
' I 

I J 

l J 

90-60-15 

LinlUEASITl' 

5CIEnt:E 

The SS/ 1 Design Editor 
A Graphical Interface for Object Oriented Parallel Programming 

with Server System / 1 

Thomas Sturtevant 
Ted G. Lewis 

Department of Computer Science 
Oregon State University 

Corvallis, OR 97331-3902 



l 
7 
n 
l 
0 
n 
l 

~ 

I 
l 
J 

I 
J 

Li 

Li 

The SS/1 Design Editor 
A Graphical Interface for Object Oriented Parallel 

Programming 
with Server System/1 

by 
Thomas Sturtevant 

A research project submitted in partial fulfillment of 
the degree of Master of Science 

Major Professor: Ted G. Lewis 

Department of Computer Science 
Oregon State University 
Corvallis, Oregon 97331 

April 1990 

r 



l 
n 
l 
~ 

D 
~ 
) 

n 
) 

I J 

] 

ll 
I J 

J 

J 

J 

Table of Contents 

1. Overview 

2. Object Oriented Parallel Programming 
2.1 Object Oriented Parallel Programming with SS/1 

3. Other Object Oriented Parallel Programming Languages 

4. The Server System/1 Design Editor 
4.1 Functional Capabilities 

4.1.1 Common Features 
4 .1.2 Class Definition 
4.1 .3 Communication Specification 

5. Design Example: Computer Store Simulation 
5.1 Computer Store Class Definition 
5.2 Computer Store Simulation Communication Specification 

• · 6. Implementation of the SS/1 Design Editor 
6.1 Implementation . Difficulties 
6 .2 Program Statistics 

7. Practical Use of the SS/1 Design Editor 
7.1 Presenting Information 
7.2 Storing Information 

8. Future Work 
8.1 Additional Language Constructs 
8.2 Constant Definitions 
8.3 Data Flow Analysis 

Appendix A: Menu Reference for the SS/1 Design Editor 

Appendix 8: SS/1 Deisgn Editor Tutorial "Matrix Multiplication" 

Appendix C: SML Specification 

References 

1 

2 
2 

5 

6 
6 
6 
8 
9 

10 
10 
1 1 

15 
15 
15 

1 5 
15 
1 6 

16 
16 
1 7 
1 7 

18 

23 

38 

39 



l 
~ 

1 
~ 

f] 

l 

7 

l I 

I 
u 
lJ 
J 

J 

J 
J 

Abstract 

The Server System/ t (SS/ t) Design Editor is a graphical programming 
tool that provides a simple interface for object oriented parallel 
programming. Two difficult problems with parallel programming, 
partitioning, end visualization ere addressed by the SS/ 1 Design Editor. 
An SS/ t program is structured using object oriented design concepts. 
This leads to highly cohesive program units, which ere ideally suited 
for control-level parallelism . The program is displayed es a graph that 
explicitly shows the parallel sequencing end temporal dependencies of 
the messages. Because SS/ 1 supports some of the basic features of 
object oriented programming, i nheritence end code reuse ere 
encouraged. 

1. Overview 

Maj or soft ware performance improvements can be achieved 
through para 11 el processing. This performance gain is usu a 11 y 
accompanied by increased programming effort to produce pere 11 e 1 
code. Whereas textual programming languages are well suited for 
sequential code, this type of program description is not expressive 
enough to adequately describe complex parallel sequencing. A 
graphical programming language cen show the parallel structure and 
temporal dependencies in a program more clearly then e text 
des c ri pt i on. 

Communication overhead bet ween processes can be e serious 
problem for parallel programs. One of the many benefits of object 
oriented design is low coupling bet ween program units. Because this 
minimizes communication between the units, it makes object 
oriented design an ideal method for pert it i oni ng e program for 
contra 1-1 eve 1 pare 11 e 1 processing. 

The Server System/ t (SS/ 1) Design Editor is e grephicel, 
object oriented perellel programming tool. SS/ 1 el lows e 
pro_gremmer to first define a cl ess hi ererchy, end then describe e 
program as a parallel sequence of messages. By displaying the 



message sequence graphically in two dimensions, the SS/ 1 Design 
Editor makes the task of programming in parallel much easier. 
Because the resultant program is based on an object oriented design, 
communication between processes is minimized. The program 
descriptions generated by the SS/ 1 Design Editor can be executed 
using the SS/ 1 Server on a Sequent Balance parallel computer. 

2. Object Oriented Parallel Programming 

Both object oriented programming, and para 11 el programming 
have been the focus of a tremendous amount of research effort over 
the past five years. Server System/ 1 utilizes the benefits of each 
by allowing messages to be dispatched in parallel. Object oriented 
programming facilitates encapsulation, information hiding, code 
reuse, rapid prototyping, and maintainability [Budd]. Parallel 
processing can lead to dramatic performance improvements by 
solving different parts of a problem simultaneously . A major 
problem with parallel · programming is communication overhead 
between the individual processes . To minimize this overhead, it is 
best to divide the code into highly cohesive program units. In object 
oriented programming , cl asses are designed for high cohesion and 
low coupling to increase encapsulation, and information hiding. Thus 
an object oriented design is likely to be a good means of partitioning 
a program for parallel processing. 

In an object oriented program, actions are carried out in 
response to messages. The message indicates what is to be done, 
but not how or where it should be done. This "message independence" 
is another feature of object oriented programming which makes it 
highly compatible with parallel . programming . 

2.1 Object Oriented Parallel Programming with SS/ 1 

Server System/ 1 is an object oriented para 11 el programming 
system which executes messages as communicating parallel 
processes [Cho9O]. SS/ 1 requires two inputs : a description of the 

2 



I 
I 
j 

J 

J 

l I 
lJ 
J 

I 
J 

class hierarchy, and sequence/dependency information for messages 
(see appendix B for BNF specification of SML language). Given this 
information, it finds appropriate methods based on the cl ass 
hierarchy, and runs them as individual processes according to the 
sequence guidelines. 

