaneously bounded away from 0 and from oo -- a

violation of the inequality (12). The idea employed in

what follows is very similar, but it is applied, not to h

but rather to the iterated densities 3ri' These latter are

closely related to h; on the basis of a ltttle

experimenting it appears that the must converge to h as

-i - oo, and in Part 2 I shall prove this to be the case
under appropriate conditions. Thus there should be no

great surprise occasioned by the following lemma, in which

it is shown that the iterated densities themselves are

constrained by the same inequality that bounds the

invariant density, h.

Iterated densities lemma: If then for every fl 0,



Proof: Combining (7) and (11) gives

But since S S(t)dt = 1, we must have inf S (t) 1, so
n

that

5 Ct) C or I.

Likewise, sup S(t) 1, so that
±eI

St)
and the lemma is proved.

This result -- which to me is the intuitive content of

Rnyi's condition -- will enable us now to complete the

proof of Theorem 4. Begin with the case in which U

contains a single invariant point x0 (that is, an orbit of

cycle length 1). Notice that from Tx0 = x0 we may write

x0 = f(j + x0) where j is an integer in the range 0 to p-i:

for if x0 < 1, we take j = [cp(x0)]; we take j = p-i if

= 1, Substituting t = x0 in the recurrence formula

(10) S Ct) = S((kt)) fflk+t)
ko

we obtain

(29) S (xe) - S (xe) = kj

C S(±).

for ±I,

by virtue of the fact that f'(j + x0) = i/p'(x0) = 1.
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Thus Sn(xo) increases with n. If is to be in R, then

the iterated densities lemma implies that the limit of

Sn(xo) as n - oc must exist and be C; but then on

summing (29) from n = 0 to oo we infer that for each k j
we must have

S (4(k+c0') =
fri -4 oO

Thus S cannot be bounded away both from 0 and from oo,

whence we can only conclude that

Similarly, suppose that U contains an orbit of length

2: e.g., U = {x0, x]j where x1 = Tx0 and x0 Tx1. Then

we have, say, x0 = f(i + x1) and x1 = f(j + x0); in place

of (29) we have the two equalities

- S x
k*j

S (') S (%Q s(fCk+x,) f'(k+%).
fr+ I

We add these equations. Then if we want the terms

5('O) + S(x1)

to remain bounded as n--.00, we are again forced to

conclude that 8n must at certain points approach 0 as n-boo.

Thus the truth of Theorem 4 is clear.
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For the remainder of this section, I would like to

deal with the unrestricted case in which the slope o' may

take on arbitrary positive values. Let V denote the set of

those xEI for which p'(x) 1. We can see at once how

much richer the problem has become if we consider trying to

establish here an analogue of Theorem 3. There it was

sufficient that an orbit should be able to "get away" from

U every now and again, but clearly no such counting

argument will work in the present context. Contemplation

once more of the product lemma (25) shows that a delicate

balance must be established between the orbit's conduct in

and out of V. The following line of thought seems almost

inescapable: Suppose ; then according to the

ergodic theorem, for almost every x I we have

-

where

= $ {'} t)d.
0

From (25) we have

- = (T)
and comparison with (30) now suggests the asymptotic

relation

(32)
e. cs
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But there are real problems, the least of these being that

the conclusion (32) is a little too strong even if the

right hand side of (31) does approach the limit S. More

serious difficulties are that the in (31) is really

and that possibly none of these is contained among the

x for which (30) holds. Still, the fact that we are lead

to write down (32) is enough to suggest that the condition

(33) S > 0

must have some significance; but my several attempts to

establish either its necessity or sufficiency for

membership in R.. have been entirely unavailing; and I

expect that the "boundary" condition = 0 poses a far

subtler problem than (33).

What I have been able to show is offered in the

following two theorems. The first of these gives a

necessary condition for to be in it is necessary

that V contain no orbit under T. This constitutes a mild

extension of the "only if" part of Theorem L; there the

orbit contained in U was necessarily cyclic, and the fact

that it needn't be so here means that the method of proof

must be slightly modified. The second theorem gives a

sufficient condition; it amounts to a generalization of

Theorem 1.



Theorem 5: Let V = {x : '(x) Then if V contains

an orbit under T,

rnflProof: We are given an x V with x i x e V for all n
0 fl 0

0. We may write x = Tx = - 1n' so x =
n+l n n

f(i + xr)i Substitution of t = x1 in (10) yields

(34) S (x Sx + S (kx) '(k+x.
k i

Since f'(9(x)) = 1/p'(x) .1. Thus if we

subtract S(x) from both sides of (34), all terms on the

right will remain non-negative. The summability of

S C S (x

is, as before, incompatible with the condition Sri(t)

hence the theorem is proved.

