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An Implementation and Initial Test of
Generalized Radial Basis Functions

1. INTRODUCTION

In the field of Artificial Intelligence, learning from examples
[Dietterich,1990] is an extensively applied method for learning
input-output mappings for unknown or intractable functions.
Although performing well, many learning algorithms show a lack of
theoretical justifications. In the area of neural networks, for
example, algorithms such as backpropagation [Rumelhart,86] give
surprisingly good results but it has been difficult to prove that
these algorithms have theoretical justification.

However, Poggio and Girosi [Poggio,1989] suggested a theoretical
framework for a class of networks they called Generalized Radial
Basis Functions(GRBF)! and claimed the networks based on this
approach were able to learn an input-output mapping from examples.
The main goal of this project was to implement GRBF and test
whether those networks can compete with already existing
algorithms such as backpropagation and ID3 [Quinlan,1986].

Poggio and Girosi's main idea was to show the applicability of the
results of approximation and regularization theory to the learning
task. Their underlying assumption was that learning from examples
can be described as hypersurface reconstruction. Given input vectors
and their output values, the task is to come up with reasonable
output values at points where no data were given, but this can be
viewed as approximating a multidimensional function.

Therefore the well-supported results of approximation and
regularization theory were used in the design of GRBF. GRBFs are a

1 During this paper | will use GRBF as a synonym for the theoretical framework, the
algorithm, and the implementation.



generalized form of radial basis functions which are mainly used for
interpolation tasks. They represent a class of three layer networks
similar to backpropagation networks with one hidden layer.

In this paper | will review some results from approximation theory;
give an intuitive and theoretical explanation of what GRBFs really
are; review some related work such as closest neighbor
classification; describe the actual implementation of GRBF; show
GRBF's performance on different domains; and discuss the practical
impact of Poggio and Girosi's suggestions.



2. APPROXIMATION THEORY

The central problem addressed by approximation theory is the
approximation of a unknown real valued continuous function f(x) by
an known approximation function f*(A,x) which depends on a finite
number of parameters A. The quality of an approximation function is
measured by a distance function 9. The function 9 is usually a norm

denoted by || ||.

The approximation problem can formally be stated as:

Approximation Problem:
Let f(x) be a given real valued continuous function defined

on a set X, and let f*(A,x) be a real-valued approximation
function depending continuously on x € X and on n parameters

A. Given a distance function 9, determine the parameters A* €

P such that:
J[f*(A*,x),f(x)] <= J[f*(A,x),f(x)] for all A € P

A solution to this problem is called "best approximation®.
Approximation theory provides several algorithms for finding that
solution, if it exists. To approximate a function f, one has to choose
an approximation function f*, choose the distance function 9, and
find the solution, e.g. the optimal values for A, if possible.

The approximation function f* is usually determined by the sum of
several base functions.

Usually as many base functions as there are known data points are
used. Each base function is centered at one data point, i.e. the data
point's input value is subtracted from the base function's argument
so that the data point is the base function's origin.



Best results are achieved by base functions h with following
attributes:

h(0) =1

h(-<) = 0 and h(e) = 0
The base function is then scaled by the output value of its origin.

Figure 1:  Approximation of a function f by an approximation
function f*.

Figure 1 shows the approximation of a function of which five data
points (A,B,C,D,E) are known. f* is determined by the sum of five
Gaussian base functions, each centered at one of the known data
points. This graph shows why Gaussian base functions are superior
to many other base functions: The base function at point E does not
influence f* at point A at all, but any point between A and B is,
starting at A, heavily influenced by the base function at point A.
With decreasing distance to B (and therefore increasing distance
from A) B's influence rises while A has almost no impact on f* at B.



3. THE INTUITIVE EXPLANATION

Learning from examples is a means of generalizing from given data
to an overall function describing a whole class of data points. There
are several assumptions necessary to guarantee the applicability of
any learning algorithm:

The examples must sufficiently cover the class to which they
belong. Hence, their number has to be substantial enough and they
have to be well enough distributed throughout the domain.
Furthermore, some bias must be provided to the learning algorithm
[Mitchell,1980]. This bias provides a set of constraints that the
unknown function is assumed to satisfy. For GRBFs, the bias asserts
that the wunknown function is smooth (i.e., continuously
differentiable). The smoothness of the function is crucial. Otherwise
an infinite number of training examples would be needed to learn
the function.

These are the same assumptions that are made for interpolation or
more general approximation algorithms. Using the vocabulary
provided by approximation theory, the task can be described as
follows:

Given:

N data points in n-dimensional space and their output values.

(X1 ,X2,X3,...,Xn)i ->Yi i=1.N
Find:
A smooth function f: R"-> R such that

N k4
i§1 (f" (x;) - y;)? is minimal.

From approximation theory, it turns out that one form f can take, is
a weighted sum of radial basis functions:

* N *
£ (x) = Z (o * h(llxx|2) (1)

where h is, for example, a Gaussian base function centered at x;.



