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ThE ALOEBRA AND TOPOLOGY OF BINARY RELATIONS 

CHAPTER I 

INTRODUCTION 

From the time of Pythagoras' proo1aation, 

Everything is number," up to modern times the question, 

4hat is number?" has evoked many arid. varied responses 

from mathematicians ax4 philosophers. Perhaps the question 

never will be answered to the sat.sfaction of ail philoso- 

phers. But an answer is now aaiiabie that emS øatis 

faotory to some philosophers aM moat mathematicians. 

As a result of his inability to define 'number', 

the early mathematician was foroe3 to treat it as a primi- 

tive notion, undefinable in terms of simpler notions. The 

ue of the word. "notion here throws some light on the dif- 

fioulty. No attempt will be made here to define notion. 

A. DeMorgart, In the 1850's, was able to pin down 

the elusive notion that was causing the logical difficulty. 

It wa what we call a relation. But DeMorgan did not pos- 

sess an adequate apparatus fez' treating the subject, and 

was apparently unable to create such an apparatus. 

The title of creator of the theory of relations 

was reserved fr C. S. Peirce. In several papera published 
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between 1870 and 1882, he lntroduoed and ¡nade precise the 

Í'undamental ooneept8 of the theory ot relations and formu- 

lated and established its fundamental laws (2, pp. 1-117). 

Peiroe's analysis amounted essentially to Mn inversion, or 

a turning Inside out, of the nottc Of relatiOn. 

Phis inversion can perhaps be best illustrated. 

by an example. For such an example we consider the stat 

meut: 

1.1 Texas is bigger than Oregon. 

As it stand this Is simply a true statement describing a 

relationship of Texas to Oregon. Suppose now we remove 

the word. "Texas' fr* 1.1, leaving only: 

1.2 is bigger than Oregon. 

re no longer have a statement, but what is called a stat 

ment matrix; it is in need of a subject noun in order to 

become a statemeflt again. 

By inserting various nouns in the blank in 1.2 

we riM that some yield. semantic gibberish for which lt is 

Imposaible to decide on the truth or falsity of the state- 

ment. Such a statement will be called a meaningless stat 

ment, e.g., if we try tflreu in 1.2 we get a meaningless 

statement. Let us then restrict the class of permissible 

nouns to those for which 1.2 is determinable as either 

true or false. Obviously then we can use the uatrtx 1.2 

as a mes of partitioning tkis class of nouns into two 
disjoint sets of nouns, tkose which yield a true statement 



and those which yield a f1se statement. 

Let us now carry this procese one step further 

arid remove "Oregon" from 1.2. We are left with only the 

matrix: 

1.3 is bigger than 

¶'Je see that now we must supply two nouns in order that 1.3 

be a statement, that is, we need to try nouns in 1.3 in 

pairs. The pairs will be soecial kinds of pairs in the 

sense that one noun will serve as a subject, the other as 

predicate. Given any two nouns we can form two pairs by 

interchanging the râles of the two nouns. We call such 

pairs ordered pairs. Again we restrict our attention to 

the set of all such pairs which yield a meaningful state- 

ment upon substitution in 1.3. For the moment let us 

denote this set of ordered pairs by Obiouly U is 

partitioned into exaotly two disjoint subsets, those pairs 

which make the matrix 1., a true statement and those which 

make it false. 

make the observation that U is a set of pairs 

of nouns. Lach of these nouns denotes some thing, object, 

or concept, which we shall call an individual; many of the 

nouns may denote the same individual. Thus for two given 

individuals x and y for which it is meaningful to state, 

t!X 15 bigger than y," we may find many different pairs of 

nouns In U which are names of x and y. To eliminate this 

possibilIty of duplication of pairs, we focus ittention on 



the ordered pairs of individuals which are determined by 

U. Let us denote this set of ordered pairs of individuals 

by el". In i then, there will be a subset R of ordered 

pairs of individuals corresponding to the subset of U for 

which the matrix 1,3 becomes a true statement. 

The copula '1s greater than" in the matrix 1.3 

we ordinarily speak of as a relation. But this is a notion 

-or a ooncet-not submitting readily to rigorous logical 

analysis. On the other hand the sets I and R are concrete. 

They are definite sets of pairs of individuals. The notion 

"is greater than's ta called the intension of the relation, 

and the set R ta called the extension of the relation. 

e have here started with the intenston of a 

relation and (conceptually, at least) derived its extension. 

The extension of the relation can be easily dealt with by 

our formal logic, but the intension is quite elusive. The 

question then naturally arises as to whether or not it we 

are initially given a set R of ordered pairs of individuals, 

it determines a unique intensive relation. If so, we could 

define a relation by means of its extension and this would 

give us a powerful tool for logical analysis. This ques- 

tion is very difficult and. to seek the answer would lead 

us back into the nebulous realm of words because of the 

very nature of the question. Thus we simply take the 

position (without defending it) that if a set, 1, of orde 

ed pairs of individuals is given, then every subset R of 
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3. will eterrnine a binary relation. In ease i and R hap- 

pen t be such that two apparently different copulas, or 

inteneive relations, can be used to derive the given sets, 

we say that the two intensions are equtaleflt. 

In this way the concept of a relation is, so to 

speak, turned inside out and made the subject of a rigorous 

logical theory as well as a useful tool in the analysis and. 

construction of a mathematical theory. This fact is brought 

out in the following sketch o the historical development 

and. applIcation of the theory of relations. 

In his work on the logic of' relations Peirce had 

the foundation laid by DeMorgan, as well as the algebra of 

propositions formulated by Ioole. We modified. Booleta 

algebra with respect to the exclusive tor, and elIminated 

division. He gave DeMorgan's calculus of relations a work 

able notation and as we remarked earlier, established the 

fundamental laws of the modern theory of relations. This 

work of Peirce's was enlarged upon extensively by 

E. Schrader between 18?? aM 3.900. 
In 1895, Peano aM bis collaborators, in the 

Formulaire de mhematiue, began with mathematics as it 

was and by a process of analysis reached what seemed to 

be the very roots of arithmetic. They found that they 

could start with thre e undefined notions and. five postu'- 

lates stated in terms of these notions, and construct 

arithmetic. Basic in the whole construction was the 



undefined. relation suooesor. The system thus constructed 

was purely forna1, enipty of any content except in so far 

as agreement could be found for the meaning of these un- 

defined notions. Although Peano did not define the rela- 

Uon successor, he used it very sucoessfuly (in extension) 

in his construction of the number system. 

Thus the theory of relations was developed by 

Peirce and Schroder into a mathematical like symbolism as 

* purely logical device for treating statements while 

Peano, on the other hand, took mathematics apart in such 

a way that relations were his starting point. Whitehead 

and Fussell, the thei.r Principia Nathematica, bridged this 

gap completely. They defined all the ideas of arithmetic, 

the only undefined ideas being those of logic itself, such 

as "proposition'1, "negation", and "either-or". Relations 

play a dominational r8].e 1* this development, but in the 

Frinoiia the theory of relations is developed in a fairly 

narrow sense for the express purpose of connecting 10gb 

and mathematice, and not for its intrinsic worth (3, pp. 

l-25). 

Îe have seen that our number system depends 

heavily upox relations for its construction. .t another 

level, the funottons, or transformations, and operations 

of mathematics are nothing more than special kinds of rela- 

tions. Clearly then, the theory of relations is properly 

a part of mathematics itself. The growth and. expansion 
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Of the theory of relations, it would seem, cannot help 

but enhance mathematics. 



