Robert Keith Lytz_for the degree of Doctor of Philosophy
in Chemistry presented on \quad August $28,1.978$
Title: X-Ray Structure Studies of Oriented Phospholipid Membranes
Abstract Approved: \quad Redacted for Privacy

Lamellar x-ray diffraction was studied from thin films of L- $\alpha-1,2-$ dipalmitoyl lecithin (DPL) and a $1: 1$ mixture (BrDPL) of L- α-1-palmitoyl-2-(9-bromopalmitoyl) lecithin and its 10-bromo analog. The specimens had high lamellar order, with an upper bound on the mosaicity of 6 mrad (0.4°) for DPL and BrDPL.

With various water contents, BrDPL underwent a broad, thermal transition centered around $0^{\circ} \mathrm{C}$. The transition was evidenced by a reduction in lamellar spacing and a reduction in higherorder reflections at higher temperatures. In these respects, the transition was like the gel-1iquid crystal transition known to occur in other phospholipids.

An isomorphous replacement procedure was used to find the phase factors needed to synthesize electron-density profiles (assumed symmetric) for DPL and BrDPL. The resulting profile for DPL was similar to profiles which have been reported for phospholipid multilayers. The profile deduced for BrDPL was also similer, with the addition of a peak corresponding to the location expected for bromine if the hydrocarbon chains were
fully extended.

A one-dimensional, position-sensing proportional counter was built and characterized, in order to collect diffraction data from the lipid specimens. Using it, survey scans of the specimens were done in five minutes. Similar scans required several hours when film was used.

X-Ray Structure Studies of Oriented Phospholipid Multilayers

by

Robert Keith Lytz

A THESIS
submitted to
Oregon State University

in partial fulfillment of the requirements for the deqree of

Doctor of Philosophy
June 1979

Redacted for Privacy

Associate Professor of Chemistry in charge of major

Redacted for Privacy

Chairman of the Department of Chemistry

Redacted for Privacy

Dean of Graduate School

Typed by Pamela S. Lytz for Robert Keith Lytz

ACKNOWLEDGEMENTS

I wish to thank my wife, Pam Lytz, who has given me all imaginable support and encouragement during my graduate career. In addition to sharing all aspects of graduate-student life, Pam has punched my computer programs, done bibliographic searches and editing, and typed, illustrated, and edited this dissertation.
I would like to thank Hollis Wicknan, my thesis adviser, for his generous support of my work, for his many helpful suggestions, and for his concern for my professional development.
Thanks go to Joe Reinert and Bob Lowry for synthesizing and characterizing the lipids upon which this work depended. In addition, I want to thank Joe for some very helpful conversations.
I wish to thank David Shoemaker for graciously allowing me the long-term use of his laboratory and equipment and for his interest in my graduate work.
I would like to thank Margaret Brault, Ted Hopkins, Steve McCann, and Eric Salin for their enriching friendship and for their considerable help.
And I want to thank my parents, who have always encouraged my formal education, and who have waited patiently for it to be completed.
The research described in this dissertation was supported
by National Science Foundation Crants DMR 71-01792 and DMR 76-82091.
Travel, computation, and equipment grants from the Oregon State
University Research Council are also gratefully acknowledged.
Finally, I wish to thank the Oregon State University Environmental
Health Sciences Center for partial support of this research in
the form of a Pilot Project Grant.
Page
I. INTRODUCTION 1
II. POSITION-SENSING DETECTORS--BACKGROUND 9
A. Historical Perspective 9
B. Principles of RC-Encoded Detectors 10
III. EXPERIMENTAL RESULTS FOR DETECTORS 16
A. Detector Construction and Performance 16
B. Stability of Detector and Source 22
C. Calibration using Collimated Beam 25

1) Calibration Parallel to Anode 25
2) Calibration Perpendicular to Anode 26
D. Calibration using Point Source and Mask 34
E. Position Linearity 38
F. Pulse Height Spectrum 42
3) Energy Resolution 42
4) Variation of Pulse Height Spectrum with Position 43
G. Position Resolution 46
H. Efficiency vs Pressure 49
I. Oblique Incidence 51
IV. DIFFRACTION THEORY 53
A. X-Ray Diffraction Applied to Multilayers 53
5) Fundamentals 53
6) Difficulties 60
7) Data Treatment 61
B. Phasing Methods 63
8) Survey 63
9) Isomorphous Replacement Applied to Multilayers 68
V. X-RAY DIFFRACTION FROM PHOSPHOLIPIDS--EXPERIMENTAL 74
A. Specimen Preparation 74
B. Diffraction Apparatus and Geometry 77
C. Specimen Holder for Lamellar Diffraction 81
D. Lamellar Diffraction from DPL and BrDPL 86
10) Hydration Technique and DPL Results 86
11) BrDPL Results 88
12) Degree of Lamellar Orientation 89
E. Attempted Wide-Angle Diffraction from DPL and BrDPL 90
F. The Isomorphous Replacement Experiment 98
13) Rationale 98
14) Data 99
15) Interpretation 103
VI. CONCLUSIONS 114
A. Position Sensing Detector 114
B. Electron Density Profiles 114
C. Location of the Isomorphous Substituent 115
D. The Chain Transition of BrDPL 116
BIBLIOGRAPHY 117
APPENDIX A. Validation of Program PHASE 123
APPENDIX B. Stepping Motor Schematics 128
APPENDIX C. Computer Programs 140

LIST OF FIGURES

Figure Page
1 The fluid mosaic model of membrane structure proposed by Singer and Nicolson 2
2 The lipids used in this study 5
3 Block diagram of RC-encoded detector system 13
4 Electrical interpretation of RC-encoded detector 14
5 Impulse response of 2- and 4-element RC ladders 15
6(a) Pressurized detector D2 (schematic) 20
6(b) Pressurized detector D2 (photographs) 21
7 (a) Calibration pattern for CALIB 28
7 (b) CALIB output--position vs channel 29
7(c) CALIB output--channels/mm vs channel 30
7(d) CALIB output--peak integrals vs channe1 31
7(e) CALIB output--point spread vs position 32
8 Relative efficiency of detector along axis normal to anode 33
9
Calibration input for POSIT 36
10 Summed pulse height spectra--8 and 6 keV x-rays 44
11 Variation of pulse-height centroids with position 45
12 Variation of walk with input amplitude for timing single- channel analyzers 48
13 Jitter of timing single-channel analyzer 48
14 Variation of absolute efficiency with pressure at 8 keV 50
15 Variation of relative efficiency with angle of incidence 52
16 Variation of point spread with angle of incidence 52
Figure Page
17 Point scattering diagram 59
18 Use of the program PHASE 73
19(a) Diffraction apparatus 79
19(b) Diffraction apparatus (photograph) 80
20 Specimen holder 84
21
Specimen holder (photographs) 85
22
DPL lamellar diffraction at low hydration 91
23 Lamellar spacing vs temperature for BrDPL 92
24(a) Temperature--and hydration--dependence of BrDPL diffrac- tion patterns (high hydration) 93
24(b) Temperature--and hydration--dependence of BrDPL diffrac- tion patterns (intermediate hydration) 94
24(c) Temperature--and hydration--dependence of BrDPL diffrac- tion patterns (low hydration 95
25
Rocking curves for fourth-order lamellar reflection 96
2627282930
31
Difference Fourier syntheses with two choices for 8thorder of DPL112
32 Patterson maps for DPL and BrDPL 113
33 Fourier syntheses of arbitrary Gaussian-sum models 127
34-44 Schematics for stepping-motor drive 129

LIST OF TABLES

Table Page

1. Performance and operating parameters for detector D2 18
2 Construction data for detectors 19
3 Counting statistics 24
4 Calibration analysis from program CALIB 27
5 Calibration analysis from program POSIT 37
6 Electrical parameters of detector 41
7 Integrated intensities and structure factor moduli for DPL and BrDPL 102
8 Phase results for DPL and Br DPL 108
9 Isomorphous data from PREDICT 125
10 PHASE results with artificial
data from PREDICT 126

X-RAY STRUCTURE STUDIES OF ORIENTED PHOSPHOLIPID MULTILAYERS

I. INTRODUCTION

Biological membranes take part in a large variety of important physiological functions [1]. Broadly, these include:

1. Selective maintenence and alteration of the concentration of chemical species in cells and organelles;
2. Energy storage and utilization;
3. Communication with the cell environment;
4. Cell defense.

Biomembranes consist largely of proteins and lipids (most often phospholipids and cholesterol) [2]. There have been several general models of membrane structure [3,4], among which the fluid mosaic model, put forth by Singer and Nicolson [5] in 1972, is consistent with current physical, chemical, and biological data (see Figure 1). This model, which differs from earlier ones mainly by taking into account the mobility of membrane constituents [6], depicts a "two-dimensional solution of oriented globular proteins and lipids." The lipids form a biomolecular layer, with the hydrophilic headgroups of the lipids facing outward, toward the aqueous environment, and with the lipid hydrocarbon region forming a fluid within the layer. Proteins may be associated with the hydrophilic exterior (peripheral proteins) or may be embedded partly or fully in the lipophilic interior (integral proteins). In this view, the lipid matrix, being fluid, allows shortrange interaction among the proteins, but does not impose long-range,

Figure 1. The fluid mosaic model of membrane structure proposed by Singer and Nicolson (from [5]).
lateral order on them.

Phospholipid multilayers, which form spontaneously from mixtures of water and lipid, are easily-prepared analogs of the lipid matrix of natural membranes. These multilayers are known [7-9] to consist of bilayers which undergo an endothermic transition as the hydrocarbon chains melt. Reinert and Steim [10] demonstrated calorimetrically that live Acholeplasma laidlawii undergo this transition and, based on the measured enthalpy change, concluded that most of the Acholeplasma lipid is in the bilayer state. This conclusion supports the use of phospholipid-water multilayers, either unadulterated, or with appropriate additives, as membrane analogs.

Considerable x-ray diffraction has been done on lipid multilayers, multilayers with additives, and natural membranes [11-13]. The wideangle diffraction peaks are characteristic of the extended (gel) and melted (liquiã crystalline) states of the lipids in the bilayers.

In contrast, low-angle diffraction from multilayers, which we have studied, reflects the layer spacing, and contains information about the electron density of the layers projected along a line perpendicular to them. Unfortunately, the information from a single diffraction pattern is not usually sufficient to reconstruct the electron-density distribution which produced it, and stratagems must be used to supply the missing information.

Our approach to this phase problem is the technique of isomorphous replacement [14,15], in which independent sets of data are collected from several (in our case, two) structures which are believed to be identical, except for a difference which is assumed known. Toward
this goal, we have collected and interpreted low-angle diffraction data from multilayers of L-a-1,2-dipalmitoyl lecithin (DPL) and multilayers of a mixture (BrDPL) of equimolar amounts of $L-\alpha-1$-palmitoyl $-2-(9-$ bromopalmitoyl) lecithin and its 10 -bromo isomer (Figure 2). The BrDPL was prepared by J. Reinert and R. Lowry [16].

The immediate purpose of our diffraction study was to determine whether the lipid isomorphs would lead to electron-density profiles consistent with those reported in the literature, which were derived using other phasing methods. There would be several implications of a positive result. First, electron-dense additives to multilayers could be located by a similar phasing scheme. Such additives might be indigenous to biomembranes, such as metal-containing proteins, or they might be exogenous, such as halogenated pesticides. In addition, a multilayer additive with insufficient electron-density contrast to be distinguished in a correct reconstruction of the bilayer profile could be located if an electron-rich atom, such as bromine, were introduced into it.

Finally, the fact that Acholeplasma laidlawii produces phospholipids corresponding to its dietary intake of fatty acids [17] might allow isomorphous methods to be used for phasing diffraction from intact Acholeplasma membranes. This possibility is strengthened by the report of Andrews and coworkers [18] that A. laidlawii thrived on 12,12-dimethy1-12-stannahexadecanoic acid, incorporating up to 39% of the acyl chains in its membrane lipids from this chemical species.

Figure 2. The lipids used in this study.

The phase problem in the context of one-dimensional, centrosymmetric systems is discussed in Chapter IV, below. In broad terms, the types of solution to this problem that have been applied to multilayer diffraction include

1. Isomorphous replacement;
2. Swelling;
3. Deconvolution.

The approach used in our study is isomorphous replacement. Bromine atoms near the center of the hydrocarbon chains of the phospholipids serve as the isomorphous substituents. Our method is an extension of that of McIntosh et. al. [19,20], who determined the structure of fatty acid multilayers, using as substituents dipositive ions saponified to the carboxylate groups. Our implementation differs from that of McIntosh in that (1) our substituent is not at the unit-cell origin and (2) we evaluate all possible combinations of the phase factors. The isomorphous replacement techniques used by McIntosh and by us are based on the 1957 work of Hargreaves [14].

Techniques using swelling depend on the fact that the lamellar spacing of lipids increases with increasing water content. They depend also on the assumption that all the added water goes between lipid layers, causing no change in the layers themselves. Although there are many ways of dealing with the data from such experiments, they are similar to isomorphous replacement in that phases are estimated by taking advantage of several sets of independent data which arise from essentially the same structure. Franks [21] and Levine and Wilkins [22] have used this approach for multilayers of egg
lecithin with and without cholesterol. It has been applied by Stamatoff, Krimm, and Harvie [23] to red biood cell membranes. It has also been used to elucidate the structure of nerve myelin by Blaurock [24], Worthington and King [25], and Stamatoff and Krimm [26].

Deconvolution methods are described by Worthington, King, and McIntosh [27]. They have been applied to retinal photoreceptors (Worthington and Gras [28]) and to nerve myelin (Worthington and McIntosh [29]). These methods may be used only when a substantial iraction of the unit cell has constant electron density, e.g., a water layer in the case of oriented, hydrated membranes.

The x-ray diffraction data in our work has been collected using a linear position-sensing proportional counter similar to one described in 1968 by Borkowski and Kopp [30]. This kind of detector, which has been referred to as "electronic film" [31], allows rapid collection, digitizing, and viewing of an entire diffraction pattern, without motion of the detector. A one-dimensional, or linear, detector is well suited to collect lamellar diffraction data, which arises from a one-dimensional electron-density profile, and which appears along a single line when film is used. DuPont and coworkers have used such a detector to observe low- and wide-angle diffraction from membrane and lipid systems [32]. Schelten and Hendricks [33], have described construction of a facility at Oak Ridge National Laboratory to utilize a two-dimensional detector for small-angle scattering. Using data from a two-dimensional detector, Kraut's group $[31,34]$ has completed models for dehydrofolate reductase and derived electron-density maps
for cytochrome c peroxidase. They report that with the positionsensing detector, data collection is about 30 times faster for a given number of reflections than it would be with a conventional diffractometer.

II. POSITION-SENSING DETECTORS--BACKGROUND
 A. Historical Perspective

The position-sensing detectors used in this project are similar to those developed by Borkowski and Kopp in 1968 [30]. These risetime (also called RC-encoded) detectors are akin to the classic gas-ionization chambers originated seventy years ago by Rutherford and Geiger [35], but have the additional, useful ability to provide information about the location of incoming radiation.

Beginning in the early 1950s [36], but especially since the late 1960 s , many kinds of position-sensing detector of nuclear radiation have been developed. The wide variation in their operating principles is evident in this brief summary:
I. Gas-ionization detectors
A. Digital position output

1. Multiwire spark chamber [36]
2. Multiwire proportional chamber [37-50]
B. Analog position output
3. RC-encoded (risetime) [30,51-57]
4. Charge division [58-64]
5. Multiwire delay line [65-74]
6. Backgammen [75]

IT. Detectors other than gas-ionization [76]
A. Vidicon
B. Semiconductor [77]
C. Charge coupled device
D. Microchannel plate [78-82]
E. Image intensifier

B. Principles of RC-Encoded Detectors

A schematic diagram of a detection system using a one-dimensional, RC-encoded, position-sensing proportional counter is shown in Figure 3. This configuration, which was employed in our diffraction experiments, is based on the design of Borkowski and Kopp [30]. The detector itself is similar to gas-filled counters which do not convey position information: an incident photon, through photoionization and gas multiplication in the fill gas [83], generates many electrons and ions. Under the influence of a constant electric field produced by biasing the electrodes, electrons move to the anode, where they are collected, and cations move to the cathode, where they are neutralized. The resultant change in potential between the anode and cathode is sensed at the ends of the anode, signaling the detection of radiation.

In the RC-encoded detector, the position along the anode at which radiation enters is available because a highly resistive anode is used and because the anode and cathode behave as a cylindrical capacitor. In our detector the resistance and capacitance per unit length, R_{0} and C_{o}, were typically $8 \mathrm{M} \Omega / \mathrm{m}$ and $10 \mathrm{pF} / \mathrm{m}$. This arrangement of resistance and capacitance causes the anode and cathode to act together as a distributed RC line, a special case of the wellknown RCLG transmission line [84]. As signals pass through an RC line, their shapes are changed, the change increasing with the distance traveled by the signal. This signal-shaping effect is the
basis of the RC-encoded detector: it allows the entry positions of photons to be distinguished according to the shape of the signals that are produced.

The signal-shaping influence of the detector can be seen in Figures 4 and 5 . The detector, behaving as a distributed RC line, is approximated as a ladder network of discrete resistors and capacitors. Each ladder element, consisting of one series resistor and one shunt capacitor, acts as a low-pass RC filter, which selectively attenuates and shifts high-frequency components of the signal more than it does low-frequency components.

Figure 5 illustrates the principle involved. The output voltage $v_{\text {out }}(t)$ is calculated for application of a unit voltage impulse (delta function) to 2- and 4-element RC ladder networks, using tabulated transfer functions [85]. The broadening of the impulse in these discrete circuits is analogous to the process which occurs in the distributed line of the detector.

Decoding, the extraction of position information, is illustrated in Figure 3, where encircled numbers refer to typical waveforms found at various points in the instrument network. In this example, radiation enters the detector near the end of the anode from which signal (2) is derived (also called the START end for reasons which will become apparent). Signals (1) and (2) differ in shape as a result of traversing different lengths of the RC line. They are further filtered by the linear amplifiers into bipolar pulses (3) and (4). The difference, Δt, in the time at which the bipolar pulses cross the baseline
(marked by dots on (3) and (4)) can be made a linear function of the entry position of radiation by matching the filter characteristics of the linear amplifiers to the electrical properties of the detector.

Crossover of (3) and (4) triggers timing signals (5) and (6) from the timing single channel analyzers. These signals start and stop the time to amplitude converter, producing an analog pulse (7) whose height is proportional to Δt and therefore proportional to the entry position of the photon. The analog pulse height (7) is finally digitized and stored by the multichannel analyzer, which displays a graph of counts versus photon position.

Borkowski and Kopp [54] have derived the transfer function of the RC-encoded detector. From it, they have deduced approximate relations among the distributed resistance and capacitance of the line, the impedance of the line termination, filter characteristics of the linear amplifiers, and S, the spatial sensitivity (= Δ position/ Δ time).

Figure 3. Block diagram of RC-encoded detector system.

DETECTOR ANODE AND CATHODE

DISTRIBUTED RC LINE

LOW-PASS RC FILTER

Figure 4. Electrical interpretation of RC-encoded detector.

$$
\begin{aligned}
& V_{\text {in }}(s)=1 \\
& V_{\text {out }}(s)=\left[T^{2} s^{2}+3 T s+1\right]^{-1}
\end{aligned}
$$

$$
v_{i n}(t)=\delta(t)
$$

$$
v_{\text {out }}(t)=T^{-1}\left[0.22 e^{-0.764 t / T}-0.22 e^{-5.23 t / T}\right]
$$

$$
\begin{aligned}
& V_{\text {in }}(s)=1 \\
& Y_{\text {out }}(s)=\left[T^{4} s^{4}+7 T^{3} s^{3}+15 T^{2} s^{2}+10 T s+1\right]^{-1}
\end{aligned}
$$

$$
v_{i n}(t)=\delta(t)
$$

$$
v_{\text {out }}(t)=T^{-1}\left[-0.099 e^{-3.53 t / T}+0.283 e^{-2.35 t / T}-0.337 e^{-1.00 t / T}+\right.
$$

$$
0.152 \mathrm{e}^{-0.13 \mathrm{t} / \mathrm{T}]}
$$

Figure 5. Impulse response of 2- and 4-element RC ladders.

III. EXPERIMENTAL RESULTS FOR DETECTORS

A. Detector Construction and Performance

The two RC-encoded, 1-dimensional, position-sensing detectors built and used in our laboratory are designated D1 and D2. Both employed continuous flow of the fill gas, 90% argon-10\% methane. D2, used for the diffraction experiments reported here, was operated at a total pressure around $380 \mathrm{kPa}(3.7 \mathrm{~atm})$. D1, designed for use at ambient pressure only, was superseded by $D 2$, which was several times more efficient. Apart from the difference in efficiency, the performance of the two detectors was quite similar. Performance and operating parameters for the pressurized detector, D2, are given in Table 1.

Table 2 summarizes construction data for the detectors. Figure 6 shows D2, in which o-rings sealed the aluminized mylar windows and anode mounts to the cathode body. The mylar was a gift of Mr. C.J. Gagnon, Metallized Products Division, King-Seely Thermos Company, Winchester, MA. D1 was built similarly, differing mainly by having a beryllium window and no o-rings. The window frame of Dl was pressed to the cathode by the detector housing and sealed with latex cement; anode mounts were held in place with epoxy.

The anode wires used routinely were $20-\mu m$ diameter quartz fibers coated with pyrolitic graphite. These fibers, with a resistance of $8 \mathrm{M} \Omega / \mathrm{m}$, were purchased from Reuter-Stokes, Inc, Cleveland, $0 H$. For experiments concerning resolutior and sensitivity, fibers of solid
pyrolytic graphite (Thornel, trademark) were also used. These fibers had a diameter of $7 \mu \mathrm{~m}$ and a resistance of $0.05 \mathrm{M} \Omega / \mathrm{m}$. They were a gift of Ms. S.L. Horniak, Carbon Products Division, Union Carbide, New York, NY.

Before installation in the cathode, the anode was inspected microscopically at a magnification of $100 x$. Fibers with apparent surface defects were discarded. The cathode and selected anode were carefully rinsed with 2 -propanol before and after installation. During installation, the anode was secured at each end to copper leads with both 5-minute epoxy and silver-loaded, conductive epoxy. Each such junction was sealed to its delrin mount at the end of the cathode with 5-minute epoxy, tension [57] being applied with a 10-g weight suspended from one lead while the epoxy set.

The two preamplifiers (Tennelec TC 212), which were on 3.8 cm x 5.5 cm printed circuit boards, were secured in the detector case directly behind the cathode chamber. Lead length from the chamber to each preamplifier was $1-2 \mathrm{~cm}$. The inside of the acrylic detector case was lined with 0.2 mm aluminum sheet, which was electrically connected to the cathode and to the power supply ground.

Table 1 . Performance and operating parameters for detector D2.

Usable length	95 mm
Window width	4.0 mm
Chamber depth	4.0 mm
Anode resistance	$8 \mathrm{M} \Omega / \mathrm{m}$
Anode-cathode capacitance	$12 \mathrm{pF} / \mathrm{m}$
Termination capacitance	0.5 pF
Fill gas	90\% argon-10\% methane
Pressure	380 kPa
Bias	2200 V
Filter time constant	$2 \mu \mathrm{~s}$ (nominal)
Filter passband center	$1.4 \mathrm{Mrad} / \mathrm{s}$
Spatial sensitivity	$26 \mu \mathrm{~s} / \mathrm{m}$
Point spread	0.4 (0.5) * mm fwhm
Curve fit deviation	
linear	$0.9(1.4) \mathrm{mm}$
cubic	$0.1(0.2) \mathrm{mm}$
Drift over 24 hours	0.06 mm
Quantum detection efficiency	0.09
deviations full length	3 (5)\%
Energy resolution, 8 keV	18\% fwhm

* For entries with two numbers, the first is the mean value, and the second (in parentheses) is the maximum.

Table 2 . Construction data for detectors.

Figure 6(a). Pressurized detector D2 (schematic).

Figure 6(b). Pressurized detector D2.

B. Stability of Detector and Source

A fundamental requirement for diffraction data to be usable is that neither the intensity of the direct beam at the specimen nor the efficiency of the detector change appreciably with time. Simple counting experiments were used to determine the stability over time of the detector and x-ray generating apparatus employed in subsequent diffraction studies. Both detector D2 and the x-ray source (Picker constant potential generator with copper tube--see Chapter II) were found stable enough for use in diffraction, with a combined error of less than 1%. Using the technique of section D of this chapter, the position calibration for the detector changed by only 0.06 mm rms over a 24 -hour period.

Results for repeated counting experiments with the detector and Cu tube are given in Table 3. Interpretation is based on the Poisson distribution, which is expected for a random emissive process whose mean rate does not change over the experimental time span [88]. This distribution requires that $\sigma \approx M^{1 / 2}$ for a series of identically performed counting experiments $(M=$ mean counts, $\sigma=$ standard deviation). This equation is equivalent to $\sigma / M \approx M^{-1 / 2}$ for the relative deviation.

Count-rate stability of the detector was established by irradiating a small portion of the detector window with a beam of $6-\mathrm{keV}$ x-rays from a $100-\mu C i{ }^{55}$ Fe source $\left(t_{1 / 2}=2.6 y\right)$. For the number of counts sampled, variation in the counting rate was explained by the expected statistical variation in activity of the source. This experiment was carried out over ten hours.

The stability of the collimated beam from the Picker Cu tube (14 kV, 2 mA) was determined using a NaI(T1) scintillation detector, which was assumed to be 100% efficient. The relative deviation for a series of counting experiments was 0.3%, three times the statistically expected value (Table 3). This discrepancy implied a drift in intensity of the source over the 200 -minute span of the counting experiments, but this sma11 a drift was not detrimental to interpreting diffraction data.

C. Calibration using Collimated Beam

1) Calibration Parallel to Anode

Ideally, a set of equally intense, equally spaced, finely collimated beams normal to the detector window should produce a comblike display of equally spaced, very narrow peaks, each with the same integral count. Deviations from this ideal are called nonlinearity, point spread, and nonuniformity. If the display peaks are not equally spaced, the detector is said to be nonlinear. If the peaks have different integral counts, it is said to be nonuniform. If the peaks are broadened, the resolution is said to be poor, and the point spread appreciable.

These deviations were estimated by translating the detector in the direction collinear with the anode at equal intervals before a slit-collimated x-ray beam and counting for the same time at each position. Ni-filtered $\mathrm{Cu} x$-rays ($14 \mathrm{kV}, 2 \mathrm{~mA}$) were further attenuated by a 0.2 mm sheet of aluminum between the generating tube and collimator. Actual beam width at the detector was less than 0.1 mm fwhm, determined photographically. Stability of the x-ray source was better than 0.5%.

The program CALIB (Appendix C) was written to analyze and plot these data. Typical results for detectors D1 and D2 are given in Table 4 and in Figure 7.