The "Server Manipulation Language" (SMU used by 55/ 1 is a 
concise, architecture independent description of the cl ass hierarchy 
and the message scheduling. As a programming language, SML is very 
clumsy and unmanageable. The 55/1 Design Editor provides a simple, 
graphical environment for developing SS/ 1 programs, and 
automatically generates SML code from the users design. Fig 2.1 
shows the interaction between the 55/ 1 Design Editor, and the 55/ 1 
Server program. 

3 



Source Code 

Programmer 

Communication 
Specification 

Program Results 

Figure 2. l : SS/ i' Data Flow Graph 

4 

Task Graph 

l! 
I 

0: 
I 1 
' 

Ii 
l 
I; 

I 

Ji I 

V 
)! 

I. 

l 
J: 



l 
l 
l 
n 
0 
n 
l 
l 
I 
l 
I 
I 

j 

lJ 

I 
1 

j 

J 

3. Other Object Or1ented Parallel Programm1ng Languages 

Because the object oriented approach to large grain 
parallelisms has many benefits, a number of object oriented parallel 
programming languages have been developed throughout the 1980's 
[Yon87]. As in 55/ 1, many of these languages implement "objects" as 
independent processing agents which communicate by sending 
messages. 

Act 1 is an implementation of the Actor[Agh87][Lie87] model. 
In this model objects (called "actors") are separate processes which 

respond to incoming messages. Each actor maintains a message 
queue so that messages are handled first-come, first-served. 

"Future actors" are used as place holders for results being computed . 
This tends to increase parallelism because an actor must only wait 
for the future value if a read operation is requested before the value 
is computed. 

ABCL/ 1 [Yon86] is similar to Act 1, but contains some extra 
features . Messages can be sent in "normal" or "express" mode. An 
express message will interrupt an object handling a normal message. 
Message passing can be any of three types: "past" type is 
asynchronous, "now" type is synchronous, and "future" type is 
asynchronous and creates a future object for the return value. As in 
55/ 1, the actua 1 methods in ABCL/ 1 can be writ ten in various 
languages including C, FORTRAN, LISP, etc. 

ConcurrentSm a 11 ta 1 k[Yok86] is a super set of Sm a 11 ta 1 k-80 
which expands the message passing semantics to include 
asynchronous (in addition to the standard synchronous) message 
passing. Results from asynchronous messages are returned to 
"future objects", similar to the future actors used in Act 1. 

Linda Smalltalk[Chun] is an implementation of Little 
Smalltalk[Bud87] using Linda tuple-space communication . Implicate 
para 11 e 1 ism is achieved through concurrent execution of message 
arguments. 

Unlike SS/ 1, none of the afore mentioned languages has a 
visual programming environment. Parallax[Elr88] is a parallel 
programming system with a graphical editor similar to that· used by 

5 



SS/ 1. However, Parallax programming is not based on object 

oriented design. 

4. The Server System/ 1 Dest gn Ed1tor 

Program generation with the SS/ 1 Design Editor proceeds in 

two stages . In the "Cl ass Definition" stage, the user defines a cl ass 

hierarchy graphically as a tree. This is a natural way to view the 
hierarchy, and makes the inherftance patterns easy to see (Fig 4.2). 

In the "Communication Specification" stage a program is defined as a 

paral le 1 sequence of the methods defined in the Cl ass Definition . 

This program sequence is displayed as a graph where arcs indicate 

temporal dependencies between message executions (Fig 4 .3). The 

dependency or "sequencing" graph shows the paral le 1 structure in a 

very intuitive format. For a programmer this graph is much easier 

to i nterpreate than the equiva 1 ent text description . . 

4.1 Functfonal Capabilftfes 

The SS/ 1 Design Editor closely follows the Macintosh standard 

user interface guidelines. It provides intuitive, direct manipulation 

graphical editing of the class definition, and communication 

specification diagrams. This section describes the basic 

capabilities of the Design Editor, Appendix B gives a detailed 

account of all of its features and how they are used. 

4. 1. 1 Comm on Features 

There are many similarities between the class definition, and 

the communication specification editing capabilities. Both diagrams 

are displayed in scrolling Macintosh windows. A palette of tools is 
provided for each diagram (Fig 4. 1 ). The tools available at any time 

match the type of window which is currently active. Diagrams can 

be viewed in four discrete "zoom states" . This gives the user an 

option of viewing with high detail, or with a large range. Objects 

6 

l 
: 

J ; 

1-

J: 



1 
I l 

~ 

n 
0 
n 
l 
l 
I 

I 
I 
I 
lJ 
lJ 
I 
J 

I 
J 

ere selected end manipulated with the mouse. In general, ell 

graphical objects can be selected, moved, end deleted. Groups of 
objects (with some restrict i ans) can be represented by e single 

"compound" object. The contents of e compound object can be viewed 

in another window, or can be rei ntegreted into the mei n di egrem. 
Each type of di egrem can be printed, saved end restored by use of en 

ASCII file. 

Class Definition Palette Communication Specification Palette 

Selection Selection 

0 Class/Method D Basic Message 

➔ Inheritance ~ Compound Message 

:(§7. Compose D Parallel Replication . . : 
\--l,/ 

PAR 
_..,o,.._ Decompose □ Sequential Replication 1§) SE 

➔ Control Sequence 

}5:i7 
Compose I o .. 

\b,/ 

/0\ Decompose 
~ 

Figure 4.1: SS/ 1 Design Editor Tool Palettes 

7 



concurrently. Finally, a rectangle with a horizontal bar is a 
compound, sequential replicated message. The messages it 
represents must be replicated sequentially. Compound messages 

may have only e single incoming arc, end e single outgoing ere. This 

single-entry, single-exit restriction removes any chance of 
embi guity over the message sequencing. 

