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A modeling study is undertaken to better understand the physics of

katabatic flows. This study is divided into three topics; a comparison between a

large eddy simulation (LES) and a mesoscale model of katabatic flows, a sensitivity

study of katabatic flows to various physical parameters, and an investigation into

the effect of subgrid scale terrain features on katabatic flow models. In the first

topic, a comparison between LES, and a mesoscale model, ARPS, of katabatic

flows is made to better quantify the accuracy of subgrid parametenzation in ARPS.

It is shown that, although the modeled flows agree on a number of parameters, the

LES model produces a lower and faster jet than that of ARPS, and also cools more

near the surface. The momentum budgets of the two models agree well with each

other. The ARPS model has a higher amount of TKE than the LBS model, due to

an overproduction by shear in the ARPS subgrid parameterizations.
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The second portion of this thesis represents a sensitivity study of katabatic

flows to various physical parameters. The depth and strength of katabatic flows are

shown to vary with surface heat fluxes, slope angle, and ambient stratification.

Katabatic flows are shown to grow in depth and magnitude as slope angle

increases, due to an increase in entrainment of overlying ambient air. The ratio of

advection to mixing is shown to collapse to a near universal value regardless of

surface heat fluxes. With increasing ambient stratification, entrainment in katabatic

flows becomes small and the momentum equation is reduced to a two-way balance

between buoyancy and drag. In this case, the heat flux of entrained air into the

katabatic flow approaches that of the surface cooling, and the flow ceases to grow

in the down-slope direction. Finally, predictions for bulk velocity and buoyancy

strength scales are developed as a function of slope angle and surface heat fluxes.

The last portion of this study focuses on the effect of subgrid scale terrain

features on katabatic flows. It is shown that in areas of inadequate terrain

resolution, the effect of the terrain smoothing routine in ARPS is to increase the

slope height in areas of concave mountains. The concept of energy conversion in

katabatic flows is introduced, and it is shown that the effect of raising terrain is to

assign parcels more buoyant potential energy than they would otherwise have, and

thus over-predict the magnitude of katabatic flows. Finally, an investigation into

the effect of changing upper slope angle on katabatic flows over combined slopes is

made. It is concluded that a combined slope cannot be predicted using a linear

combination of simple slopes, since the transition portion of the slope results in a

turbulent hydraulic jump with enhanced mixing. The magnitude of mixing in the

turbulent hydraulic jump in combined slopes is shown to depend on the difference

between upper and lower slope angle.
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A Modeling Study of Katabatic Flows

1. Introduction

Cold air drainage flows are a common occurrence in nocturnal boundary

layers over complex terrain. As such, these flows represent an important part of

our understanding of complex terrain meteorology and transport and mixing in

stable boundary layers.

1.1 Motivation

Much progress in modeling slope flows has been made in the past few

decades. Models of terrain induced atmospheric processes, however, are

constrained by terrain resolution. Since katabatic flows are inherently a terrain

induced flow, it follows that accurate modeling of them requires high resolution of

terrain features. In this respect, models of atmospheric boundary layer processes

are constrained by the power of computers. In modeling a certain domain, one has

to choose a grid resolution coarse enough to ensure the model will be done in a

timely fashion, and fine enough to pick up the smaller scale aspects of the flow.

Most current operational mesoscale models are run at grid resolutions

between 4 and 36 km. Typically the model terrain is smoothed over using a filter.

Whereas at smaller grid spacing, less smoothing is required to produce a surface

that is acceptable to the model, and hence more terrain irregularities are picked up,
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at higher grid spacing, many smaller features in areas of complex terrain are filtered

out and inadequately resolved. This study will look at possible errors that may be

introduced by subgrid scale terrain features in mesoscale model forecasts over areas

of complex terrain. In particular, a part of this study will focus on the systematic

differences between katabatic flows over simple slopes, and those with a slope

angle that is not constant. Information about the models of simple and combined

slopes will help us tailor drainage flow predictions in areas of inadequate terrain

resolution, and produce qualitative relationships about the role of subgrid scale

terrain features in katabatic flows.

An example of this phenomena lies in the vertical mixing and transport

(VTvIX) data set that was taken in Utah in 2000. As an example of the effect of

grid spacing is presented below. A close up view of the of model domains over the

Salt Lake City Valley is pictured in figure 1.1. Horizontal grid spacing in the

models is 5 km (top), 2.5 km (middle), and 1 (km). A cross section is taken

through the valley, near the southern tip of the Salt Lake, indicated by the solid

line. The terrain profile along the eastern side of the valley in this cross section is

shown in figure 1.2. This figure shows that as grid spacing is increased the terrain

is changed in two distinctive ways. First, increased grid spacing tends to reduce the

height of the peaks, generating an overall gentler slope, and less potential energy

input into the system. Second, in the vicinity of the slope angle change, the level of

terrain is raised. It is this phenomena that we are most interested in, since the effect

of raising the terrain is to assign parcels more potential energy than they would

otherwise have, and assigning parcels more energy should lead to greater increases

of kinetic energy down-slope. To learn more about this effect, the results of a
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sensitivity study of katabatic flows to slope angle will be used in predictions of

combined slope flow parameters.

There are also other fundamental aspects of slope flows that have yet to be

fully explored. For example, we have information on the role of ambient

stratification in inhibiting the growth of slope flows, although it has been suggested

that in highly stratified environments, slope flows will become one dimensional

with the surface cooling balanced by the entrainment of warmer ambient overlying

air. One of the goals of this study is to examine the effect that ambient

stratification has on cold air drainage flows, and examine the relationship of the

growth of cold air drainage flows and the turbulent entrainment of warmer ambient

air.

In addition, the mechanisms that determine the surface cooling that drives

flow down slopes are poorly understood. Observational evidence is lacking for the

myriad surface cooling regimes applied in katabatic flow models up to date. In the

past, modelers have employed a wide variety of thermodynamic boundary

conditions over the slope to drive the flow. A sample of the methods include

prescribing a temperature difference between the surface and air just above the

surface as in Davies et al (1995), specifying a constant heat flux as in Manins and

Sawford (1979), and Bader and Mckee (1983), decreasing the surface temperature

until a specified ground temperature deficit is achieved and then holding the surface

heat flux constant from then on as in Nappo and Rao (1987), and using a full

radiation and surface physics package as in McNider and Pielke (1984) and

Yamada (1981). However, none of these thermodynamic surface boundary

conditions seem to be justified from observational data, and furthermore, most
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boundary layer parameterizations used in mesoscale models have been formulated

from observational studies over flat ground. It is not known how well or if these

parameterizations work for flows over slopes. Therefore, another goal of this study

is to determine what effect surface heat flux has on models of katabatic flows.
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Figure 1.1: Close up of model domains over the Salt Lake City Valley. Salt
Lake is in the upper left-hand corner of the domains. Grid spacing in the models in
5 km (top), 2.5 km (middle), and 1 km (bottom). Terrain profile is indicated by the
line across the right hand side of the valley, near the southern tip of the Salt Lake.
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1.2 Background

A depiction of cold air drainage flows is presented in figure 1.3, where Qo is

the surface cooling applied over the entire slope that is driving the flow. For

simplicity we use a coordinate system tilted to the horizontal so that the s-

coordinate and n-coordinates are in the down-slope and slope-normal directions

respectively. We will ignore cross slope effects on the flow, and consider the flow

to be essentially two dimensional. Katabatic flows are driven by surface cooling,

which causes air near the surface of a slope to increase in density and flow

downhill. In the absence of solar heating, the Earth's surface cools by longwave

radiation while air adjacent to the surface cools by conduction. The result is that

parcels near the surface of a slope become denser than parcels at the same height

away from the slope, thus generating a gradient in buoyancy that drives cooler,

denser air near the surface downhill.

yn I

La

Downslope Velocity Profile
I

Potential Temperature Profile

n r-cL 2° °katabatic

L'a

Figure 1.3: Schematic of velocity (left) and potential
temperature (right) profiles for katabatic flows.



Early studies of cold air drainage flows focused on finding analytical

solutions for slope flows through the use of restrictive assumptions on terms in the

momentum budget and turbulent eddy diffusivities. These studies have typically

neglected temporal variations, down-slope evolution of the flow, turbulent flux

divergence, or entrainment of ambient air into the flow, in obtaining analytical

profiles of down-slope flows. Manins and Sawford (1979) recognized that

analytical descriptions of the temporal and spatial evolution of slope flows that do

not include restrictive assumptions appear unattainable. That is, only by neglecting

physics such as advection and assuming constant eddy diffusivity coefficients are

analytical solutions to slope flows possible.

In the past 20 years there has been a series of numerical modeling studies of

katabatic flows. In numerical models, restrictive assumptions about the flow do not

need to be made in order to gain insight into the physics. Typically, however, these

studies have focused on the effects of mean synoptic scale flow and stable

stratification on slope flows. A few investigators have explored the effect of

surface heat fluxes, slope angle, and valley width/height ratio in their studies.

Studies on the effect of a changing slope angle on a simple slope flows are almost

nonexistent.

One of the first analytical solutions to slope flows was proposed by Prandtl

(1942). In his one dimensional model, the flow is assumed to be steady and

invariant in the down-slope direction, and the slope angle is assumed to be small.

Advection is neglected in the momentum budget so that the buoyancy term is

balanced by turbulent flux divergence, and eddy diffusivities are assumed constant
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with height in the drainage flow. Entrainment of warmer, overlying air into the

drainage flow is neglected, emphasizing the importance of mixing and drag in the

model. Businger and Rao (1965) neglect the turbulent momentum transport and the

buoyancy term is balanced by the down-slope advection of momentum. More

recent studies have shown that in some slope flows the entrainment term accounts

for a relatively small portion of the momentum budget, justifying Prandtl's neglect

of advection to certain extent and making his model useful for predictions of many

of the flows that have been studied observationally.