CFLPTLR II 

THE VARIABLES AND THE NOTATXG 

In the introduction it wa seen that when a set 

i of ordered pairs of individuals is given, &uîd when a sutr 

set R of i is known, a binary relation is determined. 

uppose that 1 is given and let "R denote a variable sub- 

set of i. By considering E as a variable, we see that we 

have as the subject of our Investigation not the relation 

R itself, but the class of all binary relations in 1. It 

is this abstraotion from a relation ta a class of relations 

that gives rise to the algebra of relations. For the re- 

lation variables we use the capital letters R, S, , and U. 

Our discussion will require also another type of 

variable-the individuals in the pairs which constitute 1, 

and for which we use the small letters x, y, z, ... . A 

given set of individuals will be called a space. In the 

following treatment of the theory of relations the spaceß 

involved will be considered given at the outset, and wil 

thus be treated as constants throughout. In several 

places we will need to consider subsets of the spaces of 

individuals. No symbols will be set forth here and. re- 

served for this purpose. Rather, the notation for such 

subsets will be defined in context. 

An ordered pair of individuals is denoted by 



x;y', where the adjective ordered" refers to position 
with reapeot to the semi-colon. If x and y are distinct 
individuals, then x;y and y;x are distinct ordered pairs. 

The set i of ordered pairs discussed in the open- 

ing paragraph of this chapter is called a product space, 

and is constructed as follows; 02ven two non-empty spaces 

A and B of individuals, the product space AB is the set 
of all ordered pairs x;y auch that x is in A and y is in B. 

e make the usual convention regarding the symbol 

fl.{ namelj: It P(x) is a statement matrix involving 

no other variable than x, then tkP(x)}t' stands for the 

clase of aU. x such that P(x) is true. The Greek letter 
*1* will be used to denote class membership. Thus if P(a) 

is true, we write a s (P(x)}, which is read ta is an 

element of the set {P(x)}. 
From the heuristic analysis of the example given 

in the introduction, it is seen that an algebra of rela- 
tions will be interpretable as an algebra of statements. 
This suggests that our investigation might be facilitated 
by use of the notation of that branch of symbolic logic 
known as the restricted predicate caløulus. We find th t 
this is indeed the case. This section will be devoted to 

a discussion of the logical symbols which we shall use 

(ip, pp. 82-162). 

We have two primitive symbols which we describe 

in terms of words. ll the other logical symbols used csu 
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be defined in terrn of these two. The two primit1ve syim- 

bols are H ft read " ande and "W read "not" . These are 

called conjunction and negation respectively. Thus, for 

example, 1f P(x) and ((x) denote statement matrices In- 

volving the variable x, the statement P(x).(x) is true 

Vor ti T ose arid only those values of x for which P(x) and 

(x) are. both true. The statement _P(x) Is true for pre- 

oisiy those values of x for which P(x) Is false. 

Disjunction " Is read "ore, and Is to be in- 

terpreted in the Inclusive sense. Thus the compound state- 

ment is true it P is true or if Is true, or if both 

are true together-otherwise it Is false. We can define 

V by saying that is the same as ( _F . 

lapitoation "-" is read "implies" or iV 

then Thus the compound statement P Q. is read 

"If P thsn Q or P implies Q" , and it Is false If P is 

true and Q is false, otherwise it IS true. We can define 

by saying that the statement P Q Is the same as 

f' 
. *- . 

Fqulvalence "4- between statements Is read 

and only if The compound statement 

?**-+ is the same as (+ç).(Q--P), or in terms of our 

priLtìtve symbols, ...(P.d..Q)...(._P). Thus the statement 

Q is true If both P Q. Is true and Q - P Is true, 

and it Is otherwise false. 
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We cali the four symboiB " 
fl,, and 

"- the logical oorineotives. Compound statements are 

formed by combining two simpler statements by means of one 

of the ooxmeotives, or else by prefixing the negation ai 

.." to a s tateent. 

The construction of compound statements described 

aboye could lead to ambiguity if we allowed more than two 

statements to b combined by coinectives at one step-e.g. 

z.1 P - H 

can b tuterpreted either as 

2.2 (P Q) R 

or as 

2.3 P - (G. ) H) 

which are quite different. To avoid this ambiguity we 

could keep parentheses on the component parts of compound 

statements, but this would lead in many oases to oumber- 

some tangles of parentheses4 Hence we Shall follow the 

customary use of dote as unc tuatton in the more complt 

cated compound statements. Using the system of dots, the 

statements 2.2 and 2.3 would be rendered as 

2.14k P - H 

and as 

2.5 * H 

respeotieiy. ?h*r is an order of strength of the con- 

neotives which helps to out down the number of dots used. 

The strongest connectives are and -, WhiCh are of 



equal strength. Next in strength is the disjunction symbol 

"vn. 
Finally, and weakest, are the conjunction without 

the dot PÇ aM negation e When there is a dot in a stat 

ment it is stronger thxi all of the other connectives. 

When standing by themselves between components of a con 

pound statement, the dots are read as 'and', but when 

standing by other conneotives, they serve merely to 

strengthen that symbol. In more complicated statements 

several dots may be needed in one place; as many dots will 

be used as are necessary to render the statement unambig- 

uous. 

The quantifiers (x) and (Ex) are translated 

ttor al X" arid "there is at least one x" respectively. 

Thus, placing a quantifier in trout of a statement matrix 

involving x forms a new statement whtoh no longer depends 

on x. For example, the statement matrix > O" is true 

for some values of X and. is false for others. But 

"(x).x>O is not a statement matrix, it is a complete 

statement, in no way depending on x, and it is irrevocably 

false. Also "(Ex).x>O' is a complete statement, not de- 

pending on. x; it simply states a (true) fact. 

A statement matrix with two variables, x and. y, 

say P(x,y)t la converted by (x) into a matrix "(x)P(x,y)0 

of only one variable, y. Then thIs matrix can be made a 

complete statement b prefixing "(y) to "(x)P(x,y)", 
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obtainthg "(y)(x)P(x,y)". This operat&0* 113 commutative, 

and. we ue the symbol "(x,y) to mean (x)(y) or (y)(z). 

Similarly we abbreviate (Ex)(Ey) to (Ex,y). Quantiftoa 

tion is extended analogously to more than two variables. 

Thus (x,y,z,R)P(x,y,z,R) is read. "for all x, y, z, and R, 

1P(x,y,z,R)' is true". 

In order to facilitate the symbolic presentation 

the headings "Postulate", "Definition", and "Theorem" will 

be abbreviated to "Pos", *Def, ari4 "Thm" respectively 

throughout chapters three, four, tive. 



CHAPTER III 

THE GENERAL THEORY OF RELATIONS 

in this cpter ve shall formalize some of the 

ideas disoua$ed in chapter one and lay the groundwork for 

the set-'th$ortic, Or Boolean, theory of relations. We 

take as primitive notions the spaces A and. B of tndivid 

uals, the concept of ordered pair x;y, and the relation 

e of elemerithood. Since we are not interested in oon 

struoting a vacuous system we state 

5.1 Pos. (Ex,y).xsA.yeB. 

This insures that the space of ordered pairs defined next 

will possess at least one element. 

Def. Put 1t for"{xeA.yeB}. 

5 Thm. (x,y):xeA.ysB.-.x;ysl. 

3 Thm. (tx,y)x,yei. 

Ne next define the class K of all relations in 

1: Formally this is just the class of all subsets of the 

product space. 

3.5 Def. Put "K" for ((x,y).x,yeR- x;y*J. 

.6 Thm. (R):REc,*-.(z,1).x;yeR - x;yaxy*1. 

5.7 Thm. leK. 

This last theorem tells us that i is a relation. 

We call i: universal relation in K it te the relation 

whish every element x in A bears to each element y tn B. 
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The next deftn1Uon is not really s P$Zt Of the 

theory or relations, we state it a a deftnitìcn merely 

for the sake of formal completeness. 

