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THE FOUR COLOR PROBLEM BEFORE 1890 

I. AN EARLY HISTORY OF THE PROBLEM 

A problem that has received much attention since it was first 

mentioned in lectures in 1840 by A. F. Mobius is referred to as the 

four color problem. The question might be expressed by asking how 

many colors are necessary to color a map of a country, divided into 

regions, in such a way that no two contiguous regions are of the same 

color. Contiguous regions can be defined as districts that contain a 

common boundary separating the two subdivisions in whole or part. 

Also it is considered that a map be drawn on a simply- connected sur- 

face, such as a plane or sphere. The number of districts is finite 

and each district will consist of a connected area. Geographers had 

long known from experience that the geographical maps of an area, 

arranged by political subdivision, as of a continent into countries, or 

a state into counties, could be colored using only four colors. 

The formulated problem gained attention in 1850 when Francis 

Guthrie communicated it to DeMorgan, but it was not until 1878 that 

the problem was presented before a wide mathematical society. At 

that time Cayley proposed it to the London Mathematical Society; inan 

address published in the proceedings of that society he stated that he 

could not obtain a rigorous proof of the proposed theorem [5] . In the 

next year there was published a solution to the proposed problem by 
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A. B. Kempe which was sent across the Atlantic to be recorded in the 

American Journal of Mathematics [12] and shortly thereafter commu- 

nicated in simplified form to the London Mathematical Society Pro- 

ceedings [11] and also to Nature [10] . William E. Story wrote a note 

which followed Kempe's work and modified the formula for special 

cases [14] . This helped in the clarification of Kempe's theory on 

patching out maps. 

In 1880, Tait published a solution of a theorem which states 

that if a closed network of lines in a plane joining an even number of 

points is such that three and only three lines meet at each point, then 

three colors are sufficient to color the lines in such a way that no two 

lines meeting at a point are of the same color [2] . Tait's argument 

showed that some maps could be colored with four colors, but he was 

unable to extend this solution to include every map. 

Thus, at this point, Kempe had presented the only work that 

seemed to be a solution to the proposed problem. In 1890, however, 

the problem was seen to be unsolved when P. J. Heawood pointed out 

an error in Kempe's reasoning. This work was published in articles 

appearing in the Quarterly Journal of Mathematics, London [9] . 

Although Kempe's work is not accepted as a proof, we find that Hea- 

wood was able to show that five colors are always sufficient for color- 

ing ordinary maps. 

It is easy to show that four colors are sometimes necessary to 
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color a map, but whether four colors are always sufficient to color 

any ordinary map still remains an open question. It is agreeable, 

today, to say that this problem is one of the simplest sounding un- 

solved problems of mathematics. 
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II. KEMPE'S ATTEMPTED PROOF AND HEAWOOD'S 
COUNTER EXAMPLE 

In 1879 Kempe attempted to solve the four color problem. But, 

later in 1890 Heawood presented an example that pointed out an error 

in Kempe's reasoning. The following is an account of the work leading 

up to Kempe's error along with maps that illustrate the account in de- 

tail. Heawood's discussion together with a map will be sufficient in 

pointing out Kempe's error. 

We have recognized the fact that where it is important to have 

a distinction clearly marked between two areas, the method has been 

adopted by map- makers of painting districts with different colors so 

that boundaries are clearly defined. It has been pointed out that it is 

unnecessary that non adjacent districts be painted different colors. 

At the same time districts that meet at one or two points can be 

painted the same color. Kempe called a succession of contiguous 

districts that alternate in color a region. For example in Figure 6 

the blue, green districts form a region. 

Kempe confined his investigation primarily to simply or singly 

connected surfaces such as surfaces on a sphere or plane which are 

divided into two parts by a circuit. He explained that a simply con- 

nected surface divided in any manner, into districts, could be colored 

in such a way that no two adjacent districts would be of the same color. 
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Proceeding at random, coloring as many districts as possible with 

one color and then choosing another color, he sometimes found that 

many different colors were necessary. But, if a little care were used 

from the start, many times the number of colors could be reduced. 