Subsequent models of drainage flows focused on adding more physics to

Prandit' s model. Defant (1949) extended Prandtl ' s approach to large slope angles

and modified the eddy diffusitivities to obtain good agreement with observations on

a steep slope in the Innsbruck Range. Ball (1956) extended Prandtl's approach to

include advection, but neglected entrainment processes, while Ellison and Turner

(1959) extended Ball's hydraulic approach to account for entrainment processes.

They showed that the depth of buoyancy driven slope flows increases with down-

slope distance by entrainment of ambient air into the flow. Furthermore, they

conducted experiments to determine the entrainment physics, and developed

parameterizations of entrainment coefficients which were subsequently used in

many successful models of cold air drainage flows. Nappo and Rao (1987),

however, point out that it has not been established if the parameterizations of

entrainment physics obtained from laboratory data are applicable to slope flows

under a variety of conditions.
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Using Ellison and Turner's (1959) laboratory parameterizations, Manins

and Sawford (1979) developed a model that calculated down-slope development of

average flow values. Manins and Sawford's model predicted that entrainment was

the dominant retarding mechanism in drainage flows, and was more important than

surface stresses. Furthermore, they concluded that surface stresses may be

negligible in the dynamical balance of fully developed slope flow, since the strong

stratification near the surface essentially isolates the katabatic flow from surface

influences. Further investigations into momentum balances of slope flows

disagreed with Manins and Sawford's conclusion. Horst and Doran (1986)

deduced that interfacial stress was only one quarter of surface stress. Kondo and

Sato (1988) concluded that to obtain good models of drainage flows for a variety of

conditions, neither surface nor interfacial stresses should be neglected.

Fitzjarrald (1986) suggested that similarity of slope flows to Prandt's (1942)

profiles depends on entrainment rates. For large entrainment rates, constant values

of eddy diffusivity are not justified. Rao and Snodgrass (1981) developed a model

of nonstationary drainage flows with height dependent eddy diffusivities to allow

for greater mixing at the top of the flow. They also investigated the effect of some

physical parameters such as slope angle, surface cooling, atmospheric stability and

surface roughness on slope flows. However, their model did not include an explicit

accounting of the effects of the interfacial entrainment of ambient air into the

drainage flow.

Doran and Horst (1983) modified Prandtl's (1942) analysis to account for

down-slope variation of the flow by approximating the advection terms in the

governing equations by their slope-averaged values, and relating the eddy
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diffusivities to the local turbulent kinetic energy. They conclude that the model

employed by Manins and Sawford (1979) was inappropriate to describe their

observations on Rattlesnake Mountain.

Nappo and Rao (1987) employed a numerical model to examine the effects

of different slope angles and ambient stratification on drainage flows. Theirs was a

time dependent, two dimensional model which allowed for down-slope evolution

and entrainment of ambient air into the flow. Results of key flow parameters are

presented as functions of slope angle, down-slope distance, and ambient

stratification. They found that increasing ambient stratification affects the flow by

reducing its depth, speed, and entrainment rate. Furthermore, they note that

strongly stratified conditions lead to a regime which is essentially one dimensional,

i.e. the flow is invariant in the down-slope direction, as in Prandtl's (1942) analysis.

According to Nappo and Rao (1987), larger ambient stratification results in

advection and entrainment of warmer ambient air, which acts to decrease the

buoyancy deficit in the katabatic layer, the driving force for drainage flows. They

also claim that the entrainment rate coefficient is not independent of stratification

(contrary to Manins and Sawford) and that the rate of growth of the buoyancy

deficit with down-slope distance decreases as the ambient stratification is

increased.
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1.3.1 Simple slopes and valley drainage flows

Numerous strategies for naming slope flows based on topography have been

devised. In general, these have tried to distinguish between flows on simple slopes,

flows on slopes draining into valleys, and flows in valleys.

Doran and Horst (1983) recognized that most slope flows in valleys are

influenced by flow convergence from tributaries and side walls. Even Manins and

Sawford (1979) conclude that their results were contaminated by flow convergence.

With this in mind, Doran and Horst (1983) produced an observational study of

slope flows over a nearly two dimensional ridge in Washington. They note that

valleys tend to produce flows that are more topographically sheltered from external

conditions than ridges, and significant contamination of drainage flows occurred at

this site due to the sensitivity of simple slope flows to synoptic scale and mesoscale

disturbances. Thus, the observations of flows over a simple slope observed at

Rattlesnake Mountain in Doran and Horst (1983) and Horst and Doran (1986) were

contaminated by strong cross slope winds.

Papadopoulos et al (1997) point out that most observationally and

numerically studied flows are valley drainage flows or down-slope flows along

valley side walls. These flows tend to be stronger than flows along a simple slope,

and are not easily isolated from the larger scale valley flows into which they drain.

Furthermore, Mahrt et al (2002) states that in terrain with a multiple length scales,

drainage flows can occur simultaneously on a variety of scales.
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1.3.2 Surface heat fluxes

Although numerous models of cold air drainage flows have been made,

there seems to be no general agreement on the amount of surface cooling that is

driving these flows. Historical detailed measurements of surface fluxes for cold air

drainage flows do not exist, setting the stage for a variety of creative ways to

prescribe lower boundary conditions in numerical models.

In general, this has been accomplished in three ways. Models such as

McNider and Pielke (1984), and Yamada (1981) have utilized a full radiation and

surface physics package to describe surface heat fluxes. Other models such as

Davies et al (1995) have prescribed a temperature difference between the surface

and air just above the surface. Manins and Sawford (1979), and Bader and McKee

(1983) use a constant heat flux as their lower boundary condition. Finally, Nappo

and Rao (1987) decreased the surface temperature until a specified ground

temperature deficit was achieved and then held the surface heat flux from then on.

However, none of these lower boundary conditions seem to be justified from

observational data. In recognizing this, Doran, Horst and Whiteman (1990) point

out that

a proper description of valley flow dynamics requires a detailed
surface energy budget description to properly determine the lower
boundary condition for the thermodynamic equation. Assumptions
of constant cooling rates, constant temperature deficits, or sensible
heat fluxes independent of down-slope distance are not supported by
the data.
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1.3.3 TKE

A great deal of effort has been put into observing and modeling turbulent

kinetic energy budgets over flat ground. In that the structure of nocturnal boundary

layers over flat ground is significantly different than those over slopes, it is still not

known if boundary layer parameterizations formulated from observational studies

over flat ground are applicable to models of slope flows.

Horst and Doran (1988) studied the turbulence characteristics of slope flows

on Rattlesnake Mountain. They found that the local turbulent kinetic energy (TKE)

balance is largely a balance between shear generation and viscous dissipation, in

that slope flows are stably stratified and do not support buoyant generation of TKE.

Furthermore, they point out that at the height of the jet maximum, shear production

is predicted to be zero, and lower order closures would predict that turbulence

above the low level wind maximum can become decoupled from surface

influences. Hence, surface scaling of turbulence parameters is not justified for

katabatic flows.

Denby (1999) provides a second order model of turbulence in katabatic

flows. He presents TKE budgets for drainage flows calculated using two different

closures (a diagnostic buoyant length scale and a prognostic dissipation equation)

and compares his results to those of a 1.5 order TKE model. He also points out that

the assumptions that are used in M-O theory predict a decoupling of the katabatic

layer above and below the wind maximum, unless ad hoc assumptions about the

minimum mixing length are employed at the height of the jet maximum. In higher

order models, however, the turbulent transport term can become important at the
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height of the wind maximum, as well as above this height where wind shear can

become small.

Skyllingstad (2003) provides a large eddy simulation (LES) of a katabatic

flow and describes in detail the TKE budget of the flow. He states that for steeper

slopes, down-slope acceleration from buoyancy forcing is balanced by mixing and

advection. Mixing is important near the surface, where velocity gradients are

highest, while advection becomes more important above the jet maximum. Most

TKE is generated through shear near the surface and just above the down-slope jet.

Although the TKE is primarily destroyed by dissipation, the buoyancy term is still

important. He points out that mesoscale models of drainage flows must have

sufficient vertical resolution to produce a good model of katabatic flows. If the

vertical structure of the flow is not resolved, then the turbulent exchanges at the top

and bottom of the flow are surely inaccurate. He also stresses the importance of

turbulent exchange above and below the jet in determining the depth and strength

of the flow. And finally, he states that further research is needed to determine how

models behave when tenain features are not properly resolved, as in the case for

most operational models.

1.3.4 Changing slope angles

The effect of changing slope angles on a simple slope flow is only briefly

mentioned in the literature. As most slopes tend to be steeper near the mountain or

ridge tops than near the foot of the slope, we might expect that systematic

differences would be evident in the literature on observational campaigns of slope
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flows. This was first observed in Doran and Horst's (1983) study of drainage flows

on Rattlesnake Mountain. They noted that the lowermost tower at this site had a

smaller slope angle than towers further upsiope. The authors were using a simple

one dimensional model to simulate the katabatic flows on the upper steeper portion

of this ridge. Their model could not account for changes in slope angle, and

discrepancies between observed and simulated values at the lowermost tower were

attributed to a slope angle that decreased with down-slope distance. At the lower

tower, Horst and Doran's (1986) predictions of flow parameters based on an

equivalent length from the tower to the top of the ridge met with moderate success.

They conclude that their one dimensional model was not sophisticated enough to

simulate katabatic flows over a slope with changing slope angle.

Many authors make no mention of a change in slope angle in their domain.

