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THE ALGEBRA AND TOPOLOGY OF BINARY RELATIONS
CHAPTER 1

INTRODUCTION

From the time of Pythagoras' proclamation,
"Everything is number," up to modern times the question,
"What is number?" has evoked many and varied responses
from mathematicians and philosophers. Perhaps the question
never will be answered to the satisfaction of all philoso—-
phers., But an answer is now avallable that seeme satis—
factory to some philosophers and most mathematiclans.

As a result of his inability to define "number”,
the early mathematiclan was forced to treat it as a primi-—
tive notion, undefinable in terms of simpler notions. The
use of the word "notion" here throws some light on the dif-
fioulty. No attempt will be made here to define "notion".

&. Delorgs
the elusive notion that was causing the logleal difficulty.

n, in the 1850's, was able to pin down

It was what we call a relation. But DeMorgan did not pos—
gess an adequate apparatus for treating the subject, and
was apparently unable to create such an apparatus.

The title of creator of the theory of relations

wae reserved for C. S. Peirce., In several papers published
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between 1870 and 1882, he introduced and made precise the
fundamental concepts of the theory of relations and formu—
lated and estsblished its fundamental laws (2, pp. 1-117).
Peirce's analysis amounted essentially to an inversion, or
a turning inside out, of the notion of relation.

Thig inversion can perhaps be best lllustrated
by an example. For such an example we consider the state~
ment:

1.1 Texas is bigger than Oregon.

As it stand this 1s simply a true statement desoribing a
relationship of Texas to Oregon. Suppose now we remove
the word "Texas" from 1.1, leaving only:

1.2 is bigger than Oregon.

We no longer have a statement, but what is called a state~
ment matrix; it is in need of a subject noun in order to
become a statement again,

By inserting various nouns in the blank in 1.2
we find that some yleld semantic gibberish for which it is
impossible to decide on the truth or falsity of the state—
ment. Such a statement will be called a meaningless state—
ment, e.g., if we try "fire" in 1.2 we get a meaningless
statement. Let us then restrict the class of permissible
noung to those for which 1.2 is determinable as elther

true or false. Obviously then we can use the matrix 1.2

as a means of partitioning this class of nouns into two

disjoint sets of nouns, those which yleld a true statement




and those which yield a false statement.

Let us now oarry this process one step further
and remove ”aragan“ from 1.2. We are left with only the
matrix:
1.3
We see that now we must supply two nouns in order that 1.3

. is bigger than ______ .

be a statement, that 1s, we need to try nouns in 1.3 in
pairs. The pairs will be special kinds of pairs in the
sense that one noun will serve as a subject, the other aa
predicate. Given any two nouns we can form two pairs by
interchanging the réles of the two nouns. We eall such
palre ordered pairs. Again we restrict our attention to
the set of all such pairs which yield a meaningful state—
ment upon substitution in 1.3, For the moment let us
denote this set of ordered pairs by "U", CObviously U is
partitioned into exactly two disjoint subsets, those pairs
which make the matrix 1.3 a true statement and those which
make it false.

ﬁ# make the observation that U lg a set of pairs
of nouns. Eaoch of these nouns denotes some thing, object,
or concept, which we shall call an 1mdifidnal; many of the
nouns may denote the same individual. Thus for two given
individuals x and y for which it is meaningful to state,
*x is bigger than y," we may find many different pairs of
nouns in U which are names of x and y. To eliminate this

possibility of duplication of pairs, we focus attention on
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the ordered pairs of individuals which are determined by
U. Let us denote this set of ordered pairs of individuals
by *1"., 1In 1 then, there iill be a subset R of ordered
palrs of individuale corresponding to the subset of U for
which the matrix 1.3 becomes a true statem&nﬁ.

The copula "is greater than' in the matrix 1.3
we ordinarily épeak of éﬁ a relation. But this ia‘a notion
-=or @ concept--not submitting readily to rigorous logical
analysis., On the other hand the sets 1 ana‘a are concrete.
They are aarinite sets of pairs of individuale. The notion
"is greater than" is called the 1at&nsiaﬁ of the relatiom,
and the set R is called the extemsion of the relation.

We have here started with the intension of a
relation and (ennaagtually,'at least) derived its extension.
The extension of the relation can be easily dealt with by
our formal logic, but the intension is quite elusive. The
question then aaﬁuraily.arisas as to whether or not if we
are 1nigially{givan a set R of éraarﬁﬁ paire of individuals,
it determines a unique intensive relation. If so, we could
define a relation by means of its extension and this would
give ue a ﬁawarful tool for logical analrsis.» This ques~
tion is very difficult and to seek tﬁa answer would lead
us back into the nebulous realm of words because of the
very nature of the question. Thus we simply take the
position (without defending it) that if a set, 1, of order~

ed palrs of individuals is given, then every subset B of
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1 will determine a binary relation. In case 1 and R hap~
pen to be such that two apparently different copulas, or
intensive relations, can be used to derive the given sets,
we say that the two intensions are equivalent.

In this way the concept of a relation is, so to
gpeak, turned inside out and made the subject of a rigorous
logical theory as well as a useful tool in the analysis and
construction of a mathematical theory. This fact is brought
out in the following sketch of the historical development
and application of the theory of relations.

In his work on the logic of relations Peirce had
the foundation laid by DeMorgan, as well as the algebra of
propositions formulated by Boole. He modified Boole's
algebra with respect to the exclusive "or", and eliminated
division., He gave DeMorgan's caleulus of relations a work—
able notation and as we remarked earlier, established the
fundamental laws of the modern theory of relations. This
work of Peirce's was enlarged upon extensively by
E. Schroder between 1877 and 1900.

In 1895, Peano and his collaborators, in the
Formulaire de mathematigues

was and by a process of analysis reached what seemed to

, began with mathematics as it

be the very roots of arithmetic. They found that they
could start with three undefined notions and five postu—

lates stated in terms of these notions, and construct

arithmetic. Basic in the whole construotion was the
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undefined relation successor. The system thus constructed

was purely formal, empty of any content except in so far
as agreement could be found for the meaning of these un—
defined notions. Although Peano did not define the rela—
tion succe », he used it very successfuly (in extension)
in his construction of the number system.

Thus the theory of relations was developed by
Peirce and ﬁahrgﬂar into a mathematical like symbolism as
a purely logical device for treating statements while
Peano, on the other hand, took mathematics apart in such
a way that relations were his starting point. Whitehead
and Eussell, the their Principis Mathematica, bridged this
gap completely. They defined all the ideas of arithmetic,
the only undefined ideas being those of logic iteselfl, such

as "proposition®, "negation", and "either—or”". BRelations
play a dominational réle in this development, but in the

Pripcipis

the theory of relations is developed in a fairly
narrow sense for the express purpose of comnecting logie
and mathematics, and not for ite intrinsiec worth (3, ﬁn,
328},

We have seen that our number system depends
heavily upon relations for its construction. At another
level, the functions, or transformations, and operations
of mathematics are nothing more than special kinde of rela—
tions. Clearly then, the theory of relations is properly

a part of mathematies itself. The growth and expansion
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of the theory of relations, it would seem, camnnot help
but enhance mathematies.




CHAPTER I

THE VARIABLES AND THE NOTATION

In the introduction it was seen that when a set
1 of ordered pairs of individuals is given, and when a sub—
set R of 1 is lknown, a binary relation is determined.
Suppose that 1 is given and let "R" denote & variable sub—
get of 1. By considering R as a variable, we see that we
have as the subject of our investigation not the relation
R itself, but the class of all binary relatiomns in 1. It
is this abstraction from a relation to a class of relations
that gives rise to the algebra of relations. For the re—
lation variables we use the capital letters R, 5, T, and U,

Our discussion will require also another type of
variable—the individusls in the pairs which constitute 1,
and for which we use the small letters x, ¥, Z, «+s « A
given set of individuals will bevaalxaé a space. In the
following treatment of the theory of relatlions the spaces
involved will be considered given at the outset, and will
thus be treated as constants throughout. In several
places we will need to consider subsets of the spaces of
individuals. No symbols will be set forth here and re—
served for this purpose. BRather, the notation for such
subsets will be defined in context.