3.8 Def. Put xfly" for "x;yER. 

We interpret the symbol xR as a statement matriz, 

read "x is in the relation R to y*, However, as might be 

inferred from the statement of definition 3.5, our aim is 

to construct a theory of relations in which the relations 

are treated as just elements of a set K. The approach we 

take here insures though, that after the abstract theory 

is aeveloped we will be able to interpret the firal results 

in accordance with definition 3.8. 

In the interest of economy of expression we 

shall make one more eonVttion to be effeotiTe throughout 

the remaining chapters: The individual variables x, y, 

z, ... will be considered restricted to the ranges A and 

B. We will therefore omit and leave implicit the condì- 

taons of the form xsA, yB, etc., which should app ear 

immediatelyfo hewing every quantifier (x,y,...) or 

(Ex,y,HilI.). 

The following three theorems are immediate con- 

sequences of 3.5, 3.L., and '3.6 in view of definition 38. 

3.9 Thm. (x,y)zly. 

3.10 Thm. (Ez,y)xly. 

3.11 Thm. (R):Rs1,4-*.(x,y).xty xly. 

We next defin, the null relation O in K, the 



whteh no element of A bears to any element of B. 

,.12 De?. Put "Ofl for "y{xly._xly}'. 

Tha. (x,y)..xøy. 

LILk Thm. OK. 

We now proceed to detti three operations-union, 

intersection, and complement on K tu such a way that K will 

constitute a realization of the Boolean algebra postulates. 

5.15 Def. Put "E+S for 'xRyxSy}". 

5.16 Thin. 

3.17 Thin. (R,S).R,SEK-(R+S)sK. 

S .18 Def. Put "RS" for tt[xRyxSyU. 

5.19 Thin. (R,S):R,3K.-.(x,y).x(RS)y xR7Z 7. 

5.20 Thin. (R,S).H,SI (Rb)EK. 

.z1 Def. Put "R" 

.22 Thin. (R):REK._.(x,y).xRty * _XRy. 

.2? Thin. (R).rtsK - 

The next definition 2.s the essential device that 

enables us to abstract relations and deal with them as 

elements of K without reference to the individuals x and y. 

Del. Put 'R=S" for "(x,y).xRy xSyu. 

Tha, (R,S) : .R,ScX*:R'S.*s.(z,y) .xRy-xSy. 

.26 Thm. (R,S):R,SsL-'.R*S-*$*R. 

Sa? Thin. (R,8,T):.R,S,TsK:-:Rs1Y.S=P.-.R=S. 

We shall now show that the system K that wo 

have defined constitutes a !3oolean algebra. 

5.28 Thin. (R,S,T):R,S,TsK.--.RS-*R+T=S+T. 



Proof: ssume li,S,TeK. 

By .25, R=S.-.(x,y).xRy '*- xSy 

xSyxTy 

By 3.16, .-.(x,y).x(R+T)y x(S+T)y 

by I.25, 

.29 mm. (R,S,T)tR,8,PeK.-.R=SRT=ST. 
Prooff Similar to the proof of theorem 3.28. 

3.30 Thin. (R,S).R,SEK-R+S=S+R. 

Proof: The theorem follows irrnnediately from the equi'r- 

alence (x,y>.xRy7xSy z: xSyxRy and by 13.16 and. 13.25. 

3.131 TI-im. (R,S).R,SEK-RSSR. 

Proof: Similar to the proof of 3.30. 

3.32 Thin. ...(1=0). 

Proof : 

By 3.23, 1*O..(z,7).x1-xOy 1 (Ex,y)x1y-(x,y)zOy 
.-ø...{(Ex,y)x1y...(Ex,y)xOy} 

.-+..{(Ex,y)xly. (x,yLxoy} 

Now taking the contrapositive of this implication we 

obtain 

(Ex,y)xly. (x,y)xOy.-...(]O). 

The theorem now follows by .10 and 3.13. 

,. Thin. (R).REK-'R+O=fl. 

Proof: 

By 3.16, 

Assume flAK. 

(uy) :x(R+O)y.*-+.xRyx0Y 

. 

by 5.13, 

From this reault 

xRy. 

the theorem now follows by 3.25. 

3.514 Thin. (R).R6K-R1R. 

Proof: Similar to the proof of 3.35. 

13.35 Thm. (R,S,P).R,S,TeK-R(S+T)RS+HT. 

Proof: Assume R,S,TK. By 5.1?, we see that 



by 3.19, x(R(S+T))y.*--.xRy.x(S+T)y 

by 5.i6 ..ul*-.xRy.xsyvxTy 

.*-. xRyxSyxRyxTy 
b .19, 

by 5 .16, *-.x(RS+R)y. 

Using the genera1iation principle or' thi8 result, the 

oono1ua1ori follows by 5.25. 

3.6 Thm. 

Proof': 
Similar to the proof of 3.3$. 

7 Tha. (R).HK-RR'=o. 
Proof z Assume RK. Then by R'*K, so 

by 3.19, x(RR')y.-4'.xRy.xR'y 

by 5.22, .-.xRy.xRy 

by 3.11, .-.x1y...x1y 

by 5.12, -.xOy. 
The contrapositive of this is 

_xOy-.x(R' )y 

from which by 5.13 we conclude (x,y)_x(RR')y. Then 

since every statement implies a true statement, we have 

(x,y.)zOy*-*..x(RR' )y. 

The theorem follows fro* this and 3.25. 

5.38 Thm. (R).RsK-H+R'1. 

Proof: Assume REK. Then by 3.23 R'6K, BO that 

by 3.16, x(R+R')y-xRyxR'y 
by 5.22, -xRy,..xRy 

from which we conclude that (x,y)x(R+R')y. Using this 

and3.1O, the rest of the proof is atmilar to the proof 

of 5.5?. 

Now theorems 5.7 and. 5.1L together with theorems 

5.17, 3.20, and theorems 3.28-3.38 are precisely the con- 

ditioxis which K must satisfy in order that it be a Boolean 

algebra. Since K has been shown to be a Boolean algebra, 
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we can apply immediately any or all of the theorems of 

Boolean algebra to the elements of K-to the relattons. 

We shall giTe here a list of the Boolean theorems which 

wtll be used iii the eve1opment Of the algebra of re la- 

tions tri a later Beotion. For a reasouabiy complete treat- 

ment and. ari interesting historical account of Boolean al- 

gebra see Lew18 and Langford, Survy symbolic loglo, 

Berkeley, 1918. 

3.39 Thm. (R,S) .R,SsK:-:R+Sml.RSO.'-*,$*R'. 

:.Lo Thrn. (R).ReK-RR. 

3.L41 Thin. O'l.1'-O. 

!.L Thrii. (t.E$XN*fR*IR. 

Thm. (R),REK-R*}t, 

hIL4. Thin. (R).RK-+R+11, 

5.Zj.5 Thni. (ì).RsK-O-O. 

.Lj6 Thm. (R,S).R,sK-R+Ra*.. 

3.L4.7 Thin. (,8).R,SsK-'R(R+8)s*. 

5.L.8 Tha. (R,8)J,seK-R+(R'+s)1. 

Tha. (R,8).fl,SeK-'R(R'S)=O. 

3.50 Thrn. (B1S).R,SEK-tR+S)'=R'S'. 

3.51 Th*. (R,S).R,SeK*(RS)1=Rt+SI. 

.52 Ths. (R,8):.R,SEK:*:&'=O.R'S=o.-*.R8. 

,,s, Th*. (R,S,T):.R,S,sR:_:RS*o.RT=O.*_.R(ST)*O. 

