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1 Abstract

Radio astronomy allows observations of unique objects and phenomena relat-

ing to the electric and magnetic fields of celestial objects. Radio astronomy

can be preformed at any time of day and is less beholden to atmospheric

conditions than optical astronomy. A radio telescope designed to receive ra-

diation at 1.421 GHz, the 21 cm line, needs a resonator designed to maximize

the signal to noise ratio at this frequency

Radiation reflected off of the parabolic dish of a radio telescope can be

modeled as diffraction through a circular aperture. This leads to an Airy

disk pattern of radiation at the focal plane. An integral describing this

pattern was set up and evaluated using the scipy package in python, yielding

a description of the Airy disk.

The diameter was determined by noting that the resonator should be

large enough to encompass the bulk of the reflected radiation while being as

small as possible to limit noise entering from other sources. This compromise

is reached by having a diameter that extends to the first zero of the Airy

disk pattern, yielding an ideal diameter of 11.235 cm. The ideal length of a

resonator for a telescope observing the 21 cm line was found via interference

calculations to be 5λ
4
≈ 26.38 cm.
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2 Background Information

2.1 The 21 cm Line

Radio astronomy allows Earth based observations of objects emitting electro-

magnetic radiation within the 30 MHz to 100 GHz range [1]. The telescope in

this project is designed to observe sources of radiation at 1.421 GHz (roughly

21 cm wavelength), including the Sun, Jupiter, and neutral hydrogen clouds.

Hydrogen, being the most common element in the universe, is of partic-

ular interest to this project. Determining the location and relative motion

of hydrogen clouds gives astronomers a way to map the universe. Neutral

hydrogen emits 1.421 GHz (wavelength ≈ 21 cm) radiation when an electron

transitions from one of the higher energy hyperfine states which split the 1s

energy level to the lower energy state.[2].

Figure 1: Diagram displaying hyperfine splitting of hydrogen atom, figure 11.4
from ”Quantum Mechanics, a Paradigms Approach”, David McIntyre, page
365.
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The 21 cm line was first theorized to exist by H. C. van de Hulst in 1945

[3] and later it was found that the time it takes for any individual atom of

hydrogen to make this transition is 4.4∗ 107 years [4]. Even with stimulation

by collisions with other atoms, is only shortened to around 50 years. Due to

the large amount of hydrogen in the galactic plane however, this transition

occurs enough in bulk that the 21 cm line can be readily measured [5].

So how does one design a telescope to measure this radiation? A radio

telescope is specialized to detect a certain frequency through the design of

the resonator and antenna. The parameters of the parabolic reflecting dish

affect the design of the resonator but, as long as the dish has a fine enough

mesh surface that is close enough in shape to a parabola, the design of the

dish is independent of wavelength [6]. The size of the dish is limited only

by what can be structurally supported. A larger diameter dish has a larger

aperture, and thus a greater angular resolution.

Figure 2: Photo of the radio telescope used in this project.
1) Parabolic reflecting dish, 3 meters in diameter.
2) Supports for resonator.
3)Current resonator housing antenna and electronic components.
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The resonator takes radiation from the focal plane of the dish and directs

it towards an antenna contained within the resonator. The wavelength of

light that the telescope observes is determined by the size of the resonator

and antenna. The size of the resonator is effected by the size of the dish.

These interdependencies must be taken into account to build a geometrically

ideal resonator.

2.2 Diffraction and Interference

The length of the resonating cavity is selected by accounting for the interfer-

ence of incoming light in the resonating cavity. Electromagnetic waves vary

between maximum amplitudes and nodes as they passes across a fixed point

in space. It is optimal to receive the radiation at one of these maximum

amplitudes to have a stronger signal. By taking advantage of constructive

interference, a greater amplitude can be achieved at the same fixed point in

space. If the peaks of two waves occur at the same point, they add to form

a higher amplitude. If the back of the resonator can be set up to reflect

radiation to add in amplitude to the incoming radiation at the antenna, the

magnitude of the signal can be increased. See Figure 3

Figure 3: The resonator, incident radiation in blue, reflected radiation from
the back wall in red.
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The diameter of the resonator depends on the wavelength of the radiation,

and the size of the dish. In a simple model, the diameter would be irrelevant;

the light would reflect off of the parabolic dish and be focused to a single

point at a fixed distance from the dish surface. In reality the diffraction of

light serves to spread the focal point out into an intensity pattern. The act

of a plane wave hitting the dish and reflecting off of it is analogous to the

diffraction of light through a circular aperture[7], which creates an Airy disk

pattern.[8]

Figure 4: A sample Airy disk pattern.