The distance function 9, defined by approximation theory, is the
minimization of the sum of all differences between f  and the
already known output. This sum has to be minimized by finding the
optimal values for the weights c¢;. If the approximation is
successful, f° can later be used to determine output values for input
patterns with unknown output values.

Since the number of training examples is usually very high, it
becomes computationally expensive to evaluate f(x). Hence, it is
desirable to limit the number of base functions. GRBFs solve this
task by dividing the input space into several hyperspheres (see
Figure 2). The origin of each hypersphere is called a "center". The
hyperspheres are unbounded and therefore overlap each other.

The introduction of GRBFs is an approach to approximate the
function f by a function f° with a fewer number of centers (t,) that
do not necessarily coincide with any of the given examples.

The generalized form of (1) is then given as:

. n
00 = 2. (Co h(llx-tall?) (2)

with n: number of centers

With growing distance from their origin, the hyperspheres lose
importance (strength). One can compare this with radio stations.
Although with a powerful receiver it is possible to listen to every
station at every point, it is usually the case that only the nearest
stations are received by a normal receiver; if one is very close to a
certain station, it is almost impossible to listen to another station
at all.

Back to the input patterns and their output values: Any input
pattern's output value is determined by every center, because it lies
within every hypersphere, and those centers it is closest to have the
most influence on its value.



Figure 2: Three centers A,B,C and three data points |4, I», and I3.

l; is equally influenced by A,B,and C (neglecting the center's

weights for the moment)
lo is almost only described by B
I3 is determined by A and C, but only slightly by B

In addition to the weights of the basis functions that determined f*
in the radial basis function approach, it is now necessary to find the
optimal number of centers and their locations.

GRBFs are implemented through a network. The network architecture
is described by Figure 3. During each iteration of the training phase,
the difference between the network's output for each input pattern
and the desired output is computed. These error terms are then used
to update the network. This is done by moving the centers to
different locations and adjusting their weights. The weights of the
centers are used to scale the output. The network's output is
determined by the sum of the outputs of every center scaled by each
center's weight to that particular output unit. Moving the centers is



the fundamental point of the whole algorithm. Initially, the centers
are chosen as a subset of the given input data, but during training,
they are moved to different locations so that they represent the
data in the best possible way (see Figure 4).

GRBFs represent a class of three layer networks with one hidden
layer. The hidden units are called centers. Each center is fully
connected to each input unit. A base function h is centered at each
center's coordinates. Each center t is connected with a certain
weight ¢ to each output unit.

Hidden
Layer:

Output
Layer:

Y \ Ynoutputs

Figure 3: The GRBF network architecture.
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Figure 4: Training phase

Figure 4 shows how GRBF moved the centers to different locations
during a training phase. The points x1 to x20 represent the training
data. Three centers were initialized to the data points x1, x7, and
x13. During training these centers were moved to the points
indicated by the arrows.
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4. THE ALGORITHM

In this section | will develop the theoretical framework for GRBFs:
Given S= {(x;;y;) € RN xR; i = 1,..N} a set of data points that is to be
approximated by means of a function f. The regularization approach
consists of looking for the function f that minimizes the functional

N *
HI =2 (v - f(x))2 + & |IPiI2 @)

Where P is a constraint operator (for example a Laplacian operator)
and the regularization parameter A is directly related to both the
degree of enforced generalization and to an estimate of the noise
and is set to zero because we assume there is no noise in the data.
Poggio and Girosi proved in their paper [Poggio,1989] that the
solution to that equation has the form:

M=

f(x) =Z (¢ * G(x;t)) (4)

where G(x) is the Green's function of the self-adjoint differential
operator PP, P being the adjoint operator of P, and the coefficients
Cc, Satisfy a linear system of equations that depend on the N

examples. In this paper | assume that G is radial (G(x;t) = h(||x-t||2))
and therefore equation (4) can be written as:

* N *
f(x) = Z(ci * h(ix-t12) (1)

This is the sum of radial functions each centered on a distinct data
point t, . There are as many radial functions as data points (training

examples).
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The introduction of GRBFs is an approach to approximate the
unknown function f by a function f with a fewer number of centers
(t,) that do not necessarily coincide with any of the given examples.

The generalized form of (1) is then given as:

f(x) = 2 (Co hilix-tal?) @)

with n: number of centers

Now the problem is to find the coefficients ¢, and the centers t,. To
minimize the functional H[f*] the necessary conditions

oHI[f"]
ot,

=0 and 0 (5)

are imposed. Those equations can be used to find the initial values
for the weight vector C:

C = (G!IG + Ag)'1GlY (see 6.1. The Initialization Procedures)
with G an Nxn matrix Gj, = G(xiity), g @ nxn matrix gep= G(te,tp)-

Given that G is radial (G(x;t) = h(||x-t||2)), A = 0, and defining the
error as

Aj =y - f(x))
with f'(x;) = the network's output for the ith example, the gradient
terms can be written as:

oH[f" 0
ac[ | =3c ﬂi (¥i - Ca * h(lixitl1?)?)