5 Thm. (R,S,).R,S,!IeIc-(R+S)+T=R+(S+T). 

.55 Thm. (R,S,T).H»s,TcK-(RS)T=R(ST). 



3.56 Thin. (H,S,T):.R,s,Tic:-:RTo.sT'o.--'..RS=o. 

3.57 Thin. 

3.58 Thin. (R,S):R,SsK.-'..as+R's'=1-R=s. 

3.59 Thin. (H,8):R,SK.-.R+S=sRS=R. 

.6o Thin. (R,S):R,SsK._*.RSt=O< >3R. 

3.61 Thin. 

These last three theorems are ali equivalent 

characterizations of the inclusion relation between rela- 

tions. We shall define this relation here and list some 

of the properties of K in terms of It. 

3.62 Def. Put "R < S" for ttQfl 
3.65 The. (R,S):R,SEK.-*.R<34U$'*O. 

Y.6Äi Pbs, (R).R$K.-!,P.R<R. 

,.65 Thin. (l):RsK.-.o<R.R<l. 

3.66 Thin. (R,S):.R,sK:-:R<s.8R.*-.R=S. 

3.6? Thin. (R,S,T):.R,S,TK:-R<T.T<S.-.R<b. 

3.68 Thin. (R,S).R,SEK-*BS<R. 

3.69 Thin. (R,S)J,sJc-R<Rs. 

3.70 Thin. (R,S):R,SK.-.R<S-s'<R'. 

The next theorem gives an interpretation of "<" 

In the terms of our definition of K. 

3.71 mm. (R,S):.R,SK:-:R<S.e-.(x,y).xRy-xSy. 
Proof: Assume R,ScK. Then we have 

by 3 63 , R<S RS ' 

by 3.13, .4-.(x,y)._xRS'y 

by 3.19, 

(x,y) .*.xRy.xSIy 
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by 3.22, Rc8. x,y)._xRyxSy 

*-.(x,y) .xRy-xSy. 

It may be remazked that K constitutes a complete 

atomic Boo1eax algebra. Th.s fact would be of trìtere8t 

tri the development of a convergence theory in the topolo 

leal algebra of relations, but we shall not make use of 

it here; tu the remaining chapters, only finite unions and 

intersections of relations will be considered. 

In some oases lt is helpful to have ava].abis 

a sohernatlo representation of a relation. If we igxtoze 

the possibility of difficulties which may arise due to 

the oardlnallty of the spaces A and. B, we cari imagine the 

elements of A arid B as represented uniquely by points on 

two different line segments. 1!e draw these two seg*ents 

perpendicular to one another forming two sides of a reo- 

tangle and we eaU. them the -axls and the e-axis. For 

every element x of A, draw through the point corresponding 

to X a line parallel to the +-axis; similarly, for every 

element y of B, draw a line parallel to the -axis through 

the poiTt Pepresent tng y ort the B-axis. This results in 

a cross-hatching of the rectangle defined by the A- and 

B-axle, the density of the oroes-hatohin$ corresponding 

to the density of the points used on the A- and the B- 

axis. 

The totality of all the lattice points, or points 

of intersection of these lines will then represent the set 
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of ord.ered pairs which constitute the product space 1. 

Any set of these points will be a relation in K. The set 

of points constituting a relation is called the graph of 

R in AXJ3. 

For every relation R in AXR we hare two pr 

jections, the domain of I and, the converse domain of R. 

These are defined by "{(Ey).xRy}, and fl(Ex).xRy' 

respectively. 

The schematic representation of relations will 

be useful in the next chapter as an aid in tke study of 

the relative operations in the homogeneous product space. 

Let us step down momentarily from investigation 

of the properties et K for a look at some properties et 

a relation R. For the remainder of this chapter we shall 

consider R as given, and t will be treated as a constant. 

We need three additional tools, which are given 

usby 

1.78 DeI. Put t4<N" foi' "(z) : .zsI*-zN". 

, . 79 Def Put "M=N' fori "1KW .N<M'. 

3.80 Def. Put for {(oc).oM-N}". 
ocsM 

Note that this use of' "<" and is constatent 

with our uso of these same symbols in case M and N are 

relations. These definitions are intended to allow us to 

use corresponding symbols ambiguously between reltiona 

and. arbitrary sets. 



ie shall now be considering two types of var- 

tables; for the individual variables we use "x« and "y" 

as before, and as set variables we use X" and "Y". 1e 

have two unary operations * and. on the subsets of A and 

B respectively. Accordingly we shall interpret "x" and 

as 
* 
and operating respectively on the subsets of A 

and B whose sole members are the elements x and y. This 

interpretation will serve to simplify the notation without 

introducing ambiguity. 

3.81 DeL Put X* for {xRy}t. 

3.82 Thrn. (x,y).y6x*4_xRy. 

3.8 Def. Put ty for "(xRy}. 

3.8't Thm. (x,y).xEy-xRy. 

.85 DeL Put for "93 (x) .cX-xRy}". 

'3.86 Thm.(y):ysX*..(x).xXxRy. 

3.8? Thin. (x):xsX.-.(y).yEX-xRy. 

3.88 Def. Put "Y" for "*{(y).yeY-xHyJ". 

3.89 Thm. (x):xsY.-.(y).ysY-xRy. 

3.90 Thm. (y):yc(.-*.(x).xY-xRy. 

we now shall state and prove some of the conse- 

,u.no, of these definittons. 

5 . 91 Thm . X1<X2-X<Xj, 
Proof: Assume X1<X2. Then xX1-xX2. 
By 3.86, ysX:-:(x).xX9-xRy 

:-*: (x) :xX1-xX2 .xsX2-'icRy 
:-, (x) .xX1-xRy 

by 3.86, :-:yeX. 



The theoret to11ow now by 3.78. 

.92 Th. 
Proof: Siin1Icr to the proof of 3.91. 

5.9 Thin. X<X. 
Proof: 

By .87, xeX.*.(y).ysX-xRy 

by 5.59, 

From this the theoreit follows by 5.78. 

5.9. Thm. Y < Y4. 
Proof: Similar to the proof of 5.95. 

5.95 Thn. 

Proof: By 1.95 and. 5.91, X''<X. Also, by 1.9 

X X The conclusion follows now by 5./9. 

.96 Thm. 

Proof: Si11ar to the proof of 5.95. 

5.97 Thrn. 

Proof: Use 5.9]. and 5.92. 

5.98 Thin. 

Proof. Use 5.92 and 5.91. 

1.99 Thin. X'fl\x'. 
xsX 

Proof: 

By 5.86, 

by- 5.82, 

b .80 , : : y (\ x. 
xX 

The theorem follows now from 5.78 and 3.79. 

i.lOO. Thin. 

yY 
Proof: Similar to the proof of 5.99. 
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Some of these proerttes will receive applica- 

tion in chapter five in the discussion of the topology 

of relations (1, p. 



CHAPTER IV 

NOMOOENEOUS RELATIONS 

The class K of relations introduced In chapter 

three was quite general, d.ependi.ng 

the two given spaces A and 3. An 

occurs when A and. B are Identical, 

sist of' exactly the same elements. 

that the resulting product space i 

homogeneous1 and that K is a class 

tions; this ts signified by Kh. 

only on the nature of 

Lmportant special case 

that is, when they cou- 

In this oase we say 

of ordered pairs is 

of' homogeneous rela- 

Por any class Kb of' homogeneous relations we can 

Introduce two new binary operations, the relative product 

B/S and the relative sum R7S, and a unary operation R 

called. the converse of R. The algebra of relations re- 

suiting from considering these three operations in cou- 

junction with the Boolean operations in Kh is a very rieb 

deductive system. 