The exact shape of the radiation pattern that arises from the dish is left

as the main exercise of this thesis.
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If the resonator diameter cannot be made very small to capture only a

single point, why not make the diameter very large to encompass as much of

the radiation pattern as possible?

There is a lot of radiation that is reflected from the ground or produced

from terrestrial sources that is close in wavelength to the light the telescope

is designed to detect. If this background radiation is within the scope of

the resonator, it will create noise. This leads to some of the finer details the

telescope could pick up being lost in the signal from unwanted radiation. The

more noise that is within the scope of the resonator, the larger the details

that can be washed out. If the radiation pattern at the focal plane is known,

a compromise can be made to collect the bulk of the reflected radiation while

minimizing unwanted background radiation.
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3 Methods

3.1 Theoretical

The most involved portion of this research is determining the integral anal-

gous to the diffraction of light through a circular aperture [9]

|E(ρ)| =
∫
S

|E ′0(ρ′)|
eik|r|

|r|
dS

which will express the electric field of the dish at an arbitrary position. This

integral is used to construct the magnitude of the electric field at the focal

plane. |E ′0(ρ′)| describes the electric field at the dish and the other portion

of the integrand accounts for how the field changes as it moves from the dish

to the focal plane.

The first step is to assume that the surface of the dish can be expressed

in cylindrical coordinates by Z = aρ′2, a parabola whose curvature is deter-

mined by a. The depth of the parabola at an arbitrary value of ρ′ is

d(ρ′) = a(R2 − ρ′2)

(See Figure 5) where R is the radius of the dish (meaning ρ′ runs from 0 to

R).
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Figure 5: Simple diagram of parabolic dish, incident radiation in blue, re-
flected radiation in red.

The Z axis runs through the center of the dish to the focal point of the

parabola. ρ′ is the radius of the dish when it has a certain depth. This

diagram shows incoming radiation focused to a point but we know that, due

to diffraction and interference phenomena, there is a focal plane at a fixed

value of Z (The focal length, f = 1
4a

) that extends to some radius ρ.

Incoming radiation is assumed to be plane waves propagating parallel the

Z-axis. This assumption is defensible because the radiation is originating

very far away and as the spherical wavefront increases in size, its curvature

decreases as the inverse of the radius squared. The wavefront is in phase at

Z = aR2 (the ‘face’ of the dish) but as each dρ′ section of the wave front

travels a different distance to the surface of the dish and to the focal plane,

the plane wave property is lost. Let |E0(ρ
′)| be the magnitude of the electric

field of incoming radiation at the face of the dish. The accumulated phase
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difference between the incoming radiation at the face of the dish and that at

the surface is θ = 2π
λ
a(R2 − ρ′2) = kd, Where k is the wave number.

The magnitude of the electric field at the surface of the dish can be

described by

|E ′0|(ρ′) = |E0|eiθ = |E0|eikd = |E0|eika(R
2−ρ′2)

This is the |E ′0(ρ′)| in the original integral. The dependence on ρ′ is very

important because ρ′ is one of the integration variables. The integral is now

|E(ρ)| =
∫
S

|E0|eika(R
2−ρ′2) e

ik|r|

|r|
dS.

The next factor is an expression for r. It can be easily derived that the

distance between two points in cylindrical coordinates is

r =
√
ρ′2 + ρ2 − 2ρρ′ cos (φ′ − φ) + (Z − Z ′)2.

The solution will have cylindrical symmetry so let φ = 0. In this description

Z ′ = aρ′2, the depth at an arbitrary value of ρ′, and Z = 1
4a

, the focal length.

If a focal point were being considered ρ = 0 would be a further simplification,

but for a focal plane, the coordinate ρ is needed to describe the Airy disk.

The integral is now

|E(ρ)| =
∫
S

|E0|eika(R
2−ρ′2) eik

√
ρ′2+ρ2−2ρρ′ cos (φ′)+( 1

4a
−aρ′2)2√

ρ′2 + ρ2 − 2ρρ′ cos (φ′) + ( 1
4a
− aρ′2)2

dS.
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When evaluating surface integrals, one must construct a description for

dS, a patch of your surface. If your surface happens to be functionally de-

scribed as f(x, y, g(x, y)) where g(x, y) is a differentiable function on some

domain, a further step can be made to simplify integration over the sur-

face. This changes the integral over the surface to an area integral over the

projection of the surface onto a plane [10]. The statement of this is

∫
S

f(x, y, z)dS =

∫
A

f(x, y, g(x, y))

√
∂g

∂x

2

+
∂g

∂y

2

+ 1 dA.