o

N 2\ . 2
=2+ 2 (¥i-Cq * hllxitall™) * (- h{lIxi-te]]%))

N 2
=-2*2 A * hlixitell%) (6)
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oH[f" d N
L8 i cat hlietali?)

o

* 3 . * . 2 + R 2\ .
=242 (i~ Ga * NlitalP)(-Ca) * NlIeitall?) * (2(xit)))

N
=4+ 0yt X (A h(lIxitall®) * (xite)) )

The network is trained by an iterative process. During each iteration
the gradient terms were used to find better values for the t, and c,.
Although gradient descent and momentum term methods work quite
well, the conjugate gradient method suggested by Powell
[Powell,1977] was used to find the optimal set of values for the
weights ¢, and the centers t,. Note that in addition to the original
interpolation task of finding the optimal values for the weights {c,]},
the centers {t,} were moved around to best approximate the
hypersurface.

Any input pattern's output value is computed as:
* n p)
Fx) = Z cq* h(llx-t,l%) (8)

where h(||x-t,||) is an appropriate radial basis function. In this

thesis | mainly used the well known Gaussian base functions (h(x) =
exp(-(x/c)z)) which offers the advantage of being already smooth
enough so that A can be set to zero in (3).

Equation (8) can be generalized to a d-dimensional output vector as
follows:

£(X 1, X901 Xp) =(Z €1 *h(11X-t,1%),Z Cup*h(lIX-ty|1?),--,Z Cogth(lIx-tylI%))

This shows that d different input-output mappings were actually
learned (c,,-C,q) With the restriction that all d functions use the

same centers, but different weights (C).
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5. RELATED WORK

5.1. Pattern Classification, Parzen Windows, Nearest Neighbor Estimation

Duda and Hart [Duda,1973] describe several approaches for finding a
density function p(x). This density function is used to determine the
probability of a given pattern belonging to a specific class. In
particular they mentioned two nonparametric methods for pattern
recognition that work without knowing the underlying densities.
Those methods are Parzen Windows [Parzen, 1962] and the k-
nearest-neighbor-estimation method.

5.1.1. Parzen Windows

A Parzen window is a d-dimensional solid (in the following
discussion | assume that it is a hypercube) centered at a point x.

Let V, be the volume and h, the length of an edge of that hypercube,
kp the number of samples falling in it, and p,(x) the n-th estimate

for p(x), then

kp/n
Pn(x) =V, (9)

A window function ® defines a solid of dimension d centered at the
origin as follows:

1 lujl <= 1/2 j=1..d
o) = { 0 otherwise
Therefore d)(%) equals 1 if x; lies within the hypercube centered
n

at x. The number of examples falling in that hypercube is then given
by:

X-Xj

Kn =Z(D(T) (10)
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When substituting (10) into (9) we obtain:
1.y 1., X-Xj
Pn(x) = n ) v, o (h_l)

n

Given an infinite number of examples (n-> «), p, converges to p(x)
while V, (one choice for h, might be h, = 1/n) converges to 0. In
other words, if it is possible to decrease the size of the window
without eventually obtaining an empty window, then it is possible to
approximate the density function p(x) arbitrarily closely.

In practical applications with a finite number of (training) patterns,
the choice of h, (and therefore V) determines pp(x) such that if V,
is too large, pn(x) will be averaged over too many patterns, and if V,
is too small, it will result in a p, that depends too much on the

particular examples.

5.1.2. The kn-nearest-neighbor-estimation Method

While the size of Parzen windows is independent from the data, the
knh-nearest-estimation method makes every window, any of which
are still centered at x, so large that it captures exactly k, example
patterns. Therefore the windows will be small in areas with many
patterns and huge if the density is low.

) kn/n ) ) ] kp
Taking pp(x) = N and letting IrI‘nl kn->e and Hm — -> 0 assures
n ->00

->00 N
that, although an infinite number of patterns lies within Vj, V, will
be very small because k, is negligible in comparison to the total
number of examples.
This method suffers, as well as Parzen Windows, from the fact that
it is only asymptotically correct.
Both methods are similar to GRBF in the sense that they assume the
existence of an underlying density function. Also, the windows can
be viewed as the hyperspheres which are used by GRBF. The main
difference is that Parzen windows are bounded by size and the k-
nearest-estimation method's windows are bounded by the number of
examples falling in each window, while GRBF's hyperspheres are
theoretically unbounded.
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5.2 Exemplar Learning Algorithms

Several different approaches for learning concepts from examples
have been proposed. Some of them simply store all examples or a
subset of the examples. A new instance is then classified by
comparing it with all stored examples and assigning it the value of
the example to which it is most similar (i.e. k,-nearest-neighbor
with k, = 1).

Smith and Medin suggested the proximity model [Smith,1981] which
stores all training instances. Kibler and Aha [Kibler,1987] developed
the growth and shrink algorithms. The growth algorithm does not add
instances that are already classified correctly. The shrink algorithm
removes examples that would be classified correctly by the other
examples.