For example, a mesoscale model of the diurnal cycle over a slope with changing

slope angle was made by Bader et a! (1987). Their slope included an upper portion

with 8 % grade, followed by a longer portion with 1% grade. The authors,

however, do not note the effects of the change in slope angle on the katabatic flow.

Papadopoulos et al (1997) also make a brief mention of the effect of

changing slope angle in noting that the slope angle at observational towers lower

down their slope are not as steep as those higher upsiope. They state that this

change in slope angle can account for discrepancies between observations and

modeled down-slope evolution of the flow. In particular, Nappo and Rao (1987)

predicted a linear relationship between buoyancy deficit length scale and down-

slope distance for a near neutral stability and constant slope angle.
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Monti et al (2002) state that discontinuities in slope angle may lead to

higher elevation steeper slope flows overrunning existing katabatic flows on gentler

slopes of lower elevation. They point out that most slope flows are supercritical,

that is, information may not be passed upstream, only in the downstream direction.

Hence the flow responds to a change in slope angle by changing its depth by way

of a hydraulic jump, since larger slope angles support larger down-slope velocities.

1.4 Description of the current study

This thesis is a modeling study of the development and structure of

katabatic flows and their relation to parameters such as surface heat fluxes, ambient

stratification, slope angle and slope profile.

Chapter two begins with an introduction to the models used in this study.

This is followed by a comparison between an LBS and a mesoscale model of

katabatic flows in section 2.2. The purpose of this comparison is to verify the

subgrid scale parameterization of the mesoscale model.

The following sections of chapter two represent a sensitivity study of slope

flows to various factors. This study will focus on the effect of surface heat fluxes

(section 2.3), slope angle (section 2.4) and ambient stratification (section 2.5) on

simple slope flows. In the past, surface heat fluxes have not been adequately

measured in observational studies of katabatic flows. In that surface heat fluxes are

driving the flow, an account of their effect is crucial to our understanding of on

slope flows. The effect of ambient stratification on slope flow will be explored to
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determine if slope flows essentially become invariant in the down-slope direction

under strong ambient stratifications as predicted by Nappo and Rao (1987). To

gain insight into the relationships between combined and simple slope flows, I will

also study the effect on slope angle on simple slope flows. Throughout this

chapter, the concept of katabatic efficiency will be applied to better understand

energy conversion in katabatic flows.

Chapter three is a comparison of modeled flows over simple and combined

slopes of varying upper slope angle. Section 3.1 examines the differences between

simple and combined slope flows, while section 3.2 studies the effect of the upper

slope angle on drainage flows over the lower portion of a combined slope. Results

from this chapter will help to tailor numerical drainage flow predictions in areas of

inadequate terrain resolution, and produce parameterizations of subgnd scale

terrain features in models of katabatic flows in areas of complex terrain.
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2. Study of Simple Slopes

2.1 Model introduction

Simulations of cold air drainage flows were run using the Advanced

Regional Prediction System (ARPS) and the LES model to make a comparison

between the two models and check the subgrid parameterizations of the ARPS

model. The LES model is better able to resolve smaller scale features of the flow,

and can directly model the largest energy containing eddies, whereas in the ARPS

model, all turbulence is parametenzed. By using the LES model we can gain more

accurate information about the scale processes in the flow and check the turbulence

parameterizations of the ARPS model.

2.1.1 ARPS

ARPS was chosen for the mesoscale model runs. ARPS is a three

dimensional, nonhydrostatic, compressible model which uses terrain-following

coordinates (Xue et a!, 2000). The model domain is shown in figure 2.1. The

domain is 32 km by 0.6 km by 4 km in the X, Y and Z directions respectively.

Grid size is 100 m by 100 m in the horizontal with 320 grid points in the X

direction and 6 grid points in the Y direction. The vertical coordinate is terrain-

following with a grid size that is stretched using a hyperbolic tangent function to

allow for a very fine grid size of 5 m near the surface where resolution is critical.

The domain is 4 km high with 80 levels in the vertical. An analytic two

dimensional triangular mountain profile was prescribed with the slopes in the x-





The subgrid model used is 1.5 order TKE closure after Moeng (1984). In

this scheme the eddy diffusivity is related to a mixing length 1, and the turbulent

kinetic energy, e,

Kmj =O.le''21
j

For the simulations in this study the horizontal grid spacing is much larger

than that in the vertical, so the horizontal mixing length, 'h is set to Ab, the grid

spacing in the horizontal direction. The vertical mixing length, l, for the stably

stratified case, is defined as the minimum of the vertical grid spacing, A and i.

l =rnin(t15)

where i is defined as a relationship between the turbulent kinetic energy and the

Brunt-Vaisaiia frequency, N2, after Hassid and Galperin (1983).

i =O.53ii

where N2 is the Brunt-Vaisalia frequency, which is a relationship between the

potential temperature gradient in the vertical direction, gravity, g, and a reference

potential temperauture, 9

N2 =
g dO,pj,jç

O dz

21
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2.1.2 LES

An LES model is used to investigate further the smaller scale structure of

slope flows. The LES model is a modified version of that described in Skyllingstad

et al (2003). This model is based on the equations of Deardorff (1980) with a

subgrid turbulence closure provided by the filtered structure-function approach of

Ducros et al.(1996).

The model domain, shown in figure 2.2, is rotated so that the coordinates

are terrain-following. Boundary conditions in the cross slope direction are

periodic. A closed boundary condition is applied in the upsiope direction, and an

open boundary condition is applied in the down-slope direction using a simple

radiative scheme following Durran (1999). For the top boundary condition a wave

absorbing layer is applied following Klemp and Lilly (1978). Slope-normal

velocities at the model top are set using the area-averaged down-slope outflow

velocity to allow for conservation of mass.

The domain size is 7680 m long, 150 m wide and 37.5 m deep. The grid

spacing is 3.0 m and there are 2560, 200, and 50 points in the down-slope, cross

slope and normal directions respectively. Constant cooling rates of 30 W/m2 are

imposed at the bottom boundary surface to drive the flow. The model is initialized

at rest with an isothermal atmosphere and allowed to come to steady state.
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Figure 2.2: Three dimensional view of LES model domain.
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2.2 Comparison between ARPS and LES results

Cold air drainage simulations were run with the ARPS and LES model.

The model runs are described in detail in section 2.1.1, and an X-Z cross section of

the ARPS domain is shown in figure 2.3. The LES model runs are described in

detail in section 2.1.2. The slope angle, a is 14 degrees. Surface fluxes are applied

uniformly along the slope at 30 W/m2 of cooling to drive the flow. Both models

are initialized at rest, with an isothermal atmosphere, and allowed to run until the

flow comes to steady state.

''3
I,

II

1

z a14
I I I I I I I I I

-16 -12 -8 -4 0 4 8

Horizontal Distance (km)
x

12 16

Figure 2.3: X-Z cross section of ARPS model domain for a = 14 degrees.

Results of the simulations reveal some differences between the two models.

This is evident is the velocity profiles 5.9 km down the slope, figure 2.4. Also
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shown in this plot are the vertical grid points used in the LBS and ARPS model.

The LBS model produces a jet that is lower and greater in magnitude than that of

the ARPS model. In this figure it can also be seen that the LBS model also cools

more near the surface than the ARPS model, as indicated by the plot of potential

temperature deficit versus height on the right. Potential temperature deficit is

defined as the temperature of the ambient air minus the temperature of the air in the

katabatic flow, at the same level. Part of this could also be due to the first grid

point in the ARPS model being 5 m above the surface, significantly higher than that

of the LBS model.

I I

I I

II

0 2 4

Downslope Velocity (m/s)

100- --

80

-C

::

0 2 4

Potential Temperature Deficit (K)

Figures 2.4: Velocity profile (left) and potential temperature deficit profile (right)
and of LES (- -) and ARPS (-) model at a location 5.9 km down-slope. Also shown

are the vertical grid points for the LES (+) and the ARPS (x) model.

Katabatic flows are driven by buoyancy forcing, and retarded by advection,

vertical mixing, and drag. The relative magnitude of the individual terms in this

three-way momentum balance varies with height. The mean momentum equation

in the down-slope direction may be written as in Mahrt (1982).

au au au . 0 g a(Oh) a(u'w')+u+w=slna g--cosa--
t as dn 00 00 ds an

I II IH IV V
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Where the pressure gradient term has been rewritten so that

_!_ = cosa-- a(eh)
p0ax Co a

0o is a reference potential temperature, and the average potential temperature is

defined as

-
O=JOdz

h0

In the momentum equation we have neglected the coriolis term, and rewritten the

pressure term by assuming hydrostatic balance in the slope-normal direction. Also,

using K-theory, we can express the turbulent flux divergence as

a auu w
an an an

Term I in the momentum equation is time rate of change of momentum. All

flows in the present study are stationary, that is, they have achieved steady state, so

the storage term will be neglected. Term II is the sum of the down-slope and slope-

normal advection terms. This term represents the horizontal advection of lower

momentum from up-slope. Term III is the katabatic acceleration or the buoyancy

term. This term is the primary driving force for the flow. The thermal wind, term

IV, represents a retarding factor due the down-slope increase in stability, and is

much smaller than the buoyancy term for the flows in this study. Term V

represents the turbulent flux divergence. This term acts to retard the flow by

mixing. The surface drag is included in this term as a boundary condition.



Setting the storage term to zero, using K-theory and rearranging, we can

rewrite the down-slope momentum equation as
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Figure 2.5: Momentum budget for LES (left) and ARPS (right) model at a
location 5.9 km down-slope.