We shall develop a basis for this algebra in a 

manner similar to the development in chapter three. The 

single additional postulate which we here require can be 

thought of as following directly after 3.1, as none of the 

subsequent statements In chapter three are affected in any 

way by this new postulate. Thus ail ofthe definitions 



and theorems of' chapter three will be applicable througi- 

out the present chapter. 

L.1 Pos. (x).xeAe-xB. 

This postulate serves to make J. homogeneous. It 3 

restriction which justifies our definitions L.2, .5, and 

Z.8, and axioms L.11 aM .12 below. When both postulate's 

and 1 are satisfied w. denote the resulting class 
of relations by '9th", the ") being intended to suggest 

"homogeneous". 

Throughout this chapter1 except where it IS 51 

tinent, the hypothesis x,y,... will be omitted and left 

iniplicit as was done in most of chapter three. We oon 

aider the individual variables as restricted to the range 

A (or equivalently, to B) whereever they occur. 

We introduce the converse operation by 

Def. Put "R" for 

., Thin. (x,y,R).xRwyyRx. 

Thrn. (R).RKh-+R'Kh. 
Proof: By xRy.-.yRx 
by hypothesis1 3.11, .-.yix 
by 3.3, 

by ¿s..l, .-+.xeA.ysß 

by 3.3, ..x1y. 
The conclusion follows from this and from .11. 

Theorem gives closure of Kh with respect to 

the converse operation. We next defIne the relative pro- 

duct and the relative sum operations, and demonstrate 

closure of Kh with respect to both. 



m 
45 Def. Put "R/s for "?{(Ez).xRz.zSyJ". 

i.6 Thrn. 

Lk.7 Thm. 

Proof: AaEumeR,&it. Then 

by Z.6, x(fl/S}.i,mwø.i*).xRz.zsy 

by 5.11, .-+.(Ez).xlz.ziy 

by 3.5, 

.mI*.x* A.yB 
by 3.3, 

The ooneluston follows nowby 3.11. 

L..8 Def. Put "R1S for''{(z).xRz,zSy}". 

Thm. 

¿..10 Thin. (}ì,S).R,SEKh-*(ThS)Kh. 

Proof: Aesuin e R,sKh. Then 

by .9, x(RS)y.-.(z).xRzzSy 
by 3.11, 

by chotee of z, ..X1xx1y.xi771Y 

by 3, 
by Li.1, 

by 5., .x1y,x1y 

The theorem follows from this and 3.11. 

Peculiar to ich, there is a very important corr- 

stant relation I called the t.entity relation. This is 

just the relation which every element of A bears to it 

self. In order to avoid a cumbersom definition we depart 

from our usual defining scheme and define I axiomatically. 

11 Aztc*. I*Ih. 

!i.12 Axiom. (x)zlx. 



Z.13 Axiom. (x,y,z,H):.RKh::xRz.zIy..xRy. 

We thus simply agree to Gail every element of 

Kh which sati8fiee ¿1.12 and L.i3 art identity relation. 

e shall see shortly that the identity relation has been 

well defined. The identity relation behaves exactly like 

ordinary equality, i.e., txIy will be Interpretable as 

n t 

.lL; Thm. .(Io). 

Proof: By 3.1, (Ex).uA. Hence by L.l, xB. Then 

by ¿.12, (x).xIx. The theorem follows now since 

by .25, 

b .i3, .-.(x,y).zIy 
by ohoio of y', .-ø'.(x),xlx 

.zlx, 

and the contrapositiveof this is 

(Ex),xIx,-...(J=O). 

We proceed now to the development of the algebra 

of Kh based upon the results of chapter three and the def- 

initions given in the present chapter. 

1.?5 Thrn. (R).RChR=R. 
Proof: By xRyEyRwx 
and again yRw x4-xRy. 
The theorem follows from these aM 3.25 

i.l6 Thm. (R,$).R,ssKh-.(B/sy=(S/r). 

Proof: Assume R,Ssith. 

y Ì, x(R/$)'y.*-.y(R/8)x 
by I..6, .'-.(Ez).yRz.zSx 

by L4., 

by i..6, 



The conclusion follows now f ros 3.25. 

t.l7 Thin. (R,S,T).R,S,TKh-R/(S/T)=(E/S)/TY. 

Proof: x(R/(S/T))y:-:(Eu):xRu.u(S/T)y 

by ii.6, :--*:(Eu):xHu.(Ev).uSv.vTy 

:*-+ (ßu1) :xRu.uS'v.vTy 

by 1..6, :*-:(E ): x(R/S)v.vTy 

by Zi.6, 

The result follows now from 3.25. 

Thin. (R).REKir-R/IE. 

Proof: Assume REI(h. First w ibow (R/X)<fl. 
By ii..6, x(R/I)y.-.(E).x*zEXy 
by 

Henoe by '3.71, thie yields (R/I)<r .. To show that 

R<(R/I), we have that 

by 14..16, ..x(R/i)y.-...(Ez).xR.zIy 

.-.(z)...(xRz.zLy) 

.-. (z) . Iy-xRz 
by choice of z, . y 

by 

thecontrapositive of which is tx.Ry(R/I)yn. Then 

by 3.71, R<(R/l). By 3.66 the theorem now follows. 

L.l9 Thin. (R).ReKh-R/=ll/R'.l. 
Proof: In view of 3.9 and. ).25, we want to prove 

(x,y)x(R/l)y(x,y)x(l/R')y. Or, using !.6, 

(x,y): (Ez) .XRZly.: (x,y) : (Ez) .xlz.zR'y, 
which, by .9 is equivalent to 

(x,y).(Ez)xFiz..(x,y).(Ez)zH'y. 

37 3.22, thIs io just 

(z) .(Ez)x.. (y) .(Ez)..zRy 
or (x).(Ez)xRz..j(Ey).(z)zy}, 
or (Ey).(z)zRy.-.(x).(Ez)xRz. 

Since the variables on both ends of this Implication 
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are quantified we can change the letterø, obtaining 

(Ey). (x)xRy.-9. Cx) .(Ey)xRy1 

$ theorem in the reatrioted. predicate oalculue. 

lf.20 Ths. (R,3,):R,S,TKh.-*.(R/S)T=O< (S/)Rw=O. 

Proof: Y,i3 and. ,25 we write (R/3)=O as 

, (R/8)o 
by 5.19, :*-:(x,y)..,.{x(R/S)y.xTyj 

by !4..6, 

:: 
: -»; (x,y,$) 

by 1h3, 
' 

:4...I» (zx)((Ey)zsyyx}..zRx 
by Li..6, ;4-*; (s,z) .z(Sfi? )xRx 

by 3.19,. 

by 

Li..21 Thin. (R,S).R,S.Kh"(R,' S )'=fi'/S'. 

Proof: Aøsunte R,SKh. Then 

by .22, 

by .9 , .'..{(z) .xRzzSy} 
.*-*. (z) ...xhz_zSy 

by .22, .I4i-*.(EZ),*VzzSy 

by /.i.6, ,'**.z(R/St)y. 

The theorem now follows by generalization ant b 

Li..22 Thzu. 

Proot: Assume R,SeKh, Then by 3.13 aM 
by .25, 

by .19, 

by 

by .22, 

by 3.19,. 

by ?.i3,.25, 
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!,23 Phm, (R,S):R,Seh.-.R=RS. 
Proof: Assume R,Ssi. Then 

by 3.52, R=S.-.RS'O.R1S=O 

by .22, 

by 3.52, 

Thm. (,S).R,SK(R+SYR"+S. 
Proof: Assume R,SKh. Then 

by 3.50 aM 
Simtlarly, Rw+S)1*S(itSW)zO. 

