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In a discrete review inventory process, when the demand

forms a stochastically convergent sequence of random variables,

it seems reasonable that the optimal stationary (s, 5) inventory

policy will be a function of the limiting demand and cost structure

only. The intent of this paper is to provide a rigorous justification

of this conjecture under suitable restrictions. Assuming linear

costs and integer valued demand, the problem is essentially reduced

to showing the existence and finding an expression for the stationary

inventory distribution.

The stationary inventory distribution, with an (s,S) policy

in effect, is derived by applying renewal theory to the inventory

process with renewals defined as those periods in which a positive

amount is ordered. For this purpose a version of the key renewal

theorem for stochastically convergent sequences is proved and
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formulated in terms of integrals. The integral formulation is used

to derive the stationary distribution of the excess variable and the

stationary probability that a renewal will occur, or equivalently,

that an order will be placed.
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OPTIMAL STATIONARY (s,S) INVENTORY POLICIES FOR
STOCHASTICALLY CONVERGENT DEMAND SEQUENCES

I. INTRODUCTION

This paper extends key results in renewal theory to include

sequences of stochastically convergent random variables and applies

these results to find the optimal stationary (s,S) inventory policy,

when demand forms a stochastically convergent sequence.

Two problems of considerable importance to those organiza-

tions whose operation requires the holding of stock are: deciding

when to place an order for replenishment of their stock of items,

and deciding how large an order to place. Uncertainty concerning

the number of items which will be demanded during a given time

period must be taken into account in making these decisions. If it

were not for this uncertainty concerning demand, new stock might

be ordered in such a manner that it would arrive precisely when

needed and in exactly the right amount, thus eliminating the need for

holding inventory.

I. The Inventory Problem

The inventory problem is a sequential decision problem

whose general statement is embodied in the following notions. At

the beginning of a certain number of equally spaced time periods a

decision is made as to what amount, if any, should be added to



present inventory in anticipation of future demands. This decision

is made so as to minimize a cost associated with the ordering and

holding of inventories.

Inventory

1 3

Period

Figure 1. Four period inventory process.

Figure 1 represents a four period inventory process in which

the demand is taken as uniform over the period. In each period the

height of the left and right hand ends of the diagonal lines represent

the beginning and ending inventories, respectively; the demand

is the difference between the beginning and ending inventory. The

vertical lines represent the stock delivered at the beginning of the

period. This stock is added to the ending inventory of the previous

2
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period, resulting in the new starting inventory. In Figure 1 there

are deliveries in periods three and four. There is excess demand in

period two, represented by a negative inventory, and satisfied from

the stock delivered at the beginning of period three.

From this basic formulation an inventory model is usually

classified according to one or, more likely, a combination of the fol-

lowing: cost structure, nature of future demand, method used to sat-

isfy orders, planning horizon, and/or the specific class of order poli-

cy under consideration. Each of these c;onsiderations is important

in its own right and will be discussed separately.

The following three cbsts are usually taken into account each

period: a holding cost h(x) which is often taken as a function of

the stock on hand at the end of the period, if that quantity is positive;

a penalty cost p(x) which is a function of the amount by which

demand exceeds supply during the period; and an ordering cost

c(z) charged for ordering an amount z. In addition almost all

models include a discount factor a(0. < a < 1) which keeps the

money values from period to period relevant.

There are a wide variety of assumptions about the form of

these various costs of which the following seem to be the most popu-

lar. The holding and penalty costs are often assumed to be linear

functions including a revenue term. Other assumptions concerning

penalty cost run the gamut between two extremes. A prioiity order,



mand is lost. The ordering cost is often assumed to be of the form

z =0

K+cz z > 0
(1) c(z) =

with the analysis changing according as K> 0 or K = 0. For all

three of these costs, in particular the order cost, some work has

been done with more general functions. Referring to Figure 1 there

would be an ordering cost in periods three and four, a penalty cost

in period two, and a holding cost in periods one, three, and four.

Demand is either deterministic (known exactly in each period)

or probabilistic, in which case demand per period is taken as a ran-

dom variable satisfying a variety of conditions. Deterministic mod-

els generally serve as first approximations and are used to study the

gross aspects of the inventory process. Probabilistic demand, with

1 Expression (equation, theorem, etc.) numbering will begin anew
in each chapter. Reference in a chapter to an expression in that
chaptei will use just the expression number, while reference to an
expression in a different chapter will be the chapter number fol-
lowed by the expression number.

4

with an accompanying high cost, is used to satisfy the excess de-

mand immediately, or backlogging is allowed, in which case the

excess demand is kept on the books and satisfied, in so far as pos-

sible, from the next shipment with little or no penalty. Also in this

regard a common option is the lost sales case in which excess de-
1
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which we will be solely concerned, is often assumed to be independ-

ent and identically distributed from period to period, with many re-

sults available under these assumptions. Some work has been done

for demands which are not identically distributed.

Lag in delivery, the time from the placing of an order till it

arrives, is another factor which adds reality and complexity to in-

ventory models. The lag is most often taken as a fixed number of

periods, although it is sometimes more realistic to assume lag is

a random variable with a known distribution. This latter interpreta-

tion is connected very closely with models where a decision to order

is interpreted as a decision to produce. Even more generality may

be allowed by admitting more than one kind of order, each with its

own cost and lag, a longer lag usually implying a smaller cost.

Because of the complexity of gerieral inventory problems it is quite

often the case that the true optimal ordering policy is not feasible

to calculate or apply. For this reason one often optimizes under the

assumption that a particular type of policy will be used. There are

two particular policies which lend themselves to this use: the (s,S)

policy, and the single critical level policy. The reasons for their

uses are: they have been shown to be optimal in a wide variety of

situations, and they are easy to apply. The (s,S) policy, s <5,

is effected by ordering up to the quantity S whenever the present

stock falls below s. (See Figure 1.) The single critical level
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policy is the (s ,S) policy with s = S, that is, whenever the

inventory drops below S order up to S. Both of these policies

are normally associated with the linear cost function given by (1),

the single critical level policy being optimal when there is no set up

cost, K = 0, while the (s,S) policy is normally optimal when

K > 0. It must be mentioned here that although an (s,S) policy

may be optimal for a particular inventory process the parameters

and S are generally difficult to evaluate and no generally feasi-

ble method has been forwarded for the calculation of these numbers.

The planning horizon is generally divided into the static and

dynamic cases. Static models are concerned with a single period,

while dynamic models have more than one period and are usually

classified as finite or infinite according to the number of periods.

Static models, aside from interest per se, provide insight into the

structures and methods of solution of dynamic models. In static

models the inventory at the end of the period is somehow salvaged

or lost,while in dynamic models it serves as starting stock for the

next period. This use of the ending inventory is one of the principal

differences between the formulation of a static and dynamic model.

The distinction in the formulation of a finite horizon model as com-

pared to an infinite horizon model will be made apparent in the dis-

cussion of the mathematical model.



2. The Mathematical Model

We now turn to a formulation of mathematical models for

dynamic inventory processes. Designate the demand in period i

by with distribution function ill.. The model to be used is

essentially that of Arrow, Harris, and Marschak (1951) and has

received extensive treatment in the literature. Let x be the

size of the stock at the end of the (i-1) th period, then the expected

hcost for the itperiod if we order up to y, y > x, is

(2) c(y-x) + L(y;

where

rY
L(Y; -Y)dl'i(g)

1 0

This is the expected value of the ordering, holding, and penalty

costs. Let f(x;.1.. be the minimum discounted
1 1+1'

expected cost which will occur in an infinite number of time periods
.starting with the th period. Then the minimal expected cost for

.th ththe period and the (i+1) period are related by the basic

functional equation

7



(3) f(x; (1) inf Ic(y-x)+L(
Y>x

Swf(Y-- ; i() }
0

Iglehart (1963a, p. 11-14) gives a rigorous justification of (3). In

the special case where demand is identically distributed (3) becomes

f(x) = inf I c(y-x)+L(y)+ a f(y- )(311(

Y > x 0

If the planning horizon has only a finite number of periods then the

basic functional equation is written

fn(x; 'i+n-1)
>

inf {c(y-x)+L(y;
3.)yx

00

f ,
1.-b

i-1)c1(11.() }
1+1 n

0

where the subscript on f refers to the number of periods re-

maining and
f0

is interpreted as the salvage value. Here, of

course, fn is the expected minimum discounted cost which will

occur in n periods.

+ a



9

3. The (s,S) Policy

Turning now to one of the most widely discussed ordering

policies, the (s,S) policy, we will summarize a particular selec-

tion of results concerned with this type of policy. The interest here

is not so much the conditions themselves as their reasonableness as

assumptions regarding the inventory process. The (s,S) policy

is usually optimal, provided ordering costs are given by (1) with

K > 0 or, more generally, when the ordering cost is concave.

Additionalrestrictions, however, must be placed on the form of one

or more of the following: demand distribution, holding costs, and/or

penalty cost.

In the case of static probabilistic models Karlin (Arrow,

Karlin, and Scarf, 1958, p. 109-134) has established that the (s,S)

policy is optimal for c( z) given by (1) with K > 0 under a varie-

ty of additional restrictions. If Karlin's restrictions are satisfied,

the parameters in the optimal (s,S) policy are calculated as the

solutions of the following set of equations

a L(S, ti) = 0

and

L(s,1)) = L(S, 0+K s <S.
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Although no such considerations arise in a static model, the inter-

pretation of what constitutes an optimal policy changes in dynamic

models. To be more specific, if the parameters of the inventory

process are stationary, then the optimal (s,S) parameters for a

finite horizon model will be functions of the period (because of the

changing ingth of the planning horizon). The optimal param-

eters for an infinite horizon model will be time independent be-

cause at the beginning of each period the future is exactly the same.

For the finite horizon dynamic model Scarf (1960) has shown

that if c( z) is given by (1) with K > 0, if the demands are

identically distributed, and if L(y; 0 is a convex function of y,

having continuous second partials then the optimal policy in each

period is (s, 5) with the parameters being functions of the period.

