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A MODEL FOR THE GENERATION AND STUDY OF

ELECTROMYOGRAPHIC SIGNALS

INTRODUCTION

Electromyography is the study of the signals generated by the electrical

activity of muscle contraction. There are many reasons to study electromyographic

(EMG) signals. These reasons range from the pure research concerns of

determining when and how muscles act to perform motion, to clinical concerns of

diagnosing muscle and nerve disease.

Since body movement via skeletal muscle action is fundamentally under the

voluntary control of an individual, EMG signals are the end result of commands

originating in the brain. If information about the original command can be

determined from the EMG signals, these signals can be used as the inputs to

controlling external devices such as prosthetic devices for amputees.

This thesis will introduce a computer model for the generation of EMG

signals. System identification techniques are applied to the model as a test of how

well it simulates actual physiological processes, and results from the model are

compared to data acquired from a live subject.
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Problem Statement:

EMG signal analysis is an important area of research which has received a

great deal of attention from many researchers. Virtually all analysis is done on data

acquired from live subjects.

There are several reasons why relying on real EMG data for analysis is not

optimal. First of all, no two people are exactly the same. Even when the researcher

takes great pains to gather data in exactly the same way from more than one

person, differences in the individuals' anatomical and physiological makeup makes

comparing results on the data inexact. If the researcher acquires data from a very

large sample of people to statistically remove individual bias, the very real

problems of data storage and management quickly arise.

Other drawbacks of acquiring real data is that it can be time consuming,

expensive, and frequently uncomfortable or even painful for the subjects.

If a computer model existed that could simulate the generation of EMG

signals, it would be helpful to researchers in the field. Different types of people or

different states of disease or injury could be simulated with little effort by changing

model parameters. The model would also prove useful in creating a testing

database to evaluate proposed analysis algorithms a priori.

It is not proposed that a computer model can replace the need for testing

real people. The final step to testing any methodology or product must still be done

using real EMG data. A model can, however, greatly reduce the need for real

EMG data in the early stages of research or product development, reducing

negative aspects of data collection and maintenance mentioned earlier.
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Review of Literature Search:

Over the past two decades, with the boom of computer technology and the

continuing trend of more computing power at cheaper prices, mathematical

processing of EMG signals has become an important field of research. The

engineering science of signal analysis is often applied to EMG signals, and the

engineering field of system identification is used toward the goals of prosthetic

control and diagnosing nerve and muscle disease.

As early as 1974 Graupe [7] had applied autoregressive moving average

(ARMA) modeling to EMG signals for the purpose of prosthetic control. ARMA

modeling is a time domain based approach to time series analysis based primarily

on the autocorrelations of the signal under test. In 1978 Graupe built a working

system using his research and reported an 85% rate of success in determining

motion information from EMG signals on one patient. Since this original work

other researchers have repeatedly applied ARMA modeling to EMG signals

[5,15,18]. Although widely used, ARMA modeling is sometimes found to give

unacceptable results[18]. No concrete explanation can be found to explain the

disparity of results using ARMA modeling, but the wide range of test subjects,

operating conditions, desired outputs, and exact test methodologies are all probably

complicit. A model such as the one presented in this thesis could be used to help

understand this disparity.

Analysis of EMG signals has not been limited to ARMA modeling.

Frequency domain analysis is often applied [4,10,11,18,19]. There have also been

several ad hoc attempts using features such as zero crossings and various statistical

moments of the signal as features for pattern discrimination [14].
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Not all research in electromyography deals with the analysis of the EMG

signal as measured by surface electrodes on the skin. Much of the research is done

understanding the many subsystems that function during muscle contraction and

motion. These subsystems are the nerve - muscle interface [18,19], the propagation

of action potentials along muscle fibers and the mechanisms of ion flow [16], and

the effects of measuring signals at the electrode - tissue interface for both surface

and indwelling electrodes. Analysis of the filtering effects of the various tissues on

the EMG signal as it passes through the body is an important link in the EMG

signal generation process that is not investigated very thoroughly, probably because

of the complicated nature of the process.