Inf ormet ion for each message in the di egrem must be supplied 
by the user. For basic messages, the user must specify the receiving 

class, the method name, end any parameters. The number end types 
of the parameters will be checked against the method's parameter 
list in the source file. For compound messages, the user must 
specify e display label which will be useful for identifying the 

contents of the message. For replicated messages the user must 

provide e display label, end the loop bounds. 

The communication specification can be used to generate e 

TeskGrepher[For90] input file. Using TeskGrepher, the programmer 

can est i mete processor scheduling, runtime speedup, end cri t ice 1 

path. 

5. Design Example: Computer Store Si mul et ion 

The Computer Store simulation is en example program written 

with the SS/ 1 Design Editor. It simulates the interactions between 

customers, sales, end service personnel. 

5. 1 Computer Store Cl ass Def1 n1t 1 on 

The cl ass hi ererchy for the Computer Store si mul et ion 

contei ns three di st i net cl asses: Were, People, end Environment. The 

Class Were includes ell products carried by the store end hes 

subclasses Soft were end Hardware. The cl asses Customer, Sal es, 

end Service ere ell subclasses of class people . The Classes each 

have methods associated with them as shown in Fig 5.1. Note that 

the subtrees for classes Hardware and Software are nested within 

double-bubbles. 

10 

·1 

r 
~: 

ll 
ni 
11 

I l 
rT 

I! 

Ji 

JI 

J[ 

I\ I 

ll 
Jl 
J! 

r 
Ji 

J: 



l 
n 
I 
n 
n 
n 
l 
J 
. j 

I 
J 
l 
J 

I 
.I 
1 

I 

Store 

.· .. ·.·.· .. ·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.· .... ·.·.·.· .. · .... ·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.· .. ·.·.·.·.·.·.· .... ·.· .... ·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.:.:.·.·.·.·.·.·.:_::;:;: 

Figure 5. 1: Cl ass Definition for Computer Store simulation 

5.2 Computer Store Sfmu18t1on Communfcatfon 
Spec1f1cat1on . 

The top level for the Computer Store simulation 
communication specification is shown in Fig 5.2. This di a gram 
should be interpreted as follows: 

- First open the store . 
- Next, customers, sales and service personnel do their actions 

in parallel. 
- Finally, close the store. 

1 1 



Store 

Environment : open O; 

Sales Loop Service Loop ~ 

i = 1 for MAX-5ALES; j = 1 for MAX-5ERVICE; k = 1 for MAX_.CUST; 

Figure 5.2: Computer Store si mul et ion Communi cet ion Speci fi cet ion, 

Level 1 

Nested within e e ch p ere 11 el loop is e sequent i el event l o op. 

Eech person in the si mul et ion is generating end/or processing events 

independent of ell others. The loop for en i ndi vi duel sel es person is 

shown in Fig 5.3. This is interpreted es: 

- Get en event from the system . 
.... Depending on the event give e demo, or sell some were. 

12 

L 
~-: 

]: 

l 
n. 
I : 
1 l 

I : 
l: 
] : 

I 
l; 

l 
J 

1 

j 

j 

J 



. l 

n 
n . : 

:7 
~ : 

J 
J 
, I 
I 

l- . • 

J 
I 
J 

u 
j 

I 
j 

J 

J 

Sales Loop 

I ndiv. Sales Loop 

i 1 = 1 for forever; 

lndiu. Sales Loop 

Environment : get Event (The Event); 

Sales : sell (TheEvent, TheAmount); Sales : demo (TheEvent); 

Environment : money In (TheAmount); 

·.·.·.·•·.·.·.·.·.·•·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.· 

Figure 5.3: Computer Store si mul at ion Comm uni cation Specification, 
Levels 2 and 3 

Since SS/ 1 does not yet support a conditional branch, the demo 

and sell messages will both be sent. It is thus the responsibility of 

the demo and sell methods to make sure that theEvent was meant for 
them . The SML description for this program wi 11 be: 

/* Class Definition*/ 

( 

Ware ( Han:IWare Software) 

People ( 

Sales ( demo sell ) 

Service ( fix ) 

Customer ( buy demoReq fixReq ) 

) 

Environment ( open close getEvent moneyln) 

13 



/* Communiceitfon Spectficeition */ 

(SEQ 

(Environment, open) 

(SEQ 

) ) 

(PAR 

(PAR k = 1 for MA>LCUST 

(SEQ k 1 = 1 for forever 

(SEQ 

(Environment, (getEvent,TheEvent)) 

(PAR 

(Customer, (fixReq,TheEvent)) 

(Customer, (demoReq,TheEvent)) 

(Customer, (buy,TheEvent)) 

) ) ) ) 

(PAR j = 1 for MAX-SERVICE 

(SEQ j 1 = 1 for forever 

(SEQ 

(Environment, (getEvent,TheEvent)) 

(Service, (f1x,TheEvent)) 

) ) ) 

(PAR 1 = 1 for MA>LSALES 

(SEQ 11 = 1 for forever 

(SEQ 

(Environment, (getEvent,TheEvent)) 

(PAR 

(Sales, (demo,TheEvent)) 

(SEQ 

) ) ) ) ) ) 

(Sa 1 es, (se 11,TheEvent, TheAmount)) 

(Environment, (money I n,TheAmount)) 

(Environment, close) 

14 

i; 

n-: 

l ; 
l ; 
ni 
l : 
r 
1: 
l i 
J: 
I , 

L 
I : 
l: 
J: 
J; 

r 
J 



l 
l 
l 
l 
n 
n 
l 
1 

1 
( 

J 

l 
ll 
I J . . 

l 
j 

J 

u 

6. lmplementat1on of The 55/ 1 Des1gn Ed1tor 

6.1 lmplementat1on D1ff1cult1es 

The SS/ 1 design editor was an interesting programming 

project because it involved implementing a very di verse set of 

functionality. Major program segments include: two graphical 
editors, a text editor, a parser for C source code, and a code 

generator. 
One extremely difficult algorithm was the conversion of a 

mult i-1 ayered DAG (i.e. the comm uni cation speci fi cation diagram) 

into the corresponding textual SML description. 