This result can easily be shown to hold for the case where the de-

mands are not identically distributed as long as each L(y;1)i),

i = 1, 2, satisfies the conditions required by Scarf. There is

also a version of this result which holds for discontinuous functions

and therefore includes integer valued random variables (Zabel, 1962).

To illustrate how the optimal parameters when m periods remain,

and S , would be calculated, consider an n period model

with m < n and future demand . Let
n



c" MY; 'lln-m+1)(4) Grn(y;

then S is the universal minimum of G (y) and s is the

unique solution of

G(s) = G(S) + K s < S .m

Because of the generality of the assumptions, the function

G (y) may behave badly, and so far no practicable method has been

iforwarded for finding, n general, the minimum of G (y).

Turning now to the infinite horizon dynamic model, Karlin

(Arrow, 1958, p. 135-154) has shown for a cost function given by (1)

with K > 0 that the (s,S) policy is optimal under the additional

conditions: h(x) = h x, p(x) = p x, p> c, c+h > op, and

identically distributed demand. This result holds for both the finite

and infinite horizon models. In the finite horizon dynamic model the

parameters are calculated using (4) and (5) as described. In the

infinite horizon case the optimal (s,S) parameters are calculated

using renewal theory to find the expected discounted cyclic cost and

minimizing this cost to find the optimal (s, S) values. The cycle

referred to is the natural inventory cycle defined by the interval

(5)

)dn-m+2' n n-m+1

11
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from a period during which a positive amount is ordered to the next

period in which a positive amount is ordered. Although the param-

eters are the same from period to period, the calculations can be

done readily only in very special cases. Iglehart (1963b) has ex-

tended the work of Scarf (1960) to the infinite horizon dynamic in-

ventory model with the result that, under essentially Scarf's condi-

tions, the optimal policy is (s,S). Recently, Vienott (1966) has

shown for nonidentically distributed demand and nonstationary

costs that if the negatives of the one period expected costs, given by

(2), are unimodal and their global minima are rising over time, then

the (s,S) policy is still optimal. In the stationary case the uni-

modality is all that is needed, and therefore, in the stationary case,

Vienott's conditions are weaker than Scarf's. Computation of these

parameters is again prohibitive and most work is done with bounds.

4. Stationary Analysis

Thus we are led to the conclusion that the (s,S) policy is

optimal in many circumstances. This policy, because of its form

and simplicity, has strong intuitive appeal and is one of the few

types of policies which lends itself to probabilistic study. We shall

restrict ourselves to the study of stationary (s,S) policies when

demand forms a stochastically convergent sequence. Specifically,

it will be shown that under certain conditions, the optimal stationary
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(s,S) policy is the same for both a sequence of demands (.), con-
].

verging in distribution to and the sequence formed using

each period.

Let xn represent the stock at the end of period n when

an (s,S) policy is applied. It will be shown that under certain re-

strictions the distribution of
xn approaches a limiting distribution

as n becomes large, and that this limit distribution is the same

for both types of demand sequences. This limiting or stationary

distribution is a function of the limiting demand distribution and the

(s,S) parameters. The benefits of such analysis, even though it

does not necessarily give the parameters which minimize the expected

discounted cost, are: it provides a policy which is easily computed;

it reduces the inventory problems to a study of the associated re-

newal process; and it provides a method of studying the inventory

process which is independent of the cost structures. Thus stationary

analysis gives a practicable way of studying variation in optimal

policy with changes in the cost structure, since a specific cost

structure can be superimposed on the problem after the analysis.

It is the derivation of the stationary distribution of x which

introduces a second field of interest, in which new results will be

established. Two approaches to finding the stationary distributionare

used by Karlin. One is to show that the distribution is a fixed point of

the linear transformation which relates the final inventory in one
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period to that in the next and to solve the associated integral equa-

tion (Arrow, 1958, p. 223-269). The second method is to treat the

problem as one in renewal theory and use renewal theoretic limit

theorems to derive the desired limiting distribution (Arrow, 1958,

p. 270-297). These methods overlap in that the integral equation is

a renewal type equation. Both methods have been applied to prob-

lems where the demand from period to period is identically distribu-

ted. When the demand distributions form a convergent sequence, the

first method appears formidable, but due to recent results in renewal

theory, concerned with sequences of non-identically distributed ran-

dom variables, renewal theory can be used to find this stationary

distribution for convergent demand sequences. This approach to

finding the stationary inventory distribution employs renewal theory

to such a depth that a separate introduction to renewal theory, in-

cluding a summary of pertinent results, will be given in Chapter 3.

Because we are primarily concerned with integer valued

random variables, all integrals will signify Lebesgue-Stieltjes inte-

gration. Also, when dealing with a sequence of demand distributions

()the notation n
(x) denotes the convolution of

(0)
t'i+1' particular .1). (x) will be understood as

1

the unit step function. Other notational conventions will be described

where they are used. We will be concerned throughout with the com-

parison of properties of a convergent sequence of random variables to
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those of the sequence formed using the limiting random variable.

These sequences will be described respectively as a renewal se-

quence and the associated renewal process.

When speaking of the convergence of a sequence of random

variables, we mean convergence in distribution.

Definition: A sequence of random variables with distribution

function { ,C converges in distribution to the random variable ,

with distribution function 1), if 0:Di(x)--..- .1)(x) at continuity points

For the integer valued random variables with which we will be con-

cerned, convergence in distribution implies uniform convergence on

every finite interval. Throughout this paper we make frequent

reference to a "limiting" random vairable. This is to be interpreted

as indicating any random variable which has the limiting distribu-

tion function.



II. OPTIMAL STATIONARY INVENTORY POLICY

As mentioned in the introduction, we are concerned with the

analysis of the stationary behavior of the inventory level and costs

associated with an (s, 5) policy, when the future demands form a

stochastically convergent sequence. If the expected cost in period

n with stock level x at the end of the period is V(xn), we

may wish (Arrow, 1958, p. 16-36) to choose the (s,S) policy which

minimizes the expected average long run cost

lim
n .woo

or equivalently minimizes a weighted discounted present cost

oo

V(xn)

(i-1) ,
aV(x.

The explicit regularity conditions to be imposed on the sequence of

demand distributions are given in the following three definitions.

Definition: A sequence of nonnegative, independent, integer valued

random variables I will be said to satisfy condition (A) if it

converges in distribution to a random variable , and if the se-

quence p.. =) forms a positive, uniformly bounded sequence
3.

16

lirn (1-a
a 1' 1

f=1



> (x) for all x and i where

Sequences satisfying conditions (B1) and (B2) will be said to satisfy

condition (B).

Definition: A convergent sequence of independent, integer valued

random variables is said to satisfy condition (C) if the limit random

variable has one of the properties: = 0) > 0, or P( > > 0

for all positive integers n.

The sequence of random variables M I defined by

= n)

0

co

SI
I x I dT(x) < co

-co

0 < <

n = i+1

n> i+1

converges in distribution to the random variable defined by

1D( = = n > 0 .

17

of real numbers converging to the positive real number = E(0.

Definition: A convergent sequence of independent, integer valued

random variables is said to satisfy condition (B1) if the limiting ran-

dom variable is of period no greater than one, and to satisfy condi-

tion (B2) if there exists a distribution function *x) such that
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This is an example of a sequence of random variables satisfying

conditions (A), (B), and (C). Examples of sequences of random

variables violating these conditions will be given later in this chap-

ter.

1. Optimal Stationary (s,S) Policy

As mentioned in the introduction it will be shown that, under

certain restrictions, the stationary inventory levels are identical for

both a convergent demand sequence and the associated demand proc-

ess. The demands not being identically distributed cause the single

period costs to be functions of the period; if the single period costs

converge, then it seems logical that the optimal stationary (s,S)

policies might be identical for both types of sequences...

We consider an order function given by (1. 1), linear penalty

cost, and linear holding cost. In the following analysis it becomes

apparent that other assumptions concerning the holding and penalty

costs would lead to the same result. We now state the principal

theorem concerning the optimal stationary inventory policy.

Theorem 1: If a sequence {).} of integer valued demands satis-

fies conditions (A), (B), and (C); if the holding and penalty costs are

linear; and if c(z) is given by (1.1) then the optimal stationary



(s,S) policy for the inventory model

co

f(x;
.I.1'1)2'

= inf { c(y-x)+L(y; .1) )+ f(y-g;.1)2,To3, -)dt.i(g)}
1y>x 0

is the same as that for the model

oo

f(x) = inf {c(y-x)+L(y) + a S f(y-g )d.I(g) } .

y> x 0

The proof of this theorem is quite lengthy and depends on

several preliminary theorems and lemmas. We now digress to

develop these results, and will return to the proof of Theorem 1

in Chapter 4. The following gives a brief sketch of the steps which

are taken.

Under the assumptions of Theorem 1 the optimal stationary

(s,S) policy, when the demand is identically distributed, can be

calculated in two steps. First, find the limiting distribution F(x)

of the stock xn on hand at the end of the nth period with an arbi-

trary (s,S) policy. Then, using this limiting distribution and the

single period cost structure C(x; .1), minimize

PS
C(x; )dF(x)

-co

with respect to s and S, where

19



(1) C(x; ,1)) =

co

K+c(S-x)+p (-S)d(0 + h (S )dV0 x < s

co

h (x-)d) s <x < S

We may calculate the average long run cost this way because

n
(2) lim i=1

C(x; OdF .(x) C(x; 1)) lim [

n 00
i=1 -0°

PS
C(x; (1.)dF(x).

-co

This sequence of equalities is easily justified and will follow from

applying Theorem 1 to a sequence of identically distributed demands.

For the model where future demands are given by {.1)j}

we will show

20

(3)
1lim nn oo

i=1
C(x..1).)dF.1 (x) = C(x; 1.)dF (x).