An ordered pair of individuals is denoted by
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"x3}y", where the adjective "ordered" refers to position
with respect to the semi-colon. If x and ¥y ara>diatinat
individuals, then xj;y and yjx are distinet ordered palrs.

The set 1 of ordered pairs discussed in the open—~
ing paragraph of this chapter is called a product space,
and is constructed as follows: Given two nom~empty spaces
A and B of xna&viauaia, the ﬁ#aauet space AXB is the set
of all ordered pairs x;y such that x is in A and ¥ is in B.

We make the usual convention regarding the symbol
**f 1", namely: If P(x) is a statement matrix involving
no other variable than x, then "£{P(x)}" stands for the
clase of all x such that P(x) is true. The Greek letter
"¢ will be used to denote class membership. Thus if P(a)
is true, we write a ¢ %{P(x)}, which is read "a is an
element of the set R{P(x)}".

From the heuristic analysis of the example given
in the introduction, it 1s seen that an algebra of rela—
tions will be interpretable ae an algebra of statements.
This suggests that our investigation might be facilitated
by use of the notation of that branch of symbolic logie
known ag the restricted predicate caloulus. Ve find that
this is indeed the case. This section will be devoted to
a discussion of the logical symbols which we shall use
(4, pp. 82-162), ‘

We have two primitive symbols which we desoribe

in terms of words. All the other logical symbols used can
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be defined in terms of these two. The two primitive sym—
bols afa ", read "and*, and ".", read "not". These are
called conjunction and negation respectively. Thus, for
example, if P(x) anﬁ‘Q(x) denote statement matrices in—
volving the variable x, the statement P(x).Q(x) is true
for those and only those values of x for which P(x) &nﬁ‘
Q(x) are both true. The statement .P(x) is true for pre-
eisely those values of #rfar which P(x) is false,
Disjunction “?“ is read "or*, and is to be in~
terpreted in the inclusive sense. Thus the compound state—
ment F?Q is true Af P is true or if § is true, or if both
are true together—otherwise it is false. We can define
v bY saying that P,Q 1s the same as ateloll) .
Implication "—>" is read “1&911@35 or "Af _

then "+ Thus the compound statement P - @ 18 read

"if P then Q" or "P implies GQ", and it is false Af P is

true and G is false, otherwise it is true. ¥We can define

"> by saying that the statement P ~» ( is the same as

~(P.Q). '
Equivalence "<-»" between statemente is read

e 1 and only Af ______". The compound statement

P <> Q is the same as (P-»Q).(Qg>P), or 1ﬁ terms of our

primitive symbole, ~(p.;a).-(a.”?). Thus the statement

Pw> @ is true if both P ~» Q is true and Q@ = P is true,

and 1t is otherwise false.
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We call the four symboles ".", ”t",-”***,\anﬂ
"<->" the logical conmnectives. Compound statements are
formed b? combining two simpler statements by means of one
of the aénnnativas, or else by prefixing the negation sign
"." to a statement.,

The construction of compound statements described
above could lead to ambiguity if we allowed more than two
statements to be combined ﬁy connectives at one step—e.g.
2,1 P> (<> H
can be interpreted either as

2.2 (P=» Q) => H
or as
2.3 P =» (Q <> H)

which are quite different. To avoid this ambiguity we
could keep parentheses on the component parts of compound
stataments; but this would lead in many cases to cumber—
some tangles of parentheses. Hence we shall follow the
customary use of dots as punctuation in the more compli~
cated compound statements. Using the system of dots, the
statements 2.2 and 2.3 would be rendered as

2.4 P> Qo> H
and ase
2.5 P~>.Q «> H

respectively. There is an order of strength of the con—

nectives which helps to cut down the number of dots used.

The strongest connectives are <> and —>, which are of




12
equal strength. MNext in strength 1s the disjunction symbol
”v“. Finally, and weakest, are the conjunction without
the dot PQ and negation .. When there is a dot in a state~
ment it is stronger than all of the other comneectives.
When standing by themselves between components of a com
pound statement, #ho dots are read as "and", but when
standing by other comnectives, they serve merely to
gtrengthen that symbel. In more complicated statements
several dots may be needed in one place; as many dote will
be used as are necessary to render the statement unambig-
uous.

The quantifiers (x) and (Ex) are translated
"for all x" and "there is at least one x" respectively.
Thus, placing a quantifier in front of a statement matrix
Anvolving x forme a new statement which no longer depends
on x, For example, the statement matrix "x > 0" is true
for some values of x and is false for others. But
"(x).x>0" is not a statement matrix, it is a complete
statement, in no way depending on x, and it is irrevocably
false. Also "(Ex).x>0" is s complete statement, not de—
pending on x; it simply states a (true) fact.

A statement matrix with two variables, x and y,
say "P(x,y)" is converted by (x) into a matrix "(x)P(x,y)"

of only one variable, y. Then this matrix can be made a

complete statement by prefixing "(y)" to “(x)P(x,y)",
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obtaining "(y)(x)P(x,y)". This operation is commutative,
and we use the symbol "(x,y)" to mean (x)(y) or (y)(x).
Similarly we abbreviate (Ex)(Ey) to (Ex,y). Quantifica—
tion is extended analogously to more than two variables.
Thus (x,y,z,R)P(x,y,z,R) i& read "for all x, ¥y, 2z, and R,
"Pix,y,2,R)' 18 true".

In order to facilitate the symbolic presentation
the headings "Postulate", "Definition", and "Theorem" will
be abbreviated to "Pos", "Def", and "Tha" respectively

throughout chapters three, four, and five.




CHAPTER III

THE GENERAL THEORY OF RELATIONS

In this chpter we shall formalize some of the
ideas disoussed in chapter one and lay the greunﬁwark for
the set—theoretic, or Boolean, theory of relations. Ve
take as primitive notions the spaces A and B of individ~-
uals, the concept of ordered pair x;y, and the relation
¢ of elementhood, Since we are not interested in con~
structing a vacuous system we state
3.1 Pos. (Ex,y).xeA.yeB.

This insures that the space of ordered pairs defined next
will possess at least one element.

3.2 Def. Put "1" for'X;y{xei.yeB}".

3.3 Thm., (x,y):xeA.yeB.,=> xjyel.

3.4 Thm. (Ex,y)xiys&l.

We next define the class K of all relations in
1: Formally this is just the olass of all subsets of the
product space. _

3.5 Def. Put "K" for "Bi{(x,7).x3y ¢ B => xjy e 1}".
3.6 Thm, (R):ReK.<>.(x,y).xjy €¢B ~> xjyexjyel.
3.7 Thm., leK. '
This last theorem tells us that 1 is a relation.

We oall 1 the universal relation in Kj it is the relation

which every element x in A bears to each element y in B.
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The next definition is not really a part of the
theory of relations, we state it as a definition merely
for the sake of formal completeness.

3.8 Def. Put "xBy" for "xjy & R".

We interpret the symbol xBy as a statement matrix,
read "x 1s in the relation R to y". However, as might be
inferred from the statement of definition 3.5, our aim is
to construct a theory of relations tﬂ which th@ relations
are treated as just elements of a set K., The approach we
take here insures though, that after the abstract theory
is developed we will be able to interpret the final results
in accordance with definition 3.8.

In the interest of economy of expression we
shall make one more convention to be offﬁativs throughout
the remaining chapters: The individual variables x, ¥,
£, oo+ will be considered restricted to the ranges A and
B. VWe will therefore omit and leave implieit the condi~
tions of the form xaa; yeB, ete., which should appear
immediately following every quantifier (x,y,...) or
(BX,¥4000e)e

The following nhrge theorems are immediate con—
sequences of 3,3, 3.4, and 3.6 in view of definition 3.8.
3.9 Thm. (x,y)xly.

3.10 Thm. (Ex,y)xly.
3.11 Thm. (R):ReK,<>,(x,y).xBy - xly.

We next define the null relation 0 in K, the
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relation which no element of A bears to any element of B.
3.12 Def. Put "0" for "X;¥{xly..xly}".

3.13 Thm. (x,y).x0y.

3.14 Thm. OegK,

We now proceed to define three operations—union,
1ntars-aétim, and complement on K in such a way that K will
constitute a realization of the Boolean algebra postulates.
3.15 Def. Put "R+S" for "X;y{xRy xSy}".

