This thesis is a part of a supplement to "A Course In Plane Geometry" unpublished notes for an upper class undergraduate course written by Dr. P.D. Barry of the University College, Cork, Ireland. Presented here is the section on Circles and Arc Length.

The primary problem involved obtaining a measure for arc length. As Dr. Barry's definition of angle was in terms of vector rotation, a secondary problem was to obtain a measure of angle in terms of real numbers. Additionally I present a method of calculating cosines and sines.

Arc length is defined as the limit of a sum of chord (and tangent) lengths for a sequence of chords (and tangents) connecting a sequence of points of the arc. Several limit concepts from the Calculus are used.

No attempt to evaluate π is made but a few historical notes about this are included.
Analytical Foundations Of Plane Geometry

by

Elizabeth Simpson Curl

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the
degree of

Master of Science

Completed, August 8,1979
Commencement June, 1980
APPROVED:

Redacted for privacy

Professor of Mathematics

Redacted for privacy

Chairman of Department of Mathematics

Redacted for privacy

Dean of Graduate School

Date thesis is presented August 8, 1979
Typed by E.S. Curl for Elizabeth Simpson Curl
ACKNOWLEDGMENT

I wish to acknowledge both my debt and my gratitude to P.D. Barry of the University College, Cork, Ireland for the notes used as a basis of the method in the thesis; also to Harry Goheen for suggesting the problem and for his inspiration, patience and many valuable suggestions; to my children, Michael and Louise Curl, for their patience and understanding during my "too busy" periods; and especially to Alex Seidler, my fiance, for his encouragement; and to the mathematics office staff for their cheerful endurance of my use of typing equipment and space.
TABLE OF CONTENTS

Introduction

- Statement of the Problem

12.4 Circles and Arc Length

- 12.4.1 Definitions
- 12.4.2 The Unit Circle
 - 12.4.2.1 Quadrants
- 12.4.3 Measure of Angles
 - 12.4.3.1 Order on the Circle
 - 12.4.3.2 Sine and Cosine Calculations
- 12.4.4 Arcs
 - 12.4.4.1 Definition of Arc
- 12.4.5 Arc Length
 - 12.4.5.1 Approximating the arc by
 - Chordal Polygonal Arcs
 - 12.4.5.2 Approximating the arc by
 - Tangential Polygonal Arcs
 - 12.4.5.3 Closer Approximations
 - 12.4.5.4 Evaluation of Arc Length
- 12.4.6 Historical notes
- 12.4.7 Suggestions for additional work

Bibliography

Appendix I

- Table of Contents (Barry's notes)

Appendix II

- Symbolism, Definitions (P.D. Barry)

Appendix III

- Theorems, Definitions (P.D. Barry) Added ones

ANALYTICAL FOUNDATIONS OF PLANE GEOMETRY

INTRODUCTION

"Acute reckoning - the entrance into the knowledge of all existing things and all obscure secrets."

Ahmes the Scribe
Egypt, 17th Century, B.C.

"What could be more beautiful than the order, symmetry and definiteness which mathematics exhibits in a very special degree?"

Aristotle (384-322 B.C.)

The early Greeks felt the use of mathematics was to train the mind and enable the soul to get a glimpse of truth; its practical application to every day problems was of no account in comparison.

To the Greeks the proofs of Mathematics yielded certain and eternal truths. In contrast knowledge derived from observation or experiment was merely approximate and ephemeral.

In his Elements Euclid sought to cast in axiomatic form all of the mathematics (geometry, algebra and the theory of numbers) known in his time.

Of the thirteen books of the elements, elementary plane geometry corresponds in one form or another to the
first four of these. The great significance of the \textit{Elements} is in their method rather than in what the Theorems, as such, say. He took five postulates which he believed so simple and obvious that everyone could accept them and used these as "foundation stones" on which he laid brick after brick making sure each brick was cemented with iron logic and firmly supported by the one previously laid. He thus built a "cathedral" set on a firm foundation and fathered not only geometry but a method of mathematical rigor as well.

The bricks for my humble "cottage" will be the ideas, method, definitions and theorems developed in the notes for "A Course In Plane Geometry" by P.D.Barry of the University College, Cork.

Dr. Barry introduces his work by writing, "...we plan to review the basic geometry we know. We suppose a knowledge of the set \mathbb{R} of real numbers and our approach is essentially to cast our definitions and proofs in the form of coordinate geometry right from the start. Rather than use just coordinates we use vectors as these are very convenient, and start with an account of them."

I have supplemented his notes with illustrations, examples, exercises and several additional sections. However, for this work I will present only section 12.4: \textit{Circles and Arc Length}, which starts where Dr. Barry's notes stop.
The section numbers of this thesis follow those in Dr. Barry's notes. His last statement is:

12.4 Circles and Arc Length

Given ...and radius r.

My work begins:

12.4.1 Definitions.

For clarity and continuity, I have included as appendices:

I) Table of Contents for Dr. Barry's notes.
II) Symbolism and Some Definitions from Barry.
III) Theorems from P.D. Barry used in the text with definitions from Barry and theorems I added.

The primary problem involved obtaining a measure for arc length. As Dr. Barry's definition of angle was in terms of vector rotation, a secondary problem was to obtain a measure of angle in terms of real numbers. Additionally I present a method of calculating cosines (and sines).

Arc length is defined as the limit of a sum of chord (and tangent) lengths for a sequence of chords (and tangents) connecting a sequence of points of the arc. Several limit concepts from the Calculus are used.

No attempt to evaluate π is made but a few historical notes about this are included.
12.4 Circles and Arc - Length

Given $A \in \Pi$ and $r > 0$; the set

\[\{ x \in \Pi : d(A,x) = r \} \]

is called the circle with center A and radius r.

12.4.1 Definitions:

1) A **radius** is a segment of any ray with the circle center A as an end point. The length of the segment $[A,x]$ is equal to a constant r and each ray has the form

\[\bar{x} = A + \lambda[B] \cdot \]

2) **Equal circles** are all circles with the same center A and the same radial length r.

3) **Equivalent circles** are all circles with the same radial length but different centers: i.e.

\[C_1 \sim C_2 \text{ if and only if } r_1 = r_2 \text{ and } A_1 \neq A_2. \]

These can be "equalized" by the translation $t_{k}(x) = A_1 - A_2$.

4) **Concentric circles** are all circles with the same center but different radial length. These can be "equalized" by the use of a distance unit (section 10.2)

\[\bar{\mu} = \frac{r_1}{r_2}. \]

5) A **central angle** is any angle whose vertex is at the center A and whose generating lines are circle radii. i.e. $\angle \bar{x}, \bar{\mu}$ has generating rays $\bar{x} = A + [B]$;

\[\bar{\mu} = A + \lambda[B] \cdot \]

6) A **chord** is any line segment bounded by two x's of the circle set, i.e. $[x_1, x_2]$.
7) **Chord length** is the distance along the chord from one circle point to another. i.e. $d[x_1, x_2]$. A method of computing this length will be discussed later.

8) A **diameter** is that line segment contained in two rays so related ($\overline{X} = A + k[B], 0 < k \leq r$; $\overline{W} = A + k[-B], 0 < k \leq r$) that they generate a straight angle. If \angle x_1 A x_2 is a straight angle the diameter, $D = [x_1, x_2]$.

 a) A diameter contains the center as its midpoint.

 $[x_1, x_2] = [x_1, A] \cup [A, x_2]$

 b) The length of a diameter is $2r$; $D = [x_1, x_2]$ and $d[x_1, x_2] = d[A, x_1] + d[A, x_2] = r + r = 2r$

 c) A diameter is the longest chord of a circle. By Theorem 10.2.1 when $[x_1, x_2] \neq D$, $A \neq D$ and $d[x_1, x_2]$ is less than $d[A, x_1] + d[A, x_2]$ and the length of any other chord is less than $2r$.

9) **Adjacent angles** are two angles with a common initial point and a common ray or half line.

10) **Equal angles** are equivalent angles (section 9.1) with the same initial point.

 note: Corollary to Thm. 9.1.5 states that the bisecting half line with the same initial point as the angle, "divides" the angle into two equal adjacent angles with the bisecting ray as the common one.
12.4.2 The Unit Circle

Given a circle \(\Gamma \) where \(\Gamma = \{ x \in \mathbb{P} : d(A,x) = r \} \) a translation \(t_k = -A \) and a unit of distance \(\mu = \frac{1}{r} \), \(\Gamma \) is transformed into a unit circle (radius = \(r = 1 \)) centered at the origin, \(A_r = 0 = (0,0) \) and \(r_\mu = 1 \).

\[C = \{ x \in \mathbb{P} : d(0,x) = 1 \} \]

Choose an initial point on the circle, \(x_0 = (1,0) \) and call it \(I \). This can be done through the formalism: Given any half line \(\bar{A} = A + [B] \), \(\| B \| = r \) use \(t_k = -A \), \(\mu = \frac{1}{r} \) now \(\bar{A} = 0 + [B] \), \(\| B \| = 1 \) and \((b_1, b_2) = (1,0) = I \).

By section (12.1) with \(I = (1,0) \), we can define \(I^* = (0,1) \), \(-I = (-1,0) \) and \(-(I)^* = -(I^*) = (0,-1) \) and by the same section and the definition of diameter, the line segments \([I,-I] \) and \([I^*,-I^*] \) are both diameters, orthogonal to each other, and of length \(2r \) with \(r = 1 \), \(d[D] = 2 \).

By section 12.2 \(x = \lambda(I) \) where \((I) = m_1 I + m_2 I^* \) which gives

\[C = \{ x \in \mathbb{P} : x = m_1 I + m_2 I^* \} \]

where \(m_1^2 + m_2^2 = 1 \); \(-1 \leq m_1 \leq 1 \), \(-1 \leq m_2 \leq 1 \).

Also from section 12.2

\[m_1 = \cos \bar{A}, \bar{\mu} \quad , \quad m_2 = \sin \bar{A}, \bar{\mu} \]

Under our transformation \(\lambda \bar{A}, \bar{\mu} \) has become \(\lambda \bar{I}, \bar{\mu} \).
As \overline{x} is the radiating half line containing the radius $[0,x]$, \overline{Lx} is now $\overline{LI,x}$, (sec. 7.1). This angle corresponds to the Angle of Inclination $I(\overline{x})$ (section 12.2).