1--co -oo

C(x; .T.n) C(x; uniformly in x on any finite interval.

This proof consists of showing that as n Fn(x)--. F(x) and



2. Conditions (A), (B), and (C)

Turning to a discussion of conditions (A), (B), and (C) it will

be shown that for general linear costs and uniformly bounded (s,S)

policies, condition (A) implies C(x; C(x;1) as n

Linear costs simplify the exposition and are common assumptions

concerning cost. Under these assumptions the only question which

remains is what additional restrictions on the sequence

sufficient to insure that lim Fn(x), for the sequence

exists and is equal to the limiting distribution of the ending stock

for the identically distributed sequence. Let N(n) be the number of ran-

dom variables that can be added in sequence, Until adding one more would

exceed n. Then the crux of the problem is finding sufficient condi-

tions that

(4) urn [ E(N(n+1))- E(N(n) )j = .

n

This problem is the core of renewal theory. Smith (1961) and

Williamson (1965) have considered (4) for sequences of nonidentically

distributed random variables. The following will rely heavily on their

arguments. We will consider only those results of Williamson's

paper concerned with nonnegative, independent, integer valued

random variables since they are our primary concern.

21
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(5-2) sup lp MI <1_
k u

k> 1

for all t satisfying d < I t I < Tr where

co

pk(t) = eitxdP(. < xl I

0 lk

and there exists some positive constant B such that for all n

and j

(5-3)

00

P
k=j

= n) < B.

-akI < M);

22

There are two main types of restrictions discussed in this

context: one has to do with the lattice structure of the random vari-

ables; the other involves the uniform behavior of the tails of their

distribution functions or the probability that theytake on widely sepa-

rated values. To guarantee the desired lattice structure, Williamson

requires that there exist a subsequence {i } of {i}, a se-

quence
{ak}

of real numbers, and positive constants M and co

such that: for all k,

(5-1) P(I M) > (t) ;

for any d, 0 < d < 1T there exists u > 0, u = u(d), for which



(6-1)

uniformly for all n> N, for all x and all n > N there exists

T(x) such that IT. (x) >T(x), and
n

(6-2) (O(3xd(x) < 00 ;

0

or

(7-1)

lim
k

(7-3)

il
an+j

j=1

Iln+3
. = a

P(k > z) <

23

For the random variables to have the desired uniform be-

havior of their distribution functions, Williamson requires that there

exist positive constants a and N such that one of the following

sets of conditions is satisfied:

co

(7-2) lirn x dl)n(x) 0

uniformly for all n > N, and there exists positive constants

and z such that for all k,



or

(8-1)

uniformly in k, and

oo

(8-2) P(k>N)<oo.
k=1

Concerning the lattice structure of sequences of random

variables satisfying (A), condition (B1) is more general than those

of Williamson since it allows random variables of the form m+kd

where d > 2, g. c. d. (m, d) = 1, and k = 1, 2, 3, such

sequences would be ruled out by (5-2). Conditions (A) and (B2)

constitute a special case of (6) the first of Williamson's conditions

for the uniform behavior of the distribution functions.

The determination of necessary conditions, on a sequence of

nonidentically distributed random variables, in order that (3) holds,

appears extremely complicated. From the following example it

appears that some condition like condition (B1) is necessary. Let

Pk = 2) = 1, n = 1, 2, 3,

Tim
n

x d .11k+i .(x) = a

24

then {n} does not satisfy condition (B1) and N(n) = []. From
2



which it follows that (4) is not satisfied although

2lim {E(N(n+2)) E(N(n))} ) -
"" 1n

Because of the complexity of the problem, even discussing the neces-

sity of condition (B2) is difficult. We shall only consider whether

some sequence exists which satisfies conditions (A) and (B1)and does

not satisfy (4) or, at least, does not satisfy any of the three sets of

sufficient conditions (equations (6), (7), and (8)) given by William-

son.

Given a sequence of random variables which satisfies conditions

(A) and (B1), Williamson's results say that for (4) to hold it is suf-

ficient that either (6-2), (7-3), or (8-2) hold, provided the random

variables are not of the form m+kd, g.c.d. (m, d) = 1. Consider

the random variable , defined by

P( =i) = 1/2i+1, i > 0 .

Let the sequence of random variables {n} be defined by

(9)

(n+ 1)/ n(n+3)

on+ 1+ 1

(n+ 1)12n(n+3)

25

The sequence {n} converges in distribution to and satisfies



conditions (A) and (31). Letting

i'(x) inf [ P( < x)]
i> 1

it follows that

00
oo

xdIf(x) =
0

n=1
2

1 1 1
}n+1

+ { (n+ 1)/ n(n+3) (n+2)/ n(n+4)

1

(n+2)/n(n+3)

which diverges. Since any other uniform lower bound on the se-

quence un} would have a larger mean, it follows that (6-2) is not

satisfied and it is easily seen that neither are (7-3) or (8-2). This,

then, is an example of a sequence which satisfies conditions (A) and

(B1) and does not satisfy any of the sufficient conditions given by

Williamson. This still provides no answer as to what conditions are

necessary for (4) or even whether conditions (A) and (B1) might not

be sufficient. The sequences which might be constructed to look for

counter examples to the latter questions, such as (9), appear impos-

sible to analyze.

Condition (C) is needed in addition to (A) and (B) in order that

convolutions of sequences of random variables satisfying conditions

(A), (B), and (C) will again satisfy conditions (A) a d (B). Some

26
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such condition is necessary since conditions (A) and (B) are not suf-

ficient as is illustrated by the sequence Ign) defined by P(l) =1,

for all n. This 6equencesatisiies conditiofis~(A) and (B) while the se-

quence X xn = 2n-1 + g2n, does not. It may be true that, taking

into account the possible changes in the period of the convoluted ran-

dom variables, a different interpretation of the limit theorems in

Chapter 3 might eliminate the need for such a condition. For the

present, however, we will dismiss such investigations and use

condition (C).



III. RESULTS IN RENEWAL THEORY

A sequence of independent random variables is called a

renewal sequence. If a renewal sequence consists of identically

distributed random variables it is called a renewal process. We

may specify a renewal sequence by its corresponding sequence of

distribution functions Since we are concerned with renewal

sequences which constitute convergent sequences of random vari-

ables, we will define the associated renewal process as the renewal

process formed using the limiting random variable. A renewal se-

quence is termed discrete if there exists a real number d > 0 such

oo

that = kd) = 1 for all n, if there is no such d then

k=-00

the sequence is termed continuous. Since we are concerned with

discrete sequences only we will assume (without loss of generality)

d = 1 and will derive here those results concerned with discrete

random variables. Finally, we denote the partial sums of {n}

by Sn, that is Sn = + +

Given a renewal sequence {n} and a real number x,

define

N(x) = u(x-Sk)

28



where u(x) is the unit step function. If the random variables

{n} are nonnegative then N(x) is that integer for which

< <
SN(x)+ 1. Renewal theoryN(x) is concerned with properties

of the random variable N(x) and random variables defined in

terms of N(x). In particular, the renewal function H1(x) for a

renewal sequence
{.10n}

is defined by 2

H 1(x) = E(N(x)).

Since, for nonnegative random variables,

00

(1)

E(N( )) =

k=1

it follows that

00

(k)
H 1(x) = (1,1

(x) .

k=1

Considering the random variablesn} as observations of the life

span of components which wear out and must be immediately replaced

then
H1(x) is the expected number of replacements in the time

(D(k)(x) - (k+1)(x)]
1 1

1 Because we will be concerned with renewal sequences formed
from {(1)n} by dropping the first (i-1) terms we will denote

xbyH.( ) the renewal function associated with (1)., 1+1'

29



(2)

30

interval (0,x] , given that a replacement was made at time zero.

If {gn} is a nonnegative integer valued renewal process, it fol-

lows from a theorem of Erdos, Feller, and Pollard (1949) that

1lim [H(n+1) - H(n)1 E()

for suitably restricted { n}. This result is called the key renewal

theorem and has been shown to hold for a wide variety of independent,

identically distributed sequences of random variables. Another ran-

dom variable associated with renewal theory and with which we will

be concerned is the excess variable defined by

i(x) = SN(x)+1-x .

Recalling the interpretation ofthe renewal function in terms of re-

placing worn out components, the excess variable is the amount by

which the lifespan of the component in use at time x, exceeds

time x. For a nonnegative renewal process ad with

0 <E(,) co a well known (Smith, 1954) limit theorem states:

PO-1(x) < y)urn= duE( )
0 1

where Vx) is the distribution of For integer valued ran-

dom variables this becomes



such that

00

k=0

k71

lirn P(11(n) <k) = 1-Vu) du
1

n JO E(1) - E(1) i=0

Aside from the slight modification of allowing the first ran-

dom variable to be distributed differently from the rest of the se-

quence, most results in renewal theory are concerned with renewal

processes.

1. The Key Renewal Theorem

We now turn to the consideration of the key renewal theorem.

Consider a nonnegative, integer valued renewal sequence qn)
which satisfies conditions (A) and (B). It will be shown that

urn [H.(n 1) - H.(n)]
n

uniformly in i. Under these restrictions this result complements

those of Williamson (1965). In part, the proof will use an argument

based on the following theorem of Erdos, Feller, and Pollard (1949).

Theorem (EFP): Let pk be a sequence of nonnegative numbers
co

= 1 and let m kpk < 00 . Suppose that

k=0

31



P(x) =

CO

32

xk is not a power series in xt for any t > 1. Then

k=0

1-P(x) has no zeroes inside the circle I < 1 and the series
co

The key renewal theorem is derived from Theorem (EFP) by

considering the renewal process whose random variable is such that

P( =n) =p and observing that H(n+1)-H(n)
UT1+ 1

for n> 0 .