These algorithms are similar to GRBF in that the number of
examplars is less than the number of training examples. However, in
GRBF the centers can correspond to "idealized" prototypes rather
than to particular training examples. Also, as with Parzen windows
and kp-nearest-neighbor, exemplar methods do not allow distinct

exemplars to influence the estimated value of the function.
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6. THE IMPLEMENTATION

To implement GRBF, software originally written by McClelland and
Rumelhart [Rumelhart,1988] was enhanced by one more program. The
design, and in particular the user-interface, were left unchanged and
therefore | had only to be concerned about the code that actually
deals with GRBF. The idea is that it should be possible to run the
program in the same environment as the PDP software.

There are three new files that | have written. Init.c deals with the
network initialization. Net.c takes care of saving an already trained
network's parameters to a file and reading them back in, when
issued. Lastly grbf.c is the main file that does the work for training
the network.

6.1. The Initialization Procedures

Two things have to be done to get started:

First choose the centers, and second set their initial weights to all
output units.

In choosing the centers, if the number of centers is assumed to be n,
and there are N input patterns, then the centers are simply selected
as a subset of all input patterns by making every (N mod n)th input
pattern a center.

There might be better ways of choosing the centers such as the k-
means method by MacQueen [MacQueen,1967] or some other set
covering algorithms. | did not implement any of those more
sophisticated algorithms, because | made the assumption that the
input patterns are presented in such a way that it is unlikely to
choose specific subsets by this algorithm without covering at least
a few examples of any subset.

For example, the data might be randomly distributed or there might
be a total ordering. In the case of the total ordering, the centers
would be ordered totally also. Here | assumed that a suboptimal
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starting position would not prevent the algorithm from learning, but
simply would result in a few more iterations. Therefore | traded
programming time for running time. A fact supporting this point of
view is that the network learns very fast at the beginning and slows
down when coming close to the optimum. However, section 8.1
shows that the performance of GRBF depends on good choice of the
initial centers.

The weights are initialized according to:
£(x) = %1 cy * G(Xity)

a

N
HIfT = Z (vi - f(x))? + A+ |IPfl®  (setX = 0)

= Z02 20 106) ¢ i + 0)

n

= YrY-202 (et Glita)) * Y+ (Z,(Ca’ GlXiita))?

=Y*Y-2*C+*Gt*Y +(C* G)?
=Y*Y-2+*+C+*Gl*Y4+C*Gl+G*C (11)
with G = G(X;;t,) Y = (¥1,...¥N), C = (C1,..,Cp), Gt: transpose of G

The functional H has to be minimized, giving the condition:

OH[f]
ac, 0
=> -2 GlY + 2GIGC =0
<=> GIGC =Gty
<=>(G!G)'1 * GIGC = (GIG)"' * GtY
<=> C = (G!G)'~ Gty (12)

That means, after choosing the centers the matrix G has to be
computed and the equation (12) can be used to initialize the weights.
One problem occurred during inverting the matrix G!G: Especially for
the nettalk data this was a very huge matrix (up to 500 * 500) with
many small entries. Using an algorithm with Pivot search, integer
overflows occurred for nxn matrixes with n > 60. To avoid this, |
multiplied the whole matrix by a factor of 10, inverted the matrix
and multiplied the inverted matrix again with the same factor,
thereby bringing most elements close to 1.
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6.2. Checking for Collapsing Centers

There are no constraints that limit the movements of the centers.
Hence two or more centers may move towards each other until they
coincide. | wrote a function that checks the distance between any
two centers after each iteration. Surprisingly, the case of
collapsing centers never occurred, and therefore the current
implementation does not check the distance between the centers
anymore.

6.3. Optimizations

6.3.1. General optimizations

The formulas for computing the gradient for the centers (T) and
their weights (C) were on page 11 given as follows:

oH N

o ,. - 12

ac, = 2" 2 (it hlixitelI2) (®)

oH N

S =40t (A N(lIxital2)* (xirtg)) @
a 2

Since this implementation deals with multidimensional outputs
these formulas looked actually like this:

oH N

T =g ok . 2

acaj = -2 i§1 (Ajj * h(lIxi-ta]]4)) (13)

oH noutputs N

o =4 % (cajr Z, A W(lixita]l?) * (xita))) (14)
a = =

Now (14) can be changed to:

oH N noutputs
=42 ( X (it Ayt h(lIxirtell®) * (xitg))  (15)
at, i=1"  j=1
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Thereby replacing one level of loop nesting by two parallel loops.
The complexity was reduced from

(nunits * npatterns * noutputs * ninputs) to

(nunits * npatterns * (noutputs + ninputs)).

Note that (x - t) is a vector of dimensionality 'ninputs'.

6.3.2. Nettalk Optimizations

For the nettalk data, even further optimizations were possible,
since the nettalk data had the characteristic that every input vector
consist of exactly seven 1's and 196 0's.