The common thread to all of the research is the use of real EMG signals for

analysis. The only mention found of simulating the processes under test is by

Zhang [19], who programmed a function generator to produce his mathematical

model of the signal generated by a single motor neuron exciting a group of muscle

fibers. This model did not expand to simulate the entire process of motion and the

resultant EMG signals.
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REVIEW OF PHYSIOLOGY

When a thought originates in the brain to produce a movement, it is

processed by the central nervous system until the nerves that innervate the muscles

responsible for the motion are excited. Motor neurons are the nerves that

innervate skeletal muscle. Skeletal muscle is the type of muscle that is attached to

the skeleton and is responsible for movement of the skeleton. The bodies of all of

the motor neurons start in the spine and extend to the periphery by a part of the

cell body called the axon. ( It is a grouping of these individual nerve cell axons that

is commonly referred to as a nerve). As a motor neuron's axon approaches the

location of muscle it will innervate, it splits and forms junctions with several muscle

fibers. While a motor neuron may innervate many muscle fibers, in the normal

person any one muscle fiber is innervated by only one motor neuron. A single

motor neuron and the group of muscle fibers it innervates is referred to as a motor

unit (MU).

Each muscle fiber is a single cell. Muscles, as they are commonly regarded,

are collections of between hundreds and many thousands of muscle fibers. The

activity that occurs within any muscle fiber when it is excited by a motor neuron is

almost identical to that of any other muscle fiber in the body. A motor neuron

comes into very close proximity to a muscle fiber at a region of the fiber called the

motor end plate. When a nerve excites the muscle fiber the membrane

characteristics at the motor end plate change, producing a propagating wave of

sodium ion flow, the muscle impulse, which travels in both directions away from the

motor end plate. This electrical activity is transmitted to the interior of the muscle

and causes the release of calcium from internal holding sacs. The released calcium

triggers the process of muscle contraction. The calcium is eventually reabsorbed
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into its holding sacs, at a much slower rate than it was released, enabling the muscle

fiber to contract again. It is the ion flow that is associated with the muscle impulse

that is the source of the EMG signals. Since a group of muscle fibers contract each

time a motor neuron is excited, the fundamental unit of electrical activity is the sum

of the outputs from all of the fibers of a motor unit; this is a motor unit action

potential (MUAP).

The MUAP is a temporal spatial event that will "look" different depending

on the sensing electrode and its relative position to the unit and, if small and close

enough, to its relative position to the individual fibers within the unit. Each motor

unit will fire at a frequency determined necessary to carry out the original motion

command and controlled by sensory input from nerves internal to the body and

frequently from other senses such as vision.

The MUAP is a high frequency event that is low pass filtered by body tissues

as it propagates through the body. LeFEVER and DeLUCA [9] report in a study of

MUAPs that they low pass filtered their data at 1000hz in order to remove the

effects of nearby motor units whose action potentials have already been filtered to

this lower frequency range by the surrounding tissues.

The EMG signal which is measured at the skin's surface by a surface

electrode is a summation of hundreds to thousands of individual MUAPs, each one

having been filtered by the tissues between the muscle fibers and the electrode.

The resultant EMG signal is commonly low pass filtered at 1000hz to remove high

frequency noise, since the tissue filtering does not allow frequencies higher than

this.

Muscles are anatomically organized in the body to create motion. It is pretty

obvious that a muscle, which is oriented to cause a certain motion, will be

contracting while that motion occurs. A muscle with such an orientation can be
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referred to as the prime mover, or the agonist, of the motion. What is not so

obvious is that due to the complex mechanics of skeletal joints in motion, it is

usually necessary for many other muscles to contract as well, at varying levels of

force, in order to maintain smooth motion of the joint.

It is very common that the muscle which pulls directly opposite the prime

mover will need to maintain a fair level of contraction for good joint mechanics.

This muscle will be exerting a force, "contracting", even though it is lengthening at

this time. The lengthening contraction of the muscle opposite the prime mover is

often referred to as co-contraction. The muscle pulling in the opposite direction of

the agonist is called the antagonist.

Muscles which contract during movement in order to stabilize a moving joint

are called fixators.
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THE COMPUTER MODEL

Introduction:

The computer model presented here encompasses the entire event of

motion from the original thought to the EMG signal output that is one of its

byproducts. The region specifically being modelled is the upper arm of a normal

human being. The model region is shown in Figure 1.