We will prove a version of the key renewal theorem by

showing that under conditions (A) and (B) a convergent integer valued

renewal sequence has

nlimH.( +1)-H.(n) = u
1 1

n+i,
-4' 00

where un is formed from the associated renewal process using

1
u and u = p.0 This definition of un is the

0 1-13011 I. n-3.
i=0

same as that in Theorem (EFP). For a renewal sequence

satisfying conditions (A) and (B) the following notational conventions

will be used where 4*(x) is the distribution of the limit random

variable and ?)(x) is that distribution function guaranteed by

condition (B2):

1has the property that lim uk = m .
k 00



and for n > 1

Un
=

u0 = 1 +

i u.i+1
+n-j 3

i=0

(6) Hi(n) -Hi(n-1) =

00

H PO
L=0

n-1
11+1 i+1+2

TT P i+rri] { Pi+ u.
3

m=0
n-j

(i)
4), (n) (i)

A consequence of conditions (A) and (B) being satisfied is 130 < 1

33

and if conditions (A) and (B) hold, then for n> 1

(5) Hi(n) - Hi(n-1) = un .

Proof: From (1) it follows that

00 oo

Pn = (lin) t(n-1)

1pn =,
1(

P n = t(n) - 1) .

Lemma 1: If {un is defined recursively by

00



and po po as 00, which in turn implies Hi(n) is finite

for all finite n. Since the series in (6) have only positive terms

they can be subtracted termwise so that

oo 00

(3)Hi(n) -Hi(n-1) = 09)(n) - (n-1)] = P( i+1
= n).

j= j=0 Q=0

This latter expression for Hi(n) -Hi(n-1) will be used many times

without specific reference in what follows. When n = 1;

co

Hi(1)-Hi(0) = P( = 1)
i+

j=0 1=0

00

= P(y1)+ P(i+1=1)P( = 0)
j=1i=0 m=0, m4i

oo oo

= p i[1+ P
1 1

rri=On + P(i.4.1=1)P(
j1 m=1 1=1 j=i m=0,m1

00

i i+1
= p1 u0 +

00

1 = 1

00
1-1 .i 1+1 V i+1 r TT i+r i+,Q+1

= P1 t10 +Z., 11 L "PO t10
r=0

1 = 1

34

oo .
1 -1 .

[ I Po [ 1 [ P
i+1 -rr i+r

+
i+m

1 0r=0m=i+1j=1+1
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Thus (5) holds when n = 1, uniformly in i. Suppose (5) is

true for all n such that 1 n k, uniformly in i, then

00

Hi(k+1)-Hi(k) = P(

j=0 =0

00 k+1

= P(gi=k+1)+I P(yi )P(
j=1 =1

TT P(i+m=0)P(gi+j=k+1)

oo j-2 k+1

+ TT P(. =O)[ =1)P( ,,=k+l-i)]
3.+r i+m+1

j=2 r=0
1=1 S=m+2

i+I = k+1)

k+1 oo j

= pi+1+/ p [ P( g. =k+14)]
k i+m

R=1 j=1 m=1

00 00 k+1m .

[TI PV] [ Pi
g =k+i-o]i+s

1+m+1

=1 S=m+2r=0m=0 j=m+2

oo j
-TT i+j

= pi1 i+m[1+ P( g =01 + p i+ 1
k+ Lik+14 " PO Pk+ 1r0

j=1 m=1 =1 i=
=

oo 00
m

[ ]Fr ,i+ri r i+m+ Low
" Yo J L Pk+1 ' gi+S=°)]r=0m=O i=m+2 S=m+2

m=1
1+m=k+1-.0]

0.
J-1 .

[ TT P1O+rniPki++ii
m=0

=

CO



which completes an inductive proof of Lemma 1.

If a renewal function H(x) is such that for any e > 0 there

exists a finite d(E ) > 0 with H(x+e)-H(x) < d(E) uniformly in

x, then H(x) is said to be of uniformly bounded variation.

Smith (1961) has established this property for quite general renewal

sequences. Although Smith's result includes the special type of

renewal sequences considered here, Lemma 2 gives a new proof for

this special case and also establishes that under conditions (A) and

(B) the bound on Hi(n)-Hi(n-1) is uniform in

oo
mIT r i+m+ 1
" 1-0 -1r=0m= 1=-1

k+1 CO 00

= p uk+1-1+
i i+1

1=1 m=

k+1

= pi uk+1-1 +
i 1+1

1=1 m=

00

00

.1-nrj 13i+m+111+
13( =On" PO 1C+1

-.

r=0 j=m+2 S=m+2

co

+ TT r 1 _i+m+1 ui-4-m+2 1
" PO " Pi k+1-.Q i

r=0m= / =1
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P( )]

j=m+ 2 S=rn+2

k+1
-r-rn

rH0 0
r V _i+m+1

Z., Pi k+1-1
= Ij L

1=1



Lemma 2: If a renewal sequence satisfies conditions (A) and (B)

then there exists p such that

(7) Hi(n) -Hi(n-1) < 13

for all n> 1, i> 1 .

Proof: Condition (A) implies II > 0, and that there exists an M

such that po < (l+p0)/2 < 1 for i > M. Therefore

oo

i+ 1
u = 1 + < M +

0 POm Po
2 2

1 POLet p = M + 1/ (-2- - ). We have already seen u < p for all
0

> 1. Suppose ui < p uniformly in i for all 0 < n < k-1.
n

Then

k-1 oo k-1
.e .i . .

3.+1
+m

i+1+1 1+1+2
u = .11

9C-Ju.. m
[ TT Plo] k-j uj

]

=0
j=0 1=0 j=0

k,1 00

I i
If T Po+m

1+1+1
P { Pki k-j

j=0 1=0 m=0
i4=0

< p [ -p(i)

< r3 [1- p(i;

m=0

k-1

[
J.44+1)Fo

1=0
oo ooIi 1+1

7 Porn 7 Pio+1111 < 13 '

+m=0m=o
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This completes an inductive proof of the lemma.

Next we prove a key renewal theorem essential to all that

follows.

Theorem If a renewal sequence {n} satisfies conditions (A)

and (B) then, uniformly in

urnHi(n) - Hi(n-1)
n--00

Proof: By Lemma 2 there is a (3 such that < p and ui < 13

uniformly in i for all n > 0. Theorem (EFP) guarantees that

given
E1

> 0 there is an
N1(E 1)

such that

(8)

for n >

00

Er6n<12

nN 4f3

It is also possible to select M(Ni + N2, E 1) such that

Iu
n 1

< 41

for i > M, 0 < n < N1 + N2. To justify this last statement

un
1 1

< 4

. From condition (B) there exists an
N2(E 1

38

such that



observe that given any E with 0 < e < (1-p0)/ 2 then for all

sufficiently large i

thus

1110 - u0

and

m m m+1 n m+1
i P n +Pn-1/11 + un-1

(13) iun-uni < max

(14)

m > i

1

uN+n

Ii
i Pn I < e

1 1< max 1-p0± e 1-p0

1 -po* e

pn+pn-1u1+ +p1un-1

n
E 1

<
2

2(3

j=0

holds for all n> 1, i > M. To prove (14) let n = 1, then using

Lemma 1, Lemma 2, and (10)

-
1 -pct

For any finite n, an inductive application of (11) and (12) to (13)

shows that the right side of (13) can be made arbitrarily small by

choosing i sufficiently large.

Letting N = N1 + N2 it follows inductively that

> N2+n-j+1)
3

39

(1-p0-20



uN+1 -, .<

N -1
1 00

i+1+N+1-juj
j=0 /=

p u. +
i+1

+ I N+1-j j

< p P(>N +2) [1 +

00

+ ( p0 0i+m)[1-pi-1-1+1-P(N +2)] ] 1

m=0/ =0

CO

1=

3.+m
( TT PO

)[

m=0

00

00
1

1 El 1+ max (+)[ 1-p + (
i+m

po
)( i+1+11-p ) ;

la, 2 0 0
m=0

1=0

(.>N2 +2)

+2)u + max {
0 2

E 1
_< 7 - + 2(3 13(E'?._ N2 + 2) uo .

Suppose there exists k > 1 such that for all n E [ 1 , k-l] , I > M

(14) holds, then

N1-1

j=0

i+1+1 i+1 +2,u. j
N+1-j

40

N

i+m>f
1+1+1 1+1+2 1

P
1

u
j

] -- 1
0 N+1-j 11

j=N1

P(>N2+2)u0 1



i11N+k- p. 1 5-

Letting

(15) Qk(i) =

then

I

uN+k
< ui > N2 +k+1)+ Qk(i)

(1 +E1)[1-130+ (ft P )[1-130 I]-r-r- i+m i+1+1 1

FL 2 m=0
t =0

N1-1
00

pi i+1..N+k-u +
3 j

j=0 =

k-lk-n-1
2p rpni

n1 j=0 / =0

Letting q = n+j in (15) we have

-r-r 3.4-m
( Po
m=o

N -1
1

1
< +2P u Pk >N2+k+ 1) + Qk(i).

0

i+1+1 i+/+2
. IPN+k-u.j

j=0

i+m i+/+1
0 )Pn

- P(%->N2 +k+1)) ui

41

N+k-1 00 N+k-1

+ u +1+1 TTH io N+mhrI Pi++1k-j j+1 Lii+1+2 11 I.N+k-j j m=0P

+k-n-j+1)

+max

(
1

-
11

E 1 (1-pi
02



lui -11 < A r.p
N+k

2 p
N'O > N2 + k + 1) ulo.

k-1
E

< +23 U P( >
N2

+ k-q+1)

crz.f)

which completes the inductive proof of (14).

Now since

n-1
<_16 2(3 ui. > N2 + n-j+ 1)

-1\14n '

j=0

oo

j=2

+ 2(32
6

4P2
1

as a consequence of (9); it follows that

Ii
- < E

1n

for all i > M, n > N .