Thus

$$\cos \overline{LI,x} = m_1, \quad \sin \overline{LI,x} = m_2.$$

Specifically: (sections 12.1, 12.2)

$$\cos \overline{LI, I} = 1, \quad \sin \overline{LI, I} = 0;$$
$$\cos \overline{LI, I^*} = 0, \quad \sin \overline{LI, I^*} = 1;$$
$$\cos \overline{LI, -I} = -1, \quad \sin \overline{LI, -I} = 0;$$
$$\cos \overline{LI, -I^*} = 0, \quad \sin \overline{LI, -I^*} = -1.$$

Now we have a third definition for the unit circle:

$$C = \{x \in \pi: x = (\cos \overline{LI,x}, \sin \overline{LI,x})\}.$$

12.4.2.1 Quadrants

Theorem 12.4.2.1

1) The ray $\overline{I^*}$ and its complementary half line $-\overline{I^*}$ are the bisectors of angles $\overline{LI,-I}$ and $\overline{-I,I}$.

2) These bisectors "divide" the circle into four equal adjacent angles.

proof:

1) By definition $\overline{LI,-I}$ and its opposite angle
- $\angle I, I$ are straight angles.

As $I = k(B)$, $B = (1, 0)$ and $I^* = k(B^*)$, $B^* = (0, 1)$

all conditions for the bisector are met, (Thms. 9.1.2, 3)

2) $\overline{I}, \overline{I^*}$ $-\overline{I}, -\overline{I^*}$ are all rays with the same

initial point $0 = (0, 0)$ therefore the conditions for
equal adjacent angles are met. (Corallary to Theorem 9.1.5)

QED.

Each of these angles designate four parts of the
circle. We will call these parts Quadrants.

Definition:

Quadrant $I = Q_I = \{x \in C : x = m_1I + m_2I^*, \text{where} \newline
0 < m_1 < 1 ; 0 < m_2 < 1 \}$.

Quadrant $II = Q_{II} = \{x \in C : x = m_1I + m_2I^*, \text{where} \newline-1 < m_1 < 0 ; 0 < m_2 < 1 \}$.

Quadrant $III = Q_{III} = \{x \in C : x = m_1I + m_2I^*, \text{where} \newline-1 \leq m_1 < 0 ; -1 < m_2 \leq 0 \}$.

Quadrant $IV = Q_{IV} = \{x \in C : x = m_1I + m_2I^*, \text{where} \newline0 \leq m_1 < 1 ; -1 \leq m_2 < 0 \}$.
Theorem 12.4.2.2

Every angle lies in one of the four quadrants.

proof:

By Theorem 1.4.1 Every vector in \(\mathbb{R}^2 \) can be expressed in just one way \(C = k_1 A + k_2 B \) with \(A, B \) basis vectors and \(k_1, k_2 \) coordinates of the vector.

Every point on the circle is in \(\mathbb{R}^2 \) with \(I, I^* \) as basis vectors and the restriction \(k_1^2 + k_2^2 = 1 \).

Every angle can be represented as \(\angle I, x \) where \(x \) is a point on the circle and

\[x = m_1 I + m_2 I^* \quad ; \quad m_1^2 + m_2^2 = 1 \]

Thus the restrictions

\[-1 \leq m_1 \leq 1 \quad , \quad -1 \leq m_2 \leq 1 \quad , \quad m_1 = \pm \sqrt{1 - m_2^2}\]

and the relationships of the \(m_1, m_2 \) in the four quadrants exhaust all the possibilities.
12.4.3 Measure of angles

As the quadrant designating angles are equal and there are four of them, each is one-fourth of the whole circle. We will call the measure of the whole circle 2π, where π is some positive real number whose value has not yet been determined.

The measure of all angles will be represented in terms of π, and we can designate angles by their measure.

So far we have

$m \angle I,I = 0$; $m \angle I,I^* = \frac{\pi}{2}$; $m \angle I,-I = \pi$;
$m \angle I,-I^* = \frac{3\pi}{2}$ and $m(2 \angle I,-I) = 2\pi$.

Theorem 12.4.3.1

By a sequence of repeated bisections the n^{th} bisection
1) divides the circle into 2^n equal adjacent angles.
2) whose measure is $\frac{2\pi}{2^n}$ and 3) the angles designated by the

$L I,x_i$, where x_i are the bisecting rays, have measures

which are $\frac{1}{2^n} \pi, \frac{2}{2^n} \pi, \frac{3}{2^n} \pi, \ldots, \frac{2^{n+1}}{2^n} \pi$.

proof: By induction - By the corollary to Theorem 9.1.5. Each bisection doubles the number of bisectors and angles, and cuts the measure in half.
In tabular form the results are:

<table>
<thead>
<tr>
<th># of bisectors</th>
<th># of angles</th>
<th>measure of angles</th>
<th>ends of the x_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 0$</td>
<td>$2^0 = 1$</td>
<td>$\frac{1}{2}(2\pi) = \frac{2\pi}{2} = \pi$</td>
<td>2π</td>
</tr>
<tr>
<td>$n = 1$</td>
<td>$2(2^0) = 2^1 = 2$</td>
<td>$\frac{1}{2}(2\pi) = \frac{2\pi}{2} = \pi$</td>
<td>$\pi, 2\pi$</td>
</tr>
<tr>
<td>$n = 2$</td>
<td>$2(2^1) = 2^2 = 4$</td>
<td>$\frac{1}{2}(2\pi) = \frac{2\pi}{2} = \pi$</td>
<td>$\pi, 3\pi, 2\pi$</td>
</tr>
</tbody>
</table>

now assume

$n = k$

2^k $\frac{2\pi}{2^k}$ $\frac{\pi}{2^k}, \frac{2\pi}{2^k-1}, \ldots, \frac{2^k\pi}{2}$

let

$n = k+1$

$2(2^k) = 2^{k+1}$ $\frac{1}{2}(2\pi) = \frac{2\pi}{2^{k+1}}$ $\frac{\pi}{2^{k-1}}, \ldots, \frac{2(2^k)\pi}{2(2^{k-1})}$ or $\frac{\pi}{2^k}, \ldots, \frac{2^{k+1}\pi}{2^k} = 2\pi$

An extension of the bisecting method gives a measure for all angles in the circle.

Consider the angle $\angle I, x_\theta$, where $x_\theta = m_1 I + m_2 I^*$, whose
measure is unknown and two bisectors x_i and x_j, whose angle measures are known. Comparing the chord lengths i.e. $d[x_i, x_\theta] \leq d[x_\theta, x_j]$.

1) If $= \theta$ the next bisection gives the exact measure.

2) If $\neq \theta$ the next bisection gives a bisection where one of the new chord lengths is less.

3) For any $\theta = \angle l, x_\theta$ and an $\varepsilon > 0$ as n (the number of bisections) $\to \infty$ you can find an $\angle l, x_i$ so that $d[x_i, x_\theta] < \varepsilon$ no matter how small ε is chosen.

So any angle can be measured in terms of $k\pi$, a real number.

12.4.3.1 Order on the Circle

Since any angle can be represented by a real number, its measure, we can use the natural order of real numbers to order angles and the points (x_θ) of the circle.

Just as there are two natural orders on a sensed line, the reciprocal orders $<$ and $>$ (discussed in section 5.1, G6); there are two natural orders on a circle $l(I)$ and $l^{-1}(I)$ which are reciprocal rotations:

$$l(I) = m_1 I + m_2 I^*$$ (called positive rotation) and

$$l^{-1}(I) = m_1 I + m_2 (-I^*)$$ or

$$= m_1 I - m_2 I^*$$ (called negative rotation).

We will use positive rotation unless otherwise
specified.

With \(\theta_1 \) = any angle in \(Q_1 \);
\(\theta_2 \) = any angle in \(Q_{II} \);
\(\theta_3 \) = any angle in \(Q_{III} \) and
\(\theta_4 \) = any angle in \(Q_{IV} \) we now have

\[L_{I,I} < \theta_1 < L_{I,I^*} < \theta_2 < L_{I,-I} < \theta_3 < L_{I,-I^*} < 2L_{I,-I}. \]

Or in terms of \(\pi \)

\[0 < \theta_1 < \frac{\pi}{2} < \theta_2 < \pi < \theta_3 < \frac{3\pi}{2} < \theta_4 < 2\pi. \]

12.4.3.2 Sine and Cosine calculations for angles
designated in \(k\pi \) measure.

Theorem 12.4.3.2.1

If the values for the cosines and sines of all angles
\(\theta_r \) (the reference angle) where \(0 \leq \theta_r \leq \frac{\pi}{4} \) are known, all
other cosines and sines can be evaluated.

proof a) Given an angle \(\theta_1 \) in \(Q_1 \) there is an associated
angle \(\theta_1^C \) (the complementary angle) such that \(\theta_1 + \theta_1^C = \frac{\pi}{2} \).

Then either: 1) \(\theta_r = \theta_1 = \theta_1^C = \frac{\pi}{4} \); or

\[2) \theta_1 = \theta_r \text{ and } \frac{\pi}{4} < \theta_1^C < \frac{\pi}{2} \text{ or} \]

\[3) \frac{\pi}{4} < \theta_1 < \frac{\pi}{2} \text{ and } \theta_1^C = \theta_r. \]
If 1) or 2) by Theorem 12.2.1
\[\cos \theta_1 = \cos \theta_r ; \quad \sin \theta_1 = \sin \theta_r. \]

If 3) by Theorem 12.2.6
\[\cos \theta_1 = \sin \theta_1^c = \sin \theta_r \quad \text{and} \]
\[\sin \theta_1 = \cos \theta_1^c = \cos \theta_r. \]

b) Given an angle \(\theta_2 \) in \(Q_{II} \), there is an associated angle \(\theta_2^s \) (the supplementary angle) such that \(\theta_2 + \theta_2^s = \pi \).

Then \(0 \leq \theta_2^s < \frac{\pi}{2} \), So \(\theta_2^s = \theta_1 \).