A comparison of the momentum budgets 5.9 km down-slope as a function

of height of the LES and ARPS model is shown in figure 2.5. There is good

agreement between the two momentum budgets. Near the surface, the buoyancy

force, I, is large in magnitude, and is driving the flow downhill, while vertical

mixing and drag, H, acts to slow down the flow. Near the surface, the buoyancy
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term is greater in magnitude in the LBS model than in the ARPS model, due to

cooler near surface temperatures in the LES model. While drag is the dominant

retarding mechanism near the surface, away from the slope, advection, term Ill, of

becomes more important. In the LBS momentum budget, advection becomes more

important than mixing and drag at around 10 m, near the height of the jet. In the

ARPS model advection becomes more important than mixing and drag at 25 m, just

above the height of the jet. Also, the mixing and drag term is larger in the ARPS

model than the LBS from the jet height up.

In this case, the momentum equation represents a three-way balance

between advection, buoyancy, and mixing. As here, when the thermal wind,

coriolis, and storage term are small relative to the buoyancy term in the momentum

budget, the flow can be classified as a shooting flow, according to Mahrt (1982).

Turbulence is the critical factor in determining the exchange of heat and

momentum between the surface and the ambient air in katabatic flows. The

turbulent kinetic energy as a function of height at a point 5.9 km down slope is

shown in figure 2.6. Qualitatively, the agreement between the two is very good. A

minimum of TKE near the jet height is picked up by both the ARPS and LBS

model. This minimum of TKE with respect to height is due to the absence of local

velocity gradients in the flow at the jet height. Since velocity gradients produce

TKE thru shear, we find lower TKE in areas of lower velocity gradients. Both

TKE profiles have the same structure, but the ARPS model TKE is higher in

magnitude that the LBS model. Since the models have similar velocity profiles,

this indicates that the subgrid parameterization in ARPS is overestimating the

production of TKE.
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Figure 2.6: TKE as a function of height for LES and ARPS model at a location
5.9km down-slope.

This can be verified by examining the TKE budgets of both models. The

TKE budgets for both models agree well with each other, and are presented as

function of height 5.9 km down-slope is shown in figure 2.7. The TKE equation is

written below.

a ' 'au,
{uje) aT7J

_+U.__=2_I u.O. --_____
a3 ar p dx

IT III IV V VI VII
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Where the shear production term, term IV, is parameterized as follows.

au
U W Km

on

And the pressure and turbulent transport terms, terms V and VI, are parameterized

as in Deardorff (1980).
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Figure 2.7: TKE budget as a function of height for the LES and ARPS model at
a location 5.9 km down-slope.
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In stably stratified flows, the primary source of TKE is the shear production

term (IV). Velocity gradients are highest near the surface and just above and below

the jet height, hence shear production is highest in these areas. Likewise, because

TKE production by shear tends to generate relatively small eddies, dissipation,

(VII), is also highest in these areas. Since velocity gradients in the slope-normal

direction generate turbulence through shear production, we find that at the jet

height, where velocity gradients are zero, there is a local minimum of shear

production of TKE. The overproduction of TKE by shear in the ARPS model,

could be due to a number of factors, including the turbulent length scale

parameterization, and grid spacing used in the model. Due to the stably stratified

nature of katabatic flows, there is no buoyant generation of TKE in katabatic flow,

and the stable stratification acts to suppress the turbulence. The buoyancy term

(HI), is always negative, and is greatest in magnitude where stratification is highest,

near the surface. The final term in the TKE budget is the advection and mixing

term. This term includes the advection of TKE by the mean flow (II), and turbulent

and pressure transport of TKE (V and VI). This term acts to redistribute turbulent

energy from areas of high TKE to areas of low TKE. In particular, this term is

positive near the jet height and becomes strongly negative just below the jet height.

So this term acts to transport TKE from areas of high TKE (where it is produced),

to areas of low TKE (near the height of the jet).
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2.3 The effect of surface heat fluxes

Simulations were run using the ARPS model to determine the effect of surface

heat fluxes on drainage flows. The model runs are described in detail in section

2.1.1, and an X-Z cross section of the domain is shown in figure 2.8. The slope

angle, a was 6.1 degrees. Surface fluxes were applied uniformly along the slope at

20, 30,40, 50, 60, 70, 80, 90 and 100 W1m2 of cooling to drive the flow. The

model was initialized at rest, with an isothermal atmosphere, and allowed to run for

one hour of model time, by which time the flow had come to steady state.

4
-6 -4 -2 0 2 4 6 8

Horizontal Distance (1cm)

Figure 2.8: X-Z cross section of ARPS modeling domain for surface heat flux
and ambient stratification study runs.
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Results of the simulations show that surface cooling strongly affects both

velocity and temperature deficit fields. As the surface cooling is increased, the

flow deepens and the down-slope velocity increases in magnitude. Figure 2.9

shows an X-Z cross section of the down-slope potential temperature evolution of

the flow for surface cooling of 20, 50 and 100 W1m2. Figure 2.10 shows an X-Z

cross section of down-slope velocity contours of the flow for surface cooling of 20,

50 and 100 W/m2. Figure 2.11 shows velocity profiles for these runs as a function

of height at a location 6.5 km down-slope, near the foot of the slope. The height of

the jet, n,(, does not increase with increase surface heat fluxes, but the magnitude

of the down-slope velocity jet increases from 3.6 mIs for the 20 W1m2 case, to 6.4

rn/s for the 100 W1m2 case. The buoyancy deficit profile 6.5 km down the slope is

shown in figure 2.12. As surface cooling increases from 20 W/m2 to 100 W1m2, the

near surface buoyancy deficit increases in magnitude from 4 K to 12 K.

A look at the momentum budget as surface fluxes increase reveals that

buoyancy, advection, and mixing and drag terms in the momentum budget all

behave in a similar manner. This can be seen in figure 2.13, a plot of these terms

summed up over the first 50 m from the slope surface to obtain the relative

contribution of each term to the momentum budget of the flow as a function of

down-slope distance. Hereafter, the vertically integrated momentum budget will be

referred to as the total momentum budget, and unless otherwise stated, will

represent a summation in the vertical direction from the surface to 50 m from the

surface.
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Figure 2.9: X-Z cross section of the down-slope evolution of potential
temperature fields for Qo =20 (top), 50 (middle), and 100 W/m2 (bottom).
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Figure 2.10: X-Z cross section of the down-slope evolution of downslope
velocity fields for Qo =20 (top), 50 (middle), and 100 W/m2 (bottom).



80

60

E

-c
0)
; 40
I

20

0

0 1 2 3 4 5 6 7

Downslope Velocity (m/s)

36

Figure 2.11: Velocity profiles as a function of height for surface heat flux runs at
6.5 km down-slope.
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Figure 2.12: Buoyancy deficit profiles as a function of height for surface heat
flux runs at 6.5 km down-slope.
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Figure 2.13: Buoyancy (top), advection (middle), and mixing and drag

(bottom) terms in the vertically integrated momentum budget as a function of

down-slope distance for surface heat flux runs.
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More insight into the effect of surface heat fluxes on the momentum budget

of slope flows is gained by looking at the buoyancy normalized momentum budget.

Here, the momentum budget is normalized by the bouyancy term, to create a

nondimensional mometum budget.

a aU 11 au au'
I I

as an)

Where the buoyancy term, B, is defined as follows.

=
g a(eh)

B sina cosa
O a.

This nondimensional momentum budget represents a balance between mixing and

drag, the first term on the right hand side of the nondimensional momentum

equation, and advection, the second term on the right hand side of the

nondimensional momentum equation.

A plot of the buoyancy normalized total momentum budget is presented in

figure 2.14. In the top two plots, total advection and mixing and drag for all runs

have been normalized by the total buoyancy term, while the lower plot shows the

total advection to mixing and drag ratio for all runs. As can be seen in this figure,

the momentum budgets of the slope flows exhibit a self-similar behavior with

regards to surface heat fluxes. That is, the advection to buoyancy (top), mixing and

drag to buoyancy (middle), and advection to mixing and drag ratios (bottom) are all

constant regardless of the amount of surface cooling that is applied. The flow is
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partitioning its buoyant energy in a similar manner regardless of the magnitude of

surface heat fluxes. It should also be noted that advection is less in magnitude than

mixing and drag near the top of the slope, while downslope, advection is greater in

magnitude than mixing and drag. So the relative magnitude of the terms in the

normalized momentum budget vary with downslope distance.
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Figure 2.14: Buoyancy normalixed momentum budget (top two) and advection to
mixing ratio as a function of down-slope distance for surface cooling runs.
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Discussions of flow strength are better done in terms of bulk parameters

rather than vertical profiles of velocity and temperature. Thus we define a velocity

strength scale, UH, and a buoyancy strength scale, A'H', based on velocity and

potential temperature deficit profiles after Manins and Sawford (1979) and Doran

and Horst (1983).

UH =Judz

A'H=f-dz
00

where u is down-slope velocity, z is in the vertical direction, and the buoyancy

deficit, d, is defined as the difference between the potential temperature of the

katabatic flow, and the potential temperature of the ambient air at the same height

but away from the surface of the slope.

d = °katabaric 0ambient

In practice these integrals extend from the slope surface up to a point where the

velocity and potential temperature deficit become arbitrarily close to zero.

Velocity and buoyancy depth scales increase with surface heat fluxes since

down-slope velocity and potential temperature deficits also grow with increasing

surface fluxes. Plots of buoyancy and velocity strength scales versus down-slope

distance as a function of surface heat fluxes are shown in figures 2.15 and 2.16

respectively.
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It can be seen from these figures that the buoyancy and velocity strength

scales are significantly affected by surface heat fluxes. Parameterizations of the

strength scales have been developed to account for surface heat fluxes. These

parameterizations have the form

UH = C(Q0)stm

= Cb(QO) S

Where C, and Gb are constants that depends on various physical parameters of the

flow and s is the along slope distance. For the buoyancy strength scale, n = 1.4,

while for the velocity strength scale, m = 2.2. For the cases of constant slope angle,

Gb and Cu, the coefficients for buoyancy and velocity strength scales, depend on

surface heating in a nearly linear fashion. Plots of the coefficient of velocity

strength scale and buoyancy strength scales are shown in figures 2.17 and 2.18,

respectively. A table of the tabulated variation of velocity and buoyancy strength

scale coefficients with surface heat fluxes is listed below.