6.2 Program 5tat1st1cs 

The SS/ 1 design editor was developed using Think's LightSpeed 

Pascal 2.0. The Pascal project contains 23 uni ts with a total of 

nearly 13,000 lines of source code. The compiled size of the 
application is 101K. 

7. Practical Use of The SS/ 1 Design Edi tor 

Practical (commerciaL quality) programming environments 

must be capable of handling very large programs. The S5/ 1 Design 

Editor was implemented as a research system, and is not designed to 
cope with the development of 1 arge programs. 

7. 1 Present 1 ng Inf ormat 1 on 

The 55/ 1 Design Editor's visual interface presents a program 

in a simple, useful manner. Abstraction mechanisms (double 

bubbles and double rectangles) can be used to reduce screen clutter 

and organize a design in a modular fashion. As a design gets more 

complex, thoughtful organization becomes more important and at 

the same ti me much more di ffi cult. The 55/ 1 Design Editor does not 

15 



pro vi de any assistance with program organization. A program 
containing many control arcs may become very difficult to trace. 

A loop construct is displayed as a double rectangle. The loop 
body must be viewed in a separate window even if it only consists of 
a single message. For practical purposes this is too restrictive. To 
vi e w a comp 1 et e mat ri x mu 1t i p 1i ca ti on program (with a t ri p 1 e nested 
1 oop) re qui res four windows. 

7.2 Storing lnformat1 on 

55/ 1 Design Editor designs are stored in mono 1 ithi c ASC 11 

files. The ASC 11 format is human readable, and makes the design 
information easily available to other applications. However, 1 arge 
designs require a considerable amount of time for loading and 
s av i n g. St o ri n g the data i n a bi nary format w o u 1 d speed up th i s 
process considerably. The monolithic nature of a design file makes 
it difficult to coordinate changes made by a team of programmers. 
A 11 i ndi vi dual changes would have to be merged into the single 
design file. One natural solution to this problem is to have a 
separate file to describe each window, but here the pro bl em is 1 i kel y 
to be too many files because a si mp 1 e design can re qui re many 
windows. 

8. Future Work 

There are a few additions to Server System/ 1 and the 55/ 1 Design 
Editor that would need to be made in order for it to be a viable, 
practical tool. The most important of these are listed in this 
sec ti on. 

8. 1 Add1t 1 oneil Language Constructs 

55/ 1 does not currently support a con di ti ona l branch in the 
SML language. This limitation is reflected in the 55/ 1 design editor. 

16 

L 
l : 

]: 
i 

l: 
] ! 

I 

l . 

l 1 

1. 
l : 

I 

J _: 

J 

I 
I : 
Ii 
l 
J : 

J: 
L 

LJ. 



l 
n 
fl 
l 
0 
n 
) 

'' 

u 
J 

J 

A conditional branch is vital in any practical system, and should be 
added to SS/ 1. 

6.2 Cons tent Def1n1t1 ons 

The SS/ 1 design editor should provide a method for the user to 
define constant values. Constants can be included in an SML file, so 
this is purely an interface issue. 

6 .3 Detefl ow Anel ys1 s 

Dataflow information contained in message arguments could be 
ut i1 i zed to detect data-independant sect 1 ens of a program which 

could be run in parallel. Currently the process of identifying 
parallelism must be handled by the programmer. 

17 



Append1>< A: Menu Reference for the SS/ 1 Design Editor 

This appendix gives an overview of the SS/ 1 design editor menus. 
The usage and availability of each menu item is listed. 

Rbout SSI-

DA'• 

&enente Glue Code X& 
P~nt XP 

Quit XQ 

AopJe Menu 

Rbout SS/1 

This displays a dialog detailing the date, version, 
and author of the application. 

Desk Rccessories 

55/ 1 supports all desk accessories. 

Sess1 on Menu 

Generate Glue Code 

Generate the 5ML description of the class 
definition and communication specification 
diagrams. The user must input the name for the 

5ML file. 

Print 

Print the current active window . Text and 

graphics windows may both be printed in this 

manner. 

Quit 

Terminate the application. If there are any 

unsaved changes., the user is given an opportunity 

to save the changes. 

18 

L 
n1 

lJ 
'•\ 

11 
I 

1; 

.1 l 

L 
I : 
I: 

J i 

l : 



l 
l 
l 
l 
n 
0 
J 
'J 
. I 
J 
I 
1 

j 

l J 

u 

u 
I 
u 

,. 
Neu, 
Open 
CloH XW 

Saue 
Soue A•-

c1 oss Def1 n1 t1 on Menu 

New 
Open a new cl ass definition diagram. This menu 
item is unavailable if a class definition diagram 

. is currently open. 

Open 
Open an existing cl ass definition di a gram. This 
menu item is unavailable if a cl ass definition 
diagram is currently open. 

Close 
Close the current cl ass definition diagram. This 
menu item is unavai 1 able if no cl ass definition 
di a gram is current 1 y open. 

Saue 
Save the current cl ass definition di a gram as an 
a sci i file. This menu item is unavailable if no 
cl ass definition di a gram is current 1 y open. 

Saue Rs ... 
Save the current class definition diagram under a 
name entered by the user. This menu item is 
u n avail ab 1 e if no c 1 ass definition diagram i s 
current 1 y open. 

19 



' 11-,1 ' 

New 
OpeA 
Close xw 

S.ue 
SaueAa-

[Hport Teak &raph R1 .•• 

communf cotf on soec1 r1 cot1 on Menu 

New 
Open a new communication specification di egrem. 
This menu item is uneveileble if e communication 
speci fi cet ion di egrem is current 1 y open. 

Open 
Open an existing communication specification 
diegrem . This menu item is uneveileble if a 
communication specification diagram is currently 
open. 

Close 

Close the current communication specification 
diegrem. This menu item is uneveileble if no 
communication specification diegrem is currently 
open. 