Theorem 6: For n 1, let denote the subclass of LA

whose elements p satisfy

Then each C

Proof: (I should point out first that retains its

original meaning.) Let
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and

Then

ñ l(k
) =

40

1 ii k-
ci.

so that <oo and Theorem 2 applies.

A question brought to mind by the last result is this:

if cp belongs to , does it necessarily belong to some

If it does, then we can easily show that it belongs

as well to all the sets LAN, N+l'
"4N+2' ... for some N

n. Thus the question may equivalently be worded: does

(p E imply that cp belongs to all the j4's from a

certain point onward? The conjecture that it does may be

written thus:

(?) = uicIlI
It is not hard to show that the truth of (?) would imply

that (33) is in fact a necessary condition for membership

in I do not think it would be so easy to prove the



/4
implication going the other way around. Yet my suspicion

that (?) is true derives largely from a feeling that it

ought to follow from the (unproved!) necessity of (33).

But enough of this. Let me close this section on a

positive note, with the following application of Theorem 6.

Theorem 7: There exist functions in whose derivative

remains arbitrarily small on an interval of length

arbitrarily close to 1.

Proof (informal): We begin by constructing the piecewise-

linear function suggested in the figure. is presumed to

be very small, and £' smaller

still. The segment AB has

slope

ZE' (t±za)
-

and OA and BP both have slope

The product of these slopes is

- E')

and will be bigger than 1 if

is chosen so as to be at least half as big as E; for
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example, take E' =

Now, in order to obtain an admissible function 92,

describe a circle of radius r about points A and B; a

smooth curve can be constructed

to replace the segments

ialling within the circles so

that the resulting function is

c2[o,l] (in fact, C°[O,l] is

attainable). The r here is at

our disposal, and it shall be

most convenient to think of it

as being infinitesimal compared

to E - ; for then we may safely "reason" directly from

the diagram on the previous page. We see that the subset V

for this function is contained (substantially) within

[ , 1-s]. If x lies in this range, then Tx will fall

within one of the two extreme intervals where y' is large.

Thus we have now a function E LA2 which satisfies the

requirements of the theorem, insofar as a is in no way

restricted as to degree of smallness.



PART 2

My goal in this section will be to pursue the

relationship between the Rnyi function, 50, and its

invariant density, h. To that end the following theorem

will prove vital.

Theorem g: Let Then the iterated distributions

converge uniformly, as n-oo, to the invariant

distribution .

In order to prove this result, I begin by showing

that the transformation T is mixing, which means that for

arbitrary Borel sets A, B in I,

k V(TAB) = v(Av().
P1

(Recall that v is the invariant measure; Lebesgue

measure is denoted by p.) Let be the cy-algebra

consisting of sets of the form TA, A being a Borel set

in I. The form a decreasing sequence of cr-algebras;

the limit

43

Billingsiey [11], p. 121) that T is mixing if contains

is called the tail cr-algebra. It can be shown (see



only sets of measure 0 or 1. I verify now that this is

the case.

Let [a,b] be a subinterval of I, and let denote

the interval of rank n with left endpoint [a1,a2,...,a]

x. Using the customary notation for conditional

probability, we have

[ a11 ab] - [ a,,..,,(T [a,b] Dy,') =

(6-a)H (x t)
where t1 (a,b) and t2 (0,1). By Rnyi's condition,

ba).

It is clear that we can claim (35) with [a,b] replaced by

an arbitrary Borel set A:

(A) (TA)D) C(A

Using (12), we may convert (36) to an inequality about V,

which works out to be

TAID) C4v(A).
cI

Suppose now that A is a set in the tail cY-algebra

Then for any n, there is a Borel set B such that A = T_nB.

Thus from (37) we obtain

(3d) V(A (TB) vTsID) = v(A).
CLt - c

a--i] - El a1,a]
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If -.i(A) > 0, then we may recast (3d) in the form

(39) v(AID)

The fundamental intervals may be used to generate the

Borel sets; therefore we may deduce from (39)

v(E) C v()

for an arbitrary Borel set E. Taking E to be the

complement of A, we find that v (E) = 0, which is to say

(A) = 1. This shows that contains only sets of

measure 0 and 1, and hence that the transformation T is

mixing.

We are now in a position to complete the proof of

Theorem E3. I shall demonstrate that, for arbitrary

measurable AI,

(4.0) kl - 00
/L(TA v (A)

and to do this I shall use the equality

(TA) d = dv.
TA TA

Now, because T is mixing, we have

V(TA)
TA

'B being the characteristic function of the set B. By

taking linear combinations of such characteristic

functions, we conclude that

C V(D1A).
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(41) ) S sdv = v(A)SI

for an arbitrary simple function, s. Since 1/h is

measurable and bounded, we may approximate it uniformly by

simple functions. Therefore we may replace s in (41W) by

1/h and writeL= -
- dv = =

O) fr1 TA

proving (40). We take, for A, the interval [0,t] and

recall

(TEot1) =

to conclude, finally,

(-t) v(o,t) =

That the convergence is uniform follows automatically from

the fact that all the
,
and as well, are both

continuous and monotone. This completes the proof.