3.16 Thm. (B,8):R,8eK.~», (x,y) .x(BR+8) ye>xRy_xSy.
3.17 Thm. (R,8).R,S¢K~> (R+3)eK.

3.18 Def. Put "RS" for "X;y{xRy.xSy}".

3.19 Thm. (R,8):R,S¢K.~.(x,y).x(BS)y <> xRyxSy.
3.20 Thm. (B,S).R,SeK —> (RS)eK. '
3.21 Def. Put "R'" for'X;y{~xBy}".

3.22 Thm. (R):ReK,~»,(x,y).xB'y <> .xRy.

3.23 Thm, (R).ReK -»> R'zK,

The next definition is the essential device that
enables us to abstract relations and deal with them as
elements of K without reference to the individusls x and y.
3.24 Def., Put "B=8" for "(x,y).xRy <> x8y".
3.25 The. (R,S8):.R,SeKi~>:1RnS, <>, (x,y) . xBye>x8y.
3.26 Thum. (R,8):R,SeK.~>, R=S~>S=R,
3.27 Thm. (R,8,T):.R,S,TeKi~>:R=T,S=T .~ R=3,

We shall now show that the system K that we

have defined conastitutes a Boolean algebra.
3.28 Thm. (BR,S,T):R,S,TeK.,~» R=S~>R+T = 84T,
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Proof: Assume R,S5,TeK.
By 3.25, B=8,~».(x,y).xRy <> xSy

< > (x,y) xRy xTy <> xSy xTy
By 3.16, >, (X,¥) x(B+T)y <> x(34T)y
by 3.25, o= R4T = S+7,

3.29 Thm. (R,S,T):R,8,TeK.~> R=5~>RT=5T.
Proof: Similar to the proof of theorem 3.28.

3.30 Thm. (R,S).R,S¢Kk~>R+3 = 34R.
Proof: The theorem follows immediately from the equiv—
alence (x,y).xRy xSy <> xSy xRy and by 3.16 and 3.25.

"~ 3.31 Thm. (R,S).R,Sek~>RS=8R,
Proof: Similar to the yraaf of 3.39.

3.32 Thm., .{1=0).
Proof':
By 3.25, 1=0.~>,(x,y).x1y->x0y
o>, (Bx,y)xly->(Ex,y)x0y
~»,0{ (Ex,y)xly .~ (Ex,y)x0y}
-, .{ (Ex,y)xly.(x,¥)~x0y}
Now taking the contrapositive of this implication we
obtain -
(Ex,y)x1ly.(x,7) %0y ~>..(1=0),
The theorem now follows by 3.10 and 3.13.

3.33 Tham. (B).Rek~>R+0=R,
Proof: Assume RegK.
By 3.16, (x,¥) :x(R+0)y <. xRy_x0y
>, xX0y->xRy
by 3 13, o>, xRy,
From this result the theorem now follows by 3 25,

3.34 Thm. (R).ReK~>R1=R,
~ Proof: Similar to the proof of 3.33.
3.35 Thm. (R,3,T).R,8,Tek~>R(S+T)=RS+RT.
Proof: Assume R,S,TeK. By 3.17, we see that
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by 3.19, x(R(S47))y.«>.xRy.x(S+T)y

by 3.16, &>, xRy . x8y_xTy

~ ~<> xByxS8y xRyxTy
by 3.19, .«w».x(as)yvx{nm)y
by 3.16, ~e> x(RS+RT)y.

Using the generalization principle on this result, the
~ ooneclusion follows by 3.25.
3.36 Thm. (B,S,7).R,8,Tek~>R+ST = (R+8) (R+T).
~ Proof: Similar to the proof of 3.35.
3.37 Thm. (R).ReE~>RR'=0. .
Proof: Assume ReK. Then by 3.23 R'eK, so
by 3.19, x(BR')y.~».xRy.xR'y

by 3.22, o~ xRy .~XBy

by 3.11, o, 21Y X1y

by 3.12, -, %0 .

The contrapositive of this is
~X0y->.x(BR')y

from which by 3.13 we conclude (x,y).x(BR')y. Then
since every statement implies a true statement, we have
(x,y)~x0ye>_.x(BR')y.

~ The theorem follows from this and 3.25.

3.38 Thm. (R).Rek~>R+R'=1. vl
Proof: Assume ReK. Then by 3.23 R'eK, so that
by 3.16, x{ﬂ+ﬁ*)y¢wbmayvxﬁ‘y
by 3.22, ubamﬂyv.xay
from which we conelude that (x,y)x(B+R')y. Using this
and .3.10, the rest of the proof is similar to the preof
of 3.37.

_ ~ Now theorems 3.7 and 3.14 together with theorems
3.17, 3.20, and theorems 3.28-~3.38 are precisely the con~
ditions which K must satisfy in order that it be a Boolean

algebra. Since K has been shown to be a Boolean algebra,
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we can apply immediately any or all of the theorems of
Boolean algebra to the elements of K—to the relations.
We shall give here a list of the Boolean theorems which
will be used in the development of the algebra of rela~
tions in a later section. For a reasonably complete treat—
ment and an interesting historical account of Boolean al-
gebra see Lewis and Langford, Survey of symbolie logie,
Berkeley, 1918. '

3.39 Thm. (R,S):.R,S8eK:=»:R+S=1,R8=0,~> 8=R",
3.40 Thnm. (H).Qx!{%“nﬁ.

3.41 Thm. 0'=1.1"'=0,

3.42 Thm. (R).Rek~>R+R=R.
30&3 m. (3)-&3&"%&'&.

3.44 Thm, (R).ReK~>R+l=l.

3.45 Thm. (R).ReK~>RO=0.

3.46 Thm. (E,S).R,Sek~>R+R3=R,

3.47 Thm. (R,8).R,SeK->R(R+S)=R.

3.48 Thm. (R,S).R,Sek~>R+(R'+8)=1,

3.49 Thm. (R,8).R,Sek~>R(R'S)=0.

3.50 Thm. (R,S).R,Sek~>(R+3)'=R'S'.

3.51 Thm. (R,S).R,Sek~>(RS)'=R'+8'.

3.52 Thm. (R,8): .R,8eKi~»:RS =0 ,R'S=0 ,«> Red,

3.53 Thm. (R,8,T):.R,S,TeKt~>:RS =0 ,RT =0 , <> R(ST) '=0.

3.54 Thm. (R,S,T).R,S,Tek~>(R+3)+T=R+(5+T).
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3.56 Thm. (R,8,T):.R,S,TeK:~»:RT=0.5T"'=0.~> RS=0.

}.5? Thm. (R,8):.R,SeK:~>iR=0,8=0,<> R+5=0,

3.58 Thm. (R,8):R,SeK.,~>,RS+R'S'=le>R=S,

3.59 Thm, (R,8):R,8¢K.~>. R+S=5<>RS=R.

3.60 Thm. (R,S):R,S¢K.~>.RS'=0<>RS=R.

3.61 Thm., (R,S):R,S5gK,~> . R+S=Se>R"48=],

. These last three theéms«. are éll equivalent
characterizations of the inclusion relation Eatwaen rela~-
tions. We shall define this relation here and list some
of the properties of K in terms of it. ' ‘
3.62 Def. Put "R < 8" for "RS'=0".

3.63 Thm. (R,8):E,SeK.~».R < 3«>R5'=0,
3.64 Thm. (R).ReK~>R<R.
3.65 Thm. (R):ReK.~>.0<R.R<l.
3.66 Thm, (R,8):.R,SeK:—>iR<S, 5<R <> R=S,
3.67 Thm. (R,S,T):.R,S,Teki~>1R<T,T<8 ,~>,R<S,
3.68 Thm, (R,S8).R,Sek~>RS<R.
3.69 Thm. (RB,8).R,Sek~>R<R+S,
3.70 Thm. (R,S):R,SeK.~» R<s—>3'<R!',
The next theorem g&fea an interpretation of "<"
in the terms of our definition of K.