Saue 
Save the current comm uni cet ion specif i cet ion 
diegrem as en ascii file. This menu item is 
unevaileble if no communication specification 
diagram is current 1 y open. 

Saue Rs ... 
Save the current communication specification 
di egrem under e name entered by the user. This 
menu item is uneveileble if no communication 
specification diagram is currently open. 

EHport Task Graph As ... 
Generate a TaskGraph format file from the 
comm uni cation specifi ceti on di egrem. This menu 
item is unavailable if no communication 
specification di egram is current 1 y open. 

20 

L 
I, 

l 
J 

Ll 



l 
I 
l 
. l 

n , . 

J 
J 
, I 
I 

J 
j 

l 
I l 
Li 

j 

. r 

Cut XH 
Copy XC , .... XU 

SeHTeHt 
SeueTeHt Rs ... 

Edit Text Menu 

The Edit Text menu contains the word processing 

commands for editing method source files. The 

source files are opened through the Method Info 
Dialog (discussed in Appendix B section 1.3). 

Cut 

Delete the currently selected text section, and 
place it into the paste buffer. This menu item is 

unavailable if no text is selected. 

Copy 
Place a copy of the currently selected text 

section in the paste buffer. This menu item is 

unavailable if no text is selected. 

Paste 

Insert the contents of the paste buffer at the 

current cursor position. This menu i tern is 
unavailable if there is nothing in the paste buffer . 

Saue TeHt 

Save the contents of the active text window. This 

menu item is unavailable if a text window is not 

active . 

Saue TeHt Rs ... 

Save the contents of the active text window under 

a name entered by the user. This menu item is 

unavailable if a text window is not active. 

21 



Rednw 
Zoom Out •
Zoom In X• 

Layout Menu 

Redraw 
Redraw the active graphics window. This menu 
item is unavailable if a graphics window is not 
active. 

Zoom Out 
Show a greater range of the active graphics 
window. This menu item is unavailable if a 
graphics window is not active, or if the active 
graphics window is already zoomed out to its 
greatest range . 

Zoom In 
Show greater greater detail in the active graphics 
window. This menu item is unavailable if a 
graphics window is not active, or if the active 
graphics window is already zoomed in for 
maximum detail. 

22 

.J 

l 
l 
J: 



l 

' ) 
'.-. ' 

I 
. I 
I 
I 

l 
J 

lJ 
I 
j 

J 

Append1>< B: SS/ 1 Destgn Editor Tutort al ·Matrt>< 
Multtplf cattonN 

This section gives step by step instructions for using the SS/ 1 
Design Editor to write . e matrix multiplication program. It is 
assumed that the reeder hes some experience using Macintosh 
a pp 1 i ca ti on s. De t e il e d i n st ru ct i on s for e ct i on s such es s e 1 e ct i n g 

menu items, and selecting files from a mini-finder dialog will not 

be provided. 

1. Butl df ng a Cl ass Deft ntt 1 on D1 a gram 

1. 1 But l dt ng the Cl ass Ht erarchy 

Launch the SS/1 Design Editor. Double click on the application icon 

to launch the design editor. 

Open a Class Definition diagram. Select item "New" in the Class 

Definition menu. At this point two windows should appear on your 
screen. The 1 arge window tit 1 ed "Cl ass Defi n·i ti on" is where the 

class hierarchy will be displayed. The small window at the left edge 
of the screen titled 'Tool" is the tool palette containing the tools 

you wi 11 use to construct the cl ass hi ererchy. 

Choose the Class/Method Tool from the tool palette. The 

Cl ass/Method too 1 is represented as a ci rel e in the too 1 pa 1 ette. 

When it is se 1 ected the GUrsor wil 1 change to e ci rel e Vv'.henever it is 
over the di egram window. 

Place a Class/Method bubble in the diagram window. This is done by 
positioning the cursor near the top of the di a gram window end 
pressing the mouse button once. At this point e circle (representing 

e class or a method) is displayed in the diagram window (Fig. B.1 ). 

23 



• Session 

Tool 

Class Definition Communication Spec. Edit TeHt Layout 

Class Definition l 

0 
0 

...........................................................•.................•................................................................................................... : . : . : . ~ 

Figure B. 1: The Cl ass Definition di ag,:-am. 

Choose the Selection Tool from the tool palette . The Selection tool 

is the diagonal arrow at the top of the palette . 

Change the name of the new Class to "Matr;x" . With the selection 

tool, double click on the circle in the diagram window. A dialog will 

appear (Fig B.2) with the instructions "Enter Method Information". 

Type "Mat ri x "· i n the f i e 1 d 1 ab e 1 e d "Method Name" and s e 1 e ct the "o K" 

button. The ci rel e in the window should now be 1 abel ed "Matrix". 

24 

j 



17 

I 
l 
0 
n 
I 

~ 

ll 
lJ 

j 

j 

u 

Enter Method I nformotion 

Method Nome: 1 .... M_o_tr_i_H _________ __. 

Documentation: .... I _____________ __, 

[( OK ~ )] ( Define ) ( Cancel J 

Figure B.2: The Method Inf ormeti on Di elog. 

Add "2-D" and "Array" Classes to the diagram. Following the same 

steps used to create the "Matrix" class, add class bubbles labeled 

"Arrey", end "2-D". 

Note: our di egrem wi 11 be neater if the 2-D end Arrey cl ass bu bbl es 

fl re p 1 fl c e d side-by-side fl n d s 1 i g ht 1 y be 1 ow the M flt ri x c 1 fl s s bub b 1 e. 

Bub bl es may be dragged with the Selection tool. 

Specify the hierarchy among the classes in the diagram . Choose the 

Connection tool which is represented by e horizontal arrow in the 

pa 1 et t e. C 1 i ck the mouse button down i n the Mat ri x c 1 ass bub b 1 e, end 

while holding the button down, dreg the cursor into the 2-D class 

bubble end rel ease the button. An arrow should now connect the two 

c 1 fl s s es ind i c fl ti n g th flt 2- D i s fl sub c 1 fl s s of M flt ri x. Rep e flt th i s 

process so that en arrow e lso connects cl asses Metri x end Arrey (Fig 

B.3). 