Both detectors had a variation of less than 5% in spatial sensitivity (channels/mm) from end to end. Both had a point spread
of less than 0.45 mm fwhm averaged over all positions. For D1, end-to-end variation in integral count was 0.5% mean, 1% average. For D2 this variation was 3% mean, 5% maximum.
2) Calibration Perpendicular to Anode

The variation in relative efficiency as the beam was translated along a line perpendicular to the anode (and to the detector window) was determined. This was done using the calibration technique described in the immediately preceding section, with the detector rotated by $\pi / 2 \mathrm{rad}$.

This variation, which is plotted in Figure 8, was smooth and symmetric, with a falloff of about $20 \% 1.5 \mathrm{~mm}$ either side of the central (anode) position. The variation was prooably due to the observed bulging of the mylar windows under pressure, which resulted in the path length through the fill gas being longer for photons entering centrally than for those entering near the chamber edges.

Table 4. Calibration analysis from program CALIB. Top: unpressurized detector D1. Bottom: pressurized detector D2 at 380 kPa .

0483 22FEB77 UMPRESSURIZED DETECTOR

F45a 15MAY73 PKESSURIZEO DETECTOR

POSITION	CENT =OED	$\begin{gathered} \text { EMTEGRAL } \\ \text { COUN } \end{gathered}$	MORY	CHANNELS	$\begin{aligned} & =\mathrm{NHM} \\ & (M N) \end{aligned}$
10.00	57.33	${ }_{4} 92$	-992		
15.00	82.53	4992	1. C0 6	4.969	. 390
20.04	117.52	$51: 5$	1.031	4.942	$\cdot 4$
25.00	131.75	4964	-936	4.391	-3 3
30.00	130.4?	5240	1.355	4.332	43
35.00	131.27	5242	1.050	4.934	- 5
40 . 06	203.75	5121	1.032	4. 393	, 335
45.00	230. 20	505 -	1.018	4.330	- 42
50.00	25ヶ. ड0	5139	1.035	4.313	- 32
55.00	27ヲ.33	4913	- 990	4. 656	- 37
50.30	304.12	4977	1-10 3	5.322	- 357
65.00	329.55	4996	1. 307	3. 075	- 3 E9
70.00	354.37	4849	-977	5.132	- 374
75.00	301. ${ }^{\text {a }}$	$47 \div 1$	-955	5. 253	- 423
30.00	407.45	4640	. 936	5. 217	. 377
95.00	433.04	4827	-973	5.156	433
90.00	459.11	4706	-948		
MEAN		4953	1.490	$5.01 \frac{1}{5}$	-395
STANOARO OEV		3177	; 330	$0-5$	- 0
RELATTVE OEV	(\%)	3.55	3.55	2, ${ }^{\text {E }}$	$\because \cdot 31$
CENTER/ENO				. 965	

Figure 7(a). Calibration pattern for CALIB--counts vs channel. Top: unpressurized detector D1. Bottom: pressurized detector D2 at 380 kPa .

Figure 7(b). CALIB output--position vs channel centroid. Top: unpressurized detector DI. Bottom: pressurized detector D2 at 380 kDa .

Figure 7(c). CALIB output--channels/mm vs channel centroid. Top: unpressurized detector D1. Bottom: pressurized detector D 2 at 380 kPa .

Figure $7(\mathrm{~d})$. CAIIB output--peak integrals vs channel centroid. Top: unpressurized detector Dl. Bottom: pressurized detector D2 at 380 kPa .

Figure 7 (e). CALIB output--point spread (iwhm) vs position. Top: unpressurized detector DI. Bottom: pressurized detector D2 at 380 kPa .

Figure 8. Relative efficiency of detector along axis normal to anode.

D. Calibration using Point Source and Mask

Calibration by translating the detector was too cumbersome and disruptive for routine use with diffraction experiments. Instead, the procedure of White and Naylor was followed, using a point source with a masked detector [86].

A $100-\mu \mathrm{Ci}{ }^{55} \mathrm{Fe}$ point source of $6-\mathrm{keV}$ x-rays was used to bathe the detector in a nearly uniform flux. Linear amplifier gain was multiplied by a factor of 0.7 to provide a pulse height spectrum from the linear amplifiers similar to that obtained for the $8-k e V$ photons used for diffraction. To simulate diffraction geometry (Figure 19), the source was placed at the position normally occupied by the diffraction sample, collinear with the incident beam and $\sim 240 \mathrm{~mm}$ from the detector.

For position calibration, a 1 mm-thick, perforated, aluminum mask was accurately clamped into a recess on the detector exterior 1 cm from the anode. (For calculations involving sample-detector distance, this calibration technique defines the plane of registration to be at the mask, and not at the anode.) The mask holes, 1 mm in diameter, were 5.00 mm center-to-center on a line parallel to the anode.

A computer program, POSIT (Appendix C), was written to analyze the comblike multichannel analyzer pattern obtained on irradiation. POSIT used a third-degree least squares curve fit to find the relation between channel centroid in the display and hole position on
the mask. This relation was interpolated at l-channel ($v 0.2 \mathrm{~mm}$)
intervals. Deviation between actual and computed positions over thedetector length was 0.09 mm rms, 0.2 mm maximum. Input and outputfor POSIT are given in Figure 9 and Table 5.

Figure 9. Calibration input for program POSIT.

```
PROGRAM POSIT --3RD DEGREE CUENVEFTTFOR DETEGTOR PESITION GALIERATION
FZIA 6MAY78
CALIERATION =CINTS= 13
CURVEFIT GOEFFICIENTS
{=X(C)=SUM(I=I,4) OF (II)* G** (I-I)
A(1)= =2.98587E+00
A(2)= 1.34136E-01
A(3)=4.59132E-95
A(L)=-8.05249E-08
JEv = 1.12325E-01
O=C(X)=SUM(I=1,4) OF B(I) * X ** (I-1)
B(1)= 1.611:2E+01
B(2)=5.39540E*00
g(3)=-6.46884E-03
S(4)=6.50632E-05
DEV = 5.58673E-01
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \[
\begin{array}{r}
\text { AOTUAL } \\
\text { POSITION }
\end{array}
\] & \[
\begin{array}{r}
\text { GALC } \\
\text { =OSITION }
\end{array}
\] & \[
\begin{array}{r}
\text { OIFF } \\
\text { OOSITION }
\end{array}
\] & \[
\begin{aligned}
& \text { ACTUAL } \\
& \text { GHANNEL }
\end{aligned}
\] & \begin{tabular}{l}
SALE \\
CHANNEL
\end{tabular} & \[
\begin{array}{r}
\text { OIFF } \\
\text { CHANNEL }
\end{array}
\] \\
\hline 1 & 0.000 & -. 047 & . 047 & 15.901 & 18.111 & -. 210 \\
\hline 2 & 5.000 & 4.327 & .073 & 42.555 & 42.935 & -. 380 \\
\hline 3 & 10.000 & 10.030 & -. 0.0 & 69.4E8 & 89.434 & -. 216 \\
\hline \(\stackrel{+}{*}\) & 15.000 & 15.104 & -. 104 & 96.318 & 95.803 & .510 \\
\hline 5 & 20.000 & 20.107 & \(=.157\) & 222.475 & 121.954 & . 521 \\
\hline 6 & 25.000 & 25.104 & -. 264 & 148.482 & 147.972 & . 510 \\
\hline 7 & 30.000 & 30.357 & -. 057 & 174.194 & 173.911 & . 283 \\
\hline 8 & 35.000 & 34.976 & . 024 & 199.730 & :95.8:9 & -. 1:9 \\
\hline 9 & 40.000 & 39.914 & . 086 & 225.322 & 225.745 & -. 423 \\
\hline 40 & -5.000 & 44.822 & .178 & 250.878 & 251.73s & -. 892 \\
\hline \(\pm 1\) & 50.000 & 49.352 & .148 & 277.107 & 277.846 & -. 739 \\
\hline 12 & 55.000 & 54.930 & .070 & 303.778 & 304.120 & \(-.342\) \\
\hline 13 & 60.000 & 59.575 & .025 & 330.478 & 330.605 & -. 128 \\
\hline 14 & 65.000 & 65.397 & -. 097 & 357.352 & 357.355 & . 497 \\
\hline 15 & 75.000 & 70.215 & -. 215 & 355.537 & 384.415 & 1.122 \\
\hline 16 & 75.000 & 75.135 & -. 135 & 412.522 & 411.834 & . 688 \\
\hline 17 & 80.000 & 30.104 & -. 004 & 439.688 & 439.662 & . 008 \\
\hline 15 & 85.000 & 84.328 & .172 & 467.559 & 467.947 & -. 888 \\
\hline
\end{tabular}
```


E. Position Linearity

The detector is said to be linear in position when the location of a peak in the output is proportional to the actual location of the beam at the detector. This condition is equivalent to having the spatial sensitivity, $S(n s / m m)$, independent of beam position.

Procedures described in the previous sections were used to find spatial sensitivity and spatial linearity. End-to-end variation in S of less than 10% was achieved by trial-and-error adjustment of the linear amplifier time constants, which determined ω_{0}, the frequency of the passband center of the amplifier filters [54]. Even gross deviations from linearity did not affect uniformity (countrate per unit length of anode).

For events near the end $\left(S_{1}\right)$ and center $\left(S_{2}\right)$ of a capacitively terminated anode, Borkowski and Kopp have found empirically

$$
\begin{align*}
\mathrm{S}_{1} & =\mathrm{R}_{0} \mathrm{C}_{\mathrm{GT}}, \tag{1}\\
\mathrm{~S}_{2} & =2\left(\mathrm{R}_{0} \mathrm{C}_{0} / \omega_{0}\right)^{1 / 2} \tag{2}\\
\mathrm{~S} & =\text { spatial sensitivity } \\
& =\text { position-time conversion factor }=\mathrm{dt} / \mathrm{dx} \\
\mathrm{R}_{0} & =\text { anode resistance/unit length } \\
\mathrm{C}_{0} & =\text { anode-cathode capacitance/unit length } \\
\omega_{0} & =\text { passband center of amplifier filter (rad/s) } \\
\mathrm{L} & =\text { anode length } \\
\mathrm{C}_{\mathrm{L}} & =\text { termination capacitance }
\end{align*}
$$

$$
\text { where } \quad S=\text { spatial sensitivity }
$$

$$
C_{G T}=C_{0} L+2 C_{L}
$$

In Table 6 our values of S found for both low and high-resistance anodes are compared with values calculated from Equations 1 and 2 . Quartz fiber coated with pyrolytic graphite ($8.4 \mathrm{M} \Omega / \mathrm{m}$) was routinely used as the anode in both detectors; solid, pyrolytic carbon ($0.5 \mathrm{M} \Omega / \mathrm{m}$) was also tried in this experiment.

In these calculations, C_{0} was estimated from the theoretical equation [87] for a coaxial, cylindrical capacitor:

$$
C_{0}=\frac{C}{L}=\frac{2 \pi \varepsilon_{0}}{\ln (\mathrm{~b} / \mathrm{a})}=\frac{55.6 \mathrm{pF} / \mathrm{m}}{\ln (\mathrm{~b} / \mathrm{a})}
$$

where $a=$ outside diameter of inner conductor (anode), and $b=$ inside diameter of outer conductor (cathode).

Because the cross section of the cathode was rectangular, rather than circular, C_{o} was approximated by taking for b the average of the two dimensions of the cross section.

For various values of the linear amplifier time constant, ω_{0} was measured using a Harris-PRD Model 7808 frequency synthesizer. $R_{\text {o }}$ was measured with a Fluke 8000 A digital multimeter.

When no additional capacitor was added, C_{L}, the terminating capacitance, was taken as 0.5 pF , the input capacitance specified by the manufacturer of the preamplifiers. For run D104A, an additional 7.5 pF was placed between each end of the anode and ground.

Agreement between observed and calculated values for S ranged from good to poor (Table 6). Differences between $S_{o b s}$ and S_{1}
could easily be explained by errors in estimating C_{L}. However, differences between $S_{o b s}$ and S_{2} could not be explained by errors in estimating C_{0}. For example, for run $F 44 A$, the value of C_{0} necessary to make Equation 2 agree with the observed value of S is $28 \mathrm{pF} / \mathrm{m}$. For the known anode diameter of $20 \mu \mathrm{~m}$, this C_{0} corresponds to a very unrealistic cathode diameter of 0.15 mm .

Data set	D47A	F44A	D62A	D104A
Detector	D1	D2	D2	D2
Anode material	quartz	quartz	carbon	carbon
Anode diameter $\mathrm{a}(\mu \mathrm{m})$	20	20	7	7
Cathode "diameter" b($\mu \mathrm{m}$)	6000	4000	4000	$4000=$
Ro ($M \Omega / m$)	8.4	8.4	0.50	0.50
C。 (pF / m)	9.8	10.4	8.8	8.8
ω_{0} (Mrad/s)	1.0	1.4	4.2	0.7
L (m)	0.113	0.133	0.133	0.133
C_{L} (pF)	0.5	0.5	0.5	8.0
CoL (pF)	1.1	1.4	1.1	1.1
C_{GT} (pF)	3.1	3.4	3.1	18.1
$\mathrm{S}_{1}(\mu \mathrm{~s} / \mathrm{m})$	18	28	1.6	9.0
$\mathrm{S}_{2}(\mu \mathrm{~s} / \mathrm{m})$	18	16	2.0	5.0
$\mathrm{S}_{\text {obs }}$ ($\mu \mathrm{s} / \mathrm{m}$)	17	26	3.2	9.6

F. Pulse Height Spectrum

1) Energy Resolution

Energy resolution [88] of detector D2 (90% argon- 10% methane) was studied, using $C u K$ x-rays from the Picker generating tube and Mn K x-rays produced by electron capture in a 100 - $\mathrm{HCi}{ }^{55} \mathrm{Fe}$ source. The Picker tube was operated at $20 \mathrm{kV}, 2 \mathrm{~mA}$, with a β-filter of 17 μ_{m} nickel foil. With x-rays incident on the central 1 mm of the detector, the pulse height spectrum of the Σ signal (Figure 3) was recorded in the multichannel analyzer.

These spectra are shown in Figure 10; they indicate that the detector operates proportionally within an energy error of 5%. Main peaks in the two spectra occur with a voltage (channel) ratio of 1.26 , near the expected energy ratio of 1.3 for $8.0-\mathrm{keV} \mathrm{Cu} \mathrm{K} \mathrm{x-rays} \mathrm{to} 6-\mathrm{keV}$ Mn x-rays [89].

In Figure 7 , a minor peak (the escape peak [88]) is 2.5 keV from the main peak for Mn x -rays, and a shoulder is the same distance from the main peak of the $\mathrm{Cu} x$-rays. These smaller features are attributed to energy lost when some of the $3-\mathrm{keV}$ [89] Ar K x-rays produced during primary ionization escape from the chamber.

Measured energy resolution in both cases was 18% fwhm, ignoring the shoulder in the case of Cu x-rays.
2) Variation of Pulse Height Spectrum with Position
Pulse height spectra of the linear amplifier output
signals were collected separately as the detector was trans-
lated in $10-m m$ increments in front of the Ni-filtered Cu
x-ray beam. Voltages of the main peaks from these spectra
(Figure 11) varied from 1.6 to 2.9 V , and the sum varied
from 3.9 V (center) to 4.5 V (ends).
Other settings of voltage and linear amplifier
gain gave values proportional to these, as expected.

Figure 10. Summed pulse height spectra. Top: $8 \mathrm{keV} \mathrm{Cu} x$-rays. Bottom: 6 keV Mn x-rays.

Pigure 11. Variation of pulse height centroids with position.
$\left[\begin{array}{l}\text { from START linear amplifier } \\ \Delta \\ * \\ \text { from STOP linear amplifier }\end{array}\right.$

G. Position Resolution

Measured timing noise in the timing single channel analyzers (TSCAs) (Figure 3) largely accounted for the observed position resolution of 0.4 mm fwhm for a high-resistance ($8 \mathrm{M} \Omega / \mathrm{m}$) anode and 0.5 mm fwhm for a low-resistance ($0.5 \mathrm{M} \Omega / \mathrm{m}$) anode.

Measurements of walk (variation of timing output with different input signal amplitudes) and jitter (variation of timing output with a constant input signal) of the TSCAs are given in Figures 10 and 11. These measurements were made with 0 . 1-fraction timing and with the "walk" adjustment optimized for $1-8 \mathrm{~V}$ input. Other fractions gave similar results on readjustment of the "walk" potentiometer.

The effect of this timing noise was roughly estimated. For the high-resistance anode of quartz coated with pyrolytic graphite (diameter $=20 \mu \mathrm{~m}, \mathrm{R}_{\circ}=8.4 \mathrm{M} \Omega / \mathrm{m}, \mathrm{S}=27 \mu \mathrm{~s} / \mathrm{m}$), the voltage divider effect caused by high R_{0} put heavy demands on the TSCAs. In order to register 97% of all counts at all positions (Figures 12 and 13), the TSCAs had to accept amplitudes from $1.5-7 \mathrm{~V}$, with 1.5 V chosen as the lower limit to avoid excessive jitter. Over this range, $\sigma_{w a l k}=2.2 \mathrm{~ns}$, and $\sigma_{j i t t e r}=1.1 \mathrm{~ns}$. Approximating the σ to be uncorrelated and normally distributed,

$$
\sigma_{\text {total }}=\left[2 \sigma_{\text {walk }}^{2}+2 \sigma_{\text {jitter }}^{2}\right]^{1 / 2}
$$

for both TSCAs together.
Thus, $\sigma_{\text {total }}=3.4 \mathrm{~ns}$, equivalent to 8.8 ns fwhm. At $S=27 \mu \mathrm{~s} / \mathrm{m}$, this amounts to 0.34 mm fwhm, near the value of 0.4 mm
fwhm observed with a 0.1 mm beam.
With the anode made from pure, pyrolytic carbon (diameter $=7 \mu \mathrm{~m}$, $\left.\mathrm{R}_{\mathrm{o}}=0.5 \mathrm{M} \Omega / \mathrm{m}, \mathrm{S}=9.6 \mu \mathrm{~s} / \mathrm{m}\right)$, a narrower range of pulse amplitudes was sent to the TSCAs, reducing errors due to walk.

In order to catch 97% of all counts at all positions in this case, the TSCAs needed to respond on1y between 1.5 and 4.2 V . For this range, $\sigma_{\text {walk }}=1.3 \mathrm{~ns}, \sigma_{j i t t e r}=1.1 \mathrm{~ns}$, and $\sigma_{\text {total }}=2.4 \mathrm{~ns}$ (5.7 ns fwhm). With $\mathrm{S}=9.6 \mu \mathrm{~s} / \mathrm{m}$, this timing dispersion implies a position spread of 0.6 mm fwhm, to be compared to the observed value of 0.5 mm fwhm for a $0.1-\mathrm{mm}$ beam. Thus, lower anode resistance caused reductions in both sensitivity and walk error, which largely cancelled each other.

Figure 12. Variation of walk with input amplitude for timing single channel analyzers. (Relative to 1.0 V input.)
\square START analyzer
\triangle STOP analyzer

Figure 13. Jitter for timing single channel analyzer.

H. Efficiency vs Pressure

Quantum detection efficiency is the counted fraction of the quanta that are presented to the detector. The relation between efficiency and pressure was determined for detector D2. As expected, efficiency increased with pressure, since the probability of primary ionization [83] is proportional to the number of absorbing atoms per unit volume for a given absorber [89].

Collimated 8 -keV Cu x-rays were counted first by a $\mathrm{NaI}(\mathrm{T} 1)$ scintillation detector, which was assumed 100% efficient [83] and taken as a standard. The same beam was then counted by detector D2, which was operated at several pressures. With the absorbing gas used in all our experiments, 90% argon- 10% methane, efficiency ranged from 3% at atmospheric pressure to 10% at 430 kPa (Figure 14). Above 400 kPa , the detector tended to leak around the window seals.

Even in a detector as thin as D2, xenon would have stopped virtually all incoming 8-keV photons, giving nearly 100% efficiency. Since the photoelectric cross section for absorbance in this energy range [89] varies approximately as $Z^{4} /(h u)^{3}$, the cross-section ratio of xenon to argon is about 80. However, xenon, which is $\sim 10^{4}$ times as expensive as argon, is too costly to use in a flow-through counter.

Figure 14. Variation of absolute efficiency with pressure at 8 keV .

I. Oblique Incidence

Borkowski and Kopp [54」 found that x-rays entering non-normally to the anode are detected with larger point spreads and higher count rates than those entering normally. This is because photons can cause primary ionization anywhere along their path through the detector, and the path length increases as incidence becomes more oblique. In addition, there is a systematic error in position, since the probability of interaction is greatest where the path enters the detector and decreases exponentially toward the exit position.

This error in position was largely avoided with the calibration technique of White and Naylor [86], described in section E. With a point source at the sample position and a perforated mask on the detector, diffraction conditions, including oblique incidence, are simulated during calibration, and the plane of registration is defined to be at the mask.

For a Cu K x-ray beam, Figures 15 and 16 show variations in position resolution and relative efficiency with angle of incidence, α. We define α as the angle between the beam and the normal to the anode.

For $\alpha=2 \theta=250 \mathrm{mrad}$, corresponding to about the ninth order of lamellar diffraction from phospholipids, the efficiency increase was less than 5% and position resolution was better than 1.5 mm fwhm for both detectors.

Figure 15. Variation of relative efficiency with angle of incidence: Efficiency (α)/Efficiency ($\alpha=0$) vs α. $\alpha=$ angle between beam and normal to detector.

- unpressurized detector
\triangle pressurized detector, 380 kPa

Figure 16. Variation of point spread with angle of incidence. $\alpha=$ angle between beam and normal to detector.
[unpressurized detector
Δ pressurized detector, 380 kPa

IV. DIFFRACTION THEORY

A. X-Ray Diffraction Applied to Multilayer

1) Fundamentals

Since x-ray wavelengths are about the same as interatomic distances, x-ray diffraction is one of the major sources of structural information on the molecular scale. This chapter will briefly review the standard diffraction theory $[15,90]$ as it applies to stacked, lipid multilayers, and outline our approach to the problem of determining the projected electron density of such multilayer. The following notation and relations will be used:
$\overline{\mathrm{F}}$ Conjugate of complex number F

$$
\begin{equation*}
(F=a+i b) \Rightarrow(\bar{F}=a-i b) \tag{3}
\end{equation*}
$$

$|F| \quad$ Modulus of complex number F

$$
\begin{equation*}
(F=a+i b) \rightarrow\left(|F|=\sqrt{a^{2}+b^{2}}\right) \tag{4}
\end{equation*}
$$

$\overrightarrow{\mathbf{x}} \quad$ Direct space position vector
$\vec{s} \quad$ Reciprocal space position vector
T Fourier transform

$$
\begin{equation*}
\operatorname{Tg}(\vec{x})=G(\vec{s})=\int_{a 11} g(\vec{x}) \exp (2 \pi i \vec{x} \cdot \vec{s}) d V_{x} \tag{5}
\end{equation*}
$$

T^{-1} Inverse Fourier transform

$$
\begin{equation*}
T^{-1} G(\vec{s})=g(\vec{x})=\int_{a 11} G(\vec{s}) \exp (2 \pi i \vec{x} \cdot \vec{s}) d V_{s} \tag{6}
\end{equation*}
$$

Conyolution

$$
\begin{equation*}
f(\vec{x}) * g(\vec{x})=\int_{a 11} \vec{u} f(\vec{x}) g(\vec{u}-\vec{x}) d V_{u} \tag{7}
\end{equation*}
$$

$$
\begin{aligned}
& \Delta_{d}(x) \quad \text { Infinite assembly of delta functions } \\
& \text { of spacing } d \text { (one dimension) }
\end{aligned}
$$

$$
\begin{equation*}
\Delta_{d}(x)=\sum_{k=-\infty}^{+\infty} \delta(x-k d) \tag{8}
\end{equation*}
$$

Convolution transform theorm

$$
\begin{align*}
& T(f * g)=(T f) \cdot(T g) \tag{9}\\
& T(f \cdot g)=(T f) *(T g) \tag{10}
\end{align*}
$$

X-ray diffraction depends on the coherent scattering of electromagnetic radiation by atomic electrons in an object and on the subsequent interference of waves scattered from different locations in the object. The classical dipole-oscillator treatment for the interaction of an electron with electromagnetic radiation provides an adequate scattering model, and the Fraunhofer theory of diffraction describes the effect of interference among the scattered waves.

In the classical dipole-oscillator model, a free electron oscillates harmonically in response to the innident electric field, and reradiates energy of the original wavelength in all directions. We express the time-independent part of the electric field magnitude as a complex phasor E, so that $\bar{E} \cdot E$ equals the time-averaged intensity of exiting radiation. For a free electron, this model predicts that

$$
\begin{equation*}
\mathrm{f}_{\mathrm{e}}(2 \theta)=\frac{\left(\mathrm{E}_{\mathrm{out}}\right)_{\text {electron }}}{E_{i n}}=r^{-1} \cdot k \cdot p_{e}(2 \theta) \cdot e^{-i \pi} \tag{11}
\end{equation*}
$$

with

$$
\begin{aligned}
2 \theta & =\text { angle between incident and observation axes } \\
\mathbf{r} & =\text { distance from electron to observer } \\
k & =e^{2} /\left(4 \pi \varepsilon_{0} m_{e^{2}} e^{2}\right. \\
\mathrm{p}_{\mathrm{e}}(2 \theta)= & \left(1+\cos ^{2} 2 \theta\right) / 2 \text { for initially unpolarized } \\
& \text { radiation }
\end{aligned}
$$

Since the factor $e^{-1 \pi}$ is a constant for all electrons in a diffracting specinen, it can be ignored in a description of diffraction.

The free electron model is valid for an atomic electron when the energy of incident radiation is far from any quantum transition of the atomic electron. Otherwise the classical treatment predicts that Equation (11) must be multiplied by the factor

$$
\frac{\omega^{2}}{\omega^{2}-\omega_{0}^{2}-i \gamma \omega}
$$

where γ is a damping term and ω and ω_{0} are the input and transition frequencies [90].

The Fraunhofer theory provides the kinematic description of wave interference in x-ray diffraction. It assumes that the distances between source, specimen, and observer are large compared with λ, but it does not require that the specimen consist of repeating units. However, when the latter condition is met, the theory predicts that diffracted intensity will be zero except for certain discrete values of the scattering angle, in agreement with Bragg's law.