By Theorem 12.2.1
\[\cos \theta_2^s = \cos \theta_1, \quad \sin \theta_2^s = \sin \theta_1. \]

By Theorem 12.2.5
\[\cos \theta_2 = -\cos \theta_2^s = -\cos \theta_1 \quad \text{and} \]
\[\sin \theta_2 = \sin \theta_2^s = \sin \theta_1. \]

c) Given an angle \(\theta_3 \) in \(Q_{III} \), there is an associated angle \(0 \leq \theta_3^a < \frac{\pi}{2} \), or \(\theta_3^a = \theta_1 \) such that \(\theta_3 = \pi + \theta_3^a \).

By Theorem 12.2.1
\[\cos \theta_3^a = \cos \theta_1 \quad \text{and} \quad \sin \theta_3^a = \sin \theta_1. \]

By Theorem 12.2.4 and substitution
\[\cos \theta_3 = \cos(\pi + \theta_3^a) = \cos \pi \cos \theta_3^a - \sin \pi \sin \theta_3^a \]
\[= (-1) \cos \theta_1 - (0) \sin \theta_1 = -\cos \theta_1, \]
\[\sin \theta_3 = \sin(\pi + \theta_3^a) = \cos \pi \sin \theta_3^a + \sin \pi \cos \theta_3^a \]
\[= (-1) \sin \theta_1 + (0) \cos \theta_1 = -\sin \theta_1. \]
d) Given an angle \(\theta_4 \) in \(Q_{IV} \), there is an associated angle \(\theta_1 \) such that either \(\theta_4 = \frac{3\pi}{2} \) or \(\theta_4 = 2\pi - \theta_1 \).

By Theorem 12.2.4 corollary 1 and substitution

\[
\cos \theta_4 = \cos(2\pi - \theta_1) = \cos 2\pi \cos \theta_1 + \sin 2\pi \sin \theta_1 ,
\]

\[
= (1) \cos \theta_1 + (0) \sin \theta_1 = \cos \theta_1 ,
\]

\[
\sin \theta_4 = \sin(2\pi - \theta_1) = \sin 2\pi \cos \theta_1 - \cos 2\pi \sin \theta_1 ,
\]

\[
= (0) \cos \theta_1 - (1) \sin \theta_1 = -\sin \theta_1 .
\]

By Theorem 12.4.2.2: every angle lies in one of the four quadrants so all angles are in a), b), c), or d) above. QED.

To find the values of the cosine and sine of each \(\theta_r \), we will use the known values, \(\cos 0 = 1, \sin 0 = 0 \) and a bisection procedure to find the cosine values for a sequence of \(\theta_r \)'s, \(0 \leq \theta_r \leq \frac{\pi}{4} \) where \(\theta_r = \frac{\pi}{2(2^n)} \).

Starting with \(\theta = \frac{\pi}{2}, \cos \frac{\pi}{2} = 0 \), we bisect \(\frac{\pi}{2} \) to get \(\frac{\pi}{4} \) and apply Theorem 12.2.4 corollary 4 to get the value for \(\cos \frac{\pi}{4} \). Then bisect \(\frac{\pi}{4} \) to get \(\frac{\pi}{8} \) and use \(\cos \frac{\pi}{4} \) to get \(\cos \frac{\pi}{8} \), continuing until we get \(\cos \frac{\pi}{2(2^n)} \).

Because all the \(\theta_r \)'s are in \(Q_I \), the positive square roots are always used.
An algebraic change in Theorem 12.2.4 gives the equation
\[\cos \frac{\theta}{2} = \sqrt{\frac{1 + \cos \theta}{2}} = \frac{1}{2} \sqrt{2 + 2 \cos \theta}. \]

Once all the cosines are known the sines can be found:
\[\sin \theta = \sqrt{1 - \cos^2 \theta}, \]

Theorem 12.4.3.2.2 The value of the cosines for any
\[= \frac{\pi}{2(2^n)} \]

is \(\frac{1}{2}(2 + (2 + \ldots + (2^{k/2}) \ldots)^{k/2})^{k/2} \) (\(n \) times)

Proof: By induction:

\[n = 0, \ \theta_0 = \frac{\pi}{2}, \ \cos \frac{\pi}{2} = 0. \]
\[n = 1, \ \theta_1 = \frac{\pi}{2(2^1)} = \frac{\pi}{4}, \ \cos \frac{\pi}{4} = \frac{1}{2} \sqrt{2 + 2(0)} = \frac{1}{2} \sqrt{2}. \]
\[n = 2, \ \theta_2 = \frac{\pi}{2(2^2)} = \frac{\pi}{8}, \ \cos \frac{\pi}{8} = \frac{1}{2} \sqrt{2 + 2(\frac{1}{2} \sqrt{2})} = \frac{1}{2} \sqrt{2 + \sqrt{2}}. \]

Assume
\[n = k, \ \theta_k = \frac{\pi}{2(2^k)}, \ \cos \frac{\pi}{2(2^k)} = \frac{1}{2} \sqrt{2 + \sqrt{2 + \ldots + \sqrt{2}}} \]

Then
\[n = k+1, \ \theta_{k+1} = \frac{1}{2}(\frac{\pi}{2(2^k)}), \ \cos \frac{\pi}{2(2^{k+1})} = \frac{1}{2}(2 + 2(\frac{1}{2} \sqrt{2} \ldots)^{k/2})^{k/2} \]

1 more time
\[= \frac{\pi}{2(2^{k+1})} = \frac{1}{2}(2 + (2 + \ldots + (2^{k/2}) \ldots)^{k/2})^{k/2}. \]

QED.
Lemma: Any angle in Q_1 can be written as a sum of angles of the preceding bisecting procedure.

Proof: Let B be the set of angles of the bisecting procedure.

For any angle $\alpha \in Q_1$, there is an angle $\beta \in B$ such that $\beta \leq \alpha$ and for any $\beta' \in B$, where $\beta' \neq \beta$, either $\beta' > \alpha$ or $\beta' < \beta$ (β is the largest angle of B which is smaller than α).

Similarly, there is an angle $\beta^* \in B$ which is the largest angle of B such that $\alpha - \beta = \alpha^* \geq \beta^*$.

For any n: $\alpha^{(n-1)*} - \beta^{(n-1)*} = \alpha^n* \geq \beta^n*$ where β^n* is the largest angle of B which satisfies the inequality.

Then α can be represented as

$$\alpha = \sum_{n \neq 1} \beta^n*$$ \hspace{1cm} (see note on binary fractions)**

Since all the β^n* are of the form $\frac{\pi}{2(2^n)}$, we have $\sum_{n \neq 1} \beta^n* \leq \sum_{n \neq 1} \frac{1}{2^n}$ and there is convergence as $\frac{1}{2^n}$ is a well known convergent series. QED.

As we know the cosines (and sines) of our $\theta_r = \frac{\pi}{2(2^n)}$, we can use the lemma and Theorem 12.1.4 to get the cosine and sine values of all other angles $0 < \theta_r \leq \frac{\pi}{4}$.

Note on binary representation of fractions:** the next few pages discuss binary fractions and their relationship to
decimal and proper fractions.

In the preceding bisecting procedure our angles

\[\theta_r = \frac{\pi}{2} \sum_{i=1}^{\infty} a_i \], where \(a_i = \frac{1}{2^i} \) or \(a_i = 0 \).

In binary notation: (see table p.17b for examples)

Let \(b_i = 1 \) if \(a_i = \frac{1}{2^i} \); \(b_i = 0 \) if \(a_i = 0 \).

Then:

\[\frac{2\theta_r}{\pi} = .b_1b_2b_3 \ldots b_ib_{i+1} \ldots \]

Example I (see table p.17b for calculations)

Given:

\[\frac{2\theta_r}{\pi} = .101011 \]

in binary

\[= \frac{1}{2} + \frac{0}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^6} \]

\[= \frac{1}{2} + \frac{1}{8} + \frac{1}{32} + \frac{1}{64} \]

proper fraction

\[= .5 + .125 + .03125 + .015625 \]

\[= .671875 \]

decimal fraction

and \(\theta_r = \frac{.67185}{2} \pi = .335925 \pi \).

Example II Given an angle \(\alpha \) such that \(\frac{\pi}{16} < \alpha < \frac{\pi}{8} \).

Once again, using the calculations on the table p.17b, we have the following: (PF = proper fractions, DF = decimal fractions, BF = binary fractions), as the bisections occur.

(contined p.17c)
<table>
<thead>
<tr>
<th>$\frac{1}{2^n}$</th>
<th>Proper Fraction</th>
<th>Decimal Fraction</th>
<th>Binary Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>.5</td>
<td>.1</td>
</tr>
<tr>
<td>$\frac{1}{4}$</td>
<td>$\frac{1}{4}$</td>
<td>.25</td>
<td>.01</td>
</tr>
<tr>
<td>$\frac{1}{8}$</td>
<td>$\frac{1}{8}$</td>
<td>.125</td>
<td>.001</td>
</tr>
<tr>
<td>$\frac{1}{16}$</td>
<td>$\frac{1}{16}$</td>
<td>.0625</td>
<td>.0001</td>
</tr>
<tr>
<td>$\frac{1}{32}$</td>
<td>$\frac{1}{32}$</td>
<td>.03125</td>
<td>.00001</td>
</tr>
<tr>
<td>$\frac{1}{64}$</td>
<td>$\frac{1}{64}$</td>
<td>.015625</td>
<td>.00001</td>
</tr>
<tr>
<td>$\frac{1}{128}$</td>
<td>$\frac{1}{128}$</td>
<td>.0078125</td>
<td>.000001</td>
</tr>
<tr>
<td>$\frac{1}{256}$</td>
<td>$\frac{1}{256}$</td>
<td>.00390625</td>
<td>.0000001</td>
</tr>
<tr>
<td>$\frac{1}{512}$</td>
<td>$\frac{1}{512}$</td>
<td>.001953125</td>
<td>.00000001</td>
</tr>
<tr>
<td>$\frac{1}{1024}$</td>
<td>$\frac{1}{1024}$</td>
<td>.0009765625</td>
<td>.000000001</td>
</tr>
</tbody>
</table>
After two bisections ($\alpha = a\pi$):

\[
\frac{1}{16} + \frac{1}{32} < a_{PF} < \frac{1}{16} + \frac{1}{32} + \frac{1}{64}
\]

\[
0.09375 < a_{DF} < 0.109375
\]

\[
0.00011 < a_{BF} < 0.000111
\]