Therefore equation (15) can be written as:

ﬂ N noutputs ' 0
at, = 42 O Z (Cajr A * N(lXitall®) * (Hta) )
N noutputs '
+4+2 (2 (Cojr Ay * P(lIxi-te[2) * (xik) )

=1 J._
forall k: xk =1, ki1.7 (16)

resulting in a complexity of (nunits * npatterns * ( noutputs + 7))
For the same reason, the complexity of the function that computes
the distance of every input pattern to every center could be reduced
from (nunits * ninputs * npatterns)

to (nunits * ( ninputs + 7 * npatterns)).

This was simply done be using the following:

The square of the euclidian distance between two n dimensional
points can be computed as follows:

n
la-blP=2 (a-b)°

If it is known that b is '0' most of the time and '1' otherwise, this
equation can be changed to:

231 (ai2 - 2ajb; + b?)

n 7
i21 a2 + IZ1 (1-2ak) since bk =1, k = 1..7
= k=

ke 1..n , 0 otherwise
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7. RUNNING THE PROGRAM

The design of the program is kept close to the underlying
implementation of the backpropagation algorithm by McClelland and
Rumelhart [Rumelhart,1988].
| will here just give a brief overview of the rudimentary commands
and files that are needed to run GRBF. For further details refer the
handbook written by McClelland and Rumelhart [Rumelhart,1986].
Four files should be provided when starting the program:
- A network file containing the network description.
- A pattern file with the training data.
- A command file.
The command file may contain any legal commands. It is very
convenient to incorporate here the commands that initialize the
network such as loading the network definition file and setting the
number of iterations for example. This file is also necessary to run
the program in the background.
- A template file (optional).

The template file might be used to display some information
during a program run.
The program is started by the command:

gr [<template-file>| - ] <command-file>

A pattern file has to be loaded using the 'get patterns <pattern-file>'
command.
Training is started by the command 'strain' and after training, the
centers and their weights can be saved to a file using the 'save'
command.
Example files are included in the appendix.
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8. THE INITIAL TESTS

Several different experiments were carried out to show the
correctness of both the implementation and the underlying theory.
Furthermore the representational strength of GRBF was compared to
already existing algorithms performing on the same task.

8.1. Correctness

The implementation is assumed to be correct if it is possible to
train the network on some training set so that, after a reasonable
amount of iterations and with an appropriate number of centers, the
network is able to compute output values for the given training data
close to the desired output values. If one could construct the centers
and their weights before training and the algorithm would come up
with similar parameters, that would be a very strong argument for
the correctness of the algorithm. Therefore | created test and
training sets by first choosing the centers, their weights, and the
input data randomly. Then the output values for all input patterns
were determined by using equation (8).

Then | trained the network several times, each time with a different
number of centers. The most interesting case was, of course, when
the network was initialized with the same number of centers as
were used to determine the training and test data.

Figure 5 shows the final locations of the centers for each
experiment. The original centers that were used to determine the
training data are O,1, 0,2, and O,3. The other points are the learned
centers, where labeling a,b means: centers number b out of a
centers. In the experiments illustrated by Figure 5, GRBF achieved
almost a perfect fit on the training set. In these experiments, GRBF
moved the centers in fact very close to the original centers. GRBF
also assigned similar weights which are not shown by the graph.
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However, the second original center was located in between the
other two centers and therefore has less representational power.
GRBF located the corresponding center, in the case of three centers,
at a different location so that these three centers build a triangle
together. This result is very encouraging in the sense that the
algorithm not only learns some representation for the training data
but a very general representation.
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Figure S: Locations of centers after learning

The experiment was repeated several times. The number of centers
and their initial locations was varied. Figure 6 shows the
correlation between GRBF's performance on the training set and the
test set. The training set consists of 20 patterns and the test set
was a 2000 point grid over the area [-2.5:2.5,-2.0:2.0]. Each point
shown by the graph has the total summed squared error (tss) as its
first coordinate and the tss over the test set as its second

coordinate.
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Figure 6: Correlation between performance on the training and the
test set.

According to Figure 6, GRBF was not always able to achieve a
perfect fit on the training data and there exists a strong correlation
between performance on the training and the test set.
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Two conclusions can be drawn from these experiments:

First, the initialization of the centers influences GRBF's ability to
learn. Second, if GRBF is able to achieve a good fit on the training
data then it also performs well on the test set.

8.2. Representational Strength

The representational strength of a network can be determined by its
performance on the test data and in some sense by the number of
centers required to learn the mapping. To test the representational
strength of GRBF, the program was applied to different domains.

8.2.1. The two-spirals Problem

The two-spirals problem is an extremely hard problem for all
algorithms based on backpropagation [Rumelhart,1988]. The task is
to distinguish between two interlocking spirals. All points on one
spiral have positive output values, while all points on the other
spiral have negative output values. The training set, which was also
used as the test set, consisted of 194 points.

GRBF was able to distinguish between the two spirals without any
misclassification when 50 centers were used. It ran for about 20
minutes or 600 epochs. Figure 7 shows the locations the centers
were moved to by GRBF. Different weights of the centers are
indicated by different symbols. The weights range from -6 to +7 and
darker symbols indicate more negative values.