He extended his discussion by stating that it was obvious that four 

colors are necessary to color a map where one considered the exam- 

ple of having one district surrounded by three others, Figure 1, but 

that four colors were sufficient was by no means obvious to the world. 

Figure 1 

Kempe's work, then, is an attempt to show that four colors will suf- 

fice in all cases. When attempting to do this he found that a major 

difficulty arose when a very small alteration rendered it necessary 

to recolor the entire map. 

Considering the difficulties, Kempe explored the idea of having 

a map that required four colors and directed his attention to those 

districts colored with two different colors. He found that they formed 



one or more disjoint regions. These regions have no boundary in 

common, though possibly they could meet at a point or points. It was 

readily seen that he could interchange some pairs of colors and the 

map was still properly colored. 

He then considered the state of things at a point where three 

or more boundaries and districts meet. He found it convenient to call 

such a point a point of concourse. It was then established that if three 

districts meet at the point, they must be colored with three different 

colors. Thus he found that when four districts meet, they could be 

colored with four colors, but then in some cases two or three colors 

were sufficient. He also stated that the same thing could be shown at 

a point of concourse where five boundaries meet. Under these condi- 

tions, the map would be colored with three colors or possibly four 

colors. If four colors were used, Figure 2 shows the only form which 

the coloring could take, that being where one color occurs twice. 

blue 

green 

yellow 

5 
4 1 

3 2 

red 

blue 

Figure 2 

6 
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Kempe attempted to show that at such a point of concourse, the 

colors could always be reduced to three. For if 1 and 3 be- 

longed to different yellow and red regions, he could interchange the 

colors so 1 and 3 were both yellow or both red (Figure 3). In the 

figures lower case letters represent the original colors and capital 

letters denote the colors after the interchanges. If 1 and 3 be- 

long to the same yellow and red region, he checked on 1 and 4 and 

if they belonged to different green and red regions, they would be 

colored both red or both green (Figure 4). He then considered letting 

1 and 3 belong to the same yellow and red region, along with letting 

1 and 4 belong to the same green and red region (Figure 5), then he 

found that 2 and 5 were cut off by the region 1 and 3 and the re- 

gion 1 and 4 (Figure 5). Thus Kempe claimed that the blue and 

green region to which 2 belongs is different from that to which 4 

and 5 belong (Figure 6) and also that the blue yellow region to which 

5 belongs is different from that to which 2 and 3 belong (Figure 7). 

Thus, Kempe interchanged the colors in the blue and green region to 

which 2 belonged, and in the blue yellow region to which 5 be- 

longed, 2 was then green and 5 became yellow (Figure 8). Then 

Kempe was convinced that he had reduced the number of colors at the 

point of concourse to three for every possible case. Kempe was then 

convinced that his efforts allowed him to say that the number of colors 

at the point of concourse of five boundaries could always be reduced 
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Vertical lines denote the yellow and red regions of 1 and 3. 

Figure 3 
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Vertical lines denote the same yellow and red regions of 1 and 3. 

Horizontal lines denote different green and red regions of 1 and 4. 

Figure 4 
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Horizontal lines denote the same yellow and red region of 1 and 3. 
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Horizontal lines denote the blue and green region to which 2 belongs 
and also the blue and green region to which 4 and 5 belong. 

Figure 6 
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Horizontal lines denote the blue and green region to which 2 and 3 

belong and also the blue and green region to which 5 belongs. 

Figure 7 
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Horizontal lines denote the blue and green region of 2. 

Vertical lines denote the blue and yellow region of 5. 

Figure 8 
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to three. After more consideration Kempe stated that if less than six 

boundaries meet at a point the colors of the district can always be 

rearranged so that the number of colors at that point shall be only 

three. He continued with the statement that the colors of any map 

could be arranged so that not only will three colors meet at any given 

point of concourse, however many boundaries meet there, but also 

that at no point of concourse in the map will four colors appear. 

