Supplemental Online Appendix

Table A1. To assess functional connectivity of Pacific marten (Martes caurina) we identified three stand types of interest (open, simple, complex) but divided these into subclasses (numbers). We used California Wildlife Habitat Relationships ((Mayer and Laudenslayer 1988) to evaluation vegetation classification. Listed CWHR vegetation types include lodgepole pine (LPN, Pinus contorta), ponderosa pine (PPN, P. ponderosa), Jeffery pine (JPN, P. jefferii), red fir (RFR, Abies magnifica), white fir (WFR, A. concolor), pine and fir dominated Sierra mixed conifer (SMC-P, SMC-F respectively), subalpine mixed conifer (SCN), montane riparian (MRI), mixed chaparral (MCH), perennial grassland (PGS), annual grassland (AGS), and barren (BAR). Vegetation sizes include diameter at breast height (DBH) class $1=<2.5 \mathrm{~cm}$, class $2=2.5-15 \mathrm{~cm}$, class $3=15-27 \mathrm{~cm}$, class $4=28-60 \mathrm{~cm}$, class $5=>60$ cm , class $6=>60 \mathrm{~cm}$ with multi-layered canopy. Density classes include sparse ($10-24 \%$ canopy cover), open ($25-39 \%$) moderate ($40-$ 60%), and dense (>60\%).

		Management		CWHR	CWHR	CWHR	
		Event(s) as listed in	Management	Vegetation	Vegetation	Vegetation	
Stand	Description	FACTs	Description	Types	Sizes	Density	
Open	managed (1)	Group selection	acres with <60 sq.	RFR, SCN,	$1-5$	sparse, open	
			Small clearing <2	LPN, MRI,			
	and managed			ft./acre	SMC-F, SMC-		

	before 2000 (2)	Regenerating clear- cut	Complete tree removal	P, WFR		
		Overstory removal	Removal of all merchantable trees			
			Removal of			
		Shelterwood harvest	merchantable trees, but retaining select			
			trees for re-seeding			
Open	Natural openings (3)	NA		AGS, BAR, PGS	NA	NA
	Recently		Understory plants,			
	managed (4)	Fuels reduction	lower limbs, and	LPN, MRI,		
Simple	and managed		small diameter trees	RFR, SCN,	3-5	open,
	before 2000		removed	SMC-F, SMC-		moderate
	(5)	Commercial thinning - no	Variable amounts of merchantable trees	P, WFR		

biomass	removed
	Merchantable trees
Commercial	removed in addition
thinning - biomass	to small diameter
	(<12 " dbh)
	Small diameter
Pre-commercial	(<12 " dbh) trees and
thinning - hand	understory removed
	by hand
	Small diameter
Pre-commercial	
	(<12 " dbh) trees and
thinning -	understory removed
mechanical	by machines
	Downed trees, logs,
Windthrow fuels	
	and hazards
reduction	removed.

	Predicted high				
	quality				
	reproductive				
Complex		Managed includes		4-6	
	habitat (see				
		any activity, but we	LPN, MRI,		
	Kirk and				
		envision	RFR, SCN,		moderate,
	Zielinski				
		"managed" stands	SMC-F, SMC-		dense
	2009)				
		as regenerated	P, WFR		
	managed (9)				
		forests			
	and				
	unmanaged				
	(10)				

Table A2. We collected descriptive vegetative metrics collected along food-titration experiments to characterize our stand types (complex, simple, open). We report the average value and standard error ($\mathrm{x} \pm \mathrm{SE}$).

Metric	Description	Complex	Simple	Open
Overstory	Average canopy cover percent,	49.6 ± 1.5	26.7 ± 2.1	3.0 ± 0.8
	moosehorn coverscope			
	Canopy cover standard error	11.8 ± 0.2	10.8 ± 0.5	2.2 ± 0.5
	Basal area of live trees	217.0 ± 7.8	127.8 ± 8.5	37.5 ± 9.3
	Basal area of snags	24.2 ± 2.3	10.6 ± 2.7	4.6 ± 1.4
	Basal area of live trees $>61-\mathrm{cm}$	47.4 ± 3.8	22.2 ± 4.6	8.9 ± 2.3
	diameter			
	Basal area of snags $>61-\mathrm{cm}$	9.9 ± 1.2	3.1 ± 1.1	1.8 ± 0.8
	diameter			
	Percent dwarf-mistletoe	3.0 ± 0.5	1.5 ± 0.2	1.1 ± 0.3
	(Arceuthobium sp.) on live trees			
Understory	Percent shrub cover	1.3 ± 0.5	3.8 ± 1.1	13.8 ± 2.3
	Percent sapling cover	6.0 ± 1.0	1.6 ± 0.5	1.1 ± 0.4
	Percent understory cover	7.3 ± 1.1	5.4 ± 1.2	15.3 ± 2.5
	(shrub+sapling)			
	Average log diameter (cm) in	32.4 ± 1.2	29.3 ± 1.4	34.2 ± 2.1
	Brown (1974) decay class 1-3,			
	indicating sound wood			
	Number of logs in decay class 1-3	2 ± 0.1	0.9 ± 0.1	0.6 ± 0.1