If $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$ is the position vector (on the molecular
scale) in an object with volume electron density $\rho(\vec{x})$, Fraunhofer diffraction requires that for exiting radiation,

$$
\begin{align*}
E(\vec{s}) & =\iint_{-\infty}^{\infty} \int_{\left.e^{(\vec{s}}\right)} \rho(\vec{x}) \exp (2 \pi i \vec{x} \cdot \vec{s}) d V_{x} \tag{12}\\
& =\operatorname{Tf}_{e}(\vec{s}) \rho(\vec{x}) \tag{13}\\
& =f_{e}(\vec{s}) \operatorname{T} \rho(\vec{x}) \tag{14}
\end{align*}
$$

These equations are valid for arbitrary ρ, which may be, for example, a unit cell, a crystal, or an amorphous body. The diffraction vector $\vec{s}=\left(s_{1}, s_{2}, s_{3}\right)$ specifies the orientation of the incident beam to the direction of observation. We define \vec{s} to be $\vec{k}_{\text {out }}-\vec{k}_{i n}$, as shown in Figure 17. The \vec{k} vectors, or wave vectors, are collinear with the direction of propagation of the waves (beams). The angle between $\vec{k}_{\text {out }}$ and $\vec{k}_{\text {in }}$ is 2θ, the diffraction angle, and $|s|=\lambda /(2 \sin \theta)$. These definitions and Equation (14) ensure that when any two small regions in ρ are situated so that the paths through them from source to detector differ by $(h+1 / 2) \lambda$, their pairwise contribution to the diffracted intensity is zero. Furthermore, when the paths differ by $h \lambda$, their intensity contribution takes its maximum possible value.

Conventionally, $f_{e}(2 \theta)$ is removed from Equation (14) by introducing the relative intensity, I, and the relative structure factor F. During data treatment, $f_{e}(2 \theta)$ is reinserted, along with geometric factors related to the mode of data collection.

$$
\begin{equation*}
I(\vec{s})=I_{o b s}(\vec{s}) /\left|f_{e}(\vec{s})\right|^{2} \tag{15}
\end{equation*}
$$

$$
\begin{align*}
& F(\vec{s})=E(\vec{s}) / f_{e}(\vec{s}) \tag{16}\\
& I_{o b s}(\vec{s})=\vec{E}(\vec{s}) \cdot E(\vec{s}) \tag{17}\\
& I(\vec{s})=F(\vec{s}) \cdot F(\vec{s}) \tag{18}\\
& F(\vec{s})=T \rho(\vec{x}) \tag{19}
\end{align*}
$$

Equation (19) can be reduced to one dimension in both \vec{x} and \vec{s}, since we are interested in the image of electron density projected onto a single axis perpendicular to lipid bilayer planes. The projected electron density is defined as

$$
\begin{equation*}
\rho_{p}\left(x_{1}\right)=\iint_{-\infty}^{+\infty} \rho\left(x_{1}, x_{2}, x_{3}\right) d x_{2} d x_{3} \tag{20}
\end{equation*}
$$

It follows [15] that

$$
\begin{equation*}
F\left(s_{1}\right)=T \rho\left(x_{1}\right) . \tag{21}
\end{equation*}
$$

Suppressing subscripts, and with scalar x and s ,

$$
\begin{equation*}
F(s)=T p(x) . \tag{22}
\end{equation*}
$$

The rest of the development will be the 1-dimensional analog of the standard 3-dimensional case.

The specimen may be regarded as a 1-dimensional crystal, composed of a 1-dimensional unit cell translated indefinitely at intervals of d. This is equivalent to generating the crystal as the convolution of the unit cell with an infinite array of evenly spaced delta functions of spacing d.

$$
\begin{equation*}
\rho_{\text {cryst }}(x)=\rho_{\text {cell }}(x) * \Delta_{d}(x) \tag{23}
\end{equation*}
$$

By the convolution transform theorm, the structure factor for the crystal, which gives the diffracted intensity, is

$$
\begin{array}{ll}
& \begin{array}{ll}
\mathrm{F}_{\text {cryst }}(\mathrm{s}) & =(1 / \mathrm{d}) \mathrm{F}_{\mathrm{cell}}(\mathrm{~s}) \cdot \Delta_{1 / \mathrm{d}}(\mathrm{~s}) \\
& =(1 / \mathrm{d}) \mathrm{F}_{\mathrm{h}}, \\
\text { where } & \\
\text { and } \quad \mathrm{F}_{\mathrm{h}}=\mathrm{F}_{\mathrm{cell}}(\mathrm{~h} / \mathrm{d}) \quad \text { for } \mathrm{h}=\text { integer, }
\end{array} \\
& \mathrm{F}_{\mathrm{h}}=0 \quad \text { otherwise. }
\end{array}
$$

This result implies that diffracted intensity is seen only for discrete values of $s=h / d$, with integral h. Since $s=\lambda /(2 \sin \theta)$, Bragg's law is obtained: $h \lambda=2 d \sin \theta$.

To find $\rho(x)$, Equation (21) may be inverted. Generally,

$$
\begin{equation*}
\rho_{\text {cryst }}(x)=-T^{-1} F_{\text {cryst }}(s), \tag{27}
\end{equation*}
$$

which reduces in this discrete case to

$$
\begin{equation*}
\rho_{\text {cryst }}(x)=\sum_{h=-\infty}^{+\infty} F_{h} \exp (2 \pi i h x / d), \tag{28}
\end{equation*}
$$

with

$$
F_{h}=F(h / d) .
$$

Furthermore, if the cell has inversion symmetry, so that $\rho(x)=\rho(-x)$, then the F_{h} are real, and

$$
\begin{equation*}
\rho(x)=\sum_{h=0}^{+\infty} F_{h} \cos (2 \pi h x / d) \tag{29}
\end{equation*}
$$

$$
\begin{aligned}
F_{\text {out }} & =F_{i n} \cdot e^{i \alpha}=F_{i n} \cdot e^{2 \pi i \vec{s} \cdot \vec{x}} \\
\frac{\alpha}{2 \pi} & =\frac{u+v}{\lambda}=\frac{\left(\widehat{k}_{\text {out }}-\hat{k}_{i n}\right)}{\lambda} \cdot \vec{x} \\
& =\left(\vec{k}_{\text {out }}-\vec{k}_{i n}\right) \cdot \vec{x} \\
& =\vec{s} \cdot \vec{x}
\end{aligned}
$$

Figure 17. Point scattering diagram.

If either $\rho(x)$ or the set $F_{h}(h=0, \pm 1, \ldots, \pm \infty)$ is known, then the other can always be calculated. Unfortunately, experimental determination of diffracted intensity does not allow reconstruction of $\rho(x)$ directly from Equations (27-29) for three reasons.

1. $I_{0}=\bar{F}_{0}$. F_{0} coinciajes with the direct beam, and is not observed.
2. I_{h} cannot be observed for $h>(2 d / \lambda)$.
3. I_{h} contains less information than F_{h}.

The first two factors are not serious. Lack of I_{0} prevents the zero point of ρ from being fixed. For $d=6.0 \mathrm{~nm}$ and $\lambda=0.154 \mathrm{~nm}$, $h_{\max }=2 \mathrm{~d} / \lambda=77$, allowing a resolution of 00.1 nm in the Fourier summation of Equation (29). The third factor constitutes the phase problem, which is the main difficulty in x-ray crystallography:

$$
\begin{align*}
I_{h} & =\bar{F}_{h} \cdot F_{h} \tag{30}\\
& =\left|E_{h}\right| \exp \left(i \alpha_{h}\right)=\left|F_{h}\right| \cdot p_{h} . \tag{31}
\end{align*}
$$

Whereas I_{h} is a positive, real number, the complex F_{h} is in general represented by two positive real numbers $\left|F_{h}\right|$ and α_{h}. Even in the centrosymmetric case where $\rho(x)=\rho(-x), F_{h}$ is represented by a real positive number and a sign factor p_{h} which may be +1 or -1 . In either case, knowing the set I_{h} is not enough to perform the reconstruction of Equations (27-29). Even though we cannot directly perform the synthesis

$$
\begin{equation*}
\rho_{\text {cryst }}(x)=T^{-1} F_{\text {cryst }}(s)=\sum F_{h} \exp (2 \pi i h x / d) \tag{32}
\end{equation*}
$$

the function $P_{\text {cryst }}(\mathrm{x})$, defined as

$$
\begin{equation*}
P_{\text {cryst }}(x)=T^{-1}\left|F_{\text {cryst }}(s)\right|^{2}=\sum\left|F_{h}\right|^{2} \cos (2 \pi h x / d) \tag{33}
\end{equation*}
$$

is available immediately from the data. $P_{\text {cryst }}(x)$, which is called the Patterson function, is identical to the autocorrelation function of $\rho_{\text {cryst }}$, and is related to the autocorrelation function of $\rho_{\text {cell }}$:

$$
\begin{align*}
& P_{\text {cryst }}(x)=\rho_{\text {cryst }}(x) * \rho_{\text {cryst }}(-x) \tag{34}\\
& P_{\text {cell }}(x)=\rho_{\text {cell }}(x) * \rho_{\text {cell }}(-x) \tag{35}\\
& P_{\text {cryst }}(x)=P_{\text {cell }}(x) * \Delta_{d}(x) \tag{36}
\end{align*}
$$

3) Data Treatment

The phase problem aside, Equation (29) must be modified slightly for use with the integrated intensities of observed diffraction peaks. Since I is defined relative to the scattering for a single electron, the electronic scattering factor $f_{e}(2 \theta)$ or at least its angular dependence $p_{e}(2 \theta)$ must be reintroduced. In addition, I in all the above equations refers to peak intensity at an optimum, fixed scattering angle. The Lorentz factor $L(2 \theta)$ compensates for rotation of the specimen and for the fact that integrated intensities ($I_{\text {int }}$) h are used [15, 90]. For the geometry of Figure 19.(a),

$$
\begin{align*}
& \left|F_{h}\right| \propto\left[\frac{\left(I_{\text {int }}\right)}{L p}\right]^{1 / 2} \tag{37}\\
& L=1 /(\sin 2 \theta) \tag{38}\\
& p=\left(1+\cos ^{2} 2 \theta\right) \tag{39}
\end{align*}
$$

For small θ,

$$
\begin{equation*}
\mathrm{Lp} \propto 1 / h \tag{40}
\end{equation*}
$$

For multilayers with inversion symmetry, and assuming the p_{h} have been found

$$
\begin{equation*}
\rho^{\prime}(x)=\sum_{h=1}^{h^{\prime}} p_{h}\left[h \cdot\left(I_{\text {int }}\right)_{h}\right]^{1 / 2} \cos (2 \pi h x / d) \tag{41}
\end{equation*}
$$

This equation gives the projected electron density profile on an arbitrary scale, with an arbitrary p-origin, and subject to the limit in resolution caused by use of a finite number of reflections $h^{\text { }}$.

B. Phasing Methods

1) Survey

The central difficulty in interpreting x-ray diffraction data comes from technological deficiencies. On the one hand, lenses for focusing x-rays have not been found. With light and electron microscopy, as well as vision, the inverse transform analogous to $\rho(\mathrm{x})=$ $T^{-1} F(s)$ is performed on scattered waves by optical or magnetic lenses, resulting immediately in an image, which is not available with x-rays [15]. On the other hand, spatially coherent sources of x-radiation have not yet been developed, so holographic techniques are not possible. Therefore, for x-ray diffraction, the inverse transform giving $\rho(\mathrm{x})$ must be computed.

With repetitive structures, which have discrete, complex structure factors F_{h}, the problem has traditionally been seen as a search for phase factors P_{h} or phase angles α_{h}, which are lost when diffracted waves are detected as time-averaged intensity I_{h}.

$$
\begin{align*}
& I_{h}=\bar{F}_{h} \cdot F_{h}=\left|F_{h}\right| \tag{42}\\
& F_{h}=\left|F_{h}\right| \exp \left(i \alpha_{h}\right)=\left|F_{h}\right| \cdot p_{h} \tag{43}
\end{align*}
$$

Traditional strategies to obtain the phases from auxiliary data-usually data from similar structures or at several wavelengths-- are called indirect methods. In contrast, direct methods attempt to deduce the structure of a crystal using intensities collected at one wavelength from that crystal alone. Several techniques are often
combined, and iterative refinement is used extensively [96]. Since usage varies for the terms "direct" and "indirect", the following grouping is given arbitratily:
A. Direct methods

1. Hauptmen-Karle
2. Patterson deconvolution
3. Heavy atom
B. Indirect methods
4. Isomorphous replacement and addition
5. Anomalous dispersion

Hauptman-Kar1e methods

The Hauptman-Karle and Patterson approaches result from analyses which show that observed intensities can determine (or actually overdetermine) the structure. The algebraic methods of Hauptman and Karle [91] make use of mathematically required relations, either strict or probabilistic, among the structure factors of different reflections in a single crystal. These methods require that the experimental moduli $\left|F_{h}\right|$ of the structure factors be put on an absolute scale with the atomic scattering factors. This scaling is difficult when only a small number of reflections is available [14,92].

Patterson methods

Patterson deconvolution techniques are the direct-space analogs of the Hauptman-Karle methods. They use the overall autocorrelation (Patterson) function $P(x)$, which is easily obtained from observed intensities, since

$$
\begin{equation*}
P_{\text {cryst }}(x)=\Sigma_{h}\left(I_{h}\right) \cos (2 \pi h x / d) \tag{44}
\end{equation*}
$$

Peaks in the Patterson map represent all possible vectors between pairs of peaks in the structure $\rho_{\text {cryst }}(x)$. As an outgrowth of the
long-standing use of the Patterson map as an aid to other approaches, Buerger has devised general image-seeking methods which extract $\rho_{\text {cell }}(x)$ from $P_{\text {cryst }}(x)$ [93]. These methods require that P and ρ contain distinct maxima corresponding to atomic locations, working best in the hypothetical limit of point atoms. This requirement is apparently not met by oriented membrane and lipid multilayer systems.

Patterson deconvolution techniques have been applied in one dimension to fatty acid multilayers [94] and to oriented membranes [28,29]. In this approach, which is based on the theoretical work of Hosemann and Bagchi [95], the autocorrelation function of the unit cell $\mathrm{P}_{\text {cell }}(\mathrm{x})$ is deconvoluted, yeilding the cell electron density, since

$$
\begin{equation*}
P_{c e 11}(x)=\rho_{c \in 11}(x) * \rho_{\operatorname{ce11}}(-x) \tag{45}
\end{equation*}
$$

This requires separation of $\mathrm{P}_{\mathrm{cell}}(\mathrm{x})$ from the overall Patterson function $P_{\text {cryst }}(x)$, which comes directly from intensity data. The separation can be done only in special cases, such as (1) presence in the unit cell of a large region of constant electron density (e.g., a water layer in stacked membranes) [27], ur (2) use of a specimen containing a few unit cells [94].

Heavy atom method
The heavy atom method [15] used by itself applies only to centrosymmetric structures, the phase factors being therefore limited to ± 1. The unit cell must contain one or a few atoms which are much heavier--and therefore scatter more strongly--than the rest. The

Patterson map provides locations of the heavy atoms, whose contribution to the structure factor is then calculated. The signs of these contributions are taken as the signs of the overall structure factors, which are assumed to be dominated by the heavy atoms. Since many of these assignments will be wrong, iterative refinement is typically used in finding atomic postions [96].

Isomorphous methods

Isomorphous methods estimate phase factors using intensity data from two or more crystals whose structures are unknown, but differ from each other in a simple way which is known. This is normally done by using two or more crystals which differ only by replacement or addition of one atom in the unit cell. The result is several independent sets of data arising from essentially the same structure. In fortunate cases, the additional information is enough to identify the phase factors, allowing $\rho(x)$ (and at high resolution, atomic locations) to be determined. The main difficulties of the isomorphous techniques are (1) getting replacement atoms into the desired locations and (2) not perturbing the remainder of the structure.

Anomalous scattering

Anomalous scattering methods [97] use several sets of independent data, but the wavelength of incident radiation--rather than the identity of the diffracting species--is varied from one set to another. Normally this would have little effect on the diffraction pattern aside from a linear shift of peak positions. However, when the incident energy is near a quantum transition of an atom in the crystal, Equation (11) is not valid, and the atom is said to scatter anomalously.
Both the magnitude and phase of scattering from an anomalous atom are
affected, and the result is evident in typical changes of up to a fewpercent in diffracted intensity.
The availability of synchrotron radiation as a tunable, nondiver-
gent, intense source of x-rays has increased the utility of-and
interest in--anomalous scattering methods [104].
2) Isomorphous Replacement Applied to Multilayers

The indirect phasing procedure used in our studies is a type of isomorphous replacement based on the method first used by Hargreaves in 1957 for hydrated salts of p-toluene sulfonic acid [14]. Hargreaves presented the method as a way of avoiding the need to place isomorphous sets of experimental intensities on an absolute scale with each other and with the atomic scattering factors. The data treatment leads to a so-called Hargreaves plot (described below) which gives a straight line only if the right phase factors are chosen for all reflections of the different isomorphs.

This method was adapted in 1976 by McIntosh and coworkers [19,20] to infer the 1 -dimensional electron density in dipped multilayers of behenic (C_{22}) acid and its salts. McIntosh got isomorphous differences by varying both the cation and the degree of saponification of the fatty acid, thus altering the electron density at the unit cell origin (carboxyl end). Rather than testing permutations of phase factors, McIntosh combined his intensity data with phase factors which Lesslauer and Blasie [94] obtained for barium stearate (C_{18}) by other means. The result was a linear Hargreaves plot for nine reflections and electron density profiles which were physically reasonable for various salts of behenic acid in several degrees of saponification.

Although our procedure is a special case of Hargreaves's, it is an extension of that of McIntosin, allowing the substituted atom to be at a general position in the unit cell. In addition, in our implementation, all possible combinations of phase factors
(which are limited to ± 1, since the unit cell is assumed symmetric) are searched to determine the set which gives the best Hargreaves plot.

For the two isomorphous structures A and B, we call the projected electron densities $\rho^{A}(x)$ and $\rho^{B}(x)$, and let their difference be $\Delta \rho(x)$. Superscripts A and B will represent species and not exponents. We assume (1) that the unit cell length is d for both isomorphs, (2) that $\rho(x)=\rho(-x)$, and (3) that $\Delta \rho_{c e l l}(x)$ is a gaussian function of height a and halfwidth at half-maximum w, which is displaced a distance t from the cell origin.

$$
\begin{align*}
\Delta \rho_{c e l l}(x) & =\rho_{c e l 1}^{B}(x)-\rho_{\operatorname{cell}}^{A}(x) \tag{46}\\
& =q \cdot \exp \left[-(x+t)^{2}(\ln 2) / w^{2}\right] \\
& +q \cdot \exp \left[-(x-t)^{2}(\ln 2) / w^{2}\right] \tag{47}
\end{align*}
$$

Then

$$
\begin{align*}
T \Delta \rho_{c e l l}(x) & =\Delta F(s) \tag{48}\\
& =F^{B}(s)-F^{A}(s) \tag{49}\\
& =\left\{k \exp \left[-(\pi s w)^{2} / \ln 2\right]\right\} \cdot\{\cos (2 \pi s t)\} \tag{50}
\end{align*}
$$

$=\{$ Gaussian envelope $\} \cdot\{r i p p l e\}$,

$$
\text { where } \mathrm{k}=\mathrm{qw} \sqrt{\pi \ln 2}
$$

Due to the repetitive structure of the crystals, diffracted intensity is zero unless $s=h / d, h=0,1,2, \ldots$... Therefore

$$
\begin{align*}
T \Delta \rho_{\text {cryst }}(x)= & \Delta F_{h} \tag{52}\\
= & F_{h}^{B}-F_{h}^{A} \tag{53}\\
= & \left\{k \exp \left[-(\pi h w / d)^{2} / 1 \mathrm{n} 2\right]\right\} \cdot\{\cos (2 \pi h t / d)\} \tag{54}\\
& h=1,2,3, \ldots .
\end{align*}
$$

The transform $\Delta F(s)=T_{\Delta \rho}(x)$ is the product of a gaussian envelope and a ripple function. The width of the envelope varies inversely with that of $\Delta \rho_{c e l 1}$. The ripple function oscillates as s varies, the frequency of oscillation increasing with t / d. When $t=0$ or $t=d / 2$, the observed intensity and discrete structure factors have their maximum possible differences between A and B.

Introducing undetermined scale factors C^{A} and C^{B} for the two sets of data,

$$
\begin{equation*}
F_{h}^{A}=p_{h}^{A}\left|F_{h}^{A}\right|=C_{h}^{A} P_{h}^{A}\left[h\left(I_{i n t}^{A}\right)_{h}\right]^{1 / 2} \tag{55}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{h}^{B}=p_{h}^{B}\left|F_{h}^{B}\right|=C_{h}^{B} p_{h}^{B}\left[h\left(I_{\text {int }}^{A}\right)_{h}\right]^{1 / 2}, \tag{56}
\end{equation*}
$$

with values of p limited to ± 1. Equations (55 and 56) may be rearranged to the form

$$
\begin{equation*}
k=C^{A} P_{h}^{A} M_{h}^{A}+C^{B} P_{h}^{B} M_{h}^{B}, \quad h=1,2,3, \ldots, \tag{57}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{h}^{A}=\left[h\left(I_{i n t}^{A}\right)_{h}\right]^{1 / 2} /\left\{\exp \left[-(\pi h w / d)^{2}\right] \cos (2 \pi h t / d)\right\} \tag{58}
\end{equation*}
$$

and

$$
M_{h}^{B}=\left[h\left(I_{\text {int }}^{B}\right)_{h}\right]^{1 / 2} /\left\{\exp \left[-(\pi h w / d)^{2}\right] \cos (2 \pi h t / d)\right\} \cdot(59)
$$

The M_{h} depend on measured values of $I_{i n t}$ and d and on assumed values of w and t, the halfwidth and position of the replacement atom. When $P_{h}^{B} M_{h}^{B}$ is plotted against $P_{h}^{A} M_{h}^{A}$, Equation (57) predicts a straight line only if t, w, and all the phase factors p_{h} are chosen correctly.

$$
\begin{equation*}
p_{h}^{B} M_{h}^{B}=-\left(C^{A} / C^{B}\right) p_{h}^{A} M_{h}^{A}+k / C^{B} \tag{60}
\end{equation*}
$$

The slope of this Hargreaves plot, $-\left(C^{A} / C^{B}\right)$, gives the scaling factor for the sets of data, and the intercept k / C^{B} increases with the scattering power of the isomorphous atom.

In the search for the phases, we let g_{h}^{A} and g_{h}^{B} be arbitrary trial values for $P_{h} A$ and P_{h}^{B}. The sets of g^{A} and g^{B} are cycled through all possible permutations of ± 1 for each h, while the (straight) regression line of $g_{h}^{B} M_{h}^{B}$ vs $g_{h}^{A} M_{h}^{A}$ is found for each permutation. Values of $\left(F_{h}^{B}\right)$ calc are then computed by determining $\left(M_{h}^{B}\right)$ calc from the regression line for each actual value of $g_{h}^{A} M_{h}^{A}$. The goodness-of-fit measure for each permutation is defined as

$$
\begin{equation*}
\delta=\frac{1}{N} \sum \frac{\left(F_{h}^{B}\right)_{\text {obs }}-\left(F_{h}^{B}\right)^{B} \text { calc }}{\left(F_{h}^{B}\right)^{\prime}} \tag{61}
\end{equation*}
$$

$\left(F_{h}^{B}\right)^{\prime}$ is a scale factor defined so that δ reflects relative, rather than absolute deviations. If $\left(F_{h}^{B}\right)$ obs $\neq 0,\left(F_{h}^{B}\right)^{\prime}$ is defined as $\left(F_{h}^{B}\right)$ obs . If $\left(F_{h}^{B}\right)_{\text {obs }}=0$, then $\left(F_{h}^{B}\right)^{\prime}$ is assigned the value of the estimated detection limit for F_{h}^{B}--that is, the estimated, largest value F_{h}^{B} might actually have and still be undistinguishable from zero experimentally.

The permutation that minimizes δ is taken as the correct set of phases $\left(p_{h}^{A}, p_{h}^{B}\right)$.

If t and w, the position and radius of the substituent, are not known, then the permutations can be carried out for several values of t and w, with the combination of t, w, g^{A}, and g^{B} that minimizes δ taken as the correct combination.

The program PHASE was written to implement this procedure, and the program PREDICT written to test PHASE (Appendix C). PHASE allows the electron density of the substituent, $\Delta \rho$, to be either a gaussian function or a rectangular strip function. Normally the gaussian was used. PREDICT finds the diffracted intensity expected from a given, 1-dimensional, centrosymmetric distribution of electron density $\rho_{i n}(x)$. PREDICT allows $\rho_{\text {in }}(x)$ to be expressed as a sum of gaussians or as a sum of rectangular strips. PHASE successfully reconstructed each isomorphous pair $\left[\rho_{\text {in }}^{A}(x), \rho_{\text {in }}^{B}(x)\right]$ with which it was tested. Figure 18 shows the flow of information for PHASE (1) with artificial "data" from PREDICT and (2) with real data.

Data flow for verification of program PHASE

Oata flow for diffraction experiment

Figure 18. Use of the program PHASE.
V. X-RAY DIFFRACTION FROM PHOSPHOLIPIDS - EXPERIMENTAL

A. Specimen Preparation

The phospholipids investigated were L- $\alpha-1,2$-dipalmitoyl lecithin (DPL) and a mixture (BrDPL) of equal amounts of $L-\alpha-1$-palmitoy1-2-(9-bromopalmitoy1) lecithin and its 10 -bromo analog. The DPL was used as purchased from Supelco (4-6017: 99+\% purity). The BrDPL was synthesized by J.C. Reinert and R.R. Lowry, of the Environmental Health Sciences Center at Oregon State University, according to their published procedure [16]. Their analyses found

1. $9.7 \% \mathrm{Br}$ and $3.4 \% \mathrm{P}$ (theoretical: 9.85% and 3.8%);
2. palmitate $:$ monobromopalmitate $=51.5: 49.5$;
3. 95% of fatty acid at 2 -position $=$ monobromopalmitate. Each diffraction sample consisted of a lipid film ($3 \mathrm{~mm} \times 1 \mathrm{~mm}$ $\mathrm{x} \sim 3 \mu \mathrm{~m}$) on the surface of a piece of glass ($15 \mathrm{~mm} \times 4 \mathrm{~mm} \times 0.1 \mathrm{~mm}$), which had been made hydrophobic. The hydrophobic glass supports were made from $18 \mathrm{~mm} \times 18 \mathrm{~mm} \times 0.1 \mathrm{~mm}$ microscope slide covers. The slide covers were cleaned and treated with the hydrophobic surfactant N, N-dimethyl-N-(3-trimethoxysilylpropyl) octadecyl ammonium chloride [98]. They were then cut to size using a diamond-tipped scribe. The surfactant was a gift of Dr. Mary Daniels of the Dow Corning Company, Midland MI. The glass was cut to size after, rather than before, surfactant treatment, so that the cut edges would be hydrophilic, thereby preventing lipid solution from flowing over the edges. The following procedure was used for the glass supports.
4. Rinse in distilled water.
5. Sonicate 1 hr in alcoholic KOH.
6. Rinse in distilled water.
7. Sonicate 30 minates in dilute HC 1 .
8. Rinse several times in distilled water.
9. Sonicate 30 minutes in distilled water.
10. Rinse in ethanol (100%).
11. Soak 1 hr in 0.5% (∇ / v) solution of silane surfactant in ethanol.
12. Rinse in ethanol.
13. Soak in distilled water.
14. Cut to size.