3.71 Thm. (R,8):.R,S¢Ki~>1R<8, <>, (x,y).xBy->»xSy.
Proof:. Assume R,S8¢K. Then we have
by 3.63, B<S,«> RS'=0
- by 3.13, o>, (x,7) .xB8'y
by 3.19, v (x,7) e (xRy.x8'y)
o>, (x,¥) .~xBy_~x8'y
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by 3.22, R<S.«>.(x,y)..xRy xSy
~ oe>,(x,y) . xBy->x3y.

It may be remarked that K constitutes a complete
atomic Boolean algebra. This fact would be of interest
in the development of a convergence thcefy in the topolog—
ical algebra of rélaﬁiaﬁs, but we shﬁll not make use of
1t here; 1n~the r@main&ng ehapﬁers,fénly finite unions and
intersections of relations will be aanﬁldﬁrea.

In some cases it i1s helpful to have avallable
a schematic representation of a relation. If we ignore
the possibility of difficulties which may arise due to
the cardinality of the spaces A and B, we can imagine the
elemente of A and B as rsyrsﬁantéa uniquely by points on
two aiffereng line segments. We draw these two segments
perpendicular to one another forming two sides of a rec—
tangle and we call them the A—axis and the B-axis. For

every element x of A, draw through the point correspond
toxa 1imn.parallal to the P-axisj siui&arly, for every
element y af B, draw a 1ama‘§aralael to the i—axis uhﬁﬁuﬁh
the point representing y on the B-axis. .@hia results in
a cross—hatehing of the rectangle defined by the A~ and
B-axis, the density of the eross~hatching corresponding
to the density of the points used on the A~ and the B~
axis.

The totality of all the lattice points, or points

of intersection of these lines will then represent the set
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of ordered pairs which constitute the product space 1.
Any set of these points will be a relation in K. The set
of points comstituting a relation B is called the graph of
R in AXB.

For every relation R in AXB we have two pro—
jectione, the domain of B and the converse domain of R.
These are defined by "%{(Ey).xRy}", and ”?{(Ex).xﬁ&}“
respectively.

The schematic representation of relations will
be useful in the next chapter as an aid in the study of
the relative operations in the homogeneous product space.

Let us step down momentarily from investigation
of the properties of K for a look at some properties of
a relation R. For the remainder of this chapter we shall
consider R as given, and it will be treated as a constant.

We need three additional tools, which are glven
us by
3.78 Def. Put "M<N" for "(z).zel—>zeN".

3.79 Def. Put "M=N" for "M<N.N<N",

3.80 Def, Put "M Ni" for "2{(«).xeh>zeN, }".
«gM

Note that this use of "<" and "=" 1s consistent
with our use of these same afmbals in case M and N are
relations. These definitions are intended to allow us teo
use corresponding symbols ambiguously between relations

and arbitrary sets.
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We shall now be considering two types of var—

iables; for the individual variables we use "x" and "y"

as before, and as set variables we use "X" and "Y"., Ve
have two unary operations * and ¥ on the subsets of A and
B respectively. Aeccordingly we shall interpret "x*' and

* and ¥ operating respectively on the subsets of A

“y*“‘as
and B whose sole members are the elements x and y. This
interpretation will serve to simplify the notation without
introducing ambiguity.
3.81 Def. Put "x*' for "§{xRy}".
3.82 Thm, (x,y).yex*e>xiy.
3.83 Def. Put "y'" for "&{xEy}".
3.84% Thm, (x,y).xeyfd~hmﬁy.
3.85 Def. Put "X™ for "§{(x).xeX->xRy}".
3.86 Thm. (y) :yeX ¥ . <>, (x) .xe¥~>xRy, |
3.87 Tha. (x) 1xeX.~>, (y) .yeX *>xBy.
3.88 Def. Put ey*r fop "&{(y).ye¥—>xRy}".
3.89 Thm, (x}%xsx*c**W.(y}.ysﬁwbxﬁy.
3.90 Thm. (y):yeY.~>.(x).xeY —>xRy.
We now shall state and prove some of the conse~
quences of these definitioms.

3.91 Thm. Klvtxzwx;ﬁ;,
Proof: Assume Xiﬂxz. Then xinﬂbxsx_.
By 3.86, ysxgﬁwvxix).ang~hxﬁy
=1 (x) 1xeX,~>xeX, . xeX ~>xRy
. =1 (x) .xeX,~>xRy
by 3.86, >tyex,




: 2h
~ The theorem follows now by 3.78.
3.92 Tha. xlqewz%;«f{.
~ Proof: Similar to the proof of 3.91.
3.93 Thm. X<x**
Proof':
By 3.87, xeX.~>.(y).yeX ~»xRy

by 3.89, e“*.xtx**.
From this the theorem follows by 3 78.

3.9% Thm, ¥ < Y*¥,
Proof: aanx:mv to the proof of 3 93.

Pmafz By 3. 93 ma 3 91, X*** «x*, aleo, by 3.94,

X*** ™, the amlu:ma follows now by 3.79.

3.96 Thm, Y'=y***
Proof: anar to the proof of 3 95.

3.97 Thm. X <K, E R,

~ Proof: Use 3.91 and 3.92.
3.98 Thm. Y, <¥,->¥) V)
Proof: Use 3.92 and 3.91.
3.99 Thm. X"=/\x*,
xeX
Proof':
By 3.86, yeXTie:(x).xeX->xBy
by 3.82, (>3 (x) txe X~>xRy . xRy->yex*
te>: (x) ,xEX~>yex™*

by 3.80, iye [\ 2%,
xeX

~ The theorem follows now from 3.78 snd 3.79.
3,100, Thm, ¥Y'=/\y*.
yeY
Proof: Similar to the proof of 3 929.
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Some of these properties will receive applica—

tion in chapter five in the discussion of the topology

of relations (1, p. 54).
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CHAPTER IV

HOMOGENEOUS RELATIONS

The class K of relations introduced in chapter
three was quite general, depending only on the nature of
the two given spaces A and B. An important special ocase
ococurs when A and B are identical, that is, when thny‘aéu*
sist of exaetly the same elements. In this case we say
that the resulting product space 1 of ordered pairs is
homogeneous, and that K is a class of homogeneous rele~
tions; thiu is signified by Kh.

For any class Kh of homogeneous relations we can
introduce two new binary operations, the relative product
R/S and the relative sum B#8, and a unary operation B
called the converse of R. The algebra of relations re—
sulting from considering these three operations in con—
Junction with the Boolean operations in Kh is a very rich
deductive system.

We shall develop a basis for this algebra in a
manner similar to the development in chapter three. The
single additional postulate which we here require c¢an be
thought of as following directly after 3.1, as none of the
subsequent statements in chapter three are affected in any

way by this new postulate. Thus all of the definitions
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and theorems of chapter three will be applicable through-
aut'the present chapter.

4.1 Pos. (x).xehe>xeB,

This postulate serves to make 1 homogeneous. It 1s this
restriction which justifies our definitions 4.2, 4.5, and
4.8, and axioms 4.11 and 4.12 below. When both postulates
4.1 and 3.1 are satisfied we denote the resulting class
of relations by "Kh", the "h" being intended to suggest
"homogeneous® ,

Throughout this chapter, except where it is per—
tinent, the hypothesis x,y,...tA will be omitted anéllaft
implicit as was done in most of chapter three. We conm~
sider the individual variables as restricted to the range
A (or equivalently, to B) whereever they occur.

We introduce the converse operatlon by
4.2 Def. Put "R*" for "%;y{yRx}".

4.3 Thm. (x,y,R).xR"ye>yRx.

by Thm. (R).BeKh->R"e¢Kh,
Proof: By 4.3,. xB”y.~».yRx
by hypothesis, 3.11, .~».ylx

by 3.3, >, yeh.xeB
by &.1, o>, xelh.yEB
by 3.3, >, x1ly.

The conclusion follows from this and from 3.11.
Theorem 4.4 gives closure of Kh with respect to
the converse operation. We next define the relative pro—

duct and the relative sum operations, and demonstrate

closure of Kh with respect to both.
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4.5 Def. Put "R/S" for "X;y{(Bz).xHz.z8y}".
4.6 Thm. (x,y,R,8):x(R/8)y. <>, (Ez).xRz.28y.