For surface heat fluxes, Qo, ranging from 20 to 100 W/m2,

parametenzations for velocity and buoyancy strength scale coefficients can be

made as a linear function of surface heat fluxes using the following relations

= 2.7 *10-5 + 3.375*107 *(Q0 20)

Cb =2.8*104+1.525*105*(Q0_20)



N
Cl)

N
400

a)

300
cc,

200

100

C 0
0
>_
:3
0

CD

Qo (W/m2) Cb *104 (m°2s') C *10-5 (m°8s')

20 2.8 2.6

30 4.4 3.0

40 6.0 3.5

50 7.6 3.8

60 9.2 4.1

70 11.0 4.5

80 12.0 4.8

90 14.0 5.0

100 15.0 5.3
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scale coefficients with surface heat fluxes

Qo Increasing
r

/
/

0 1000 2000 3000 4000 5000 6000

Along Slope Distance (m)

42

Figure 2.15: Buoyancy strength scale versus downslope distance for surface heat
flux runs.
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Figure 2.16: Velocity strength scale versus downslope distance for surface heat
flux runs.
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Figure 2.18: The coefficient of buoyancy strength scale versus surface heat flux
for the model runs (-) and the parameterization (- -).

Further insight into the flow can be made by examining the total kinetic

energy budget. Here the column kinetic energy is defined by

KE= fU2dz

where U is the down-slope velocity and h, is the height where the down-slope

velocity becomes arbitrarily close to zero. The column buoyant potential energy is

defined by

BPE= Jghdz
00
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Where hb is the height where the buoyancy deficit becomes arbitrarily close to zero,

h is average height of the flow, and the buoyancy deficit, d, is defined as the

difference in temperature of the katabatic flow and the ambient air, at the same

level.

d = °katabatic °ambient

A plot of buoyant potential energy and kinetic energy versus down-slope

distance for the surface heat flux runs is presented in figure 2.19. The buoyant

potential energy has a maximum where buoyancy deficit and height products are

highest, somewhere in the upper portion of the slope. Large buoyant potential

energies are found at this location since the flow is being replenished with air that

has cooled significantly over the upper portion of the slope through contact with the

slope surface. Thus, as surface cooling increases, buoyant potential energies

increase. Furthermore, larger buoyant potential energies can support larger kinetic

energies, since dissipation of energy by mixing and drag also increases with surface

cooling. Hence, the flows with the largest kinetic energies are those that are driven

by the largest amount of surface cooling.

A measure of how efficiently a katabatic flow converts buoyant potential

energy into kinetic energy can be defined as the katabatic efficiency, the ratio of

change in kinetic energy to the change in buoyant potential energy.

AKE

ABPE
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Where EKE is calculated from the top of the slope to the bottom, and zBPE

is calculated as the maximum buoyant potential energy over the slope minus the

buoyant potential energy at the bottom of the slope.

A plot of katabatic efficiency versus surface heat fluxes is presented in

figure 2.20. As can be seen, the katabatic efficiency is only a very weak function

of surface heat fluxes, consistent with the self-similar behavior of the momentum

budgets with respect to surface heat fluxes.
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Figure 2.19: Buoyant potential energy (top) and kinetic energy (bottom) versus
down-slope distance for surface heat flux runs.
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2.4 The effect of slope angle

Simulations were run using the ARPS model to determine the effect of slope

angle on drainage flow characteristics. The model runs are described in detail in

section 2.1.1, and an X-Z cross section of the domain for different slope angles is

shown in figure 2.21. The slope angle, a was varied from 4 to 16 degrees, in

increments of 2 degrees. Surface fluxes were applied uniformly along the slope at

30 W1m2 of cooling to drive the flow. The model was initialized at rest, with an

isothermal atmosphere, and allowed to run for one hour of model time, by which

time the flow had come to steady state.

2

z
I

-8 -6 -4 -2 0 2 4 6

Horizontal Distance (km)

Figure 2.21: X-Z cross section of ARPS model
domain for slope angle study runs.
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Results of the simulations show that slope angle affects both

velocity fields and temperature deficit fields. As slope angle increases the down-

slope velocity increases, while the maximum temperature deficit decreases in

magnitude. Figure 2.22 shows an X-Z cross section of the down-slope velocity

evolution of the flow for slope angles of 4, 10 and 16 degrees. Figure 2.23 shows

an X-Z cross section of the potential temperature evolution of the flow for slope

angles of 4, 10 and 16 degrees. Figure 2.24 shows velocity profiles as a function of

slope angle at a point 5 km from the top, near the foot of the slope. The height of

the jet, nmax, does not increase with increased slope angle, but the magnitude of the

down-slope velocity jet increases from 3 mIs for the 4 degree slope angle case, to

4.6 mIs for the 16 degrees case. The buoyancy deficit profile 5 km down the slope

as a function of slope angle is shown in figure 2.25. The buoyancy deficit

decreases in magnitude from 8 K in the 4 degree slope angle case, to 2 K for the 16

degrees case. The decrease in buoyancy deficit with slope angle is partially due to

the surface boundary condition. That is, the flow is required to cool by 30 W/m2 at

the surface, regardless of flow velocity. With decreasing slope angle, down-slope

velocities decrease as well, so the flow must cool more to convect away the 30

W/m2 imposed at the surface. It is probably not realistic to assume that a simple

slope with high slope angle will cool just as much as simple slope with a low slope

angle since there are a number of factors that would affect the down-slope variation

of surface heat fluxes in real slope flows. As an example, since convective heat

loss is a function of flow speed, and flow speed depends on slope angle, it follows

that sensible heat fluxes from the surface will be a function of slope angle, and

surface heat fluxes from a shallow slope should not be equal to those of a steep

slope. Also, since convective heat loss from a surface is proportional to the
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Figure 2.23: X-Z cross section of the down-slope evolution of potential
temperature fields for a = 4, 10, and 16 degrees.
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Figure 2.24: Velocity profiles as a function of height for slope angle runs at 5 km
down-slope.
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Figure 2.25: Buoyancy deficit profiles as a function of height for slope angle runs
at 5 km down-slope.
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temperature difference between the surface and the air just above the surface, and

this temperature difference decreases with down-slope distance, it follows that

assuming a surface heat flux constant with down-slope distance is not a realistic

approximation.

The along slope momentum budget 5 km down the slope as a function of

slope angle in shown in figure 2.26. The advection term increases greatly in

magnitude with increasing slope angle, indicating that, at higher levels, horizontal

advection of lower momentum from up slope is becoming more important.

Entrainment of overlying ambient air into the flow increases as slope angle

increases as well, and as entrainment increases so does the depth of the flow, as can

be seen in figure 2.24.
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Figure 2.26: Along slope momentum budget 5 km down slope as a function of
slope angle. The arrow points in the direction of increasing slope angle.

A plot of velocity strength scales versus down-slope distance for different

slope angles is shown in figures 2.27. Also, a plot of buoyancy strength scales
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versus down-slope distance for different slope angles is shown in figures 2.28. The

buoyancy strength scale actually decreases with increasing slope angle due to

higher near surface velocities leading to smaller potential temperature deficits with

increasing slope angle. This is partly due to the surface thermodynamic boundary

condition that 30 W/m2 be applied at the surface regardless of slope angle. In

actuality, surface cooling is probably a function of slope angle.

In

24000

- 20000

16000

12000

8000

4000
>-

7; ()

- 0
ci)

>

N
C,,

N
E 120

- 100
0
0
(1) 80

60

40

20
>.-

0
£ 1)

2000 4000

Along Slope Distance (m)

Figure 2.27: Velocity strength scale versus down-slope
distance for slope angle runs.
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Figure 2.28: Buoyancy strength scale versus down-slope
distance for slope angle runs.
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It can be seen from figures 2.27 and 2.27 that velocity and buoyancy

strength scales both depend on slope angle. Parameterizations of these scale

parameters have been developed to account for slope angle. These

parameterizations have the form

UN =C(a)stm

Cb(a) s'

Where C and Cb are constants that depend on various physical parameters of the

flow, and s is the along slope distance. For the buoyancy strength scale, n = 1.4,

while for the velocity strength scale m = 2.2. For the cases of constant surface heat

fluxes, Cb and C, the coefficients for buoyancy and velocity strength scales, can be

shown to be a function of slope angle. Plots of the coefficient of velocity strength

scale and buoyancy strength scales are shown in figures 2.29 and 2.30,

respectively. A table of the tabulated variation of velocity and buoyancy strength

scale coefficients with slope angle is presented below.
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a (degrees) Cb * 10-4 (m°2 s') C * 10-5 (mOS s1)

4 5.02 1.71

6 4.53 3.04

8 4.31 4.39

10 3.83 6.00

12 3.61 7.87

14 3.03 9.62

16 2.96 12.0

Table 2.2: The variation of velocity and buoyancy strength scale coefficients
with slope angle

In the range of 4 to 16 degrees, predictions for velocity and buoyancy strength scale

coefficients can be made as a function of the slope angle, a, using the following

relations

= 1.71*105 +5.0*104 *(sjna_00698)

Gb = 5.02 * i0 - 1.0*103 * (sin a 0.0698)
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Figure 2.29: The coefficient of velocity strength scale versus sine of slope angle
for the model runs (-) and the parameterization (- -).
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Figure 2.30: The coefficient of buoyancy strength scale versus sine of slope angle
for the model runs (-) and the parameterization (- -).
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A plot of buoyant potential energy and kinetic energy versus down-slope

distance for the slope angle runs is presented in figure 2.31. As slope angle

increases, mountain height increases, and buoyant potential energies increase due to

the increase in mountain height. Larger kinetic energies are derived from larger

buoyant potential energies, since dissipation of energy by mixing and drag also

increases with slope angle, so the highest kinetic energies are found on slopes that

have higher buoyant potential energies, i.e., the highest slopes.