For each specimen, $150 \mu \mathrm{~L}$ of a $1 \mathrm{~g} / \mathrm{L}$ solution of 1 ipid in chloroform was put dropwise on the glass surface, allowing partial evaporation between drops. This was done in room air and at room temperature. After the specimen had dried in air for one hour, it was placed over calcium chloride at a reduced pressure of $\sim 3 \mathrm{kPa}$ for eight hours.

The lipid film which covered the glass was then trimmed to an area of $3 \mathrm{~mm} \times 1 \mathrm{~mm}$ by scraping the unwanted portion away with a clean knife blade. The exposed area of the glass was wiped with a folded piece of chloroform-dampened filter paper, with care taken not to moisten the remaining lipid. This trimming was done to ensure that a uniform amount of lipid would be exposed to the x-ray beam throughout the range of diffraction angles used ($0 \leq \theta \leq 0.15 \mathrm{rad}$). The trimmed specimen was then heated in a drying oven at $100^{\circ} \mathrm{C}$ for 12 hours.

About 25% of our specimens produced intense, lamellar diffraction of four to ten orders. Among these successful samples, the number and relative intensity of the orders were consistent from specimen to specimen for a given lipid, and depended on the temperature and degree of hydration during diffraction. This dependence was quite pronounced for DPL (especially at low hydration) and less strong for BrDPL. The
unsuccessful 75% of the specimens gave only a broad, weak peak where the first order was expected. These specimens were discarded.

The visual appearance of the lipid films ranged from clear to cloudy. There was no correlation between visual appearance and intensity of diffraction.

B. Diffraction Apparatus and Geometry

The geometry used to obtain lamellar diffraction from our lipid specimens is illustrated in Figure 19. A diffractometer (Picker 6283F), which was kindly loaned to us by Professor D.P. Shoemaker, was modified for use as an x-ray source. The x-ray tube had a copper target, whose projected area normal to the beam was $0.4 \mathrm{~mm} \times 1.0 \mathrm{~mm}$. A $17 \mu \mathrm{~m}$-thick, nickel β-filter was used as a monochromator to give radiation with $\lambda=154.2 \mathrm{pm}$. The stability of the power supply was specified by the manufacturer to be 0.1% for voltage and 0.02% for current. We found the variation in beam flux to be well under 0.5%. The tube was normally operated at $32 \mathrm{kV}, 10 \mathrm{~mA}$ (full-wave).

The beam was collimated to propagate in the y-direction, with a rectangular cross section in the xz-plane (see Figures 19 and 20). The beam was defined in the z-direction by two parallel, quartz optical flats, which were 5.5 cm long and which were separated by 0.1 mm spacers. Thin (0.13 mm), polished tantalum slits with apertures of 0.5 mm were used to define the beam in the x -direction. In addition, similar tantalum slits were used as a vertical guard aperture at the end of the collimator nearer the specimen. The tantalum was a gift of Mr. Robert Garon, Teledyne Wah Chang, Albany, OR.

The specimen was mounted in a temperature-controlled holder (Figure 20), described below, in which it was precisely rotated in the beam and about the θ-axis, which was parallel to the x -axis. The beam cross section at the specimen location was measured with the position-sensing detector to be $0.7 \mathrm{~mm}(\mathrm{x})$ by $0.4 \mathrm{~mm}(z)$, fwhm. Since
the projection of the lipid specimen onto the z-axis was less than 0.12 mm at the largest diffraction angles used, the beam flux on the specimen was essentially constant during diffraction experiments.

On its way to the detector, radiation diffracted from the specimen was passed through a 20 cm -long, rectangular chamber, whose 5 cm (x) by $13.5 \mathrm{~cm}(z)$ ends were sealed with windows of $50 \mu \mathrm{~m}$-thick Kaptan film (Trademark, DuPont). A flow of helium was maintained through this chamber to reduce scattering and absorbance due to air.

For diffraction experiments, the detector was usually 242 mm from the sample, as measured with a rule. The detector was shielded from the direct beam by a sheet of 0.13 mm tantalum, backed with 0.1 mm lead foil. This beamstop was attached to the front of the detector, about 1 cm from the anode.

The width, in the x-direction, of the collimated, direct beam was 2 mm at the detector. This was determined photographically by placing film at the usual detector position. The first four orders of diffraction had the same width, 2 mm , and appeared on film as straight lines which looked similar to--but much weaker than-me image of the direct beam. Since these diffraction lines were shorter than the 4 mm-width of the detector window, all diffraction for each order was collected by the detector.

Figure 19(a) Diffraction apparatus (not to scale).

I
C. Specimen Holder for Lamellar Diffraction

Specimens described in the previous section were mounted for diffraction in an aluminum specimen holder which we designed. A diagram and photographs of this sample holder are shown in Figures 20 and 21. This device allowed control of specimen temperature to an estimated precision and accuracy of ± 0.1 and $\pm 0.2^{\circ} \mathrm{C}$ over the range -15 to $+100^{\circ} \mathrm{C}$. At the same time, it allowed the sample to be rotated in the direct beam about an axis parallel to the glass support and passing through the specimen. In addition, since the chamber was sealed, the atmosphere about the specimen could be controlled. The chamber support, shown in the photographs, could be translated in three directions (x, y, and z of Figure 19) for positioning the sample in the beam.

Window units, which are shown in the photographs, but not in the diagram, consisted of $50 \mu \mathrm{~m}$-thick aluminized mylar sandwiched between delrin and aluminum frames. Small tubes through the frames were included for gas flow through the sample compartment. With flat rubber gaskets and silicone grease used for leak resistance, the window units were easily attached to and detached from the specimen chamber with \#4-40 screws.

Coolant was pumped by a Lauda $K-2 / R$ refrigerated circulator through a cavity in the chamber block, as shown in the diagram of Figure 20. Above $0^{\circ} \mathrm{C}, 1,2$-ethanediol was used as the coolant. For runs which went below $0^{\circ} \mathrm{C}$, 2 -propanol was used. For these runs, a helical copper heat exchanger in a 2 -propanol dry ice bath was used
in the coolant line between the circulator and the sample chamber. At low temperatures, a thin polyethylene shroud filled with dry helium was placed over the chamber and the stages to prevent condensation on the windows and to help prevent convective heat transfer.

The temperature was maintained with an Artronix 5301 temperature controller. This unit drove a resistance heater, which was embedded in the chamber as shown in Figure 20. The heating coil was made from 5.7 m of 120μ m-diameter Cu - Be wire with a resistance of $6.6 \Omega / \mathrm{m}$ (California Fine Wire Co.). It was potted with thermally-conductive epoxy resin (Emerson and Cuming Eccobond 285). With this coil and controller, the maximum power available was 65 W , which was enough to raise the sample temperature to over $100^{\circ} \mathrm{C}$ in a few minutes.

Temperature was monitored with small thermistors, which were embedded near the specimen position with thermally-conductive epoxy. These thermistors (Yellow Springs Instruments 44006 and 44007) were specified by the manufacturer to conform to the supplied temperatureresistance data to $0.2^{\circ} \mathrm{C}$. This agreement was verified by immersing the specimen chamber and a calibrated mercury thermometer in a con-trolled-temperature bath at several temperatures. One of the thermistors was used as a sensor for the temperature controller; the other was used for readout.

The specimen chamber was rotated by a stepping motor (Rapid-Syn 23H503), driven by a controller of our design (Appendix B). A precision pulse generator (Tektronix 115) was used as a timebase. The motor was connected to the θ-axis of the sample chamber through a 1:100 antibacklash worm drive. The rotational increment (step) was 4° at the
motor, and 0.04° (0.698 mrad) at the specimen.

Figure 20. Specimen holder.

Figure 21. Specimen holder.
Left: windows in place
Right: windows removed

D. Lamellar Diffraction from DPL and BrDPL

1) Hydration Technique and DPL Resulis

DPL and BrDPL specimens were hydrated by sealing them in the sample holder along with a small tray of water. Additional, inner windows of Kaptan film were clamped between the window-frame gaskets and the holder body. Hydration was effected by heating the holder to $80^{\circ} \mathrm{C}$ for 90 minutes and then cooling it to room temperature or below. When the chamber was cool, the inner windows, which were covered with condensed water, were removed, and the chamber was quickly resealed.

Specimens were dehydrated by flowing dry nitrogen through the holder while the temperature was kept at $90^{\circ} \mathrm{C}$. After 90 minutes, the nitrogen entry and exit were clamped, and the holder was cooled to room temperature or below. Partial dehydration was accomplished by heating to lower temperatures for shorter times or by flowing dry nitrogen through the chamber at room temperature.

For DPL, the degree of hydration was inferred using Chapman's data relating water content to lamellar spacing in the gel state [99]. We refer to our values of this spacing as " d_{4} ", because they were based on the prominent $h=4$ diffraction peak, which was easily monitored. For DPL at $20.0^{\circ} \mathrm{C}$ (gel), we found d_{4} values of 5.6 and 6.3 nm for the dehydrated and hydrated states defined above. These compare well with Chapman's limiting values of 5.6 nm for anhydrous DPL and 6.4 nm for DPL with excess (above 30 weight percent) water.

As discussed in the next section, corresponding values of d_{4} at $-15^{\circ} \mathrm{C}$ for BrDPL prepared in these dehydrated and fully hydrated states were 5.8 and 6.3 nm . We assumed that for identical degrees of hydration, the structure and spacing of BrDPL at $-15^{\circ} \mathrm{C}$ were the same as for DPL in the gel state. Therefore, Chapman's data for DPL were used to estimate the water content of BrDPL also.

Specimens were maintained at nearly constant water content by keeping the chamber sealed. For DPL below $25^{\circ} \mathrm{C}, \mathrm{d}_{4}$ did not change by more than $\pm 15 \mathrm{pm}\left(0.15 \AA\right.$) over several hours. Above $25^{\circ} \mathrm{C}$, hydrated specimens tended to dry out even in the sealed chamber, as indicated by reductions in d_{4} on return to the reference temperature of $20^{\circ} \mathrm{C}$. The rate of dehydration increased with temperature.

Due to this effect, we could not follow the chain-melting (gelliquid crystal) transition of hydrated DPL. This transition is known to occur at $\sim 41^{\circ} \mathrm{C}$ for fully hydrated DPL, and at higher temperatures for DPL with lower hydrations [99].

By increasing the Eemperature of a dry DPL specimen, we observed a reduction in d_{4} from 5.6 to 4.3 nm at $75^{\circ} \mathrm{C}$. According to Chapman's data, this corresponds to the chain-melting transition of DPL containing 2% water.

Figure 22 shows the 11-order diffraction pattern we obtained in a 210 -minute scan of DPL in its lowest hydration at $20^{\circ} \mathrm{C}$. The lamellar spacing was 5.6 nm . The relative peak intensities were qualitatively the same as those obtained by Stamatoff [100] for a DPL specimen made with 2% water by the method of Powers and Clark [98].

Stamatoff's pattern had a higher signel/noise ratio than ours, and included orders 5 and 7, which were about 10% as intense as 2 and 3.

To find the effect of changing the temperature of a partially hydrated DPL specimen in the gel state, we cycled the temperature in the sequence $+20.0,-10.0,+20.0,-8.0^{\circ} \mathrm{C}$. The lamellar spacing, d_{4}, changed reversibly from 6.18 nm to 6.03 nm at the high and low temperature extremes. The relative intensities in the diffraction pattern did not change appreciably. Based on the data of Nagle and Wilkinson for thermal expansivity of DPL [101] this change of 0.15 nm is about three times larger than would be expected if the expansion were isotropic.
2) BrDPL Results

The mixture of brominated lecithins exhibited a broad transition in lamellar spacing centered around $0^{\circ} \mathrm{C}$, as shown in Figure 23. The diffraction patterns from which these curves are derived (Figure 24 (a) - (c)) were obtained in about five minutes each. The variation in beamstop spillover--the sharp peaks near the origin--is due to starting the scans at slightly different values of θ. The lamellar spacing was calculated from the position of the easily-monitored $h=4$ peak.

The high and low hydration states of BrDPL were prepared in situ in the same way as the hydrated and dehydrated DPL, above. The intermediate hydration state was prepared from fully hydrated BrDPL by flowing dry nitrogen through the specimen chamber for one hour at room temperature.

For these three hyaration states, the lamellar spacing appeared to be approaching maximum vaiues at the lowest temperature we could obtain, $-15.0^{\circ} \mathrm{C}$. At this temperature, the highest and lowest spacings were 6.2 and 5.8 nm . These are to be compared with our values at $20^{\circ} \mathrm{C}$ of 6.3 and 5.6 nm for DPL (gel) prepared similarly. Based on the assumption of a similarity of structure and lamellar spacing between gel DPL at room temperature and BrDPL at $-15^{\circ} \mathrm{C}$, the low, intermediate, and high hydrations discussed here and pictured in Figures 23 and 24 correspond to about 20,24 , and 28% water by weight.

To examine the stability of hydration of BrDPL when the temperature was changed, the intermediate-hydration BrDPL was cycled in temperature from +20.0 to -15.0 to $+20.0^{\circ} \mathrm{C}$ in $5.0^{\circ} \mathrm{C}$ increments. At these temperatures, d_{4} was reproducible to $10 \mathrm{pm}(0.1 \mathrm{~A})$ for the descending and ascending runs. This fact, along with results for DPL over a similar temperature range, were taken as evidence that the hydration of the lipids did not change over this 35° temperature interval. Changes in temperature above $25^{\circ} \mathrm{C}$ did produce hysteresis in d_{4}, amounting to about 0.2 nm when the specimen was taken to $40^{\circ} \mathrm{C}$ and returned to $20^{\circ} \mathrm{C}$. This apparent dehydration requires that the curves of Figure 23 be interpreted cautiously above $20^{\circ} \mathrm{C}$.
3) Degree of Lamellar Orientation

By monitoring the intensity of a fixed (in this case h=4) diffraction peak as θ was varied, the rocking curves of Figures 25 and 26
were obtained. For partially hydrated DPL at $25^{\circ} \mathrm{C}$ and BrDPL at +10 and $-15^{\circ} \mathrm{C}$, we found rocking curve widths of under $6 \mathrm{mrad}\left(0.4^{\circ}\right)$, fwhm. If a perfectly fine, nondivergent primary beam had been used, this number would roughly give the average angular deviation of the lamellae from planarity. Since the measured value was about the same as our beam divergence, it is an upper bound on the actual lamellar disorder in the specimens.

E. Attempted Wide-Angle Diffraction from DPL and BrDPI

In addition to lamellar diffraction, which is obtained in the lowangle region, phospholipids exhibit wide-angle x-ray diffraction, which indicates the distribution of acyl chains in planes parallel to the bilayer lamellae. In the chain-melting transition, the sharp 0.42 nm peak is replaced by a diffuse 0.46 nm band, indicating an increase in the disorder of the chains [99]. With the detector 4 cm from the specimen, and oriented with its anode parallel to the theta axis, wideangle diffraction was not observed as the specimen was oscillated about $\theta=0$.

Wide-angle diffraction is normally observed from bulk lipid specimens. The fact that it was not observed here may be due to the thinness ($\sim 3 \mu \mathrm{~m}$) of our specimen.

Figure 22. DPL lamellar diffraction at low hydration.

Figure 23. Lamellar spacing vs temperature for BrDPL
Estimated water contents:
[. 28% water
A 24% water

* 20% water

BrDPL - HIGH HYDRATION

Estimated water content: 28%

Figure 24(a). Temperature--and hydration--dependence of BrDPL diffraction patterns.

Figure 24(b). Temperature--and hydration--dependence of BrDPL diffraction patterns.

BrDPL - LOW HYDRATION
Estimated water cuntent: 20\%

Figure 24(c). Temperature--and hydration--dependence of BrDPL diffraction patterns.

Figure 25. Rocking curves for fourth-order lamellar reflection.
Top: DPL, $+25^{\circ} \mathrm{C}$
Center: BrDPL, $-15^{\circ} \mathrm{C}$
Bottom: BrDPL, $+10^{\circ} \mathrm{C}$

Figure 26. Rocking curves for fourth-order lamellar reflection, normalized, with background subtracted.

Top: DPI, $+25^{\circ} \mathrm{C}$
Center: BrDPL, $-15^{\circ} \mathrm{C}$
Bottom: BrDPL, $+10^{\circ} \mathrm{C}$

F. The Isomorphous Replacement Experiment

1) Rationale

In order to use an isomorphous replacement technique for phasing, the structures must be isomorphous. For determining electron-density profiles of DPL and BrDPL, isomorphicity entails at least that:

1. the lamellar spacings be the same
2. the water contents be the same
3. the chain orientations be the same.

The observed transition in lamellar spacing that occurs over a broad temperature range in BrDPL complicates the situation. In order to proceed with a phasing attempt, the following assumptions were made.

1. The transition in BrDPL is nearly complete at $-15^{\circ} \mathrm{C}$.
2. The BrDPL chains approach full extension at low temperature.
3. Specimens of BrDPL and DPL which have the same lamellar spacing in the gel state have the same water content.

Assumption one is based on Figure 23 . The fact that the change in lamellar spacing on cooling BrDPL is similar to the change for DPL supports assumption two. Also, the loss of higher orders (Figure 24) on heating BrDPL is consistent with a chain-melting transition for BrDPL.

The lamellar spacings observed for BrDPL and DPL in our hydrated state are both 6.3 nm and are close to Chapman's value for DPL in excess water (6.4 nm). Furthermore, the specimens could be dehydrated from this value, as evidenced by changes in lamellar spacing on heating. These facts support assumption three.
2) Data

Due to considerations discussed in the previous section, BrDPL at $-17.0^{\circ} \mathrm{C}$ and DPL at $20.0^{\circ} \mathrm{C}$ were used for the isomorphous replacement experiment. A specimen of BrDPL with the arbitrary choice of $d_{4}=5.81$ nm was used. Dry nitrogen was blown over a hydrated DPL specimen at $20^{\circ} \mathrm{C}$ until its lamellar spacing had the same value, 5.81 nm . The diffraction patterns used for the isomorphous replacement experiment are shown in Figure 27. The DPL ($20^{\circ} \mathrm{C}$) and $\operatorname{BrDPL}\left(-17^{\circ} \mathrm{C}\right)$ patterns were each collected in 80 minutes.

The program UIFRAX (Appendix C) was written and used to strip background from the patterns, compute peak integrals, and perform the Lorentz correction indicated in Equation 40. The output from DIFRAX was two sets of tentatively isomorphous values of $\left|F_{h}\right|$ to be used in the phasing program PHASE.

Background to be stripped consisted mainly of specular reflection and scattering from the glass sample supports. This background was intense in the low-angle region of the patterns, where it was sharply cut off by the beamstop. Attempts to directly subtract the background, using data from a blank sample support, were not successful. This is because the low-angle background depended very strongly on support size and position and on the initial value of θ for the scan.

The stripping portion of DIFRAX computed a sum-of-exponentials background curve based on data points (channel values) between the diffraction peaks and below the first order peak. Typically, the distance between peaks was 35 channe1s, and the number of points used in
the fit was five between each peak and 15 below the $h=1$ peak.
This procedure removed most of the background, but the values at the midpoints between peaks still deviated somewhat from zero. The deviation was offset order-by-order by fitting points near the midpoints on either side of a peak to a straight line, which was then subtracted from the peak. The final results of this stripping are shown in Figure 27 as the "background subtracted" patterns.

To remove noise from the patterns, the channel values Z_{i} were subjected to a three-channel averaging routine, to give smoothed values $\bar{Z}_{i}:$

$$
\begin{equation*}
\bar{z}_{i}=(1 / 3)\left(z_{i-1}+z_{i}+z_{i+1}\right) \tag{62}
\end{equation*}
$$

These smoothed values are shown in the bottom patterns of Figure 27.
The integrated intensity ($I_{i n t}$) was found for each discernible peak by adding the Z_{i}, using the midpoints between peak centroids as limits. For each peak $h,\left|F_{h}\right|$ was found from

$$
\begin{equation*}
\left|F_{h}\right| \propto \sqrt{h \cdot\left(I_{\text {int }}\right)_{h}} \tag{63}
\end{equation*}
$$

normalized so that

$$
\begin{equation*}
\sum_{h} F_{h}^{2}=100 \tag{64}
\end{equation*}
$$

The values of $\left(I_{i n t}\right)_{h}$ and $\left|F_{h}\right|$ for $D P L$ and $B r D P L$ are listed in Table 7.

Figure 27. Diffraction patterns used for isomorphous replacement.

Table 7. Integrated intensities and $|F|$ for DPL and BrDPL.

> BrDPL
> $\mathrm{d}=5.81 \mathrm{~nm}$
> $\mathrm{~T}=-17.0^{\circ} \mathrm{C}$

DPL

$$
\mathrm{d}=5.81 \mathrm{~nm}
$$

$$
\mathrm{T}=20.0^{\circ} \mathrm{C}
$$

$\underline{\text { h }}$	(I int $)^{\text {h }}$	$\underline{\left\|F_{h}\right\|^{\ddagger}}$	h	$\underline{(I n t) h}$	$\underline{\left\|\mathrm{F}_{\mathrm{h}}\right\|^{\ddagger}}$
1	127471	$7.67 \pm .03$	1	150485	$8.46 \pm .04$
2	1952	$1.34 \pm .03$	2	2093	$1.41 \pm .02$
3	2681	$1.93 \pm .02$	3	489	$0.84 \pm .02$
4	18475	$5.84 \pm .02$	4	9984	$4.36 \pm .02$
5	675	$1.25 \pm .02$	5	*	*
			6	1292	$1.92 \pm .02$
			7	*	*
			8	934	$1.89 \pm .02$

\# relative

* no distinguishable peak

Confidence intervals estimated as
$\pm 4 \delta \mathrm{~F}$, with

$$
\frac{\delta F}{F}=\frac{1}{2 h}\left[\left(I_{\text {int }}\right)_{h}\right]^{-1 / 2}
$$

3) Interpretation

The program PHASE (discussed on pages $68-72$ and listed in Appendix C) was used to find, for each reflection h, the phase factors most consistent with an isomorphous relationship between DPL and BrDPL. This relationship is characterized by a model in which the projected electron-density profiles differ by a Gaussian function of half-width w and position in the unit cell t .

The data environment of PHASE, for validation and for actual use, is diagrammed in Figure 18. Using the measured values F_{h} (DPL) and F_{h} (BrDPL), the program finds the "best" set of phases based on a figure of merit δ. The figure of merit is the mean relative deviation between actual and calculated values of F_{h} (BrDPL).

The results of Appendix A, based on arbitrary models, and corresponding to the top portion of Figure 18 , show that when t is cycled through a range of values including the correct one, δ is minimized for the correct t. This is the approach we used here, since t was not known.

The half-width of the isomorphous substituent, w, was estimated from known molecular gecmetry. Since the covalent radius of Br is $114 \mathrm{pm}[102]$ and the 9 and 10 positions on the hydrocarbon chain are displaced from each other by about 160 pm , the projected width of Br on the hydrocarbon chains should be about 390 pm . The value of w used in PHASE was therefore $200 \mathrm{pm}(2.0 \AA$).

The F values of Table 7 were used in PHASE, with several trial
values of t. Assuming the conventional view of lipid bilayers [5], and taking the plane midway between the hydrophilic headgroups as the unit cell origin, the minimum possible value for t is 1.9 nm if $\mathrm{d}=5.81 \mathrm{~nm}$. This is the position the Br substituent would occupy if the hydrocarbon chains were fully extended from the plane $x=d / 2$ and perpendicular to it.

Table 8(a) gives the results Erom PHASE for five reflections from BrDPL and six from DPL, over the range $t=1.6$ to 2.3 nm at 25 pm increments, and with $w=0.20 \mathrm{~nm}$. The three lowest values of δ were $0.14,0.20$, and 0.23 , at $t=2.115,1.925$, and 2.275 nm . The Fourier syntheses for these phase choices are shown in Figure 28. The first and third choices, corresponding to the top and bottom profiles, are unacceptable, since they require the substituent to have negative electron density. The second choice looks reasonable, and is very much in accord with profiles derived by other phasing methods [19, 21]. For this set, the computed scale factor by which the F_{h} (BrDPL) must be multiplied is 1.08 .

The result of using $w \neq 0.20 \mathrm{~nm}$ is shown in Table 8(c) For $t=$ 11.850 to 2.025 nm and $\mathrm{w}=0.10$ to 0.30 nm , the lowest δ was still the one for $w=0.20 \mathrm{~nm}$ and $\mathrm{t}=1.925 \mathrm{~nm}$.

Figure 29 is the Hargreaves plot [14] for the $\delta=0.20$ phase set discussed above (DPL ++--0-, BrDPL +-+--). Neither of the points (Δ) corresponding to the F_{8} reflection, which is absent in BrDPL, fits the phasing line. Figure 30 shows the profiles based on the 6-order results from PHASE, along with the two arbitrary choices for the 8th
order of DPL. Of the two, the bottom one (DPL +-0-0-) appears the more reasonable. Difference Fouriers corresponding to these profiles are given in Figure 31 .

The Patterson maps for the two lipids are reproduced in Figure 32. The Patterson function, which is the overall autocorrelation function of $P(x)$ for the crystal, is defined as

$$
\begin{equation*}
P_{\text {cryst }}(x)=\sum_{h=1}^{h \prime} F_{h}^{2} \cos (2 \pi h x / d) . \tag{65}
\end{equation*}
$$

The distance from the origin to a maximum in $P_{\text {cryst }}(x)$ corresponds to a vector between electron-rich points in the crystal. In light of the structures proposed above, the peak in the BrDPL Patterson marked with an arrow ($\mathrm{x}=1.4 \mathrm{~nm}$), could easily correspond to a composite of the headgroup $-\mathrm{Br}(1.2 \mathrm{~nm})$ and $\mathrm{Br}-\mathrm{Br}(1.9 \mathrm{~nm})$ distances.

Table 8(a). PHASE results for DPL and BrDPL -- substituent position varied.