Shoulder

Main axis of muscle #1

Signal units of muscle #1

>Y

Model

Region
Elbow

Figure 1: The Model Region

The inputs to a run of the model are: the motion to be performed (the

thought), and the position of the sensing electrode. The parameters of the model
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that are "fixed" are the output from motor units, the composition and location of

muscles, the definitions of the type of contraction each muscle experiences during

any specific motion, the filtering effects caused by tissue in different areas of the

model region, and the parameters for determining what tissue filtering applies to

the output of any motor unit based on electrode position. "Fixed" parameters can

not be changed by the user when the model is run. All parameters can be changed

and the system recompiled; this is currently the way to improve the model based on

experimental results.

The model is written in C, using the Microsoft C6 compiler, and run on an

IBM compatible PC.
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The Model Structure:

The computer model is a discrete system simulating a sampled system with a

sampling rate of 4000hz. 4000hz is chosen because it will accurately represent the

highest frequencies in the simulation, and because it is the sampling rate of the

instrument used to collect real data, making comparisons fairly easy.

The model area is a cylinder 6.0 units high with a radius of 1.0. The bottom

of the area, z= 0.0, is at the level of the elbow joint and the top of the area, z = 6.0,

is at the level of the shoulder. The main axis of the model area is a line from point

(x =0,y = 0,z = 0) to point (x =0,y = 0,z = 6.0).

The basic unit of signal generation within the model is referred to as a signal

unit. All signal units act as point voltage sources and have the same characteristic

output waveform. The signal unit's output wave and its frequency domain

magnitude plot are shown in Figure 2. All signal units are contained within muscles

and their position coordinates, which are initialized at the start of a run, remain

constant during a run.

Muscles are cylindrical collections of signal units. Muscles are defined by

their size, position in the model area and the number of signal units that they

contain. Muscles can run either parallel or perpendicular to the main axis of the

model area. A muscle's position and size are defined by the start and end points of

the main axis of the muscle, and by the magnitude of the radius of the muscle. The

signal units that belong to a muscle are equally distributed in groups of three along

the main axis. Within a group of three the units are equally spaced around the

center axis at a distance of one half the radius of the muscle from the center axis.
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Figure 2b: Magnitude of the frequency spectrum of the Signal Unit's output
waveform.
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Three types of contraction are defined: 1) Regular Contraction, 2) Co-

Contraction and 3) Weak Contraction. Each type of contraction is defined by a

number which represents a force level of a muscle undergoing that type of

contraction. For example, define Regular Contraction as 75. This would mean that

a muscle undergoing Regular Contraction would deterministically fire 75% of its

signal units during each time increment. (The actual number of units firing also has

a random component, this is discussed later). The model has Regular Contraction

= 75, Co-Contraction = 50, and Weak Contraction = 10. The relative values of

these numbers are based on previous lab work done by this researcher.

Motions are defined as a list of what type of contraction each defined muscle

is to perform. As an example, motion one might define muscle one in Regular

Contraction, muscle two in Co-Contraction and muscles three and four in Weak

Contraction. Four motions are defined in the model: 1) Flexion (bending the

elbow), 2) Extension (straightening the elbow), 3) Supination (turning palm up) and

4)Pronation ( turning palm down). These will be referred to as motions1-4 for

simplicity.

Four muscles are defined in the model, one each as the prime mover of the

four motions. They are referred to as muscles 1-4, where muscle 1 is the prime

mover of motion 1, muscle 2 is the prime mover of motion 2, etc. The defining

parameters of the four muscles are listed in Table 1. A cross section of the model

area is shown in Figure 3.



Table 1: Defining Parameters of Muscles

Muscle # Center Axis Start(x,y,z

1 !0.0,0.5,0.0
2 40.0, 0.5,1.0)
3 1/70.2, 0.4, 0.0)

4 li-0.8, 0.0,1.0)

theta = 180

Center Axis End xy,z

0.00.5, 6.0
(0.0, -0.5, 6.0)

(-0.2,114, 6.0)

0.6, 0.0,1.0

theta = 90

Radius # of Signal Units

0.5 100
0.5 90

0.4 80

0.5 70

theta = 270

Front of
Body

theta =

Rear of I
body

13

Figure 3: Top view of a cross section of the model region at z = 1.0. The
numbers indicate the motion for which the muscle is the prime mover.