A plot of the variation of katabatic efficiency with sine of slope angle is

presented in figure 2.32. As can be seen, the katabatic efficiency goes up with

increasing slope angle. When slope angle increases, not only is there an increase in

kinetic energy due to a larger input of buoyant potential energy, but of that

available buoyant potential energy, a higher percentage is converted into kinetic

energy. One might be tempted to explain this using the argument that in katabatic

flows buoyant potential energy is converted into kinetic energy over a slope whose

length determines the amount of energy conversion that takes place. Katabatic

efficiency is a function of slope length in that, for a fixed horizontal distance,

steeper slopes have longer slope lengths. Since conversion of kinetic energy from

buoyant potential energy requires a finite amount of slope length, more energy

conversion can be expected to take place over longer slopes. However, when

katabatic efficiency is computed for a fixed slope length, instead of horizontal

distance, the plot of katabatic efficiency versus slope angle remains relatively

unchanged. So the effect of changing slope distance is not the main reason behind

the increase in katabatic efficiency with increasing slope angle.
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2.5 The effect of ambient stratification

Simulations were run using the ARPS model to determine the effect of stable

ambient stratification on drainage flow characteristics. The model runs are

described in detail in section 2.1.1, and a X-Z cross section of the domain is shown

in figure 2.8. The slope angle, a, was set to 6.1 degrees. The ambient

stratification, F, was set to 0,0.5, 1, 1.5,2,2.5,3,4,5, and 6 K/km. where Fis

defined as the change in potential temperature with height.

dz

Surface fluxes were applied uniformly along the slope at 30 W/m2 of cooling to

drive the flow. The model was initialized at rest, and allowed to run for one hour

of model time, by which time the flow had come to steady state.

Results of the simulations show that ambient stratification strongly affects

down-slope velocity and potential temperature deficit fields. As ambient

stratification decreases, the flow deepens and the down-slope velocity increases in

magnitude. This can be seen in figure 2.33, which shows an X-Z cross section

contour of down-slope velocity profiles for the neutral, F =2 Kfkm, and F =6

K/km cases. Figure 2.34 shows an X-Z cross section contour of potential

temperature profiles for the neutral, F = 2 K/km, and F = 6 K/km cases, and figure

2.35 shows down-slope velocity profiles as a function of surface fluxes at a point

6.5 km from the top, near the foot of the slope. The magnitude of the down-slope
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velocity jet decreases from 4.3 mIs for the neutral stratification case, to 2.3 rn/s for

the 6 K/km stable stratification case. The buoyancy deficit profile 6.5 km down the

slope is shown in figure 2.36. The buoyancy deficit decreases in magnitude from a

maximum of 5 K in the neutral case, to 3 K for the 6 K/km stable stratification

case. Since entrained ambient air into katabatic flows in very stably stratified

ambient conditions is warmer than that of neutral to slightly stratified conditions,

buoyancy deficits decrease with increasing stable stratification.

The down-slope momentum budget 6.5 km down the slope as a function of

ambient stratification in shown in figure 2.37. The advection term in the

momentum budget in the neutral case is larger in magnitude than it is for the stably

stratified cases. Since katabatic flows in highly stably stratified ambient conditions

grow little by entrainment of overlying air, velocity and buoyancy strength scales

for these flows are smaller than those of katabatic flows in neutral to slightly

ambient conditions. In very stably stratified flows, the ambient air that is entrained

from above can be warm enough to arrest the growth of the depth of the katabatic

flow. This can be seen more clearly in the down-slope velocity fields in figure

2.33, where for the highly stably stratified case, the flow ceases growing in the

down-slope direction, and becomes nearly one dimensional at some point down the

slope.
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Figure 2.33: X-Z cross section contour of down-slope velocity profiles for the
neutral (top), F = 2 K/km (middle), and F = 6 K/km (bottom) cases.
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Figure 2.34: X-Z cross section contour of potential temperature profiles for the
neutral (top), F = 2 K/km (middle), and F = 6 K/km (bottom) cases.
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Figure 2.37: Along slope momentum budget as a function of height for ambient
stratification runs 6.5 km down-slope. The arrow points in the direction of

increasing ambient stratification.

A look at the total momentum budget reveals that buoyancy, advection, and

mixing and drag terms in the momentum budget all decrease as ambient

stratification increases. This can be seen in figure 2.38, a plot of the terms of the

total momentum budget as a function of down-slope distance. At highly stable

ambient stratifications the buoyancy term is asymptotic, consistent with the

conclusion that the flow is no longer growing in the down-slope direction, and the

growth of the katabatic flow by entrainment of overlying ambient air into the flow

becomes less important.
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More insight into the effect of ambient stratification on the momentum

budget of slope flows is presented in figure 2.39, a plot of the buoyancy normalized

total momentum budget and total advection to mixing and ratio for all runs. As can

be seen in this figure, mixing and drag become more important, and advection

becomes less important as ambient stratification is increased. For the highly

stratified runs, the momentum equation down the slope is reduced to a two-way

balance between the buoyancy and the mixing and drag terms. These flows can be

classified as equilibrium flows according to Mahrt (1982).

Plots of the buoyancy and velocity strength scales as a function of down-

slope distance for different ambient stratifications, figures 2.40 and 2.41

respectively, more clearly reveal the arrest of the growth of katabatic flows in

highly stably stratified atmospheres. As the stratification increases, the strength

scale increases at a slower rate with down-slope distance, and ceases to grow at all

for the highly stratified cases.

A plot of buoyant potential energy and kinetic energy versus down-slope

distance for the ambient stratification runs is presented in figure 2.42. As ambient

stratification increases, buoyant potential energy decreases due to the entrainment

of warmer, overlying air. Larger kinetic energy is derived from larger buoyant

potential energy, since dissipation of energy by mixing and drag also increases with

ambient stratification. Hence kinetic energy in neutral to slightly stable ambient

conditions is significantly higher than kinetic energy in highly stably stratified

ambient conditions.
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A plot of the variation of katabatic efficiency with ambient stratification is

presented in figure 2.43. As can be seen, the katabatic efficiency is a strong

function of ambient stratification. As ambient stratification increases, less buoyant

potential energy is available to the flow, and of that available buoyant potential

energy, even less is converted in kinetic energy.
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3. Study of Combined Slopes versus Simple Slopes

3.1 Simple versus combined slopes

Simulations were run using the ARPS model to determine the effect of a

change in slope angle on drainage flow characteristics. The model runs are

described in detail in section 2.1.1, and an X-Z cross section of the right half of the

domain is shown in figure 3.1. This figure shows both mountain profiles from the

center of the modeling domain. The slope angle for the simple mountain profile, c

was 6.1 degrees, while the upper and lower slope angles for the combined slope, a2

and a1, where 11 and 1.6 degrees respectively. Also shown on this figure are

locations A, B, C, where the flow will be analyzed. These locations are 2.5, 4.3,

6.9 km down-slope respectively. Thirty W/m2 of cooling was applied uniformly

along the slope to drive the flow. The model was initialized at rest, with a stable

stratification of 1 K/km. and allowed to run for one hour of model time, by which

time the flow had come to steady state.

Figure 3.2 shows the down-slope velocity profiles for the simple and

combined slope at locations A, B, and C. The combined slope, with a steeper

upsiope angle, has a slightly greater down-slope velocity upsiope of the

discontinuity than the simple slope. However, down-slope of the slope

discontinuity the combined flow grows much slower. Meanwhile, the flow on the

simple slope continues to gain speed evenly all along the slope. This can be seen
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more clearly in an X-Z cross section of down-slope velocity contours in figure 3.3.

On the lower portion of the slope, the simple slope flow velocity jet is higher in

magnitude than that of the combined flow, and the velocity profile is slightly

deeper too. At location C, near the foot of the slope, the maximum velocity for the

simple slope flow is roughly 5.2 mIs, while the maximum velocity for the

combined slope flow is roughly 4.0 mIs. Thus, the decrease in slope angle has the

effect of slowing the growth of the katabatic flow.
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Figure 3.1: X-Z cross section of the right half of the ARPS modeling domain for
combined slope study runs, showing simple and combined slope profiles.



120

100

-B0

60
0)

0
I 40

20

120

100

60
0)

61

J 40

20

TI

120

100

'80

60
0)
V
J 40

20

11111

75

01 234567 01 234567 01234567
Downslope Velocity (m/s) Downslope Velocity (m/s) Downslope Velocity (m/s)

Figure 3.2: Velocity profiles of simple (- -) and combined (-) slopes
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Figure 3.4 shows the potential temperature deficit profiles for locations A,

B, C. Along the lower portion of the combined slope, which has a very low slope

angle, the combined flow cools more than the simple flow. At location C, near the

foot of the slope, the potential temperature deficit of the flow near the surface of the

combined slope is 8 K, while that of the foot of the simple slope is 5 K. Near the

foot of the slope the combined slope flow has cooled more, while the simple slope

flow is moving faster. This can be explained by looking back at the down-slope

velocities in figure 3.3. The thermodynamic boundary condition imposed at the

surface requires that the flow convect away 30 W1m2 of heat, regardless of flow

speed. Since the combined slope flow is moving much slower over the lower

portion of the slope than the simple slope flow, the near surface air must cool more

than the faster moving simple slope flow. It is not known whether or not the

prescribed bottom thermodynamic boundary condition is representative of actual



katabatic flows. It is assumed, however, that this is probably not the case, as

discussed in section 2.4.