SAMPLE A	E1っ15	OPL
SAMPLE E	E1-64	BROPL
REFLECTIJNS	6	
O-SPAこING	52.100	
HOJEL	GRUSSI	

Table 8（b）．PHASE results for DPL and BrDPL－－substituent at 1.925 nm ，halfwidth 0.20 nm ．

$\begin{aligned} & S \triangle M P L E \dot{~} \\ & S \triangle M P_{L} \equiv \theta \end{aligned}$		F1513 0pl						
		EL＋6A 6ROOL						
REFLESTICNS		\bigcirc						
O－SFajING＊		58.100						
WIOTM	H	2.000						
SHIFT	T	19.250						
MDOE：		gitussian						
INOGT DATA＝－AMPLITUDES				4.3503	0.080	1.9701		
1	$8.4 \in 0$ ？	1．4100	． 36.30					
5	7.6700	1.3403	1．9303	5.3400	1.25	3 J 3.00		
EELATIUE STRUGT		$\begin{gathered} \text { URE FicTors } \\ -2.0763 \end{gathered}$	For suastituent		－1．546	1 2.3129		
		3.6554	－1．4312					
QAW HARGREAVES COEFFIC IENTS A 6.1321					$\begin{aligned} & 0.8 C 0 \\ & =.8 C 8 \end{aligned}$.33010.0000		
			． 2298	－2．9436				
B	－3．7462		－． 6454	． 5290				－3．7428
BEST रESULTS								
noEx	ЈEV	4123436	6312	345	SLOEE	INTERCこ？	FミLK	
1	． 199	＋＋－J－	－＋－	＋－－ 0	1．3313	．3937	． 3713	
2	－ 303	＋＋＋3＋	＋＋	$\cdots+0$	．8531	－． 5599	－． 2236	
3	． 399	＋＋＋－ $3-$	＋	＋－－ 0	1．357	． 902 J	．2717	
＋	． 411	$++-+3$	＋	＋＋－ 3	1.2366	． 3536	． 3221	
5	． 417	＋－＋＋－	＋＋	－＋＋ 3	． 877 \％	－． 8935	－． 3023	
6	－432	＋＋－－ 2	$++$	＋－－ 3	1.091 ：	．6903	． 2305	
7	． 443	＋－－J＋	＋＋＋	－＋＋J	． 8165	－．9233	－． 2789	
1	－448	＋－＋ 3 ＊	＋－	－＋＋J	.8985	－．5973	－． 2926	
9	－$\rightarrow 65$	＋＋－＋	＋	+ ＋ 3	． 3752	－． 363 ？	－． 1925	
10	.497	＋－－－	＋	＋－－ 1	1． 2543	． 5383	． 21 E5	
11	． 556	＋－＋ $0+$	＋＋	－＋＋${ }^{+}$	． 916 C	－． 5119	－．1－34	
12	． 580	＋＋＋－J	＋	＋－－ 3	1.0304	． 5923	． 20 C	
13	． 584	＋－＋ 0	＋	＋＋＋］	． 850 －	－．6732	－．22－1	
14	－615	＋－－－	＋	＋－－ 0	1．0491	－ラ5 71	． 13 e8	
15	． 649	＋＋－＋ 1	＋	＋＋－ 2	1.223 －	．531 ${ }^{\text {－}}$	．214）	
16	． 680	＋＋＋＋J	－＋－	＋＋－ 0	1.2296	． 751 J	． 2579	
17	． 682	＋＋－－0	＋	－－－ 0	1.0767	． 7 C75	． $24+4$	
13	． 713	＋－＋0＋	$+\quad+$	－＋－ 0	． 8724	－． 5664	－． 1919	
19	． 722	＋＋＋${ }^{+}$	＋＋＋	$\cdots+0$	． 1252	－． 1483	－． 6503	
20	． 756	＋＋＋＋＋	＋＋＋	－－＋ 3	． 1129	－． 1716	－． 0581	
WORST RESULTS								
250	2.559	＋－－－－	$\cdots+\cdots+3$		． 0734	－1．4222	－． 4319	
＊ANGSTROMS								

Table 8 (c). PHASE results for DPL and BrDPL -- halfwidth and position of substituent varied.

Figure 28. Three top results from program PHASE, using six ordcrs.

Figure 29. Hargreaves' plot for DPL and BrDPL.

Figure 30. Fourier syntheses with two choices for 8 th order of DPL.
Top: 8th order omitted
Center: 8th order +
Bottom: 8th order -

Figure 31. Difference Fourier syntheses with two choices for 8th order of DPL. Top: 8th order omitted

Center: 8th order + Bottom: 8th order -

Figure 32. Patterson maps for DPL and BrDPL.

VI. CONCLUSIONS

A. Position Sensing Detector

The position sensing detector allowed diffraction patterns to be collected quickly. For example, the lamellar scans of BrDPL at various temperatures (Figure 24) were collected in about five minutes at each temperature. Using film (Polaroid type 57) in a cassette with a fluorescent screen, about ten hours were needed to obtain good resolution in the $h=4$ peak in a similar scan.

Another significant advantage of the position sensing detector was its usefulness for positioning specimens in the incident beam.

B. Electron Density Profiles

We have obtained electron-density profiles for DPL that are consistent with those found for phospholipid multilayers by other investigators $[21,22]$, who have used phasing techniques different from ours. Figure 30 shows the result derived from six diffraction orders, based on the hypothesis of isomorphous replacement. Inclusion of eight orders reduced the goodness-of-fit index of our phasing program, leaving a choice between (b) and (c) in Figure 30. We rejected (b), since it indicated features in the chain portion of DPL which are not consistent with other studies. The difficulty with the 8 th order could be due to a lack of isomorphicity, which is expected to have a more severe effect in the higher orders [14].

In Figure 30 (a) and (c) the peaks near the edges of the unit
cell are similar to those usually interpreted as the glyceryl-fatty acid ester of the phospholipids. These peaks are 2.2 nm from the center of the unit cell in our syntheses, in agreement with the value of 2.2 nm for hydrated egg lecithin/cholesterol multilayers [21,22].

The trough in the center of electron-density profiles of lipids has been attributed to disorder of the terminal methyl groups of the phospholipid molecules [22]. Deuterium magnetic resonance studies [103], using decanoic acid with various locations deuterated, support this view. The difference between our DPL and BrDPL profiles in this region may be due to relatively greater chain motion for BrDPL.

The location found for the bromine substituent in BrDPL was 1.92 nm from the unit-cell origin, equivalent to 0.98 nm from the center of the unit cell. The latter number is the average distance of the 9 and 10 positions from the end of a C_{16} chain. This fact indicates that the position found for the bromine is reasonable.

C. Location of the Isomorphous Substituent

Other locations might be preferred to the 9 and 10 positions for the heavy-atom substituent. For example, if bromine replaced a hydrogen on the terminal carbon of a $\mathrm{C}_{\mathrm{IS}}^{-}$chain, the result would be sterically identical to a C_{16} chain. Use of such an isomorph might circumvent the broad transition in lamellar spacing we observed, and might result in specimens which were more isomorphous from crystallographic and biological points of view.
D. The Chain Transition of BrDPL

Although the breadth in temperature of the chain transition observed for BrDPL complicated the experimental aspects of isomorphous replacement, this breadth is interesting in its own right.

Techniques which characterize the chain-melting transition of phospholipids are well-established [99]. In addition to low-angle x-ray diffraction, which we have successfully performed on BrDPL, principal techniques include wide-angle diffraction and calorimetry. The experimental signs of chain melting, as temperature is increased, are as follows.

1. Lamellar spacings in low-angle x-ray diffraction patterns are reduced by about 15%, and higher-order diffraction peaks vanish.
2. In the wide-angle diffraction pattern, which monitors chain distribution parallel to the lamellar plane, the sharp $4.2 \AA$ peak is replaced by a diffuse $4.6 \AA$ peak.
3. A calorimetric endotherm is observed.

In accordance with (1), our low-angle data indicate that BrDPL undergoes a chain-melting transition (Figure 24). Data for BrDPL corresponding to (2) and (3), which would be highly desirable, are pending in the work of H.H. Wickman and J.C. Reinert.

Our low-angle results for BrDPL are unusual in that the transition, centered near $0^{\circ} \mathrm{C}$, had a breadth of $20^{\circ} \mathrm{C}$. One-component phospholipid preparations generally have a sharp chain transition, whereas multicomponent lipids have broad transitions [105]. Although our specimens
were thin, flat, highly oriented multilayers, and most phase transition work to date has been performed on bulk lipids, it is not apparent that this difference should affect the phase transitions. In addition, our BrDPL was a mixture of two nearly identical species. However, an explanation of the transition breadth simply in terms of a two-component, thermodynamic phase diagram is elusive, since there was no evidence in our diffraction for the coexistence of melted and ummelted phases.

Although our understanding of the BrDPL transition is incomplete, and needs to be supplemented by data from wide-angle diffraction and calorimetry, several points may be emphasized at this time.

1. From -17 to $+60^{\circ} \mathrm{C}$, BrDPL formed a highly-oriented, lamellar structure. Our diffraction results gave an electron-density profile for low-temperature $\left(-17^{\circ} \mathrm{C}\right)$ BrDPL having the essential features (headgroup peak and central trough) obtained by others for nonbrominated phospholipids in the gel (unmelted) state. In addition, the profile showed bromine where it would be expected if the acyl chains were fully extended. At all temperatures studied, the observed lamellar structure put constraints on the location of bromine that would not apply, for example, in the case of analogous, brominated hydrocarbons.
2. From examination of space-filling, molecular models, it is clear that the presence of bromine should seriously disrupt van der Waals forces that hold the acyl chains together. For example, if the distance between acyl chains were doubled, as is reasonable near the bromine atoms, then the van der Waals attraction, which varies as r^{-6}, should be reduced by a factor of about 50.
3. The steric effect of bromine should also seriously reduce the excluded volume interaction. In other words, rotational isomers of the acyl chains, which could not form if the chains were packed tightly together, could freely form and interconvert.

The situation with bromine is different from that with cis double bonds, which do not cause the chain transition to be broad [106], but which might be expected to be as disruptive sterically as bromine. Actually, space-filling models of long chains with cis double bonds may be packed together with the chains fully extended quite as well as models of fully-extended, unsaturated hydrocarbons. The packing geometry which allows this is consistent with the fact that phosphatidyl ethanolamines (gel) with one cis double bond have lamellar spacings 0.3 nm shorter than do their unsaturated hornologs in the gel state [106].

In contrast, it is not possible to pack the acyl chains tightly in a BrDPL model, unless gauche rotamers are introduced. Even then, registry of hydrogen atoms is not nearly so good as it is with unsubstituted chains, either unsaturated or cis-double bonded.

Considerations of positional constraints, van der Waals attractions, and excluded volume repulsions are central to current theories $[105,107$, 108] of phospholipid phase transitions. BrDPL is structurally unusual in that it has positional constraints different from brominated hydrocarbons, and attractive and repulsive interactions much different from the simpler phospholipids that have been treated in current theories. For these reasons, and because of the unusually broad transition observed, BrDPL and the individual species which comprise it appear to be worthy candidates for further experiment and for theoretical analysis.

BIBLIOGRAPHY

1. Quinn, P.J. (1976) The Molecular Biology of Cell Membranes, University Park Press, Baltimore.
2. Ansell, G. B., Hawthorne, J.N. and Dawson, R.M.C., eds. (1973) Form and Function of Phospholipids, Elsevier Scientific Publishing Company, New York.
3. Danielli, J.F. and Davson, H. (1935) J. Cell. Comp. Physiol. 5, 495-508.
4. Robertson, J.D. (1959) Biochem. Soc. Symposia 16, 3-43.
5. Singer, S.J. and Nicolson, G.L. (1972) Science 175, 720-731.
6. Edidin, M. (1974) Ann. Rev. Biophys. Bioeng. 3, 179-201.
7. Chapman, D., Williams, R.M. and Ladbrooke, B.D. (1967) Chem. Phys. Lipids 1, 445-475.
8. Ladbrooke, B.D. and Chapman, D. (1969) Chem. Phys. Lipids 3, 304-367.
9. Ladbrooke, B.D., Williams, R.M. and Chapman, D. (1968) Biochim. Biophys. Acta 150, 333-340.
10. Reinert, J.C. and Steim, J.M. (1970) Science 168, 1580-1582.
11. Shipley, G.G. (1973) in Biological Membranes (Chapman, D. and Wallach, D.F.H., eds.) 2, 1-89, Academic Press, New York.
12. Worthington, C.R. (1974) J. Biol. Phys. 2, 1-25.
13. Levine, Y.K. (1972) Prog. Biophys. Mol. Biol. 24, 1-74.
14. Hargreaves, A. (1957) Acta Cryst. 10, 196-198.
15. Sherwood, D. (1976) Crystals, X-Rays and Proteins, John Wiley \& Sons, New York.
16. Reinert, J.C., Lowry, R.R. and Wickman, H.H. (1978) Lipids 13, 85-87.
17. McElhaney, R.M. and Tourtellotte, M.E. (1969) Science 164, 433-434.
18. Andrews, S.B., Faller, J.W., Barrnett, R.J. and Mizuhira, V. (1978) Biochim. Biophys. Acta 506, 1-17.
19. McIntosh, T.J., Waldbillig, R.C. and Robertson, J.D. (1976) Biochim. Biophys, Acta 448, 15-33.
20. Waldbillig, R.C., Robertson, J.D. and McIntosh, T.J. (1976) Biochim. Biophys, Acta 448, 1-14.
21. Franks, N.P. (1976) J. Mo1. Biol. 100, 345-358.
22. Levine, Y.K. and Wilkins, M.H.F. (1971) Nature NB 230, 69-72.
23. Stamatoff, J.B., Krimm, S. and Harvie, N. (1975) Proc. Nat. Acad. Sci. USA 72, 531-534.
24. Blaurock, A.E. (1971) J. Mol. Biol. 56, 35.
25. Worthington, C.R. and King, G.I. (1971) Nature 234, 143.
26. Stamatoff, J.B. and Krimm, S. (1976) Biophys. J. 16, 503-516.
27. Worthington, C.R., King, G.I. and McIntosh, T.J. (1973) Biophys. J. 13, 480-494.
28. Worthington, C.R. and Gras, W.J. (1972) Biophys. Soc. Annu. Meet. Abstr. 12, 255.
29. Worthington, C.R. and McIntosh, T.J. (1973) Nature-Biology 245, 97-99.
30. Borkowski, C.J. and Kopp, M.K. (1968) Rev. Sci. Instrum. 39, 1515-1522.
31. Robinson, A. (1978) Science 199, 39-42.
32. DuPont, Y., Gabriel, A., Chabre, M., Gulik-Krzywicki, T. and Schechter, E. (1972) Nature 238, 331-333.
33. Schelten, J. and Hendricks, R.W. (1975) J. Appl. Cryst. 8, 421-429.
34. Cork, C., Hamlin, R., Vernon, W., Xuong, N.H. and Perez-Mendez, V. (1975) Acta Cryst. A31, 702-703.
35. Rutherford, E. and Geiger, H. (1908) Proc. Roy. Soc. A81, 141.
36. Charpak, G. (1970) Ann. Rev. Nucl. Sci. 20, 195-253.
37. Glasse1, P. (1977) Nuc1. Instr. and Meth. 140, 61-70.
38. Frieze, Q., Dhawan, S., Disco, A.A., Fajardo, L., Majka, R., Marx, J.N., Nemethy, P., Sandweiss, J. and Slaughter, A. (1976) Nuc1. Instr. and Meth. 136, 93-97.
39. Baksay, L., Boh,, A., Foeth, H., Staude, A., Lockman, W., Meyer, T., Rander, J., Schlein, P., Webb, R., Bozzo, M., Ellis, R., Naroska, B., Rubbia, C. and Strolin, P. (1976) Nucl. Instr. and Meth: 133, 219-229.
40. Dwurazny, A., Waligorski, M., Jelen, K. and Ostrowski, K.W. (1976) Nuc1. Instr. and Meth. 135, 197-202.
41. Cheng, D.C., Kozanecki, W.A., Piccioni, R.L., Rubbia, C., Sulak, L.R., Weedon, H.J. and Whittaker, J. (.1974) Nucl. Instr. and Meth. 117, 157-169.
42. Rand, R.E., Hughes, E.B., Kose, R., Martin, T.W., MacGregor, W.I. and Schilling, R.F. (1974) Nuc1. Instr. and Meth. 118, 189-202.
43. Bouclier, R., Charpak, G., Chesi, E., Dumps, L., Fischer, H.G., Hilke, H.J., Innocenti, P.G., Maurin, G., Minten, A., Naumann, L., Piuz, F., Santiard, J.C. and Ullaland, O. (1974) Nucl. Instr. and Meth. 115, 235-244.
44. Charpak, G. (1974) IEEE Trans. NS-21, 38-44.
45. Pollvogt, U. and Kurz, R.J. (1974) IEEE Trans. NS-21, 70-74.
46. Heintze, J. and Walenta, A.H. (1973) Nucl. Instr. and Meth. 111, 461-465.
47. Malowski, B. and Sadoulet, B. (1973) Nucl. Instr. and Meth. 111, 561-565.
48. Buchanan, J., Coulson, L., Gabitzsch, N., Hungerford, E.V., Mutchler, G.S., Persson, R., Scott, M.L., Windish, J. and Phillips, G.C. (1972) Nuc1. Instr. and Meth. 99, 159-172.
49. Parker, S., Jones, R., Kadyk, J., Stevenson, M.L., Katsura, T., Peterson, V.Z. and Yount, D. (1971) Nucl. Instr. and Meth. 97, 181-185.
50. Bouclier, R., Charpak, G., Dimcovski, Z., Fischer, G., Sauli, F., Coignet, G. and Flugge, G. (1970) Nucl. Instr. and Meth. 88, 149-161.
51. Borkowski, C.J. and Kopp, M.K. (1977) IEEE Trans. NS-24, 287-292.
52. Breskin, A., Charpak, G. and Sauli, F. (1976) Nuc1. Instr. and Meth. 136, 497-503.
53. Borkowski, C.J., Kopp, M.k. and Harter, J.A. (1975) IEEE Trans. NS-22, 896-900.
54. Borkowski, C.J. and Kopp, M.K. (1975) Rev. Sci. Instrum. 46, 951-962.
55. Stumpel, J.W., Sanford, P.W. and Goddard, H.F. (1973) J. Phys. E: Sci. Instrum. 6, 397-400.
56. Borkowski, C.J. and Kopp, M.K. (1971) IEEE Trans. NS-17, 340-349.
57. Harvey, B.G., Mahoney, J., Puhlhofer, F.G., Goulding, F.S., Landis, D.A., Faivre, J.C., Kovar, D.G., Zisman, M.S., Meriwether, J.R., Cosper, S.W. and Hendrie, D.L. (1972) Nucl. Instr. and Meth. 104, 21-32.
58. Gerber, M.S., Miller, D.W., Schlosser, P.A., Steidley, J.W. and Deuchtman, A.H. (1977) IEEE Trans. NS-24, 182-187.
59. Alberi, J., Fischer, J., Radeka, V., ROGERS, L.C. and Schoenborn, B. (1975) Nuc1. Instr. and Meth, 127, 507-523.
60. Christie, P., Evans, K.D., Griffiths, J., Mathieson, E. and Murphy, P. (1975) Nuc1. Instr. and Meth. 130, 279-284.
6.1. Homeyer, H., Mahoney, J. and Harvey, B.G. (1974) Nuc1. Instr. and Meth. 118, 311-312.
61. Do1ce, S.R. (1974) Rev. Sci. Instrum. 45, 499-505.
62. Hough, J. and Drever, R.W.P. (1972) Nuc1. Instr. and Meth. 103, 365-372.
63. Miller, G.L., Williams, N., Senator, A., Stensgaard, R. and Fischer, J. (1971) Nucl. Instr. and Meth. 91, 389-396.
64. Atac, M., Bosshard, R., Erhon, S. and Schlein, P. (1977) IEEE Trans. NS-24, 195-199.
65. Sitar, B., Stubbs, R.J. and Beare, J.M. (1976) Nucl. Instr. and Meth. 134, 267-270.
66. Birk, M., Breskin, A. and Trautner, N. (1976) Nuc1. Instr. and Meth. 137, 393-395.
67. Lacy, J.L. and Lindsey, R.S. (1974) Nucl. Instr. and Meth. 119, 483-498.
68. Lim, C.B., Chu, D., Kaufman, L., Perez-Mendez, V. and Sperinde, J. (1974) IEEE Trans. NS-21.
69. Cork, C., Fehr, D., Hamlin, R., Vernon, W., Xuong, N.H. and Perez-Mendez, V. (1974) J. Appl. Cryst. 7, 319-323.
70. Lee, D.M., Sobottka, S.E. and Thiessen, H.A. (1974) Nuc1. Instr. and Meth. 120, 153-156.
71. Perez-Mendez, V. and Parker, S.I. (1974) IEEE Trans. NS-21 45-50.
72. Cork, C., Fehr, D., Hamlin, R., Vernon, W., Xuong, N.H. and Perez-Mendez, V. (1974) J. Appl. Cryst. 7, 319-323.
73. Kaplan, S.N., Kaufman, L., Perez-Mendez, V. and Valentine, K. (1973) Nucl. Instr. and Meth. 106, 397-406.
74. Allemand, R. and Thomas, G. (1976) Nucl. Instr. and Meth. 137, 141-149.
75. Procedings of the Workshop on X-Ray Instrumentation for Synchrotron Radiation Research (1978). Stanford Synchrotron Radiation Laboratory.
76. Elad, E. and Sareen, R. (1974) IEEE Trans. NS-21, 75-84.
77. Ostgaard Olsen, J. (1977) Nuc1. Instr. and Meth. 140, 29-35.
78. Kellogg, E., Henry, P., Murray, S., VanSpeybroeck, L. and Bjorkholm, P. (1976) Rev. Sci. Instrum. 47, 282-290.
79. Wijnaendts von Resandt, R.W., den Harink, H.C. and Los, J. (1976) J. Phys. E: Sci. Instrum. 9, 503-509.
80. Timothy, J.G. and Bybee, R.L. (1975) Rev. Sci. Instrum. 46, 1615-1623.
81. Lawrence, G.M. and Stone, E.J. (1975) Rev. Sci. Instru. 46, 432-435.
82. Price, W.J. (1958) Nuclear Radiation Detection, McGraw-Hill, New York.
83. Stewart, J.L. (1958) Circuit Analysis of Transmission Lines, John Wiley and Sons, N.Y.
84. Holbrook, J.G. (1966) Laplace Transforms for Electronic Engineers, Pergamon Press, N.Y.
85. White, R.E. and Naylor, H. (1976) Nucl. Instr. and Meth. 135, 403-404.
86. Halliday, D. and Resnick, R. (1963) Physics for Students of Science and Engineering, Wiley, New York.
87. Ouseph, P.J. (1975) Introduction to Nuclear Radiation Detectors, Plenum Press, New York.
88. Gray, D.E., ed., (1975) American Institute of Physics Handbook, 3rd edition, McGraw-Hill, New York.
89. Azaroff, L.V. (1968) Elements of X-Ray Crystallography, McGraw-Hill, New York.
90. Hauptman, H.A. (1972) Crystal Structure Determination, Plenum Press, New York.
91. Wilson, A.J.C. (1942) Nature 150, 151-153.
92. Buerger, M.J. (1959) Vector Space, John Wiley and Sons, Inc., New York.
93. Lesslauer, W. and Blasie, J.K. (1972) Biophys. J. 12, 175-190.
94. Hosemann, R. and Bagchi, S.N. (1962) Direct Analysis of Diffraction by Matter, North-Holland Publishing Company, Amsterdam.
95. Ramachandran, G.N. and Srinivasan, R. (1970) Fourier Methods in Crystallography, Wiley-Interscience, New York.
96. Ramaseshan, S. and Abrahams, S.C., eds. (1975) Anomalous Scattering, Munksgaard, Copenhagen.
97. Powers, L. and Clark, N.A. (1975) Proc. Nat. Acad. Sci. USA 72, 840-843.
98. Chapman, D., Williams, R.M. and Ladbrooke, B.D. (1967) Chem. Fhys. Lipids 1, 445-475.
99. Stamatoff, J.B. Personal communication.
100. Nagle, J.F. and Wilkinson, D.A. (submitted 1977) Biochim. Biophys. Acta.
101. Cotton, F.A. and Wilkinson, G. (1972) Advanced Organic Chemistry, Interscience, N.Y.
102. Seelig, J. and Niederberger, W. (1974) Biochemistry 13, 1585-1588.
103. Temoleton, D.H. and Philips, J.C. (1978) Science 201, 257-259.
104. Nagle, J,F. (1973) J, Chem, Phys. 58, 252-264.
105. Chapman, D., Byrne, P, and Shipley, G.G. (1966) Proc. Roy. Soc. A290, 115-142.
106. Caille, A., Rapini, A., Zuckerman, M., Cros, A. and Doniach, S. (1978) Can. J. Phys. 56, 348-357.
107. Kanehisa, M. and Tsong, T. (1978) J. Am. Chem. Soc. 100:2, 424-431.

PLEASE NOTE:

Appendices contain computer print-out and small print. Filmed as received. UNIVERSITY MICROFILMS INTERNATIONAL

APPENDICES

APPENDIX A

Validation of Program PHASE

To determine that the program PHASE performed properly, artificial F data, for which the phase factors were known, were fed to it. The output from PHASE was then compared with the known phases. The artificial data were obtained from program PREDICT, which calculated the sampled Fourier transform of a sum of Gaussian functions described by input parameters.

Table 9 gives the input and output for the two isomorphous sets of PREDICTed data used in this test. Table 10 contains the corresponding result from PHASE for five orders. The spacing used in PHASE (60.1, arbitrary units) was different from the spacing used in PREDICT (60.0), in order to see the effect of small errors in this value.

A range of trial values for halfwidth and position were used for the isomorphous substituent. The correct values were associated with the lowest deviation and with the correct set of phases.

Figure 33 shows the Fourier syntheses of the F data using the correct phases. This figure shows the effect of series truncation on the appearance of a correctly phased electron-density profile.

Table 9. Isomorphous data from PREDICT,

$$
\text { PERIOD }(\text { SPACING })=60.0
$$

SET 1

Gaussians

Height	Halfwidth	Position
5.0	3.0	3.0
-2.0	1.0	30.0

SET 2

Gaussians

Height	Halfwidth	Position
5.0	3.0	3.0
-2.0	1.0	30.0
0.25	2.0	17.0

h	F	h	F
0	(4.62)	0	(4.79)
1	5.59	1	5.56
2	3.04	2	2.88
3	2.96	3	3.04
4	0.26	4	0.36
5	0.64	5	0.54
6	-1.07	6	-1.10
7	0.04	7	0.12
8	-0.99	8	-0.99
9	0.23	9	0.18
10	-0.63	10	-0.61
11	0.37	11	0.39
12	-0.43	12	-0.44
13	0.35	13	0.35
14	-0.33	14	-0.32
15	0.29	15	0.29
16	-0.26	16	-0.26
17	0.23	17	0.23
18	-0.20	18	-0.20
19	0.17	19	0.17
20	-0.15	20	-0.15

Table 10 . PHASE results with artificial "data" from PREDICT.

Figure 33. Fourier syntheses of arbitrary Gaussian-sum models. Top: 5 terms Center: 10 terms Bottom: 19 tcrms

APPENDIX B

Stepping Motor Schematics

CARD NUMBERING CONVENTION

$B a$ is pin a of card B
A7 is pin 7 of card A
ON ALL CARDS, $21=+5 \mathrm{~V}, \quad 22=$ GND

CARDS

A	DISPLAY
B	UP/DOWN COUNTER *
C	COMPARATOR1
D	COMPARATOR2
E	CLOCK
F	RUN/STOP/JOG
G	DISTRIBUTOR/REVERSE

* Kindiy provided by Dr. E.D. Salin

Figure 34. Circuit cards for stepping-motor control.