The effects of tissue filtering are modelled using four different, 2nd order,

infinite impulse response (IIR) filters. All of the tissue filters have a 3db point at

300hz. The filters are purposely non-linear phase because the effects of tissue

filtering are probably not linear phase. All of the filters have somewhat different
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magnitude and phase responses since different tissue structures would have these

characteristics. Which filter to use is dependent on the spatial relationship between

the signal unit that is firing and the electrode position. Based on configurable

thresholds in the x and y planes, the filter choice is made based on which thresholds

are exceeded. For example, let the threshold in each plane be 0.4 units. If the

absolute difference between the x coordinates of the signal unit and electrode is

greater than 0.4 the x threshold is exceeded, with the same type of calculation for

the y plane. Then, filter 1 is applied if neither threshold is exceeded, filter 2 if just x

is exceeded, filter 3 if just y, and filter 4 if both thresholds are exceeded. The tissue

structure is assumed to be homogeneous in the z direction with no extra filtering

applied. The frequency domain characteristics of the four filters are shown in

Figure 4. All filters were designed using the MATLAB signal processing software

package for the PC.

The signal is attenuated by a linear function of the distance between the

firing signal unit and the electrode.

Randomness is inserted into the model in two ways. First, a random

component is added to the deterministic component of deciding how many units

fire from each muscle at each time increment. The deterministic value is a function

of what type of contraction is defined for the muscle during the motion under test.

The random component is a uniform random variable that can be plus or minus

10% of the total signal units in the muscle. The second random input comes into

play when deciding which units of a muscle fire at any given time increment. The

actual units that fire are chosen randomly, again using a uniform random variable,

from the units in the muscle.
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The flow of a typical run of the model is outlined in the following psuedocode:

User Inputs: Electrode Position, Motion, Duration
Seed Random Number Generator, Calculate number of time increments.
FOR each time increment
BEGIN

FOR each muscle
BEGIN

Calculate number of units that fire // random component
FOR each unit
BEGIN

determine which unit //random decision
determine which filter to use
determine attenuation
add resulting waveform to output

END
END

END

The output from a run of the model is stored in a file as double precision

floating points numbers in ASCII format. The output file is read by custom

programs to calculate autocorrelation coefficients and autoregressive model

parameters. The output file is also easily read by the MATLAB mathematics

program to do model parameter estimation, frequency domain analysis and to

produce hardcopy output.

An example of the output of a typical run of the model is shown in Figure 5.
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TESTING THE MODEL - PATTERN RECOGNITION

Now that a model has been proposed and run it must be tested somehow.

The general goal of the model is to improve the quality of EMG analysis. A more

specific first goal is to provide a model for developing and testing algorithms for

pattern recognition of motions as the inputs to prosthetic control systems. The

analysis and testing of the model will be done by comparing results of pattern

analysis to published data, and to real data collected for testing purposes.

Pattern recognition is a multiple step process. The first step in a pattern

recognition scheme is to identify features of the signal which can be used to

determine what patterns are present in any given sample of the signal. Once that is

done, the values of these features are determined for all of the patterns to be

identified; this is the reference set of features. Then, the feature set of a specific

instance of signal is determined and compared to the reference set to see what

pattern is present.

In the example of the proposed model, the four motions, (1-4), are the

patterns to be identified. The feature set representing each of the motions is

determined during an offline learning session and stored as the reference set.

Then, signals are generated from motions and the motion is determined from the

EMG signal by fitting a feature set to the signal and comparing it to the stored

reference set.

This thesis will use the system identification scheme of fitting autoregressive

moving average (ARMA) models to the EMG signals as a means of determining a

feature set for pattern recognition. Once an ARMA model is fit to the data, the
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coefficients of the model themselves become the features upon which pattern

identification is based.

ARMA modelling of EMG signals has been used as a standard method of

determining a feature set for pattern recognition within the signals since Graupe

first used the method successfully in the early 1970's. Although the method is

sometimes reported to produce unacceptable results, Zhang [19], it is frequently

tried as the first method of system identification.