Letting E = 2E1 then

co

i i+1 i+m i41+2
ur_q + ( H=opo )Pr ur..q

r=1 / =0

P(> N2 + j)

42

k-1

+ 21 P('-> N2+k-q+1)

q=1



(16)
I ui -n 2

for n> N, i> M. Condition (B) guarantees the existence of N

such that

co

< e /(2p ),

n=N3

and an
N4 such that

P(>
2M(3

If 0< u1 -1- then for n> N+ M (N3-1-(M-1)/2)]

1 1
u - - pn

j=1

3+.9 +

P(C>N +j)+(-1 E+) 1--
p, 2 II

M+1 1max ruk
M-1

ke[n-M(N3 ), n-M]
2

43

< (3 rp- + 5-E

This follows from

2max [ u 1
u1 < p 1:3(t. > N +1) + k -;
n -

ke[n-N3,n-l]



and M applications of

m+1 1[u --] <13 Pq.>N +m+1)+ max [ukm+2--:=L 1.
k p.

max

m-1
kE [n-m(N3+ 2 ),n-m]

If 0 < - uI then for n> N+MN4p, n

m+1
- 1.11 [13 P

I.

< - -4(C>N4)] min [uk ]
ri

kE [ ri-MN4,n-M]

1 E M 1

2 ) ( -
2M13 1-1

2

1 E E E
< - E1 - 1 - < < E .

213 p. 2-22

This follows from

11

and repeated application of

m+1
min

uk
> [ -13 P(> N4)] min uk

ice[n-(m-1)N4,n-m-1] [ n-mN4, n-m]

1-13 Pirg.s>

kE[n- rn+1)[N3+--2-],n-m-1]

44

It follows directly from the above arguments that

)) min

ke[n-N4,n-l]



(17)

uniformly in i for all n> N*, which proves the theorem.

2. An Integral Formulation

Smith (1954) has shown for continuous renewal processes that

an alternate form of the key renewal theorem

lim [H(x+a) -H(x"
a

E(Y

is

oooo
1 51 k(z)dzhm (x-z)dFl(z) E(g1) 0.--00 -

for every k( which is zero for negative arguments, nonnegative,

nonincreasing, and integrable on (0,00). Because of our special-

ized considerations we will establish, for suitably restricted integer

valued renewal sequences liDnI and sequences of convergent step

1

I <

45

for all i E [ 1 , M] and all n> N4c=max..{N+MN4,N+M(N3+ )
,

Since N*> N it follows from (16) and (17) that



functions, that

co

S=0
golim 11c. R .(n-i)d1) (1) = lim R(n-i)dH(i) - E(1)

(S) .

w
1

.

S+3
n -4-00 0 n 00 0

uniformly in j. The next three lemmas are preliminaries for the

presentation of this result.

Lemma 3: If a renewal sequence
{(1.n}

satisfies condition (A)

then H1(1)--.4-1(/) uniformly for all / in a bounded interval

[0, L).

Proof: As mentioned in Lemma 2, Hk(1) for all k> 1 and

H(1) are finite for all finite /2. Since (1) has only nonnegative

terms it follows that given any E> 0 and any / E [ 0, L) there exist

integers M and
M1

such that

M) E(/ )<

and

oo

Vjnt
n=M1

2M

From condition (A) there exists a K such that

46

R(z)dz



and

I ittic ) - ( 1 ) I <

for all / E [ 0, L). Suppose

I Ok(11)(/) - 0(11)(01 < E

then

I °k(r1+1)(i2) (n+1)
0 (.01 <

k
I P I < 22LM

for k> K, > 0. Consequently

i=0

( ) )1 d0 -m)-d0(/ -m) I
k+n

0(n)(m) 1.(n)(m) do(1 -m)

< E1+- 1
2M2

Using this argument in an inductive manner it follows that

(1\4)(1) < ECA

k
P i-Pi 2 22LM 2M

47



and

i=M
1

1=1

("I< M. 2M

Using arguments similar to those just given it follows that there

exists a K such that for k > K, E 0, L) the following three

inequalities hold:

E
I 111(1\4)(/ -(m)CO I <

(N41))1
(.12)-"D < 2M

M1
+M M1+M

k - T,i)02)1 < --E--2M
1=1 i=1

Now,

oo M1+(j+1)M-1

1:1(k) = 41)(i)(I)

i=M1+M i=M1el-jM

and

M +(j+1)M-1
(M1)

P)(/ ) < M e3""(m) (141.(-m) < Me j
k

0

< Ej+1

48



Hence, it follows that

Go

i=M +M
1

oo

i=

2

Ej+1 <
1-E 2

for sufficiently small E. Observing that

M +M M +M
oo 1 1

(1,k(i)(1) -

LiN' c.k(i)(1) - (i)(1)

i=1 i=1 i=1 i=1

00

(.T.k(i)(1) + )

i=M1+M+
1

<
2M

< E
2

completes the proof of Lemma 3.

Lemma 4: Let {.In} be a renewal sequence satisfying conditions

(A) and (B), and {Rn} a sequence of step functions converging

uniformly to the step function R in every finite interval. If each

Rn and R are integrable, nonnegative, and bounded by a uniform-

ly bounded integrable step function 11 such that '..'R(n) < 00 then1
n=0

49



uniformly in n.

P nroof:Let 13 be the uniform bound on dH.( ) guaranteed by

Lemma 2 and A the uniform upper bound on 1: (n). Then, given

E > 0, convergence of {R} guarantees existence of a J such
1

nthatR .( )-R (n) I < E ( 2 Ni3 ) for j > J1' nE [0, N). Lemma 3

guarantees the existence of J2 such that nIH.( )-H(n)I<E/ (2A).

Therefore for all nE [0, N), j > max

oo

(18) s+.; (n-i) ) (i) (n-i)dH (i)
0 0

S=0

00

S=0

(s
n11S+3

. )(-i)d.(1)] =

{J1, J2}

<H .(n) + A IH.(n )-H(n)I < E .

3

Thus it need only be shown that there exists J and N such that

(18) holds for all j > J, n > N.

R (n-i)dH(i)

50

R .(n-i)-R (n-i)] d413. (i) 1+1 R (n-i)[ dH.(i)-dH(i)] I

(S)
+3 3 0



such that

<2

s=0

i=N
1

nE [ 0, N1] there exists a J3 such that I nR. ( ) -R (n) I < E / (43 N1)
3

for j > J3 and from Theorem 1 there exists an N2 such that

for all n > N2 uniformly in j. Therefore

n-N1 n-N
R,(n - i) (1) +

So
1 R (n-i)dH(i)(s) .

ooiy sn n
[ R s-I-j(n-1)-R

(n-1)] d(i) I + I S R (n-i)[dH .(i)-d1-1(i)}i
J 3n-N n-N

s=0 1 1

I dH.(n) - dH(n) I

3

F nromthe convergence of R.( ),

R .(n-i)d45(.s )(i) ,cnR(n-i)dH(i) I

s+3

N1 1

413 N1

nEdH.(n-i) -1)-dH(
0

3
0

ANiE
13N + < E1+

U I < E / (4AN1)n n

for n < N1 + N2 and j > J3 which proves the lemma.

51
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Since < 00 and each > 0 there exists N
1

i=0
00
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Lemma 5: If K(x) is a non-decreasing, bounded function of total

variation r > 0 and b(x) is a uniformly bounded function such

that B1 < b(x) < B2 for x sufficiently large then

co

B1r b(x-z)dK(z) < B2r
-co

for sufficiently large x.

Proof: It is sufficient to prove the lemma when I b(x) I < B for x

sufficiently large. Let A be a uniform bound on I b(x) then, if

A = B, the lemma follows from

co

r°b(x-z)dK(z)I < AdK(z) .

-oo -oo

If A> B then given E > 0 there is an X0( E ) such that

I b(x) < B +

dK(z) < E 2(A-B)

for x> x0. Thus x> 2x0 implies

and

r°
xo



x0 oo

f°b(x-z)dK(z ) < lb(x-z),IdK(Z)+ lb(x-z)IdK(z)
-oo

0

oo

< B[K(x0) - K(-00)] + A S dK(z)

0

oo

< Br + (A-B) dK(z) < Br + e

xo

which proves the lemma.

This completes the necessary preliminaries for the second

renewal theorem.

Theorem 2: If a renewal sequence
{.I.n}

satisfies conditions (A)

and (B), if a sequence of step functions {Rn}
converges uniformly

to the step function R in every finite interval, and if each Rn

and R are integrable, nonnegative, and bounded by a uniformly
oo

Ibounded

step function R such that i(n) < 00, then

n=0

00 00

(19) lirn
n-4- 00

S

SnRs+j(n-i)4.$)(i) = lirn R(n-i)dH(i) R(i).
0 n.00 0

Proof: Given E > 0 the existence of N1
such that
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I R (n-i)dH(1)-Sn0
1=0

I dH(n) -! <

co

1=0

for all n
N1

follows from Theorem (EFP). Also there exists
oo

N2 such that R (i) < (413N1) where is the uniform bound

1=N2

guaranteed by Lemma 2. Therefore for n>
N1+N2

n-N1

R(i)I <I n-1)dH(i)--1 R(i)I

N1 i=0

oo

+ (i) +
N1

R (n-i)dH(i)1

i=n-N1

n-N1 n-Nl

< max I [ R(ifl

i=0

i=0

N1
1

II 4P N
1 0 4PN1

dH(i)

< < E
4N1

which proves the second equality in (19).
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Now,for a given E > 0, by Lemma 4 a J can be selected

such that

oo

/ Sn SnR s+J (n-i)dst, (s)(i) - R (n-i)dH(i) I <L
J 4

0 0
s=0

uniformly in n. If

K(n) = (n)
1

and

such that

i= 0

b(n) =

00

S=

then K(n) is monotone increasing with variation 1, and

oo

b(n) I < 13 Also,

i=0

00 00

()

(s)
Rs+J(n-i)dt. (i)

1R(i) - b(n) < R(i)

i=0

for sufficiently large n. Thus by Lemma 5 there exists an N1(E)
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00 co
n

ci (;)[
sin-j

R s+J(n-j-1 )d (s)(,f )] - R (i) I <
" 0 0

J 1-1,
I

I

s= i=0

for n> N1. Also there exists an N2
such that, for n> N2

J-1

fiRs+1(n-i)d411.(s)(01 <
0

s=0

From (20) and (21) it follows that, for xi* N1+N2

oo co

I / R s+k
0

s=0 i=0

for k = 1, and since the same arguments hold for any k > 1 the

theorem is proven.