JUMPERS IN CHASIS
 FOR CARD-EDGE
 CONNECTOR SOCKETS

ALL CARDS: $\quad 21=+5 \mathrm{~V}, \quad 22=\mathrm{GND}$
CARDS A, B , C, D (Binary Coded Data)
Al - Ba - Ca - Da
$A 2-B b-C b-D b$
ETC THROUGH 20 bits $=5$ digits, 4 bits each
A20 - Bx - Cx - Dx
CARD A DISPLAY
NO ADDITIONAL JUMPERS
CARD B COUNTER
B21-B1 +5 V
B5 - G3 count down
B6 - G2 count up
CARDS C, D COMPARATORS
Cz - Dy EQ1
Dz - F8 EQ1+2
CARD E TIMER
E5 - F12 reset clock on STP
E20-E19 trimpot for frequency can be inserted here

CARD F RUN/STOP/JOG
F12-E5
F11-G7 555 monostable
F8 - Dz EQ1+2
CARD G DISTRIBUTOR

$$
\begin{array}{ll}
\text { G14 - F7 } & \text { reverse } \\
\text { G7 - F11 } & 555 \text { monostable }
\end{array}
$$

Figure 35. Chasis jumpers.

front panel

ERONI PANEL SHITCHES

ZERO DISPLAY

PEROID 2

$0^{F 13}$

RUN

UP

DOWN

Figure 36. Front panel connections.

Figure 37. Display circuit and other BCD connections.

Figure 38. Up/down-counter circuit.

Figure 39. BCD comparator circuit.

Figure 40 . Timer circuit.

Figure 41. Run/stop/jog circuit.

Figure 42 . Distributor/reverse clrcuit.

Figure 43. Control logic for stepping-motor drive.

MOTOR CONNECTION - BACK PANEL

		PHASE	PIN	PLUG	MOTOR
5	6	01	5	Red	Red
		中2	6	Green	Green
		¢ 3	3	Red/white	Orange
3	4	¢4	4	Green/white	Blue
		¢ 5	1	White	White
1	2	¢6	2	Black	Black

SOCKET
(EXTERNAL)

Figure 44. Motor connection.

APPENDIX C

Computer Programs

```
PROGDSM DMASE (INDUT=/15J, OUTFUT=/150)
    R.LYTZ 14 GUG 77 CSU CEC GYGER
ISOMCRPHOUS REDLACEMENT ALGOFITHM
FOR DIFFFACTICH FROG MLLTILAYESS.
OUTPUT GIVES CALCULATES PHASES.
SUЯROUTINES REOUIRED
    STE FOURIER TRANSGORY OF RECTANGLE
    GTP FOURIER TRANSFORM OF GAUSSIAN
    FIT LINEAR CURVEFIT. CCMMCN /GFIT/
    OACK BIT MANIFULATION FOR PHASE STORAGE
            ALTEFNATE ENTPY UNDACK
    SYNCOS COSINE FCURIE? SYNTHESIS
    USPLH IMSL LP OLOT
DATA DECK
    NR, MOO,IOUT {NR=O STOPS EXECUTICN\
    O,W1,WINC,NW,T1, IINC,NT
    MEAOA (BA1O)
    FA(J),J=i,NF
    HEAOS (8A13)
    FY(J),j=1,NQ
ETC
OEOGEAM VAFIAELES
IOUT CITFUT FCGMAT
    \therefore SUMMARY C*!_Y
    : STACK FCF EACH (T.W)
    2 STACK ANO LO FLOTS FOR ESCH (T.W)
HEACA INPUT DATA ICEMTIFICATION
HEAD?
O C SFACING
NR NUMBER OF REFLECTIONS
MOO =O FECTANGULAR MCEEL
        CTHERhISE GAUSSIAN MODEL
W HALF-WIDTH OF SURSTITUENT
T FOSETION CF SUESTITUENT IN CELL
TI.H: FIEST GALUES FOR T.W
TINC,WINC INCREMENTS FOR T.N
NT,NW NUMEER OF VALUES FOR T,N
FA,FD STFUCTURE FACTCR YCOLLI--INFUT OATA
PA,DS DHASE ARRAYS
F3C CALCULATEC VALUE 3F FG
HA.HE HAFGEEAVES OLOT VALUES. WITHOUT PHASES
HPA,HPG HARGZEAVES FLOT VALUES. WITH DHASES
J.JA.JE QEFLECTICN INOEX
OSTK(I) CEVIATION STACK
PHSTK(I) EHASE STACK
    I=1,\ldots..NS בEST FESULTS
    I=NSI=NS+1 wCEST QESULT
DEY MEAR RELATIVE DEVIATICN GETWEEN FG ANC FGC
SLOPE,YIF:T VALUES FFGM HARGFEAVES PLST
NAMES ENOING IN Z ARE FCR OVERALL SUMMARY TABLE:
    WZ,TZ,PHZ,DEVZ
COSMCN /CFIT/ HPA,HPG,NR,SLOFE,YINT
```

```
    DIYENSION WZ(200),TZ(230),PHZ(200),DEVZ(200)
    OIYENSISN FA(10), FB(10), PA(10), P3(10)
    OIMENSIDN SCAL(10)
    OIMENSION TR(10)
    OIMENSION HA(10), H3(10), HPA(10), HPG(10)
    OIMENSION OSTK(21), PHSTK(21)
    DIMENSION HEAOA(3), HEADB(8)
    INTEGER SIGNA(10),SIGNG(10), PLUS,HINUS,ZERO
    plot ARRAYS
    OI4ENSION A (10,2), B(10,2)
    OIMENSION PL(160), IMAGE(5:51)
    OIAENSION X(101), Y(101,2)
C
C
    EQUIYALENCE (PA1,PA(1)), PA2,PA(2)), (PA3,PA(3)), (PA4,PA(4))
    EQUIVALENCE (FA5,PA(5)), (PA6,PA(6)), (PA7,PA(7)), (PA8,PA(8))
    EQUIVALENCE (PA9,PA(9)), (PA10,PA(10))
    EQUIVALENCE (PB1,PG(1)), (PG2,PB(2)), (PG3,PB(3)), (P94,PE(4))
    EQUIVALENCE (P85,PB(5)), (PB6,PB(6)), (PB7,PG(7)), (PG8,PE(8))
    EQUIVALENCE (P89,PG(9)), PS10,PG(10))
    DATA FL/1EO*IH /
    JATA PLUS/IH+/, MINUS/IH-/, ZERO/IHO/
    JATA C1/1.47566/
    C1=SQRT((PI*LN(2))
    FORMAT(1H1)
    FORMAT(8A10)
    FORMAT(1H0,T5,*SAMPLE &*,T20,8A10)
    FORMAT(T5,*SAMPLE 8*,T20,8A10)
    FORMAT (1HO, [5,*REFLECTIONS*,T20,I3)
    FORMAT(T5,*D-SPACING*,T20,F\tilde{.3)}
    FORMAT(T5,*WIDTH*,T2D,F6.3)
    FORMAT (T5,*MOOEL*,T2G,*RECTANGULAR*)
    FORMAT (T5,*SHIFT*,T20,F5.3)
    FORMAT (TS,*MODEL*,T20,*GAUSSIAN*)
    FORMAT(:HO,T5,* INFUT DATA--AMPLITUNES*:
    FORMAT(IHO,TS,*RELATIVE STRUCTURE FACTORS FOR SUBSTITUENT*)
    FORMAT (1HO,T5,*FAW HARGREAVES COEFFICIENTS*)
    FORMATIT5,*A*,T10,10F10.41
    FORHAT(T5,*S*,T10,10F10.4)
    FORMAT(1HG,T5,*BEST RESULTS*)
    FORMAT(1HO,T5,*WORST RESULTS*)
    FORMATISX,*INCEX*,5X,*DEV A*,= 12,* 3*,=12,
    * 5X,*SLOPE INTERCEPT PEAK*I
    38 FORMAT(1X,IT,F9.3,3X,={1X,A1),3X,={1X,A1),4F10.4}
    40 FORMAT(15X,*WIDTH POSITION DEVIATION*,
    * * A*,=I2,* B*,= I21
    FORMAT(5X,55,3F10.4,4X,=(1X,A1),4X,=(1X,A1))
    FORMAT(1HO,T1O,*BEST FOURIER*)
    FORMATIIHO,T1O,*SECONO BEST FOURIER*I
    InPuT Data.
    CALL PACKIPA,PS,O,HOROS
130 CONTINUE
    IHT=0
    REAU*,NR,MOD,IOUT,SCALE
    IF (NR.EQ.O) STOP
    REAO*,O,W1,HINC,NN,TI,TINC,NT
    READ 11,HEAOA
    REAO*, (FA(J),J=1,NR)
    REAO 11,HEAOE
    READ*,(FB(J),J=1,NR)
```

```
        00 110 J=1,NR
        SCAL(J)=FB(J)
        IF (FB(J).EQ.C.0) SCAL(J)=SCALE
    110 CONTINUE
C
    W=W1-HINC
    DO 705 NWH=1,NH
    H=H+HINC
        LOOP OV T
        T=TI-TINC
        00 700 NTT=1,NT
        INT=IHT+1
        T=F+TINC
C
C
    P=1.0
        IF (MOD.EQ. O) GO TO 135
        0O 136 J=1,NR
        S=FLOAT(J)/O
    130 TR(J)=GTR(S,P,H,T)
        60 TO 140
    135 CONTINUE
        00 137 J=1,MR
        S=FLOAT (J)/O
    137 TR(J)=STR(S,P,W,T)
    140 CONTINUE
C
C
            GENERATE RAN HARGREAVES NUMEERS
        00 150 J=1.NR
        TRJ=TR(J)
        IF(TRJ.NE.0.0) GO TO 145
        WRITE*, D,H,T,J
        STOP \notFRJ=0 IN OO 150 OF PHASEF
    145 HA(J)=FA(J)/TRJ
    150 HE{J)=F3{J)/TRJ
C
        NS=20
        IF (IOUT.EQ.O) NS=1
        NS:=NS+1
        KA=0
        KB=0
        BOEV=1.0E6
        HDEV=0STK(NS 1)=0.0
        $0 155 J=1,NS
    155 OSTK(J)=1.0E5
        DO 16C J=1,NR
        PA(J)=-1.0
        PB(J)=-1.0
    160 CONTINUE
        PA(1)=+1.0
        PG(1)=+1.0
        NR1=NR-1
```

C DC 3EO OEFMUTES PA, OO 30J
PEPMUTES FE.
NA2=NA3=NA4=NL5=NA5=NA7=NA3=NLG=NA10=1
GO TC (202,203.204,20E,2こE.207,208,207,210) NF1
210 IF(FA(1:).dE.C.0) H:1:O=2
209 IF(FA(9).\E.G.J)NAG=2
208 IF(FA(Q).!!こ.0.0) NAg=2
207 IF(FA(7).NE.0.O) NA7=2
20E IF(FA(E).NE.0.0) NAG=2
205 IF(FA(5).NE.C.O) NA5=2
204 IF(FA(4).NE.U.O) :NA4=2
203 IF(FA(3).NE.J.E) :NA 3=2
202 FF(FA{2).NE.0.0) NAL2=2
O 350 JL10=5,NA: 3FA1O=-*N:C
OC 350 JAG=1,NAG FDAG=-FAO
OO 350 JAE=1,NAB JPAB=-F4B
00 350 JA7=1,NA7 FPA7=-PA7
OO 350 JAE=1,NAG FPAG=-PA6
OO 350 JAS=1,NA5 SPAラ=-PAS
00 350 JALT:1,NALL SPAL=-DAL
JO 350 JAS=1,NAS3 SFA3=-FA3
OO 350 JAQ = 1,NA2 5FAZ=-FA2
KA=KA+1
00 230 J=1,NF
HPA(J)=HA(J)*OA(J)
230 CONTINUE
NB2=NB3=N34=N35=N S6=NE7=N8B=N39=NE10=1
GC TC (252,253.2EL,255,256,257, <5C,25G, <EO) NE1
2\&0 IF (F3(10).NE.0.0) NBLU=2
259 IF (F3(G).NE.C.N) NgO=2
259 IF (EE(a).NE.U.C) NBP=2
257 IF (Fヨ(7).AE.C.C) N37=2
256 IF (FE(E).NE.C.0) NEE=2
255 IF (F3(5).NE.0.0) NS5=2
254 IF (FS(L),NE.G.O) NB4=2
253 IF (Fヨ(3),NE.0.0) NB3=2
252 IF (F3(2).NE.0.0) NP2=2
00 300 JE10=1,N21C SP910=-PO1C
00 300 J89=1.N59 SPG9=-P9C
OO 30S JE8=1,N98 \$P98=-F38
00 300 JE7=1.N97 \$097=-p97
00 300 J8E=1,N96 3P96=-036
00 300 J8E=1.N:95 SP95=-095
00 300 JE4=1.NR4 EOS4=-F24
00 300 JE3=1.NS3 SPE3=-P93
00 300 JE2=1, NQ2 SPG2=-ロき2
k
00 250 J=1.NP
HOS(J)=HE(J)*FE(J)
280 CONTINUE
C
0006000
gEnEDATE HA=GREGIES PLOT FOR
CURREMT DHASE TRIAL OA ANO DR.
CALL FIT
USE CALOULITEO ELCFE AND INTEPGEPT OF
HARGEAVES FLOT TO FINO PFEEICTED VALUES FBC(J)
TC COMPAFE WITH INCUT VALUES FJ(J).
GEY (=ME{N FELAT:VE ERPOR DETWEEN F{(J) INO FEC(J))
NILL EE TAKEN AS GCOOHESS CF FIT FOR
CUCEENT DHASE TOIAL 2\& AMO DE.

```
```

C
DEV=0.0
OO 262 J=1,NR
HPSC=YINT +SLOPE*HPA(J)
FBC=PG(J)*HPBC*TR(J)
282 DEV=DEV + ABS((FBC-FB(J))/SCAL(J))
DEV=DEV/NR
C
IF DEV QUALIFIES FOR BEST STACK OR IS HORST
VALUE YET, ENCODE PHASES.
IF (DEV.GE.BDEV.AND.DEV.LE.HOEV) GO TO 295
CALL PASK{PA,PB,NR,WORD\
IF (DEV.GE.BDEV) GO TO 292
DSTK(NS) = DEV
PHSTK(NS)=WORD
C
DO SORT
DO 285 L=2,NS
LI=NS-L+1
L2=L1+1
IF (OSTK(L2).GE.OSTK(L1)) SO TO 290
TEMP=OSTKIL2)
OSTK(L2)=OSTK(Li)
OSTK(L1)=TEHP
TEMP=PHSTK(L2)
PHSTKILZI=OHSTK(L1)
PHSTK(LI)=TEMP
285 CONTINUE
290 BDEV=ESTX(NS)
292 CONTINUE
IF (DEV.LE.HDEV) GO TO 295
HOEV=DSTK(NS1)=LEV
PHSTK(NS1)=WORD
295 CONTINUE
300 CONTINUE
350 CONTINUE
C
C
PERMUTATIONS AND DATA EVALUATION COMPLETE
PUT BEST RESULTS IN SUMMARY TABLE
WZ(IHT)=W
TZ(INT)=T
DEVZ(INT)=JSTK(I)
PHZ(IHT)=PHSTK(1)
IF (IDUT.EQ.O) GO TO }70
OUTPUT RESULTS
WRITE 10
WRITE 12.HEADA
WRITE 14,HEADB
WRITE 1B,NR
WRITE 1B,O
HRITE 20,W
WRITE 22,T
IF (MOD.EQ. D) WRITE 21
IF {MOD.NE.O} WRITE 23
WRITE 24
WRITE 2B,(FA(J),J=1,NR)
HRITE 30,(FB(J),J=1,NR)

```
```

 HRITE 25
 WRITE 23, (TR(J),J=1,NR)
 HRITE 2G
 WRITE 28, (HA(J),J=1,N2)
 WRITE 30, (HE(J),J=1,NR)
 HRITE 32
 WRITE 36, NR,(J,J=i,NR),NR,(J,J=1,NR)
 DO 450 I=1,NS1
 CALL UNPACKIPA,PE,NR,PHSTK(I))
 II=I
 DO 370 J=1,NR
 IF (FA(J).EQ.0.0) PA(J)=0.0
 IF (FS(J).EQ.C.0) PB(J)=0.0
 HPA(J)=HA(J)*PA(J)
 HP3(J)=HB(J)*PB(J)
 370 SIGNA(J)=SIGNE(J)=ZERO
 IF (I.GT.2) GO TO 375
 C
C A ANO E WILL CONTAIN STRUCTURE FACTORS OF
C
BEST 2 jOmbINATIONS FOR PLOTTING
DO 372 J=1,NR
A(J,I)=FA(J) * PA(J)
372 B(J,I)=FB(J) * PE(J)
375 CONTINUE
00 380 J=1,NR
IF(PA(J).LT.0.0) SIGNA(J) = MINUS
IF(PB(J).LT.0.0) SIGNB(J) = MINUS
IF(PA(J).GT.0.0) SIGNA(J) = PLUS
IF(PB(J).GT.0.0) SIGNB(J) = PLUS
380 CONTINUE
CALL FIT
\sigma
P=YINT/W/Cl
IF (I.NE.NS1) GO TO 390
WRITE 34
II=KB
390 continue
WRITE 38,II,OSTK(I),NR, (SIGNA(J),J=1,NR), NR,
* (SIGNB(J),J=1,NR), SLOPE, YINT, P
450 CONTINUE
IF (IOUT.EQ.1) GO TO 600
C
DO PLOT OF Two BEST RESULTS
INC=1
N=IA=101
M=2
XHI=D
XLD=0.0
XINC=(XHI-XLO)/(N-1)
XJ=XLJ
00 550 J=1,N
x(J)=xJ
550 XJ=XJ+XINC
C
c SYNTHESIZE DENSITY PROFILE
DO 580 I=1,2
XJ=XLO
DO 570 J=1,N
Y(J,1)=SYNGOS (XJ,A(1,I),NR,D)
Y(J,2)=SYNCOS (XJ,B(1,I),NR,D)

```
```

 570 xJ=XJ+XINO
 GALL JSPLH(X,Y,N,M,INC,IA,PL,IMAGE,IER)
 IF (I.EQ.1) HRITE }6
 IF (I.EQ.2) WRITE 64
 500 CONTINUE
 600 CONTINUE
 700 CONTINUE
 705 CONTINUE
 750 CONTINUE
 C
C
C
HRITE 10
HRITE 12, HEACA
HRITE 14, HEADB
WRITE 15, NR
HRITE 13, D
IF (MOD.EG.O) WRITE 21
IF (MOD.NE.0) HRITE 23
HRITE 24
WRITE 2E, (FA(J),J=1,NR)
WRITE 30, (FB(J),J=1,NR)
WRITE 32
WRITE 40, NR,(J,J=1,NR), NR,(J,J=1,NR)
DO 780 I=1, IHT
CALL UNFACK(FA,PE,NR,PHZ(I))
DO 770 J=1,NR
SIGNA(J)=SIGNB(J)=MINUS
IF (FL(J).GT.0.0) SIGNA(J) = FLUS
IF (PE(J).GT.0.0) SIGNB(3) = PLUS
IF (FQ(J).EQ.O.O) SIGNA(J) = ZERO
IF (FE(J).EQ.0.0) SIGNB(J) = ZERO
770 CONTINUE
WRITE 45, I,WZ(I),TZ(I),DEVZ(I),
NR,(SIGNA(J),J=1,NR), NR,(SIGNB(J),J=1,NR)
70 CONTINUE
GOTO 100
END
FUNCTION GTR(S,P,H,T)
NO PANAMETERS ALTERED.
GTR IS THE FOURIER TRANSFORM OF A DIRECT-SPACE,
ORIGIN-REFLEGTED GAUSSIAN DF HEIGHT=P, HALF WIDTH
AT HALF MAXIMUM=H, AND OISTANCE FROM ORIGIN TO CENTROID=T
GTZ IS EVALUATED AT POINTS IN RECIPROCAL SPACE.
GIRECT SPACE FUNCTION=
G(X)=F*EXP(-LN(2)*((X-T)/H)**2)
REFLESTED THROUGH X=0
A={SORT{PI/LN(2)|)
B=-(PI**2/LN(2))
C=2*PI
OATA A/2.128934/
DATA B/-14.23863/
DATA C/6.283185/
GTR=A*P*H*EXP(S* (S*H)**2)*COS(C*S*T)
RETURN
END
FUNOTION STR(S,P,H,T)
NO PARAMETERS ALTERED.
STR IS FOURIER TRANSFORM OF DIRECT SPACE, ORIGIN-REFLECTED
SQUARE WAVE OF HEIGHT=P, HALFHIOTH=H, AND OISTANCE FROM
CENTRDID TO ORIGIN=T. STR IS EVALUATED
AT POINTS IN RECIPROCAL SPACE

```
```

C A=1/PI B=2*PI
OATA A/0.3183099/
DATA B/6.283185/
IF (S -EQ. C.) 60 T0 1J
STR=(P*A/SI*SIN(E*S*K)* COS(B*S*T)
RETURN
10 STR=2.*P*H
RETURN
END
SUBROUTINE PACK(PA,PB,NR,WORD)
DIMENSION PA(1),PE(1)
INTEGER EITA(20), BITB(20)
IF (NR.ST.O) GO TO 20
00 10 J=1.10
BITA(J) = 2**(J-1)
BITB(J)=2**(20+J)
10 CONTINUE
20 HORD=08
OJ 30 J=1,MR
IF{PA(J).GE.O.O) WORD=WORD.OR.BITA(J)
30 IF(PS(J).GE.D.0) WORD=WORD.OR.BITB(J)
RETURN
ENTRY UNPACK
OO 40 J=1,NR
40 PA(J)=P日(J)=-1.0
0O 50 J=1,NR
IF ((WORD.AND.EITA(J)).NE.03) PA(J)=1.0
50 IF ((WORD.ANO.GITB(J)).NE.0B) PB(J)=1.0
RETURN
END
FUNCTION SYNCOS(X,C,N,PER)
NO PARAMETERS ALTERED.
FOURIER COSINE SERIES WITH COEFFICIENTS C(J),J=1,2,...,N
ON PERIOD=OER EVALUATED AT X.
C(1) GIVES FUNDAMENTAL.
DIMENSION S(1)
OATA PI/3.1415926/
IF (PER .EQ. D.O) STOP \&PER=0.J IN FUNCTION SYNCOSE
CI=2.0/PER
C2=C1*PI
SYNCOS=0.0
00 20 J=1.N
H=FLOAT(J)
SYNCOS=SYNCOS + C(J)*COS(C2*X*H)
20 CONTINUE
SYNCOS=SYNOOS*CI
RETURN
ENJ
SUBROUTINE FIT
COMMON /こFIT/ XX,YY,N,SLOPE,YINT
XX,YY,N NOT ALTERED
R. LYTZ 7AUGT7 OSU.
FIT1 CALCULATES SLOPE, Y-INTERCEPT, ANO
STANOARD DEVIATION FOR LEAST SQUARES FIT
TO YY(I)=YINT + SLOPE*XX(I), I=1,2.....N.
OIMENSION XX(10),YY{10)
FN=FLOAT (N)
SX=SXZ=SY=SYZ =SXY=0.0
OO 10 I=1,N
X=XX(I)

```
```

 Y=YY(I)
 Sx= SX+X
 Sx2=5x2+X*X
 SY=SY+Y
 SY2=SY2+Y*Y
 SXY=5XY+X*Y
 10 CONTINUE
YAVG=SY/FN
SXQ=SX*SX
OENOM=FN*SX2-SXQ
IF(DENOM.EQ.0.0) STOP \# DIVIDE BY ZERO IN FIT1 \#
SLOPE={FN*SXY-SX*SYY/DENOM
YINT=(SX2*SY-SX*SXY)/DENOM
RETURN
END

```
```

 DROGFAM FOSIT(IHFUT=/153,OUTFUT=/1550,FUVCH)
 ₹ GYTZ 23 OLT 77 OFEGON STATE UNIVEZSITY ODE CYBER.
 PROGRAM CCES उनE CEGEEE CURVEFIT FELATING
 DOSITICN TS CHANNEL FOP FOSITION-SENSITIJE DETミこTCF.
 PUNCH OUTJUT FC= INPUA TO IIFशAX.
 GALLS SUEFOUTINFS FITE ANE EVALJ
 २EQUIRES IMSL LI彐RARY
 INPUT DATA JEEK =- IINJICATES EREEFORM INFUT
 NTH; * (NIN= O ENDS EXESUTION)
 HESO (7A1E)
 こ丁M(1)*
 CIFi(2)*
 **
 CIIN (NIN)
 NIH * FOR NEXT SET
 ETC
 VAFIASLES
 NI: NUMBE? U= G\LIERATICN PEINTS
 HELC OATA SET IDENTIFIGOTICN
 LIM INFUT CHAVNEL
 AC FEFST POSETISN (MMI
 XINC FCSIPION INOREHENT (MM)
 X.XX GmLCULATEF FOSITION
 i GALCULATEJ OHinWivEL
 A(I) GURVEFF* SCEFFIOIENTS FO? x=x\Cd
 コ(I) CUFVEFIT SOEFEIOIENTS FJQ G=C(X)
 MIHeNEION HEAO(7)
 OI4ENSION (IN(E?), XIN(5こ)
 OIHEP!SION XX(E07)
 IIMENSION A(4),B(4)
 1] FOPMAT (7A10)
15 FOPMGT (1HG,T1O,*FROGRAM POSIFIOV*-3RD DEGREE GJFVEFIT*,
2 *FOF LETEGTCN FOSITION GALIBFATICN*)
2J FOQMAT (T1J,TA14, /,T1J,*CALISZATION OOINTS=*, I3)
35 FCPMAT (1HR,T1O,*CURVEZIT COEFFICIENTS*)
40 FOPMAT (1HO,T1I, tX=X(C)={U4(I=1,+1 OF A(I)* *** (I-1)z)
45 FCRMAT (T10.*A(*, I1,*)=*, 1P,E1E.5)
5J EJPMAT (T10,*0EV =*, 13, E12.51

```

```

G0 FO₹yAT (T10, *g(*, IL,*)=*, 1O,E12.5)
E5 FORMAT IIHO, TII,

```

```

 * EOSITICN FCSITION POSITION*,
 CHANNEL CHANNEL CHANNEL* ,
7! FOPMAT (T10,I3,6F1J.3)
75 FORMAT (1H1)
75 =ORMAT (IHO)
39 FORMET (10(3X.I3,F7.2))
Q2 FOZMAT (A\&S,AE,* STO*, LE!S.0)
34 FODMAT (A1O,AE,* FTC *, 4E15.3)
107 REAO*, NIN
IF (NIN.EO. O) STOP
२EAU 10, HEAO
WRITE 75
WRITE 76
WRITE }7

```
```