Review of Box and Jenkins Time Series Analysis:

Nomenclature:

E() Expectation
P Autocorrelation coefficient

Estimated autocorrelation coefficient
7 Autocovariance
c Estimated autocovariance
0 Autoregression coefficient
IG Moving average coefficient
z Time series
a White noise function
u Mean of white noise function
B Backward shift operator

The fitting of ARMA models to time series data is a subject rigorously

formalized by Box and Jenkins in their book Time Series Analysis: Forecasting and

Control [2]. This section will review the sections of that book pertinent to this

thesis.

A time series is defined as a set of observations generated sequentially in

time. The time series analysis done in the Box and Jenkins book is for discrete time

series with a fixed time interval h between any two successive observations. Time in
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the model is discrete with sample times, kT, being related to real time, t, as t =kT

with k limited to integer values. For this thesis one increment of time is equal to

0.25msec. As a notational convention the discrete sample of the time series x at the

current discrete time, t = kT with k= 0, is represented as xt. The value of x at the

previous sample time, t = (k-1)T, is xt_i and the value of x at the next sample time

is, t = (k+ 1)T, is xt+ 1.

There are two useful models that can be employed when trying to

characterize time series. The first is to model the time series as the output of a

linear filter with a white noise process at , with mean u and variance o-a2, as the

input. Using this model we have

zt = u + at + that-1 + 02at-2 (1)

where zt is the output at time t. The backward shift operator, B, is defined such

that Bzt = zt_i and Bmzt = zt_m. Using the backward shift operator (1) can be

written as

zt = u + 0(B)at (2)

where 0(B) = 1 + 1k1B + 02B2 + .... is the transfer function of the linear filter.

The sequence 01,02,... may be finite or infinite. This model is referred to as a

Moving Average model (MA). When the sequence is finite with q values the

process is said to be a moving average process of order q ( MA(q) ).

The moving average process can be thought of as a finite impulse response

(FIR) filter that transforms the white noise input to the time series output.
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Another model that gets a lot of use is referred to as an autoregressive (AR)

model. The AR model describes the output at any time t as a linear combination of

past outputs and a white noise shock at. The equation for the model is

zt = u + at + Oizt_i + 02zt_2 + ...

or, with 0(B) defined as 0(B) = 1- 01B 02B2 ..., eq. (3) can be written as

0(B)zt = u + at. (4)

(3)

When the set of autoregressive terms is finite with p members the process is

said to be autoregressive of order p ( AR(p) ).

An autoregressive process can be thought of as an infinite impulse response

(IIR) filter that transforms the white noise input into the time series output.

The partial autocorrelation coefficient (PAC) is a value used extensively by

Box and Jenkins in their analysis of time series. The partial autocorrelation

coefficient is defined as the pth coefficient of an AR(p) model.

The autocorrelation function (ACF) is the series of ACs for lags 0-n and the

partial autocorrelation function (PACF) is the series of PACs for orders 0-n.

Although the series 0(B) and 1,t(B) can be infinite, the job of system

identification tasks the researcher to search for a model with as few terms as

possible in order to make analysis reasonable. This principle is referred to as

parsimony. Attempting to be parsimonious, the series will be limited to order p for

the AR process and order q for the MA process.

The mixed autoregressive moving average (ARMA) model, with AR order p

and MA order q, is referred to as ARMA(p,q) and is written as

zt = u + Oizt_i + 02zt_2 + ... + Opzt_p + at + Flat -1 + ... + begat-q (5)



Assuming that the process to be modelled is stationary, with mean u, the

autocovariance at lag k, k, is defined as

Yk = cov[zt,zt+k] = E[(zt u)(zt+k u)] (6)

and the autocovariance at lag zero, 70, is the variance of the process.

The autocorrelation coefficient (AC) at lag k, pk, is

thus

E[(zt u)(zt+k u)]
Pk

E[(zt 02]E[(zt k u)2]

Pk = 'Yk 'YO.