3. Consequences of the Key Renewal Theorem

In concluding this chapter two renewal theoretic limits will be

found for renewal sequences {n} satisfying conditions (A) and (B).

The limits are the same as those of the corresponding renewal

process. They are: (a) the limiting distribution of the excess variable

as the renewal quantity becomes large; and (b) the probability with

which a two state stochastic process will be in a particular one of the
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states, as the time for which the process has been observed ap-

proaches infinity.

Property (a) is a new result which, aside from its renewal

theoretic interest, is an indispensable tool in the proof of Theorem

2. 1. The result closest to property (a) which the author has en-

countered is a theorem by Smith (1954) which says; if, in a renewal

process, the first variable is allowed to be distributed differently

from the others, the limiting distribution of the excess variable

remains the same.

Let n be the renewal quantity and {i} be observations

of the renewal sequence. The excess variables can be pictured and

expressed from Figure 2.

First Renewal Poin

r(n)

N(n)+1

Figure 2. Excess variable (large renewal quantity).
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From Figure 2, it is apparent that if r (n) is the excess variable

of ail then

P(ri (n) < k) =

5=

fbfl
(n+k-i) (n-i)]

s+1 s+1 1
0

For the excess variable of the associated renewal process

P(i(n)<k) = 1)(n+k-i) (n-i)} dH(i)+ Vn+k)
0

(Smith, 1954, p. 25). We therefore have

Theorem 3: If a renewal. sequence 1..1,1 satisfies conditions (A)

and (B), then for both {t.i.} and its associated renewal process

1lirn (n) < k) = - .

ns-00

Proof: Let R i(n) = Vn+k) Iii(n) then: R R (n),
i-00

(R(n) = cl5(n+k) - Vn)) uniformly in n, R.(n) < 1 for all i and

co

n, and 1..(n+k) - (1. i(n) < 1 - -a(n). Since (1 -S(n))= < 00,

n=0 lc-1

Theorem 2 applies and noting that = [1 -.1)(i)]

i=0 i=0

proves the theorem.

i=0



Turning now to property (b), consider two positive real

numbers u and v, and a renewal sequence { (u)} satisfying

conditions (A) and (B) which, for reasons which will become apparent,

we think of as functions of the real number u. Form the sequence

v, v, 2(u), and from this sequence form the new se-

quence of random variables {Li} defined by

L1
v, L2 =1,T+ (u), L2 vm +m

Him P(t not covered bytoo

111

j=1

Given any positive real t let i (t) be such that

59

.(u), L =L +v,
2m+1 Zm

Definition: A real number t is said to be covered by the se-

quence {L. if there exists n such that L < t < L
1} 2n 2n+ 1.

Karlin (Arrow, 1958, p. 276) has shown,for restricted renewal

processes, that

11 E((u))
v+E((u))

Before showing that this same result holds for suitably restricted

convergent renewal sequences we will develop some quantities used

in the proof.

Letting zi = v+ i.(u), it follows that

Fi(a ) = P(zi< a) = P(yu) < a - v).



Z 1+z 2
+ z

(t)
< t and z + z

2
+ z (t)+ 1 > t. It follows that

P({ Li} does not cover t) =

Now

P(1 (t) = n) = F(t) - Fn(t)
1 1

and

00

P({ L.) does not cover tti (t)n). (t)=r.

(n-m) (n-m+ 1) (t-x)]
P(z +z <s// (t)=n) = S

s [ F

m+

(t-x) -F
+1 (r11)

(n) (+ ) dF (x)m 1
0 [ F 1 (t) - Fn11 (t)]

which implies

[
1-Fn4-1(t

-s)}
dF (n)(s) .dP(z

1+. +zn< sif (t)=n) -
{F(t) F 1'11+1) (t)]

1

1 1

Thus
oo

Pa Li} does not cover t // (t)=n)P(/ (t)=n)
n=1

60

n=1

P(1 (t)=n)S P({ L.} does not cover t//(t)n;
0

z +z=s)dP(z 4-z < s/ (t) = n)n1 1 n-



00

=n1

00

n=

00

n=

Jo

0

P(v <t-s ; v+gn+1(u)>t-s) (1-17 (t-s))43F(n)(t)
n+1 1

(n) (

1-Fn+1(t
.11

-s) F (t) -Fn+1)1 (t)
1

P(v < t-s; v-qn+1(u) > t-s)dF(111)(s)

(n)
P(n+1(u) > t-v s)dF (s)

1

[ 1-P(1 (u) < x-s)] dF ( )(s).
n+

F(n)(t
1 1
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and

P({ L i} does not cover t/i (t)=n; zi+ +zn=s)

P(v< t-s/ v+g n+1(u) >t-s)

= P(v<t-s ;v+2.1+1(u) > t-s)/P(v+ gn+.1(u.)> t-s)

= P(v<t-s; v+ 1.3.4.3.(u)> t-s)/ [ 1-Fn+1(t-s)]

Summarizing these statements we have

(22) P({L.} does not cover t)



With this expression for P( { Li}

pared to prove

Theorem 4: Given two positive real numbers u and v, if the

renewal sequence {v+gn(u)} satisfies conditions (A) and (B) then

E( (0)lim P({ L.} does not cover t) - v+E( (0)
t 00

Proof: Since

ham [1-P( ( ) < x)] = ( ) < x)

and

implies

does not cover t) we are pre-

l-P(tri+1(u) < = E(+1(11)) < E( (u)) <
i=0

it follows that the sequence of functions (1-P((u.) < x) satisfy

the conditions on R (x) in Theorem 2. Since the sequence of

distributions {Fn} is assumed to satisfy conditions (A) and (B)

with = v+ E(g (tin, Theorem 2 can be applied to (22). This

62
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This proves the theorem.

00

1Urn Pa Li} does not cover t) - E(v+t(tin [1-P(t(u)<i)]
i=0

E(t (u))
v-I-E(t (u))



IV. PROOF OF PRINCIPAL INVENTORY THEOREM

The proof of Theorem 2. 1 was sketched in Chapter 2. We

proceed to fill in the details of this proof by deriving the stationary

distribution of the inventory level for demand sequences satisfying

conditions (A), (B), and (C). We will parallel the method used by

Karlin (Arrow, 1958, p. 270-297) for the case of identically distribu-

ted variables. The stock distribution at the end of period n before

ordering, xn, is written in two segments

P(S-a < x < S/ s < x <S)n n

and

P(s-a < xn < s/xn< s).

Thus, to find the stationary distribution of the inventory level for a

sequence of demands } satisfying conditions (A), (B), and (C)

we must find the limiting values of:

P(s < x < S),n
P(xn < s)

and the probabilities given by (1) and (2).
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1. Stationary Inventory Distribution

We first consider

urn P(xn < s)
n

and

and

(3-2)

Then letting

(4)

urn P(s < x < S) .
n

00

Let u = S-s and form the sequence of integer valued random

variables Ni(u) defined by

N.(
u)

1

(3-1) <U1+3 -
j=1

N.(u)+1

> u .
1+3

n = 1

n> 1

65



1, and let
1 1 2 in(

F
(

F(k) = P(N. u) +1<k) = P(N. (u)<k- 1) =
in

which imply the sequence

Since the sequence

(k)
u=

n+
1

From Lemma 3.3 it follows that

Fn(k) = 1 -0T. 1()(u
n 00

Also

00

lim xdFn(x) = lim i(u)- (u)]
00 0 nn+1 in+ 1

(i- 1) (i)

i=1

= lim (1+H. (u)) 1+H(u)
n-00 1 +1

and for all n

.rxdF(x) < 1+P u,
0

(r) (r+ 1 )
(u)-4). (u)

1n+1 1n+1

satisfies condition (A).

satisfies condition (A) it follows

66



and
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that there exists a distribution function te(x) such that t.(x) > (x)n

5.loofor all x and n, and 0 < xd.1)(x) < co. Thus, for the renewal
0

process formed using t.(x), it follows from Lemma 3. 3 that

E(T\I-(u))= H( u) < co. Therefore

(k)Fn(k) = 1 - 4.1(u) >
(k

(u)

and {Fn} saitsfies condition (B2). Unfortunately, the fact that

113d satisfies conditions (A) and (B) is not sufficient to guarantee

{Fn} satisfies dondition (B1). As an example, let u = 4 and

P(=2) = P(n=3) = 1/ 2,

then {n} satisfies conditions (A) and (B) but P(N(4)+1=3) = 1

which shows that {F} does not satisfy condition (B1).

U ft) also satisfies condition (C), then {Fn(k)} satisfies

condition (B1). This follows by observing that if pn > 0 for n>u

then P(N(u)+1 =1)> O. If, however, there does not exist pn
> 0 for

some n> u, but p0> 0 then let no, 0 < no _< u, be the

largest n such that p> 0. Let ko be the integer such that

k0 n0 < u and (k0 +1)n0
> u then

P(N(u)+ 1 = ko+ 1) > 0



(k +1) (k0+2)P(N(u)+1=k0+2)=F(k0+2) -F(k +1) = (u)- cZ, (u)

(k0
+1)

(k0+1) (k0+1) (k0
+1)

= (u) - [pot (u)+p1 t (u-1)+ +pnc (u-no)]
0

(k0+1) (k0
+1)

Pir (u) - ( in
i=1

Now j = u-k0n0+1 is such that i E [ 1, no] and

(k +1)
o

0
(k

+1)(u-j) = t(k0+1)(kon-1) 0t which is less than it (u) by at
ko

least pen . Therefore
0

P(N(u)+1=k0+2) > ppn° > 0
0

which implies, since two consecutive integers have positive probabili-

ties, that condition (B1) is satisfied.