For a parabola

g(x, y) = Z(x, y) = aρ′
2

= a(x′
2

+ y′
2
)

so the scaling factor added is

√
4a2x′2 + 4a2y′2 + 1 =

√
4a2(x′2 + y′2) + 1 =

√
4a2ρ′2 + 1

The full form of the integral which describes the electric field at the focal

plane is then:

∫ 2π

0

∫ R

0

eika(R
2−ρ′2) eik

√
ρ′2+ρ2−2ρρ′ cos (φ′)+( 1

4a
−aρ′2)2√

ρ′2 + ρ2 − 2ρρ′ cos (φ′) + ( 1
4a
− aR2)2

√
4a2ρ′2 + 1 ρ′dρ′dφ′

The above integral is very unwieldy and has no analytic solution without

making approximations based on the focal plane being relatively far away

compared to the radius of the dish, which isn’t true (R ≈ 3f). Using python,

we can reach a numerical solution. The method for solving this is first to
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break the integral into two distinct portions: a real part and an imaginary

one. Each of these is integrated separately using the integration function

in the scipy package for python, which evaluates the integral on a point by

point basis. For each point the real and imaginary integrals are used to find

the intensity (|E(ρ)|2) there. This is the radiation pattern we are looking

for.

An empty array is set up with each element corresponding to a distinct

value of ρ. The array is then filled with the results from the integral. Finally

a plot of Intensity versus Radius is created from the array which shows the

behavior of the radiation at the focal plane. The pattern that arises has

Bessel Function behavior (called an Airy Disk [11]) and the first zero of

intensity corresponds to the intended radius of the resonator.
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4 Results

4.1 Theoretical Results

4.1.1 Length

The ideal length of the resonator considering only elementary wave reflection

and interference phenomena is 5λ
4

. This point was made clearer via Figure 3.

Figure 6: The resonator, incident radiation in blue, reflected radiation from
the back wall in red.

This result is purely theoretical and derived from the behavior of the wave

as it reflects from the back wall and the principle of interference.

4.1.2 Diameter

In the methods section the theoretical integral that gives electric field pattern

at the focal plane was determined to be:

∫ 2π

0

∫ R

0

eika(R
2−ρ′2) eik

√
ρ′2+ρ2−2ρρ′ cos (φ′)+( 1

4a
−aρ′2)2√

ρ′2 + ρ2 − 2ρρ′ cos (φ′) + ( 1
4a
− aR2)2

√
4a2ρ′2 + 1 ρ′dρ′dφ′

which was noted to have no analytic solution. Using python (and the

scipy.integrate package specifically) the integral was solved numerically and
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yielded the following intensity pattern...

Figure 7: The result of the code determining the Airy Disk pattern, note
Bessel function like behavior.
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Which we can analyze more closely near the first zero

Figure 8: The result of the code determining the Airy Disk pattern focusing
on a narrower range for the radius.

The first zero of the graph is at 11.235 cm and corresponds to the desired

radius. This graph shows the intensity pattern from ρ = 0 cm to ρ = 15 cm

in steps of 0.01 cm. The code is provided in an appendix.
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5 Conclusions

A constant goal throughout all facets of the radio telescope project is to

increase the signal to noise ratio. This issue has been addressed on two

fronts in this paper: Ensuring the highest amplitude of radiation possible

arrives at the antenna by idealizing the length of the resonating cavity, and

finding a compromise between including more signal and introducing more

noise by choosing an appropriate resonator diameter. The choice of our ideal

length depended on the simplest of wave principles, showing even a concept

learned at the 212 level can be a source of gains later on. Determining the

ideal diameter was a more involved task.

The first logical step to determining what an ideal diameter might be came

from associating the reflection of light off of the dish with the diffraction

of light through a circular aperture. This is conceptually affirmed when

one thinks of the calculus manipulation used to change the surface integral

over a paraboloid into an area integral over the projection of the parabolic

surface onto a plane. At this point light coming through a circular aperture

is indistinguishable with what the integral is describing. This led to the

ability to predict Airy disk like patterns of intensity that were confirmed via

numeric integration.
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5.1 Further Work

Experimentally confirming the results found through numerical integration

will be an involved process. First the dish of the radio telescope must be

erected. This task requires the assistance of five or more other people. The

dish is lifted into position and then held there while someone on a ladder

fixes the screws on the front and back to keep it in place.

Figure 9: Photo of the dish being fixed in place.

To confirm the theoretical results from code, several resonators will need

to be constructed. Each is essentially a copper cylinder with one closed end

and a few modifications to support an antenna and electronic components...

The signal leaves the antenna and immediately enters a Low Noise Am-

plifier (LNA). This increases the signal strength while introducing relatively
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Figure 10: Simple progression of electronics on the resonator.

little noise, but that comes at the cost of relatively lower amplification. After

passing through another LNA, the signal is passed through a Band Pass Fil-

ter which allows certain frequencies to pass through while attenuating others.