(7)

(8)
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Equations 6 and 7 describe the calculation of the theoretical autocorrelation

function. Since in practice we have only a finite time series of N observations, only

estimates of the autocorrelations can actually be calculated. The estimated

covariance at lag k, ck, is calculated as:

1 N-k
ck = KT E (zt - u)(zt k - u)

t = 1

Thus the estimated autocorrelation at lag k , rk, is:

co
rk =

ck

(9)

(10)

Of practical importance to this thesis is the calculation of the autoregressive

parameters of a model from the autocorrelation coefficients. To derive the

necessary equations start from an AR(p) process, assume that the mean of the

white noise process is zero for simplicity, and multiply by zt_k to get:

ztzt_k = atzt_k + Oizt_izt_k + 02zt_2zt_k + + Opzt_pzt_k



Taking the expectations of eq. 11 the result is

l'k = 011k-1 + 0211-2 + ... + 9p7k-p

23

k >0 (12)

The first term, E[atzt_k], is zero for k >0, since zt_k involves white noise inputs up to

time t-k which are uncorrelated with at. Dividing eq. 12 by -yo yields the difference

equation

Pk = 01Pk-1 + 02pk-2 + ... + Oppk_p k> 0 (13)

By substituting k = 1,2,...,p into eq. 13 a set of linear equations, known as the Yule -

Walker equations, are obtained.

P1 = 01 + 02P1 4" + OpPp-1

p2 . Oipi + 92 + ± Oppp _ 2

(14)

Pp = 01Pp - 1 + 02pp 2 + ± Op

The Yule Walker equations are solved in a simple recursive program substituting

the estimates for the autocorrelation coefficients for the theoretical values.

The Box and Jenkins method of fitting a model to data is based on an

analysis of the autocorrelations and partial autocorrelations of the data. Their

analysis has led to criteria upon which model fitting can be based. These criteria

are: (In the following rules, a geometrically decaying series is referred to as a

damped exponential).

1) For a pure AR(p) process the ACF is a mixture of damped exponentials

and damped sine waves. The PACF will be nonzero up to order p and zero

afterwards.

2) For a pure MA(q) process, the ACF function is zero for lags greater than

q, while, in general, the PACF is dominated by a damped exponential term.
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3) For a mixed ARMA(p,q) process with q-p <0, the entire ACF will consist

of a mix of damped exponentials and sine waves. If q-p > =0, there will be q-p+ 1

initial values of the ACF that do not follow the general pattern of decaying

exponentials and sine waves.

Fitting an ARMA Model to the Computer Model's Data:

The autocorrelations and partial autocorrelation coefficients for a sample of

the model's output are plotted in Figure 6. The autocorrelation function decays

rapidly, but does show some signs of damped sine wave or exponential behavior

after lag 4. The partial autocorrelation function, on the other hand, is nonzero for

orders of four and less but approaches zero very rapidly after order 4. Based on

this data (considering many independent runs), an AR(4) model is chosen to

represent the data.
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Figure 6: Autocorrelations and Partial Autocorrelation
Coefficients for a sample of the Model's output data
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Eq. (4) lends itself to determining a test of the choice of a pure AR model.

If a pure AR model is correct, and if the order of the model is correct, the error

between the actual data and calculated data based on the model should be white

noise. White noise is characterized as being completely uncorrelated noise,

therefore, the autocorrelation coefficients for any lag greater than zero of a white

noise signal should be zero. The following procedure is performed:

1) Assume the process is best modelled as a pure AR process and fit pure

AR models to the data of orders 1- 10.

2) For each order of AR model, calculate the expected signal based on the

autoregressive parameters.

3) For each order of AR model, calculate an error signal which is the

difference between the actual and expected signals.

4) Calculate the autocorrelation coefficients of the error signals.

The results of this procedure are given in Table 2. The data shows that with

a model of order 4 the first autocorrelation coefficient gets close to zero and that

higher order models do not significantly improve the results. It can be concluded

that the choice of an AR(4) model is correct and parsimonious.