However in 1890, Heawood pointed out an error in Kempe's 

solution of the four color problem. Also at the same time, he was 

able to show that five colors are always sufficient to color any map. 

Heawood noted that much interest had been shown in the difficult if 

not impossible problem of coloring a map with four colors, though no 

case of failure had been found. He further stated that he did not pro- 

fess to give a proof of the problem; in fact his aims were more de- 

structive than constructive for he had found a defect in Kempe's work 

which has just been presented. Heawood stated clearly that the re- 

quired problem is to show that four colors are sufficient for the 

coloring of any map and that this must be shown to follow from the 

coloring of a reduced map, even where a five -contact point of con- 

course was the lowest. He explained that Kempe claimed that if a 

map could be colored with four colors and if there was a five -contact 

point of concourse with four colors around it, he could reduce the 

number of colors from four to three. Kempe did this by interchanging 



15 

colors so as to remove one color from the point, thus having a color 

to use if a district were formed at the point of concourse. Heawood 

presented, in his work, the possible cases that arose in coloring a 

figure and gave an example of a map that could not be colored by 

Kempe's method. Heawood found that Kempe's work was not correct 

because the blue, green region to which 2 belonged need not be dis- 

joint from the blue, yellow region to which 5 belonged (Figure 9). 

In this case two contiguous districts would be colored the same by 

Kempe's method. Therefore Figure 9 illustrates that Kempe's proof 

is not valid for this case and the problem remains unsolved. 
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Vertical lines denote the blue and yellow region of 5. 

Horizontal lines denote the blue and green region of 2. 

Figure 9 
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III. KEMPE'S WORK ON PATCHING WITH STORY'S 
MODIFICATIONS 

The previous chapter expresses Kempe's work on reducing 

the number of colors that may surround a district from five to three. 

This chapter contains Kempe's further work of patching out districts 

along with some modifications which are due to Story. 

Disregarding for the moment the question of coloring, but 

working with the case of the simply connected surface, Kempe con- 

sidered the structure of a map on its surface. He expressed the dif- 

ferent structures with the following: island districts having one 

boundary (Figure 10); island regions composed of a number of dis- 

tricts (Figure 11); peninsula districts having one boundary and one 

point of concourse (Figure 12); peninsula regions composed of a num- 

ber of districts (Figure 13); complex districts which have island and 

peninsulas in them; simple districts which have as many boundaries 

as points of concourse. (Figure 14). Using these conditions Kempe 

was able to note that with the exception of Figure 10 with an endless 

boundary and Figure 12 which has one point of concourse, every 

boundary will end in two points of concourse and also that every 

boundary belonged to two districts. Kempe next introduced his idea 

of covering a district of a map with a patch that was of the same gen- 

eral shape as the district but just slightly larger so as to cover the 



Figure 10 

Figure 12 

Figure 14 

boundaries of the district. It was then seen that the map (Figure 15) 

would have one less district and the boundaries would also be reduced 

in number. 

Figure 11 

Figure 13 
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Figure 15 

He further indicated that the boundaries meeting the patch (Figure 15) 

should be extended to meet at a point of concourse (Figure 16). 
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Figure 16 

In this way he found the patching process could be continued as long 

as there were simple districts left to operate on. He also found that 

if he confined his attention to patching island and peninsula districts 

first, the more complex districts were reduced to simple ones which 

could be patched by the same process. He continued this process until 

every district of the map was patched out, patches sometimes over- 

lapping other districts. His patching process then resulted in a single 

district with no boundaries and no points of concourse. Kempe next 

introduced what he called a reverse process, that being to strip off 

the patches in reverse order, taking off first that which was put on 

last so that as each patch was removed a new district appeared and 

the new map was developed by degrees. 