4.7 Thm. (BR,S).R,8eKh->(R/5)eKh.
Proof: Assume R,5¢Kh. Then
by 4.6, x(R/8)y.~>.(Ez).xRz.28y

by 3.11, ~»,(Ez).x1lz.21y

by 3.3, ~>,(Ez) .xeA.2eB.26A.yEB
Tk o> . xeA.yEB

by 3.3, > X1Y. .

The coneclusion follows now by 3.11.
4.8 Def, Put "BfS" for "¥jy{(z).xRz z8y}".
4.9 Thm. (x,y,’&l,ﬁ)zxm{'&)y.ﬂ.(z).mzvagq.

%.10 Thm. (B,S).R,SeKh—>(B/S)sKh.
Proof: Assume R,SeKh. “?lmn
by 4.9, x(&fs)y.ﬂ.(a).xm,z&y

by 3.11, ..*,ta}.xlzvﬁy
by choice of z, ~>.x1x x1y.x1y y1y
- .w.mvxlx.yly
by 3.3, ~>.x1y. .XeA.xeB.yEA . yEB
by 4.1, ¥ X1Y ., o XA yEB
by 3.3, ~>.xly X1y
o X1y . -

The theorem follows from this and 3.11.

Peculiar to Kh, there is a very important com
stant relation I called the identity relation. This is
just the relation which every element of A bears to it—
self. In order to avoid s cumbersom definition we depart

from our usual defining scheme and define I axiomatically.
%.11 Axiom. IeKh.
4.12 Axiom. (x)xIx.
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4.13 Axiom. (x,y,z,R):.ReKhi~>ixRz.zly.~>.xRy.
We thus simply agree ?é call every element of

Kh which satisfies 4.12 and 4.13 an identity relation.
We shall see shortly that the identity relation has been
well defined. The identity relation behaves exactly like
ordinary equality, i.e., "xIy" will be interpretable as
" eyt ,

.14 Theo. .{I=0). : ,
Proof: By 3.1, (Ex).xeA. Hence by 4.1, xeB. Then
by 4.12, (Bx).xIx. The theorem follows now since
by 3.25, I=0 >, (x,¥ ) xIy—>x0y

S o>, (x,¥ )~ x0y>.x1y
by 3.13, ot (% F St 1y
by choice of y, .~>,(x).xIx
o, . (Ex) xIx,
and the contrapositive of this is
(Ex) .xIx,~»..(I=0),

We proceed now to the development of the algebra
of Kh based upon the mmus of chapter three and the def-
initions given in the present chapter.

%.15 Thm. (R).ReKh->R"Y=E,

Proof: By b.4, xB"Vyea>yR'x

and again yR” xe->xRy.
The theorem follows from these and 3.25-

4,16 Thm. (R,S).R,SeKh->(R/S)¥=(8"/R").
Proof: Assume R,Se¢Kh.
By 4.4, x(R/8)¥y.«> y(R/8)x
by 4.6, ~e>, (Ez) . yRz.28x
by &b, o>, (BEz) . x8"2z.2R"y
by 4.6, > x(8" /B" )y.
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The conclusion follows now from 3.25.

4,17 Thm. (R,8,T).R,S,TeKn->»R/(S8/T)=(R/S)/T.
Proof: x(R/(8/T))yre>:(Eu):xRu.u(3/T)y

by 4.6, t<->1 (Eu) 1xBu. (Ev) ,uSv.vTly
1> (Bu,v) ixBu.udv.vly

by 5.6, re>: (Ev) sx(R/S)v.vTy

by 4.6, > x((R/S)/T)y.

The result follows now from 3.25.

4,18 Thm, (R).ReKh—>R/I=R.
Proof: Assume ReXh. First we show (R/I)<R.
By 4.6, x(R/I)y.~».(Bz).xRzegly
by &4.13, . o> xRy .
Hence, by 3.71, this ylelds (R/I)<R. To show that
R<{R/I), we have that
by 4.16, ~x(R/1)y~>..(Ez).xBz.zly
o~ (2).(xRz.2Iy)

o, (2) . 2ly->.xBz
by cholce of z, o,y Iy xRy
by 4.12, >, xRy,

the contrapositive of whieh is "xRy-»x(R/I)y". Then
by 3.71, R<(R/I). By 3.66 the theorem now follows.

%.19 Thm. (R).ReKh->R/&=1 1/R'=1.
Proof: In view of 3.9 and 3.25, we want to prove
(x,y)x(R/1)y (x,y)x(1/B')y. Or, using 4.6,
(x,¥)t (Ez).xRezly:_:(x,y):(Ez).xlz.2R"y,
which, by 3.9 ie equivalent to
(Ka!}-(Ez7xﬂz.v.(x,y).(Ez}zﬂ’y.
By 3.22, this 1is just
(x).(Bz)xRz. .(y).(Ez).2zRy
or Gx).(Ex)xﬁa.v.nf(ﬁy).(z)zay},
or {(Ey).(z)zRy.~»,.(x).(Ez)xRz.

Since the variables on both ends of this implication
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are quantified we oan change the letters, obtalning:

(Ey).(x)xRy.~».(x).(Ey)xRy,
a2 theorem in the restricted predicate e¢alculus.

4.20 Thm. (R,S8,T):R,8,TeKh.~>, (R/8)T=0e>(5/T" )" =0,
Proof: By 3.13 and 3.25 we write (R/8)=0 as
. (R/8)T=0:e>:(x,y) .~x(R/8)Ty
by 3.19, te>:(x,y7) o {X(R/S)y.xTy}
by 4.6, 1e>1(x,y) i~{(Bz) .xBz .28y} ~xTy
re>1(x,y) 1 {(2) .~xBz .23y} ~xTy
‘ 1> (X,¥,2) c~XBZ 28y ~XTy
by 4.3, 11 (X,7,2) e w25y ¥ T x ~zB"x
‘ zms(a,xiy,).,.{zsay.y?‘z}?-sﬁ“x
e s -(s,x}...{(Ey).zﬁy.y’l“‘x}v.,x?fx

by 4.6, 1e>: (2,x) .0z {8/ }xv..zﬂ“x
: 11 (z,x) .~ {2(8/T )x.28" x}
by 3.19,. 1> (2,%) o ~z(S/T" )R x

by 3.13,3.25, 1> (8/T )R =0,

.21 Thm. (B,S).R,SeKhr>(RfS)'=R?/87,
Proof: Assume R,3¢XKh. Then
by 3.22, x(BFS) 'y >, x(RFS)y

by 4.9, >, {(z).xBz z3y}

, o>, (E2) .~xB2.28y
by 3.22, o>, (Ez) . xR'228'y
by 4.6, -, x(R'/S!)y.

The theorem now fonmrs by generalization and by 3 25.

&'.22 m' {B,ﬁ)%ﬁ,ﬂtﬁh;——b, aium sﬁ' ch.
Proof: Assume R,S¢Kh., Then by 3.13 and

by 3.25, RS '=0 ,~>, (x,¥)~x(BS")y
by 3.19, >, (x,y)~{xBy.x8'y}
by 4.3,3.22, > (x,¥) e {yB' x. ~y8" x}
by 3.22, e (x,y) o~ {yE X ¥ 'x}
by 3.19,. > (x,7) ey (RS )x

by 3.13,3.25, ~> R 8Y '=0,
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%.23 Thm. (R,S):R,8¢Kh,~> R=S->R"=5",
Proof: Assume B,3eKh. Then
by 3.52, R=S.,~>.RS'=0,R!'S=0
by 4.22, > B8 1=0,R" 18" =0
by 3.52, > B =5,

.24 Thm. {R,S).R,S8eKh->(R+3)"=R"+58".
Proof: Assume R,5e¢Kh. Then
by 3.50 and 3.49, B’ (R“45")'=R"(R"'S"')=0.

Similarly, S¥ (B¥+8% ) t=g¥ (R¥ 158" ')=0.
By 4.22,4.15, R(RY+8" )” '=0,S(R"+8" )" '=0
by 3.57,3.35, (R48) (RY+8% )" '=0

by 4.22,4.15, (BR+3)" (8" +8" ) '=0.

The above argument with R and S replaced by B and S”
respectively yields '

| (R+8)" ' (R¥ 48" )=0.
The theorem now follows by 3.52 from these last two
results.

b.25 Thm, 0"=0,
Proof: By 3.45, 00*'=0., Hence, by 4.22, 070""'=0.
Then by 4.15 and 3.41, 0¥1=0. The conclusion now fol-
lowe from 3.34.

