Assessing the Effectiveness of a Voluntary Bycatch Avoidance Program: Sea State

Josh Abbott
James Wilen
International Institute of Fisheries
Economics & Trade 2008

Our Research Objective

- Examine the performance of a voluntary bycatch avoidance program among EBS trawlers.
 - Institutional framework: common property quotas
- Did membership in the program alter:
 - Bycatch outcomes (reduced form modeling)?
 - Bycatch-influencing behaviors (spatial structural modeling)?
- Key feature: before/after data and participant/non-participant vessels

The EBS Head-and-Gut Trawl Fishery

- Comprised of ~20 catcher-processor vessels
 - Owned by ~10 companies
 - 100-225 ft. in length
 - Conduct limited onboard processing
 - Utilize non-selective bottom trawl gear
- Regulated by a complex system of time/area closures, retention restrictions and common property catch & bycatch quotas on:
 - Target Species: yellowfin, rock and flathead sole, cod, rockfish
 - Prohibited Species: Pacific halibut and some crab species

Common Property Bycatch Quotas

- Prohibited species catch (PSC) must be discarded
- Regulators curtail the retention of target species when PSC quotas are exceeded
- Spatial co-occurrence of target and bycatch species makes avoidance costly
 - Avoidance costs are personally born but the benefits are diffuse across the fleet
- Result: a "race for bycatch"
 - Abbott & Wilen (forthcoming)

Annual Catch and Quota of BSAI Yellowfin Sole

Halibut: PSC Quota and Catch for Yellowfin Sole Trawl Fishery

The "Voluntary" Solution: Sea State

- ▶ In 1995, a group of fishermen retained Sea State Inc. to provide near real-time updates on bycatch rates for the yellowfin and rock sole fisheries.
- Participating fishermen were given a daily spatial summary of bycatch rates in the fishery.
 - Anonymous, but only partially
- ► Fishermen could use the information to avoid bycatch "hot spots" and pressure other fishermen to do the same.
- Important: a small number of vessels (from one company) did not participate in Sea State until ~1999.

Did Sea State work?

- Some early successes
 - Seven-fold decrease in red king crab bycatch in 1995 (Gauvin, Haflinger and Nerini, 1995)
 - Little discussion of results for Pacific halibut
- ► We examine this question in several ways
 - Outcome based (quasi-experimental methods)
 - <u>Behavior based</u> (structural modeling of fishing location choice)

Data

- ► North Pacific Observer Database 1992-2000
 - All vessels over 124 feet must carry an observer on all trips.
 - Observers record the precise spatial location and duration of each haul.
 - A random sub-sample is selected for species-composition sampling (including bycatch species)
 - The sampling of hauls is designed to minimize incentive problems and measurement error.
- ▶ Final sample
 - 1992 to 2000, April to November
 - 18 vessels with 100% observer coverage
 - 2784 vessel-weeks in sample

Table 6.1: Quantiles and other Summary Statistics for Weekly Halibut/Groundfish Bycatch Rates (kg/mt)

							V	Vilcoxon Rank-Sun
Year		10%	25%	50%	75%	90%	Mean	z Statistic
1992	Sea State	0	0	0.9	6.5	16.8	5.8	
	Non-Sea State	0	0	2.1	7.3	16.6	6.1	1.04
	All	0	0	1.4	7.2	16.7	5.9	
1993	Sea State	0	0.4	2.4	7.4	16.5	6.0	
	Non-Sea State	0	0	2.0	13.5	31.3	10.7	0.64
	All	0	0.1	2.2	9.1	21.5	7.9	
1994	Sea State	0	0	1.6	8.1	21.1	8.9	
	Non-Sea State	0	0	1.1	9.5	27.7	12.3	-0.06
	All	0	0	1.5	8.2	25.1	10.4	
1995	Sea State	0	0	1.9	11.3	30.2	12.0	
	Non-Sea State	0	0	1.2	17.1	31.6	10.9	-1.02
	All	0	0	1.4	11.8	30.3	11.7	
1996	Sea State	0	0.7	5.6	13.8	31.0	11.8	
	Non-Sea State	0	0	2.9	13.2	27.4	9.3	-1.76*
	All	0	0.2	4.5	13.3	30.0	10.9	
1997	Sea State	0	1.0	3.8	10.7	28.9	9.9	
	Non-Sea State	0	0.7	3.8	11.6	26.1	9.7	-0.54
	All	0	0.9	3.8	10.8	27.4	9.8	
1998	Sea State	2.0	5.7	12.6	21.0	34.3	19.7	
	Non-Sea State	0	0.2	3.9	10.7	22.7	7.9	-7.2**
	All	0	2.5	8.8	17.5	30.4	14.7	
1999	Sea State	2.0	6.5	15.2	32.4	62.8	26.6	
	Non-Sea State	0.1	0.5	6.2	26.0	41.3	15.8	-3.14**
	All	0.4	4.2	14.0	31.4	55.9	23.5	
2000	Sea State	1.1	6.2	16.4	33.0	57.4	24.1	
	Non-Sea State	0	0.9	6.1	10.7	18.4	7.5	-7.31**
	All	0	3.0	10.4	24.5	40.9	17.9	

^{*}Significant at the 10% level of significance

^{**}Significant beyond the 1% level of significance

"Difference in Differences"

- ► The <u>average</u> "treatment effect" of the program is the change in the bycatch rate for the "treated" vessels minus the change in the bycatch rate for the "control" (non Sea State) vessels
- Assumptions
 - Treatment and control groups are temporally stable
 - Treatment and control groups must be "similar"
 - The assignment of the treatment must be "exogenous"

$$y_{it} = \beta_0 + \beta_1 d_t + \beta_2 d_i + \beta_3 (d_t * d_i) + \varepsilon_{it}$$