Kempe developed some expressions which would give the rela- 

tion on the surface at any stage of the development depending on the 

nature of the next district to appear. He supposed that at any stage 

there would be on the surface 

1 



D districts 

B boundaries 

P points of concourse, 

and that at the next stage or after the next patch was removed there 

would be 

D' districts 

B' boundaries 

P' points of concourse . 
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If a patch had no point of concourse on it, i. e. if when it was stripped 

off an island appeared, he could then write the equations 

D' =D+ 1, 

B' = B + 1, 

P' = P. 

Kempe wrote that if a patch has no point of concourse but rather a 

single line then a peninsula would appear and the equations would be 

D' = D + 1, 

B' = B + 2 

P' = P + 1 . 

(a) 

At this point Story pointed out, in his article, that another case could 

occur if no point of concourse appeared on the patch to be removed, 
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that being when a district with two boundaries appeared as in Figure 

17. 

Figure 17 

He then gave the following equations for this case. They are 

= D + 1, 

B' = B + 3, 

P' = P + 2 . 

(b) 

Story pointed out that these relations would hold only if the boundaries 

joined by the line on the patch were counted as two (and not one as in 

Figure 18 and Figure 19) before the patch was put on. Kempe contin- 

ued by expressing the equations when the patch has a point of con- 

course on it where 6 boundaries meet as 

D' = D + 1 

B' =B+ g 

P' = P + - 1 

(c) 

D' 
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Figure 18 Figure 19 

In each case Kempe concluded that 

P' +D' -B' -1 = P +6 -1 +D +1 - (B +6) -1 

P' +D' -B' -1= P +D -B -1 (d) 

by which he concluded that P + D - B - 1 had the same value before 

and after the patch was removed. He also stated that since P = 0, 

D = 0, B = 0 at the first stage we would always have 

P+D-B-1 =0 . (e) 

Story stated that the equations of (c) are valid only when three and only 

three boundaries meet in each point of concourse about the district 

patched out, when U is the number of boundaries meeting the 

boundaries of the district in question. He further considered the con- 

dition when a patch had no point of concourse but only a single line 

forming part of the boundary of an island- district on the patched map, 

so that when the patch was removed a form like Figure 18 or Figure. 
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19 appeared. He claimed in this case 

D' = D + 1 

B' = B + 1 

P' = P + 2 

and in the case where the point in question was a point of concourse he 

claimed 

D' = D + 1 

= B + 1 

P' = P + 1 

and therefore he concluded for either of these two cases 

P' + D' - B' - 1 = P + D - B instead of equation (d). Story continued 

defining a contour as an aggregate of boundaries such that any two 

could be mutually connected, either directly or by means of other 

boundaries of the same contour, but could not be connected with any 

other boundaries in the map. He remarked that each contour could 

be a map itself and that a contour would be simple if it consisted of 

one boundary or complex if it consisted of more than one boundary. 

Story wrote that using Kempe's method of patching out a map formed 

by any complex -contour, the map would at some time take the form 

of Figure 18 or Figure 19, then form an island, and then be hidden 

under a final patch. This leads to the question of what are the values 

B' 



of D, B, and P when the patches are removed. These were ex- 

pressed at the first stage when D = 1, B = 0, and P = 0 to be 

P+ D - B - 1 = O. 

At the second stage Figure 19 gives D = D' + 2, B = B' +2 and 

P = P' +1 so equation (d) becomes 

P' + D' - B' - 1 = 0 
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(f) 

or Figure 18 gives D = D' +2, B = B' +3 and P = P'+ 2 and equa- 

tion (d) becomes 

P' + D' - B' - 1 = 0 . 