4,26 Thm. 1¥=1.
Proof: Similar to the proof of theorem 4.25.

4,27 Thm. (R,S,T):R,S,TeKh.~>, RS =0->(T/R)(T/S)" =0,
Proof: Assume R,S,TeKh. Then by 3.37 (T/8)(7/8)'=0,
hence by 4.20 ((T/8)™/T)8¥=0. Also, by 4.22, R8'=0
~»RYS¥ 1=0, Hence by 3.56, ((T/S)'"/T)R*=0. Then by
.20, (T/R"¥)(T/S)'=0, The theorem now follows by 4.15.
%.28 Thm. (R,3,T)R,S,Tekh.~>,R=5-»T/R=T/S.

Proof: Assume R,3,TeKh. By 3.52 then,
R=3 .,~> RS'=0,R'S=0, The theorem now follows from 4.27
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and another application of 3.52.

4.29 Thm. (R,S,T).R,8,PeKn->R/(8+T7)=(R/S)+(R/T).
Proof: Assume R,S,TeKh. For convenience, set (R/S)+
+(R/T)=P. Then by 3.50, (R/8)P'=0 and (R/T)P'=0. By
b.20, (P"/R)S=0 and (P'"/R)T¥=0., Hence by 3.57 and
3.35, (P'™/R)(8¥+1™)=0, and by 4.24, (P /R)(3+7)"=0.
Using 4.20 then, (R/(8+7))P'=0, On the other hand, by
3.50 S(S+4T)'=0 and T(S+T)'=0, thus by 4#.27,
(R/S)(B/(5+47)) '=0 and (R/T)(R/(S+T))'=0..  Then by 3.57
and 3.35, P(R/(8+1))'=0., Therefore, by 3.52,
B/ (S+T)=P,

.30 Thu. (R,S,T):R,S,TeKh.~>,RS'=0~>(R/T)(S/T) =0,
Proof: Similar to the proof of theorem 4.27.

%.31 Thm. (R,S,T):R,S,TeKh.~>,R=5~>(R/T)=(S8/T).
Proof: Similar to the proof of theorem 4.28.

%.32 Thm. (R,S,T).R,S,TeKir>(R+8)/T=(R/T)+(8/T).
Proof: Simllar to the proof of theorem 4,29,

4.33 Thm., (R).ReKh->B/0=0, .
Proof: Assume ReKh. By 3.45, (1/R)0=0. Then by 4.20,
(R/0%)1"=0, s0 by 4.25 and 4.26, (R/0)1=0. Then by
3.34 R/0=0.

4.34% Thm. (R).ReKhr>0/R=0.
Proof: Similar to the proof of theorem 4. 33.

4.35 The, I"=I,
Proof: By 4.16 and 4.15, (B*/I)=(I"/R"")=(1"/R).
Now by 4.18 (BY/I)=R’, hence (E'/I)"=E""=R, Therefore
(R).(I/R)=R. By choosing R as I in this, I"/I=I. But
by 4.18, I"/I=I¥., The conclusion now follows by 3.27.

4.36 Thm. (R).ReKh->I/R=R,
Proof: Assume ReKh. By 4.35 and 4. 31, 1/8=1"/R.
Th@n by “'0153 ‘4‘016. md 5&.18,
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I/R=(IY/R)*¥=(R* /1% )" =(B" /1)*=E"" =R,
4,37 Thm, ca)m/x.luﬁ.afxznmwmsxla e
Proof: By separate choice of R in.the hypothesis,
Iy=I=(1, /1) =13 /13=1, /1, =1,.
4,38 Thm. (R,S,T,U):.R,S,T,Uskhi=>:R=8,T=U,~» R/T=5/U,
Proof: Follows from 4.31 and 4.28.

%.39 Thm, (R,S,T,U):.R,S,T,UeKhi=>:R=S,P=l,~>, BfT=5/U,
Proof: Follows from 4.38 and 4.21.

k.40 Thm. (R,8,T):R,S,TeKh.~»,BF(S/T)=(RFS)FT.
Proof: Follows from 4,17 and 4.21.

We have now established an assoclative, non~
commutative algebra on Kh with the operatioms "/", "',
and "", That is, the operations are well defined and
Kh is closed with respect to all of ﬁhaéa operations.

Theorems 4.7, 4,38, and 4.17 show that Kh con—
gtitutes a semi~group with respect te.relaﬁxve maltipli~
cation; moreover theorems 4.18 and 4.36 show that this 1s
a semi-group with a unit.

The rest of thiﬁjxaatiaa will be devoted to the
development of further useful and interesting results, and
to the characterization of special subclasses of Kh which
are important in mathematics.

Commutativity of the converse and complement operations

in Kh is given by

.41 Thm, (R).ReEh»E"1=R",
Proof: Assume ReKh. FPirst, we have B” 'B'™ '=(E"4R")"',
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(R +R'™ ) '=(R4R")" '=1" '=1'=0, Also, since RR'=0,
(R/I)R'=0. Hence, by 4.20, (I/R'™)R*=0. Then R'"R"=0,
so that R'™RY"=0. The theorem now follows from 3.52.

.52 Thm. (R,S).R,SeKhr>(RS)¥=R"S",
Proof: Follows from 3.50, 3.51, and 4.41.

The following three theorems are easy conse—
quences of 4,21 with 4.29 and 4,32, |
4.43 Thm. (R,8,T).R,S,TeKh->RA(ST)=(RFS) (BAT).

4,44 Thm. (R,S,T).R,S,TeKh-»(RS)#T=(BFT) (S£T).
.45 Thm, (R,S,T).R,S,TeKn>R/(S/T)=(B/S8)/T.

We have also the relative addition anslogues of
.16, %,27, and 4.30 in
4.46 Thm. (R,S).R,SekKhr=>(RfS)Y=8"+/8",

4.47 Thm. (R,S,T):R,S,TeKh.~> RS!'=0->(BAT) (S#T) '=0,
4.48 The. (R,8,T):R,S,Tekh.~> RS '=0->(TFR(T/S) '=0,

In view of theorem 4.21 we see that Kh is a
semi-group with respect to relative addition. As the next
theorem shows, the diversity relation I' is a unit element
for this semi-group.

b.49 Thm. (R).ReKhr->RA1'=1'/R=R,

The next is a useful special case of 4.20.
%.50 Thm. (R,S):R,S¢Kh,~> R”S=0=>(R/3)I=0,

We now define a subset of Kh which is called
the class of many-one relations. This is just the class

of all functions, or maps, of modern mathematical analy—

sis which map a given space onto or into itself.
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5.51 Def. Put "P* for “ﬁi{x,y,z}m&y.:ﬁz‘*.yiﬁ}”.
.52 Thm. (R):.ReFies:(x,y,2) xRy xRz~ 51z,
cterization of

The next theorem gives a chare
the olase F in our aligebra.

4.53. Thm. (R):ReKb,~» RePe»Rel 41,
Proof: For the left to the right implication, by 4.52,
BeFi~»: (x,¥,2) 1xly . xRe ~», yIz
z«*:{x,y,s):xﬁy.xm.*.xﬁx.xﬁ’z.%.ym.v.xm.m‘x
e (X, ¥,2) mﬁx‘xﬁxvx&’a:ﬁ.yhvxﬁy.ﬁ%xﬁ'&
> (x,y,2)ix8y ~>.xR'z _ely
> (x,¥) . xBy->x(R'1)y.
The implication mow follows from 3.71. For the right
to left implieation, by 3.71,
RaB 'L 1= (x,¥,2) s xRy ~», xR ‘e 21y
s {%,¥,2) 1XBY o, . xRe 21y
=1 {2,y ,2) i xRy . xBe-»2ly
p=:{x,¥,2) ix8y,xBz o~ 21y
e,
.54 Thm, I'eI',
Proof: Pollows from 4.35 and b.51,
The two preceeding theorems lead to a more sug~
gestive characterization of ¥ given by
.55 Thm. (R):hekh.~» RePe>(B" /B)I's0,
Proof: Assume Kekh., Then
by 5.53, HePeahaitsdl

by 3.63, i (B V41 ) Y
by 4.21, B {R/1')=0

by B.15, (/1™ )R =0
by 4.20, (B /R)I'=0,

For an interpretation of R as a funetion in the
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usual notstion of mathemstiocs we write "y = R(x)" for
"xhy" when EeF. With th&s'mmtatien b.51 states the usual
condition of single voluedness of & funetion; if y = R(x)
and z = R(x), then y = z. From 4.6 we have the interpre—
tation of R/S in funotion notation where R,8eF, y=(R/8)(x)
meane "there is & z such that y = 8(z) and z = R(x), that
ig, ¥y = S(R(x))." If R ig a function, the lnverse func—
tion, or inverse map K +, is Just what we have been de—
noting by "B¥", With these conventions 4.55 becomes, "R
is a function in A to A if and only if for all x and y in
A, x = R(z) and y = R(2) together imply that x = y."