(Brown 1974)
$\begin{array}{llll}\text { Total number of logs } & 2.9 \pm 0.2 & 2.1 \pm 0.5 & 1.1 \pm 0.2\end{array}$

4

5

	Female				Male		
	n	Mean \pm SE	Range		n	Mean \pm SE	Range
Summer							
Size (km ${ }^{2}$)	5	2.01 ± 0.38	$0.99-3.33$		11	4.98 ± 0.81	$1.29-8.93$
\% Complex	5	56.6 ± 8.5	$32.8-75.5$		11	66.5 ± 2.9	$52.9-78.2$
\% Simple	5	33.4 ± 7.8	$16.6-59.2$		11	24.7 ± 3.3	$12.1-42.7$
\% Open	5	10.0 ± 1.6	$7.9-16.4$		11	8.8 ± 1.6	$1.2-17.8$
Winter							
Size (km ${ }^{2}$)	5	3.40 ± 0.59	$1.34-4.69$		14	6.48 ± 0.61	$1.82-11.49$
\% Complex	5	66.4 ± 6.6	$43.0-78.5$		14	62.7 ± 3.8	$32.0-81.4$
\% Simple	5	28.6 ± 6.7	$15.0-51.0$		14	28.1 ± 3.2	$13.1-59.0$
\% Open	5	4.2 ± 1.1	$0.2-6.4$		14	8.6 ± 1.9	$1.0-24.2$

Table A3. We report the composition of stand types and range within seasonal marten home range (mean \pm standard errors (SE)). Size differences between winter and summer are largely due to differing individuals between each season - not an expansion or contraction of individual home range size.
n Mean \pm SE Range

Winter

Figure A1. Snow depth in our study area and during data collection. Snow depth (cm) fluctuated between winter seasons at Humbug Summit Weather Station (HMB), Lassen National Forest, California (Ca Department of Water Resources). This station was located at 2010 meters elevation in a southeast-facing opening with <5\% slope. It represents minimum snowfall depth within our study area. A) Smoothed 2-week average snow depth at HMB between January 1983 and May 2014 with our study period represented by the dashed box. B) Snow depth at HMB during our study (Dec 2009-May 2013). We designated the summer and winter field seasons as July-November and December-June, but winter data was only collected with $>20 \mathrm{~cm}$ snow cover.

Figure A2. Raw data from titration experiments. Each row represents an individual titration array. Each column represents a station and a circle within a column represents a visit (4 visits total). Marten detections are indicated by filled circles. Summer detection data were represented as Complex into Simple stands (A, upper left) and Complex into Openings (B, lower left). Winter detection data were Complex into Simple stands (C, upper right) and Complex into Openings (D , lower right). Stand types were colored for complex (green), border of two stand types (red), and open or simple (blue).

Figure A3. We did not observe differences between male and female patch use $(\mathrm{F}=0.50, \mathrm{P}=$ 0.46) within each season with non-incentivized methods (telemetry locations). We display mean (symbol) and 95\% confidence intervals for winter and summer seasons (triangle, circle). Samples sizes differed between winter (5 female, 13 male) and summer (4 female, 12 male). During summer, one female (F05) contributed a high amount of variance in openings due to the number of locations in talus slopes, which may provide considerable cover. With female F05 included,
the average selection value for open would change to 1.05 ± 0.67 (females), overlapping values for complex and simple stands (not displayed).

Figure A2.
A. Summer - Complex (green) into Simple (blue)

B. Summer - Complex (green) into Open (blue)

2	\%
8	8
\%	8
$\frac{1}{1}$	\%
\%	8
1	$\underline{1}$
\%	\%
.	8
$\frac{1}{2}$	$\frac{1}{1}$
$\frac{8}{8}$	$\underline{1}$
$\frac{1}{2}$	1

D. Winter - Complex (green) into Open (blue)

8	8	8	\%	8	8	\%	\%	:
8	8	8	8	8	8	8	8	8
8	8	8	\%	\%	8	\%	8	
8	8	8	8	8	8	8	8	\%
8	\%	\%	\%	8	8	8	8	
8	8	8	8	8	8	8	8	\%
\%	\%	\%	\%	\%	\%	\%	\%	-
8	8	8	8	8	8	8	8	-
8	\%	8	\%	\%	8	8	8	8
8	8	8	8	8	8	8	2	2
8	8	8	8	8	8	8	8	8
8	8	8	8	8	8	8	8	8
8	8	8	8	8	8	8	8	8
\%	\%	8	\%	\%	\%	\%	\%	\%
8	8	8	8	8	8	8	8	8
\%	\%	\%	\%	\pm	8	8	8	8
8	8	8	8	8	8	8	8	8
8	8	8	8	8	8	8	8	
8	8	8	8	8	8		8	

Figure A3.