After two more bisections:

\[
\frac{1}{16} + \frac{1}{32} + \frac{1}{128} < a_{PF} < \frac{1}{16} + \frac{1}{32} + \frac{1}{128} + \frac{1}{256}
\]

\[
0.1015625 < a_{DF} < 0.1055250
\]

\[
0.0001101 < a_{BF} < 0.00011011
\]

One more gives:

\[
\frac{1}{16} + \frac{1}{32} + \frac{1}{128} + \frac{1}{512} < a_{PF} < \frac{1}{16} + \frac{1}{32} + \frac{1}{128} + \frac{1}{256}
\]

\[
0.10351562 < a_{DF} < 0.1055250
\]

\[
0.000110101 < a_{BF} < 0.000110110
\]

Checking the chord lengths shows one more bisection will give us α exactly. (If not we would continue.)
This last bisection

\[\frac{\pi}{16} + \frac{\pi}{32} + \frac{\pi}{128} + \frac{\pi}{512} \]

\[\frac{\pi}{16} + \frac{\pi}{32} + \frac{\pi}{128} + \frac{\pi}{1024} \]

\[\frac{\pi}{512} \]

\[\frac{\pi}{1024} \]

\[\alpha = \frac{\pi}{16} + \frac{\pi}{32} + \frac{\pi}{128} + \frac{\pi}{512} + \frac{\pi}{1024} \]

gives:

\[a_{PF} = \frac{1}{16} + \frac{1}{32} + \frac{1}{128} + \frac{1}{512} + \frac{1}{1024} = \frac{107}{1024} \]

\[a_{DF} = .0625 + .03125 + .0078125 \]
\[+ .001953125 \]
\[+ .0009765625 = .10449218 \]

\[a_{BF} = .0001101011 \text{ (this is the number the lemma would give and the other forms follow).} \]

Thus the value for \(\alpha \) we found is

\[\alpha = .10449218 \pi = \frac{107}{1024} \pi . \]
12.4.4 Arcs

12.4.4.1 Definition of Arc

An arc is a circle segment.

The arc from \(x_0 \) to \(x_t \) (positive rotation) is defined:

\[
x_0 @ x_t = \{ x \in \Gamma : x = (a_1 + r \cos \theta, a_2 + r \sin \theta) \}
\]

where \(0 < \theta < \theta_t \)

for any circle of center \(A \), \(r > 0 \). More simply for the unit circle

\[
x_0 @ x_t = \{ x \in \mathbb{C} : x = (\cos \theta, \sin \theta) \} \}
\]

The length of this arc, if it exists, will be defined as the limit of a sum of chord lengths for a sequence of chords connecting a sequence of points of the arc. But before making the arc length definition precise, additional ideas need to be developed.

Theorem 12.4.4.1 The length of the chord \([x_1, x_2]\) is equal to two times the radius times the absolute value of the sine of one half the central angle subtended by the radii \(0x_1\) and \(0x_2\).

\[
d[x_1, x_2] = 2r \left| \sin \frac{1}{2} \angle x_1, x_2 \right|
\]
proof: For simplicity let us use a unit circle with a central angle whose measure is less than one half π. Refer to Figure 12.4.4.1.

1) Draw the radii $0, x_1$ and $0, x_2$ and the chord $[x_1, x_2]$

2) Drop the altitude (unique by Thm. 2.3.1) from x_2 to $[0, x_1]$ and call the foot of the perpendicular, P.

3) We now have 2 triangles $P0x_2$ and x_1Px_2 with Px_2 perpendicular to OP and Px_1 at P. So by Theorem 12.3.2

$$\sin \angle P0x_2 = \frac{d(P, x_2)}{d(0, x_2)} = \frac{d(P, x_2)}{r} \quad \text{and}$$

$$\cos \angle P0x_2 = \frac{d(P, 0)}{d(0, x_2)} = \frac{d(P, 0)}{r} \quad \text{. Call the angle } \theta.$$

4) $d(x_1, 0) = d(x_1, P) + d(P, 0)$ by construction, then

$$d(x_1, P) = d(x_1, 0) - d(P, 0) = r(1 - \cos \theta).$$

5) In triangle x_1Px_2 by Theorem 10.2.2

$$d(x_1, x_2)^2 = d(x_1, P)^2 + d(P, x_2)^2. \quad \text{By the above and substitution}$$

$$d(x_1, x_2)^2 = r^2(1 - \cos \theta)^2 + r^2(\sin \theta)^2$$

$$= r^2[1 - 2 \cos \theta + \cos^2 \theta + \sin^2 \theta]$$

$$= r^2[1 - 2 \cos \theta] = 4r^2\frac{1 - \cos \theta}{2}.$$

6) By corollary 4 to Theorem 12.2.4

$$d(x_1, x_2)^2 = r^2(\sin \frac{1}{2} \theta)^2 \quad \text{or} \quad d[x_1, x_2] = 2r |\sin \frac{1}{2} \theta|.$$

In the other quadrants, the sine values are the same if you consider the absolute values. QED.
Theorem 12.4.4.2 All points on a chord are interior. That is at a distance from the center which is less than or equal to the radius, with equality only at the bounding points.

Proof: Refer to Figure 12.4.4.2.

1) Given the unit circle, radii and chord \([x_1, x_2]\). Choose an arbitrary point \(D\) on the chord \([x_1, x_2]\).

2) If \(D = x_1\) or \(x_2\) it lies on both chord and circle, is a bounding point and at a distance equal to the radius.

3) If \(D \neq x_1\) or \(x_2\), construct the ray containing \(D\) and the radius \([0, x_D]\).

4) \(d[D, x_1] > 0; d[D, x_2] > 0\) by construction and Theorem 10.2.1 (ii).

5) \(d[x_1, D] + d[D, x_2] = d[x_1, x_2]\), Theorem 10.2.1 (iii).
6) If \(d[x_1, D] = d[D, x_2] \), \(D \) is the midpoint and \([0, D]\) is the altitude of triangle \(x_10x_2 \) and perpendicular to the chord.
\[
\begin{align*}
 d[0, x_1]^2 &= d[0, D]^2 + d[D, x_1]^2 \quad \text{and} \\
 d[0, D] &< d[0, x_1] = r.
\end{align*}
\]

7) If \(d[x_1, D] \neq d[D, x_2] \), construct the ray containing the perpendicular from \(0 \) to the chord. Call the foot of the perpendicular, \(P \).

8) By Theorem of Pythagoras again
\[
\begin{align*}
 d[0, x_2]^2 &= d[0, P]^2 + d[P, x_2]^2 \quad \text{and} \\
 d[0, D]^2 &= d[0, P]^2 + d[P, D]^2.
\end{align*}
\]
Thus: \(d[P, x_2] = d[P, D] + [d[D, x_2]] = d[P, D] < d[P, x_2] \)

By substitution:
\[
d[0, D]^2 < d[0, x_2]^2 \Rightarrow d[0, D] < d[0, x_2]. \quad \text{QED.}
\]
Def. 12) The unique line perpendicular to a radius \([0,x_T]\) at the point \(x_T\) on the circle is called the **tangent to the circle** at \(x_T\).

Def. 13) The **point of tangency** is the unique point, \(x_T\), contained in the circle set, radius \([0,x_T]\) and the line tangent to the circle.

Theorem 12.4.4.3 A tangent to a circle intersects the circle only at the point of tangency. All points on the tangent are exterior (at a distance from the center equal to or greater than the radius, with equality only at the point of tangency. (See figure 12.4.4.3 below).

Proof:
1) given the circle, rays \(\overline{I}\) and \(\overline{\mu}\) as shown, construct \(\overline{T} = x_1 + k\overline{I}\), the perpendicular to \([0,x_1]\) (Thm. 2.3.1)

2) Choose \(S \in \overline{T}\), construct \(\overline{\alpha}\) containing \([0,S]\).

3) If \(S = x_1\) then the \(d[0,S] = d[0,x_1] = r\).

4) If \(S \neq x_1\); \(d[x_1,S] > 0\) and by Thm. of Pythagoras
\[
d[0,S]^2 = d[0,x_1]^2 + d[x_1,S]^2 > d[0,S]^2 > d[0,x_1]^2 = r.
\]
Corollary to Theorems 12.4.2.2 and 12.4.2.3

Points in the circle set are both interior and exterior.

Theorem 12.4.4.4 Tangents to a circle at any two points not on a diameter (see Thm 2.3.2 iii), intersect at a point which is equidistant from both points of tangency.

Proof: This follows from Thm. 11.2.1 which also says the intersection point is on the bisector of the central angle.

Or by construction and Pythagorean Theorem,

\[d[0,x_1] = d[0,x_2] = r, \quad d[0,V] = d[0,V] \text{ (reflexive)}, \]

tangents perpendicular by definition and construction,

\[d[0,V]^2 = d[0,x_1]^2 + d[V,x_1]^2, \quad \text{and} \]
\[d[0,V]^2 = d[0,x_2]^2 + d[V,x_2]^2, \quad \text{then by substitution} \]

\[d[V,x_1]^2 = d[V,x_2]^2 \quad \text{and} \quad d[V,x_1] + d[V,x_2]. \]

Figure 12.4.4.4
Definition 14) The tangent function of the angle θ

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{m_2}{m_1}.$$

The name "tangent" is an appropriate one for the tangent function since it is a segment of the tangent line to the circle. Refer to Figure 12.4.4.5.

1) Given \overline{I} containing $[0,x_1] = r$ and $\overline{\mu}$ containing $[0,x_2] = r$, construct the tangent to \overline{I} at x_1. Call the point of intersection of \overline{T} and \overline{I}, S.

2) By Thm 12.3.2

$$\cos \theta = \frac{d[0,x_1]}{d[0,S]}, \quad \sin \theta = \frac{d[x_1,S]}{d[0,S]}.$$

3) The ratio

$$\frac{\sin \theta}{\cos \theta} = \frac{d[x_1,S]}{d[0,S]} = \frac{d[x_1,S]}{d[0,x_1]}$$

and for a unit circle,

$$\frac{\sin \theta}{\cos \theta} = \tan \theta = d[x_1,S].$$
Definition 15) **Polygonal arc**

Given points of the circle \((x_1, x_2, x_3, \ldots, x_{n+1})\),

where \(i_1(x_1) = x_2, i_2(x_2) = x_3, \ldots, i_n(x_n) = x_{n+1}\).