( We shall now define a eclass of relations which
will lesd us one step mearer to the previously mentioned
group with respect to relative multiplication.

4.56 Def. Put""Onto" for "R{(y)(Ex)xRy}".

4,57 Thm. (R):ReKh.~>,ReOntoe>(y)(Ex)xRy.

The next twa‘thaerama give characterizations of Onto in
the algebra of relatloms.

4.58 Thm. (R):ReKh.-».ReOntoe>(R"/R)'I=0,

Proof:. Assume HeKh. Then

by 3.13,3.25, (BY/R)'I=0.=>,(x,y)..x{(E'/R)'I)y
>, (x,¥) .=x(B” /R) 'y ~xIy
-, (xgy}oxxmtg‘/a)y
>, (x)x(RY/R)x
~&>, (x) (Ez)xR" z2Rx
~e>, (x) (Ez)zBx.

The theorem now follows from 4,.57.
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.59 Thm. (R):ReKh.-»,ReOntoe>1/B=1.

Proof: Assume RegKh. Then
by 3.9,3.25, 1/Rele>(x,y)x(1/R)y

by b.6, > (x,y) (Ez)xlezRy
by 3.10, «>{y)(Ez)zRy
by 4.57, <«>ReOnto.

.60 Thm. (ﬁ):aawwm{movﬁ" 'eOmto.
Proef: Using B,16, 4.15, and .41, we have
1/RY t=leeni 1=l ,
The theorem now follows from 4.59 and 4.19.
4,61 Thm. (R,8):R,S8eKh.~>.R,Se7~>R/0sF,

Proof: Assume R,5¢Kh. Then
by 4.55, R,SeF.~>, (B /R)1'=0,(8"/8)I'=0

by 4.30, >, ((B¥/R)/8)(1/8)'=0.(8"/S)1'=0

by b.36, >, (B /(R/8))8'=0.(8"/8)I'=0

by 4.27, >, (8¥/(R¥/(B/S5)))(8¥/8)'=0.(8" /8)I'=0
by 3.56, —>, ((8¥ /8" ) /(R/8))1'=0

by 4.16, >, ((R/8)Y /(R/8))1'=0

by 4.58, >, R/SeF,

.62 Thm. (R,S):R,SeKh.~>.B,SeOnto~>R/3e0nto.
Proof: Similar to the proof of theorem 4,61.

We next define a class of relations in Kh which
is very useful in mathematics. It is the class of all
funoctions which map the space A into a subset of itself.
These relations are sometimes called transformations.
4.63 Def. Put "Pr" for "R{ReF.R"eOnto}".

.64 Thm., (R):.ReKh:~>:ReTr = ReF.R”eOnto.

4%.65 Thm. (R,8):R,SeKh.~>.R,S8eTr.R/SeTr,
Proof: Follows from 4.64, 4.61, and 4.62.

4,66 Thm. Is%r.
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Proof: By 4.18, 4.35, and 4,36, (I'/I)I'=II'=0 and

(1/1¥)'I=1'I=0, The theorem now follows from 4.55,
4,58, and 4.64,

We are now in a position to define a subset of
Kh constituting a group with respect to relative multi~
plication. This elass of relations is called a transfor—
mation group in Kh.
4.67 Def. Put "TG* for "R{R,R’eTr}".
%.68 Thm. (R):.ReKhi~>:ReTG, <>, ReTr.R"eTr.

b .69 Thm., IeTaq. ,
Proof: Follows from 4.66, 4.35, and 4.68.

It is seen from theorem 4.7 that the elements
of TG obey the associative law with respect to relative
multiplication. Also, by theorems 4.18, 4.36, and 4.69,
we see that the identity relation I can be taken as a unit
element of TG for relative multiplication. The next three
theorems show that TG is closed under relative multipli-
cation and that each element in TG has a right and a left
inverse in TG, and thus that TG does, in fact, constitute
a group.

4,70 Thm. (R):ReKh.~> ReTG->R"eTG.

.71 Thm. (R,S):R,SeKh.~> R,8¢TG~>R/3eTC.
Proof: Follows from 4.68 and 4.65, using 4.16.
4,72 Thm. (R):ReKh.,~> . ReTGe>R"/R = R/R"= I.
Proof: Assume ReKh. Then by 4.68, 4.64, and 3.52,
ReTG ., <> ReTr. B eTr '

&> ReF ,ReOnto B eF. R eOnto
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ReTG,<>, (B¥ /R)I'=0, (R*/R) 'I=0.(R/R” )1'=0, (R/R*)'I=0
.M.B“/EHII.R/EU‘I.

In TG then we see that we may take the converse
of a relation as ites multiplication inverse. Theorem 4.23
shows that this inverse is unique. It may be of iﬁtar@nt
to note that theorems 4.55 and 4.58 together give a neces—
sary and sufficient condition for the existence of a left
inverse. This is given explieclitly in
4.73 Thm. (R):.ReKhi->;R" /R=1,<-> ReF.ReOnto.
By taking R to be B in theorem 4.73 we have the corres—
ponding condition for the existence of a right inverse.

There are many interesting relations and classes
of relations in Kh, suay as the ordering relations and
equivalence relations. Since our interest here 1s pri-
marily with the basis of the formal algebra of relations,
we shall not examine further subclasses of Kh, but shall
look now at a geometric interpretation of the three rela—
tive operations.

In chapter three we gave a method of construction
for a pleture of the product space for the graphical rep~ .
resentation of a relation. For the homogeneous relations
it will be helpful to extend this technique to three di-
mensions. We use the ordinary cartesian representation
where now all of the axes are 1dentical. For our purpose

it will be convenient to distinguish between these axes;
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accordingly, we label them with subseripts 1, 2, and 3,
with x,, X,, and xé used to denote variables om the A,—,
Ay=y and &5~axea.

We have three square product spaces, or planes,
AjX Ay, A X Aq, and alxaé. which determine a cube. We
may think of the ﬁ1?<£2 plane as our prineiple product
space and the other two planes as asuxiliary spaces.

The identity relation I is just the dlagomnal
of Alxlaa'thrangh the point of intersection of the three
axes,

For any relation R in A;X A,, B is just a rigild
rotation of B through 180° sbout I as an axis of rotation.
This rotation is equivalent to a rotation through 90°
about the Almaxia into the alx A, plane, followed by a
rotation about the Ajmaxis into ﬁhe»&2)<£3 plane, and then
a rotation about the A ~axis into the A, X A4 plane. This
gives the relation R in the A,X A, plane which is B in
the A1)<aﬂ plane.