By RtRw+) '.o.S(it'+S" Y 
by 3.57,3.35, 

by i4..22,L.l5, 

The above argtunent with R an S replaced by } aM Sw 
respectively yields 

(R+S)' '(r+S )=o. 

The theorem by 5.52 from last two 

resulta. 

i.25 Thm. OO. 
Proof: By S .I.5 

W 
o . Hence, b I.22 , O'O 'SO. 

Then by Li..15 aM 0w 1=0. The concluston flow fo2 

lowe from 3.3L. 

!j,.26 Thm. :Lw=l. 

Proof: Similar to the proof of theorem .25. 

¿.27 Thm. 

Proof: Assume R,S,TKh. Then by 3.37 (/8)(T/S)'*O, 

hence by t.20 ((T/S)t/T)Sw=0. Also1 br 14.22, RS'=O 

_..rrsw,*o. Hence by 3.36, ((T/S)1w/T)Rw=0. Then by 

L$ .20 , (T/rtw 
) (/) =o The theorem now follows by ¿ .15. 

i3.28 Thin. (R,S,T)R,S,Tth.-.a=&-r/1=T/S. 

Proof: Assume R,31TsKh. By 3.52 then, 

R=S.-.RS'0.R'S0. The theorem now follows from L.27 



and. another appiloatton of 3.52. 

4.29 Thm. (R,S,P).R,S,TEKh*R/(8+?)*(R/8)+(R/). 

Proof: Assume },S,TKh. Por oonvenienoe, set (R/S)+ 

+(R/T)=P. Then by 3.50, (R/S)P'O and (R/T)P'O. By 

Ls..20, (Ptw/R)SO and. (PIw/R)=O. Hence by 3.57 and 

3.135, (P1w/E)(S+)=O, and. by t.2Ll., (P*w/H)(S+T)O. 

Using ¿i..20 then, (R/(8+T))P'=O. On the other hand. by 

3.50 S(S+T)'o arid T(S+T)'O, thus by Li..27, 

(RfS)(R/(s+T))'=o and (R/T)(R/(S+T))'O. Thenby 3.57 

and 3.35, P(R/(S+T))'Q. Therefore, by 3.52, 

¿4..30 mm. (R,S,T)R,S,TEKh.-*.RS'=O-4'(R/T)(S/P)'O. 
Proof: Similar to the proof of theorem L..27. 

t4.31 Thin. 

Proof: Similar to the proof of theorem L.28. 

mm. (R,S,T).R,s,TJch-(R+S)/T=(R/T)+(S/T). 
Proof: Similar to the proof of theorem L.29. 

L;.. Thm. (R).RKb-R/O=O. 

Proof: Assume RKh. By 5.L5, (1/R)OmO. Thn by Li..20, 
(a/ow ) 1w Q , so by L$. .25 and 14 .26 , (1/0)1*4 a Then by 

R/o*o. 

Thm. ().PKh.-'O/RmO. 

Proof: Similar tetbe proof of theorem Li.53. 

;..35 Thm. Iw=I. 

Proof: By ¿4..16 and. L.15, 

Now by L. . 18 (!w /I)Rw hence (E# /])W WW *R. Therefore 

(R).(I/R)izR. r3y choosing R as I tn thie, lk/Ii'I. But 

by Z..l8, Iw/I=Iw The conclusion now follows by 3.2?. 

1.36 Thin. (R).RKh-I/R=fl. 

Proof: Assume R6Kh. By LJ.35 d. 1h31, X/Rst/R. 

Then by £1.15, II..16, aM U.18, 
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I/r=(r /R)(R /i )(R' /I)=R""=R. 

!437 Thm. 

Proof: By øeparate choice of R tnthe hypothesis, 

12'h12 and i1/12=I1 Then by k.35, and k.16, 

.38 Thm. (R,,T,U):.R,S,?,Uh:-*:R=S.TU.-.R/T=S/U. 

Proof: Follows from 1.3l and k.28. 

k.?9 Thm. (R,S,T,U):.R,S,T,UKh:_*:R=S.T=U..R,'TrS,qJ. 

Proof: Follows from k.'38 and L.,2l. 

k.kO Thin. (R,S,P) :R,S,TKh.-.R(S)=(R7S)T. 
Proof: Follows from ¿4.17 and 14.21. 

We have now established an associative, non- 

commutative algebra on Kh with the operations TI/II, U7LH 

and "u". That is, the operations are well defined and 

Kh is closed with respect to all of these operations. 

Theorems k.? .38, and. L,..17 show that iCh con- 

stitutes a semi-group with respect torelative multipli- 

cation; moreover theorems !4..18 and ¿4.36 show that thi s is 

a semi-group with a unit. 

The rest of this secttc* Will be devoted to the 

development of further useful and Interesting results, and 

to the characterization of special subclasses of iCh which 

are important in mathematics. 

Commutativity of the converse and. complement operations 

in iCh is given by 

k.kl Thm. (R) .liKh-F t=RSw. 

Proof: .4ssume RKli. t1rst, we have RRe=(F+R1w)t, 



Also, since HR'=Q, 

CR/I)I'O. Hence, by 1h20, (X/R')R=O. Then RRO, 
so that RtRw=O. The t}eorea now follows from 3.52. 

L.0!2 Thm. (R,$).R,sKh-(Rs)rs. 
Proot: Follows from 3.51, and 

The following three theorems are easy conse 

quencea of ¿..21 with L.29 and L..32. 

L..41 Thin. (H,S,T).R,S,TK(ST)=(FS)UT). 

Thin. 

L.L5 Thin. (R,S,T).H,S,TKhR/(ST)=(}S)/T. 

îe hive also the relative addition analogues of 

L.16, 4.2Ì, and LI..30 in 

Thm. 

Thm. 

M.Z8 Thin. (R,s,T):R,S,TcKh...RSI=O*(LBXPiLS)=Q. 

In view of theorem L..21 we see that ìh is a 

semi-group with respect to relative addition. AS the next 

theorem shows, the diversity relation I' te s unit element 

for this semi-group. 

Thin. (R).Re1Fi1I*,LRR. 

The next is a useful special case of' li.20. 

.5O Thin. (R,S):R,SKh.-.rtS=O >(R/S)I=O. 

1e now define a subset of Ku which is called 

the o1as of nvmy-one relations. This is just the class 

of' all functions, or maps, of modern mathematical analy- 

sis which map a given space onto or into itself. 



4. .51 De f. Put 'P fo 4 (Z ,y , xltz .. yxJ *. 
t..52 T1ui. 
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The t.xt theorem gxu' a chiraoterti*t.on of 

the e1as i? otr 1gebr& 

'4.r3. Thin. 

Proof; 1or th left tø the rtght Impiloattot, by i',52, 

TF:: (z11y,t) 

i-:(z.7.Z):i*y.t:7x 'z 

The trnpteation row foi1os fron .?i. Por the rlg)it 

to left 1p1tatton, b 
3.?iI 

RI'#I:.+:(x,y,7) 

:aløl(*,7,z) :xRy.-ø.zRj--*Xy 

:*:t*,i,*) ;xRy.xR*.-,tXi 

Thm, X'*X''. 

Proofs o110 trop II.,5 sind s.4.1. 