Letting

L=Nil(u)' L=Ni (u)+ 1, L= +
1

N. (u), L =L +N. (u),
l 2 2m 2m+ 1 2m 1n+1

j=1

we see that all the conditions of Theorem 3.4 are satisfied, and that

Him P({1,,i} does not cover t)= lim P(xn< s).
t n co

Since

0
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lim P(s <x < S)= 1 - lirn P({L,} does not cover t)n-n 00 n-00

it follows that

11lirn P(xn < s) +E(N(u)) 1+H(u)n 00

and

1 H(u)lim P(s < x < S) = 1-n 1+ H(u) 1+ H(u)

The limits obtained in Theorem 3.4 are interchanged because of the

new significance of {Li}.

Now litn P(s-a <x <s/x <s) is exactly the limiting
n

00

distribution of the excess variable as the number of renewals be-

comes large. Before deriving an expression for this limit we will

need the following extension of the Helly-Bray Theorem;

Lemma 1: Let {fn(x)} be a sequence of uniformly bounded,

integrable functions defined on the interval [a, b] and converging

}uniformlyon that interval to f(x). Let {g( x)} be a sequence ofn

functions which converges uniformly to a bounded function g(x) on

[a, b] . If the total variation of each g ( ) on [a, b] is uniformly

bounded then

n 00
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nlim00
f (x)dg ( ) - f(x)dg(x) .
n n - a--. a

Proof: The proof of this lemma follows, with some modification,

from the usual proof of the Helly-Bray theorem (Gnedenko, 1963,

p. 264).

We are now ready to show that as the number of renewals

becomes large, the distribution of the excess variable for a renewal

sequence satisfying condition (A) is the same as that of the associ-

ated renewal process. The distribution of the excess variable for

the associated renewal process is given by

(5) P(11(z) < r) = 0(z+r)- 4(z) + (0 (z+r -x) - 0(z -x)) dH(x)
0

(Smith, 1954, p. 25). That renewals will occur with probability one

is a consequence of the Borel-Cantelli Lemma (Gnedenko, 1963,

p. 246). Let N be a period during which a renewal occurs when

the renewal quality is z ; then Figure 3 defines the quantities in the

following discuss ion.
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and

Renewal Points

N+1

ri(z)

N+2 FIN-1 N+N(z) I--N+N(z)+1

Figure 3. Excess Variable (large number of renewals).

Thus it can be seen that

P(ri(z) < r, N(z) = 0) %+1(z+r)- °N+1(z)

71

POI (z)< r ; N(z) = L> 0) (L)
= (4)1\11-L+1(z+r-x)-

0
°N+L+1(z-x))"N+P4

Therefore

(6) P(r)(z)<r) = N+1(z+r)-%+1(z)

N+L+ 1 (z+r -x) -I.N+L+ 1 (z -x))"N+ 1(x)
(L)

L=

From Lemma 3. 3, the uniform convergence on [0, z) of the



functions involved, and the fact that for M sufficiently large the
00

1termfli(L)
1(

) is arbitrarily small uniformly in N, it follows
N+

L=M

that Lemma 1 applies and the summation and integration in (6) may

be interchanged. Thus

urn (z) < r = .1.(z+r)-.T.(z) + (.1.(z+r-x)-1)(z-x))dH( )

fl ...4.Q0 0

which agrees with (5).

To calculate

lim P(S-a <x <S s<x <S)n
co

let u = S-s and consider the sequence of random variables defined

by (3) and (4). Given an integer j > 1, let r be the integer

r+1

such that
n=1

uIN. ( ) <5 and

n=1
in

N (u) > j. If for some j no
in

such r exists then lim P(s < xn < S) = 0 which implies
n 00

lirn P(S - a < x < S) = 0, a < u. The existence of such an r
n-0
is guaranteed by condition (C). Let w (u) = N. (

in
n=1

(t4+1+ci 01+2+ + Then

72

and define



Since

Jo

Gn(k) =

lirn P(Lii < a) = lim P(S-a < xn
< S/s <x < S).

n oo

The sequence of random variables {N.( u)} form an integer valued
in

renewal sequence and letting G (k) = P(N. (u) < k) we have

m=0

If lim P(s <x <S) 0 then a modification of the arguments
n

concerning {Fn(k)} shows that {G(k)} satisfies conditions (A)

and (B).

To calculate lim P(LP. < a) , we first consider the amount
00 3

O. by which the sum of the random variablesN(u) previous
in

to j being exceeded, fall short of j. That is, we are interested

in 0. = j-wr(u). The distribution of 0. is given by

1-Gs+1(m+k)) =
m=0

(m) (m+1)(u)-1
(u)+ 1 w w (u)+ 1,

(k+1)

n- 1
(u)+1(u)) = 1-4c.(u).

n- 1 n-1

00

00

P(0. < = 1-P(0.> k) = 1 -
J 3

s=0
oo

S0

j-k-1
[1-G5+1 1-i)] dGi(s)(i)

Sin{ 1-Gs+1(m+k-i)] dG (s)(i)
1

0

0000

(1 _,1)(.m+k+1)(u))1= t.(.1
) (u)< *)(u)< co,

is+1 s+1
=k+1 i=0
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= 1-
5=
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the sequence of functions {1-G+ 1
(m+k)} satisfies the conditions

s

on the sequence {Rs} in Lemma 3. 4 with

lim (1-Gs+1(m+k)) = (u).
s+1

S

Thus Theorem 3, 2 applies and

00

lim P(0. < k) = 1 -
.3

m=1

m+k+ 1)(u)/ H(u)

oo

) 4)(m))/H() = 4)(m)( )/H(u)

m=k+ 1 m=1

An evaluation of conditional probabilities gives

P(0. = = (1c)(u)/1-1(tx).

P(LP. < a/ i4. has k terms)
J

P(ip.< a/. has k terms; N. (u)=k+i)P(N. (u)=k+i/4). has kterms).Jr+1r+1



(9))P(11.i.< a/ ti,. has k terms; N. ( =k+i)
r+1

{.z.(i) (13.-x) cjii+1) +k+l(u....x)} d4).(Ic)
(x)ra

1r+ 1+k+
1

1r+1
1r+1

=
(k+i ) (k+i+1)(u)j0 C,. (u) - 4.,i +1 i +1r+1 r+1 -

and

P(Ni(u) < k+i/Lpj has k terms) - P(N(u) > k)ir+i

which implies

(10) P(Ni( )=k+i/k1). has k terms) -

P(k < Ni (u) < k+i)
J + 1

Substituting (10)and (9) in (8) and interchanging summation and

integration, which is easily justified, it follows that

(k) (k+i+ 1)
(u)( ) -

1 +1 1 +1r+1 r+1
(k)

(u)i +1r+1
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(k+i) (u)- <11(.
k+i+1)

(u)
1 +r+1+1r+1

(k)
(u)

1 +1r+1



such that

oo

(k)
11)

)/H(u.) <E/8

k=K1

and

< a/LP. has k terms)
J J

l r (u-x) - (u-x)] dla(.1c)
(1+1) (x)00 /,!i)

=sar+1+k+1r+1+k+1r+1+1

0 cD(k) (u)i=0 ir+1+1

dO(k) (x)

=
sa ir+1+1 -

C.i.(k) +1(a)/
dicl +1(u).(k) i

0 C.. (u) r+1 r+1
1r+1+1

We now show that

lim P(Lp. < a) = H(a)/H(u).

Given e > 0, from (7) and Lemma 3.3, there exists

IP(8. > K ) lim > K )1 < e/8
1 j

j 1
-6. 00

for all j > J1. Also from (11) and Lemma 3.3 there exists

such that for all j > J ke [0,K I
1

and
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and

for all 5> J.

If J = max {3. 1, J 2 + Ki) then

P(LP < a) - H(a)/ H(u) I

k=1

I P(0. = k

(k)
0. (a) 0(k)(a)3-k -

(k) 0(k) (u)0. (u)3-k

w

(k), ,

0(k)(a)(a)

(.k)(u) (k)(u)

P(4t.<a/qi. has k terrns )P(0. = k
J

kr-1

0(k) a)j-k(

0.(k)(
k=K1+

1 3-k u)

E

H(u) 4K1

op

kP(0.- ) +

k=K1
+1

<4K1

H (a) i

H(u)

(k) xs(k)(u)

kC'(k)tzi
[ PO.=wH(u) 3

0 (u)
k=1

<K1 Ki 7;7..
J

+ P(0. > K ) + (/8 <E
1

"k"1 '±"1

0(k)(a)
H(u)

77



Thus we have shown that

H(u) H(a) H(a)lirn P(S-a < xn < S) [ 1+H(u)] H(u) 1+H(u)
n 00

for 0 < a < S-s and

Urn 1P(s -a < x < s) -
1+14( )

[(u+a)-.Vu)+ [ Vu+a-x)-1)(u-x)]dH(x)] .

00 0

Since these arguments hold without change for the associated demand

process we have proven the following ;

Theorem 1: If a sequence of demands {.} satisfies conditions

(A), (B), and (C) then the stationary inventory distribution is the

same for {}0. and the associated demand process.
1

2. Proof of Theorem Z. 1

As mentioned in Chapter 2, the proof of Theorem 2. 1 con-

sists of showing that: lirn C(x; cDri) =C(x; 0); the limiting stock
00

level distribution exists and is the same for a demand sequence

satisfying conditions (A), (B), and (C) as for the associated demand

sequence; and the various interchanges of operations employed as

well as the existence of the various quantities can be justified. Theorem

1 has established that Fn(x)--. F(x) as n 00 where F (x) is

the distribution of the ending stock in the nth period. The proof that
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C(x; C.n) C(x; Tg) as n 00 is contained in

Lemma 2: If a sequence of demands satisfies condition (A) then

C(x; (Zn) C(x;) as uniformly in x for all s and

S such that S-s is bounded.