A "Modified DID" Approach

- ► We alter the specification to allow for
 - Year specific treatment effects
 - Vessel characteristics
- ▶ We estimate 3 variations on the model
 - Model 1 as above
 - Model 2 seasonal effects
 - Model 3 vessel specific intercepts
- ► The standard errors are robust to vessel-specific heteroskedasticity, contemporaneous correlation across vessels and AR(1) correlation within panels

DID Results

		<u> </u>	
	Model 1	Model 2	Model 3
Sea State*1995	4.72	4.11	5.04
	(0.91)	(0.84)	(1.03)
Sea State*1996	5.70	5.69	6.80
	(1.08)	(1.14)	(1.32)
Sea State*1997	2.73	3.09	4.21
	(0.65)	(0.79)	(1.01)
Sea State*1998	17.12	18.27	18.49
	(3.86)***	(4.40)***	(4.22)***
Sea State*1999	13.30	14.86	16.40
	(2.60)***	(3.02)***	(3.10)***
Sea State*2000	20.61	21.47	22.83
	(4.54)***	(5.04)***	(4.77)***
Constant	10.77	17.92	30.45
	(3.03)***	(4.72)***	(2.92)***
Observations	2784	2784	2784
R-squared	0.06	0.09	0.1

DID - Beyond the Mean

- ► There are reasons to be dissatisfied with these results:
 - The conditional mean may not describe "typical" bycatch behavior.
 - Linear regression is sensitive to outliers.
 - The effect of Sea State could operate on other aspects of the bycatch distribution.
- ▶ To examine these possibilities we estimate DID specifications of the conditional quantiles.
 - Censored quantile regression
- Result: the mean results are mirrored by the entire distribution of outcomes.

"Outcome Based" Methods – Limitations

- Bycatch rates represent the interface of fishermen's preferences <u>and</u> the biological, economic and regulatory constraints they face.
- Output based methods run the risk of confounding outcomes and incentives
- Answer: explicitly model the short-run margin of bycatch avoidance
 - Spatial choice

A Random Utility Model of Fishing Location

- Short run profitability and catch composition are primarily driven by the decision of where to fish.
- ▶ We represent the expected utility of a particular site (n) for a particular haul of the net (t) as:

Random Utility, cont.

- $\triangleright \lambda/\beta$ =the "shadow cost" of bycatch
 - The implicit willingness to avoid bycatch revealed by fishermen's spatial tradeoffs
- By parameterizing λ using the "difference in differences" approach we can examine the effect of Sea State on fishermen's tradeoff incentives

```
\begin{split} \lambda_{it} &= \gamma_0 + \gamma_1 SeaState_i + \gamma_2 AfterSS_t + \gamma_3 After 1998_t + ... \\ &+ \gamma_4 (AfterSS_t * SeaState_i) + \gamma_5 (After 1998_t * SeaState_i) + Z_{it}' \delta_t \end{split}
```

		Standard
	Median	Deviation
AfterSS	-\$11.07	¢5 11
Alterss	(-1.65)	\$5.11
After1998	\$6.00	\$2.77
	(1.71)	Ψ=,
AfterSS*Sea State	\$3.69	\$1.71
	(0.50)	
After1998*Sea State	-\$16.27	\$7.52
	(-3.32)***	
N	45,200	
Number of Estimated Parameters	115	
Log-likelihood	-20,167	
Pseudo R ²	0.7828	
Predictive R ²	0.8476	

z Statistics are included in parentheses and are all derived using standard errors calculated by the delta method.

^{***} significant at 1%

Summary

- No detectable incentive effect of Sea State from 1995-1997
- Structural modeling suggests incentives to avoid halibut markedly decreased for Sea State participants from 1998 onward
- Strong upward trend in bycatch rates by SS participants in late 1990s is linked to a reduction in the implicit value of halibut bycatch
 - Reason: 30% decline in yellowfin prices between 1997/1998
- The reduced form and structural models are consistent & complementary.

Why did Sea State fail?

- Several hypotheses:
 - Weak target fish prices (Holland & Ginter, 2001)
 - ▶ Doesn't explain lackluster 1995-1997 performance
 - Increased halibut abundance
 - ► Doesn't explain lackluster 1995-1997 performance
 - Predatory behavior by (former) non-participants (Gauvin, Haflinger & Nerini, 1995)
 - ▶ Just not supported by the data

Why did Sea State fail?

- Noncooperative incentives under management institutions were simply too strong to support voluntary cooperation
- Problem: the success of Sea State for red king crab bycatch avoidance
 - Preliminary results using zero-inflated count models indicate a 40% reduction in crab bycatch.
 - Red king crab is managed under common property quotas just like halibut.

What makes RKC different?

- ► Fishery is spatially concentrated
 - Lowers monitoring and enforcement costs of cooperative behavior.
- ► Fishery is short lived
- ► Large benefits from bycatch avoidance
 - Rock sole roe is a valuable export product
- Spatiotemporal nature of RKC abundance
 - Highly mobile & spatially clustered (Dew, 2007)

Conclusion

- ➤ The apparent failure of cooperative halibut bycatch avoidance seems to lie in two factors
 - Bad incentives from the management structure of the fishery
 - The characteristics of the fishery itself
- ➤ This suggests that policies aimed at sustaining cooperative management of resource stocks must consider both institutional constraints and the constraints posed by nature itself.