25 



Closs Definition 

Figure B.3: A Class Hierarchy. 

Add Methods "read" "write" and "inner" to class 2-D. Add three , , 

bub bl es titled "read ", "write", and "inner" just below the bubble for 

class 2-D. Using the Connection tool, add arrows from 2-D to each 

of the three new bubbles . In the diagram, methods are 

di st i ngui shabl e from cl asses because they are the leaves of the 

cl ass hierarchy. This does lead to some ambiguity for cl asses which 

have no methods defined. 

1.2 Some Interface options 

Nest class 2-D into a compound bubble . Select the Pack tool, which 

is next to the bottom in the tool palette. Now select the entire 

subtree con tai ni ng 2-D, read, write, and inner by dragging a box 

around them in the diagram. At this point (if you successfully 

26 

l 
l 
l 

n 
l l 

! 
i 
I 

. ' 

l 
I 

I J 

1 

j: 

I 
J 



l 
l 
l 
I 
0 
n 

n 
I 
l 
I 
I 
I 
J 

lJ 
j 

j 

j 

J 

selected the whole subtree) e di el og will eppeer with the 
instruct ions "Enter Inf ormet ion for Composed I terns:". Type "2-D 
Met" in the field labeled "Title" end select the "Define" button. A 
new window will now eppeer with the title "2-D Met" which contains 

only the four bubbles selected with the Peck tool (Fig B.4). 

2-Dim 

Matrix 

Figure B.4: Lower level of the Class Hierarchy. 

UnPack the compound bubble. First close the "2-D Met" window. This 

cen be done either by sefect i ng the "Close" item in the Cl ess 

Definition menu, or by clicking the mouse but ton with the cursor 

posit i one d i n the cl o s e box et the upper l e ft corner of the w i n do w. 

Now the window title "Class Definition" will egein be active. Notice 

that the entire subtree for the 2-D class is now represented by e 

double-bubble titled "2-D Met". Vou mey egein view this in e 

Sep 6 re t e W i n d OW by d OU bl e - Cl i Ck i n g On i t With the 5 e l e Ct i On t O O l , 

27 



eind selecting "Define" in the resulteint dieilog. To reintegreite the 
subtree into the meiin dieigreim, choose the UnPeick tool eit the bottom 
of the peil ette eind double click on the "2-D Meit" double-bubble. 

View the diagram in different zoom states. Select the "Zoom Out" 

item in the Leiyout menu. The di eigreim wi 11 now be redrawn smell er. 

Select the "Zoom In" item in the Layout menu to get the drewi ng beck 

to its original size. The 55/ 1 Design Editor provides four discrete 
zoom steites. The dieigrem cein be viewed end/or menipuleited in ell 
of the zoom steites. By zooming out you loose some resolution, but 
you cen view e 1 eirger di egreim. 

1.3 Source-Level Spec1f1 cat 1 on for the Methods. 

Open a text window for the read method. Choose the Selection tool, 

end double click on the bubble for the reed method. Select the 

"Define" button in the resulteint di eil og. Vou eire now presented with 6 

dialog asking if you weint to open e new file, select the "Ves" button. 
A text window titled "reed" will now eippeer. Enter the text for the 

metri x reed method es in Fig B.5. 

The Edit Text menu conteiins stenderd "Cut", "Copy", end "Paste" 

items which you cein use to menipulete the text. 

Save the read method text. Select item "Seive Text As ... " from the 

Edit Text menu, eind specify eippropri ete file eind f o 1 der for the text 

file. 

28 



l 
fl 

n 
l 
0 
n 

, l 

l 
j 

1 

I 
j 

J 

l l 
j 

J 

J 

J 

reed( theMetrix, inFile, row, col) 
char *inFile; 
int theMetri x[][], row, co 1; 

{ 

FILE *fp; 
inti, j; 

if ( (fp = fopen(inFile, "r")) == (FILE *)NULL) 
return( 1 ); 

for (i = 1 ; i <=row; i++) { 
for(j = 1 ;j <=COl ;j++) 

f scenf(f p, theMetri&[i ,j]); 
f scenf(fp, "\n"); 

} 

Figure B.5 Text window for method reed. 

Specifying an existing source file for a method. If source fore given 
method already exists, you can "link" that source to the appropriate 
method in the class definition diagram. To do this, double click on e 
method using the Selection tool, end select the "Define" button, now 
se 1 ect the "No" button in the next di el og which inquires wether you 
went to open e new file. Vou can now select the eppropri ate source 
file for the method with the standard file di el og. 

Specify source code for write, and inner methods. Now you know 
two ways to "1 ink" source code to the methods in the cl ass definition 
diagram. Use one or both of them to associate the following code 

with the write, end inner methods: 

29 



write( the Met, row, col ) 
fl oat theMet[][]; 

i n t row, co 1 ; 
{ inti,j; 

} 

for (i = O; i < row; i++) { 
for (j= O; j < col; j++) 

} 

print f ("% d", theMe t[i ][j I); 
p ri n t f (" \ n"); 

inner( MetA, MetB, Mete, rowCol, row, col) 
float MetA[][], MetB[][], Mete[][]; 

i n t row Co 1, row , co 1 ; 
{ inti ; 

MetC[row][col] = 0.0; 

for ( i = o; i < row; i + +) 

MetC[row][col] += MetA[row][i 1 * MetB[i ][col] ; 
} 

Save the Class Definition diagram. Select item "Save As ... " in the 

Cl ass Definition menu, end specify a file name of "Metri x.cl essDef". 

The window title will now change to "Matrix" . 

The cl ess definition di egrem is now complete, so we move to the 

next phase: The Communicet ion Specifi cet ion. 