At the third stage when D = D' + 3, B = B' + 5 and P = P' + 1 

equation (d) will be 

P' + D' - B' - 1 = 1, 

and at every stage thereafter Story claimed that 

P +D -B -1 =1 (g) 

i. e. the right member of equation (d) would have the value one for 

every case. It was pointed out that, in the case of a map formed by 

a simple -contour only the first and second stages exist, and for this 

equation (e) holds. If there are x complex- contours formed by the 
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boundaries of any map then Story wrote 

P+D - B - 1 =x. (h) 

This theorem which was rewritten by Story was expressed as follows: 

In every map drawn on a simply- connected surface the number of 

points of concourse and the number of districts are together one 

greater than the number of boundaries and number of complex -con- 

tours together [14] . 

Kempe next considered the expressions 

and 

D=dl+d2+d3+ 

where d1, d2, d3, etc. denote the number of districts at any stage 

with one, two, three, etc. boundaries and where p3, p4, etc. denote 

the numbers of points of concourse at the same stage of development 

at which three, four, etc. boundaries meet. Story claimed that when 

considering Figure 19 where two such boundaries form a point of con- 

course that p2 should be added to the expression listed by Kempe 

so that 

where p2, p3, p4, etc. denote the number of points of concourse where 

p=p3+p4+p5+... 



26 

two, three, etc. boundaries meet. Since every boundary belongs to 

two districts, Kempe formulated the equation 

2B=d1+2d2+3d3+ 

When Story introduced p2, Kempe's original expression of 2B 

became 

where 

2B = 2130+ ßl + 2p2 + 3p3 + 4p4 + . 

PO 
is the number of continuous boundaries which have no 

points of concourse, and where 
ßl 

is the number of boundaries 

around peninsula districts which have one point of concourse. It was 

also noted that a point of concourse in which two boundaries meet 

would be counted once in p2 and twice in 13 
1. 

Thus Story ex- 

pressed (h) as (6D -2B)+ (6P- 4B)- 6(x +l) =0 where (x +l) in the 

last term of the equation is due to the complex- contours that may be 

contained in the map. The equation (6D- 2B) +(6P- 4B)- 6(x +1) =0 

can be written as (6d1 +6d2 +6d3 + )- (d1 +2d2 +3d3 + )+ 

(6p2 +6p3 +6p4 + )- (4130 +2131 +4p2 +6p3 +8p4 +10p5 + )- 6(x +1) =0. When 

this equation is simplified it becomes (5d1 +4d2 +3d3 +2d4 +1d5 +2p2) - 

(1d7 +2d8 +3d9 + . )- (2p4 +4p5 +6p6 + )- 6(x +l) =0. Then the equation 

can be rewritten as 5d1 +4d2 +3d3 +2d4 +1d5 +2p2= (1d7 +2d8 +3d9 + )+ 

(2p4 +4p5 +6p6 + ) +6(x +l). Then 

. 
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(1d7 +2d8 +3d9 + ) +(2p4 +4p5 +6p6 + ) +6(x +l)> 0 since 6(x +1) > 0 

for x is the number of complex- contours which will not be less than 

zero. The first two terms (1d7 +2d8 +3d9 + ° ' ) and 

(2p4 +4p5 +6p6 + ) will either have the value zero or be positive. In 

either case (1d7 +2d8 +3d9 +' ) +(2p4 +4p5 +6p6 + ) +6(x +l) > 0 . 

Therefore (5d1 +4d2 +3d3 +2d4 +1d5) +(2p2) > O. If 2p2 = 0 then 

(5d1 +4d2 +3d3 +2d4 +1d5) > O. If 2p2 0 then 5d1 0 since dl 

represents the number of peninsula districts and p2 represents 

the number of points of concourse where two boundaries meet which 

only occurs with peninsula districts. Therefore 

(5d1 +4d2 +3d3 +2d4 +1d5) > 0 since 2p2 does not affect the inequality. 

Then at least one of the quantities dl, d2, d3, d4, d5 must not vanish 

i. e. every map drawn on a simply -connected surface must have a dis- 

trict with less than six boundaries [14] . 