Given 25 centers, it misclassified, after 2000 epochs, 6 data points.
In comparison, only modified versions of backpropagation were able
to solve this task at all. These versions required 8000 to 200,000
epochs and used several hidden layers, each layer containing about
five units [Lang,1988].
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8.2.2. Random Functions with Unimportant Features

An interesting question was how GRBF would deal with input
patterns where some dimensions were of no importance at all, e.g.
the output values were only determined by some dimensions. The
hypothesis was that GRBF would not be able to distinguish between
meaningful information and useless noise. To test this hypothesis, |
generated a training and a test set with twenty input dimensions of
which only two were important. The remaining dimensions were
random. Then | trained the network on that data several times, each
time decreasing the number of input dimensions by eliminating
irrelevant dimensions.

For any dimension above 7, GRBF was able to fit the training data
but performed poorly on the test data. To achieve good performance
on the test data, | had to decrease the dimension of the input to
three.
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Figure 8: Correlation between irrelevant features and performance.
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This experiment showed another interesting result:

The number of centers was crucial to the ability of GRBF to learn. A
higher number of centers enabled the network either to learn faster
or better, where better means down to a lower remaining error.
However, the number of centers did not influence performance on the
test set at all. One might be tempted to think that a smaller number
of centers makes training harder and therefore the network is
'smarter' after learning. The experiments did not support this,
although more tests should be carried out to verify that.

8.2.3. The nettalk Task

The nettalk task is to learn how to pronounce english words from
their spelling. It is also known as the Text-to-Speech problem. This
task was first introduced by Sejnowski and Rosenberg
[Rosenberg,1987]. They provided us with a dictionary of 20,003
words and their corresponding phonemes and stress strings. This
dictionary was randomly divided into disjoint subsets. A 1000-word
subset was used as a test set and the remaining 19003 words were
partitioned into training sets of different sizes. Since the data was
coded in a specific way (see [Dietterich,1990] for further details), a
50-word set, for example, contains about 350 patterns.

| trained the network using two different base functions (1/cosh(x)
and exp(-x2/02) ). For each base function, the number of centers and
epochs was varied. | also varied the size of the training set.
Specifically, training sets of size 50, 100, and 1000 words were
studied. The resulting networks were then evaluated against the
1000-word test set.



Table 1: Performance on the 50-word training set,

base function 1/cosh(x)
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#centers WORDS LETTERS (PHON/STRESS) _BITS
300 TRAIN: 100.0 100.0 100.0 100.0 100.0
TEST: 0.0 6.0 . 62.9 89.4
120 TRAIN: 100.0 100.0 100.0 100.0 100.0
TEST: 0.5 25.0 275 684 91.6

Only two experiments were carried out because performance on the
test set was so poor.

Table 2: Performance on the 50-word training set,

150

150

150

120

100

100

80

60

40

25

base function exp(-x2/c?)

f#centers #epochs WORDS LETTERS (PHON/STRESS)  BITS

250

500

1500

500

200

300

180

1200

3000

7000

TRAIN: 100.0
TEST: 1.5
TRAIN: 100.0
TEST: 1.1
TRAIN: 100.0
TEST: 0.8
TRAIN: 100.0
TEST: 1.4
TRAIN: 100.0
TEST: 1.6
TRAIN: 100.0
TEST: 1.5
TRAIN: 78.0
TEST: 24
TRAIN: 100.0
TEST: 0.9
TRAIN: 96.0
TEST: 0.8
TRAIN: 96.0
TEST: 0.8

For comparison, Backprop with

legal

ID3 legal

TRAIN: 82.0
TEST: 1.8
TRAIN: 100.0
TEST: 0.8

100.0 100.0
43.1 52.5
100.0 100.0
45.3 55.4
100.0 100.0
46.7 571
100.0 100.0
49.5 59.2
100.0 100.0
47.8 55.8
100.0 100.0
48.6 57.0
971 99.5
47.2 56.5
100.0 100.0
49.6 61.4
99.5 99.5
49.3 61.5
99.5 99.5
46.7 58.5
120 hidden units, 30
97.4 98.2
48.4 59.4
100.0 100.0
41.5 60.5

100.0
69.8
100.0
69.8
100.0
70.8
100.0
71.3
100.0
741
100.0
73.9
97.6
73.3
100.0
70.9
100.0
69.7
100.0
69.0

epochs:

99.2
72.9
100.0
60.1

100.0
93.3
100.0
93.5
100.0
93.6
100.0
94.1
100.0
94.2
100.0
94.2
99.9
93.9
100.0
94.0
100.0
93.8
100.0
93.4

99.9
93.5
100.0
93.1
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On the 50 word training set it was always possible to achieve a
perfect fit, but performance on the test set varied widely.
Especially the difference between the two base functions is
interesting since they are very similar functions. | assume that the
scaling factor ¢ makes the Gaussian base functions more powerful.
The bigger o is, the further away from its center each hypersphere
influences the output. Theoretically the hyperspheres are unbounded,
but in practice the exponential function approaches zero very fast.
Figure 5 shows how a bigger ¢ results in more overlapping base
functions, thereby making every input pattern's output value

dependent on more centers.
3=

Figure 9: Two base functions with different scaling factors o.