The next three theorems will deal with the question of

how the behaviour of h is affected by various smoothness

conditions imposed on p. The first two of these theorems

are dependent upon a curious additional restriction on

which I refer to as condition star:

p-I
(*) S tLp

a
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The most obvious effect of this restriction is to force

membership in A1, since cf'(x) must clearly remain > 1.

Aside from this, the condition seems mild; heuristically,

we expect

f'(k+t) - I.

If none of the individual terms on the left hand side is

especially close to 1, then the effect of squaring these

terms should be to reduce the sum safely below 1. In

particular, note that (*) will automatically obtain if

sup f'(x)<; that is,
xE[opl

tL4
cp(t) >

Theorem 9: Let satisfy (*), Then h is continuous

n I, and is the uniform limit of the iterated densities.

Proof: Differentiating the recurrence formula (10) for

the iterated densities gives

S () = f S(++t) ('kt)2 + Sh(k+t) '(kt) }.Y+I ko

We know from the iterated densities lemma that the Sn are

uniformly bounded by C. Put

Sup
tel



and let e < 1 be the constant defined by the left hand

side of ( ). It follows now from (.13) that

. Be + Cd.

From this we see at once that the B are themselves

uniformly bounded by some fixed number B. Hence the

iterated densities are uniformly bounded and

equicontinuous. By the Ascoli theorem, there exists a

uniformly convergent subsequence {,5(t) with continuous

limit:

ii - 0
4 -t - gt), say.

Since the convergence is uniform on I, we may integrate to

obtain
±

5 (t)dt tJ.

But is a subsequence of { n(t)} , and so

from Theorem we conclude that G(t) = (t), whence G'(t)

= g(t) must be equal to the invariant density h(t). Thus h

is continuous on I.

To show that the full sequence of iterated densities

converges uniformly to h, assume the contrary. Then it

must be possible o find an a > 0 and a subsequence {x

of such that

(t) - (or ai( ri.
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0

'(kt) '(k+t))

We already know the to be uniformly bounded by C, and

the ISI to be uniformly bounded by B. If we put

11-9

The subsequence
'8n

is itself uniformly bounded' and

equicontinuous, and so must possess a uniformly convergent

subsequence {o-} with limit, say g. As before, we find

that g = h, and this is incompatible with (44). Thus the

theorem is proved.

By an extension of the same reasoning one can see

that h will be "nearly" as differentiable as (J2
Cn[O,ll > h E C2[O,l]. In particular, we have

Theorem 10: Let 41r C[0,1] and satisfy (*),

Then h e C°°[O,1]. Furthermore, for k 0, S1c converges

uniformly to h as n-o,

Proof: To begin with, differentiate (43):

II

(45) S = {
'(l) + 3 5 (r') + 5. fH!

}P1+I
k=o

and put

=
t I f'"(kt)).



= s&p ) S,Lt))

then we read from (1+5) that

+ + C.

The last two terms being constants independent of n, and

a < e being smaller than 1, we perceive as before a

uniform bound A for the A. Hence the sequence of first

derivatives is uniformly bounded and equicontinuous,

and thus possesses a uniformly convergent subsequence {,

2mt ,'(t) say.

Integrating twice and using the same argument as before,

we find that g = h so that h' = g' exists and is

continuous, Again as before, we can show that the complete

sequence {s} converges uniformly to h' as n-oo.

It is now apparent how the induction is to proceed,

but having introduced constants in the order C, B, A, I am

obliged to stop at this stage.

By way of illustration, let me now verify condition

(*) for the function

m
(46) (x) = -i > 2,

which is clearly E The inverse function is given by

50



If m = 2, the series would diverge if not truncated. For

m > 2, we can use the estimate

The expression on the right decreases with increasing m,

and therefore assumes its largest value when m = 3. Thus

(x) = (i+x- I.

73 < ;_ ( + Sx13d)

verifying (*) for m 2, If m 2, we have

(1?'(t) = wt Z ; ,12)11_l = < z

thus fulfilling (*) according to (42). Therefore the

invariant density h belonging to (46) is infinitely

differentiable, The final theorem will show that it is

even analytic.

Theorem 11: Let p be analytic on I. Then h is

analytic on I, and moreover, for k 0, is the

uniform limit of as nco.