Table 2: Autocorrelation Coefficients of Error Function - Model Data

AR Model Orderl AC1 AC2 AC3

1 i 0.6616 0.0416 0.3067
2 i 0.4512 0.2693 0.3633
3 i 0.3218 0.19 0.07721

4 i 0.02727 0.1022 0.002037
5 0.02631 0.0942 0.002011

6 i 0.01272 0.016 0.0665
7 i 0.03239 0.0211 0.02181

8 i 0.03192 0.02635 0.02274
9 i 0.02679 0.0218 0.0199

10 0.02639 0.0239 0.01583
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Pattern Recognition of Model Data:

When used as the input to controlling a prosthetic device, pattern

recognition decisions must be made quickly for acceptable performance of the

prosthesis. To allow time for on line processing and still achieve decent results, 0.1

seconds of data is used as the duration of the time signal to be analyzed.

The pattern recognition procedure works as follows:

1) Run the model 20 times for each motion at each electrode position.

Calculate the AR4 parameters for each run and store the average of these

parameters for the twenty runs as the reference set of features for each motion at

each electrode position.

2) Run the model 10 times for each motion for each electrode position to

generate the test set of data. For each of these test runs calculate the AR(4)

parameters by doing a least squared error fit to the reference set for that electrode

position. Determine if the recognized motion is the one actually performed.

Figure 7 shows the results on a cross section of the model region. The

location of the results on the figure represents the electrode position. All results

are at the level z =2 since it is found that changes in the z coordinate had little

effect on the results. The figure gives a list of the percentage of correct

identifications for each motion at each position.
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Figure 7: Results of pattern recognition on Model output
superimposed on a cross section of the model region.
The numbers indicate the percentage of correct pattern
identifications for each pattern at each position.

Discussion of Results:

The results are not "good" in that they are certainly not of high enough

quality to build a control system with this pattern identification as the input. There

is a clear tendency to be able to predict a motion if the electrode is directly over the

motion's prime mover, but if this "prime" motion is not the motion to be identified
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the results of identification are poor. A comparison of these results to those found

with real data are left until the next section.

One outcome that is not too surprising is that the results are effectively

unchanged at electrode positions that differ only in the z direction. I attribute this

to the fact that the effect of tissue filtering was not modelled in the z plane

indicating that modelling the filtering effects of intervening tissues is a key

component to the overall model.
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ANALYSIS OF REAL DATA

Data is collected from a person for comparison to the model. The data is

collected using a Hewlett-Packard XLi cardiograph running custom software which

samples data at 4000hz. The data is high pass filtered at 40hz to remove unwanted

body noise such as electrocardiographic signals. The high pass filter is a two pole,

zero phase filter designed using the MATLAB software package.

The subject used to collect the data is normal and healthy. The electrodes

used are Hewlett-Packard surface electrodes. The sites are the same as those used

for model data, at four equally spaced locations around the upper arm

approximately one third the distance from the elbow to the shoulder.

A sample of real data, and its frequency domain magnitude plot, is shown in

Figure 8.

The processing of real data is the same as is done to the model's data. The

first step is to determine the order of ARMA model to be used in the pattern

recognition scheme. The autocorrelation coefficients and partial autocorrelations

are plotted in Figure 9. The decaying nature of the autocorrelations and the

sudden drop of the partial autocorrelations after lag 4 indicate an AR(4) model is

appropriate. The autocorrelations of the error signals for several orders of AR

models are shown in Table 3. This data indicates that an AR(3) or AR(4) model is

satisfactory, an AR(4) model is used in the subsequent pattern identification.
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Table 3: Autocorrelation Coefficients of Error Function - Real Data

'AR Model Orden AC1 AC2 AC3
1 i 0.436 0.224 0.26
2 0.103 0.0685 0.321
3 i 0.025 0.173 0.262
4 i 0.0428 0.00437 0.0181

.5 0.0313 0.0213 0.0345
6 i 0.044 0.00081 0.0484
7 i 0.0243 0.0193 0.0539
8 1 0.0273 0.0241 0.057
9 0.0146 0.0149 0.0586
10 0.00887 0.00951 0.0442
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The results of the pattern identification process are shown in Table 4. The

values are the percentages of correct motion identifications for each motion at each

position.