Given only 25 centers and a Gaussian base function, GRBF was still
able to learn the training set reasonably well, but the number of
words of the test set that were classified correctly reduced to
about half of what they were when using 120 centers.

The number of epochs is not really comparable to the number of
epochs used by backpropagation, because GRBF completes each epoch
much faster. To train the network on the 100-word training set,
given 100 centers, GRBF needed about 20 cpu minutes per 100
epochs on a sparc sun 4 workstation; on the 1000-word training set
with 80 centers, it ran for about 3 hours per 100 epochs.
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Figure 10: Correlation between performance and the number of
training epochs. (50 word training, 1000 word test set,
80 centers)

The main problem was that GRBF overfitted the data when trained
too long. As Figure 10 shows, a perfect fit on the training set
decreases performance on the test set. To avoid overtraining the
network, it is necessary to stop training before maximum
performance on the training set is reached. This saves a lot of
computation time since the network has to be trained for only about
20% of the epochs that would be needed to achieve a perfect fit.
However, in practice the problem is to find the proper cutoff
without evaluating the network's performance too often.



31

2.4%

Perfomance on the test set
= = = MM NN
H » [ ] o N E-N ()]
R Y [ ] s o F o k. 2 1 .

-
N
]

101
084
0.6 1
041

0.2 -

0.0 . r ' r v T T T ' T . T v \
0 25 50 75 100 125 150 175
Number of centers

Figure 11: Correlation between performance and the number of
centers. (50 word training, 1000 word test set)

The proper choice of the number of centers also influences GRBF's
performance on the test set (see Figure 11). Too few centers hinder
GRBF, while too many centers do not enforce enough generalization.



Table 3: Performance on the 100-word training set,
base function exp(-x%/c?)

80

100

100

100

100

150

150

150

150

4000 TRAIN:
TEST :
100 TRAIN:
TEST :
300 TRAIN:
TEST :
500 TRAIN:
TEST :
2000 TRAIN:
TEST :
100 TRAIN:
TEST:
300 TRAIN:

TEST :

500 TRAIN:
TEST:
1000 TRAIN:
TEST:

For comparison:

ID3 (no CHI2) TRAIN:

BP

TEST :

TRAIN:
TEST :

97.0
2.7
26.0
3.2
52.0
3.9
72.0
3.5
98.0
2.7
53.0
3.6
79.0
3.7
96.0
3.9
98.0
3.1

97.0
2.0
80.0
3.7

99.6
55.1
80.6
51.9
92.0
556.3
95.6
55.6
99.7
55.8
91.3
53.0
96.9
54.8
99.5
54.7
99.7
54.2

99.6
47.3
96.4
55.2

99.7
65.9
86.1
61.3
96.5
65.1
98.4
66.3
99.9
67.5
94.4
62.3
98.4
64.3
99.7
65.0
99.9
65.3

99.7
64.1
97.3
66.1

99.9
73.0
90.3
76.6
94.7
76.2
96.8
74.8
99.9
72.9
95.9
76.4
98.5
75.6
99.7
74.1

99.9
73.3

99.9
65.8
98.9
75.5
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100.0
94.5
98.3
94.8
99.5
94.9
99.8
94.8
100.0
94.7
99.4
94.8
99.8
94.8
100.0
94.7
100.0
94.6

100.0
94.0
99.7
94.4



Table 4: Performance on the 1000-word training set,
base function exp(-x2/c?2)

r h
80 700 TRAIN: 8.2
TEST: 6.0
100 800 TRAIN: 29.7

TEST: 15.7
150 600 TRAIN: 38.2
TEST: 17.8

For comparison:

ID3 (no CHI2) TRAIN: 96.1

nearest ph/str TEST: 9.6

BP (30 epochs) TRAIN: 64.4
TEST: 14.7
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71.3
85.1
72.6

99.4
65.6
93.8
70.9

72.8
69.6
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80.7
91.6
82.1

99.7
78.7
96.8
81.1
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Figure 12:Correlation between the number of epochs and
performance (1000 word training, 1000 word test set).
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9. FUTURE WORK

9.1. Work Beyond the Initial Tests

When testing GRBF, | have carried out experiments with different
numbers of centers and trained the network down to different
remaining total summed squared errors. These experiments justify
only assumptions about the algorithm's general behavior.

Future work should include a more rigorous testing of the
interdependence of performance and the number of centers that were
used to train the network. Another interesting question is, whether
it is necessary to train the network as well as possible or if a
cutoff can be used to shorten training time. Both questions address
general problems with any kind of neural networks and are not
specific to GRBF. See [Lang,1990] for suggestions how to deal with
these tasks.

9.2. Improvements / Enhancements of the Algorithm

The current implementation is based on two underlying assumptions.
First, we deal only with correct data. The regularization parameter
A was assumed to be related to an estimate of the noise and
therefore set to zero. Given a nonzero regularization parameter, the
choice of the constraint operator P would influence the algorithm
and result in different gradient terms.