 NRETE 15
 WFITE 2J, HEAU, NIN
 शEAO *, XC, XINC
 C
C
x=x0
00 120 I=1, NI*
XIN(I)=X
RE40 *, SIN(I)
X=X + XINC
120 CONTINUE
S
C
GALL FITECIN,XIN,NIY,A,AJEV)
PUNCH 32, HEAD(1), HEmJ(2), 4
CulCULATE S FCR C=O(x)
GALL FIEZ(XIN.CIN,NIN,3,FDE,N)
PUNCH 84, HEAO(1). HE\&)(2), O
HRITE 55
NRITE 40
30 13C I= 1,4
WOITE L5, I,A(I)
133 GONTIMUE
WRITE 50, AOEV
NPITE 55
OO 14C I=1,4
NPITE 6%, I,E(I)
14] CONTINUE
WRITE 50, 30ミ1
WPITE 65
GoNpare fitted viluEs to input values
00 2C0 I=1,NIN
CI=CこN(I)
XI=XIN(I)
X=EvAL3(CI,A)
AJEV = XI - X
C=EV\&LZ (XI,B)
3)ミV = CI - C
WRITE 70, I,XI,X,A\capEV,GI,C,EJEV
CONTIMUE
WRIEE OUT SOL CHANNEL INTEFPOLATION
0) 300 J=1,500
C=FLCET(J)
XX(J)=EVAL3(C,A)
3OJ CONTI:NUE
NRITE }7
HPITE 7%
WRITE 2!, HENJ, IIN
WPITE 78
NRITE 8G, (J,XA(J), J=1.590)
GO TO 100
ENS
Susfoutine FIT?(E,O,N,A,SEEV)
C O=AG + 11*P + 13*E**2 + A3*D**3
JTAERSION P(1), O(1)

```
```

 DI TENSION T(L,G), A(->), 3(4)
 OIYENSION TINV(-,t), WK (+,4)
    ```

```

 SY=SXY=SX 2Y=SX ?Y=0.C
 C KX WILL CONTAIN P TO THE AOOPDPEIATE OOAER.
C
00 30C I=1,N
X=P(I)
Y=Q(I)
C
XX=1.0
XY=Y
SY=SY+XY
C ACGUMULATS X**1 TERMS.
XX=XX=X
XY=AY*X
SX1=SX1+XX
SXY=SXY +XY
G
c accumulate x**? TERMS
XA=AX*X
XY=x * * X
SX2 =SX24XX
SX2Y=SXZY+XY
C
ACCUMULATE X**? -ERMS
XX=XX*X
KY=xY*X
SX3=5>3+XX
SX3Y=5X3Y4+XY
C ACOUPULATE X*** TEZMS.
x }x=xy*
SX4=SX4+XX
C AUCUMULATE X**5 TERMS.
xX=^X*X
SXう=S*5+xX
G accumulate X**5 PERMS.
XX=\lambda和X
Sx5=SA6+XX
300 COHTINUE
FiN=FLCAT (N)
C S-UFF X**N SUMS INTO T, THE COEFFICIENT YATFIX.
C
T(1,1)=FN
T(1,2)=5\times1
T(2,1)=S\times1
T(1,3)=S\times2
T(2,2)=5\times2
P(3,1)=5\times2
T(1,4)=5\times3
T(2,3)=5\times3
T(3,2)=5\times3
T(4,1)=5\times3
T(2,4)=5\times4
T(2,3)=5\times4
T(4,2)=SX4

```
```

 T(3,4)=3\times5
 T (4 , 3) = 5 \times 5
 T(+,+4)=SXE
 OO +CE I=1,4
 400
 CONTINUE
 C
STUFF Y*X**:4 SUNS IMTO 3 VECTOF
G(1)=SY
B(2)=SXY
3(3)=5\times2Y
3(4)=5\times3Y
IDGT=5
CALL LINVIF(T,'\&,L,TINV,IOGT,NK,IEF)
C
C
A(1)=A(2)=A(3)={(4)=U.0
00 ouü J=1,4
00 60: K=1,4
A(g)=A(f)+TINV(J,K)*G(K)
CONTINUE
3) 76C I=1,4
J=I-1
CONTINUE
AO=A(1)
A1=A(2)
A2=A(Z)
A3=㐌(L)
SJEV=C.O
JO 5せL J=1,N
OJ=P(J)
Q.j=Q(J)
ICALC= 20+A1+FJ+m2*PJ*PJ+A3*OJ*PJ*OJ
QEV=QJ-OCALC
JEv=rEv*GEV
SOEV=S0EV+MEV
890 CONTIFUE
SDEV=SQRT(SOEV/(FN-1.0))
GETUPN
END
FU:ICTION EVALZ(Z,C)
R LYTZ 23 OOT 77 JREGON STATE UNIVERSITY
AFGUMENTS NUT CHAVGEJ
FETURNS SUM(I=1,4) OF G(I)*Z ** (I-1)
OI:4ENSIUN C(L)
ミリ^\&3=((C(6)*Z+C(3))*Z + こ(2))*Z + C(1)
RETUEN
ENO

```
```

DFJGFAM DIFRAX (INPUT, JUTDUT,FUNCH,TADEZC)
RLYTZ 2E JAN TS JSU CJこ CYBER
DA-A DEEK
LCTF,CTF (2A10.4E15.8)
LP*C,OTC (2A10,-E15.8)
SPFIL (EG10) --IF BLINK, EXESUTION STOPS
CORFIL (BA1O) --IF B:ANK, CORRECTED SPECTRUM NOT SENT TO CARDS
SPFIL
...ETS
LG-F,C-D POSITION-SHANNEL CIJRVE FIT
LPTC,FTC CSEFFICIENTS, IS DUMPED DIRECTLY ONRO
CARDE GY OROGRAM FOEI .
SDFIL NAME CF MISS STORAGE FILE WHICH CONTAINS THE
SFEC`रUM TO BE EVALUATEJ. SPFIL MUST CON AIN:
LSJ LABEL
NF NUMEER OF PEAKS
IWIO DISTANCE IN CHANNELS gE:WEEN PEAKS
ISTGRT FIPST CHANNEL TJ APPEAR IN CORRECTED SPECTRUH
HL WAVELENGIt
SO SAMOLE-DETELTSR OISTANCE
SEAM CEN-RCIC GHMNNEL OF BEAM POSITION
WT NORMALIZING FACTOR FOR F**?2
MAX(I) CHANNEL POSITIONS OF PEAK CENTRCIJS
SF(J) SHANNEL DATG
DIYENSION SPCC(-GI)
OIMENEION SP(E00),SPC(500),EKI(500),BKZ(500)
JEMENSION YAX(2).MIN(20),L(2), M(20)
DIYENSION LSP(E),LCTP(2),LPTC(2),LBCR(2)
BIMENSION STF(L),PTC(4),ECR(4)
DIMEN ION GHAN(1CO), COUNT (100)
OIYENSION A(IE)
OIYENSION X(2E),Y(20),E(20)
EQJIV:LENCE (EKE,SOC)
OA \& (JEG=57.2558)
FORMA- (6m10,////1)
FORMAT ((7X,5(1).F10.01))
FORML (8A20)
FJRMA (3I5)
FU२MA (5F:0.5)
FOPMAT (16I5)
FORMA: (10F7.む)
FORMAT (2A10,4E15.8)
FORMA: (1H1,//)
FORMAT (2x,10FG.0,2x,10F6.0)
FORMAT (1H0,/1)
FORMAT (T10,*SPECTRUM*,T25,8A10)
FORMAT (T10,*EACKGROUNJ*,T25,8A10)
FORMAT (T10,*CHAN TO POS*,T25,2A10,4E12.5)
FORMAT (T10,*FOS TO CHAN*,T25,2A10,4E12.5)
FORMAT IT1D,*WAVELENGTH *,FB.3)
FORMAT (T10,*SAMPLE-DET * ,F8.3)
FORMAT (T10,*PEAKHIOTH*,I7)
FORMAT (1HO,T2O,*ORIGINAL SPECTRUMF,//)
62 FORMAT (1HO,T20,*CALCULATEO BACKGROUND*,//)

```
```

 64 FORMAT (1H3,T2O,*CORREGTEJ SPECTRUM*,//)
 6E FORMAT (IHO,T20,*INTERYEDIA:E CALCULATIONS*,//)
 79 FORMAT IT17,*...CENTROIO....*,3 3X,*INTEGRATION*,/,
 2 T11,*N*,5x,*INFUT*,5x,*CALCJ*,9x,*X*,2X,
 3 *SNTEGRAL*,5X,*ERROR*,5x,*CHANNELS*)
 80 FORMAT (T10,I2,I1C,4F10.2,2I7)
 89 FORMAT (TI1,*N*,5X,*THETA*,FX,*D*,8X,*F2*,
 2 SX,*E(F2)*,9X,*F*, 6x,*E(F)*)
 90 FORMAT (T1D,I2,6F10.2)
 NCH=5CO
 REAO 18, LCTP,CTP
 READ 13, LOTC,PTC
 zOg CONTINUE
 READ 10, SPFIL
 IF (SFFIL.EQ. 10H) STOP
 CALL UGET (SLTAFE30,SPFIL)
 ICJR=0
 REAO 10,CORFIL
 IFTCORFIL.EQ.10H , GO TO 220
 CJRRECTED SPECTRUM WILL BE DUMPED TO CARDS
 ICכR=1
 22\ contInUE
 REAO DATA FROM SFEETRUM FILE
 READ(30,10) LSP
 READ (3E,12) NP,IHID,ISTART
 READ (30,13) WL,SD,BEAM,HT
 IF (WT.EQ.0.0) WT=100.0
 READ(30,14) (MAX(I),I=1,NP)
 READ(30,16) (SP(J),J=1,NCH)
 c
C
hRITE HEADINGS
WRITE 24
WRITE 4G, LSP
WRITE 44, LCTF, CTD
WRITE 45, LPTC,FTC
WRITE 50, WL
HRITE 52. SJ
WRITE }2
DO 28G J=1,NCH
280 BK1(J)=BK2(J)=0.0
C
C
calculate channel markers.
IWID2=IWIO/2
NP1 =NP+1
00 300 I =2,NP
300 MIN(I)=(MAX(I)+MAX(I-1))/2
MIN1=MIN(1)=ISTART
MIN(NP1)=2*MIN(NF) - MIN(NP-1)
DO 310 I=1,NP
L(I)=MAX(I) - IWID2
310 M(I)=MAX(I)+IWID2
WRITE 66
HRITE*, MAX
WRITE*, MIN
WRITEF, b
WRITE*,M
C
C

```
```

O FIND AVERAGE SETNEEN PEAKS 3 ANO }
C
J1=M(3)
J2=L(4)
JJ=J2-J1
AVG34=0.0
DO 315 J= J1:J2
315 AVG34=AVG34 + SF(J)
AVG34 = AVG34/ FLOAT(JJ)
WRITE *, AVG34
HRITE 28
C
PUT FIT DATA BELOH PEAK 4 INTO BK2
ANO SUBTRACT AVG34
Jj=0
OO 330 I=1,4
J1=MIN(I)
J2=L(I)
IF (I.GT.2) JI=M(I-1)
DO 320 J=J1, J2
JJ= JJ+1
3<1(JS)=J
320 BK2(JJ)=SP(J)-AVG34
330 CONTINUE
C
C SEND DATA TO CURVEFIT. A IS COEFF ARRAY.
K IS NUMBER OF TERMS. P IS NONLINEARITY PARAM.
K=4
MIN1=MIN(1)
P=SP(HIN1) - SP(MIN1 * 1)
P= P/SP(MIN1)/FLCAT(K)
CALL EXPFIT(BK1,BK2,JJ,P,K,A)
WRITE *,A
WRITE 2B
C
C
EVALUATE FITTING FUNCTION ANO AOD AVG34
DO 340 J=1,NCH
34J BK1(J)=5PC(J)=0.0
J1=MIN(1)
JZ=MIN(NPI)
DO 350 J=\1,J2
CH=J
BK=BK1(J)=EVALEX(CH,K,P,A) + AVG34
350 SPC(J)=SP(J)-EK
DO PIECEWISE LINEAR FIT BETHEEN PEAKS
TO REMOVE RESICUAL BACKGROUNO
00 400 I=1.NP
JI=HIN(I)
J2=L{I)
J3=H(I)
J4=L(I+1)
THESE IFS SDMPENSATE FOR NONUNIFORM PEAK WIDTHS.
IF (I.EQ.2) J1=J1+4
IF (I.EQ*2) J2=J2+4
IF (I.GT.2) J1=M(I-1)
IF (I.EQ.1) J3=MIN(2)

```
```

 IF (I.EQ.NP) J4=MIN (NP1)
 C
C PUT DATA INTO CHAN, COUNT TO BE FIT
JJ=0
DO 36C J=J1;J2
JJ= JJ+1
CHAN(JJ)=J
360 COUNT(JJ)=SPC(J)
DO 365 J=J3, J4
JJ=
\+1
CHAN(JJ)=J
365 COUNT(JJ)=SPC(J)
GALL FITI(CHAN, COUNT,JJ,SLOPE,YINT, DEV)
WRITE*, I,JI,J2,J3,J4,JJ,SLOPE,YINT,OEV
C
C
C
J1=MIN(I)
J2=MIN(I+1)
IF(I.NE.NP) J2=J2-1
OO 370 J=\1,N2
CH=J
BK=BK1(J)=SK1(J)+SLOPE*CH + YINT
370 SPCC(J)=SP(J)-8K
400 CONTINUE
OO 41G J=1,NCH
410 SPS(J)=SPCN(J)
WRITE 24
HRITE 60
WRITE 20́,(SP(J),J=1,NCH)
WRITE 24
WRITE 62
HRITE 26,(BK1(J),J=1,NCH)
WRITE 54
WRITE 25,(SPC(J),J=1,NCH)
IF (INOR.EQ.O) GO TO 420
PUNCH 5,CORFIL
PUNCH 6,(SPC(J),J=1,NCH)
B2=J2=MIN(NP1)
420 CONTINUE
ANALYZE OATA. FINO CENTROIDS C, POSITIONS X,
INTEGRALS Y, AND RELATIVE ERRORS E.
BEAM=EVAL3(BEAM,CTP)
TOTAL = 0.0
YRITE HEADINGS
WRITE 24
NRITE 40, LSP
WRITE 42,BKFIL
WRITE 44, LCTP, CTP
HRITE 45, LPTC,PTC
HRITE 50, WL
HRITE 52, SD
WRITE 54. INID
HRITE 26
HRITE }7
00 500 I=1,NP
JI=MIN(I)
J2=MIN(I+1)

```
```

 CALL CENTSUM(SPC,J1,J2,C,SUY)
 YI=Y(I)=SUN*FLOAT(I)
 TOTAL=TOTAL + YI
 X(I) ENAL3(C,CTF) - BEAM
 E(I)= 1.0/SQRT(AES(SUMI)
 WRITE 80, I,MAX(I),C,X(I),SUM,E(I),J1,J2
 5 0 0
 ONTINUE
 WRITE 28
 TOTAL=TOTAL/HT
 FIND THETA,D,FZ,F,AND ERRORS EF2, EF.
 WRITE 89
 DO ODC I=1,NP
 THETA=0.5*ATAN(X(I)/SD)
 D=0.5*FLOAT(I)*WL/SIN(THETA)
 THETA=THETA*DEG
 F2=Y(I)/TOTAL
 F=SQRT(ABS(F2))
 EF2=E(I)*F2
 EF=0.j*EF2
 WRITE 90, I,THETA,D,FZ,EF2,F,EF
 goo continue
 CALL FCLOSE(30)
 Go TO 200
 END
 SUBROUTINE FITI(XX,YY,N,SLDPE,YINT,DEV)
 XX,Yy,N NOT ALTERED
 R. lytz 7AUG7t osu.
 FIT1 CALOULATES SLOPE, Y-INTERCEPT, ANO
 STANOARD DEVIATION FOR LEAST SQUARES FIT
 TO YY(I)=YINT + SLODE*XX(I), I=1,2,....NN.
 DIMENSION XX(1),YY(i)
 FN=FLOAT(N)
 SX=SX2=SY=S Y 2 =S XY=0.0
 DO 10 I=1,N
 X=xX(I)
 Y=YY(I)
 Sx= sx+X
 Sx2=Sx2+X"X
 SY=SY+Y
 SY2=SY2+Y#Y
 SXY=SXY+X*Y
 10 CONTINUE
SXQ=SX*5X
JENOM=FN*SX2-SXQ
IF(DENOH.EQ.O.O) STOP \& DIVIDE BY ZERO IN FITI \#
SLOFE=(FN*SXY-SX*SY)/DENOM
YINT=(SX2*SY-SX*SXY)/DENOM
DEV=0.0
DO 20 I=1,N
YCALC=YINT + SLOPE*XX(I)
YOEV=ABS(YY(I) - YCALC)
DEV=OEV+YOEV
CONTINU
DEV=DEV/FN
RETURN
END
FUNCTION EVALEX(X,M,P,COEF)
OIMENSION GOEF(1)

```
```

 EVALEX=0.0
 00 10 J=1,4
 10 EVALEX=EVALEX+COEF(J)*EXP(-J*F*X)
 RETURN
 ENJ
 SUBROUTINE CENTSUM(A,J1,J2,CENT,SUM)
 DIMENSION A(1)
 SuM=0.0
 CENT=0.0
 DO 100 J=J1,J2
 AJ=A(J)
 CENT=FLOAT(J) * AJ * CENT
 SUM=SUM+AJ
 100 CONTINUE
 CENT =CENT/SUM
 RETURN
 END
 FUNCTION EVALZ(Z,C)
 C
R LYTZ 23 OCT 77 OREGON STATE UNIVERSITY
ARGUMENTS NOT CHANGED
RETURNS SUM(I=1,4) OF C(I) * 2 ** (I-1)
OIMENSION S(4)
EvAL3=((C(4)*2+C(3))*Z+C(2))*Z+C(1)
RETURN
END

```
```

 ロROGFiM ERこJICT(INPUT,OUT=UT)
 C**
C OFOGRAIT FREIIGT 21 OCT 7J R. LYTZ OSU EYבEF
QROGRA\& TE OFEDECT OIFFGACTED I|TE.NSITY FROA INFINITE STAEK OF
LAYERS CF SDACING Z. LAYER ELEST=ON-DENSITY
EFOEILE IS GIVEN EY SLA CF GAUSSIAINS OR SUM CF SQUA?E MAVES
WHOSE PAFAMETERS AFE INDUT IS OATA.
G(X)=SUM CF GAUSSIANE
S(X)=SUM CF SQUAFE hAVES
S ANJ G ARE REFLECTEC PHROIJGH ORDINATE, AH2 THEIR
TFAISFORMS AOE THEFEFCRE VEAL.
GTR(S)=FOURIER TRANSFCRM O=G(X).
STR(S)=FOURIER TFANSFCRM OF S(X).
INTEGRATET OIFF FALTICN INTENSITV IS OROPORTICNAL IO
SQUARE OF GTF OR STR SAMPLEO AT POIIITS
S=H/O, WHERE H=O,1,Z,...
INOITT DATA
WL WAVELENGTH
NO NUMEEF OF EIFFERENT O SPACINGS TO USE
N NUMEEF OF FEAKS (GAUSSIAN OR SQUARE) IV LAYE? DOJEL
VD NUMEEN OF OIFFFACTION OZПEरS TO GALSULATE
NT NUMEER OF TEOMS IN SYHTHESES
CI IMEEX FOR MGOEL PEA<. I=\&,2.....iN
C A(I) HESGHT OF MOOES PEAKI
H(I) HILFWIOTM CF MOSEL DEAK I
T(I) DISTANCE EETMEEN ORIGIN A:NS MODEL FEAK I
CHAF EATASET IDENTIFICATION
G***OATA OECK STRUCTUEE
C NL
ND,NT
C 31,32,03,...
N,GHAR (IE,5A10) SST 1
C 1(1),N(1),T(1)
C A(2),W(2),T(2)
C -..
CN,GHAR (IZ.5A1J) SET 2
C A(1),W(1).T(1)
C A(2),N(E),T(2)
C ...
C...
I
C
C
C**:
DIMENSION A(23), h(20), T(20), OD(20), CHAR(5)
DIYENSION GA(ミ0), GI(3J), S\&(3J), SI(30)
DIYENSION XPLT(101)
CIMENSICN YFLT(1E1,1:1)
BIMENEION HOLT(175). IWAG4(5151)

```

```

 50 FOFMAT(1CX,5A10)
 51 FOOMAT(10X,*TEANSFUFM JF SQUARE YOOEL*)
 52 FORMAT(1EX,*INTENSITY FROR SQUARE MODEL*)
    ```
```

53 FORMAT(1OX,*TRANSFORM OF TAUSSIAN :HODEL*)
54 FORNAT(1CX,*II:TENSITY FEOM GHUSSIAN MOTEL*)
35 FORMAT(12x,I2,* i\&J *,I?,
2 *-TERM DGTERSOI FROM SQUARE MODEL*)
55 FORMAT(1CX,I2,* AIVO *.IT,
2 *-TEPM DiTTEFSOY F२OY GMUSSIA:N YOCEL*)
57 FORHAF1:0X,I2,* LHO *,I?,
2 *-TERP FCURIER RECONSTKUCTION OF SOUARE 1GCEL*)
58 FORMAT(10X,IZ,* AND *,II,
2 *-TERM FOURIER २EGONSTFUCTIUN IF GAUSSIAN NOCEL*)
105 FORMAT (5F10.4)
11] FORMAT (I3,5A10)
115 EnRMAT (2I5)
123 FORMAT (*1* //// 5x.541:)
125 FOPMAT (/ 20X * HEISNT HWHM SHIFT*)
133 FOPMAT (* EEAK* I->,+X,3FIJ.4)
135 EJPMAT (/ * C=* FG.'* *. WAVELENGTH=* FF.t *.*)
140 FORMA: (*C*,32X,*-----------GAUSSIAN------------**,
1 * ----------SOU\&之ミ WaVE---*-------**/
2 * H 2THETA OEG S* S*NT,
3 * AMPLITUSE INTENSITY NORM INTEN*,
* AmFlitule intENjITY nOEM INTEV*.
₹ * SQUA/GAUS* 4X *H*)
145 EnPMAT (* * I5, 2F12... IP, OE12.4, OP, F12.4, :5)
FI=4.*ATAN(1.)
₹EAC*,HL
२EAU*,ND,NT
PEAO*,(DO(I),I=1,ND)
IS=0
200 CONTINUE
NP=21
IS =IS+1
REM0 :1J, V, (CHAN(I),I=1,5)
IF (N.EQ.a) STOF
OO 22L I=1,N
220 PEAU*. A(I),W(I). T(I)
30 905 INO=1.NO
O=00(IND)
DRINT 12E, (CHAG(I),I=1,E)
PDIAT 125
30 240 I=1,N
240 PQINT 130. I,A(I),N(I),T(I)
ORINT 135, O,WL
PRINT 140
G1=S1=0.0
OO 40C I=1,NP
HH=IH=T-1
3O 30L J=1,N
S=HH/O
G1=G1+GTE{S,i(|),W(J),T(J))/D
S1=S1+STR{S,A(J),W(J),T(J))/0
200 CONTINUE
GA(I)=G1
SA(I)=S1
GI(I)=G1*G1
SI(I) =S 1*S1
G1=31=0.0
4OO CONTINUE
00 45G I=2,NP
G1=G1+GI II)
S1=S1+SI(I)
450 CONTINUE
50 600 I=1,NP

```
```

 Wri=IH=I-1
 S=4H/C
 GN=GI(I)/GI
 SN=SI(I)/51
 OSG=SN/GM
 TH2R=2.*/4SIN(HH*WL/2./J)
 TH2O=TH2F*1:30.1FI
 ORINT 14S, IH,TH2N,S,GA(I),GI(I),GN, SA(I),SI(I),EH,OSF,IH
 5 0 9
 IF (NI.EQ.u) GO TO 2J0
 C
0 0 ~ f L C T S
NP=NP-1
N1=N+1
N?=N+2
NOLT=[A=101
INC=1
C
plOT TRaNSFORMS CF FEATUPES, SUM, AND IVTENSITY
L=1 SQUARE
L=2 GAUSSIAN
v2=N+2
XL=1.5/7
XH=11.0/0
YINC=(XH-XL)/(NFLT-L)
30 645 L=1,2
XJ=XL
DO \& UO J=1,ivFLT
XPLT(J)=XJ
YPLT(J,N1)=0.C
30 % % K=1,N
IF(L .EO. 1) Y = STP(X), i(K), W(K), T(<))
IF (L .EO. 2) Y = GTP(x), ג(k),W(K),T(K))
YPLT(J,K)=Y
Y=YPLT(J,N1) =YOLT(J.N1) +Y
YPLT(J,N2)= Y*Y
s35 CONTINUE
XJ=xJ+XINC
6 4 0 ~ c o n t I n u e
CALL USPIHTXFL*, YPLI, YPLT, NI, INO, IH, AFLT, IMAGL, IE=)
WRITE 50, CHAF
IF (L .EG. 1) NRITE 51
IF (L.EEQ. 2) WRITE 53
GIL_ USPLH(XPLT,YFLT(1,N2),NPLT,1,INC,IA,AFLT, IM-GA, IEF)
WRITE 50, CHAE
IF (L.EO. 1) NRITE 52
IF (L .EQ. ?) पEITE 54
645 CONIINUE
C
C
plot pattegscns
y=2
XL=-0
XH=+O
XINC=(XH-XL)/(:HOLI-1)
xJ=xL
PATTERSONS JASEO ON SQUARE WAVE MODEL
70 66i J=1,NPLT
XPLT(J)=XJ

```
```

 YOLT(J,1) = SYvCCS(X), EI(2), NT, D)
 YPLI(J,2) = SYNCCS(X), SI(2), NF, J)
 xJ=x7+XINE
 660 CONTINUE
 GALL LSFLHIAPLT, YPLT, NPLT, A, INC, IA, APLT, IMLGA. IER)
 WRITE 5R, GHAE
 WPITE 5E,NT,NIF
 C
PATTEFSONS EASEC ON GAUSSIAN YOOEL
XJ=XL
OO 68E J=I,NPLT
YPLI(J,1) = SYNCCE(XJ, EI(2), NT, נ)
YPLT(J,2) = JrNCCS(XJ, GI(2), NP,)
XJ=xJ+XINC
580 COnTINUE
GALL USFLH(XPLT, YOLT, NFLT, A, INO, IA, AFLT, IMAG+, IEF)
WRITE 50, EHAO
WRITE 5G,NT,NF
C
C PLOT FOURIERS
C
FOURIEO EASED OI, SQUARE 100ミL
XJ=XL
TO 70C J=1,NPLT
YPLT(J,1)= SYNCCS(X.,SA(2),NT,0)
YOLT(J,2)= SYNCLS(XJ,SA(2),NF,J)
XJ=AJ+XINC
700 CONIINUE
GALL USPLHEXPLT, YPLT, VDLT, 1, INO, IA, APLT, IMAGA, IEF)
WRITE 50, CHAR
WRITE 57,NT,NF
FOURIER GASED JN GAUSSIAN YOOEL
XJ=XL
00 72G J=1,NPLT
YPLT(J,1)= SYNCOS(X),FA(2),NT,0)
YPLT(J,2)= SYNGOS (XJ,Gi(2),NP,J)
xJ=xJ+XINC
72J CONTINUE
SALL USPLHEXPLT, YOLT, NPLT, 1, INC, IA, APLF, IMAGG, IEP)
NRITE 50, CHAF
WRITE 5B,NT,NF
900
GO TC 200
END
FUNGTION SYHCOS(X,C,N,PEマ)
NO PAFAMETERS ALTERED.
FOURIER COSINE SEFIES'NITH COEFFICIENTS C(1),J=1,2,....N
ON PERIODIPER EVALUATEJ AT X.
C(1) GIVES FUNOAMENTAL.
DITENSION C(1)
gata fI/3.1+1592E/
IF (PER .EQ. O.G) STOO IOER=O.\ IN EUNOTION SYNCOSE
C1=2.C/FER
C2=C1*PI
SYNCOS=0.0
30 2[J=1,N
H=FLOAT(J)
SYNCOS=SYNCOS*C(J)*COS(C2*X*H)
gontinue

```
```