A one sided polygonal arc is the chord \([x_1, x_2]\).

A two sided polygonal arc is the union of the chords: \([x_1, x_2] \cup [x_2, x_3]\).

An \(n\) sided polygonal arc is the union \([x_1, x_2] \cup [x_2, x_3] \cup \cdots \cup [x_n, x_{n+1}]\).

Definition 16) **Length of a polygonal arc:**

\[
H = \sum_{i=1}^{n} d[x_i, x_{i+1}],
\]

where \(n\) is the number of sides and \(n + 1\) is the number of points.
12.4.5 Arc Length

12.4.5.1 Approximating the arc by chordal polygonal arcs.

Consider an arc $x_1 \to x_k$. We will construct a sequence of chordal polygonal arcs i.e. $[x_1', x_k']; [x_1', x_2'] \cup [x_2', x_k']; ... [x_1', x_2'] \cup [x_2', x_3'] \cup ... \cup [x_{k-1}', x_k]$ and call each successive polygonal arc a refinement of the previous one.

The following are true:

1) The chordal polygonal arcs all consist of interior points (Thm. 12.4.2.2 and Def. 15).

2) Each refinement will have more chords (and more bounding points) than the previous arc (Construction).

3) The length of each refinement is greater than the previous one (Refer to Figure 12.4.5.1).

$d[x_1, x_2] + d[x_2, x_k] > d[x_1', x_k]$ by the triangle inequality Thm 10.2.1 iii; and inductively the length of one chord is less than the length of two chords.

When at least one more point is chosen the refinement has at least one more chord and the length increases.
12.4.5.2 Approximating the arc by tangential polygonal arcs

Consider an arc x_1x_k. Construct a sequence of tangential arcs:

$[x_1', V_1] \cup [V_1', x_k] ; [x_1', V_{12}] \cup [V_{12}', x_2] \cup [x_2', V_{2k}] \cup [V_{2k}', x_k] ; \ldots$ and call each successive polygonal arc a refinement of the previous arc.

The following are true:

1) The tangential polygonal arcs all consist of exterior points (Thm 12.4.2.3 and Def. 15).

2) Each refinement will have more points of tangency, more tangents, and more intersections of tangents. (by construction - see Figure 12.4.5.2).

3) The length of each refinement is less than the length of the previous refinement (see Fig. 12.4.5.2).

By Thm 10.2.1 iii the triangle inequality

$d[V_{12}, V_{2k}] < d[V_{12}, V_{1k}] + d[V_{1k}, V_{2k}]$, so by substitution

$d[x_1, V_{12}] + d[V_{12}, V_{2k}] + d[V_{2k}, x_k] <$

$d[x_1, V_{12}] + d[V_{12}, V_{1k}] + d[V_{1k}, V_{2k}] + d[V_{2k}, x_k]$.

Inductively, the addition of at least one new point shortens the path between the adjacent points thus shortening the total arc.
12.4.5.3 Closer approximations

Theorem 12.4.5.3.1 The length of a chordal polygonal arc of 2^{n-1} chords and $n-1$ refinements is:

$$H_{C_n} = 2^n \sin \frac{\theta}{2^n}.$$

Proof: We will pick our points so that for each successive refinement new points are picked that lie on the bisector(s) of each of the previous central angles. This gives chords of uniform length.

1) Consider the unit circle, $x_1 @ x_2, [x_1, x_2]$ and central angle θ as shown in Figure 12.4.5.3.1 below. Here $n = 0$, no refinements and by Theorem 12.4.2.1

$$H_{C_1} = d[x_1, x_2] = 2 \sin \frac{\theta}{2}.$$
2) Make the 1st refinement by constructing the bisector of θ, select the point where it intersects the circle, renumber the points, continue the refinements as shown in the figures below, Figures 12.4.3.3.2-3.

1st refin.

$n = 2$

2 chords

\[H_{c_2} = d[x_1, x_2] + d[x_2, x_3] \]

\[= 2 \sin \frac{\theta/2}{2} + 2 \sin \frac{\theta/2}{2} = 2^2 \sin \frac{\theta}{4}. \]

2nd refin.

$n = 3, 4$ chords and 4 angles each $1/4 \theta$ so

\[H_{c_3} = 8 \sin \frac{\theta}{8}. \]
Continuing by induction:
Assume \(n = k \) \(\Rightarrow H_{c_k} = 2^k \sin \frac{\theta}{2^k} \). At the next refinement \(n = k+1 \), # chords = \(2(2^k) = 2^{k+1} \), angle \(\frac{1}{2} \left(\frac{\theta}{2^k} \right) = \frac{\theta}{2^{k+1}} \)
Thus \(H_{c_k} = 2^k \sin \frac{\theta}{2^k} ; \) \(H_{c_{k+1}} = 2^{k+1} \sin \frac{\theta}{2^{k+1}} \). QED.

Theorem 12.4.5.3.2 The length of a tangential polygonal arc of \(n-1 \) refinements is:
\[H_{T_n} = 2^n \tan \frac{\theta}{2^n} \]

Proof: Using the same point selection method as in the preceding theorem, \(n = 1 \), no refinements, 2 equal tangents. and by Def.14,15,16 and Thm. 12.4.2.4.
\[H_{T_1} = d[x_1,V_{12}] + d[V_{12},x_2] = \tan \frac{\theta}{2} + \tan \frac{\theta}{2} = 2 \tan \frac{\theta}{2} \]
Making the first refinement \(n = 2 \), 4 tangent segments

\[
H_{T_2} = d[x_1, V_{12}] + d[V_{12}, x_2] + d[x_2, V_{23}] + d[V_{23}, x_3]
\]

\[
= \tan \frac{\theta}{4} + \tan \frac{\theta}{4} + \tan \frac{\theta}{4} + \tan \frac{\theta}{4} = 4 \tan \frac{\theta}{4} .
\]

When \(n = 3 \), 2nd refinement, 8 tangent sections \(H_{T_3} = 8 \tan \frac{\theta}{8} \)

Assume \(H_{T_k} = 2^k \tan \frac{\theta}{2^k} \) then \(H_{T_{k+1}} = 2(2^k) \tan \frac{1}{2} \left(\tan \frac{\theta}{2^k} \right) \)

So \(H_{T_{k+1}} = 2^{k+1} \tan \frac{\theta}{2^{k+1}} . \)

QED .
12.4.5.4 Evaluation of arc length.

Comparing chordal polygonal arcs and tangential polygonal arcs. Examine a small section from x_j to x_{j+1}. See Figure 12.4.5.4.1 below.

By Theorems 12.4.4.2 and 3, $V_{j,j+1}$, the tangent intersection point \neq chord $[x_j, x_{j+1}]$.

By the triangle inequality (Thm. 10.2.1 iii)

$$d[x_j, x_{j+1}] \leq d[x_j, V_{j,j+1}] + d[V_{j,j+1}, x_{j+1}]$$

length chordal polygonal arc \leq length tangential polygonal arc and by substitution with $n-1$ refinements

$$2^n \sin \frac{\theta}{2^n} \leq 2^n \tan \frac{\theta}{2^n}.$$
12.4.5.4.1 Definition

The length of arc for the unit circle is given by

\[\lim_{n \to \infty} H_n = \lim_{n \to \infty} H_T, \]

provided that these limits exist and are equal.

Lemma:

\[\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1. \]

\[\sin \theta \leq \theta \leq \tan \theta, \text{(Def. of functions, Thm. 12.4.4.3, and Def. 12.4.5.1)} \]

\[\Rightarrow 1 \leq \frac{\theta}{\sin \theta} \leq \frac{1}{\cos \theta} \] (Def. of functions)

\[\Rightarrow \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \]
Theorem 12.4.5.4.1

1) The limit of the sequences of tangential polygonal arcs \(\lim_{n \to \infty} H_{T_n} \) exists, \(\lim_{n \to \infty} H_{C_n} \) exists, and

2) These limits are equal.

Proof:
1) \(\lim_{n \to \infty} H_{T_n} \) exists because the sequence is monotonically decreasing and bounded by the \(H_{C_n} \) sequence (sections directly preceding).

2) \(\lim_{n \to \infty} H_{C_n} \) exists because the sequence is monotonically increasing and bounded by the \(H_{T_n} \) sequence (sections directly preceding).

3) The limits are equal because the limit of their difference is zero. i.e.

\[
\lim_{n \to \infty} 2^n \tan \frac{\theta}{2^n} - 2^n \sin \frac{\theta}{2^n} = \lim_{n \to \infty} 2^n \tan \frac{\theta}{2^n} - 1 - \cos \frac{\theta}{2^n}.
\]

As

\[
\frac{\sin \frac{\theta}{2^k}}{\cos \frac{\theta}{2^k}} = 1 - \cos \frac{\theta}{2^k} \approx \frac{\frac{\theta}{2^k}}{\frac{\theta}{2^k}} = 1 - \cos \frac{\theta}{2^k}.
\]

by lemma 12.4.5.4.1 when \(\theta \) is small, and since we know from calculus that \(\lim_{n \to \infty} \cos \frac{\theta}{2^n} = 1 \),

\[
\lim_{n \to \infty} 2^n \tan \frac{\theta}{2^n} - 2^n \sin \frac{\theta}{2^n} = \lim_{n \to \infty} \frac{\theta}{\cos \frac{\theta}{2^n}} - 1 - \cos \frac{\theta}{2^n} = 0.
\]

QED.
Theorem 12.4.5.4.2 For a unit circle, the length of an arc is given by the measure of the angle whose rays subtend it.

\[d(x_0@x_t) = \theta \]

Proof: By the previous section

\[\lim_{n \to \infty} 2^n \sin \frac{\theta}{2^n} = \lim_{n \to \infty} 2^n \frac{\theta}{2^n} = \theta. \]

QED.