51

Thus,

o1



Using (47), we have

52

Proof: The idea is to show the existence of a region o&

in the complex plane, containing the unit interval I, such

that the iterated distributions are analytic and uniformly

bounded in o8. Since we are guaranteed convergence at

least on I, all of our conclusions will follow from the

Vitali convergence theorem (see Titcbmarsh [13], p. 16).

For a given a> 0 let be the region containing I

all of whose boundary points are at distance E. from I.

Thus,

(47) ± -t + E w,ere d Il
It is clearly possible to choose E so that

>
to

and we do so.

Let be the image of under Using the notation

scheme of Theorem 1, we have

o < c - iM (-t)l F'(t)I p

To show that all the are defined and analytic on 8, we

recall (9), according to which it is sufficient to show

that

±o8 __ k+t or = 0,1,-, p-i.



= + E '(k+ &E)
for some U (0,1), and since f' < 1 we see that this is

again a point in . This also establishes that

expressions of the form

[ a, +1: j

are analytic for t Define

Thus,

st-P
t1 ,t08 [ 2", M+± 1-

-

where K diam() = 1 + 26 . By a simple induction we

find that

A
(i)

Using this we establish "Rényl's condition" throughout o3:

Thus, the sup and inf are assumed at two points t1 and t2

which happen to lie on the boundary of o, We write

everything out and, except for the modulus signs and the

factor K in (4), all goes precisely as in the proof of

53
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x

c

=

-tE I

c

C I H(x,t) C S-t
-tEl

where, as before, the last step follows from 'S(t)dt = 1.

Of course, it follows now that

for all t o3, and the theorem is proved.

Hxt)

Hjx,t)

(I+ C

5LF

Theorem 1.

Next we extend the iterated densities lemma to show a

uniform bound for ISn(t) , t9. Using (11) and (L9) we

find

Sip = H(xt)ta x
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APPENDIX



provided

(50)

APPENDIX: Proof of the assertion made on page 27.

Let (p(x) be an admissible function whose derivative

assumes the value 1 at the single point x = 0; moreover,

suppose "(x) > 0 for x > 0. I wish to show that

00

remains finite as E - 0 from above.

To begin with, I show that the largest interval of

rank n is the one lying farthest to the left; this is to

say

(51) = [ 0, 0, o,

For convenience, I make a preliminary observation:

Lemma: Let us temporarily agree to say that a twice

differentiable function is a sweetheart if its first

derivative is positive and its second derivative is

negative. Then if cc and are two sweethearts, so is the

composite function oc
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(52) [ aI

Now, to establish (51), consider trying to maximize

Replace a1 by the continuous variable t, and put

d[ a, , < [ a, , I

Then (52) can be written as

(53) (t+ d1)

The derivative is

(5k) + d2) f'(t+ d, - "( ) (d d)

for some (td1,td2). Since o"(x) > 0 for x > 0, we

must have f"(x) < 0 for x > 0, so that the right hand side

of (51+) is strictly negative for t Thus (53) is

largest when t = 0. This means we must take a1 = 0 in

(52), which leaves us trying to maximize

[0, , , a+ - [ 0, 2 , a1

= ( Ea,+) - ([aL,,

As before, repláe a0 by the variable t, and put

5

Proof: = >0;
(())" = + < 0.



[a3, < [ a+i] d2.

Then (55) becomes

Here again we shall find a largest value for t = 0, for the

simple reason that the composite function f(f) has, like f,

a negative second derivative. Thus we will have to choose

a2 = 0. In view of our lemma, we may proceed inductively,

arriving -- many sweethearts later - at a1 = a2 = .. = a

= 0. This establishes (51).

Let me now write f(x) in the form

(56)

where 'E,(x) satisfies

'Co) 0

'(o) 0

'1C) 0 or X>0

'(x) >0 X>O.

We note that = f(An) = - Thus the

number of terms among the
n
which lie in an interval

[a,b] cannot exceed
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and the sum of these terms cannot exceed

ba
(a

If we now break the interval [a,b] into many subintervals

and apply the same reasoning to each one of

them, we find that the sum of those L11 lying in [a,b]

cannot exceed

- x)

From this we easily extract the following criterion:
0.0

> converges provided the integral

3
a

remains finite as the lower limit approaches 0 from above.

The equivalence of this criterion and the one based on the

integral in (50) will follow from the like behaviour of the

integrands near x 0.

Writing x = t) in (56) gives

(57) - (-L')- (p(t').

From the mean value theorem we have

= + (e).()-t)

for some O(t, cp(t)). Substituting this in (57) and

rearranging gives, finally,

60



-
= e

-

Since e 0 as t - 0, we have

92(t)- t

and the proof is complete.
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