 SYNCOS=SYNCOS*こ1
 RETURY
 ENO
 FUNGTION GTP(S.P.H,T)
 NO PAFAMETERS ALTEREC.
 GTR IS THE =OUFEE= TH4:NSFCR'4 OF a BIPECT-SPACE,
 OOIGIN-REFLERTEO GAUSSIA, OF HEIGHT=P. HALF WIJTH
 AT HALF MAXIMUM=H, \triangleND JISTANLE FFO:A ORIGIN TO CEATRRTJ=T
 GTR IS EVALUATED AT POINTS IN RECIPROCAL SPACE.
 TIRECT SFASE FUNCTION=
 G(X)=F*EXP(-LN(2)*((X-T)/H)**2)
 REFLEGTED THFCUGH X=0
 A=(SORT(FI/LN(2)))
 3=-(DI**2/LN(2))
 C=2*FI
 JATA 4/2.1289?4/
 2ATA =/-14.23883/
 DATA C/6.283135/
 TTR=&*P*H*EXP(こ*(S*H)**?)*\operatorname{cos(C*S*T)}
 RETUFN
 ENJ
 EM.NCTION STZ(S,E,H,T)
 NO H&PAmETEOS altERED.
 STR IS GOURIEF TFINSFORM OF JIRELT SPACE, OFIGI&-=E=LECTEJ
 SQUARE WAVE OF HEIGHT=O, HALFWIJTH=H, ANO JISTANCE FFCM
 CENTROIG TO OFIGIV=T. STP IS EVALUATEO
 AT PUINTS IN EECIFROCAL SPAUE
 A=1/DI E=2*FI
 2ATA A/C.31830CG/
 gata e/6.28313E/
 IF (S .EQ. S.) GO TO 1]
 ST\supsetneq=(F*A/S)*SIN(E*S*H)*COS(F*S*T)
 RETMFN
 10 ST{=2.*D*H
RETURN
ENO

```
```

 PROGRGM CSPLT1 IENPUT=/15J,OUTPUT=/150,TAEE10=01
 R LYTZ. 22 4FF 7O OSL UJC CYヨミマ
 Evaluates an= elots gosine sEzIES.
 JESIGNES FOR INTE{ACTIVE USE.
 PEQUIFES SOMFLOT ANS JLIR Lİマ\RIES.
 OIMENSION A (20,10), X(500), Y(500)
 DIMENSION PEFIJO(10)
 DATH OI2/6.283:9/
 W=8.C
 H=3.0
 x =1.0
 x = 0. 5
 Y1=1.C
 Y2=0.5
 NX=1C
 NY=10
 XO=6.C
 YO=0.E
 LX=-1
 LY=-1
 NSX=0
 NSY=0
 ITO=1
 YARK=\
 IPEN=1
 ORINT*, FFLOTYPE土.
 PEAO*, ICCDE
 CALL FLOTYPE (ICCDE)
 GALL LAYCUT(W,H,X1,X2,Y:,Y2)
 0マIN-*, % 士
 OPIMT*, 扎
 12J EPIMT*, ANCURVES土.
REAO*, NCURV
IF (NTURV .EO. C) STOD
IF (NCURV.GT. 101 GO TO 120
xxLOz,
SEAU*, XLC
DRINT*, IXHI\#,
OEAJ*, XHI
IF (XHI .LE. XLC) GO OO 130
150 PRINT*, FNPOIHTSE,
REAU二, NPOIサTS
IF (NPOINTS .TGT. 5\9) 30 TO 150
IF (NPOINTS .LE. 29).G7 T0 154
XINC=(XHI-XLO)/FLCATINPOINTS)
xx=xLC-x INC
OO 2CC J=1,NFUINTS
xx=xx+x INC
x(J)=xX
200 CONTINUE
OO 3CG I=1,NCU२V
PRINT*, \# \#
POINT*, 土-CURVE I. I. = -t
243 ERINT*,士
NTEZMSI,
qEAJ*,NT
IF (NT .GT. 20) GO 70 210
IF (NT .LE. C) GO TO 217
NT1=NT+1
223 OQINT*, \# EE=ICO=,

```
```

 REAコ*, ロミR
 IF (FER, LE, \therefore.U1 GO TO 22J
 PEPICN(I)=0ミ?
 PशIINT*, # CJEFFICIEMTSt
 30 250 M=1,NT1
 MA=M-1
 OPIITT*, # 土. MM,
 PEAO*. A (M,I)
 250 contInuE
 30] CONiINUE
 C
ミVALUATE SEたIミこ
30 4C0 I=1,ACUFV

```

```

 TO 3EC J=1,NFOINTS
 THETA=FO**(J)
 Y(J)=CCSER(NT, A(1,I), A(2,I), THETA)
 323 SONTINUE
 IF (I .GT. 1) GO TO 340
 G FOR FIFST DATA SET, MUTOECALE
ANU EFAW AXIS
CALL EXT凤EME(Y, N=UINTS, YLO, YHI)
CALL LI:IITS(XLO,XHI,NX,YLO,YHI,NY)
CALL EX(XU, YO. LX, LY, NSX, NSY, ITO)
343 GONTINUE
GALL GRAPH(X, Y, NPOINTS, MARK, IFEV)
400 CONTIRUE
GAL\& FLOTENJ
go io 100
ENO

```
```

 P2OGFAM PJATA (INFUT=/150,JUTPUT=/150,T4Pミ1)=0)
 l
C
10 FORMAT (16A10)
C
c
103 CONTINUE
CO 11C J=1,10
110 LAEX(J)=L\&OY(J)=LAGT(J)=L JLANK
POINT*, f-SIZE INFO-*
DRINT*, t HIETH土,
REAJ*,W
PRINT*, \# LEIGHTI,
2EAO*, H
PRINT*, I LAEFL SIZEF,
REAO* C CSL
20E!vT*, 土ーLABE゙L INFO-士
PRINT=, = X-AXIEE
PRINTE, = N CHARE,
REA D*, NLX
IF(NLX.LE.0) GO TO 160
ORINT*, }\not=\mathrm{ LABELI ,
PEAJ 10, LABX
IF (EOF(IMPIJT).NE.O.J) GONTINUE
1Ej coniInue
PRINT*, \# Y-AXIS\#
OOEIVT*, I N CHARE,
REAG*, NLY
IF(NLY.LE.J) GO -0 170
PRINT*, z LAכELE,
READ 10, LAGY
IF (ECF(INPUT).NE.O.0) SJNTINUE
173 GONTIMUE

```
```

 PRINT*, & HEAOTNGZ
 PRINT*, # NOH&FI.
 qEAj* , NLT
 IF(NLT.LE.N) GO TC 130
 PRINT*, f LAEELE,
 zEAU 10, LAST
 IF (ESF(INPUT).NE.N.O) gONTIMUE
 C
180 CONTINUE
ORINT*, 士-AXIS INFO-I
?OJ ORIMT* , \# XLO,XHIE,
२ミムO*, XLO,XHI
IF (XLO .GE. XHI) GC TO 200
21] Р२IM**, (YLO,YMT土,
PEAO* , YLO,YHI
IF (YLO .GE. YHI) GO TO 213
PRINT*, \# NX,NYI,
REAU*, NX,NY
PRIN-\#, z XC,YCE.
REAO*, XO,YO
PRINT*, Z LINTXX,LINTYI,
२EAO*, LINTX,LINTY
C
NS=u
DRINT*, \#-JATA INFD-I
30 360 I=1,NSMAX
DRINT*, z SET 土,I
240 PRINT*, 土 N FCINTSE,
REAO*, NFGINTS
IF (NPCINTS .G`. リPMAXI GC TO 240
IF (NFCINTS .LE. G) GO TO 320
NS=NS+1
NO(I)=NDOINTS
OOINT*, \# MACK=,
PEAO*, MMK
MK(I)=MMK
PRINT*, \# NCCEE,
REAO*, MMS
4D(I)=MMO
OO 26C J=1,NPOINTS
PRINT*, Z Z, J, 土 Y, Y 士,
REAO*, X(J,I), Y(J,I)
260 CONTINUE
300 CONTINUE
32J CONTINUE
PRINT*, FFLOTYPEI,
REAO*, ITYOE
C
GALL PLOTYPE（ITYFE）
$Y 1=2 . E * C S L$＊U．CT＊H
$Y ?=2.5 * C S L$
WIO NUM $=0$. ．${ }^{*}$（H－Y1－Y2）
$X_{1}=2 . C * C S L+W I O N U M$
$x 2=2.0 * C S L$
CALG LAYOUT（ $W, H, X 1, X 2, Y 1, Y 2$ ）
CALL LIMITS（XLO，XHI，NX，YLU，YHI，NY）
CALL ix（XG，YO，LINTX．LINTY，NSX，NSY，IAX）
jo calls fur labels

```
```

 XL{=C.5*(W+X1-X2-CSL*NLX)
 YLX=CSL
 XLY=2.*SSL
 YLY=0.5*(H+Y1-Y2-CSL*NLY)
 XLT=0.5*(W+X1-YZ-CSL*NLT)
 YLT=H-2.C*2SL
 IF (MLX .LE. E) GO TO 340
 CALL LASEL (XLX,YLX,O.J,ESL,NLX,LABX)
 340 IE (NLY LE. C) GO TO 350
 CALL LABEL(XLY,YLY,GQ.J,CSL,NLY,LABY)
 350 IE (NLT .LE. G) GO TO 3ED
 CALL LAEEL (XLT,YLT,j.J,SSL,NLT,LAST)
 360 CONTIH:UE
 C
C
plut cata
30 40S I=1,NS
CALL MODE(MD(I))
CAL- LINE (X(I,I), Y(1,I), .1K(I), NP(I))
40s contInuE
CALL FLOTENJ
IE (ITYOE.NE.1) ENORILE 11
POINT*, I MOFE土,
REAC*, MOSE
IF (MORE.GT. E) GO TO 1J0
ST\F
ENO

```
```

 LIGरffy flIz
 SUBGCUTINES WHICH INTERFACE FORTRAN PROGRAMS
 WIH CYEER GOMFLOT.
 SJBRCUTINE LAYOUT(WIOTH,HEIGHT,K1,X2,Y1,YE)
 AGYTZ 21 JAM 7O nSU COC GYBER
 AFGUMENTS MCT ALTEREJ.
 FIZST OF GENEPLL OLOT SUSS FOQ USE WITH COMOIGO.
 WIJTL,HEIGHJ SIZE(THEHES) OE BOX A.JUNJ GRA=H.
 X1,Y2,Y1,Y2 CISTAVOE (INCHES) 3ETWEEN
 axIS EivJS and sox SIDES.
 CU:AMEN /PLE/ CONTENTS:
 xSC,rsc GRGUMENTS FI? SITE
 X彐U,YES EIAS 4NGUMEMTS FOK SOALE
 XEC.YFE FMETCS APGUMENTS =OR SCALE (INCHMUSER UNTPS)
 XAL.YAS LENGTH OF &XES (INSH)
 \1C,X20 =\1,X2
 r1C,Y2C Y1,Y2
 XLE,XHE \triangleXIE EXTFEMES lUSEP,
 YLS,YHC --
 ZAC,CTC EOY COGROINATES (USER) EOTTJM AND TOF
 3LC,ERC SAHE, LEFT ANS PIGHT
 XTL.YTS GISTANGE (JSER) jミTNEEN LARGE TIOS
 COMMON/FL:/ xSE,rSC,XZO,YSC,N=C,YEO,
 1 XAC,YAC,X1J,Y1C,X2C,Y\geqC,XLS,Y!C.
 2 XHC,YHC,ESC,ETC,SLC,3RG,XTE,YTS
 XFG=YFC=1.0
 XLC=YLC=-10.0
 XHC=YHC=10.0
 EOGE=1,0
 =0GE2=2.0
 XSC=WIOTH+EDGE?
 YSO=HEIGHT + EDGE2
 XPC=X1+EDGE
 Y3C=Y1+CDGE
 XAC=WIOTH-X1-X?
 YAC=HEIGHT-Y1-Y2
 x10=x1
 x2C=x2
 Y1C=Y1
 Y2C=Y2
 IF (XAC .LT. U.G) GO T? ? 30
 IF (YAC .LT. O.C) GO i.J 290
 CALL SIZE(XSC,YSC)
 RETUEN
 20S PRINT 205
205 FURYAT1* ERRCR IN LAYOJT*)
STOP IERRCR IN LAYOUTI
Evo
SUSROLTINE LIMITS(XL,XH,NX,YL,YH,NY)
\& LYiz 21 JMN 78 OSU COS CYEER
PLJT SUE FOR USE WITH SOMPLOT

```
ロロのロ
```

C LAYOUT MUST E E CALLED 3EFORE RANGE
G SEE COMMENTS IN LUYOUT FO? UEFINITION JF CCYYON/FLEN
G ARGUMENTS NGT ILTEREJ
NX,NY (APFSOXIMATE) NGMEEP GF TIC JIVISIOHS
ON AXES. IF .GE.G, AXIS IS AUTOSOALEO.
IF .LT. 0, 4xIE Not AuTOSCALEJ.
COMMCN/PLC/ XSC,YSC,X3C,YBC,AFL,YFC,
1 XAC,YA=,X1C,Y1C,X2C,Y2C,XLC,YLC,
2 XHË,YHC,GEC,ETC,ELC,SRS,XTC,YTS
IF(XL.GE,XH) STOF IXL.GE.,XH IN FANGEX
IF(YL.GË.YH) STOF EYL.GE.YH III EGNGEZ
NXX=NX
NYY=NY
IF (NIXX) 100,110,129
1*0 NXX=-NXX
XLC=XL
XHC=XH
XTC=(XH-XL)/NXX
GC TO \$25
110 NXX=1
120 CALL =ANGE (XL,XH,HXX,XLC,XHC,XTC)
125 conTINUE
IF (NYY) 13\,1*3,150
130 NYY=-A,YY
YLC=YL
YHC=YH
YTC=(YH-YL)/NYY
Gn TO 155
143 VYY=1
15] CALL FQNGE (YL,YH,NYY,YLO,YHC,YTO)
155 CONTINUE
6
6
C
BLC=XLC-X1C/XFS
gRC =XHL +X2C/XFC
SBC=YLC-Y1C/YFC
MSC=YLC-Y1CC/YFC
GALL WINDOW (ELC,FSC.BRC,BTS)
RETURN
Evo
SUBROUTINE AX(XO,YO,LX,LY,NSX,NSY,ITP)

```

XL，XH
YL，YH
```

 COMFUTE FACTCRS (INCH/USER UNIT)
 XFC=X&C/(XHC-XLC)
 YFC=YAC/(YHC-YLC)
 CALL SEALE(XFC,YFE,XJS,Y3C,XLE,YLC)
 COMFUTE gOX COCPEINATES (USER UNITS)
 R LYTZ 21 JAN 73 JSU COE CYSER
 No afguments changed.
 JRAWS gOX ANO/OR AXIS.
 LAYOUT AND GANGE YUST 3E GA--ES FIRST
 ITF NEGATIVE: AXIS WITHCUT jOX
 ITP ZERO: ERX ONLY
 ITF FOSITIVE: AXIS WITH GOX
    ```

```

 LX,LY LABEL INTERVAL
 XU,YE EXIS INTERSECTINN
 NSX,NSY NUMGER OF STALLTIUS BETNEEN LAFGE TICS
 COHMON/FLE/ YSC,YSC,XBC,YBC,XFC, YFC,
 1 XAC,YAC,X1C,Y1C,XZC,YZC,XLC,YLC,
 2 AHC,YHC,BSU,FIC,BLC,SFC,XTC,YTS
 GALE SFASE
 IT=ITC
 IF (IAES(IT),GT.L) IT=1
 IF (IT.LT. G) GC TO 2JI
 0PAW 80X
 CALL VECTCRS
 BALK FLOT(3LC,コEC,0,0)
 SALL FLOT (ELC,BTC,1,0)
 ZALG ELOT(3PC,ETC,1.j1
 CALG =LuT(B2C,jミC,1,j)
 GALL FLOT(ELC,BEC,1,0)
 IF (I'.EQ. E) GC TO 330
 C
20\ IT=IAES(IT)-1
CS=U.C3*YAC
GALL HXISLIXLC,XHS,XQ,YLS,YHC,YJOXTC,Y*S.
* MBX,\SY,G^,(Y,:.J,:.O.ES,IT)
300 CONTINUE
FE?UFN
EN:
SUS^CUTINE EXTPEME(Z,N,ZL,ZH)
00.00600
R LYTZ 2g JaN T3. JSL. CDC CYヨER.
Z,N NOT CHANGEE.
zETUENS yIN aNE yax values (ZL,ZH)
IN ARRAY Z OF N ELEMENTS.
OIMENSION Z(1)
ZL=1.CE30C
7H=-2L
00 10E I=1,N
Z2=2(I)
IF (ZZ .GT. ZH) ZH=ZZ
IF (ZZ .LT. ZL) ZL=ZZ
100 EOntinue
PETUFA:
EN?
SUGZOUTINE GFAOH(X,Y,N, प4FR,I)
OIMESION Y(:),Y(1)
GOMMON/FLS/ XSC,YSC,X3C,YaC,AFC,YFC,
1 XAU,YAC,X1C,Y1C,X2C,Y2C,XLC,YLC,
2 XHG,YHC.EST,ETC,OLC,BRU.XTS,YTS
CALL WINOCW(XLC,YLC,AHS,YRC)
IF (I.ED.G) GO <C 19
CALL VECTORS
GTO 20

```
```

 10 JALL OOINTS
 20 GONTINUE
 CALL OLOT (X(1),Y(1),3,3)
 00 3CO J=1,N
 CALL FLOT(X(J),Y(J),1,142()
 300 GCNIINUE
SALL WINOON(ELC,O3C,3RJ,BTO)
pETURN
ENO
FUNGTION COSER(N,30,3,THETA)
R LYTZ. 15APa79. OSJ. CJC CYgTR.
COSEP=EG + SU4(K=1,N) 3(K)+COS(K*THETA)
USES FAST ITEEATIVE MET40J
OIHENSION G(1)
G=COS(THETA)
C2=2.C*C
u=v=c.0
I=:4
DO 10t J=1,N
T=52*U - V + - (I)
V=U
|=T
I=I-1
10J CONTINUF
T=c2*U-v* 60
COSER= T - U*C
RETUFR
END
SUJRCUTINE LAEEL(X,Y,DEG,HEIGHT,NCHAR,LAZELS)
E.YTZ. 2JA=₹78. OSU. COC CYBE天.
ARGUMENTS NOT ALTERED
ARGUMENTS SAME AS FOR SYMBOL IN COMPLOT,
EXCEFT X,Y AKE IN INGHES FFOY LOWER LEFT CGINEF GF EUX
HEIGHT=0.0 EEFLULTS TO HEIGHT=0.UZ*YAC
utMensIOm lagels(i)
SOMMCN/FLS/ XSC,YSS,X3C,YSC,XFC,YFE,
1 XAC,YAC,A1C,Y1C,X2C,Y\C,XLC,YLO,
2 XHC,YHC,ZSC,ETC,\XiLC,3RC,XTC,YTC
XX=XLC+(X-XIC)/XFC
YY=YL「+(Y-Y@G)/YFC
H=HEIGHT
IF (H.EZ.u.0) H=YAC*O.J2
CALL SYMEOL(XX,YY,OEG,H,NCHAR,LABELS)
RETUFN
ENS
SUGRCUTINE 400E(M)
p\&Viz 23ADF78 JSU GOGCYBEF
SETS PLET MORE.
4.LT. O ECINTS
M .EQ. O vECICES
M .GT. O DASHES
IF(M) 10C,200,3C0

```

100 CALL FOINTS
RETURN
200 GALL VECTORS
RETUPN
300 GALL EASHES RETUNR.
ENO

```

 WRITE (61.320) LEGENO
 ${ }^{3} \mathrm{C}$ COR FUROSCAL
If (Inquirea(ms)) goto uos
autoscale not selected. read rhi.
YHIL $=$ DECENA(M5)
00 CONT: 509
$\stackrel{C}{C}$ autoscale selscted. calculate yhi.

```

```

 IT IT IY(d)
 420
YHT
YLOG $=$ YHI $1 G(Y \mu I)$
OLG = YLOG 1 TLOG
CHA天 $=10$.

```



```

 CALL SLOTEVO
    ```


```

©
IF TMOOETEO.OS CALL PCINTS
OO $500 \mathrm{I}=1.50 \mathrm{E}$
$x=$
$Y_{\text {Y }}=$ IY(II) $(X, Y, 1, V A R K)$
Gul CONTINUE
LABEL X AXIS TICS
$Y_{0}=-0,35 / Y F A C T$

```


```

 650 CONTINUE
 C LABEL Y AXIS TIC

```


```

C WRITE LEGENO

```


```

C MORE PLOTSA
IF(INQUIFEA(MT)) GOTO 1.40
EAO

```


```

 110
 REAO (EO.19) ORIN
 CONTINUE
 LUN=14 OATA IMPU
 CO
 120
 160


```
    एnax=? (JEEvT)
    JA=jCENT-2
    \(J 3=J C E N T+2\)
```



```
    50 TO 20.5
```

```
    203 JCENT=1
    205 CONTINUE
    HMAX=C.5=pपAX
C CHNO CHANNELS FOR HALF MAX-CH(M)
C OO 230 M=1.2
    Ji=JCENT
    \12=2(J1)
    Cf (22.JJ=1.+MAX) GO T0 220
```



```
        21=22
    210
    223 FJ2=FLOAT(J2)
        FJL=FLOAT\J1
        CH(M)=TERP(Z2,HMAX,Z1,FJ2,FJI)
    230
    250
    CONTINUE
        CALL MEENN(FWHM(2),NP2,FWHM1,FHHMZ,FWAM3)
        WRITE (45,34) X(I),C(1),Y(I);YN(1)
        WRITE(45,SG) X(I);C(1);Y(I);YN(I)
        Y1,YNL,CPY1,FMHM1
        WRTTE(45:44)
    F0GFNTIMUE.EO.0) 60 TO 350
C
    CSIZ=Q:A
        A3HI=550.8.
        LうのT=0
        LNNTAG=2
        MNTOR=-1
        MARK=ム
        ICOOE=0
C
    GALL AUTO(XLII,ZAP,ORHT.ORT)
        CALL SETUP(AOTN,ORIN,AGLCAABMI,ORLO,ORHI)
        CALLL GRAPM(C,XX:NP, YAFX,ICODE)
    C PLOT Y VS C
    CALL AUTO(Y'NP,ZAP,ORHT,OETG
```



```
    ALL GLA8EL(HENO,LAOL,LAGJ.CSIZ)
    CPM vS C
    CALL AUTOICON(2),NP2,ZAO,ORHI,ORT)
```



```
    CALL NEWAXGABT,LMST,LINTAB,ORIGLORT,
    CmLL 3LABEL(HEAD,CA31,LiJu,CSIZ)
C FLOT Z VS SHANNEL
    IFGII500.EO.0) GC TO 320
```


C IF (INQUIFEA(M5)) SOTO 600
${ }_{\mathrm{C}}^{\mathrm{C}}$ ~ SUTOSCALE NCT SELECTEO. FEAO YHI.
YHI $=$ DECINA(MS)
CHAR
GOTO
SOJ.
400 CONTENUJ
${ }_{C}^{C}$ C aUTOSCALE SELECTEO. CALCULATE VHI.

IU 420 JY=2.500
IF III J) GT. IYHI) IYHI = II
CONTINUE
420
CONTINUE
$Y H I=I Y H I$
Y YOG $=$ YLCJIG(YHI)
ILOG
ILOG $=Y$ YLGG
0 IG
OLG
IG $=0$ IG

450 FORMAT
500 CONTINUE
C OETEFRTNE EACT $1=$ INCHES/GRADH UNITS)
CALL SIZE (12?:-12.)

C PLOT MCA DATA
CALL VECTCFS
IF MCDE EDOE
DO
X

x	$=I$
y	I

600 COHTINUE
${ }_{C}^{C}$ LABEL X AXIS TICS
$Y_{0}=-7.35 / Y F A C T$

550 CONTEMUE
C LABEL Y aXIS TIC
б55 EiNCOOE (3.555.TIKY) YHI

C WRITE LEGENO
$y=-.3 / Y F A C T$
$X_{C A L L}{ }^{\circ}$ SYMPOL (X,Y,O.,O.1O, EJ,LEGENO)
${ }_{C}^{G}$ PUT BOX AरOUNO GRADH
$Y=-2 . \mathcal{Y F A C T}$
$X=-9 / X E A C T$

$C_{Y}=L P O T(X, Y, Z, I)$

C MORE PLOTSA
IF (INQUIREA(M7)) 20 TO 130
EALL EXIT


```
10 EETURN
10 AETURN
1 2
1 3
GO TC 20
14 X=C5X2
    X=CSXZ
    GOTC}29
16
    200
C
CONTTMUE
    IFFT:GT:10)(ANGLE=90,0
C
    SURROUTINE, VEWAX (XT,LXT,LINTX,YT,LYT,LIMTY,
    COMCN/GCG/ XIN,YIN,XLO,XHI,YLO,YHI, JL,3R,\exists\exists, 3T,XS,YS,XF,YF,CS
    CALL FLOTENG
C
    CALL ELOT(91, 33,0;0)
```



```
    1 OETGNY,1,,10,OCSI
    RETURN
C
    SUGROUTTNE SETUPYXINCH,YINCH,XL,AH,YL,YHI,
    CBOR=0.5
    Y902=0.5
    XMAZF=0:1
    YMAFF={:10
    x<0=xL
    X CO=XL
    X-TT=XH
    YHI=YH
```



```
    XCIF=XH-XL
    XMAR=XOIF=XMAPF ( 2.0*XMAR)
    X X=XINCH/XXIF***O
    X ( )
    YHAR=YMA&F=YOIF
    YLAG=YMA&F=YOIF
    YE=YINEH/YOIF+YLAJ*2.0**M4R)
    YS=YINCH+2?*YOO
    YGIAS=YGOR + YF=(YMAR+YLAS)
    3L=XL-XMAR
    30}=\H+XMA
    3S=YL-YLAO-YMAR
    3T=YH+YY&&
    BT#YH+YYZF
    CHARACTES SIZE SCALEO ACCOPEIAG
    CSEO.ON
C
```