2. Bu11d1ng a Commun1cet1on Spec1f1cet1on D1egrem 

Open a Communication Specification diagram window . Select item 

"New" in the Comm uni cet ion Spec menu. At this point e window 

entitled "Communication Spec" will eppeer, end the tool palette will 

chenge end display the tools for editing e communicetion 

spec if i c et i on di e g rem (Fi g B. 6). 

30 

l 
l 
l 

1 
n 

. ! 

l 
l 

r I 

l 
' 

l 

I 
J 

J I 

j 

I 
j 

j 



. I 

j 

Li 
u 
j 

. I 

j 

J 

s Session Class Definition Communication Spec. Edit TeHt Layout 

CJ 

~ 

D 
PAR 

~ 
SE 

~□ Communication Spec 

Figure B.6: The Communi ceti on Speci f1 cet ion window. 

Place messages for reading in two matrices. Choose the Basic 

Message tool, which is e plain rectangle (the second icon in the tool 

palette). With this tool, place two message rectangles neer the top 

of the communi cet ion specificeti on di egrem window. 

Fill in message parameters. The two messages in the window will 

be used to reed in the two matrices that we went to multiply. We 

will use the 2-D, reed method to accomplish this. Activate the class 

definition window now tit 1 ed "Metri x" (notice how the tool pel ette 

changes beck to the class definition tools), end with the Selection 

tool select the reed method. Now reectivete the Communication 

Specification window, end with the Selection tool double click one 

of the basic method rectangles. A dialog will eppeer with the 

instructions "Enter Message Information" (Fig B.7). The class, end 

31 



method fields will be filled in with "2-D", end "reed" respectively 
(because that is the method currently selected in the class 
definition di egrem). In the "Message Arguments" field enter: 'MetA, 
"Date A", 40, so·. And select the "OK" but ton. At this point the 
application will check the number end type of the arguments against 

the parameters decl ered in the source file. 

Enter Message Information: 

Class: 1 .... 2_-_o ______________ __ 

Method: !read 

Message Arguments: MatA, 11 DataA 11
, 40, 50 

(( OK ~ )] ( Cancel ) 

Figure B. 7: The Message Inf ormet ion Di el og. 

Fi II in parameters for the other message. For the other besi c 

message specify the following parameters in a similar manner: 

'MetB, "DeteB", 50, 60'. 

Place a parallel repHcator message in the diagram. Choose the 
Pa re 11 e 1 Rep 1 i c et or Mess e g e tool (1 e be 1 e d PAR in the p e 1 et t e). Pl e c e 

8 parallel replicator message below the two reed message 
rectengl es in the di egrem . This wi 11 be di spl eyed es a l erg er 

rectengl e with e vert ice l bar on the right side. 

32 

I! 

J 

J 

I 
J 

J 

I 



1 

~ 

l 
n 
0 
~ 

l 
n 
I 
j 

1 

I 
lJ 
I 

J 

Fill in parameters for the parallel replicator. With the Selection 
tool, double click in the parallel replicator, and fill in the fields as 
in Fig B.8. Select the "OK" button. 

Enter Information for Parallel Replicator: 

Loop Label: I Multiply 

Loop Uariable: 1 .... i ________ ~ 

Initial Ualue: _j 1 ________ _ 

Final Ualue:j _ 4-~--------

[ OK i-:] ( Define ) ( Cancel ) 

Figure B.8: The Paralle _l Replicator Info Dialog. 

Specifying sequence for the three messages. Select the Connection 
tool (the horizontal arrow). Position the mouse in one of the basic 
(read) messages, drag to the parallel replicator message and release. 
Repeat this process to connect the other basic message to the 
parallel replicator (Fig B.9). The arcs that you have just drawn 
indicate a sequencing dependency for the program, i.e.: you must read 
in the two matrices before you can multiply them. 

33 



Communication Spec 

2-D: read (MatA, "DataA", 40, 50); 

2-D : read (MatB, "DataB", 50, 60); 

Multiply 

i = 1 for 40; 
➔ 

.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.· 

Figure B.9: Message sequencing . 

Fill in the second level of the replicator message . With the 
Selection tool, double click the parallel replicator message, and 

select the "Define" button in the resultant dialog. At this point a 

new window titled "Multiply" will appear. In this window you will 

indicate what messages will be sent within the parallel loop. Place 

another para 11 el replicator message in this window (Matrix 

multiplication is basically a nested loop). For this message fill in 

the parameters: field Loop Label -> "Inner Loop", field Loop Variable 

- > "j", field Initial Value-> "1 ", field Final Value-> "60" . 

Fill in the lowest level of the multiplication loop. Select "Define" 

in the dialog for the Inner Loop parallel replicator and another 

window titled "Inner Loop" will be displayed (Fig B.10). Within this 

window place a basic message to calculate the inner product. The 

parameters for this message will be: Class -> "2-D", Method -> 

34 

_l 

n 
l 
l 
J 
l 
I 

I J 

f 

I 
J 

j 

j 

J 
J 



l . 
l 
l 
D 
n 
I 
1 
l 
l 
l 
j 

J 

J 

j 

J 

J 

j 

"inner", Messege Arguments -> "MetA, MetB, Mete, i, j". Now close 
the window titled "Inner Loop", end then the window titled 
"Multiplicetion". 

Communication Spec 

I 2-D: reed (MetA, "DeteA", 40, 50); I 
. ' 

\ j 2-D: reed (MetB, "DeteB", 50, 60); 

Multiply 

□ Inner Loop 

Inner Loop 

j = 1 for 60 

I 2-D: inner (MatA, Mat}:ri:i 

--
Figure B. 1 0: Nested 1 evel s in the Communi cet ion Specifi cet ion. 