Table 4: Results of Pattern Identification
for real data (r =1.0, 0 = ?, z =2)

.... r.14P.!IP...7....941t1q!P

1

2

3

4

0% 70%
30% 20%

50% 0%

30% 20%

#1...q15,: 891#-@ti;(f...270 i

3 30%
70%
40%
90%

50%
1 80%

30%
0%
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COMPARISON OF RESULTS - MODEL VERSUS REAL DATA

Figure 10 shows the two sets of results, model and real data, on the cross

sectional picture of the model area.

The first comparison that can be made is that the model is not a good

predictor of the absolute results from the real data. The numbers from the model

are both larger, the same as and smaller than from the real data leaving no good

predictive conclusions as to absolute results.

A second comparison is more promising. For all but one case, motion 1 at

0= 90 °, when the model predicts there is a 50% or more probability for success in

identifying a specific motion at a specific location, the experimental results show a

50% or more success rate. The converse is also true. When the model predicts less

than a 50% probability of success there is less than a 50% rate of success.

This result encompasses the finding noted during model analysis; a motion is best

detected by an electrode over the prime mover of the motion, but at this electrode

position other motions are poorly identified.

A relevant question now is why are the results from the real data so different

from those of Graupe, who reported an 85% success rate of motion identification.

One plausible explanation is that Graupe did his work with actual amputees, and

with one amputee in particular who had a lot of muscle and nerve damage in the

location of the sensing electrode. (Graupe actually did a lot of his work of single

electrode site pattern identification to deal with the real problem of having limited

possible sites because of muscle and nerve damage). It is very possible that the

anatomy and physiology of an amputee, especially one with muscle and or nerve

damage, is different enough from those of a normal person to explain a large
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difference in results between the two populations. This explanation may be

circumstantially corroborated by Zhang who reported unfavorable results using

ARMA modelling. Zhang's research attempted to determine ligament damage by

changes in EMG during ambulation, therefore, his test population would be

considered minimally injured compared to a population of amputees.

theta = 180

Motion Model Real

1 20% 30%

2 50% 70%

3 10% 40%

4 50% 90%

theta = 90

Motion Model Real

1 100% 70%

2 10% 20%

3 20% 0%

4 30% 20%

theta = 270

Motion Model Real

1 0% 50%

2 100% 80%

3 30% 30%
4 10% 0%

theta = 0

Motion Model Real

1 30% 0%

2 0% 30%
3 80% 50%
4 30% 30%

Figure 10: Result of Pattern recognition for Model output and
real EMG data.The numbers indicate the percentage of correct
pattern identifications for each pattern at each position.
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CONCLUSIONS AND RECOMMENDATIONS

It is concluded that the computer model for the generation of EMG signals

presented in this thesis is adequate for predicting some general trends that will be

found in the EMG of normal subjects. The model is not accurate enough to make

precise quantitative predictions nor is it sophisticated enough to model any states of

injury or disease at this time.

The results do show some promise and also point to areas where the model

can be improved. The fact that the model does not change results with electrode

position changes in the z plane, and that tissue filtering is assumed homogeneous in

that plane, indicates that modelling the effects of the non homogeneous body

tissues filtering EMG signals on the way to the body surface is vital to an accurate

model. The simple attempt at modelling tissue filtering found in this model is not

adequate to get accurate quantitative data from the model. The filters should have

been designed such that the frequency content of model output more closely

matched the frequency content of the real EMG data.

Another system in the model that is probably too simple to allow very

accurate results is the ability to define muscles. Not all muscles run either parallel

or perpendicular to any axis in the body and the ability to place muscles anywhere

within the model area would be an improvement. Also, not all muscles are

cylindrical. The ability to define more complex muscle geometries should also be

added to the model.

The computer program that is the model should also have an improved user

interface. Currently very few of the system parameters can be changed by the user

when running the program. To be useful to researchers most if not all of the
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parameters that define the system must be able to be set by the user when using the

program.

The systems required to produce motion in a person are numerous and

complex and have evolved over millions of years. The author has not completely

modelled all of these systems with just several months of work, and in fact, it could

take one or possibly many lifetimes to achieve an extremely accurate model. This

thesis shows some promising results by building a first pass model that recognizes

the existence of, and ties together into an integrated system, the most important

physiological aspects of the generation of EMG signals. It is hoped that the

structure of the model will lend itself to achieving better approximations of reality

in the future.
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