Theorem 12.4.5.4.3 For a circle of radius \(r \), the length of an arc is given by the radius length times the measure of the angle whose rays subtend it.

\[d(x_0@x_t) = r\theta \]

Proof: By Theorem 12.4.4.1

\[d[x_1,x_2] = 2r \left| \sin \frac{1}{2} L x_1,x_2 \right| \]

Let \(L x_1,x_2 = \theta \), then by Theorem 12.4.5.3.1 the length of the chordal polygonal arc from \(x_1 \) to \(x_2 \) is given by

\[2^n r \sin \frac{\theta}{2^n} \quad \text{and} \quad \lim_{n \to \infty} 2^n r \sin \frac{\theta}{2^n} = \lim_{n \to \infty} 2^n \frac{\theta}{2^n} = r\theta. \]

QED.
12.4.6 Historical notes

I have made no attempt here to evaluate Pi (π). Estimates of the value of π have occupied both mathematicians and non-mathematicians alike since ancient times. One interesting and informative book on the subject is Petr Beckman's A History of Pi. A few of the many "circle squarers" and their estimates of π mentioned are:

From Babylonian tablets $\pi = 3\frac{1}{8} = 3.125$.

Archimedes of Syracuse (ca. 287-212 BC) used a "method of exhaustion" to approximate circle (area) by a sequence of regular polygons. Thru this process the number π was found to be the area of a unit circle, and the estimate $3.14163 < \pi < 3.142857$. Toeplitz (1963) says "Archimedes ...(wished) to find fractions with lowest possible numerators and denominators which should equal the ratio between the circle and the square over its radius as closely as possible. ... $3 \frac{10}{71} < \pi < 3 \frac{10}{70}$.

The Bible gives the integer 3 as the ratio of radius divided into circumference.

5th Century Chinese scholars gave the value $3.1415926 < \pi < 3.1415927$.

Legendre in his Elements de Geometrie (1794) proved the irrationality of π more vigorously than had Lambert.
Legendre also joined Euler and many others in supposing it was also not algebraic but transcendental.

In 1882 F. Lindemann finally succeeded in proving π was transcendental.

It is interesting to compare two essentially different conceptions of the number π, that employed by Archimedes and the concept employed in this thesis.

To Archimedes π was the ratio of the area of a circle to the square of the radius. In this thesis π is the angular measure of a straight angle. The fact that these two conceptions lead to the same number, π, is a discovery and must be formulated as a theorem and proved. The theorem takes us beyond the subject of this thesis.
12.4.7 Suggestions for additional work

Within the formalism of the original notes the following would make a logical follow up.

1) Stating and proving the classic circle, triangle theorems - particularly: Any triangle inscribed in a circle with the diameter as one side is a right triangle.

2) Extending the ideas to areas of triangles, other straight sided geometric figures and circles.

3) Comparing π as a measure of area with the angle measurement use of π in this thesis (backwards Archimedes).

4) Compilation of the notes of Dr. Barry, with additions, into a study guide or text for the upper undergraduate level.
BIBLIOGRAPHY

APPENDIX I

Table of Contents for "A Course In Plane Geometry"
unpublished class notes by P.D.Barry

Chapter I Vectors and Matrices

1.1 Linear Equations	1
1.2 The Vector Space \mathbb{R}^2	5
1.3 Linear Dependence	10
1.4 Bases;Coordinates	13
1.5 Translations	15
1.6 Linear Transformations	17
1.7 Singular and Non-Singular Linear	
Transforms	24
1.8 The Scalar or Dot Product of Two Vectors	26

Chapter II Coordinate System

2.1 Points, Lines and Plane	27
2.2 Parallel Lines	30
2.3 Perpendicular Lines	32
2.4 Some Examples	35

Chapter III Collinearity

| 3.1 Collinearity;Triangles;Mid-point; | 39 |
| (Desargues' and Pappus' Theorems) | |

Chapter IV Special Functions

4.1 Parallel Projection	51
4.2 Central Symmetry	54
4.3 Axial Symmetry	55
4.4 Rotations	59
Chapter V
 5.1 Order On A Line 64
 5.2 Line segments, Half-Lines 67

Chapter VI Some Geometric Figures
 6.1 Quadrangle; Parallelogram 72
 6.2 Equipollence 74

Chapter VII Angles
 7.1 Bisector of an Angle (angles introduced via half-lines) 76
 Centre of rotation 80

Chapter VIII
 8.1 Affine Transformations 83
 8.2 Affine Invariant 85

Chapter IX
 9.1 Equivalence of Angles, Definition of Straight Angle, Mapping of Angles, Alternate Angles 88
 9.2 Addition of Angles 104

Chapter X
 10.1 Length or Norm of A Vector 106
 10.2 Distance in the plane 108
 Triangle inequality, unit of distance 109
 Pythagorean Theorem 110
 Mid-point, distance 111

Chapter XI
 11.1 Invariance of Distance 115
 11.2 Euclidean Transformations 118
 11.3 Mapping of Triangles 121
Chapter XII

12.1 Properties of A*
12.2 Trigonometric Functions
 Sine and Cosine defined
 Sine and Cosine for special angles
 Theorems
 Angle of inclination
12.3 Trigonometric Functions and Distance
 Cosine Rule
 Sine Rule
12.4 Circles and Arc Length
 Definition of a circle only
APPENDIX II
Symbolism and Some Definitions (P.D. Barry)

I. General use of letters:

A. Arabic Capitols: Vectors and Points in \(\mathbb{R}^2 \)

B. Arabic small: scalors (real numbers) in \(\mathbb{R}^2 \)

C. Greek letters - special uses

\(\Pi = \) plane \(= \mathbb{R}^2 \); \(\lambda, \mu, \ldots \) = half lines or rays;
\(\lambda, \mu, \ldots \) = lines; \(\angle \lambda, \mu = \) angle from \(\lambda \) to \(\mu \)

II. Vectors: Given \(A, B \) vectors in \(\mathbb{R}^2 \), not linearly dependent: any vector in \(\mathbb{R}^2 \) can be written
\(C = k_1A + k_2B \); \(A \) and \(B \) basis vectors.

A. Scalar or Dot Product
Given vectors \(A = (a_1, a_2) \) and \(B = (b_1, b_2) \)
\(A \cdot B = a_1b_1 + a_2b_2 \) : Iff \(A \cdot B = 0 \), orthogonal

B. Length or Norm of a vector \(A \)
\(||A|| = \sqrt{a_1^2 + a_2^2} = \sqrt{A \cdot A} \)

C. Orthogonality:
If \(A = (a_1, a_2) \) its orthogonal vector \(A^* = (-a_2, a_1) \)

III. Planes, Points and Lines:

A. Plane: Set of \(\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} \) the Cartesian product symbolized by \(\Pi = \{(a_1, a_2) : a_1 \in \mathbb{R}, a_2 \in \mathbb{R}\} \)

B. Point: each vector \(A = (a_1, a_2) \) in \(\mathbb{R}^2 \) = point \(A \)

C. Line: Given \(E \) a vector in \(\mathbb{R}^2 \), \(F \) a non-zero vector in \(\mathbb{R}^2 \), and \(k \) a parameter

1) \(\lambda = \{E + kF, k \in \mathbb{R}\} \)
III.C. 2) \(\lambda = E + [F] \), note if \(E = 0 \) then
\[\lambda = 0 + [F] = [F] = \{ kF, k \in \mathbb{R} \} \]

3) \(AB \) (if \(A \) and \(B \) are distinct points of \(\Pi \) then
\(AB \) is the unique line containing \(A \) and \(B \))

D. Special lines : Given \(\lambda = A + [B] ; \mu = C + [D] \)

1) Same line : \(\lambda = \mu \) iff \(A = C \); \([B] = [D]\)

2) Parallel lines : \(\lambda \parallel \mu \) iff \(A \neq C \); \([B] = [D]\)

3) Perpendicular lines : \(\lambda \perp \mu \) iff \(B.C = 0 \)

4) Concurrent lines : one common point on all

E. Sensed lines and parts of lines
 (Given \(P_1 \) and \(P_2 \), points in \(\mathbb{R}^2 \))

1) With \(P_1 < P_2 : \overline{P_1P_2} \)

2) Segment of \(\lambda \)
 a) \([P_1,P_2] = \{ P_1 + k(P_2 - P_1) ; 0 < k < 1 \} \)
 b) \([P_1,P_2] = \{ P \in \lambda : P_1 \leq P \leq P_2 \} \)

3) Half-line or ray (of line \(\lambda \))
 a) \(\overline{\lambda} = A + k[B] ; k \geq 0 \text{ or } k \leq 0 \) \((A=\text{end pt.})\)
 b) (with end point \(P_1 \))
 \[\overline{\lambda} = \{ P \in \lambda : P_1 \leq P \} = \{ P_1 + kB ; k \geq 0 \} \]
 one sense + or the opposite sense +
 \(\overline{\lambda} = \{ P \in \lambda : P \leq P_1 \} = \{ P_1 + k(-B) ; k \geq 0 \} \)

IV. Special Functions on \(\Pi \)

A. Linear translation : \(t \)
\[t_k(X) = k + X \ ; \text{for all } X \text{ in } \mathbb{R}^2 ; k \text{ fixed} \]
IV.B. Linear transformations: \(\lambda \)

1) \(\lambda(\mu + \lambda) = \lambda(\mu) + \lambda(\lambda) \)

2) \(\lambda(k\mu) = k\lambda(\mu) \)

C. Parallel Projection:

\[\Pi(X) = \Pi(x_1, x_2) = A + \frac{d_2(x_1-a_1) - d_1(x_2-a_2)}{b_1d_2 - b_2d_1} B \]

(the line \(\Pi \) to \(C + [D] \) thru \(X \) a point on \(A + [B] \))

D. Central Symmetry:

\(s_A(X) = \) symmetry in the point \(A \)

for each \(X \in \Pi \) there is a unique point \(Y \) such that \(A \) is the midpoint of \([XY]\) or

\[A = \frac{1}{2} (X + Y) \quad ; \quad Y = 2A - X \]

\(\therefore \) \(s_A(X) = 2A - X \) \quad note \((s_B \circ s_A) = t_x(B-A) \)

E. Axial Symmetry:

\(s_\lambda(X) = 2\Pi(X) - X \) \quad (in the line \(\lambda \) relative to \(X \))

where \(\Pi(X) = \frac{1}{2}(X + Y) \)

F. Rotations:

\[\gamma = r = s \circ s \]

any transformation of the form \(Z = s_\mu \{ s_\lambda(X) \} \)

G. Affine transformations:

\(a = t \circ \lambda \)

(any composition where \(t \) is a translation and \(\lambda \) is a non-singular linear transformation)