It was observed by Story that the number of boundaries meet- 

ing in the point of concourseonapatch was equal tothe number of 

boundaries of the district covered by the patch only when the number 

of boundaries meeting in each point of concourse about the district did 

not exceed three. When the number of boundaries meeting a point of 

concourse exceeded three a small patch, with a line around it, was 

placed on the point of concourse thus creating a number of new points 

of concourse where only three boundaries meet. This particular 

patch was designated an auxiliary -patch by Story. It should be 

4- f 
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understood that all the line segments between the patch and the line 

around the patch be erased to form one district. Also, the number of 

districts of any map was not changed by the use of an auxiliary -patch 

since this formed only an extension of a district over a point of con- 

course. Story continued by saying that after having modified a map 

by placing auxiliary -patches on each point of concourse with more than 

three boundaries, the process of patching out could then be continued. 

Thus he finally arrived at a map containing one district and no bound- 

aries which he could color with any of the four colors. Kempe ex- 

plained that if each patch was numbered as it was placed on the map, 

there would be no confusion when the patches were to be stripped off. 

Then as Story developed the map by stripping off the patches and 

auxiliary- patches in the inverse order to which they were put on, he 

colored each district as it reappeared. 

Story considered the situation at some stage of the development 

in which a certain district was disclosed that required the fourth color. 

He described the situation as follows: the patch next to be stripped 

off would be either an ordinary -patch with no lines, or with one line 

and no point of concourse, or with a point of concourse in which not 

more than three boundaries meet; or it would be an auxiliary -patch. 

Story explained that if an auxiliary -patch is stripped off a point of 

concourse would appear, in which four or five boundaries meet. The 

colors of these districts were then to be extended over their uncovered 
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portions, and the number of colors at the point of concourse reduced to 

not more than three by Kempe's method. However, this cannot always 

be done as Heawood pointed out. Thus Story's work is also not accept- 

able. 



30 

BIBLIOGRAPHY 

1. Arnold, B. H. Intuitive concepts in elementary topology. 
Englewood Cliffs, N. J., Prentice -Hall, 1962. 181 p. 

2. Ball, W. W. Rouse. Mathematical recreations and essays. New 
York, MacMillan, 1947. 418 p. 

3. Birkhoff, George. The reducibility of maps. American Journal 
of Mathematics 35:115-128. April, 1913. 

4. Cayley, Arthur. On the coloring of maps. Proceedings of the 
Royal Geographical Society 1:259 -261. April, 1879. 

5. Franklin, Phillip. The four color problem. American Journal of 
Mathematics 44 :225 -236. July, 1922. 

6. . The four color problem. Scripta Mathematica 
6 :149 -156. Oct., 1939. 

7. . The four color problem. Scripta Mathematica 
6 :197 -210. Dec. , 1939. 

8. Guthrie, Frederick. Note on the coloring of maps. Proceedings 
of the Royal Society of Edinburgh 10 :728. July 19, 1880. 

9. Heawood, P. J. Map coloring theorem. Quarterly Journal of 
Pure and Applied Mathematics 24 :332 -338. 1890. 

10. Kempe, A. B. How to color a map with four colors. Nature 
21:399-400. 1880. 

11. . On the coloring of maps. Proceedings of the 
London Mathematical Society, ser. 1 10 :229 -231. 1879. 

12. . On the geographical problem of the four colors. 
American Journal of Mathematics 2:193 -200. 1879. 

13. Ore, Oystein. Graphs and their uses. New York, Random House, 
1963. 131 p. 

14. Story, William E. Note on the preceding paper. American 
Journal of Mathematics 2:201-204. 1879. 



31 

15. Tait, Peter Guthrie. Remarks on previous communication. 
(Abstract) Proceedings of the Royal Society of Edinburgh 
10:729. July 19, 1880. 

16. . Map- coloring with four colors. Philosophical 
Magazine, ser. 5 17:41. Jan. , 1884. 