50

40

E'- 30
-c
920
8)

10

50

40

E'- 30

920
8)

I
10

0 2000 4000 6000

Downslope Distance (m)

I I I

- '.o

0 2000 4000 6000

Downslope Distance (m)

76

Figure 3.3: X-Z cross section of the down-slope evolution of velocity fields for
combined (top) and simple (bottom) slope flows.
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Figure 3.4: Potential temperature deficit profiles of simple (- -)
and combined (-) slopes at locations A (left), B (middle) , and C (right)..
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In figure 3.5, the magnitude of TKE versus height above slope is shown for

locations A, B, C. In figure 3.6, total TKE versus down-slope distance is shown for

the combined and simple slopes. Hereafter, total IKE is defined as the column

summed TKE from the surface to 200 m from the surface. Whereas the TKE for

simple slope grows evenly with down-slope distance, the TKE for the combined

slope flow is significantly reduced after the slope discontinuity. In the section of

slope down-slope from the slope discontinuity, there is less TKE in the combined

slope flow than the simple slope flow. With less IKE comes less mixing in the

vertical and hence the combined slope flow is more confined to the surface, while

the simple slope flow is deeper.
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Figure 3.5: TKE profiles as a function of height for simple (- -)
and combined (-) slope flows at locations A (left), B (middle), C (right).

Plots of the velocity and buoyancy strength scales as a function of down-

slope distance are show for the simple and combined cases in figure 3.7 and figure

3.8, respectively. As expected, the velocity strength scales of the flow scale with

the slope angle in a predictable manner. That is, higher slope angle leads to a faster

increase in velocity strength scale. On the other hand, higher slope angles lead to a
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slower increase in buoyancy strength scales, as can be seen in figure 3.8. Upslope

of the discontinuity, the simple slope buoyancy strength scale grows faster than that

of the combined slope, since the simple slope has a smaller slope angle here.

Down-slope of the discontinuity, the simple slope buoyancy strength scale grows

slower than that of the combined slope since the simple slope flow is partitioning

more of its energy into kinetic energy to produce a faster moving flow than that of

the combined slope.
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Figure 3.6: Total turbulent kinetic energy as a function of down-slope distance
for combined (-) and simple (- -) slopes.
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Figure 3.7: Velocity strength profiles as a function of down-slope
distance for simple (- -) and combined (-) slope flows.
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Figure 3.8: Buoyancy strength profiles as a function of down-slope
distance for simple C- -) and combined (-) slope flows.

An interesting aspect of katabatic flows was noted by Manins and Sawford

(1979a), who pointed out that most drainage flows are everywhere supercritical.

That is, no information can be passed upstream, and information about all

disturbances, including slope discontinuities, is swept downstream. Thus the flow

upstream of the slope discontinuity has no knowledge of the flow over the lower

portion of the slope. This explains the hydraulic jump in the flow at the slope

discontinuity that indicates that the flow is adjusting to a new slope angle. The grid

resolution in the model is not sufficient to resolve the hydraulic jump, which would

be smeared out by turbulence anyway. However, the portion of the slope above the

slope discontinuity is easily modeled using the parameterizations for buoyancy and

velocity strength coefficients for the higher slope angle presented in chapter two.

The flow downstream of the slope discontinuities also grows according to

parameterizations developed in chapter two based on the slope angle, but in a way

that is offset due to the upstream portion of higher slope angle. Like Horst and
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Doran (1983), attempts to parameterize the upstream effect on the flow downstream

of the slope discontinuity were met with ambiguity. The result obtained was that

the velocity strength downstream of the slope discontinuity grew at a rate

proportional to its slope angle, but offset by 12 km in the down-slope direction.

That is, the velocity strength scale downstream of the slope discontinuity matched a

parameterization for velocity strength scales for a slope with the same slope angle,

only 12 km longer. The reason for the combined flow to be offset by this distance

is unknown, but is explored further in the next section.

More insight into the physics of the simple and combined flows is gained by

a plot of the total advection to mixing ratio in the total momentum budget as a

function of down-slope distance. This is shown in figure 3.9. Down-slope of the

slope discontinuity, horizontal advection of lower momentum from up-slope by the

combined flow becomes much smaller in magnitude. Thus, down-slope of the

discontinuity, the combined flow is slowed mostly by mixing and drag, and

advction is less important than for the simple flow, producing a shallower flow

than that of the simple slope.

A plot of buoyant potential energy and kinetic energy versus down-slope

distance for the simple and combined flows is presented in figure 3.10. There are

two maximums in the plot of buoyant potential energy versus down-slope distance

for the combined flow, and all along the slope, parcels of the simple flow have

higher buoyant potential energy than that of the combined flow, since the simple

slope is everywhere higher than the combined slope. Increased down-slope kinetic

energies in the simple flow are a direct result of increased buoyant potential

energies. Thus, the simple slope flow has more buoyant potential energy to
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partition into kinetic energy than does the combined flow. The flows have a very

similar katabatic efficiency, 0.24 for the simple slope, and 0.23 for the combined

slope. As was shown earlier, katabatic efficiencies increase with increasing slope

angle, so it follows that the efficiency of a combined slope can be expected to

approach that of a simple slope with slope angle greater than the smaller combined

slope angle, and less than the greater combined slope angle. However, due to the

enhanced region of mixing located just down-slope of the slope discontinuity, the

combined flow has a katabatic efficiency slightly lower than that of the simple

slope
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Figure 3.9: Advection to mixing ratio as a function of down-slope distance for
simple (- -) and combined (-) slope flows.
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3.2 The equivalent slope angle method

Simulations were run using the ARPS model to determine the effect of a

changing upper slope angle on drainage flow characteristics over combined slopes.

In this portion of the study, the effect of changes in terrain profile will be examined

in order to produce some guidelines that will enable us to account for subgrid scale

terrain features in katabatic flow models.

The model runs are described in detail in section 2.1.1, and a X-Z cross

section of the right half of the domain showing mountain profiles is shown in figure

3.11. The lower slope angle for all the mountain profiles, a1, was 5.7 degrees,

while the upper slope angles were set to 5.7, 7.5, 9.2, 11.0, 12.7, and 14.5 degrees.

Also shown on this figure is location A, 2 km down-slope of the change in slope

angle, where the flow will be analyzed. At this point the flow over the combined

slope has fully adjusted to the lower slope angle, and is free from the effects of the

end of the slope. Thirty W/m2 of cooling was applied uniformly along the slope to

drive the flow. The model was initialized at rest, with an isothermal atmosphere,

and allowed to run for one hour of model time, by which time the flow had come to

steady state.

The goal of this portion of the study is to determine if the flow at point A of

the combined slope can be parameterized as a simple slope of different slope angle.

For the equivalent slope angle method, we will equate the flow at point A over the

lower portion of the combined slope with a flow over an equivalent simple slope

with a different slope angle, under the constraint that the equivalent slope has the



same horizontal distance as that of the total combined slope. This is shown

graphically in figure 3.12. In this case, the idea is to tailor predictions of drainage

flows based on the amount of terrain that is resolved by the model, and to develop

an idea of how subgnd scale terrain feature can be accounted for in mesoscale

models of katabatic flows. Relationships between the equivalent slope angle, total

slope angle and combined slope angle ratio will be determined.

Ii

84

Figure 3.11: X-Z cross section of the right half of the ARPS modeling domain for
upper slope angle combined slope study runs, and location A, where the flows will

be compared.
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Figure 3.12: Graphical representation of equivalent slope angle method.

85

A plot of the X-Z velocity cross section contours for a2 = 9.2, 14.5, and 5.7

(simple slope) degrees is shown in figure 3.13. The slope discontinuity is located 6

km down-slope, and is readily apparent in the down-slope velocity contours.

Figure 3.14 shows the down-slope evolution of velocity strength scales for the

different cases. Over the portion of the lower slope where the flow is free from the

effects of the discontinuity and the foot of the slope (near 8 km down-slope,

location A), the velocity strength scales for all the flows grow at the same rate, that

is, at the rate of growth for a flow with slope angle equal to a,. However, since the

flows with greater upper slope angle generate higher velocity strength scales over

the upper portion of the slope, over the lower portion of the combined slope the

combined slope velocity strength scales are larger in magnitude than those of a

simple slope.
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Figure 3.13: X-Z cross section of the down-slope evolution of velocity fields for
combined slopes and simple slope flows. a2 = 9.2 for the top plot, u = 14.5 for the

middle plot, and a2 = a1 = 5.7 for the bottom plot. The change in slope angle is
located at 6 km.
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Figure 3.14: Down-slope evolution of velocity strength scales for the upper slope
angle cases.