The graph of the relative product of R and S
in Alx A, can be obtained in the following way. BHotate
the graphs of R and § rigidly through 90° about the A,~
axis and the A ~axis respectively. Then R is in A1><Aﬂ
and 8 is in &j)(&z. Now draw lines parallel to the A,~
axis through every point in R, and parallel to the Ay

axis through every point in 8. The projection back into
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the A1>(A2 plane of every point of intersection of these
lines will constitute the relation R/S in 4, XA,.
This method of treating the converse and rela—
tive multiplication operations will be found quite useful

in the next chapter, where we discuss the topology of

relations.
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CHAPTER V

THE TOPOLOGY OF RELATIONS

The study of relations in extension has been
seen in chapters three and four to be the study of a class
of subsets of a given set 1. This consideration of relas—
tions as sets suggests that the ideas of topology should
be applicable. R. Valdyanathaswamy has remarked (5, p.
189) that the topological caleulus of relations ought to
be rich in content, but that it had not been systematical—
ly developed, He then states and proves two theorems
(our theorems 5.5 and 5.11) in the topology of relations.
In this chapter we shall give oomnections between the
three relative operations defined in chapter four and
topology. These connections can serve as a nucleus or
a basis for a systematic development of the topological
caleulus of relations,

We begin with relations in Kh., In order to ob—
taln our results in the product space AXA we gshall find
it convenlent to work in the space AXAXA of ordered
triples. Referring to the discussion of the geometry of
relations in chapter four, we consider the space AXAXA
ag determined by three axes, the AI“’ A,~, and Ag~axas.
The subseripts here do not indicate a distinction between
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the spaces but serve only to distinguish between the three
axes, on each of which the space A is represented. We
denote by giJ the relation R on the A1><AJ plane,
1, = 1,2,3.

We define three kinds of operators in this space;
the permutator Pij indicates replacement of the subsecript
i by the subscript J wherever i occurs in the operand,
the plane projections 3Eij which project a set of ordered
triples into the.&f& &3 plane, and the axis projections
pi 1 which project from ﬁlx Azx A3 into the Af-axis.

Referring to definitions 4.2 and 4.5, and the
above mentioned section on the geometry of the relative
operations in Kh, we see that the relative product and
the converse can be expressed in terms of the permutation
and projection operators. These expressions are given
in the next two theorems.

5.1 Thm. B, P.;szlPlé(Em).

5.2 Thm, Ry,/8,, = I, {(X 13 23m 23363132 13(812))}
Suppose that the space A 1s a topological space,

Then let AiXAZXAé be the corresponding topological pro~

duct. With this topology, the projection operators we

have defined are open, continuous maps. Also, since the

8lx permutators constitute a finite group of automorphisms

of AXAXA onto itself, they are each open, closed, and




b5
continuous maps.

We say that a relation R is open, closed, or
compact according as the graph of R is an open, closed,
or compact subset of the topological product AXA. We
denote the closure of R by R .

With these tools at hand we turn now to the
topologieal ealculus of relations. As implieit hypothe~
ses for theorems 5.3 to 5.10 we shall understand R,3¢Kh.

5.3 Thm. If R 18 open, so is RY.
Proof: In AxXAQXA3 take Alx&2 = 1l, Then R = Rlz.
Since the ?13 are open maps for 1,3)=1,2,3, it fallqya
from 5.1 that 312 is open if R,, is open.

5.4 Thm. If R is compact, so is R".
Proof: Use 5.1 and continulty of thevPis.

5.5 Thm, If B is closed, so is R".
Proof: Use 5.1 and the fact that the Pij are closed
maps.

A somewhat stronger form of theorem 5.5 is given by

506 Thm. E"'“”E""o
Proof: Since R <K , Pij(ﬂmn)<P13(g;n)‘ But Py, 1s

—

a closed map so ?1J(K;n) is closed. Hence {Pij(ﬁmn)}
<P13(ﬁ;n). Also, einae~P13 is continuous, Pls(ﬁ;n)
«:{Pij(am)}“. Then by 3.78, Pljta;n)nipu(am)}".

The theorem now follows from 5.1 and iteration of this
process.

5.7 Thm, If R and S are open, so is R/S.
and 8 "312' Then since the Fij

Proof: Take R = Rlz
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are open maps and since the :Hij are continuous, the
m}_ i w‘ul i .
sets nm%mm) and 332913(312) are open in
Alx Ay X A‘B » and their intersection is therefore open.
By 5.2, 312/512 is then open since II,, is an open map.
In view of theorem %4.21, the topological char—
acter of relative addition is given as the dual of theo—
rem 5.7

5.8 Thm. If R and 3 are closed, so is BfS.
Proof: Follows from 5.8 and b4.21.

It will be noticed that theorem 5.8 does not
admit a strengthing as was done in the case of theorem
5.5, that is, we cannot say that R +#3 =(B/S) in general.
Consider, for example, R = X;y{x 18 real.y is rational}
and S = ¥;y{x 18 rational.y is real}. Then K =§ = 1 so
that B 48 =1#1 = 1, However, it is easily seen that
(R#8) =(0)"=0. The same example will serve to show that
theorem 5.7 cannot be strengthened to the form
"intR/intS = int(R/S)" where "intR" is the interior of E.

We may note also, that R and 8 being closed 1is
not sufficient to imply that R/8 is also closed. This

can be shown by an example. Let R = i??{xyal} in Ez.

The graph of R is closed in Ez, but the graph of
R/R = i??{(xz}.xzul.zywll is not closed. This defect can

be partially remedied by the imposition of more severe

conditions on both the topology of the space A and on the
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relations R and 8, Up to this point no stipulation was
made as to the strength of the topology on the space A}
the only requirement being that the topology of the pro—
duct space be the naturally induced topology of the com—
ponent spaces. In the next two theorems, however, we
shall require that A be at least a T, (Hausdorff) space.

5.9 Thm. If R and S are compact, so is R/S. ;
Proof: Take R = 312 and S = 312 in ;alx AZXA3.

Sinee the P, y are continuous maps, both P, jmw) and

Pﬁ(ﬁmi are compact, and hence closed since A is T,.

Therefore, by continuity of the “ﬂ'l 3 projections, both
=1, ° -1

3133‘23(312) and I,5P,4(8,,) are closed. Now by com

tinuity of the 111 and the P it follows that

149
:;(312) is compact, 'rhenjtm product set
zatalz)x::gyla(sm) is compact. But we have
(11131?23{312))( 11:3-2 13(312))«< 3mlz»< nBPw(sm}
Thus (}im 23(E12))( 113 13(512)) is a closed subset
of a compact set in Alx A2><A3, and is therefore com-
pact. The theorem follows from this by 5.2 and the
continulity ef nm.
5 Since the identlity relation I plays an lmpor—
tant r8le in the algebra of relations, its topologiecal
character should be of interest in the topology of rela—

tions. We find that here too, we need the Hausdorff

separation postulate %1‘2 for the space A in order to
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demonstrate closure of I.

5.10 Thm, I is e¢losed.

Proof: Suppose xI'y. Then since A 1is Tz, and by 4.12,
there exlist in A neighborhoods ﬁx and Hy of x and ¥y
such that RXR = empty set. For convenlence, write

R = Hﬁ(ﬁy. Then (x).xBx. From 4.35 and 4.13 we get
(x,y):xBy.xIy.~>.xBx; the contrapositive of which is
(x,y) i~xBx.~»,..x(RI)y. We conelude (x,y).x(RI)y,

from which BI=0. It follows from this that I is closed.

We leave Kh now for the more general class of
relations K. For this we shall require two topological
spaces A and B, and we shall suppose the topology of the
corresponding product space 1 to be the natural topology
induced by A and B. For the next three theorems we need
the stipulation that the topology of the space A satisfy
the weak separation postulate Tl.

5.11 Thm. If R is closed, so is x™ ‘
Proof: 8Since A is ?l, x is closed. Then since B 1s
closed, xXB is closed. Since the intersection of two
closed sets is closed, (xXB)R = xXx¥ 1s closed.
Henmce (x Xx*)~ = x Xx* = xXx*, from which we con—
clude x¥ = xk—,

5.12 Thm. If R is closed, for any X<A, X* is closed.
Proof: By theorem 5,11, x* is closed. Since the in—
tersection of any number of closed sete is & closed
set, and by 3.101, X® = [Jx* 15 closed.

5.13 Thm. If R is open, so is x*,
Proof: Since R is open, R' is closed. Now

yeXp <>xR 'ye-> xRye-> yexf<>yexy’, hence X=Xy,
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By 5.11, xﬁﬂ is elosed, so that xg‘ is also closed.
Thus xé“ is open.

The material presented in this chapter does
not constitute a systematic development of the topologi~
cal caleulus of relations ae suggested by
Valdyanathaswamy. It does, however, establish a basis
for such an undertaking by setting forth some very gen—
eral and fundamental connections between the topology of

1 and the three relative operations in Kh,
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