The narrower the band of allowed frequencies can be the better, we are con-

cerned with only one frequency, not a range. The signal, now slightly more

refined, enters another amplifier and is finally passed through a mixer where

the signal can be mixed with various reference signals before moving on to

the computer for analysis.

After the test resonators have been constructed and affixed to the dish, a

source of 1.421 GHz radiation will be needed to test the resonators’ perfor-

mance. This can be done by powering a Voltage Controlled Oscillator (VCO)

connected to a quarter wavelength antenna affixed to a grounded plane. The

VCO oscillates at a frequency determined by the applied voltage driving cur-

rent up and down through the antenna which radiates at that frequency.

The source configuration will be held in place on the roof as far as possible
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from the telescope to ensure that the radiation arriving at the dish is as near

to planar wave fronts as possible. The telescope will be directed towards

the source and receive the signal. After testing several times for each of

the resonators, there will be an experimental statement of which resonator

produced the best results. I have personally never acquired and analyzed

signal from the radio telescope before so my knowledge of the process after

manufacturing a signal for the dish is sparse.

While constructing test resonators it may also be gainful to test how much

extra noise is introduced by extending the diameter out to the second zero

of the intensity pattern, see Figure 7 .

If the level of noise picked up by this resonator is deemed tolerable (that

is, the new resonator increases the signal to noise ratio), a small but still

appreciable amount of the intensity pattern can be added to the signal.
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8 Appendices

8.1 Code

from __future__ import division

import scipy as sp

import numpy as np

import pylab as pl

from scipy.integrate import quad, dblquad

’’’

Important Numbers

W = 0.21112 # Wavelength, meters

R = 3 # Dish Radius, meters

f = 1.02 #Focal length, meters

a = 1/(4*f) #Scale facor of the parabola, inverse meters
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k = (2*sp.pi)/W #Wavenumber, inverse meters

’’’

def DishPropagatorImaginary(rho_p, phi_p, k, E, a, f, R, rho):

#rho and phi are locations of a point on the image plane.

#rho_p and phi_p are locations of a point ’on’ the 2-dimensional projection

#of the dish onto a circular plane, the origin is at the center of the plane,

#p = 0.

d = a*(R**2 - rho_p**2)

E_0 = rho_p*E*(sp.exp(k*d*1.0j))*sp.sqrt(4*a**2*rho_p**2+1)

#Including R scaling factor from polar cylindrical surface integral

# and projection scaling factor.

r = sp.sqrt(rho_p**2+rho**2-2*rho*rho_p*sp.cos(phi_p)+(f-a*rho_p**2)**2)

g = (E_0*sp.exp((1.0j*k*r)))/r

return sp.imag(g)

def DishPropagatorReal(rho_p, phi_p, k, E, a, f, R, rho):

d = a*(R**2 - rho_p**2)

E_0 = rho_p*E*(sp.exp(k*d*1.0j))*sp.sqrt(4*a**2*rho_p**2+1)

r = sp.sqrt(rho_p**2+rho**2-2*rho*rho_p*sp.cos(phi_p)+(f-a*rho_p**2)**2)

g = (E_0*sp.exp((1.0j*k*r)))/r

return sp.real(g)
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def DishIntegral(k, E, a, f, R, rho) :

real_part = sp.integrate.dblquad(DishPropagatorReal, 0, 2.0*sp.pi, lambda x:0,

lambda x: R, args=(k, E, a, f, R, rho), epsabs=1.0e-02, epsrel=1.0e-02)[0]

imaginary_part = sp.integrate.dblquad(DishPropagatorImaginary, 0, 2.0*sp.pi,

lambda x:0, lambda x: R, args=(k, E, a, f, R, rho),

epsabs=1.0e-02, epsrel=1.0e-02)[0]

return sp.absolute(real_part + 1.0j * imaginary_part)

*sp.absolute(real_part + 1.0j * imaginary_part)

def DishIntensity() :

R = 1.5 #Radius, meters

k = (2.0 * sp.pi)/(.21112) # Wavenumber, m^-1

f = 1.02 #focal length, in meters.

a = (1/(4*f)) # parabola factor, m^-1

phi = 0 #answer has axial symmetry

E = 1 #Magnitude of the electric field at the dish.

rho = sp.arange(0.0, .15, 0.0001) # Observe from rho = 0 to

# rho = 15 cm in steps of 0.01 cm.
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i = 0

v = np.zeros(1500) #Array of zeros to be filled with values

while i < len(rho):

d = DishIntegral(k, E, a, f, R, rho[i])

v[i] = v[i] + d

i = i+1

print(np.argmin(v))

pl.plot(rho,v)

pl.show()

#-----------------------------------------------------------------------

if __name__ == "__main__" :

DishIntensity()
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