Results of the equivalent slope angle method are shown in figure 3.15, a

plot of the equivalent slope angle versus combined slope angle ratio, ct2/a1. For aj

= a2, the slope is reduced to a simple one, and the equivalent slope angle is equal

to the slope angle for the simple case, 5.74 degrees. As the ratio of upper slope

angle to lower slope angle increases, the equivalent slope angle increases since

more buoyant potential energy is needed to generate higher kinetic energy. Also

plotted in figure 3.15 is a line that indicates an equivalent slope angle equal to the

total slope angle. The total slope angle, aT, is defined at point A as the angle that

the combined slope would have it were a simple slope, with the same horizontal

distance, i + 12, and height, hpeak hA, as the combined slope, as shown in the left

hand side of figure 3.12. Equivalent slope angle, cq is determined by using

parameterizations of the coefficient of velocity strength scale as a function of slope

angle developed in chapter two. The horizontal distance of the equivalent slope is

constrained to be that of the combined slope from peak of the slope to point A.
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For all combined slopes, the equivalent slope angle is smaller than the total

combined slope angle. For all upper slope angles, combined slope flows have

velocity strengths less in magnitude than simple slopes with a slope angle equal to

the above defined total slope angle. Furthermore, as the combined slope angle ratio

increases, the magnitude of the difference between combined slope velocity

strengths and total slope angle velocity strengths increases as well.
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Figure 3.15: Equivalent slope angle (solid) versus combined slope angle ratio for
the equivalent slope angle method. Also shown for comparison is the line where

equivalent slope angle is equal to the total slope angle (dashed).

This phenomena is probably due to a combination of four factors. First,

velocity strength scales grow faster over steeper than over less steep slopes.

Second, steeper slopes convert buoyant potential energy into kinetic energy more
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efficiently than gentler slopes. Third, slope length depends on slope angle, and

velocity strength scales depend on both slope angle and slope length. And finally,

there are finite mixing effects that occur in the vicinity of the slope discontinuity

that significantly reduce the velocity strength scales of the combined flows.

The first two factors have been explored in chapter 2. The third factor, the

increase of slope length with increasing slope angle for constrained horizontal

distance, is discussed in section 2.4 and is small in magnitude.

Insight into the fourth factor is presented in figure 3.16, a plot of the total

TKE as a function of down-slope distance. It can be seen that for all combined

slope cases the TKE between the slope discontinuity (6000 m) and point A (8000

m) is significantly enhanced over that of the simple slope, indicating an increase in

mixing which would tend to slow the flow down. In this section of the slope, the

IKE is larger for larger combined slope angle ratios as well.

Further evidence is presented in figure 3.17, a plot of buoyancy, advection,

and mixing and drag terms in the total momentum budget as a function of down-

slope distance. In the transition part of the slope, between the slope discontinuity

(6000 m) and point A (8000 m), mixing and drag in the combined slope flows are

significantly enhanced relative to the that of simple slope flows, while the driving

force behind the flow, the buoyancy term, relaxes to that which would be found

over simple slopes, in a much shorter distance. This figure also shows that, in the

above mentioned section of slope, mixing and drag is higher for higher combined

slope angle ratio, whereas the magnitude of the bouyancy term is relatively

constant for all combined slope angle ratios.
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Thus, the combined flow cannot be simply equated as a combination of two

simple slope flows, since the transition portion of the flow constitutes a period of

enhanced mixing and drag that cannot be easily predicted. In conclusion, the

parameterization of subgrid terrain features has been shown to be a difficult

problem. In the case that the differences between actual terrain and the model

resolved terrain are known, one can make adjustments to model predicted drainage

flows to account for unresolved slope angle changes. However, the magnitude of

those adjustments are not well known due to the effects of the increase in mixing

that occurs in the turbulent hydraulic jump near the slope angle change. As the

difference between the upper and lower slope angle increases, mixing increases in

the turbulent hydraulic jump near the slope angle. Qualitatively, it is

straightforward to apply results obtained through the sensitivity study of the effect

of slope angle on simple slope flows to predictions for combined katabatic flow

parameters. However, one must be careful to take into account the ratio of

combined slope angles, and the lengths of the slopes, in determining how much

katabatic flows will be decreased due to the presence of subgrid scale terrain

features.
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Figure 3.16: Total turbulent kinetic energy as a function of down-slope distance
for upper slope angle runs.
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4. Conclusions

A modeling study of katabatic flows has been performed. The objectives of

this study included a comparison between a large eddy simulation and a mesoscale

model of katabatic flows, and investigations into the effect of surface heat fluxes,

ambient stratification, and slope angle on katabatic flows. An examination of the

difference between katabatic flows over simple slopes versus those over combined

slopes was performed, with further investigation of the effect of changing upper

slope angle on katabatic flows down-slope of the slope angle change. Qualitative

methods in which subgrid scale terrain features may be accounted for in models of

katabatic flows in areas of inadequate terrain resolution were suggested. Finally,

buoyant potential energy and katabatic flow efficiency parameters were introduced

in order to study the energy conversion characteristics of slope flows.

The first objective of this study was to make a comparison between a large

eddy simulation and a mesocale model of katabatic flows. The models were in

qualitatively good agreement on a number of flow parameters. In particular, down-

slope flow velocity profiles matched well, but a discrepancy between the potential

temperature deficit profiles was noted, with the LES model cooling more near the

surface than the ARPS model. An examination of the momentum budget revealed

further insight to the physics of the flow. It was noted that ARPS produced

relatively higher rates of horizontal advection away from the surface than did the

LES model, but otherwise the momentum budgets were very similar. Finally, a

comparison of TKE budgets provided a way to verify the subgrid model of ARPS.
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Although qualitatively in agreement with each other, ARPS had relatively higher

amounts of TKE, which was due to an overproduction by shear.

Secondly, the effect of surface heat fluxes on katabatic flows was examined.

It was determined that down-slope velocity and potential temperature are strongly

dependent on surface heat fluxes. Momentum budgets of the flows revealed the

self similar behavior of katabatic flows with respect to surface heat fluxes. That is,

increased surface cooling leads to increases in the buoyancy force, mixing and

drag, and advection. Furthermore, total advection to mixing ratios for the flows

were nearly identical, which explains the very weak dependence of katabatic

efficiency on surface heat fluxes, with larger inputs of buoyant potential energies

(from increased surface cooling) leading to larger kinetic energies on similar scales.

In addition, parameterizations of velocity and buoyancy strength scales as a

function of surface heat fluxes were developed.

The third objective of this study was to look at the effect of ambient stable

stratification on katabatic flows. It was found that velocity and potential

temperature deficit fields are strongly affected by stable ambient stratification.

Entrainment of ambient air into the flow was found to be strongly dependent on

ambient stratification, and for the very stable case, mixing and drag was found to

be more important than advection. The velocity and potential temperature fields of

the flows revealed that at high ambient stratifications, katabatic flows can become

one-dimensional and cease growing in the down-slope direction. In this case, the

momentum budget of the flows becomes a balance between the buoyancy force and

mixing and drag, with entrainment of ambient air into flow becoming small.
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Furthermore, as stable stratification increases, buoyant potential energy goes down,

leading to less kinetic energy, as well as less efficient energy conversion.

Next, the effect of slope angle on katabatic flows was examined. Steeper

slope angles create stronger, deeper velocity profiles, and larger velocity strength

scales. At the same time, potential temperature deficits decrease since surface

cooling was held constant. Although this is probably not a realistic assumption, in

the absence of observational data to confirm or refute this, use of this simplistic

thermodynamic surface condition is justified. It is expected that sensible heat loss

from the surface would increase as surface velocities increase, but as flow

progresses down-slope, the near surface air temperature approaches that of the

surface, thus decreasing surface heat fluxes. Hence, the down-slope variation of

surface heat fluxes for katabatic flow is an issue that needs to be looked into

further. In addition, parameterizations of velocity and buoyancy strength scales as

a function of slope angle were developed. Katabatic efficiencies increase with

increasing slope angle, which, under the constraint of equal horizontal distance,

also implies an increase in slope height and hence a larger buoyant potential energy

input to the system, which leads to greater kinetic energy down-slope.

Parametenzations developed in this section are subsequently used in the equivalent

slope angle method of chapter 3.

The fourth objective of the study was to examine the difference between

katabatic flows on simple and combined slopes. It was found that near the foot of

the slope, simple slopes produce higher velocities and hence smaller potential

temperature deficits than combined slopes. On the lower portion of the slope, the

combined flow has less adv, and less TKE than that of the simple flow, which
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explains why the simple flow is deeper here than that of the combined flow. One

important difference between simple and combined flows is that parcels on the

simple slope have more buoyant potential energy than those of the combined flow.

This is a simple consequence of geometry, since the simple slope everywhere has

higher terrain than the combined slope. It follows that simple slope flows will

derive larger kinetic energies from larger amounts of buoyant potential energy than

combined flows.

Finally, an investigation into the effect of a changing upper slope angle on

katabatic flows over combined slopes was made to determine if the effect of

subgrid scale terrain features can be accounted for in models. The effects of

changing upper slope angle on katabatic flows over the lower portion of the slope

are complex, and an equivalent slope angle method is proposed to help tailor

katabatic flow predictions in areas of inadequate terrain resolution. In this method,

results derived from earlier studies are used, namely, that katabatic efficiency is a

function of slope angle, and velocity strength scales, which can be predicted for

simple slopes based on the physical parameters of the flow, grow with down-slope

distance. Predictions of strength scales for combined slopes exhibit a complex

behavior that can decrease katabatic flows relative to that of simple slopes. One

reason for this is due to the region of enhanced mixing just down-slope of the slope

angle change. Regions such as this represent a challenge to predictions of slope

flows in areas of complex terrain, and further study into their effects is warranted.

In that the effect of subgrid scale terrain features is not altogether straightforward, it

is necessary to have accurate knowledge of actual versus modeled terrain profiles in

order to make prediction adjustments to account for subgrid scale terrain features.

Furthermore, since the difference between actual and modeled terrain is a function
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of grid spacing, the effects of subgrid scale terrain features may vary from model to

model, but will most likely follow along a consistent pattern. Namely, in areas of

inadequate resolution, buoyant potential energies will probably be increased as

concave mountain profiles are smoothed over, and terrain heights are raised, and

the effect of an increase in buoyant potential energy along a slope is to increase

kinetic energy down-slope, thus overestimating katabatic flow strengths.
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