Proof: From (2. 1)

C(x; (1) -C(x;

Now for xe[s,S]

(h+p)S (x-)(d )-d.())+-.I <(h+p)g
0 0

Therefore

oo

(g-S)(df13()-d.t.(g0+h.c (S-0(dVO-diZi(g01 x<s
0

co

I p S(g-x)(011)(g)-dsTig))+h (x- g)(c114 Is < x<S
0

rS
(h+P) (S-a )(c1(g )-d'Zi(g ))+P.

0

I (b+p)
j0
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x< s



< (h+p)S )
3.(t

From condition (A), there exists an N such that

d(t)-d(D1() < 252( h+p) for all i> N. This

which proves the lemma.

All that remains to be shown, in order to prove Theorem 2. 1,

is

I C(x; S
101)-C(x;

t) < (h+p) 2
0 25 (h+p)

lim C(x; (Di)dFi(x) = lim1

fl 00 . -00
1=1

=

cbS

C x; OdF(x)
-00

given C(x; C(x; and Fi(x) F(x) as 00. We first

note that the uniform integrability of the means p.. of the distribu-

tions {4).} (that is, given E > 0 there exists M such that

soo
xxd(D.( ) <E uniformly in i) follows immediately from conditions

(A) and (B2). The following lemmas provide the necessary uniform

P;

dt E
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and
2

C(x;1)i)dFi.(x)

i=1



(12) dFk(x)+1
=

The structure of C(x;

dd)k(S-x) d Fk (t) + dclak -x)d Fk(t) s<x<S
-00{SdIk(S-x) rdF (t) + S' cll.k(t-x)dFk(t) x< s
-oo s

and (12) imply we need only show SxdFk(x)
-co

and xdF(x) are finite. Equation (12) implies

sbs S S

xdFk(x) < xd(D -x) + 1.-b x (t-x)dF (t).
-co -oo -co s

The first integral on the right is bounded. Interchanging the order of

integration in the second and letting t-x= u we have
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behavior o C (x; C.) dFi_1(x) in order that Lemma 3.3 apply.
-co

Lemma 3: If a demand sequence {4)i} satisfies condition (A) then

PS

c(x'11'1+1)d Fi(x),
i > 0 and C(x;)dF(x) are finite.

_ -co

Proof: The relation between stock levels at the end of two consecu-

tive periods gives
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co

xdF (x) <i + dFk (t-u)dDit(
-oo

k+S+S(t+I.J.k)dFk-1(t)-s

which is bounded for bounded s and S. Karlin (Arrow, 1958,

p. 234-237) has shown that F(x) is a stationary point of (12). Thus

the above arguments show that C(x; it.)dF(x) is finite by letting
-oo

,D(x) and F (x) = Fk1 (x) = F(x), which proves the lemma.
k(x) -

Lemma 4: If a demand sequence satisfies condition (A) then

the expected one period costs are uniformly integrable.

Proof: Since all the one period expected costs are finite (Lemma 3)

we need only show that given E > 0 there exists M and N such

that

(13)
00(x,fmc -

.k+i)d k(x) <E

for all k> N. Given E in (0,1/4) from Lemma 2 there exists

N1> 0 such that I C (x; t.k) - C (x; (D)1 <E2 for all k> N1. Since

the form of C (x; d\c) for x < s is C-cx, it follows from the uni-

form integrability of the and their means that there exists M1

such that
1

C(x;
k+1)kdc1, (t-x) <E

2 uniformly in k for all tE fs,S].
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From Lemma 3 and the Cauchy criteria for the convergence

of improper integrals (Olmsted, 1959, p. 495) there exists M2
(e, N1)

-M3
such that (S1 C (x; +2)dFN +1(x) <E Letting M =max {M2,M1,-s}

-co 1 1

we have demonstrated (13) for k N1+1. For k = m >
N1

+1

using (12) we have

-M -M-M
C(x; cI) )dF (x) < I ,c,C(x; dFm(x) SC (xyl,m)dFm(x)m+1 m

oo -co

-M
2

+ SC (X; )rdl. S-x) + cll. (t-x)dFm-1(0]m m-oo

-M
2 2

< E E dF (t) C(x; (t-x)<E
n1-.1 -co

which proves the lemma.

We now have all the material to show that (2. 3) holds. Given

E > 0 by Lemma 3 there exists M1 such that

M1
(14) C(x; (1)dF(x) < 16- ,

co

by Lemma 4 there exist N2 and M2
such that

-M2
(15) C (x;Ign+ )dF

6(x)

<
oo



i=1

C(x;Iii)dFi_1(x) - C(x; )dF(x)}
-oo -co

i=1

C(x; i(x) - C(x; OdF(x)) I
-oo -Go

< max I C(x; (x) - C(x; .)dF(x)I .

n 1-1iE[1,N] -Go -co
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for all n> N2. Also from Lemma 1, Theorem 1, and Lemma 3.3

there exists
N1

such that, for n> N1' M = max {Mi, M2}

(16) I g (C(x;1, )dF (x) - C(x;%)dF(x)) I <
-M

.

n+1 n

Letting N = max {N1, N2 } we have from (14), (15), and (16) that

for n> N

C(x; .I.n+l)dFn(x) C(x; )dF(x) <
2

-oo -oo

Thus n> N implies

C(x')d(x) - C(x; ,1))dF(x) I
1-1

1

-oo -oo



Since

-.1- 1* max C(x;1)dF1-1(x) - C(x; 0)dF(x)!
n

ie[1,1\11 -oo

becomes arbitrarily small by taking n large, Theorem 2. 1 is

proven.
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V. DISCUSSION

A primary justification for a paper such as this is the interest

in non-identically distributed random variables as shown by articles

on stochastically increasing sequences of random variables (Karlin,

1960a and Vienott, 1963), stochastically convergent estimates of the

distributions of a sequence of random variables (Scarf, 1959), and

periodic demand sequences (Karlin, 1960b). Secondly, these results

provide an improved and practicable way to calculate optimal long-

run policies based on a predicted stationary demand distribution. In

some cases one would suspect that the optimal long-run policy might

not deviate much from the true optimal policy for a finite model.

Justification of such use would surely require that bounds on

the differences between the policies be found. Once again, the true

optimal parameters are not used because they vary from period to

period and generally can not be calculated.

Because of the complicated relations between the theorems in

this paper and results obtained by others, it is necessary that the con-

tributions of these new results be put in a proper perspective. For

this reason the objective of this chapter is a discussion of how the the-

orems in the previous chapters contain or are contained in similar

results and to what extent they generalize the usual results in renewal

theory and stationary inventory analysis.
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1. Renewal Theory

Because of their key importance it seems logical to first

discuss the renewal theoretic results. The principal source of

results for the discrete, nonidentically distributed random variables,

with which we are concerned, is Williamson (1965), although he was

only concerned with proving a key renewal theorem. Of Williamson's

three sets of conditions, given by (2.5), (2. 6), and (2.7), only (2.5)

would necessarily be satisfied by a nonnegative renewal process with

a finite mean. For this reason condition (B2) seems reasonable and

sufficiently general to justify its use,with no immediate probing into

other conditions sufficient for Theorem 3.1.

Williamson's proof of the key renewal theorem is based on

showing the existence of a subsequence of the renewal sequence such

that

nlirn[ H.( +1) - Hj(n)] - {H .(n) ) -H.( n-1)] = 0
1

n woo

and

lim [
k--co

Hi(n+ k) - Hi(n)
- = 0
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uniformly in n; thus Theorem 3.1 is a new proof of the key re-

newal theorem for discrete, nonnegative, nonidentically distributed
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stochastically convergent sequences of random variables. Besides

being a new proof of a key renewal theorem, Theorem 3.1 holds for

random variables whose values are of the form m+kcl; g. c.d(m,d)=1,

a situation which Williamson was not able to handle. Thus Theorem

3. 1 is not implied by Williamson's result.

An integral formulation of the key renewal theorem was done

for discrete and continuous renewal processes by Smith (1954), and he

attained an approximation to this result for suitably restricted con-

tinuous renewal sequences (Smith, 1961). His results seem to sum-

marize what has been done along these lines and thus Theorem 3.2

should be a strong result. The reason for interest in writing the key

renewal theorem in the form of an integral is that the form lends

itself to application, a point which is very evident in Theorem 3.3

and Theorem 3.4.

Next to the renewal function the most widely discussed quan-

tity in renewal theory is the excess variable. Theorem 3.3 is a

generalization of the usual result concerning the stationary distribu-

tion of the excess variable (Smith, 1954). For discrete random vari-

ables Theorem 3.3 includes the distribution of the excess variable

for renewal processes as a special case.

Theorem 3.4 is another consequence of the key renewal theo-

rem. The significance of this result is discussed previous to the

proof of the theorem. Other uses and users are mentioned by



Karlin (Arrow, 1958, p. 277).

2. Inventory Theory

The results in inventory theory, although new, are exactly

what would be expected. Since the arguments are based on the results

in renewal theory, we expect the same type of generalizations. Thus

the derivation of the stationary stock distribution, Theorem 4. 1,

includes the same result for renewal processes as a special case.

Theorem 2. 1 provides a rigorous derivation of an expression de-

fining the optimal stationary (s,S) parameters. Finally condition

(C) is a restriction which guarantees that the convolution of the ran-

dom variables in a demand sequence satisfying conditions (A), (B)

and (C) will again satisfy conditions (A) and (B), a property which

other authors assume. An interesting sidelight would be further

investigations of conditions like (C), if bounds on the quantity (S-s)

were known. We mention in conclusion that the extension of the

results to convergent sequences of nonnegative continuotis random

variables, for which a key renewal theorem holds, should follow

with slight modifications.
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