H. Distance:

\[d_\mu(A,B) = \mu \|B - A\| \quad \text{or iff} \quad \mu = \frac{1}{\|B-A\|} \]

\[d(A,B) = 1 \text{ and just } d(A,B) \text{ means distance} \]
IV.I. Euclidean Transformation: \(e = t_k \circ \lambda \)

an affine transformation for which distance is invariant ex: (translations, axial symmetries, and rotations)

V. Angles and Trigonometry

A. Angle: Given half-lines \(\overline{A} = A + kB; \overline{\mu} = A + kC \)

A the common initial point

\(L\overline{A},\overline{\mu} \) or LEAF if \(\overline{A} = \{A + k(E-A); k \geq 0\} \) and

\(\overline{\mu} = \{A + k(F-A); k \geq 0\} \)

B. Angle Bisector: \(\nu \) (a special function)

\(s_\nu(\overline{A}) = \overline{\mu}; \ s_\nu(\overline{\mu}) = \overline{A} \)

C. Angle of Inclination:

\(\angle IOB \) of \(\overline{A} \)

where \(\overline{A} = 0 + [B] \) and \(0 = (0,0); I = (1,0) = I(\overline{A}) \)

D. Trigonometric functions:

\(\cos L\overline{A},\overline{\mu} = m_1; \ \sin L\overline{A},\overline{\mu} = m_2 \)

given \(\overline{A} = \{A + kB;k \geq 0\} \); \(\overline{\mu} = \{A + kC;k \geq 0\} \)

\(\lambda(B) \) maps \(\overline{A} \rightarrow \overline{\mu} \)

\(\lambda(B) = m_1B = m_2B^* \)
APPENDIX III

Theorems, Definitions (P.D. Barry) and *ones added by me

THEOREM 1.4.1 If A and B are vectors in \mathbb{R}^2, not linearly dependent, then any vector C in \mathbb{R}^2 can be expressed, and in just one way, in the form $C = k_1A + k_2B$. . . . A and B are a basis for \mathbb{R}^2. . . . we call k_1 and k_2 the coordinates of the vector C.

THEOREM 2.3.1 If $\lambda = A + [B]$ is a line in Π and C is a point in Π, there is a unique line μ in $\Pi, C + [(-b_2, b_1)]$ in fact, such that (i) $C \in \mu$ and (ii) $\lambda \perp \mu$.

Definitions in section 3.1.1

Given a triangle A, B, C, there is a unique line λ through A which is perpendicular to the line BC. . . . it intersects it in a unique point which we will denote by D. We call D the foot of the perpendicular from A onto BC, we also call the line AD an altitude of the triangle.

THEOREM 2.3.2 For all lines $\lambda, \mu, \nu, \omega$ in Π we have:

(i) $\lambda \not\parallel \lambda$,

(ii) $\lambda \perp \mu$ implies $\mu \perp \lambda$

(iii) $\lambda \perp \mu$ and $\mu \perp \nu$ implies $\lambda \parallel \nu$

(iv) $\lambda \perp \mu$, $\lambda \parallel \nu$ and $\mu \parallel \omega$ imply $\nu \perp \omega$.

Definition section 9.1 Equivalence of Angles

Given two angles $\angle \lambda, \mu$ and $\angle \rho, \sigma$, we say that they are equivalent written, $\angle \lambda, \mu \sim \angle \rho, \sigma$,

if there is a translation t_k and a rotation γ such that $t_k(\gamma(\lambda)) = \rho$, $t_k(\gamma(\mu)) = \sigma$.

THEOREM 9.1.2 Equivalence of angles has the following properties:

(i) \(\overline{\Delta x, \overline{\Delta u}} = \overline{\Delta x, \overline{\Delta u}} \) in all cases; (reflexive)
(ii) \(\overline{\Delta x, \overline{\Delta u}} = \overline{\Delta \rho, \overline{\Delta \sigma}} \) implies \(\overline{\Delta \rho, \overline{\Delta \sigma}} \) (symmetric)
(iii) \(\overline{\Delta x, \overline{\Delta u}} = \overline{\Delta \rho, \overline{\Delta \sigma}} \) and \(\overline{\Delta \rho, \overline{\Delta \sigma}} \) implies \(\overline{\Delta x, \overline{\Delta u}} = \overline{\Delta \rho, \overline{\Delta \sigma}} \) (transitive)

Definition Given an angle \(\overline{\Delta x, \overline{\Delta u}} \), if \(\overline{\Delta \rho, \overline{\Delta \sigma}} \) is the complementary half-line of \(\overline{\Delta x, \overline{\Delta u}} \) and \(\overline{\Delta \rho, \overline{\Delta \sigma}} \) is the complementary half-line of \(\overline{\Delta x, \overline{\Delta u}} \), then \(\overline{\Delta x, \overline{\Delta u}} \) is called the opposite angle of \(\overline{\Delta x, \overline{\Delta u}} \).

Definition If \(\overline{\Delta u} \) is the complementary half-line of \(\overline{\Delta x, \overline{\Delta u}} \), we call the angle \(\overline{\Delta x, \overline{\Delta u}} \) a straight angle.

THEOREM 9.1.3 Equivalence of angles has the properties that:

(i) \(\overline{\Delta x, \overline{\Delta u}} \) \(\overline{\Delta \rho, \overline{\Delta \sigma}} \) implies \(\overline{\Delta \rho, \overline{\Delta \sigma}} \); (opposite angles are equivalent)
(ii) each two straight angles are equivalent
(iv) if \(\overline{\Delta x, \overline{\Delta u}} \) is such that \(\overline{\Delta x, \overline{\Delta u}} \) is perpendicular to \(\overline{\Delta x, \overline{\Delta u}} \), and \(\overline{\Delta \rho, \overline{\Delta \sigma}} \) is such that \(\overline{\Delta \rho, \overline{\Delta \sigma}} \) is perpendicular to \(\overline{\Delta x, \overline{\Delta u}} \), then either \(\overline{\Delta x, \overline{\Delta u}} \) \(\overline{\Delta \rho, \overline{\Delta \sigma}} \) or \(\overline{\Delta x, \overline{\Delta u}} \) \(\overline{\Delta \rho, \overline{\Delta \sigma}} \).

THEOREM 9.1.4 If \(\overline{\Delta x, \overline{\Delta u}} \) \(\overline{\Delta \rho, \overline{\Delta \sigma}} \) then either \(\overline{\Delta x} = \overline{\Delta u} \) or \(\overline{\Delta x, \overline{\Delta u}} \) is a straight angle.

Theorem 9.1.5 For any angle \(\overline{\Delta x, \overline{\Delta u}} \) and line \(\overline{\Delta y} \), \(\overline{\Delta x, \overline{\Delta u}} \) \(\overline{\Delta y} \) \(\overline{\Delta y} \) \(\overline{\Delta y} \) being axial symmetry in \(\overline{\Delta y} \).

Corollary to Thm 9.1.5 : Let \(\overline{\Delta y} \) be the bisector of the angle \(\overline{\Delta x, \overline{\Delta u}} \) and \(\overline{\Delta y} \) have the same initial point as \(\overline{\Delta x} \) and \(\overline{\Delta u} \). Then \(\overline{\Delta x, \overline{\Delta y}} = \overline{\Delta y, \overline{\Delta u}} \).
THEOREM 9.2.1 Given equivalent pairs of angles
\[\overline{\alpha, \beta} \sim \overline{\gamma, \delta}; \; \overline{\lambda, \mu} \sim \overline{\rho, \sigma} \]
let \(\overline{\delta} \) and \(\overline{\phi} \) be arbitrary half-lines. Let \(f_1, f_2, f_3, f_4 \) be functions, each of the form \(t_k \cdot \gamma \), where \(\gamma \) is a rotation and \(t_k \) a translation, chosen so that, first
\[f_1(\overline{\alpha}) = \overline{\delta}, \; f_2(\overline{\gamma}) = \overline{\phi}, \; \text{and then} \]
\[f_3(\overline{\lambda}) = f_1(\overline{\delta}), \; f_4(\overline{\sigma}) = f_2(\overline{\delta}). \]
Then the angles
\[\overline{\delta}, f_3(\overline{\mu}), \; \overline{\phi}, f_4(\overline{\sigma}) \]
are equivalent.

Definitions and Theorems following show addition of angles is possible (section 9.2)
1) \(\overline{\alpha, \beta} + \overline{\lambda, \mu} = \overline{\lambda, \mu} \)
2) If \(\overline{\alpha, \beta} \sim \overline{\gamma, \delta} \) and \(\overline{\lambda, \mu} \sim \overline{\rho, \sigma} \) then
\[\overline{\alpha, \beta} + \overline{\lambda, \mu} \sim \overline{\gamma, \delta} + \overline{\rho, \sigma}. \]

Theorem 9.2.2 For any angles
\[\overline{\alpha, \beta} + \overline{\lambda, \mu} \sim \overline{\lambda, \mu} + \overline{\alpha, \beta}. \]

THEOREM 9.2.4 For any angle \(\overline{\alpha, \beta} \)
\[\overline{\alpha, \beta} + \overline{\gamma, \delta} = \overline{\alpha, \delta} \]
...we call the angle \(\overline{\alpha, \delta} \) a zero angle. Each two such are clearly equivalent. We also denote \(\overline{\beta, \alpha} \) by \(-\overline{\alpha, \beta}\).

THEOREM 9.2.5 For any angles \(\overline{\alpha, \beta}, \overline{\lambda, \mu}, \overline{\rho, \sigma}, \)
\[(\overline{\alpha, \beta} + \overline{\lambda, \mu}) + \overline{\rho, \sigma} = \overline{\alpha, \beta} + (\overline{\lambda, \mu} + \overline{\rho, \sigma}), \]
that is, addition of angles is associative.
DEFINITION (10.1)
Let μ be a positive real number. Given the points A and B in \mathbb{H}, we define $d_\mu(A,B)$ by the equation
$$d_\mu(A,B) = \mu \frac{|B - A|}{|B - A|} .$$
Then $d_\mu(A,B)$ is defined for all $A, B \in \mathbb{H}$. We call d_μ a distance function.