Secondly, only Gaussian base functions were used to train the
network, although any function satisfying Michelli's condition
[Michelli,1986] can be used. Most of these functions require the
addition of a polynomial to achieve differentiability (smoothness).
We used only Gaussian base functions, because they are easier to
handle than the more general functions that satisfy Michelli's
condition, and there is no reason to believe that these functions
would give better results than radial Gaussian base functions.

To enhance the implementation with a nonzero regularization
parameter A and non-Gaussian base functions, only the gradient

terms have to be changed.

Since some experiments showed that GRBF is sensitive to the proper
initialization of its centers, nontrivial initialization methods
should be used to find the initial locations for the centers.
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9.2.1. Generalizing GRBFs to HyperBFs

Poggio and Girosi [Poggio,1990] suggested a more general form of
GRBF. A GRBF network uses the same base function for every center.
HyperBFs are the superposition of different types of base functions,
They parameterize the base functions of every center. For example,
in the current implementation | used the base function

exp(-x2/6?), with ¢ = 2x/o.os.
A HyperBF implementation would also parameterize the factor o.
HyperBFs require learning three different types of parameters: The
center coordinates, their weights to the output units, and the
scaling of the base functions.
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10. CONCLUSIONS

During recent years, many researchers have shifted their focus of
research from symbolic computation to neural networks.
Development of algorithms of the backpropagation family showed
that neural networks are an alternative to the long followed path of
symbolic computation.

| showed in this research that Generalized Radial Basis Functions
invent a new class of networks which are superior in performance to
backpropagation. GRBFs have some advantages over backpropagation
as well as some disadvantages. They share with every neural
network implementation the problem of finding the optimal number
of centers and training epochs.

The way a GRBF network is trained shows the main advantage of this
approach: Every step makes intuitive sense and an outside observer
could follow the algorithm's actions and interpret the results in a
meaningful way. We assume that the centers represent prototypes of
the data after training. Although any center might not resemble a
real data point, it captures information about its vicinity.

Since GRBFs are developed out of a theoretical framework based on
regularization theory, research about further developments as well
as about the limitations of this approach can be based on the
underlying theory. This well-studied theory should help GRBF to
achieve broad acceptance in the scientific world.

Although the current implementation is only a first attempt and
further work might improve performance, the tests | have carried
out gave encouraging results. GRBF outperformed backpropagation on
the two-spiral problem and on the nettalk task.

A GRBF specific problem is the high number of centers required to
achieve good performance. It takes GRBF about twice as long as
backpropagation to train a network. A fundamental flaw of GRBF is
its inability to distinguish between important and unimportant
features of the data. Every input dimension is equally important to
the algorithm, and GRBF has no mechanism to recognize and ignore
useless features.

In summary, | think the invention of the Generalized Radial Basis
Functions offers a worthwhile alternative to other neural network
algorithms such as backpropagation.
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APPENDIX

Network file formats:

A network description file ending with the suffix .net specifies the
network architecture:

definitions:

nunits 80 {the network has 80 centers }
ninputs 203 {" " " 203 input units }
noutputs 26 {" " " 26 output " }
end

A start-up file (.str) contains commands that initialize the network
configuration and set the values of various parameters of the
network:

get network t50.net {read in the network definitions }
get patterns corpus.50.pat {load the pattern file }
set ecrit .001 {set the exit criterium }
set dlevel 3 {set display level }
set slevel 1 {set log level }
set Iflag 1 {set learning flag to true }
set mode Igrain epoch {train the network in epochs }
set nepochs 100 {every epoch runs for 100 iterations }
tall {test all patterns }
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A template file (.tem) is used to specify the appearance of the
display screen and the way in which various display objects, called
templates, will appear on the screen:
define: layout

pname ipatterns tpatterns (scaled by 10)
epoch $ tss $ $ % $

cpname $ pss $

centers(scaled by 100):

$

output(scaled by 100):

$

weights(scaled by 100):$

$ $

end

epochno  variable 1 $ n epochno 5 1.0

tss floatvar 1 $ n tss 71.0

cpname variable 2 $ 5 cpname -5 1.0

pss floatvar 2 $ n pss 7 1.0

env.pname vector 0 $ 2 pname vd 00 5
env.ipat matrix 0 $ n ipattern h3 1000 502
env.tpat matrix 0 $ n tpattern h3 1000 501
centers  vector 3 $ 7 weights h6 10000 5
output vector 3 $ n activation h 3 100.0 0 26
weights  vector 3 $ n weights h4 100.00 10

The pattern file (.pat) format:

A pattern file contains for each pattern a pattern name followed by
'ninput’ input values and optional 'noutputs’ output values.

The weight file (.wts) format:

A weight file contains the coordinates of the centers and their
weights to the output units. The format is:

‘nunits’ weights to each output unit are followed by the coordinates
of each center. All values are written as floating point numbers and
separated by a space.