Place message for writing the resultant matrix. In the top level 
comm uni cet ion specif i cet ion di egrem pl ece enother besi c messege 

for writing the resultant metri x. Peremeters for this messege wi 11 

be: Cless -> "2-D", Method -> "inner", Messege Arguments -> "Mete, 

40, 60". Now edd e sequencing ere to i ndi cete thet Mete can be 

written when the Mu 1t i p 1 i cat i on 1 o op i s comp 1 et e d (Fi g ·B. 1 1). 

35 



Communication Spec 

2-D: read (MatA, "DataA", 40, 50); 

2-D : read (MatB, "DataB", 50, 60); 

Multiply 

i = 1 for40; 

2-D: write (Mate, 40, 60); 

Figure B. 11: The complete Communication Specification . 

Saving the Communication Specification Diagram . Select item "Save 
As ... " in the Communication Specification menu, and specify a file 

name of "MatrixMult.commSpec". The window title wi 11 now change 

to "MatrixMult". 

3. Generating SML Glue Code and TaskGraph output 

Generate the SNL glue-code for the program. Select item "Generate 

Glue Code" in the Session Menu: Vou wi 11 now get a warning thet the 

Method "Vector" was not used. Ignore the warning. Now choose a 

file name for the SML code. The SML code for your program will l oak 
like this: 

36 

l 
J 



l 
l 
l 
~ 

0 
n 
l 
1 

) 

J 

j 

J 

lJ 

1 

j 

j 

/* Class Definition*/ 
( 

) 

Matrix ( 
2-0 ( 

write 
inner 
read 

) 

Vector 
) 

/* Communication Specification*/ 
(SEQ 

) 

(PAR 
(2-D, (read,MatB, "DataB", 50, 60)) 

(2-0, (read,MatA, "DataA", 40, SO)) 
) 

(PAR i = 1 for 40 

(PAR j = 1 for 60 

) 

(2-D, (inner,MatA, MatB, Mate, so, i, j)) 

) 

(2-0, (write,Matc, 40, 60)) 

Generate TaskGraph format description of the Communication 
Spec i fi ca t_i on. Select item "Export Task Graph As ... " in the 

Communication Spec. Menu. Select a name for the TaskGraph format 

description of the comm uni cation specification diagram. Vou can 

read this into TaskGraph to study the paral 1 e 1 execution of your 
program. 

37 



Appendix C: SML Specfff cetion 

program : class_definit ion com_specifi cat i ens ; 
class_definition : ( class_declarations) 

I null ; 
cl ass_decl a rat i ens : cl ass_decl arati ens cl ass_decl a ration 

I cl ass_decl a ration ; 
cl ass_decl a ration : cl ess_neme ( cl ass_decl a rat i ens ) 

I cl ess_neme 
I method_neme ; 

com_speci fi cat i ens : com_speci fi cat i ens messages 
I messages ; 

messages : ( construct messages ) 
: messages ; 

construct 

replicator 
start 

end 

message 
method_dsc 

arg_list 

expression 

: SEQ 
IPAR 
I SEQ rep 1 i ca tor 
I PAR replicator; 
: var = start to end ; 
: ver 
I integer ; 
: var 
I integer ; 
: ( cl ess_neme, method_dsc ) ; 
: ( method_neme, arg_list ) 
I method_neme ; 
: arg_l i st expression 
I expression ; 
: ver 
I integer 
I string ; 

38 

l 
q 

n: 
l 
l 

l 

l 
J 



References 

[Cho90] Sungwoon Choi, Tom Sturtevant, Ted G. Lewis, Parallel 
Programming and Designing . in Object Oriented 
Environment 55/ I, Technical Report, Computer Science 
Department, Oregon State University, April 1990. 

[Bud87] Timothy A. Budd, A little Smalltalk, Addison-Wesley, 

1987 
[Budd] 

[Chun] 

Timothy A. Budd, An Introduction to Object Oriented 
Programming, To appear. 

Jean Chung, Timothy A. Budd, LINDA SMALL TALK: Parallel 
Implementation of little Smalltalk Using Tuple Space 
Communication of Linda, Technical Report, Computer 

Science Department, Oregon State University, To appear. 

[Mac86] Apple Computer Inc., Inside Macintosh, Volume I, II, 111, and 

IV, March 1986. 

[Bab84] Robert G. Babb, Parallel Processing with large-Grain Data 
Flow Techniques, IEEE Computer pp. 55-61, July 1984 

[For90] Patrick D. Fortner, Dr. T. G. Lewis, MacSchedule: Speedup 
Estimation in Parallel Program Task Graphs, Technical 

Report, Computer Science Department, Oregon State 

Uni varsity, April 1990. 

[El r88] Hesham El-Rewi ni, Ted Lewis, Soft ware Deve 1 opmen t in 
Parallax: The £LGDF language, Technical Report, Computer 

Science Department, Oregon State Uni varsity, June 1988 

[Von86] Aki nori Vonezawa, Jean-Pierre Bri ot, Etsuya Shi bayama, 

Object-Oriented Concurrent Programming in ABCLI I, 
OOPSLA 86 Conference Proceedings, pp. 258-268, 1986 

[Vok86] Vasuhiko Vokote, Mario Tokoro, The Design and 
Implementation of ConcurrentSmalltalk, OOPSLA 86 

Conference Proceedings, pp. 331-340, 1986 

[Von87] Akinori Vonezawa, Mario Tokoro, Object Oriented 

Concurrent Programming, The MIT Press, pp. 1-7, 1987 

j [Agh87] Gul Agha, Carl Hewitt, Actors: A conceptual Foundation for 
Concurrent Object-Oriented Programming, Object-Oriented 

Concurrent Programming, The· MIT Press, pp 49-74, 1987 

39 



[Lie87] Henry Lieberman, Concurrent Object-Oriented 
Programming in Act 1, Research Directions is Object
Oriented Programming, The MIT Press, pp. 9-35, 1987 

40 

l 
n 
1 
l 
n 
l 
I 
7 
l 

l 
J 

u 
u 
I 
J 
J 


	Sturtevant_Lewis_90_60_15_A
	Sturtevant_Lewis_90_60_15_B