The two preoee4*$ th,ores 1ad to a nore ug- 

geøt&ve o1uïraaterIssttmi of P gtven by 

Zs.55 rhju. (R):I}h.-.RsPø(r/R)I**o. 
proof; Assuse hs$. Then 
bt Ì.53, }tsø..h<R'i 
by 5 3 , -R ( it ) '*0 

by 

br 4..L5, 

b .ZO, 

*or an tntrpz'etatton of R as a tunøtton in the 
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usual not&tion of matheìtic we write 'y R(x)" for 

1xhy" when REF. With this notation Lt..51 states the usual 

condition of strìl vluediiess of a fuitøtton if y = R(x) 

and R(x), then y z. Froi 4 .6 se hare the tnterpr 

tatioil of R/S in tuzicton notation where R,SF, y=(R/S)(X) 

rnens 'there is a z auch that 3(z) and z = R(x), that 

is, y S(R(xfl.« If E i a furctton1 thc tnverae func- 

tion, or tiwerse reap R, is just what we have been de- 

noting by "R " . With these ounvention L .5 becomes , " R 

is a funotion mA toA if and only if for all x and y in 
A, X I(z) and y = R(z) together imply that x y. 

We shali now define a lass of relations which 

will lead us one step nearer to the pre?isly mentioned 

group with repoct to rlìtive multipitoation. 

L.56 Def. Tut Oto" for "{(y)(Ex)xRy3". 

Thm. (R) ¡R h.-.HEOr1to (y)(Ex)xRy. 

The next two theorems give characterizations of Onto in 

the algebra of relations. 

.58 mm. (R)RsKh.-.Ronto4+(r/R)'I*ß. 
Proof: Assume RKh. Th** 

by 3.l,L25, (Rd/R)VIO*lr+(X,y)..X((RW/R)tI)y 

(x,y)...x(R IR) 'Y..xIY 

-E- (x,).xiy-*x(S' /R)y 
...4-3Ì.. (x)x(R/R)x 

(z) (Ez)xRwzzRx 

(x) (Ez)zRx. 

The theorem now follows from .57. 
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L..59 Pb*. 

Proof: Aaume PKh. Then 

by 3.9,3.25, i/R1*-(x,y)x(1/R)y 

by L..6, x,y)U)x1rzEy 

by 1,10, y)(Ez)zRy 

by L..5?, 

3. , 60 mm. (ft) :f?Kh-REOntoR" ' EOnto. 

Proof: Using ti,16, J.15, aM L'..21, we have 
1/Rd '=1.*-.R'/11. 

The theorem now follows from L.59 ¿j L.19 

Li.61 Thin, 

Proof: Assume Then 

by .55, R,F.-*.(Tt'/a)I'azo.(S'/8)I'*G 

by 

by L.56, 

by ¿..27, 

by 3.56, 

by IL.16, 

by .58, 

L.62 Thn. (R,S):R,SeKh.-.R,SOnto-*R/SOnto. 

Proof: Similar to the proof of theorem 1.,61. 

We next define a class of relations in Kh which 

is very useful in mathematics. It is the class of all 

functions whIch map tne space A into a subset of itself. 

Pheee relations are sometimes oaiied transformations. 

L..63 Dof. Put 9rt for 

Thm. (R):,R$Kh:-*:RPr.4-*',RF.FcOuto. 

Lit.65 Thm. (R,8)R,SEKh.-.fl,SeTr.R/ßTr. 
Proof. Follows from ).6i, nd .62. 

L.,66 Thm. IPr. 



Proof: y 'i.18, and ti..36, (I/I)I'II'=O and. 

(i/i' ) t 1=1 ' 1=0 . The theorem now follows from L. '55, 

L.58, and 

We are now i.n a Dositlon to define a subset of 

Ku conBtitutlng a group with respect to relative nu1ti- 

piiOatioii. This class of relations is called. a transfor- 

mation group in IChS 

L..67 Def. Put TG' Thr f{R,fl'Tr}'. 

L..68 Thrn. 

Thrn. IsTO. 

Proot: i?oliow from L.66, ¿4..35, and 14,.68. 

It is seen from theorem Lie,? that the elements 

of TO obey t}ie asi'ocîat1e law with respect to relative 

multiplication. Also, by theorems I4.l8, and Li..69, 

we see that the identity relation I can be taken as a unit 

element of TO for relative multiplication. The next three 

theorems show that TO is closed under relative iultipli- 

cation and. that each element in PG has a right and a left 

inverse in TG, and thus that TG does, in tact, constitute 

a group. 

Li.lO rhv. (R):HEK.-.RETG-R'eTG. 

.7l Thni. (R,$) :fl,SsKh.-.R,ETG-R/SETG. 

Proof: Follows from L.68 and 14'.65, using Ls.16. 

t.72 Thm. (E):R h.-.RTG--R'/R R/R i. 

Proof: Assume RKh. Then by l.68, and 3.52, 

RETO. -.RTr.I?" Tr 
.*.REF.REOnto.RWeF.R eOnto 
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RTG.-.(R/R)I'o.(R/R) '1=0. (H/By )I'O. (R/Rw ) I=O 
.wI 

.-4--.R iH=I.R1 =1. 

In TG then we see that we may take the converse 

of a relation as its rnu1t1t1toation Inverse. Theorem .23 

shows that this. inverse is unique. It may be of thterest 

to note that theorems .55 and Z..58 together give a neces- 

sary and sufficient condition for the existence of a left 

Inverse. Thiø is given explicitly in 

Tha. 

By taking R to be R in theorem L73 we bave the corres- 

ponding condition for the existence of a right inverse. 

There are many interesting relations and classes 

of relations in Kh, such as the ordering relations arid 

equiviience relations. Since our interest here is pri- 

manly with the basis of the formal algebra of relations, 

we shall not examine further subclasses of Kh, but shall 

look now at a geometric Interpretation of the three rela- 

tive operations. 

In chapter three we gave a method of construction 

for a picture of the product space for the graphical rep- 

resentation of a relation. For the homogeneous relations 

it will be helpful to extend this technique to three di- 

mensions. We use the ordinary cartesiai representation 

where now all o the axes are identical. For our purpose 

it will be convenient to distinguish between these axes; 



a000rdthgly, we labe? them with uhecr.pts 1, 2, axid 5, 

with x1, z2, and used to denote variables on the 

A2-, and Aç-axes. 

We have three square product spaces, or planes, 

A1X AV A2X A5, and A1X A5, which determine a cube We 

may think of the A1X A2 plane as our principle product 

space an the other two planes a auxiliary spaces. 

The identity relation I is just the dia onal 

of A1X A2 through the point of intersection of the three 

axes. 

For any relation R in A1X A2, R is just a rigid 

rotation of R through 1800 about I as an axis of rotation. 

This rotation is equivalent to a rotation through 90° 

about the A1-axis into the A1X A plane , followed by a 

rotation about the A-axis into the A2X A plane, and then 

a rotation about the A2-axis into the A2X plane . This 

gives the relation R in the A2XA1 plane which is R' in 

the A1X A2 plane. 

The graph of the relative product of R and S 

in A1X A2 can be obtained in the following way. Rotate 

the graphs of R and S rigidly through 90 about the 

axis and the A2-axis respectively. Then R is in A1XA 

and S is in AXA2. Now draw linee parallel to the 

axis through every point in R, and parallel to the A1- 

axis through every point in S. The projection back into 



the A1XA2 plane of every point of intersection of these 

lines will constitute the relation RIS in Â1X. 
This method of treating the converse and rela- 

tive multiplication operations will be found quite useful 

in the next chapter, where we discuss the topology of 

relations. 
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CHAPTER V 

THE TOPOLOGY OF RELATIONS 

The study of relations in extension has been 

Seen in chapters three and four to be the study of a class 
of subsets of a given set 1. This conaideration of rela- 
tions as sets suggests that the ideas of topology should 

be applicable. R. Vaidyanathastramy has remarked (5, p. 

189) that the topological oalculus of relations ought to 
be rich in content, but that it had not been systematical- 
ly developed. He then states and proves two theorems 

(our theorems 5.5 and 5.11) in tbe topology of relations. 