THEOREM 10.2.1 For each $\mu > 0$ and all $A, B, C \in \mathbb{H}$, we have the following:
(i) $d_\mu(A, B) = d_\mu(B, A)$;
(ii) $d_\mu(A, B) > 0$, with equality if and only if $A = B$.
(iii) $d_\mu(A, C) \leq d_\mu(A, B) + d_\mu(B, C)$, with equality if and only if $B \in [A, C]$. In particular if ABC is a triangle,
$$d_\mu(A, C) < d_\mu(A, B) + d_\mu(B, C) .$$

DEFINITION Given any distinct points A, B in \mathbb{H}, there is a unique value of μ such that $d_\mu(A, B) = 1$.
For then $|B - A| > 0$, and $d_\mu(A, B) = \mu \frac{|B - A|}{|B - A|} = 1$, if and only if $\mu = \frac{1}{|B - A|}$. ... our unit of distance.

THEOREM 10.2.2 The Theorem of Pythagoras
Let A, B, C form a triangle and the lines AB and BC be perpendicular. Then
$$d(A, B)^2 + d(B, C)^2 = d(A, C)^2 .$$

THEOREM 10.2.6 Let A, B, C be a triangle and D the midpoint of B and C. Then lines AD and BC are perpendicular if and only if $d(A, B) = d(A, C)$.
THEOREM 11.1.1 Distance is invariant under each translation i.e. \(d(X,Y) = d(t_k(X), t_k(Y)) \), for all \(X, Y \in \Pi \).

THEOREM 11.1.2 Distance is invariant under a linear transformation \(\ell \) if and only if \(\ell \) is either a rotation with center 0 or axial symmetry in a line \(\lambda \) thru 0.

THEOREM 11.2.1 Let \(\nu \) be the bisector of the angle \(\angle \lambda, \mu \). For any point \(X \in \nu \), let \(Y \) be the foot of the perpendicular from \(X \) on \(\lambda \) and \(Z \) be the foot of the perpendicular from \(X \) on \(\mu \). Then \(d(X,Y) = d(X,Z) \).

Definition (12.1) Given any vector \(A = (a_1, a_2) \) in \(\mathbb{R}^2 \) we define \(A^* = (-a_2, a_1) \).

THEOREM 12.1.1 For all vectors \(A \), we have:

(i) \(A^* \) is orthogonal to \(A \)
(ii) \(\|A^*\| = \|A\| \)
(iii) \((A^*)^* = -A \)
(iv) \((kA)^* = kA^* \)
(v) \((A+B)^* = A^* + B^* \)
(vi) If \(\ell \) is a rotation with center 0, then \(\ell(A^*) = \{\ell(A)\}^* \)
(vii) If \(A \neq 0 \), then \(A \) and \(A^* \) are not linearly dependent.

Definition 12.2 Given an angle \(\angle \lambda, \mu \) we define \(\cos \angle \lambda, \mu \), \(\sin \angle \lambda, \mu \) as follows:

Let \(\lambda = \{A + kB : k > 0\} \), \(\mu = \{A + kC : k > 0\} \) there is a unique rotation \(\ell \) such that \(\ell(kB : k > 0) = \{kC : k > 0\} \) ... there exist unique numbers \(m_1 \) and \(m_2 \) such that \(\ell(B) = m_1B + m_2B^* \). We define

\[
\begin{align*}
\cos \angle \lambda, \mu &= m_1, \\
\sin \angle \lambda, \mu &= m_2.
\end{align*}
\]
Special Cosines and Sines Defined (12.2)

If \(\bar{L}, \bar{X} = 0 \) angle \(\cos \bar{L}, \bar{X} = 1 \), \(\sin \bar{L}, \bar{X} = 0 \).

If \(\overline{u} \) is the complementary half-line to \(\bar{X} \)

\[
\cos \bar{L}, \bar{u} = -1, \quad \sin \bar{L}, \bar{u} = 0.
\]

If \(\overline{u} = \{ A + k B^*; k \geq 0 \} \) so that \(\lambda \bar{u} \)

\[
\cos \bar{L}, \bar{u} = 0, \quad \sin \bar{L}, \bar{u} = 1.
\]

If \(\overline{u} = \{ A - k B^*; k \geq 0 \} \)

\[
\cos \bar{L}, \bar{u} = 0, \quad \sin \bar{L}, \bar{u} = -1.
\]

THEOREM 12.2.1 If \(\bar{L}, \bar{X} \sim \bar{L}, \bar{O} \), then

\[
\cos \bar{L}, \bar{X} = \cos \bar{L}, \bar{O} \quad \text{and} \quad \sin \bar{L}, \bar{X} = \sin \bar{L}, \bar{O}.
\]

THEOREM 12.2.2 For all angles \(\bar{L}, \bar{X} \)

\[
\cos \bar{L}, \bar{X} = \cos \bar{L}, \bar{X} \quad \text{and} \quad \sin \bar{L}, \bar{X} = -\sin \bar{L}, \bar{X}.
\]

THEOREM 12.2.3 For any angle \(\bar{L}, \bar{X} \)

\[
\cos^2 \bar{L}, \bar{X} + \sin^2 \bar{L}, \bar{X} = 1 \quad \text{and the corollary}
\]

\[
-1 \leq \cos \bar{L}, \bar{X} \leq 1, \quad -1 \leq \sin \bar{L}, \bar{X} \leq 1.
\]

THEOREM 12.2.4 For any angles \(\bar{L}, \bar{X}, \bar{X} \) and \(\bar{L}, \bar{X}, \bar{X} \)

\[
\cos \{ \bar{L}, \bar{X}, \bar{X} + \bar{L}, \bar{X}, \bar{X} \} = \cos \bar{L}, \bar{X} \cos \bar{L}, \bar{X} - \sin \bar{L}, \bar{X} \sin \bar{L}, \bar{X},
\]

\[
\sin \{ \bar{L}, \bar{X}, \bar{X} + \bar{L}, \bar{X}, \bar{X} \} = \cos \bar{L}, \bar{X} \sin \bar{L}, \bar{X} + \sin \bar{L}, \bar{X} \cos \bar{L}, \bar{X}.
\]

*Corollary 1)

\[
\cos \{ \bar{L}, \bar{X}, \bar{X} - \bar{L}, \bar{X}, \bar{X} \} = \cos \bar{L}, \bar{X} \cos \bar{L}, \bar{X} + \sin \bar{L}, \bar{X} \sin \bar{L}, \bar{X},
\]

\[
\sin \{ \bar{L}, \bar{X}, \bar{X} - \bar{L}, \bar{X}, \bar{X} \} = \sin \bar{L}, \bar{X} \cos \bar{L}, \bar{X} - \cos \bar{L}, \bar{X} \sin \bar{L}, \bar{X}.
\]

*Corollary 2)

\[
\cos \{ \bar{L}, \bar{X}, \bar{X} + \bar{L}, \bar{X}, \bar{X} \} = \cos \bar{L}, \bar{X} \cos \bar{L}, \bar{X} - \sin \bar{L}, \bar{X} \sin \bar{L}, \bar{X},
\]

\[
\sin \{ \bar{L}, \bar{X}, \bar{X} + \bar{L}, \bar{X}, \bar{X} \} = 2 \sin \bar{L}, \bar{X} \cos \bar{L}, \bar{X}.
\]

DEFINITION Given a half-line \(\bar{A} = \{ A + k B ; k \geq 0 \} \), we call \(\bar{A}, \bar{O} \) the angle of inclination of \(\bar{X} \), where \(0 = (0,0) \) and \(\bar{I} = (1,0) \) and denote it by \(I(\bar{X}) \).
THEOREM 12.2.4

*corollary 3) For any angle \(\overline{\alpha}, \overline{\beta} \)
\[
\cos 2 \overline{\alpha}, \overline{\beta} = 2 \cos^2 \overline{\alpha}, \overline{\beta} - 1,
\]
and
\[
\cos 2 \overline{\alpha}, \overline{\beta} = 1 - 2 \sin^2 \overline{\alpha}, \overline{\beta}.
\]

*corollary 4) For any angle \(\overline{\alpha}, \overline{\beta} \)
\[
\cos^2 \frac{1}{2} \overline{\alpha}, \overline{\beta} = \frac{1 + \cos \overline{\alpha}, \overline{\beta}}{2}
\]
\[
\sin^2 \frac{1}{2} \overline{\alpha}, \overline{\beta} = \frac{1 - \cos \overline{\alpha}, \overline{\beta}}{2}.
\]

THEOREM 12.2.5
If \(\overline{\alpha}, \overline{\beta} + \overline{\lambda}, \overline{\mu} \) is a straight angle, then
\[
\cos \overline{\lambda}, \overline{\mu} = -\cos \overline{\alpha}, \overline{\beta}, \text{ and } \sin \overline{\lambda}, \overline{\mu} = \sin \overline{\alpha}, \overline{\beta}.
\]

THEOREM 12.2.6
Let \(\overline{\alpha} = \{ A + k \overline{B} ; k \geq 0 \} \), \(\overline{\gamma} = \{ A + k \overline{B} *; k \geq 0 \} \)
\(\overline{\delta} = \{ A - k \overline{B} *; k \geq 0 \} \). If \(\overline{\alpha}, \overline{\beta} + \overline{\lambda}, \overline{\mu} = \overline{\alpha}, \overline{\gamma} \), then
\[
\cos \overline{\lambda}, \overline{\mu} = \sin \overline{\alpha}, \overline{\beta}, \text{ and } \sin \overline{\lambda}, \overline{\mu} = \cos \overline{\alpha}, \overline{\beta}.
\]
If \(\overline{\alpha}, \overline{\beta} + \overline{\lambda}, \overline{\mu} = \overline{\alpha}, \overline{\delta} \), then
\[
\cos \overline{\lambda}, \overline{\mu} = -\sin \overline{\alpha}, \overline{\beta} \text{, and } \sin \overline{\lambda}, \overline{\mu} = -\cos \overline{\alpha}, \overline{\beta}.
\]

THEOREM 12.3.1
Given points B and C, distinct from each other and from 0
\[
\cos \angle B0C = \frac{B \cdot C}{\| B \| \| C \|}, \quad \sin \angle B0C = \frac{B \cdot C}{\| B \| \| C \|}.
\]

THEOREM 12.3.2
Let A, B, C be a triangle such that AB \(\perp \) BC.
Then
\[
\cos \angle BAC = \frac{d(A, B)}{d(A, C)}, \quad \sin \angle BAC = \frac{d(B, C)}{d(A, C)}.
\]