In this chapter we shall give connections between the 
three relative operations def1ne in chapter four and 

topology. These connections can serve as a nucleus or 
a basis for a systematic development of the topological 
calculus of relations. 

We begin with relations in Kh. In order to ob- 
tain our results in the product space AXA we shall find. 

it convenient to work in the space AXAXA of ordered 

triples. Referring to the discussion of the geometry of 

relations in chapter four, we consider the space AXAXA 
as determined by three axes, the A1-, A2-, and A3-axes. 

The subscripts here do not indicate a distinction between 



the spaces but serve only te distinguish between the three 

axes, on each of which the space A is representd. We 

denote by the relation R on the A1XA piane, 

i,j 1,2,3. 

We tefine three kinds of operators in this space; 

the permutator 
Pii indicates replacement of the subscript 

i by the subscript j wherever i occurs in the operand, 

the plane projections which project a set of ordered 

triples into the AiX A1 plane, and the axis projections 

l'i 
which project freni A1XA2XA3 into the A1-axis 

Referring to definitions I.2 and .5, and the 

above mentioned section an the geometry of the relative 

operations in Kh, we see that the relative product and 

the converse can be expressed in terms of the permutation 

and rojection operators. These expressions are given 

in the next two theorems. 

5.1 Phm. R12 P32P21P13(R12). 

5.2 Thm. R12/312 P(E))( ÇP13(S12))J. 

Suppose that the space A is a topological space. 

Then let A1XA2XA3 be the corresponding topological pro- 

duct. With this topology, the projection operators we 

have defined are open, continuous maps. Also, since the 

six permutators constitute a finite group of automorphisms 

of AXAXA onto itself, they are each open, closed, and 



continuous maps. 

e say that a relation R is open, oiosed, or 

compact according as the graph of R is ari open, closed, 

or compact subset of the topojegteal product AXA. We 

denote the oloure of R by R. 

Wtth these tools at hand we turn now to the 

topological calculus of relations. As 1plicit hypothe- 

ses for theorems 5, to 5,10 shall understand R,SKh. 

. 
, Thrn If R i s open , so i s Rs'. 

Proof: In A1XA2XA take A1XA2 1. Then R = 

Since the P are open maps for i,j1,2,3, lt follow8 

from 5.1 that R12 is open lì E12 is open. 

5. Thin. If R is compact, so is . 

Proof: Use 5.1 anc continuity of the P1. 

5.5 Thin. If E is closed, so is 

Proof: Use 5.1 and the fact that the P are closed 

maps. 

A somewhat stronger form of theorew 5.5 is given by 

5.6 Thin. R-=R'-. 

Proof Since Rmn<R) But P is 

- 
a closed map so P1(E) is closed. Hence 

<P(R;). Also, since P is oontinuous, 

<{Ptj(R)}. Then by 3.18, 1j mn 

The theorem now follows from 5.l and iteration of this 

5.7 Thiti. If R and S are open, so is H/S. 

Proof: Take H = R12 and S = S. Then since the 



re open maps and since the 
iI 

are continuous, the 

sets ]ÇP2(R12) and EP1(S12) are open In 

A1XA2XA, and their intersection Is therefore open. 

By 5.2, R12/S12 Is then open since 
12 

map. 

in view of theorem !.21, the topological ohax- 

acter of relative addition is given as the dual of theo- 

rein 5.? 

.58 Thm. If R and .5 are closed, so is R,LS. 

Proof: Follows from 5.8 and L.2l. 

It will be noticed that theorem 5.8 does not 

admit a strengthl.ng as was done in the oase of theorem 

5.5, that is, we cannot say that RS(R#S) in general. 

Consider, for example, R x;y{x Is real.y Is rational} 

-.-- 
and S = x;y{x is rational.y is reali. Then Fi =3 = i so 

that RS=l1 = 1. However, it is easily seen that 

(Rsr=(or=o. The same example will serve to show that 

theorem 5.7 cannot be strengthened to the form 

"thtR/intS Int(R/S)" where ttintRt' la the interior of E. 

We may note also, that R and S being closed Is 

not sufficient to Imply that R/S is also closed. This 

can be shown by an example. Let R = 7{xylJ in F2. 

The graph of R is closed in E2, but the grapki of 

E/E = 7?{(Ez).xz=l.zy=l} ta not closed. This defect can 

be partially remedied by the impositIon of more severe 

conditions on both the topology of the space A and on the 
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relations R and S. Up to this point no stipulation was 

made as to the strength of the topology on te space A 

the only requirement being that the topology of the pro- 
duct space be the naturally induced topology of the oonr- 

ponent spaces. In the next two theorems, however, we 

shall require that A be at least a P2 (Hausdorff) space. 

5.9 Thin. If R and. S are compact, so is fl/S. 
Proof : Take R = R12 and S l2 A1X A2)<. 
Since the are conttnuous maps, both P2(R12) and 

P1(S12) are compact, and hence closed since A is T2, 

Therefore, by continuity of the K projections, both 

UP23(R12) and tP1.(312) are closed. Now by cox 

tinutty of the I[ and the P, lt follows that 
iI2P1(S12) is compact. Then the product set 

P2(R12)Xir2?1(s12) is compact. But we have 

( P2(R12))( flP13(S12))<P2.(R12)X It2P13(s12). 

Thus ( KP2..3(fl12))( E32P1(512)) is a closed subset 

of a compact set in A1XA2XA5, and is therefore cour- 

pact. The theorem follows from this by 5.2 and the 

continuity of fl12 

S Since the identity relation I plays an lmpor 

tant rôle in the algebra of relations, its topological 

oharaoter should be of interest in the topology of rela- 

tians. We find that here too, we need the Hausdorf f 

separation postulate T2 for the space A in order to 



demonstrate closure of I. 

5.10 Thin. X Is closed.. 

Proof: Suppose xI'y Then since A is T2 a by ?.l2, 

there exist In A neighborhoods N, and N of x and y 

suoìì that NN = empty set. For convenience, write 

R N(N. Then (x)_xx. From .15 and Lì..15 we get 

(x,y):xRy.xIy.-0fix; the contrpositive of which is 

(z,7):..xRx.-'....x(RI)y. We conolude (x,y)x(RI)y, 

from which It follows from this that I is closed. 

We leave Kh now for the more general class of 

relations K. For this we shall require two topological 

spaces A and. B, and we shall suppo$ø the topology of the 

oorresDonding product space I to be the natural topology 

Induced by A and B. For the next three theorems we need 

the stipulation that the topology' of the space A satisfy 

the weak separation postulate P1. 

5.11 Thm. If i is closed, so Is x'. 

Proof: Since A is T, x Is closed. Then since B is 

closed, xXB Is closed. Since the intersection of two 

closed sets is closed, (xXB)R xXxi 1,e closed. 
Hence (xXx*r rXx = xXx*, from which we cox 

dude x= x*-. 
5.12 Thm. If R is closed, for any XA, X is closed. 

Proof: By theorem 5.11, x is closed. Since the iir 

tersection of any number of closed sets Is a closed 

set, and by 3.101, X is closed. 

5.i Thm. If R is open, so is x. 
Proof: Since R is open, H' is closed. Now 

yc4,.*-xn 'y xR7*-ysx-*ysx', hence 



By 5.11, x, is closed, so that 4' is also closed. 
Thus is open. 

The material presented in this chapter does 

not constItute a systematic development of the topologi- 

cal calculus of relations ac suggested by 

Vaidyanathaswamy. it does, however, establish a basis 

for such an undertaking by setting forth some very gen- 

eral and fundamental connections between the topology of 

I arid, the three relative operations in Kh, 
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